Sample records for capacitance transient spectroscopy

  1. A system for measuring thermal activation energy levels in silicon by thermally stimulated capacitance

    NASA Technical Reports Server (NTRS)

    Cockrum, R. H.

    1982-01-01

    One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.

  2. Influence of deposition conditions on electrical and mechanical properties of Sm2O3-doped CeO2 thin films prepared by EB-PVD (+IBAD) methods. Part 1: Effective relative permittivity

    NASA Astrophysics Data System (ADS)

    Hartmanová, Mária; Nádaždy, Vojtech; Kundracik, František; Mansilla, Catina

    2013-03-01

    Study is devoted to the effective relative permittivity ɛr of CeO2 + x. Sm2O3 thin films prepared by electron-beam physical vapour deposition and ionic beam-assisted deposition methods; ɛr was investigated by three independent ways from the bulk parallel capacitance Cp, impedance capacitance Cimp, and accumulation capacitance Cacc in dependence on the deposition conditions (deposition temperature, dopant amount x and Ar+ ion bombardment during the film deposition) used. Investigations were performed using impedance spectroscopy, capacitance-voltage and current-voltage characteristics as well as deep level transient spectroscopy. Results obtained are described and discussed.

  3. Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition

    NASA Astrophysics Data System (ADS)

    Bollmann, Joachim; Venter, Andre

    2018-04-01

    A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.

  4. Study of GaAs-oxide interface by transient capacitance spectroscopy - Discrete energy interface states

    NASA Technical Reports Server (NTRS)

    Kamieniecki, E.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1980-01-01

    Interface states and bulk GaAs energy levels were simultaneously investigated in GaAs MOS structures prepared by anodic oxidation. These two types of energy levels were successfully distinguished by carrying out a comparative analysis of deep level transient capacitance spectra of the MOS structures and MS structures prepared on the same samples of epitaxially grown GaAs. The identification and study of the interface states and bulk levels was also performed by investigating the transient capacitance spectra as a function of the filling pulse magnitude. It was found that in the GaAs-anodic oxide interface there are states present with a discrete energy rather than with a continuous energy distribution. The value of the capture cross section of the interface states was found to be 10 to the 14th to 10 to the 15th/sq cm, which is more accurate than the extremely large values of 10 to the -8th to 10 to the -9th/sq cm reported on the basis of conductance measurements.

  5. High-Temperature Isothermal Capacitance Transient Spectroscopy Study on Inductively Coupled Plasma Etching Damage for p-GaN Surfaces

    NASA Astrophysics Data System (ADS)

    Aoki, Toshichika; Wakayama, Hisashi; Kaneda, Naoki; Mishima, Tomoyoshi; Nomoto, Kazuki; Shiojima, Kenji

    2013-11-01

    The effects of the inductively coupled plasma (ICP) etching damage on the electrical characteristics of low-Mg-doped p-GaN Schottky contacts were evaluated by high-temperature isothermal capacitance transient spectroscopy. A large single peak for an acceptor-type surface state was dominantly detected for as-grown samples. The energy level and state density were obtained to be 1.18 eV above the valence band, which is close to a Ga vacancy (VGa), and 1.5×1013 cm-2, respectively. It was speculated that a small portion of Ga atoms were missing from the surface, and a high VGa density was observed in a few surface layers. The peak intensity decreased by 60% upon annealing at 800 °C, and further decrease was found by ICP etching. This decrease is consistent with the suppression of the memory effect in current-voltage characteristics. Upon annealing and ICP etching, since the VGa structure might be disordered, the peak intensity decreased.

  6. Capacitance Techniques | Photovoltaic Research | NREL

    Science.gov Websites

    transient spectroscopy generated graph showing six defect levels; DLTS signal (Y-axis) versus Temperature (X -axis). DLTS characterizes defect levels to assist in identification of impurities and potential levels of interface states (or both) that often exist between the surfaces of dissimilar materials. Deep

  7. Positron deep level transient spectroscopy — a new application of positron annihilation to semiconductor physics

    NASA Astrophysics Data System (ADS)

    Beling, C. D.; Fung, S.; Au, H. L.; Ling, C. C.; Reddy, C. V.; Deng, A. H.; Panda, B. K.

    1997-05-01

    Recent positron mobility and lifetime measurements made on ac-biased metal on semi-insulating GaAs junctions, which have identified the native EL2 defect through a determination of the characteristic ionization energy of the donor level, are reviewed. It is shown that these measurements point towards a new spectroscopy, tentatively named positron-DLTS (deep level transient spectroscopy), that is the direct complement to conventional DLTS in that it monitors transients in the electric field of the depletion region rather than the inversely related depletion width, as deep levels undergo ionization. In this new spectroscopy, which may be applied to doped material by use of a suitable positron beam, electric field transients are monitored through the Doppler shift of the annihilation radiation resulting from the drift velocity of the positron in the depletion region. Two useful extensions of the new spectroscopy beyond conventional capacitance-DLTS are suggested. The first is that in some instances information on the microstructure of the defect causing the deep level may be inferred from the sensitivity of the positron to vacancy defects of negative and neutral charge states. The second is that the positron annihilation technique is intrinsically much faster than conventional DLTS with the capability of observing transients some 10 6 times faster, thus allowing deep levels (and even shallow levels) to be investigated without problems associated with carrier freeze-out.

  8. EL2 deep-level transient study in semi-insulating GaAs using positron-lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shan, Y. Y.; Ling, C. C.; Deng, A. H.; Panda, B. K.; Beling, C. D.; Fung, S.

    1997-03-01

    Positron lifetime measurements performed on Au/GaAs samples at room temperature with an applied square-wave ac bias show a frequency dependent interface related lifetime intensity that peaks around 0.4 Hz. The observation is explained by the ionization of the deep-donor level EL2 to EL2+ in the GaAs region adjacent to the Au/GaAs interface, causing a transient electric field to be experienced by positrons drifting towards the interface. Without resorting to temperature scanning or any Arrhenius plot the EL2 donor level is found to be located 0.80+/-0.01+/-0.05 eV below the conduction-band minimum, where the first error estimate is statistical and the second systematic. The result suggests positron annihilation may, in some instances, act as an alternative to capacitance transient spectroscopies in characterizing deep levels in both semiconductors and semi-insulators.

  9. Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Peaker, A. R.; Markevich, V. P.; Coutinho, J.

    2018-04-01

    The term junction spectroscopy embraces a wide range of techniques used to explore the properties of semiconductor materials and semiconductor devices. In this tutorial review, we describe the most widely used junction spectroscopy approaches for characterizing deep-level defects in semiconductors and present some of the early work on which the principles of today's methodology are based. We outline ab-initio calculations of defect properties and give examples of how density functional theory in conjunction with formation energy and marker methods can be used to guide the interpretation of experimental results. We review recombination, generation, and trapping of charge carriers associated with defects. We consider thermally driven emission and capture and describe the techniques of Deep Level Transient Spectroscopy (DLTS), high resolution Laplace DLTS, admittance spectroscopy, and scanning DLTS. For the study of minority carrier related processes and wide gap materials, we consider Minority Carrier Transient Spectroscopy (MCTS), Optical DLTS, and deep level optical transient spectroscopy together with some of their many variants. Capacitance, current, and conductance measurements enable carrier exchange processes associated with the defects to be detected. We explain how these methods are used in order to understand the behaviour of point defects and the determination of charge states and negative-U (Hubbard correlation energy) behaviour. We provide, or reference, examples from a wide range of materials including Si, SiGe, GaAs, GaP, GaN, InGaN, InAlN, and ZnO.

  10. High voltage electrochemical double layer capacitors using conductive carbons as additives

    NASA Astrophysics Data System (ADS)

    Michael, M. S.; Prabaharan, S. R. S.

    We describe here an interesting approach towards electrochemical capacitors (ECCs) using graphite materials (as being used as conductive additives in rechargeable lithium-ion battery cathodes) in a Li + containing organic electrolyte. The important result is that we achieved a voltage window of >4 V, which is rather large, compared to the standard window of 2.5 V for ordinary electric double layer capacitors (DLCs). The capacitor performance was evaluated by cyclic voltammetry (CV) and galvanostatic charge/discharge techniques. From charge-discharge studies of the symmetrical device (for instance, SFG6 carbon electrode), a specific capacitance of up to 14.5 F/g was obtained at 16 mA/cm 2 current rate and at a low current rate (3 mA/cm 2), a higher value was obtained (63 F/g). The specific capacitance decreased about 25% after 1000 cycles compared to the initial discharge process. The performances of these graphites are discussed in the light of both double layer capacitance (DLC) and pseudocapacitance (battery-like behavior). The high capacitance obtained was not only derived from the current-transient capacitive behavior but is also attributed to pseudocapacitance associated with some kind of faradaic reaction, which could probably occur due to Li + intercalation/deintercalation reactions into graphitic layers of the carbons used. The ac impedance (electrochemical impedances spectroscopy, EIS) measurements were also carried out to evaluate the capacitor parameters such as equivalent series resistance (ESR) and frequency dependent capacitance ( Cfreq). Cyclic voltammetry measurements were also performed to evaluate the cycling behavior of the carbon electrodes and the non-rectangular shaped voltammograms revealed the non-zero time constant [ τ( RC)≠0] confirming that the current contains a transient as well as steady-state components.

  11. Traps in AlGaN /GaN/SiC heterostructures studied by deep level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Fang, Z.-Q.; Look, D. C.; Kim, D. H.; Adesida, I.

    2005-10-01

    AlGaN /GaN/SiC Schottky barrier diodes (SBDs), with and without Si3N4 passivation, have been characterized by temperature-dependent current-voltage and capacitance-voltage measurements, and deep level transient spectroscopy (DLTS). A dominant trap A1, with activation energy of 1.0 eV and apparent capture cross section of 2×10-12cm2, has been observed in both unpassivated and passivated SBDs. Based on the well-known logarithmic dependence of DLTS peak height with filling pulse width for a line-defect related trap, A1, which is commonly observed in thin GaN layers grown by various techniques, is believed to be associated with threading dislocations. At high temperatures, the DLTS signal sometimes becomes negative, likely due to an artificial surface-state effect.

  12. Investigation of defect properties in Cu(In,Ga)Se 2 solar cells by deep-level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Kerr, L. L.; Li, Sheng S.; Johnston, S. W.; Anderson, T. J.; Crisalle, O. D.; Kim, W. K.; Abushama, J.; Noufi, R. N.

    2004-09-01

    The performance of the chalcopyrite material Cu(In,Ga)Se 2 (CIGS) used as an absorber layer in thin-film photovoltaic devices is significantly affected by the presence of native defects. The deep-level transient spectroscopy (DLTS) technique is used in this work to characterize the defect properties, yielding relevant information about the defect types, their capture cross-sections, and energy levels and densities in the CIGS cells. Three solar cells developed using different absorber growth technologies were analyzed using DLTS, capacitance-voltage ( C- V), and capacitance-temperature ( C- T) techniques. It was found that CIS cells grown at the University of Florida exhibits a middle-gap defect level that may relate to the cell's low fill factor and open-circuit voltage values observed. A high efficiency ( ηc>18%) CIGS cell produced by the National Renewable Energy Laboratory (NREL) was found to contain three minority-carrier (electron) traps and a 13% CIGS cell produced by the Energy Photovoltaics Inc. (EPV) exhibited one majority (hole) trap. The approach followed using the DLTS technique serves as a paradigm for revealing the presence of significant defect levels in absorber materials, and may be used to support the identification of remedial processing operations.

  13. MIS capacitor studies on silicon carbide single crystals

    NASA Technical Reports Server (NTRS)

    Kopanski, J. J.

    1990-01-01

    Cubic SIC metal-insulator-semiconductor (MIS) capacitors with thermally grown or chemical-vapor-deposited (CVD) insulators were characterized by capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) measurements. The purpose of these measurements was to determine the four charge densities commonly present in an MIS capacitor (oxide fixed charge, N(f); interface trap level density, D(it); oxide trapped charge, N(ot); and mobile ionic charge, N(m)) and to determine the stability of the device properties with electric-field stress and temperature. The section headings in the report include the following: Capacitance-voltage and conductance-voltage measurements; Current-voltage measurements; Deep-level transient spectroscopy; and Conclusions (Electrical characteristics of SiC MIS capacitors).

  14. Capacitance spectroscopy on n-type GaNAs/GaAs embedded quantum structure solar cells

    NASA Astrophysics Data System (ADS)

    Venter, Danielle; Bollmann, Joachim; Elborg, Martin; Botha, J. R.; Venter, André

    2018-04-01

    In this study, both deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) have been used to study the properties of electrically active deep level centers present in GaNAs/GaAs quantum wells (QWs) embedded in p-i-n solar cells. The structures were grown by molecular beam epitaxy (MBE). In particular, the electrical properties of samples with Si (n-type) doping of the QWs were investigated. DLTS revealed four deep level centers in the material, whereas only three were detected by AS. NextNano++ simulation software was used to model the sample band-diagrams to provide reasoning for the origin of the signals produced by both techniques.

  15. Identification of oxygen-related midgap level in GaAs

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Lin, D. G.; Gatos, H. C.; Aoyama, T.

    1984-01-01

    An oxygen-related deep level ELO was identified in GaAs employing Bridgman-grown crystals with controlled oxygen doping. The activation energy of ELO is almost the same as that of the dominant midgap level: EL2. This fact impedes the identification of ELO by standard deep level transient spectroscopy. However, it was found that the electron capture cross section of ELO is about four times greater than that of EL2. This characteristic served as the basis for the separation and quantitative investigation of ELO employing detailed capacitance transient measurements in conjunction with reference measurements on crystals grown without oxygen doping and containing only EL2.

  16. Physical Origin of Transient Negative Capacitance in a Ferroelectric Capacitor

    NASA Astrophysics Data System (ADS)

    Chang, Sou-Chi; Avci, Uygar E.; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2018-01-01

    Transient negative differential capacitance, the dynamic reversal of transient capacitance in an electrical circuit, is of highly technological and scientific interest since it probes the foundation of ferroelectricity. We study a resistor-ferroelectric capacitor (R -FEC) network through a series of coupled equations based on Kirchhoff's law, electrostatics, and Landau theory. We show that transient negative capacitance (NC) in a R -FEC circuit originates from the mismatch in switching rate between the free charge on the metal plate and the bound charge in a ferroelectric (FE) capacitor during the polarization switching. This transient free charge-polarization mismatch is driven by the negative curvature of the FE free-energy landscape, and it is also analytically shown that a free-energy profile with a negative curvature is the only physical system that can describe transient NC in a R -FEC circuit. Furthermore, transient NC induced by the free charge-polarization mismatch is justified by its dependence on both external resistance and the intrinsic FE viscosity coefficient. The depolarization effect on FE capacitors emphasizes the importance of negative curvature to transient NC and also implies that transient and steady-state NC cannot be observed in a FE capacitor simultaneously. Finally, using the transient NC measurements, a procedure to experimentally determine the viscosity coefficient is presented to provide more insight into the relation between transient NC and the FE free-energy profile.

  17. Profiling of barrier capacitance and spreading resistance using a transient linearly increasing voltage technique.

    PubMed

    Gaubas, E; Ceponis, T; Kusakovskij, J

    2011-08-01

    A technique for the combined measurement of barrier capacitance and spreading resistance profiles using a linearly increasing voltage pulse is presented. The technique is based on the measurement and analysis of current transients, due to the barrier and diffusion capacitance, and the spreading resistance, between a needle probe and sample. To control the impact of deep traps in the barrier capacitance, a steady state bias illumination with infrared light was employed. Measurements of the spreading resistance and barrier capacitance profiles using a stepwise positioned probe on cross sectioned silicon pin diodes and pnp structures are presented.

  18. Ferroelectric negative capacitance domain dynamics

    NASA Astrophysics Data System (ADS)

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2018-05-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transient negative capacitance is shown to originate from reverse domain nucleation and unrestricted domain growth. However, with the onset of domain coalescence, the capacitance becomes positive again. The persistence of the negative capacitance state is therefore limited by the speed of domain wall motion. By changing the applied electric field, capacitor area or external resistance, this domain wall velocity can be varied predictably over several orders of magnitude. Additionally, detailed insights into the intrinsic material properties of the ferroelectric are obtainable through these measurements. A new method for reliable extraction of the average negative capacitance of the ferroelectric is presented. Furthermore, a simple analytical model is developed, which accurately describes the negative capacitance transient time as a function of the material properties and the experimental boundary conditions.

  19. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics

    NASA Astrophysics Data System (ADS)

    Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.

    2016-03-01

    Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on porous silicon, dissolution tests for 0.1 M and 0.01 M NaOH trigger solutions, EIS analysis for VOx coated devices, and EDS compositional analysis of VOx. (ii) Video showing transient behavior of integrated VOx/porous silicon scaffolds. See DOI: 10.1039/c5nr09095d

  20. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Balliou, A.; Douvas, A. M.; Normand, P.; Tsikritzis, D.; Kennou, S.; Argitis, P.; Glezos, N.

    2014-10-01

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW12O403-, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  1. Measurement of n-type Dry Thermally Oxidized 6H-SiC Metal-oxide Semiconductor Diodes by Quasistatic and High-Frequency Capacitance Versus Voltage and Capacitance Transient Techniques

    NASA Technical Reports Server (NTRS)

    Neudeck, P.; Kang, S.; Petit, J.; Tabib-Azar, M.

    1994-01-01

    Dry-oxidized n-type 6H-SiC metal-oxide-semiconductor capacitors are investigated using quasistatic capacitance versus voltage (C-V), high-frequency C-V, and pulsed high-frequency capacitance transient (C-t) analysis over the temperature range from 297 to 573 K. The quasistatic C - V characteristics presented are the first reported for 6H-SiC MOS capacitors, and exhibit startling nonidealities due to nonequilibrium conditions that arise from the fact that the recombination/generation process in 6H-SiC is extraordinarily slow even at the highest measurement temperature employed. The high-frequency dark C-V characteristics all showed deep depletion with no observable hysteresis. The recovery of the high-frequency capacitance from deep depletion to inversion was used to characterize the minority-carrier generation process as a function of temperature. Zerbst analysis conducted on the resulting C-t transients, which were longer than 1000 s at 573 K, showed a generation lifetime thermal activation energy of 0.49 eV.

  2. A transient simulation approach to obtaining capacitance-voltage characteristics of GaN MOS capacitors with deep-level traps

    NASA Astrophysics Data System (ADS)

    Fukuda, Koichi; Asai, Hidehiro; Hattori, Junichi; Shimizu, Mitsuaki; Hashizume, Tamotsu

    2018-04-01

    In this study, GaN MOS capacitance-voltage device simulations considering various interface and bulk traps are performed in the transient mode. The simulations explain various features of capacitance-voltage curves, such as plateau, hysteresis, and frequency dispersions, which are commonly observed in measurements of GaN MOS capacitors and arise from complicated combinations of interface and bulk deep-level traps. The objective of the present study is to provide a good theoretical tool to understand the physics of various nonideal measured curves.

  3. The timing of cortical granule fusion, content dispersal, and endocytosis during fertilization of the hamster egg: an electrophysiological and histochemical study.

    PubMed

    Kline, D; Stewart-Savage, J

    1994-03-01

    To determine the temporal relationship between cortical granule exocytosis and the repetitive calcium transients, which are characteristic of mammalian fertilization, we monitored membrane addition from exocytosis during fertilization of hamster eggs. Continuous measurement of membrane capacitance by applying a 3.1-nA alternating current at 375 Hz showed addition of cortical granule membrane. Simultaneous measurement of membrane potential revealed each calcium transient by the appearance of transient hyperpolarizing responses due to calcium-activated potassium channels in the egg. The initial membrane capacitance of the eggs averaged 736 +/- 44 pF (mean +/- SD; n = 7) and an increase in capacitance of 61 +/- 19 pF occurred within 4 sec of the start of the first hyperpolarizing response (HR) after fertilization. Immediately after the first increase in capacitance there was a gradual decline in membrane capacitance in all eggs and in five/seven eggs the capacitance returned to the unfertilized level in 7.8 +/- 4.4 min. The gradual decline in capacitance after the first increase indicated endocytosis, which was confirmed by the internalization of fluorescently labeled dextran. Superimposed on the gradual decline in membrane capacitance were smaller increases in capacitance that occurred with the second and later HRs. The total increase in capacitance from the first three events averaged 72 +/- 19 pF, representing an average increase in capacitance of about 10% of the capacitance of the unfertilized egg. By labeling eggs before and after permeabilization with two different fluorochromes attached to Lens culinaris agglutinin, we demonstrate that the dispersal of the cortical granules contents does not occur immediately after exocytosis. Our results demonstrate that cortical granule exocytosis in hamster eggs is closely coupled to the periodic increases in calcium, that the contents of the cortical granules are slow to disperse, and that after exocytosis, the surface area of the egg returns to the unfertilized level because of a period of endocytosis.

  4. Capacitance changes in frog skin caused by theophylline and antidiuretic hormone.

    PubMed

    Cuthbert, A W; Painter, E

    1969-09-01

    1. Impedance loci for frog skins have been calculated by computer analysis from voltage transients developed across the tissues.2. Attention has been paid to simultaneous changes in conductance and capacitance of skins treated either with antidiuretic hormone (ADH) or with theophylline. These drugs always caused an increase in conductance and usually the skin capacitance also increased. However, changes in conductance were not correlated with capacitance changes.3. Changes in capacitance caused by the drugs may represent pore formation in the barrier to water flow, since both drugs increase hydro-osmotic flow in epithelia. If this interpretation is correct, then 0.14% of the membrane area forms water-permeable pores in response to a maximal dose of ADH. This value is somewhat less than the value obtained previously (0.3%) by graphical analysis.4. A theoretical account is given of the relative accuracy of the computer method and the graphical method for voltage transient analysis.

  5. Electrical characterization and comparison of CIGS solar cells made with different structures and fabrication techniques

    DOE PAGES

    Garris, Rebekah L.; Johnston, Steven; Li, Jian V.; ...

    2017-08-31

    In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less

  6. Electrical characterization and comparison of CIGS solar cells made with different structures and fabrication techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garris, Rebekah L.; Johnston, Steven; Li, Jian V.

    In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less

  7. Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo.

    PubMed

    Meijs, S; Alcaide, M; Sørensen, C; McDonald, M; Sørensen, S; Rechendorff, K; Gerhardt, A; Nesladek, M; Rijkhoff, N J M; Pennisi, C P

    2016-10-01

    The goal of this study was to assess the electrochemical properties of boron-doped diamond (BDD) electrodes in relation to conventional titanium nitride (TiN) electrodes through in vitro and in vivo measurements. Electrochemical impedance spectroscopy, cyclic voltammetry and voltage transient (VT) measurements were performed in vitro after immersion in a 5% albumin solution and in vivo after subcutaneous implantation in rats for 6 weeks. In contrast to the TiN electrodes, the capacitance of the BDD electrodes was not significantly reduced in albumin solution. Furthermore, BDD electrodes displayed a decrease in the VTs and an increase in the pulsing capacitances immediately upon implantation, which remained stable throughout the whole implantation period, whereas the opposite was the case for the TiN electrodes. These results reveal that BDD electrodes possess a superior biofouling resistance, which provides significantly stable electrochemical properties both in protein solution as well as in vivo compared to TiN electrodes.

  8. 4H-SiC p i n diodes grown by sublimation epitaxy in vacuum (SEV) and their application as microwave diodes

    NASA Astrophysics Data System (ADS)

    Camara, N.; Zekentes, K.; Zelenin, V. V.; Abramov, P. L.; Kirillov, A. V.; Romanov, L. P.; Boltovets, N. S.; Krivutsa, V. A.; Thuaire, A.; Bano, E.; Tsoi, E.; Lebedev, A. A.

    2008-02-01

    Sublimation epitaxy under vacuum (SEV) was investigated as a method for growing 4H-SiC epitaxial structures for p-i-n diode fabrication. The SEV-grown 4H-SiC material was investigated with scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction, photo-luminescence spectroscopy (PL), cathodo-luminescence (CL) spectroscopy, photocurrent method for carrier diffusion length determination, electro-luminescence microscopy (EL), deep level transient spectroscopy (DLTS), C-V profiling and Hall-effect measurements. When possible, the same investigation techniques were used in parallel with similar layers grown by chemical vapour deposition (CVD) epitaxy and the physical properties of the two kind of epitaxied layers were compared. p-i-n diodes were fabricated in parallel on SEV and CVD-grown layers and showed close electrical performances in dc mode in term of capacitance, resistance and transient time switching, despite the lower mobility and the diffusion length of the SEV-grown layers. X-band microwave switches based on the SEV-grown p-i-n diodes have been demonstrated with insertion loss lower than 4 dB and an isolation higher than 17 dB. These single-pole single-throw (SPST) switches were able to handle a pulsed power up to 1800 W in isolation mode, similar to the value obtained with switches incorporating diodes with CVD-grown layers.

  9. Temporal change in the electromechanical properties of dielectric elastomer minimum energy structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchberger, G., E-mail: erda.buchberger@jku.at; Hauser, B.; Jakoby, B.

    Dielectric elastomer minimum energy structures (DEMES) are soft electronic transducers and energy harvesters with potential for consumer goods. The temporal change in their electromechanical properties is of major importance for engineering tasks. Therefore, we study acrylic DEMES by impedance spectroscopy and by optical methods for a total time period of approx. 4.5 months. We apply either compliant electrodes from carbon black particles only or fluid electrodes from a mixture of carbon black particles and silicone oil. From the measurement data, the equivalent series capacitances and resistances as well as the bending angles of the transducers are obtained. We find thatmore » the equivalent series capacitances change in average between −12 %/1000 h and −4.0 %/1000 h, while the bending angles decrease linearly with slopes ranging from −15 %/1000 h to −7 %/1000 h. Transducers with high initial bending angles and electrodes from carbon black particles show the smallest changes of the electromechanical characteristics. The capacitances decrease faster for DEMES with fluid electrodes. Some DEMES of this type reveal huge and unpredictable fluctuations of the resistances over time due to the ageing of the contacts. Design guidelines for DEMES follow directly from the observed transient changes of their electromechanical performance.« less

  10. The capacitive proximity sensor based on transients in RC-circuits

    NASA Astrophysics Data System (ADS)

    Yakunin, A. G.

    2018-05-01

    The principle of operation of the capacitive proximity sensor is described. It can be used in various robotic complexes, automation systems and alarm devices to inform the control device of the approach to the sensor sensitive surface of an object. At the heart of the device is the measurement of the change in the current of the transient accompanying the charge of the reference capacitor because of the parallel connection to it the capacitance formed by the sensitive sensor surface and the external object. At the heart of the device is the measurement of the change in the current of the transient accompanying the charge of the reference capacitor caused by the parallel connection to it the capacitance formed by the sensitive sensor surface and the external object. As shown by theoretical and experimental studies, the value of this capacity, depending on the purpose of the device, can vary within very wide limits. In this case, the sensitive surface can be both a piece of ordinary wire several centimeters long, and a metall plate or grid, the area of which can reach units and even tens of square meters. The main advantage of the proposed solution is a significant reduction in the effect of spurious leakage currents arising at the capacitance of the measuring electrode under the influence of pollution and humidity of the environment.

  11. Reciprocal capacitance transients?

    NASA Astrophysics Data System (ADS)

    Gfroerer, Tim; Simov, Peter; Wanlass, Mark

    2007-03-01

    When the reverse bias across a semiconductor diode is changed, charge carriers move to accommodate the appropriate depletion thickness, producing a simultaneous change in the device capacitance. Transient capacitance measurements can reveal inhibited carrier motion due to trapping, where the depth of the trap can be evaluated using the temperature-dependent escape rate. However, when we employ this technique on a GaAs0.72P0.28 n+/p diode (which is a candidate for incorporation in multi-junction solar cells), we observe a highly non-exponential response under a broad range of experimental conditions. Double exponential functions give good fits, but lead to non-physical results. The deduced rates depend on the observation time window and fast and slow rates, which presumably correspond to deep and shallow levels, have identical activation energies. Meanwhile, we have discovered a universal linear relationship between the inverse of the capacitance and time. An Arrhenius plot of the slope of the reciprocal of the transient yields an activation energy of approximately 0.4 eV, independent of the observation window and other experimental conditions. The reciprocal behavior leads us to hypothesize that hopping, rather than escape into high-mobility bands, may govern the transport of trapped holes in this system.

  12. ANSYS simulation of the capacitance coupling of quartz tuning fork gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Feng, Lihui; Zhao, Ke; Cui, Fang; Sun, Yu-nan

    2013-12-01

    Coupling error is one of the main error sources of the quartz tuning fork gyroscope. The mechanism of capacitance coupling error is analyzed in this article. Finite Element Method (FEM) is used to simulate the structure of the quartz tuning fork by ANSYS software. The voltage output induced by the capacitance coupling is simulated with the harmonic analysis and characteristics of electrical and mechanical parameters influenced by the capacitance coupling between drive electrodes and sense electrodes are discussed with the transient analysis.

  13. Step-by-Step Heating of Dye Solution for Efficient Solar Energy Harvesting in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Shah, Syed Afaq Ali; Sayyad, Muhammad Hassan; Abdulkarim, Salem; Qiao, Qiquan

    2018-05-01

    A step-by-step heat treatment was applied to ruthenium-based N719 dye solution for its potential application in dye-sensitized solar cells (DSSCs). The effects were analyzed and compared with standard untreated devices. A significant increase in short circuit current density was observed by employing a step-by-step heating method for dye solution in DSSCs. This increase of J sc is attributed to the enhancement in dye adsorption by the surface of the semiconductor and the higher number of charge carriers generated. DSSCs fabricated by a heated dye solution have achieved an overall power conversion efficiency of 8.41% which is significantly higher than the efficiency of 7.31% achieved with DSSCs fabricated without heated dye. Electrochemical impedance spectroscopy and capacitance voltage studies were performed to understand the better performance of the device fabricated with heated dye. Furthermore, transient photocurrent and transient photovoltage measurements were also performed to gain an insight into interfacial charge carrier recombinations.

  14. Development of Electrical Capacitance Sensors for Accident Tolerant Fuel (ATF) Testing at the Transient Reactor Test (TREAT) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Maolong; Ryals, Matthew; Ali, Amir

    2016-08-01

    A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less

  15. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy.

    PubMed

    Lu, Zhihao; Girguis, Peter; Liang, Peng; Shi, Haifeng; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-07-01

    It is known that cell potential increases while anode resistance decreases during the start-up of microbial fuel cells (MFCs). Biological capacitance, defined as the apparent capacitance attributed to biological activity including biofilm production, plays a role in this phenomenon. In this research, electrochemical impedance spectroscopy was employed to study anode capacitance and resistance during the start-up period of MFCs so that the role of biological capacitance was revealed in electricity generation by MFCs. It was observed that the anode capacitance ranged from 3.29 to 120 mF which increased by 16.8% to 18-20 times over 10-12 days. Notably, lowering the temperature and arresting biological activity via fixation by 4% para formaldehyde resulted in the decrease of biological capacitance by 16.9 and 62.6%, indicating a negative correlation between anode capacitance and anode resistance of MFCs. Thus, biological capacitance of anode should play an important role in power generation by MFCs. We suggest that MFCs are not only biological reactors and/or electrochemical cells, but also biological capacitors, extending the vision on mechanism exploration of electron transfer, reactor structure design and electrode materials development of MFCs.

  16. Impact of the silicon substrate resistivity and growth condition on the deep levels in Ni-Au/AlN/Si MIS Capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Simoen, Eddy; Zhao, Ming; Li, Wei

    2017-10-01

    Deep levels formed under different growth conditions of a 200 nm AlN buffer layer on B-doped Czochralski Si(111) substrates with different resistivity were investigated by deep-level transient spectroscopy (DLTS) on metal-insulator-semiconductor capacitors. Growth-temperature-dependent Al diffusion in the Si substrate was derived from the free carrier density obtained by capacitance-voltage measurement on samples grown on p- substrates. The DLTS spectra revealed a high concentration of point and extended defects in the p- and p+ silicon substrates, respectively. This indicated a difference in the electrically active defects in the silicon substrate close to the AlN/Si interface, depending on the B doping concentration.

  17. A dielectric model of self-assembled monolayer interfaces by capacitive spectroscopy.

    PubMed

    Góes, Márcio S; Rahman, Habibur; Ryall, Joshua; Davis, Jason J; Bueno, Paulo R

    2012-06-26

    The presence of self-assembled monolayers at an electrode introduces capacitance and resistance contributions that can profoundly affect subsequently observed electronic characteristics. Despite the impact of this on any voltammetry, these contributions are not directly resolvable with any clarity by standard electrochemical means. A capacitive analysis of such interfaces (by capacitance spectroscopy), introduced here, enables a clean mapping of these features and additionally presents a means of studying layer polarizability and Cole-Cole relaxation effects. The resolved resistive term contributes directly to an intrinsic monolayer uncompensated resistance that has a linear dependence on the layer thickness. The dielectric model proposed is fully aligned with the classic Helmholtz plate capacitor model and additionally explains the inherently associated resistive features of molecular films.

  18. A time-based potential step analysis of electrochemical impedance incorporating a constant phase element: a study of commercially pure titanium in phosphate buffered saline.

    PubMed

    Ehrensberger, Mark T; Gilbert, Jeremy L

    2010-05-01

    The measurement of electrochemical impedance is a valuable tool to assess the electrochemical environment that exists at the surface of metallic biomaterials. This article describes the development and validation of a new technique, potential step impedance analysis (PSIA), to assess the electrochemical impedance of materials whose interface with solution can be modeled as a simplified Randles circuit that is modified with a constant phase element. PSIA is based upon applying a step change in voltage to a working electrode and analyzing the subsequent current transient response in a combined time and frequency domain technique. The solution resistance, polarization resistance, and interfacial capacitance are found directly in the time domain. The experimental current transient is numerically transformed to the frequency domain to determine the constant phase exponent, alpha. This combined time and frequency approach was tested using current transients generated from computer simulations, from resistor-capacitor breadboard circuits, and from commercially pure titanium samples immersed in phosphate buffered saline and polarized at -800 mV or +1000 mV versus Ag/AgCl. It was shown that PSIA calculates equivalent admittance and impedance behavior over this range of potentials when compared to standard electrochemical impedance spectroscopy. This current transient approach characterizes the frequency response of the system without the need for expensive frequency response analyzers or software. Copyright 2009 Wiley Periodicals, Inc.

  19. Impedance spectroscopy study of a catechol-modified activated carbon electrode as active material in electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Cougnon, C.; Lebègue, E.; Pognon, G.

    2015-01-01

    Modified activated carbon (Norit S-50) electrodes with electrochemical double layer (EDL) capacitance and redox capacitance contributions to the electric charge storage were tested in 1 M H2SO4 to quantify the benefit and the limitation of the surface redox reactions on the electrochemical performances of the resulting pseudo-capacitive materials. The electrochemical performances of an electrochemically anodized carbon electrode and a catechol-modified carbon electrode, which make use both EDL capacitance of the porous structure of the carbon and redox capacitance, were compared to the performances obtained for the pristine carbon. Nitrogen gas adsorption measurements have been used for studying the impact of the grafting on the BET surface area, pore size distribution, pore volume and average pore diameter. The electrochemical behavior of carbon materials was studied by cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The EIS data were discussed by using a complex capacitance model that allows defining the characteristic time constant, the global capacitance and the frequency at which the maximum charge stored is reached. The EIS measurements were achieved at different dc potential values where a redox activity occurs and the evolution of the capacitance and the capacitive relaxation time with the electrode potential are presented. Realistic galvanostatic charge/discharge measurements performed at different current rates corroborate the results obtained by impedance.

  20. In-Plane Impedance Spectroscopy measurements in Vanadium Dioxide thin films

    NASA Astrophysics Data System (ADS)

    Ramirez, Juan; Patino, Edgar; Schmidt, Rainer; Sharoni, Amos; Gomez, Maria; Schuller, Ivan

    2012-02-01

    In plane Impedance Spectroscopy measurements have been done in Vanadium Dioxide thin films in the range of 100 Hz to 1 MHz. Our measurements allows distinguishing between the resistive and capacitive response of the Vanadium Dioxide films across the metal-insulator transition. A non ideal RC behavior was found in our thin films from room temperature up to 334 K. Around the MIT, an increase of the total capacitance is observed. A capacitor-network model is able to reproduce the capacitance changes across the MIT. Above the MIT, the system behaves like a metal as expected, and a modified equivalent circuit is necessary to describe the impedance data adequately.

  1. Determining oxide trapped charges in Al2O3 insulating films on recessed AlGaN/GaN heterostructures by gate capacitance transients measurements

    NASA Astrophysics Data System (ADS)

    Fiorenza, Patrick; Greco, Giuseppe; Schilirò, Emanuela; Iucolano, Ferdinando; Lo Nigro, Raffaella; Roccaforte, Fabrizio

    2018-05-01

    This letter presents time-dependent gate-capacitance transient measurements (C–t) to determine the oxide trapped charges (N ot) in Al2O3 films deposited on recessed AlGaN/GaN heterostructures. The C–t transients acquired at different temperatures under strong accumulation allowed to accurately monitor the gradual electron trapping, while hindering the re-emission by fast traps that may affect conventional C–V hysteresis measurements. Using this method, an increase of N ot from 2 to 6 × 1012 cm‑2 was estimated between 25 and 150 °C. The electron trapping is ruled by an Arrhenius dependence with an activation energy of 0.12 eV which was associated to points defects present in the Al2O3 films.

  2. A Tunable Reentrant Resonator with Transverse Orientation of Electric Field for in Vivo EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chzhan, Michael; Kuppusamy, Periannan; Samouilov, Alexandre; He, Guanglong; Zweier, Jay L.

    1999-04-01

    There has been a need for development of microwave resonator designs optimized to provide high sensitivity and high stability for EPR spectroscopy and imaging measurements ofin vivosystems. The design and construction of a novel reentrant resonator with transversely oriented electric field (TERR) and rectangular sample opening cross section for EPR spectroscopy and imaging ofin vivobiological samples, such as the whole body of mice and rats, is described. This design with its transversely oriented capacitive element enables wide and simple setting of the center frequency by trimming the dimensions of the capacitive plate over the range 100-900 MHz with unloadedQvalues of approximately 1100 at 750 MHz, while the mechanical adjustment mechanism allows smooth continuous frequency tuning in the range ±50 MHz. This orientation of the capacitive element limits the electric field based loss of resonatorQobserved with large lossy samples, and it facilitates the use of capacitive coupling. Both microwave performance data and EPR measurements of aqueous samples demonstrate high sensitivity and stability of the design, which make it well suited forin vivoapplications.

  3. Developing a polymeric sensor to monitor intracellular conditions

    NASA Astrophysics Data System (ADS)

    Mudarri, Timothy C.; Leo, Donald J.; Wood, Brett C.; Shires, Peter K.

    2004-07-01

    Ionic electroactive polymers have been developed as mechanical sensors or actuators, taking advantage of the electromechanical coupling of the materials. This research attempts to take advantage of the chemomechanical and chemoelectrical coupling by characterizing the transient response as the polymer undergoes an ion exchange, thus using the polymer for ionic sensing. Nafion is a biocompatible material, and an implantable polymeric ion sensor which has applications in the biomedical field for bone healing research. An ion sensor and a strain gauge could determine the effects of motion allowed at the fracture site, thus improving rehabilitation procedures for bone fractures. The charge sensitivity of the material and the capacitance of the material were analyzed to determine the transient response. Both measures indicate a change when immersed in ionic salt solutions. It is demonstrated that measuring the capacitance is the best indicator of an ion exchange. Relative to a flat response in deionized water (+/-2%), the capacitance of the polymer exhibits an exponential decay of ~25% of its peak when placed in a salt solution. A linear correlation between the time constant of the decay and the ionic size of the exchanging ion was developed that could reasonably predict a diffusing ion. Tests using an energy dispersive spectrometer (EDS) indicate that 90% of the exchange occurs in the first 20 minutes, shown by both capacitance decay and an atomic level scan. The diffusion rate time constant was found to within 0.3% of the capacitance time constant, confirming the ability of capacitance to measure ion exchange.

  4. Complex capacitance spectroscopy as a probe for oxidation process of AlO{sub x}-based magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J.C.A.; Hsu, C.Y.; Taiwan SPIN Research Center, National Chung Cheng University, Chiayi, Taiwan

    2004-12-13

    Proper as well as under- and over-oxided CoFe-AlO{sub x}-CoFe magnetic tunnel junctions (MTJs) have been systematically investigated in a frequency range from 10{sup 2} to 10{sup 8} Hz by complex capacitance spectroscopy. The dielectric relaxation behavior of the MTJs remarkably disobeys the typical Cole-Cole arc law probably due to the existence of imperfectly blocked Schottky barrier in the metal-insulator interface. The dielectric relaxation response can be successfully modeled on the basis of Debye relaxation by incorporating an interfacial dielectric contribution. In addition, complex capacitance spectroscopy demonstrates significant sensitivity to the oxidation process of metallic Al layers, i.e., almost a fingerprintmore » of under, proper, and over oxidation. This technique provides a fast and simple method to inspect the AlO{sub x} barrier quality of MTJs.« less

  5. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Haihan; Han, Gaoyi; Xiao, Yaoming; Chang, Yunzhen; Zhai, Hua-Jin

    2014-10-01

    A simple and low-cost electrochemical codeposition method has been introduced to fabricate polypyrrole/graphene oxide (PPy/GO) nanocomposites and the areal capacitance of conducting polymer/GO composites is reported for the first time. Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) are implemented to determine the PPy/GO nanocomposites are successfully prepared and the interaction between PPy and GO. The as-prepared PPy/GO nanocomposites show the curly sheet-like morphology, superior capacitive behaviors and cyclic stability. Furthermore, the varying deposition time is implemented to investigate the impact of the loading amount on electrochemical behavior of the composites, and a high areal capacitance of 152 mF cm-2 is achieved at 10 mV s-1 CV scan. However, the thicker films caused by the long deposition time would result in larger diffusion resistance of electrolyte ions, consequently exhibit the relatively lower capacitance value at the high current density. The GCD tests indicate moderate deposition time is more suitable for the fast charge/discharge. Considering the very simple and effective synthetic process, the PPy/GO nanocomposites with relatively high areal capacitance are competitive candidate for supercapacitor application, and its capacitive performances can be easily tuned by varying the deposition time.

  6. Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Dacheng; Zhang, Xiong; Chen, Yao; Yu, Peng; Wang, Changhui; Ma, Yanwei

    Graphene and polypyrrole composite (PPy/GNS) is synthesized via in situ polymerization of pyrrole monomer in the presence of graphene under acid conditions. The structure and morphology of the composite are characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectrometer (FTIR), X-rays photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). It is found that a uniform composite is formed with polypyrrole being homogeneously surrounded by graphene nanosheets (GNS). The composite is a promising candidate for supercapacitors to have higher specific capacitance, better rate capability and cycling stability than those of pure polypyrrole. The specific capacitance of PPy/GNS composite based on the three-electrode cell configuration is as high as 482 F g -1 at a current density of 0.5 A g -1. After 1000 cycles, the attenuation of the specific capacitance is less than 5%, indicating that composite has excellent cycling performance.

  7. Single photon detection of 1.5 THz radiation with the quantum capacitance detector

    NASA Astrophysics Data System (ADS)

    Echternach, P. M.; Pepper, B. J.; Reck, T.; Bradford, C. M.

    2018-01-01

    Far-infrared spectroscopy can reveal secrets of galaxy evolution and heavy-element enrichment throughout cosmic time, prompting astronomers worldwide to design cryogenic space telescopes for far-infrared spectroscopy. The most challenging aspect is a far-infrared detector that is both exquisitely sensitive (limited by the zodiacal-light noise in a narrow wavelength band, λ/Δλ 1,000) and array-able to tens of thousands of pixels. We present the quantum capacitance detector, a superconducting device adapted from quantum computing applications in which photon-produced free electrons in a superconductor tunnel into a small capacitive island embedded in a resonant circuit. The quantum capacitance detector has an optically measured noise equivalent power below 10-20 W Hz-1/2 at 1.5 THz, making it the most sensitive far-infrared detector ever demonstrated. We further demonstrate individual far-infrared photon counting, confirming the excellent sensitivity and suitability for cryogenic space astrophysics.

  8. Single-Event Transients in Voltage Regulators

    NASA Technical Reports Server (NTRS)

    Johnston, Allan H.; Miyahira, Tetsuo F.; Irom, F.; Laird, Jamie S.

    2006-01-01

    Single-event transients are investigated for two voltage regulator circuits that are widely used in space. A circuit-level model is developed that can be used to determine how transients are affected by different circuit application conditions. Internal protection circuits-which are affected by load as well as internal thermal effects-can also be triggered from heavy ions, causing dropouts or shutdown ranging from milliseconds to seconds. Although conventional output transients can be reduced by adding load capacitance, that approach is ineffective for dropouts from protection circuitry.

  9. Colossal internal barrier layer capacitance effect in polycrystalline copper (II) oxide

    NASA Astrophysics Data System (ADS)

    Sarkar, Sudipta; Jana, Pradip Kumar; Chaudhuri, B. K.

    2008-01-01

    Dielectric spectroscopy analysis of the high permittivity (κ˜104) copper (II) oxide (CuO) ceramic shows that the grain contribution plays a major role for the giant-κ value at low temperature, whereas grain boundary (GB) contribution dominates around room temperature and above. Moreover, impedance spectroscopy analysis reveals electrically heterogeneous microstructure in CuO consisting of semiconducting grains and insulating GBs. Finally, the giant dielectric phenomenon exhibited by CuO is attributed to the internal barrier layer (due to GB) capacitance mechanism.

  10. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy

    PubMed Central

    Douglass, K O; Olson, D A

    2016-01-01

    We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5 % with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes. To illustrate this concept we have used wavelength modulation spectroscopy (WMS), due to inherent advantages over direct absorption spectroscopy, to perform rapid measurements of carbon dioxide in order to determine the pressure. The system records the full lineshape profile of a single ro-vibrational transition of CO2 at a repetition rate of 4 kHz and with a systematic measurement uncertainty of 12 % for the linewidth measurement. A series of pressures were measured at a rate of 400 Hz (10 averages) and from these measurements the linewidth was determined with a relative uncertainty of about 0.5 % on average. The pressures measured using WMS have an average difference of 0.6 % from the absolute pressure measured with a capacitance diaphragm sensor. PMID:27881884

  11. Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.

    2014-09-01

    The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.

  12. Silicon drift detectors with on-chip electronics for x-ray spectroscopy.

    PubMed

    Fiorini, C; Longoni, A; Hartmann, R; Lechner, P; Strüder, L

    1997-01-01

    The silicon drift detector (SDD) is a semiconductor device based on high resistivity silicon fully depleted through junctions implanted on both sides of the semiconductor wafer. The electrons generated by the ionizing radiation are driven by means of a suitable electric field from the point of interaction toward a collecting anode of small capacitance, independent of the active area of the detector. A suitably designed front-end JFET has been directly integrated on the detector chip close to the anode region, in order to obtain a nearly ideal capacitive matching between detector and transistor and to minimize the stray capacitances of the connections. This feature allows it to reach high energy resolution also at high count rates and near room temperature. The present work describes the structure and the performance of SDDs specially designed for high resolution spectroscopy with soft x rays at high detection rate. Experimental results of SDDs used in spectroscopy applications are also reported.

  13. Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage.

    PubMed

    Ha, Phuc Thi; Moon, Hyunsoo; Kim, Byung Hong; Ng, How Yong; Chang, In Seop

    2010-03-15

    An alternative method for determining the charge transfer resistance and double-layer capacitance of microbial fuel cells (MFCs), easily implemented without a potentiostat, was developed. A dynamic model with two parameters, the charge transfer resistance and double-layer capacitance of electrodes, was derived from a linear differential equation to depict the current generation with respect to activation overvoltage. This model was then used to fit the transient cell voltage response to the current step change during the continuous operation of a flat-plate type MFC fed with acetate. Variations of the charge transfer resistance and the capacitance value with respect to the MFC design conditions (biocatalyst existence and electrode area) and operating parameters (acetate concentration and buffer strength in the catholyte) were then determined to elucidate the validity of the proposed method. This model was able to describe the dynamic behavior of the MFC during current change in the activation loss region; having an R(2) value of over 0.99 in most tests. Variations of the charge transfer resistance value (thousands of Omega) according to the change of the design factors and operational factors were well-correlated with the corresponding MFC performances. However, though the capacitance values (approximately 0.02 F) reflected the expected trend according to the electrode area change and catalyst property, they did not show significant variation with changes in either the acetate concentration or buffer strength. (c) 2009 Elsevier B.V. All rights reserved.

  14. Featuring of transient tunneling current by voltage pulse and application to an electrochemical biosensor

    NASA Astrophysics Data System (ADS)

    Yun, Jun Yeon; Lee, Won Cheol; Choi, Seong Wook; Park, Young June

    2018-03-01

    We suggest a voltage pulse method for detecting the transient tunneling current component (faradaic current component) in a metal/redox-active monolayer/electrolyte system. After applying the pulse to the metal electrode, the capacitive current prevails; therefore, it is difficult to extract the tunneling current, which carries information on the biochemical reactions occurring between the biomarkers in the electrolyte and the self-assembled monolayer (SAM) as the probe peptide system. Instead of waiting until the capacitive current diminishes, and thereby, the tunneling current also decreases, we try to extract the tunneling current in an early stage of the pulse. The method is based on the observation that the capacitive current becomes symmetrized in the positive and negative pulses after introducing the SAM on the metal electrode. When the energy level of the redox molecule is higher than the Fermi level of the metal under zero-bias condition, the tunneling current in the negative pulse can be extracted by subtracting the capacitive current obtained from the positive pulse, where the tunneling current is neglected. The experiment conducted for detecting trypsin as a biomarker shows that the method enhances the sensitivity and the specific-to-nonspecific ratio of the sensor device in the case of the nonspecific protein-abundant electrolyte solution, as evinced by cyclic voltammetry measurements in comparison.

  15. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

    PubMed

    Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei

    2011-08-01

    In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

  16. Origin and tunability of unusually large surface capacitance in doped cerium oxide studied by ambient-pressure X-ray photoelectron spectroscopy

    DOE PAGES

    Gopal, Chirranjeevi Balaji; Gabaly, Farid El; McDaniel, Anthony H.; ...

    2016-03-31

    Here, the volumetric redox (chemical) capacitance of the surface of CeO 2–δ films is quantified in situ to be 100-fold larger than the bulk values under catalytically relevant conditions. Sm addition slightly lowers the surface oxygen nonstoichiometry, but effects a 10-fold enhancement in surface chemical capacitance by mitigating defect interactions, highlighting the importance of differential nonstoichiometry for catalysis.

  17. Electrical and structural characterizations of crystallized Al{sub 2}O{sub 3}/GaN interfaces formed by in situ metalorganic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X., E-mail: xliu@ece.ucsb.edu; Yeluri, R.; Kim, J.

    2016-01-07

    Al{sub 2}O{sub 3} films were grown in situ by metalorganic chemical vapor deposition at 900 °C on GaN of both Ga- and N-face polarities. High-resolution transmission electron microscopy revealed that the Al{sub 2}O{sub 3} films were crystalline and primarily γ-phase. The Al{sub 2}O{sub 3}/Ga-GaN and Al{sub 2}O{sub 3}/N-GaN interfaces were both atomically sharp, and the latter further exhibited a biatomic step feature. The corresponding current-voltage (J-V) characteristics were measured on a metal-Al{sub 2}O{sub 3}-semiconductor capacitor (MOSCAP) structure. The leakage current was very high when the Al{sub 2}O{sub 3} thickness was comparable with the size of the crystalline defects, but was suppressedmore » to the order of 1 × 10{sup −8} A/cm{sup 2} with larger Al{sub 2}O{sub 3} thicknesses. The interface states densities (D{sub it}) were measured on the same MOSCAPs by using combined ultraviolet (UV)-assisted capacitance-voltage (C-V), constant capacitance deep level transient spectroscopy (CC-DLTS), and constant capacitance deep level optical spectroscopy (CC-DLOS) techniques. The average D{sub it} measured by CC-DLTS and CC-DLOS were 6.6 × 10{sup 12} and 8.8 × 10{sup 12} cm{sup −2} eV{sup −1} for Al{sub 2}O{sub 3}/Ga-GaN and 8.6 × 10{sup 12} and 8.6 × 10{sup 12 }cm{sup −2} eV{sup −1} for Al{sub 2}O{sub 3}/N-GaN, respectively. The possible origins of the positive (negative) polarization compensation charges in Al{sub 2}O{sub 3}/Ga-GaN (Al{sub 2}O{sub 3}/N-GaN), including the filling of interface states and the existence of structure defects and impurities in the Al{sub 2}O{sub 3} layer, were discussed in accordance with the experimental results and relevant studies in the literature.« less

  18. Carbon-polyaniline nanocomposites as supercapacitor materials

    NASA Astrophysics Data System (ADS)

    Sathish Kumar, M.; Yamini Yasoda, K.; Batabyal, Sudip Kumar; Kothurkar, Nikhil K.

    2018-04-01

    Polyaniline-based nanocomposites containing carbon nanotubes (CNT), reduced graphene oxide (rGO) and mixture of CNTs and rGO were synthesized. UV-visible spectroscopy and FT-IR spectroscopy confirmed the presence of polyaniline (PANi) and carbon nanomaterials. Scanning electron microscopy revealed that the neat PANi had a granular morphology, which can lead to increased electrical resistance to high interfacial resistance between domains of PANi. Cyclic voltammetry of PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO showed that in general, specific capacitance reduces with increasing scan rate within the range (10–100 mV s‑1). Also the specific capacitance values at any given scan rate within the above range, for PANi, PANi/CNT, PANi/rGO and PANi/CNT/rGO were found to be in increasing order. The specific capacitance of the PANi/CNT/rGO nanocomposite as measured by galvanostatic charge-discharge measurements, was found to be 312.5 F g‑1. The introduction of the carbon nanomaterials (CNTs, rGO) in PANi in general leads to improved specific capacitance, while the addition of CNTs and rGO together leads to synergistic improvement in the specific capacitance, owing to a combination of factors.

  19. Chemical splitting of multiwalled carbon nanotubes to enhance electrochemical capacitance for supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Xinlu; Li, Tongtao; Zhang, Xinlin; Zhong, Qineng; Li, Hongyi; Huang, Jiamu

    2014-06-01

    Multiwalled carbon nanotubes (MWCNTs) were chemically split and self-assembled to a flexible porous paper made of graphene oxide nanoribbons (GONRs). The morphology and microstructure of the pristine MWCNTs and GONRs were analyzed by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. And the specific surface area and porosity structure were measured by N2 adsorption-desorption. The longitudinally split MWCNTs show an enhancement in specific capacitance from 21 F g-1 to 156 F g-1 compared with the pristine counterpart at 0.1 A g-1 in a 6 M KOH aqueous electrolytes. The electrochemical experiments prove that the chemical splitting of MWCNTs will make inner carbon layers opened and exposed to electrochemical double layers, which can effectively improve the electrochemical capacitance for supercapacitors.

  20. Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Shiyong; Ma, Li; Gan, Mengyu; Fu, Shenna; Dai, Wenqin; Zhou, Tao; Sun, Xiaowu; Wang, Huihui; Wang, Huining

    2015-12-01

    The research paper describes polyaniline (PANI) nanowires array on flexible polystyrene microsphere/reduced graphene (PS/rGN) film is synthesized by dilute polymerization, and then the PS microspheres are removed to form free-standing three-dimensional (3D) rGN/PANI composite film. The chemical and structural properties of the 3D rGN/PANI film are characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET), and the results confirm the 3D rGN/PANI film is synthesized successfully. When the film is used as a supercapacitor electrode, the maximum specific capacitance is as high as 740 F g-1 (or 581 F cm-3 for volumetric capacitance) at a current density of 0.5 A g-1 and the specific capacitance retains 87% of the initial after constant charge-discharge 1000 cycles at current density of 10 A g-1. It is believed that the free-standing 3D rGN/PANI film will have a great potential for application in supercapacitors.

  1. An Electrothermal Plasma Source Developed for Simulation of Transient Heat Loads in Future Large Fusion Devices

    NASA Astrophysics Data System (ADS)

    Gebhart, Trey; Baylor, Larry; Winfrey, Leigh

    2016-10-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  2. Characterization of an electrothermal plasma source for fusion transient simulations

    NASA Astrophysics Data System (ADS)

    Gebhart, T. E.; Baylor, L. R.; Rapp, J.; Winfrey, A. L.

    2018-01-01

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequently ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.

  3. Effects of antimony (Sb) on electron trapping near SiO{sub 2}/4H-SiC interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, P. M.; Jiang, Zenan; Basile, A. F.

    To investigate the mechanism by which Sb at the SiO{sub 2}/SiC interface improves the channel mobility of 4H-SiC MOSFETs, 1 MHz capacitance measurements and constant capacitance deep level transient spectroscopy (CCDLTS) measurements were performed on Sb-implanted 4H-SiC MOS capacitors. The measurements reveal a significant concentration of Sb donors near the SiO{sub 2}/SiC interface. Two Sb donor related CCDLTS peaks corresponding to shallow energy levels in SiC were observed close to the SiO{sub 2}/SiC interface. Furthermore, CCDLTS measurements show that the same type of near-interface traps found in conventional dry oxide or NO-annealed capacitors are present in the Sb implanted samples. Thesemore » are O1 traps, suggested to be carbon dimers substituted for O dimers in SiO{sub 2}, and O2 traps, suggested to be interstitial Si in SiO{sub 2}. However, electron trapping is reduced by a factor of ∼2 in Sb-implanted samples compared with samples with no Sb, primarily at energy levels within 0.2 eV of the SiC conduction band edge. This trap passivation effect is relatively small compared with the Sb-induced counter-doping effect on the MOSFET channel surface, which results in improved channel transport.« less

  4. Nanostructured stannic oxide: Synthesis and characterisation for potential energy storage applications

    NASA Astrophysics Data System (ADS)

    Dodoo-Arhin, D.; Nuamah, R. A.; Jain, P. K.; Obada, D. O.; Yaya, A.

    2018-06-01

    SnO2 nanoparticles were synthesized using the hydrothermal technique. Well crystalline particles with different morphologies and crystallite size in the range of 2 nm-10 nm were obtained by using Urea and Soduim Borohydride as reducing agents, and deploying Dioctyl Sulfosuccinate Sodium Salt (AOT) and Cetyl Trimethyl ammonium bromide (CTAB) as the surfactants. Samples have been characterised by X-ray diffraction, Scanning Electron microscopy, Energy Dispersive X-ray spectroscopy, specific surface area, porosity, and Fourier Transform Infrared spectroscopy. Preliminary studies on the potential electrochemical properties of the as-produced nanoparticles were investigated using cyclic voltammetry, electrochemical impedance spectroscopy and potentiostatic charge-discharge in aqueous KOH electrolyte. The surfactant and reducing agents used in the synthesis procedure of SnO2 nanoparticles influenced the particle size and the morphology, which in turn influenced the capacitance of the SnO2 nanoparticles. The SnO2 electrode material showed pseudocapacitor properties with a maximum capacitance value of 1.6 Fg-1 at a scan rate of 5 mVs-1, an efficiency of 52% at a current of 1 mA and a maximum capacitance retention of about 40% after 10 cycles at a current of 1 mA. From the Nyquist plot, The ESR for the samples increase accordingly as SCA (31.5 Ω) < SAA (31.85 Ω) < SE (36.3 Ω) < SAT (36.92 Ω) < SCT (40.41 Ω) < SA < SC (53.97 Ω). These values are a confirmation of the low capacitance, efficiencies and capacitance retention recorded. The results obtained demonstrate the potential electrochemical storage applications of SnO2 nanoparticles without the addition of conductive materials.

  5. Transient release kinetics of rod bipolar cells revealed by capacitance measurement of exocytosis from axon terminals in rat retinal slices.

    PubMed

    Oltedal, Leif; Hartveit, Espen

    2010-05-01

    Presynaptic transmitter release has mostly been studied through measurements of postsynaptic responses, but a few synapses offer direct access to the presynaptic terminal, thereby allowing capacitance measurements of exocytosis. For mammalian rod bipolar cells, synaptic transmission has been investigated in great detail by recording postsynaptic currents in AII amacrine cells. Presynaptic measurements of the dynamics of vesicular cycling have so far been limited to isolated rod bipolar cells in dissociated preparations. Here, we first used computer simulations of compartmental models of morphologically reconstructed rod bipolar cells to adapt the 'Sine + DC' technique for capacitance measurements of exocytosis at axon terminals of intact rod bipolar cells in retinal slices. In subsequent physiological recordings, voltage pulses that triggered presynaptic Ca(2+) influx evoked capacitance increases that were proportional to the pulse duration. With pulse durations 100 ms, the increase saturated at 10 fF, corresponding to the size of a readily releasable pool of vesicles. Pulse durations 400 ms evoked additional capacitance increases, probably reflecting recruitment from additional pools of vesicles. By using Ca(2+) tail current stimuli, we separated Ca(2+) influx from Ca(2+) channel activation kinetics, allowing us to estimate the intrinsic release kinetics of the readily releasable pool, yielding a time constant of 1.1 ms and a maximum release rate of 2-3 vesicles (release site)(1) ms(1). Following exocytosis, we observed endocytosis with time constants ranging from 0.7 to 17 s. Under physiological conditions, it is likely that release will be transient, with the kinetics limited by the activation kinetics of the voltage-gated Ca(2+) channels.

  6. Optical and transient capacitance study of EL2 in the absence and presence of other midgap levels. [in gallium arsenide crystals

    NASA Technical Reports Server (NTRS)

    Skowronski, M.; Lagowski, J.; Gatos, H. C.

    1986-01-01

    A high-resolution optical study was carried out on GaAs crystals grown by horizontal Bridgman and liquid-encapsulated-Czochralski methods. An excellent correlation was found between the intensity of the 1.039-eV no-phonon line and the characteristic absorption of EL2, the major deep donor level in GaAs. A correlation was also found between the characteristic optical absorption of EL2 and its concentration as determined by junction capacitance measurements. The presence of EL0, another midgap level contained in heavily oxygen-doped crystals at concentration always less than those of EL2, had no effect on the optical spectra, but altered the capacitance measurements. Accordingly, an accurate calibration for the determination of EL2 by optical absorption was obtained from capacitance measurements on crystals containing only EL2; in this way the uncertainties introduced by other midgap levels were eliminated.

  7. Doping effect of polyaniline/MWCNT composites on capacitance and cyclic stability of supercapacitors.

    PubMed

    Karthikeyan, G; Sahoo, S; Nayak, G C; Das, C K

    2012-03-01

    Polyaniline doped by Zn2+ ions was synthesized as nanocomposites with multiwalled carbon nanotubes (MWCNT) by in-situ oxidative polymerization and investigated as electrode material for supercapacitors. The uniform coating of polyaniline on MWCNT was characterized by field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). The effect of Zn2+ ions on nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The electrochemical performances were investigated by cyclic voltammetry (CV), constant current charging/discharging cyclic test (CC) and electrochemical impedance spectroscopy (EIS) using a three-electrode system. The doped polyaniline composites show higher specific capacitance and better cyclic stability.

  8. Improved electrochemical performance of polyindole/carbon nanotubes composite as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Cai, Zhi-Jiang; Zhang, Qin; Song, Xian-You

    2016-09-01

    Polyindole/carbon nanotubes (PIN/CNTs) composite was prepared by an in-situ chemical oxidative polymerization of indole monomer with CNTs using ammonium persulfate as oxidant. The obtained composite material was characterized by SEM, TEM, FT-IR, Raman spectroscopy, XPS, XRD and BET surface areas measurements. It was found that the CNTs were incorporated into the PIN matrix and nanoporous structure was formed. Spectroscopy results showed that interfacial interaction bonds might be formed between the polyindole chains and CNTs during the in-situ polymerization. PIN/CNTs composite was evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and charge/discharge tests to determine electrode performances in relation to supercapacitors properties in both aqueous and non-aqueous system. A maximum specific capacitance and specific volumetric capacitance of 555.6 F/g and 222.2 F/cm3 can be achieved at 0.5 A/g in non-aqueous system. It also displayed good rate performance and cycling stability. The specific capacitance retention is over 60% at 10 A/g and 91.3% after 5000 cycles at 2 A/g, respectively. These characteristics point to its promising applications in the electrode material for supercapacitors.

  9. Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Sodtipinta, Jedsada; Amornsakchai, Taweechai; Pakawatpanurut, Pasit

    2017-09-01

    By using KOH as the chemical activating agent in the synthesis, the activated carbon derived from pineapple leaf fiber (PALF) was prepared. The structure, morphology, and the surface functional groups of the as-prepared activated carbon were investigated using x-ray diffraction, field emission scanning electron microscope equipped with energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical behavior and performance of the as-synthesized activated carbon electrode were measured using the cyclic voltammetry and the electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte solution in three-electrode setup. The activated carbon electrode exhibited the specific capacitance of 131.3 F g-1 at a scan rate of 5 mV s-1 with excellent cycling stability. The capacitance retention after 1000 cycles was about 97% of the initial capacitance at a scan rate of 30 mV s-1. Given these good electrochemical properties along with the high abundance of PALF, this activated carbon electrode has the potential to be one of the materials for future large-scale production of the electrochemical capacitors. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  10. Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse.

    PubMed

    Yamashita, Takayuki; Hige, Toshihide; Takahashi, Tomoyuki

    2005-01-07

    Molecular dependence of vesicular endocytosis was investigated with capacitance measurements at the calyx of Held terminal in brainstem slices. Intraterminal loading of botulinum toxin E revealed that the rapid capacitance transient implicated as "kiss-and-run" was unrelated to transmitter release. The release-related capacitance change decayed with an endocytotic time constant of 10 to 25 seconds, depending on the magnitude of exocytosis. Presynaptic loading of the nonhydrolyzable guanosine 5'-triphosphate (GTP) analog GTPgS or dynamin-1 proline-rich domain peptide abolished endocytosis. These compounds had no immediate effect on exocytosis, but caused a use-dependent rundown of exocytosis. Thus, the guanosine triphosphatase dynamin-1 is indispensable for vesicle endocytosis at this fast central nervous system (CNS) synapse.

  11. Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    de Souza, Victor Hugo Rodrigues; Oliveira, Marcela Mohallem; Zarbin, Aldo José Gorgatti

    2014-08-01

    The present work describes for the first time the synthesis and characterization of single wall carbon nanotubes/polyaniline (SWNTs/PAni) nanocomposite thin films in a liquid-liquid interface, as well as the subsequent construction of a flexible all-solid supercapacitor. Different SWNTs/PAni nanocomposites were prepared by varying the ratio of SWNT to aniline, and the samples were characterized by scanning and transmission electron microscopy, Raman and UV-Vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The pseudo-capacitive behavior of the nanocomposites was evaluated by charge/discharge galvanostatic measurements. The presence of the SWNTs affected the electronic and vibrational properties of the polyaniline and also improved the pseudo-capacitive behavior of the conducting polymer. A very thin and flexible all-solid device was manufactured using two electrodes (polyethylene terephthalate-PET covered with the SWNT/PAni nanocomposite separated by a H2SO4-PVA gel electrolyte). The pseudo-capacitive behavior was characterized by a volumetric specific capacitance of approximately 76.7 F cm-3, even under mechanical deformation, indicating that this nanocomposite has considerable potential for application in new-generation energy storage devices.

  12. Anomalous Capacitance Maximum of the Glassy Carbon-Ionic Liquid Interface through Dilution with Organic Solvents.

    PubMed

    Bozym, David J; Uralcan, Betül; Limmer, David T; Pope, Michael A; Szamreta, Nicholas J; Debenedetti, Pablo G; Aksay, Ilhan A

    2015-07-02

    We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e., ∼1 M). We provide evidence that mixtures with 1,2-dichloroethane, a low-dielectric constant solvent, yield the largest gains in capacitance near the open circuit potential when compared against two traditional solvents, acetonitrile and propylene carbonate. To provide a fundamental basis for these observations, we use a coarse-grained model to relate structural variations at the double layer to the occurrence of the maximum. Our results reveal the potential for the enhancement of double-layer capacitance through dilution.

  13. Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Gogova, D.; Tarelkin, S. A.; Pearton, S. J.

    2018-03-01

    The electrical properties of epitaxial β-Ga2O3 doped with Sn (1016-9 × 1018 cm-3) and grown by metalorganic chemical vapor deposition on semi-insulating β-Ga2O3 substrates are reported. Shallow donors attributable to Sn were observed only in a narrow region near the film/substrate interface and with a much lower concentration than the total Sn density. For heavily Sn doped films (Sn concentration, 9 × 1018 cm-3), the electrical properties in the top portion of the layer were determined by deep centers with a level at Ec-0.21 eV not described previously. In more lightly doped layers, the Ec-0.21 eV centers and deeper traps at Ec-0.8 eV were present, with the latter pinning the Fermi level. Low temperature photocapacitance and capacitance voltage measurements of illuminated samples indicated the presence of high densities (1017-1018 cm-3) of deep acceptors with an optical ionization threshold of 2.3 eV. Optical deep level transient spectroscopy (ODLTS) and photoinduced current transient spectroscopy (PICTS) detected electron traps at Ec-0.8 eV and Ec-1.1 eV. For lightly doped layers, the compensation of film conductivity was mostly provided by the Ec-2.3 eV acceptors. For heavily Sn doped films, deep acceptor centers possibly related to Ga vacancies were significant. The photocapacitance and the photocurrent caused by illumination at low temperatures were persistent, with an optical threshold of 1.9 eV and vanished only at temperatures of ˜400 K. The capture barrier for electrons causing the persistent photocapacitance effect was estimated from ODLTS and PICTS to be 0.25-0.35 eV.

  14. The rod-driven a-wave of the dark-adapted mammalian electroretinogram.

    PubMed

    Robson, John G; Frishman, Laura J

    2014-03-01

    The a-wave of the electroretinogram (ERG) reflects the response of photoreceptors to light, but what determines the exact waveform of the recorded voltage is not entirely understood. We have now simulated the trans-retinal voltage generated by the photocurrent of dark-adapted mammalian rods, using an electrical model based on the in vitro measurements of Hagins et al. (1970) and Arden (1976) in rat retinas. Our simulations indicate that in addition to the voltage produced by extracellular flow of photocurrent from rod outer to inner segments, a substantial fraction of the recorded a-wave is generated by current that flows in the outer nuclear layer (ONL) to hyperpolarize the rod axon and synaptic terminal. This current includes a transient capacitive component that contributes an initial negative "nose" to the trans-retinal voltage when the stimulus is strong. Recordings in various species of the a-wave, including the peak and initial recovery towards the baseline, are consistent with simulations showing an initial transient primarily related to capacitive currents in the ONL. Existence of these capacitive currents can explain why there is always a substantial residual transient a-wave when post-receptoral responses are pharmacologically inactivated in rodents and nonhuman primates, or severely genetically compromised in humans (e.g. complete congenital stationary night blindness) and nob mice. Our simulations and analysis of ERGs indicate that the timing of the leading edge and peak of dark-adapted a-waves evoked by strong stimuli could be used in a simple way to estimate rod sensitivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Transient Performance Improvement Circuit (TPIC)s for DC-DC converter applications

    NASA Astrophysics Data System (ADS)

    Lim, Sungkeun

    Gordon Moore famously predicted the exponential increase in transistor integration and computing power that has been witnessed in recent decades [1]. In the near future, it is expected that more than one billion transistors will be integrated per chip, and advanced microprocessors will require clock speeds in excess of several GHz. The increasing number of transistors and high clock speeds will necessitate the consumption of more power. By 2014, it is expected that the maximum power consumption of the microprocessor will reach approximately 150W, and the maximum load current will be around 150A. Today's trend in power and thermal management is to reduce supply voltage as low as possible to reduce delivered power. It is anticipated that the Intel cores will operate on 0.8V of supply voltage by 2014 [2]. A significant challenge in Voltage Regulator Module (VRM) development for next generation microprocessors is to regulate the supply voltage within a certain tolerance band during high slew rate load transitions, since the required supply voltage tolerance band will be much narrower than the current requirement. If VR output impedance is maintained at a constant value from DC to high frequency, large output voltage spikes can be avoided during load cur- rent transients. Based on this, the Adaptive Voltage Position (AVP) concept was developed to achieve constant VR output impedance to improve transient response performance [3]. However, the VR output impedance can not be made constant over the entire frequency range with AVP design, because the AVP design makes the VR output impedance constant only at low frequencies. To make the output impedance constant at high frequencies, many bulk capacitors and ceramic capacitors are required. The tight supply voltage tolerance for the next generation of microprocessors during high slew rate load transitions requires fast transient response power supplies. A VRM can not follow the high slew rate load current transients, because of the slow inductor current slew rate which is determined by the input voltage, output voltage, and the inductance. The remaining inductor current in the power delivery path will charge the output capacitors and develop a voltage across the ESR. As a result, large output voltage spikes occur during load current transients. Due to their limited control bandwidth, traditional VRs can not sufficiently respond rapidly to certain load transients. As a result, a large output voltage spike can occur during load transients, hence requiring a large amount of bulk capacitance to decouple the VR from the load [2]. If the remaining inductor current is removed from the power stage or the inductor current slew rate is changed, the output voltage spikes can be clamped, allowing the output capacitance to be reduced. A new design methodology for a Transient Performance Improvement Circuit(TPIC) based on controlling the output impedance of a regulator is presented. The TPIC works in parallel with a voltage regulator (VR)'s ceramic capacitors to achieve faster voltage regulation without the need for a large bulk capacitance, and can serve as a replacement for bulk capacitors. The specific function of the TPIC is to mimic the behavior of the bulk capacitance in a traditional VRM by sinking and sourcing large currents during transients, allowing the VR to respond quickly to current transients without the need for a large bulk capacitance. This will allow fast transient response without the need for a large bulk capacitor. The main challenge in applying the TPIC is creating a design which will not interfere with VR operation. A TPIC for a 4 Switch Buck-Boost (4SBB) converter is presented which functions by con- trolling the inductor current slew rate during load current transients. By increasing the inductor current slew rate, the remaining inductor current can be removed from the 4SBB power delivery path and the output voltage spike can be clamped. A second TPIC is presented which is designed to improve the performance of an LDO regulator during output current transients. A TPIC for a LDO regulator is proposed to reduce the over voltage spike settling time. During a load current step down transient, the only current discharging path is a light load current. However, it takes a long time to discharge the current charged in the output capacitors with the light load current. The proposed TPIC will make an additional current discharging path to reduce the long settling time. By reducing the settling time, the load current transient frequency of the LDO regulator can be increased. A Ripple Cancellation Circuit (RCC) is proposed to reduce the output voltage ripple. The RCC has a very similar concept with the TPIC which is sinking or injecting additional current to the power stage to compensate the inductor ripple current. The proposed TPICs and RCC have been implemented with a 0.6m CMOS process. A single-phase VR, a 4SBB converter, and a LDO regulator have been utilized with the proposed TPIC to evaluate its performance. The theoretical analysis will be confirmed by Cadence simulation results and experimental results.

  16. Lack of anodic capacitance causes power overshoot in microbial fuel cells.

    PubMed

    Peng, Xinhong; Yu, Han; Yu, Hongbing; Wang, Xin

    2013-06-01

    Power overshoot commonly makes the performance evaluation of microbial fuel cells (MFCs) inaccurate. Here, three types of carbon with different capacitance (ultracapacitor activated carbon (UAC), plain activated carbon (PAC) and carbon black (CB)) rolled on stainless steel mesh (SSM) as anodes to investigate the relationship between overshoot and anodic capacitance. It was not observed in all cycles of UAC-MFCs (from Cycle 2 to 4) due to the largest abiotic capacitance (Cm(abiotic)) of 2.1F/cm(2), while this phenomenon was eliminated in PAC-MFCs (Cm(abiotic)=1.6 F/cm(2)) from Cycle 3 and in CB-MFCs (Cm(abiotic)=0.5F/cm(2)) from Cycle 4, indicated that the Cm(abiotic) of the anode stored charges and functioned as electron shuttle to overcome the power overshoot. With bacterial colonization, the transient charge storage in biofilm resulted in a 0.1-0.4F/cm(2) increase in total capacitance for anodes, which was the possible reason for the elimination of power overshoot in PAC/CB-MFCs after multi cycle acclimation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Pulse power applications of silicon diodes in EML capacitive pulsers

    NASA Astrophysics Data System (ADS)

    Dethlefsen, Rolf; McNab, Ian; Dobbie, Clyde; Bernhardt, Tom; Puterbaugh, Robert; Levine, Frank; Coradeschi, Tom; Rinaldi, Vito

    1993-01-01

    Crowbar diodes are used for increasing the energy transfer from capacitive pulse forming networks. They also prevent voltage reversal on the energy storage capacitors. 52 mm diameter diodes with a 5 kV reverse blocking voltage, rated 40 kA were successfully used for the 32 MJ SSG rail gun. An uprated diode with increased current capability and a 15 kV reverse blocking voltage has been developed. Transient thermal analysis has predicted the current ratings for different pulse length. Analysis verification is obtained from destructive testing.

  18. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors.

    PubMed

    Dang, Yong-Qiang; Ren, Shao-Zhao; Liu, Guoyang; Cai, Jiangtao; Zhang, Yating; Qiu, Jieshan

    2016-11-14

    There is much recent interest in graphene-based composite electrode materials because of their excellent mechanical strengths, high electron mobilities, and large specific surface areas. These materials are good candidates for applications in supercapacitors. In this work, a new graphene-based electrode material for supercapacitors was fabricated by anchoring carbon dots (CDs) on reduced graphene oxide (rGO). The capacitive properties of electrodes in aqueous electrolytes were systematically studied by galvanostatic charge-discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. The capacitance of rGO was improved when an appropriate amount of CDs were added to the material. The CD/rGO electrode exhibited a good reversibility, excellent rate capability, fast charge transfer, and high specific capacitance in 1 M H₂SO₄. Its capacitance was as high as 211.9 F/g at a current density of 0.5 A/g. This capacitance was 74.3% higher than that of a pristine rGO electrode (121.6 F/g), and the capacitance of the CD/rGO electrode retained 92.8% of its original value after 1000 cycles at a CDs-to-rGO ratio of 5:1.

  19. Pseudocapacitive behavior of manganese oxide in lithium-ion-doped butylmethylpyrrolidinium-dicyanamide ionic liquid investigated using in situ X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Tsung; Li, Yun-Shan; Sun, I.-Wen; Chang, Jeng-Kuei

    2014-01-01

    Ideal pseudocapacitive behavior of α-MnO2 electrodes over a potential range of 3 V is found in lithium bis(trifluoromethylsulfonyl)imide (LiTFSI)-doped butylmethylpyrrolidinium-dicyanamide (BMP-DCA) ionic liquid (IL), which is non-flammable and has a decomposition temperature of as high as ∼300 °C. Accordingly, this electrolyte is promising for high-energy, high-power, and high-safety supercapacitor applications. The addition of 0.01 M LiTFSI in the IL improves the oxide capacitance from 90 F g-1 to 120 F g-1, which is due to the incorporated Li+ ions promoting Mn valent state variation (between trivalent and tetravalent) during charge-discharge. However, excessive LiTFSI doping causes a capacitance decay due to reduced electrolyte ionic conductivity. In situ X-ray absorption spectroscopy is used to investigate the energy storage mechanism. A capacitance activation process of α-MnO2 in the Li+-doped BMP-DCA IL is found.

  20. Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.

    1982-01-01

    The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.

  1. Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yakimov, E. B.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Kuramata, A.; Pearton, S. J.

    2018-01-01

    Deep electron and hole traps in 10 MeV proton irradiated high-quality β-Ga2O3 films grown by Hydride Vapor Phase Epitaxy (HVPE) on bulk β-Ga2O3 substrates were measured by deep level transient spectroscopy with electrical and optical injection, capacitance-voltage profiling in the dark and under monochromatic irradiation, and also electron beam induced current. Proton irradiation caused the diffusion length of charge carriers to decrease from 350-380 μm in unirradiated samples to 190 μm for a fluence of 1014 cm-2, and this was correlated with an increase in density of hole traps with optical ionization threshold energy near 2.3 eV. These defects most likely determine the recombination lifetime in HVPE β-Ga2O3 epilayers. Electron traps at Ec-0.75 eV and Ec-1.2 eV present in as-grown samples increase in the concentration after irradiation and suggest that these centers involve native point defects.

  2. Electronic properties of deep-level defects in proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.

    1981-01-01

    Deep level transient spectroscopy and capacitance voltage techniques as well as analysis of the forward current voltage (I-V) characteristics and SEM-EIC data were carried out for proton irradiated GaAs solar cells over a wide range of proton energies and proton fluences. Defect and recombination parameters such as defect energy levels and density, carrier capture cross sections and lifetimes as well as diffusion lengths in the undoped n-GaAs LPE layers were determined. Good correlation between these defect parameters and solar cell performance parameters was obtained for GaAs solar cells irradiated by 200 and 290 KeV protons. It was found that 200 to 290 KeV protons will produce the most defects and damages to the GaAs solar cell structure used. The influence of the low temperature (200 to 400 C) periodic thermal annealing on the deep level defects and the performance of the 200 KeV proton irradiated cells is discussed.

  3. Surface acceptor states in MBE-grown CdTe layers

    NASA Astrophysics Data System (ADS)

    Wichrowska, Karolina; Wosinski, Tadeusz; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz

    2018-04-01

    A deep-level hole trap associated with surface defect states has been revealed with deep-level transient spectroscopy investigations of metal-semiconductor junctions fabricated on nitrogen doped p-type CdTe layers grown by the molecular-beam epitaxy technique. The trap displayed the hole-emission activation energy of 0.33 eV and the logarithmic capture kinetics indicating its relation to extended defect states at the metal-semiconductor interface. Strong electric-field-induced enhancement of the thermal emission rate of holes from the trap has been attributed to the phonon-assisted tunneling effect from defect states involving very large lattice relaxation around the defect and metastability of its occupied state. Passivation with ammonium sulfide of the CdTe surface, prior to metallization, results in a significant decrease in the trap density. It also results in a distinct reduction in the width of the surface-acceptor-state-induced hysteresis loops in the capacitance vs. voltage characteristics of the metal-semiconductor junctions.

  4. Thermal characterizations analysis of high-power ThinGaN cool-white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Raypah, Muna E.; Devarajan, Mutharasu; Ahmed, Anas A.; Sulaiman, Fauziah

    2018-03-01

    Analysis of thermal properties plays an important role in the thermal management of high-power (HP) lighting-emitting diodes (LEDs). Thermal resistance, thermal capacitance, and thermal time constant are essential parameters for the optimal design of the LED device and system, particularly for dynamic performance study. In this paper, thermal characterization and thermal time constant of ThinGaN HP LEDs are investigated. Three HP cool-white ThinGaN LEDs from different manufacturers are used in this study. A forward-voltage method using thermal transient tester (T3Ster) system is employed to determine the LEDs' thermal parameters at various operating conditions. The junction temperature transient response is described by a multi-exponential function model to extract thermal time constants. The transient response curve is divided into three layers and expressed by three exponential functions. Each layer is associated with a particular thermal time constant, thermal resistance, and thermal capacitance. It is found that the thermal time constant of LED package is on the order of 22 to 100 ms. Comparison between the experimental results is carried out to show the design effects on thermal performance of the LED package.

  5. The Chemical Capacitance as a Fingerprint of Defect Chemistry in Mixed Conducting Oxides.

    PubMed

    Fleig, Juergen; Schmid, Alexander; Rupp, Ghislain M; Slouka, Christoph; Navickas, Edvinas; Andrejs, Lukas; Hutter, Herbert; Volgger, Lukas; Nenning, Andreas

    2016-01-01

    The oxygen stoichiometry of mixed conducting oxides depends on the oxygen chemical potential and thus on the oxygen partial pressure in the gas phase. Also voltages may change the local oxygen stoichiometry and the amount to which such changes take place is quantified by the chemical capacitance of the sample. Impedance spectroscopy can be used to probe this chemical capacitance. Impedance measurements on different oxides ((La,Sr)FeO3-δ = LSF, Sr(Ti,Fe)O3-δ = STF, and Pb(Zr,Ti)O3 = PZT) are presented, and demonstrate how the chemical capacitance may affect impedance spectra in different types of electrochemical cells. A quantitative analysis of the spectra is based on generalized equivalent circuits developed for mixed conducting oxides by J. Jamnik and J. Maier. It is discussed how defect chemical information can be deduced from the chemical capacitance.

  6. Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors.

    PubMed

    Zhang, Yao; Ma, Rui; Zhen, Xue V; Kudva, Yogish C; Bühlmann, Philippe; Koester, Steven J

    2017-11-08

    A novel graphene-based variable capacitor (varactor) that senses glucose based on the quantum capacitance effect was successfully developed. The sensor utilizes a metal-oxide-graphene varactor device structure that is inherently compatible with passive wireless sensing, a key advantage for in vivo glucose sensing. The graphene varactors were functionalized with pyrene-1-boronic acid (PBA) by self-assembly driven by π-π interactions. Successful surface functionalization was confirmed by both Raman spectroscopy and capacitance-voltage characterization of the devices. Through glucose binding to the PBA, the glucose concentration in the buffer solutions modulates the level of electrostatic doping of the graphene surface to different degrees, which leads to capacitance changes and Dirac voltage shifts. These responses to the glucose concentration were shown to be reproducible and reversible over multiple measurement cycles, suggesting promise for eventual use in wireless glucose monitoring.

  7. Photovoltaic and Impedance Spectroscopy Study of Screen-Printed TiO₂ Based CdS Quantum Dot Sensitized Solar Cells.

    PubMed

    Atif, M; Farooq, W A; Fatehmulla, Amanullah; Aslam, M; Ali, Syed Mansoor

    2015-01-19

    Cadmium sulphide (CdS) quantum dot sensitized solar cells (QDSSCs) based on screen-printed TiO₂ were assembled using a screen-printing technique. The CdS quantum dots (QDs) were grown by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The optical properties were studied by UV-Vis absorbance spectroscopy. Photovoltaic characteristics and impedance spectroscopic measurements of CdS QDSSCs were carried out under air mass 1.5 illuminations. The experimental results of capacitance against voltage indicate a trend from positive to negative capacitance because of the injection of electrons from the Fluorine doped tin oxide (FTO) electrode into TiO₂.

  8. Persistent photocurrent and deep level traps in PLD-grown In-Ga-Zn-O thin films studied by thermally stimulated current spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Buguo; Anders, Jason; Leedy, Kevin; Schuette, Michael; Look, David

    2018-02-01

    InGaZnO (IGZO) is a promising semiconductor material for thin-film transistors (TFTs) used in DC and RF switching applications, especially since it can be grown at low temperatures on a wide variety of substrates. Enhancement-mode TFTs based on IGZO thin films grown by pulsed laser deposition (PLD) have been recently fabricated and these transistors show excellent performance; however, compositional variations and defects can adversely affect film quality, especially in regard to electrical properties. In this study, we use thermally stimulated current (TSC) spectroscopy to characterize the electrical properties and the deep traps in PLD-grown IGZO thin films. It was found that the as-grown sample has a DC activation energy of 0.62 eV, and two major traps with activation energies at 0.16-0.26 eV and at 0.90 eV. However, a strong persistent photocurrent (PPC) sometimes exists in the as-grown sample, so we carry out post-growth annealing in an attempt to mitigate the effect. It was found that annealing in argon increases the conduction, produces more PPC and also makes more traps observable. Annealing in air makes the film more resistive, and removes PPC and all traps but one. This work demonstrates that current-based trap emission, such as that associated with the TSC, can effectively reveal electronic defects in highlyresistive semiconductor materials, especially those are not amenable to capacitance-based techniques, such as deeplevel transient spectroscopy (DLTS).

  9. Characterization of an electrothermal plasma source for fusion transient simulations

    DOE PAGES

    Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen; ...

    2018-01-21

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less

  10. Characterization of an electrothermal plasma source for fusion transient simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhart, T. E.; Baylor, Larry R.; Rapp, Juergen

    The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. Here in this work, an electrothermal (ET) plasma source has been designed as a transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime driven by a DC capacitive discharge. The current channel width is defined by the 4 mm bore of a boron nitride liner. At large plasma currents, the arc impacts the liner wall, leading to high particle and heat fluxes to the liner material, which subsequentlymore » ablates and ionizes. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have durations of 1 and 2 ms. The peak currents and maximum source energies seen in this system are 1.9 kA and 1.2 kJ for the 2 ms pulse and 3.2 kA and 2.1 kJ for the 1 ms pulse, respectively. This work is a proof of the principal project to show that an ET source produces electron densities and heat fluxes comparable to those anticipated in transient events in large future magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each shot using infrared imaging and optical spectroscopy techniques. This paper will discuss the assumptions, methods, and results of the experiments.« less

  11. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, F. B.; Jing, B.; Cui, Y.

    2015-04-15

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond filmmore » are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed.« less

  12. Hole traps associated with high-concentration residual carriers in p-type GaAsN grown by chemical beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua

    2015-01-28

    The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measuredmore » carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.« less

  13. Thermal Transients Excite Neurons through Universal Intramembrane Mechanoelectrical Effects

    NASA Astrophysics Data System (ADS)

    Plaksin, Michael; Shapira, Einat; Kimmel, Eitan; Shoham, Shy

    2018-01-01

    Modern advances in neurotechnology rely on effectively harnessing physical tools and insights towards remote neural control, thereby creating major new scientific and therapeutic opportunities. Specifically, rapid temperature pulses were shown to increase membrane capacitance, causing capacitive currents that explain neural excitation, but the underlying biophysics is not well understood. Here, we show that an intramembrane thermal-mechanical effect wherein the phospholipid bilayer undergoes axial narrowing and lateral expansion accurately predicts a potentially universal thermal capacitance increase rate of ˜0.3 % /°C . This capacitance increase and concurrent changes in the surface charge related fields lead to predictable exciting ionic displacement currents. The new MechanoElectrical Thermal Activation theory's predictions provide an excellent agreement with multiple experimental results and indirect estimates of latent biophysical quantities. Our results further highlight the role of electro-mechanics in neural excitation; they may also help illuminate subthreshold and novel physical cellular effects, and could potentially lead to advanced new methods for neural control.

  14. Highly stable multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) core-shell composites with three-dimensional porous nano-network for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Haihan; Han, Gaoyi; Chang, Yunzhen; Fu, Dongying; Xiao, Yaoming

    2015-01-01

    A facile and feasible electrochemical polymerization method has been used to construct the multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (MWCNTs@PEDOT/PSS) core-shell composites with three-dimensional (3D) porous nano-network microstructure. The composites are characterized with Fourier transform infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This special core-shell nanostructure can significantly reduce the ions diffusion distance and the 3D porous nano-network microstructure effectively enlarges the electrode/electrolyte interface. The electrochemical tests including cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy tests are performed, the results manifest the MWCNTs@PEDOT/PSS core-shell composites have superior capacitive behaviors and excellent cyclic stability, and a high areal capacitance of 98.1 mF cm-2 is achieved at 5 mV s-1 cyclic voltammetry scan. Furthermore, the MWCNTs@PEDOT/PSS composites exhibit obviously superior capacitive performance than that of PEDOT/PSS and PEDOT/Cl electrodes, indicating the effective composite of MWCNTs and PEDOT noticeably boosts the capacitive performance of PEDOT-based electrodes for electrochemical energy storage. Such a highly stable core-shell 3D network structural composite is very promising to be used as electrode materials for the high-performance electrochemical capacitors.

  15. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array

    NASA Astrophysics Data System (ADS)

    Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong

    2015-06-01

    Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.

  16. Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications.

    PubMed

    Salunkhe, Rahul R; Hsu, Shao-Hui; Wu, Kevin C W; Yamauchi, Yusuke

    2014-06-01

    We report an effective route for the preparation of layered reduced graphene oxide (rGO) with uniformly coated polyaniline (PANI) layers. These nanocomposites are synthesized by chemical oxidative polymerization of aniline monomer in the presence of layered rGO. SEM, TEM, X-ray photoelectron spectroscopy (XPS), FTIR, and Raman spectroscopy analysis results demonstrated that reduced graphene oxide-polyaniline (rGO-PANI) nanocomposites are successfully synthesized. Because of synergistic effects, rGO-PANI nanocomposites prepared by this approach exhibit excellent capacitive performance with a high specific capacitance of 286 F g(-1) and high cycle reversibility of 94 % after 2000 cycles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sulfurized activated carbon for high energy density supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Yunxia; Candelaria, Stephanie L.; Li, Yanwei; Li, Zhimin; Tian, Jianjun; Zhang, Lili; Cao, Guozhong

    2014-04-01

    Sulfurized activated carbon (SAC), made by coating the pore surface with thiophenic sulfur functional groups from the pyrolysis of sulfur flakes, were characterized and tested for supercapacitor applications. From X-ray photoelectron spectroscopy (XPS), the sulfur content in the SAC was found to be 2.7 at%. Electrochemical properties from potentiostatic and galvanostatic measurements, and electrochemical impedance spectroscopy (EIS) were used to evaluate the effect of sulfur on porous carbon electrodes. The SAC electrode exhibits better conductivity, and an obvious increase in specific capacitance that is almost 40% higher than plain activated carbons (ACs) electrode at a high current density of 1.4 A g-1. The proposed mechanism for improved conductivity and capacitive performance due to the sulfur functional groups on ACs will be discussed.

  18. Facile synthesis of nickel-based metal organic framework [Ni3(HCOO)6] by microwave method and application for supercapacitor

    NASA Astrophysics Data System (ADS)

    Luo, Jujie; Yang, Xing; Wang, Shumin; Bi, Yuhong; Nautiyal, Amit; Zhang, Xinyu

    The metal organic framework (MOF) [Ni3(HCOO)6] was synthesized via the simple and fast microwave method, and the effect of irradiation power on crystallinity of synthesized Ni-based MOF was studied. The samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The synthesized Ni-based MOF was electrochemically characterized by using galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques. The synthesized MOF showed the highest specific capacitance of 1196.2F/g at 1A/g with excellent cyclability (86.04% capacitance retention after 2,000 cycles), thereby demonstrating its potential application in supercapacitors.

  19. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor.

    PubMed

    Xie, Kai; Liu, Yan; Li, XiaoPing; Guo, Lixin; Zhang, Hanlu

    2016-04-01

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier's bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  20. Transient electrokinetic transport in a finite length microchannel: currents, capacitance, and an electrical analogy.

    PubMed

    Mansouri, Ali; Bhattacharjee, Subir; Kostiuk, Larry W

    2007-11-08

    Numerical simulations with the fluid mechanics based on the unsteady Navier-Stokes equations and the Poisson-Nernst-Planck formulation of electrostatics and ion transport were used to explore the transient transport of charge through a finite length cylindrical microchannel that is driven by a pressure difference. The evolution of the transcapillary potential from a no-flow equilibrium to the steady-state-steady-flow streaming potential was analyzed by following the convection, migration, and net currents. Observations of the unsteady characteristics of the streaming current, electrical resistance, and capacitance led to an electrical analogy. This electrical analogy was made from a current source (to represent convection current), which was placed in parallel with a capacitor (to allow the accumulation of charge) and a resistor (to permit a migration current). A parametric study involving a range of geometries, fluid mechanics, electrostatics, and mass transfer states allowed predictive submodels for the current source, capacitor, and resistor to be developed based on a dimensional analysis.

  1. Metastable defect response in CZTSSe from admittance spectroscopy

    DOE PAGES

    Koeper, Mark J.; Hages, Charles J.; Li, Jian V.; ...

    2017-10-02

    Admittance spectroscopy is a useful tool used to study defects in semiconductor materials. However, metastable defect responses in non-ideal semiconductors can greatly impact the measurement and therefore the interpretation of results. Here, admittance spectroscopy was performed on Cu2ZnSn(S,Se) 4 where metastable defect response is illustrated due to the trapping of injected carriers into a deep defect state. To investigate the metastable response, admittance measurements were performed under electrically and optically relaxed conditions in comparison to a device following a low level carrier-injection pretreatment. The relaxed measurement demonstrates a single capacitance signature while two capacitance signatures are observed for the devicemore » measured following carrier-injection. The deeper level signature, typically reported for kesterites, is activated by charge trapping following carrier injection. Both signatures are attributed to bulk level defects. The significant metastable response observed on kesterites due to charge trapping obscures accurate interpretation of defect levels from admittance spectroscopy and indicates that great care must be taken when performing and interpreting this measurement on non-ideal devices.« less

  2. Vascular capacitance and cardiac output in pacing-induced canine models of acute and chronic heart failure.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1995-11-01

    The relationship between stressed and total blood volume, total vascular capacitance, central blood volume, cardiac output (CO), and pulmonary capillary wedge pressure (Ppcw) was investigated in pacing-induced acute and chronic heart failure. Acute heart failure was induced in anesthetized splenectomized dogs by a volume load (20 mL/kg over 10 min) during rapid right ventricular pacing at 250 beats/min (RRVP) for 60 min. Chronic heart failure was induced by continuous RRVP for 2-6 weeks (average 24 +/- 2 days). Total vascular compliance and capacitance were calculated from the mean circulatory filling pressure (Pmcf) during transient circulatory arrest after acetylcholine at three different circulating volumes. Stressed blood volume was calculated as a product of compliance and Pmcf, with the total blood volume measured by a dye dilution. Central blood volume (CBV) and CO were measured by thermodilution. Central (heart and lung) vascular capacitance was estimated from the plot of Ppcw against CBV. Acute volume loading without RRVP increased capacitance and CO, whereas after volume loading with RRVP, capacitance and CO were unaltered from baseline. Chronic RRVP reduced capacitance and CO. All interventions, volume +/- RRVP or chronic RRVP, increased stressed and central blood volumes and Ppcw. Acute or chronic RRVP reduced central vascular capacitance. Cardiac output was increased when stressed and unstressed blood volumes increased proportionately as during volume loading alone. When CO was reduced and Ppcw increased, as during chronic RRVP or acute RRVP plus a volume load, stressed blood volume was increased and unstressed blood volume was decreased. Thus, interventions that reduced CO and increased Ppcw also increased stressed and reduced unstressed blood volume and total vascular capacitance.

  3. Solid structures with bioorganic films on silicon

    NASA Astrophysics Data System (ADS)

    Tutov, E. A.

    2012-06-01

    The electrophysical parameters of ovalbumin/silicon and propolis/silicon heterostructures are studied using impedance spectroscopy and high-frequency capacitance-voltage characteristics under water vapor sorption conditions.

  4. Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanin, H., E-mail: hudsonzanin@gmail.com; Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970; Saito, E., E-mail: esaito135@gmail.com

    2014-01-01

    Graphical abstract: - Highlights: • Graphene nanosheets were produced onto wire rods. • RGO and VACNT-O were evaluated and compared as supercapacitor electrode. • RGO and VACNT-O have structural and electrochemical properties quite similars. • The materials present good specific capacitance, energy storage and power delivery. - Abstract: Reduced graphene oxide (RGO) and vertically aligned carbon nanotubes (VACNT) superhydrophilic films were prepared by chemical vapor deposition techniques for electrical energy storage investigations. These electrodes were characterized in terms of their material and electrochemical properties by scanning electron microscopy (SEM), surface wettability, Fourier transform infrared spectroscopy (FTIR), energy dispersive and Ramanmore » spectroscopies, cyclic voltammetry (CV) and galvanostatic charge–discharge. We observed several physical structural and electrochemical similarities between these carbon-based materials with particular attention to very good specific capacitance, ultra-high energy storage and fast power delivery. Our results showed that the main difference between specific capacitance values is attributed to pseudocapacitive contribution and high density of multiwall nanotubes tips. In this work we have tested a supercapacitor device using the VACNT electrodes.« less

  5. Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects

    NASA Astrophysics Data System (ADS)

    Zarafshani, Ali; Bach, Thomas; Chatwin, Chris; Xiang, Liangzhong; Zheng, Bin

    2017-03-01

    Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology.

  6. Extrinsic origins of the apparent relaxorlike behavior in CaCu3Ti4O12 ceramics at high temperatures: A cautionary tale

    NASA Astrophysics Data System (ADS)

    Li, Ming; Sinclair, Derek C.; West, Anthony R.

    2011-04-01

    Although the origins of the high effective permittivity observed in CaCu3Ti4O12 (CCTO) ceramics and single crystals at ˜100-400 K have been resolved, the relaxorlike temperature- and frequency-dependence of permittivity obtained from fixed frequency capacitance measurements at higher temperatures reported in the literature remains unexplained, especially as CCTO adopts a centrosymmetric cubic crystal structure in the range of ˜35-1273 K. Impedance spectroscopy studies reveal that this type of relaxorlike behavior is an artifact induced mainly by a nonohmic sample-electrode contact impedance. In addition, an instrument-related parasitic series inductance and resistance effect modifies the measured capacitance values as the sample resistance decreases with increasing temperature. This can lead to an underestimation of the sample capacitance and, in extreme cases, to so-called `negative capacitance.' Such a relaxorlike artifact and negative capacitance behavior are not unique to CCTO and may be expected in other leaky dielectrics whose resistance is low.

  7. New computer program solves wide variety of heat flow problems

    NASA Technical Reports Server (NTRS)

    Almond, J. C.

    1966-01-01

    Boeing Engineering Thermal Analyzer /BETA/ computer program uses numerical methods to provide accurate heat transfer solutions to a wide variety of heat flow problems. The program solves steady-state and transient problems in almost any situation that can be represented by a resistance-capacitance network.

  8. Different phospholipase-C-coupled receptors differentially regulate capacitative and non-capacitative Ca2+ entry in A7r5 cells

    PubMed Central

    Moneer, Zahid; Pino, Irene; Taylor, Emily J. A.; Broad, Lisa M.; Liu, Yingjie; Tovey, Stephen C.; Staali, Leila; Taylor, Colin W.

    2005-01-01

    Several receptors, including those for AVP (Arg8-vasopressin) and 5-HT (5-hydroxytryptamine), share an ability to stimulate PLC (phospholipase C) and so production of IP3 (inositol 1,4,5-trisphosphate) and DAG (diacylglycerol) in A7r5 vascular smooth muscle cells. Our previous analysis of the effects of AVP on Ca2+ entry [Moneer, Dyer and Taylor (2003) Biochem. J. 370, 439–448] showed that arachidonic acid released from DAG stimulated NO synthase. NO then stimulated an NCCE (non-capacitative Ca2+ entry) pathway, and, via cGMP and protein kinase G, it inhibited CCE (capacitative Ca2+ entry). This reciprocal regulation ensured that, in the presence of AVP, all Ca2+ entry occurred via NCCE to be followed by a transient activation of CCE only when AVP was removed [Moneer and Taylor (2002) Biochem. J. 362, 13–21]. We confirm that, in the presence of AVP, all Ca2+ entry occurs via NCCE, but 5-HT, despite activating PLC and evoking release of Ca2+ from intracellular stores, stimulates Ca2+ entry only via CCE. We conclude that two PLC-coupled receptors differentially regulate CCE and NCCE. We also address evidence that, in some A7r5 cells lines, AVP fails either to stimulate NCCE or inhibit CCE [Brueggemann, Markun, Barakat, Chen and Byron (2005) Biochem. J. 388, 237–244]. Quantitative PCR analysis suggests that these cells predominantly express TRPC1 (transient receptor potential canonical 1), whereas cells in which AVP reciprocally regulates CCE and NCCE express a greater variety of TRPC subtypes (TRPC1=6>2>3). PMID:15918794

  9. Carbohydrazide-dependent reductant for preparing nitrogen-doped graphene hydrogels as electrode materials in supercapacitor

    NASA Astrophysics Data System (ADS)

    Jiang, Man; Xing, Ling-Bao; Zhang, Jing-Li; Hou, Shu-Fen; Zhou, Jin; Si, Weijiang; Cui, Hongyou; Zhuo, Shuping

    2016-04-01

    Three-dimensional (3D) nitrogen-doped graphene hydrogels (NGHs) are designed and synthesized in an efficient and fast way by using a strong reductant of carbohydrazide as reducing and doping agent in an aqueous solution of graphene oxide (GO). The transformation of GO suspension to the hydrogels can be completed in 1 h, which can be confirmed by X-ray powder diffraction (XRD), Raman spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). With adding different amounts of carbohydrazide, the obtained NGHs behave different doping of N and unlike performances in supercapacitors, which can be demonstrated by elemental analysis and X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), N2 sorption experiments, and electrochemical measurements, respectively. According to the network architectures, the NGHs all exhibited high specific capacitance, NGHs-1, NGHs-2, NGHs-5 and NGHs-10 showed specific capacitance at 167.7, 156.8, 140.4 and 119.3 F g-1 at 1 A g-1 in KOH electrolyte. The specific capacitance can still be maintained for 80.5, 79.5, 80.3 and 78.6% with an increase of the discharging current density of 10 A g-1, respectively. More interestingly, the NGHs-1 based supercapacitor also exhibited good electrochemical stability and high degree of reversibility in the long-term cycling test (81.5% retention after 4000 cycles).

  10. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    PubMed

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  11. Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities.

    PubMed

    Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Naderi, Hamid Reza; Pourmohamadian, Vafa; Ahmadi, Farhad; Ganjali, Mohammad Reza; Ehrlich, Hermann

    2018-07-01

    Sonochemically prepared nanoparticles of terbium tungstate (TWNPs) were evaluated through scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, and the optimal products were further characterized in terms of their electrochemical properties using conventional and continuous cyclic voltammetry (CV, and CCV), galvanostatic charge/discharge technique, and electrochemical impedance spectroscopy (EIS). The CV studies indicated the TWNPs to have specific capacitance (SC) values of 336 and 205 F g -1 at 1 and 200 mV s -1 , and galvanostatic charge-discharge tests revealed the SC of the TWNP-based electrodes to be 300 F g -1 at 1 Ag -1 . Also continuous cyclic voltammetry evaluations proved the sample as having a capacitance retention value of 95.3% after applying 4000 potential cycles. In the light of the results TWNPs were concluded as favorable electrode materials for use in hybrid vehicle systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Anomalous change in dielectric constant of CaCu3Ti4O12 under violet-to-ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Masingboon, C.; Eknapakul, T.; Suwanwong, S.; Buaphet, P.; Nakajima, H.; Mo, S.-K.; Thongbai, P.; King, P. D. C.; Maensiri, S.; Meevasana, W.

    2013-05-01

    The influence of light illumination on the dielectric constant of CaCu3Ti4O12 (CCTO) polycrystals is studied in this work. When exposed to 405-nm laser light, a reversible enhancement in the room temperature capacitance as high as 22% was observed, suggesting application of light-sensitive capacitance devices. To uncover the microscopic mechanisms mediating this change, we performed electronic structure measurements, using photoemission spectroscopy, and measured the electrical conductivity of the CCTO samples under different conditions of light exposure and oxygen partial pressure. Together, these results suggest that the large capacitance enhancement is driven by oxygen vacancies induced by the irradiation.

  13. A doped activated carbon prepared from polyaniline for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Limin; Liu, Enhui; Li, Jian; Yang, Yanjing; Shen, Haijie; Huang, Zhengzheng; Xiang, Xiaoxia; Li, Wen

    A novel doped activated carbon has been prepared from H 2SO 4-doped polyaniline which is prepared by the oxypolymerization of aniline. The morphology, surface chemical composition and surface area of the carbon have been investigated by scanning electron microscope, X-ray photoelectron spectroscopy and Brunaner-Emmett-Teller measurement, respectively. Electrochemical properties of the doped activated carbon have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol l -1 KOH. The specific capacitance of the carbon is as high as 235 F g -1, the specific capacitance hardly decreases at a high current density 11 A g -1 after 10,000 cycles, which indicates that the carbon possesses excellent cycle durability and may be a promising candidate for supercapacitors.

  14. Study of transient behavior of finned coil heat exchangers

    NASA Technical Reports Server (NTRS)

    Rooke, S. P.; Elissa, M. G.

    1993-01-01

    The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.

  15. Controlled ion track etching

    NASA Astrophysics Data System (ADS)

    George, J.; Irkens, M.; Neumann, S.; Scherer, U. W.; Srivastava, A.; Sinha, D.; Fink, D.

    2006-03-01

    It is a common practice since long to follow the ion track-etching process in thin foils via conductometry, i.e . by measurement of the electrical current which passes through the etched track, once the track breakthrough condition has been achieved. The major disadvantage of this approach, namely the absence of any major detectable signal before breakthrough, can be avoided by examining the track-etching process capacitively. This method allows one to define precisely not only the breakthrough point before it is reached, but also the length of any non-transient track. Combining both capacitive and conductive etching allows one to control the etching process perfectly. Examples and possible applications are given.

  16. Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion.

    PubMed

    Elhamdani, Abdeladim; Azizi, Fouad; Artalejo, Cristina R

    2006-03-15

    Transient fusion ("kiss-and-run") is accepted as a mode of transmitter release both in central neurons and neuroendocrine cells, but the prevalence of this mechanism compared with full fusion is still in doubt. Using a novel double patch-clamp method (whole cell/cell attached), permitting the recording of unitary capacitance events while stimulating under a variety of conditions including action potentials, we show that transient fusion is the predominant (>90%) mode of secretion in calf adrenal chromaffin cells. Raising intracellular Ca2+ concentration ([Ca]i) from 10 to 200 microM increases the incidence of full fusion events at the expense of transient fusion. Blocking rapid endocytosis that normally terminates transient fusion events also promotes full fusion events. Thus, [Ca]i controls the transition between transient and full fusion, each of which is coupled to different modes of endocytosis.

  17. Hydrothermal synthesis of cobalt sulfide nanotubes: The size control and its application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Ji, Xiao; Jiang, Jianjun; Yu, Jingwen; Miao, Ling; Zhang, Li; Bie, Shaowei; Chen, Haichao; Ruan, Yunjun

    2013-12-01

    Cobalt sulfide nanotubes are synthesized by hydrothermal method. The precursor is characterized by XRD, FTIR and SEM. We study the influence of temperature on the evolution of this special coarse shape nanostructure and analyze relationship between the sizes of cobalt sulfide nanotubes and the capacitive properties of active materials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. The specific capacitance of cobalt sulfide nanotubes (obtained in 80 °C) electrode exhibits a capacitance of 285 F g-1 at the current density of 0.5 A g-1 as well as rather good cycling stability. Moreover, during the cycling process, the coulombic efficiency remains 99%. The as-prepared cobalt sulfide nanotubes electrode exhibits excellent electrochemical performance as electrode materials for supercapacitors.

  18. Electrochemical impedance spectroscopy of supercapacitors: A novel analysis approach using evolutionary programming

    NASA Astrophysics Data System (ADS)

    Oz, Alon; Hershkovitz, Shany; Tsur, Yoed

    2014-11-01

    In this contribution we present a novel approach to analyze impedance spectroscopy measurements of supercapacitors. Transforming the impedance data into frequency-dependent capacitance allows us to use Impedance Spectroscopy Genetic Programming (ISGP) in order to find the distribution function of relaxation times (DFRT) of the processes taking place in the tested device. Synthetic data was generated in order to demonstrate this technique and a model for supercapacitor ageing process has been obtained.

  19. Voltage and partial pressure dependent defect chemistry in (La,Sr)FeO3–δ thin films investigated by chemical capacitance measurements

    PubMed Central

    Rupp, Ghislain M.; Fleig, Jürgen

    2018-01-01

    La0.6Sr0.4FeO3–δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to –600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions. PMID:29671421

  20. Voltage and partial pressure dependent defect chemistry in (La,Sr)FeO3-δ thin films investigated by chemical capacitance measurements.

    PubMed

    Schmid, Alexander; Rupp, Ghislain M; Fleig, Jürgen

    2018-05-03

    La0.6Sr0.4FeO3-δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy. Electrochemical film capacitance was analyzed in relation to oxygen partial pressure (0.25 mbar to 1 bar), DC polarization (0 m to -600 m) and temperature (500 to 650 °C). For most measurement parameters, the chemical bulk capacitance dominates the overall capacitive properties and the corresponding defect chemical state depends solely on the oxygen chemical potential inside the film, independent of atmospheric oxygen pressure and DC polarization. Thus, defect chemical properties (defect concentrations and defect formation enthalpies) could be deduced from such measurements. Comparison with LSF defect chemical bulk data from the literature showed good agreement for vacancy formation energies but suggested larger electronic defect concentrations in the films. From thickness-dependent measurements at lower oxygen chemical potentials, an additional capacitive contribution could be identified and attributed to the LSF|YSZ interface. Deviations from simple chemical capacitance models at high pressures are most probably due to defect interactions.

  1. Electropolymerized polyazulene as active material in flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Suominen, Milla; Lehtimäki, Suvi; Yewale, Rahul; Damlin, Pia; Tuukkanen, Sampo; Kvarnström, Carita

    2017-07-01

    We report the capacitive behavior of electrochemically polymerized polyazulene films in different ionic liquids. The ionic liquids in this study represent conventional imidazolium based ionic liquids with tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions as well as an unconventional choline based ionic liquid. The effect of different ionic liquids on the polymerization and capacitive performance of polyazulene films is demonstrated by cyclic voltammetry and electrochemical impedance spectroscopy in a 3-electrode cell configuration. The films exhibit the highest capacitances in the lowest viscosity ionic liquid (92 mF cm-2), while synthesis in high viscosity ionic liquid shortens the conjugation length and results in lower electroactivity (25 mF cm-2). The obtained films also show good cycling stabilities retaining over 90% of their initial capacitance over 1200 p-doping cycles. We also demonstrate, for the first time, flexible polyazulene supercapacitors of symmetric and asymmetric configurations using the choline based ionic liquid as electrolyte. In asymmetric configuration, capacitance of 55 mF (27 mF cm-2) with an equivalent series resistance of 19 Ω is obtained at operating voltage of 1.5 V. Upon increasing the operating voltage up to 2.4 V, the capacitance increases to 72 mF (36 mF cm-2).

  2. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Kai, E-mail: kaixie@mail.xidian.edu.cn; Liu, Yan; Li, XiaoPing

    2016-04-15

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier’s bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7more » Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.« less

  3. Investigation on VOX/CNTS Nanocomposites Act as Electrode of Supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Quanyao; Li, Zhaolong; Zhang, Xiaoyan; Huang, Shengnan; Yu, Yue; Chen, Wen; Zakharova, Galina S.

    2013-07-01

    The VOx/CNTs nanocomposites were synthesized by the hydrothermal method. The structure and morphologies of the nanocomposites were characteristic by XRD, SEM and TEM. The electrochemical properties of the nanocomposites were explored by cyclic voltammetry, constant current charge/discharge testing and electrochemical impedance spectroscopy in 1M KNO3 aqueous solution. The results showed that the nanocomposites perform characteristics of electrical both double-layer capacitance and pseudocapacitance. The specific capacitances were 136.5F/g, when the current density was 0.15A/g.

  4. High-Capacitance Mechanism for Ti3C2Tx MXene by in Situ Electrochemical Raman Spectroscopy Investigation.

    PubMed

    Hu, Minmin; Li, Zhaojin; Hu, Tao; Zhu, Shihao; Zhang, Chao; Wang, Xiaohui

    2016-12-27

    MXenes represent an emerging family of conductive two-dimensional materials. Their representative, Ti 3 C 2 T x , has been recognized as an outstanding member in the field of electrochemical energy storage. However, an in-depth understanding of fundamental processes responsible for the superior capacitance of Ti 3 C 2 T x MXene in acidic electrolytes is lacking. Here, to understand the mechanism of capacitance in Ti 3 C 2 T x MXene, we studied electrochemically the charge/discharge processes of Ti 3 C 2 T x electrodes in sulfate ion-containing aqueous electrolytes with three different cations, coupled with in situ Raman spectroscopy. It is demonstrated that hydronium in the H 2 SO 4 electrolyte bonds with the terminal O in the negative electrode upon discharging while debonding occurs upon charging. Correspondingly, the reversible bonding/debonding changes the valence state of Ti element in the MXene, giving rise to the pseudocapacitance in the acidic electrolyte. In stark contrast, only electric double layer capacitance is recognized in the other electrolytes of (NH 4 ) 2 SO 4 or MgSO 4 . The charge storage ways also differ: ion exchange dominates in H 2 SO 4 , while counterion adsorption in the rest. Hydronium that is characterized by smaller hydration radius and less charge is the most mobile among the three cations, facilitating it more kinetically accommodated on the deep adsorption sites between the MXene layers. The two key factors, i.e., surface functional group-involved bonding/debonding-induced pseudocapacitance, and ion exchange-featured charge storage, simultaneously contribute to the superior capacitance of Ti 3 C 2 T x MXene in acidic electrolytes.

  5. DLTS and in situ C-V analysis of trap parameters in swift 50 MeV Li3+ ion-irradiated Ni/SiO2/Si MOS capacitors

    NASA Astrophysics Data System (ADS)

    Shashank, N.; Singh, Vikram; Gupta, Sanjeev K.; Madhu, K. V.; Akhtar, J.; Damle, R.

    2011-04-01

    Ni/SiO2/Si MOS structures were fabricated on n-type Si wafers and were irradiated with 50 MeV Li3+ ions with fluences ranging from 1×1010 to 1×1012 ions/cm2. High frequency C-V characteristics are studied in situ to estimate the build-up of fixed and oxide charges. The nature of the charge build-up with ion fluence is analyzed. Defect levels in bulk Si and its properties such as activation energy, capture cross-section, trap concentration and carrier lifetimes are studied using deep-level transient spectroscopy. Electron traps with energies ranging from 0.069 to 0.523 eV are observed in Li ion-irradiated devices. The dependence of series resistance, substrate doping and accumulation capacitance on Li ion fluence are clearly explained. The study of dielectric properties (tan δ and quality factor) confirms the degradation of the oxide layer to a greater extent due to ion irradiation.

  6. Influence of electrolytes in the QCM response: discrimination and quantification of the interference to correct microgravimetric data.

    PubMed

    Encarnação, João M; Stallinga, Peter; Ferreira, Guilherme N M

    2007-02-15

    In this work we demonstrate that the presence of electrolytes in solution generates desorption-like transients when the resonance frequency is measured. Using impedance spectroscopy analysis and Butterworth-Van Dyke (BVD) equivalent electrical circuit modeling we demonstrate that non-Kanazawa responses are obtained in the presence of electrolytes mainly due to the formation of a diffuse electric double layer (DDL) at the sensor surface, which also causes a capacitor like signal. We extend the BVD equivalent circuit by including additional parallel capacitances in order to account for such capacitor like signal. Interfering signals from electrolytes and DDL perturbations were this way discriminated. We further quantified as 8.0+/-0.5 Hz pF-1 the influence of electrolytes to the sensor resonance frequency and we used this factor to correct the data obtained by frequency counting measurements. The applicability of this approach is demonstrated by the detection of oligonucleotide sequences. After applying the corrective factor to the frequency counting data, the mass contribution to the sensor signal yields identical values when estimated by impedance analysis and frequency counting.

  7. Investigation of Defects Origin in p-Type Si for Solar Applications

    NASA Astrophysics Data System (ADS)

    Gwóźdź, Katarzyna; Placzek-Popko, Ewa; Mikosza, Maciej; Zielony, Eunika; Pietruszka, Rafal; Kopalko, Krzysztof; Godlewski, Marek

    2017-07-01

    In order to improve the efficiency of a solar cell based on silicon, one must find a compromise between its price and crystalline quality. That is precisely why the knowledge of defects present in the material is of primary importance. This paper studies the defects in commercially available cheap Schottky titanium/gold silicon wafers. The electrical properties of the diodes were defined by using current-voltage and capacitance-voltage measurements. Low series resistance and ideality factor are proofs of the good quality of the sample. The concentration of the acceptors is in accordance with the manufacturer's specifications. Deep level transient spectroscopy measurements were used to identify the defects. Three hole traps were found with activation energies equal to 0.093 eV, 0.379 eV, and 0.535 eV. Comparing the values with the available literature, the defects were determined as connected to the presence of iron interstitials in the silicon. The quality of the silicon wafer seems good enough to use it as a substrate for the solar cell heterojunctions.

  8. Lectin staining of epithelia lining the uterovaginal junction and sperm-storage tubules in chicken hens

    USDA-ARS?s Scientific Manuscript database

    In most mammals sperm are subject to a transient storage period in the caudal region of the oviduct during which they undergo cellular and molecular modifications associated with capacitation. During this storage period sperm bind to a terminal carbohydrate moiety associated with a glycoconjugate o...

  9. EPR and transient capacitance studies on electron-irradiated silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Cheng, L. J.; Mooney, P. M.; Corbett, J. W.

    1977-01-01

    One and two ohm-cm solar cells irradiated with 1 MeV electrons at 30 C were studied using both EPR and transient capacitance techniques. In 2 ohm-cm cells, Si-G6 and Si-G15 EPR spectra and majority carrier trapping levels at (E sub V + 0.23) eV and (E sub V + 0.38) eV were observed, each of which corresponded to the divacancy and the carbon-oxygen-vacancy complex, respectively. In addition, a boron-associated defect with a minority carrier trapping level at (E sub C -0.27) eV was observed. In 1 ohm-cm cells, the G15 spectrum and majority carrier trap at (E sub V + 0.38) eV were absent and an isotropic EPR line appeared at g = 1.9988 (+ or - 0.0003); additionally, a majority carrier trapping center at (E sub V + 0.32) eV, was found which could be associated with impurity lithium. The formation mechanisms of these defects are discussed according to isochronal annealing data in electron-irradiated p-type silicon.

  10. A Study on the Transient Behavior of Pulse Modulated Dual-Frequency Capacitive Discharges based on Circuit Analysis

    NASA Astrophysics Data System (ADS)

    Na, Byungkeun; Bae, Inshik; Park, Gi Jung; Chang, Hong-Young

    2016-09-01

    Multi-frequency capacitively coupled plasma (CCP) has been studied to independently control the ion energy and the ion flux; pulsing technique is used to reduce the electron temperature and finally the charging effects. The use of these techniques is a key to high aspect ratio contact (HARC) etching in the recent semiconductor processing. In this study, the characteristics of pulsed dual frequency (DF) CCP is investigated. Two separate powers of 3 MHz and 40 MHz are delivered to the powered electrode of an asymmetric CCP, and each frequency is modulated by an external 1 kHz pulse. Due to the complexity of the RF compensation in DF CCP, the characteristics of the plasma and the sheath are analyzed by high speed impedance measurement. The transient behavior of pulse modulated DF CCP is analyzed based on the result of continuous wave (CW) DF CCP. The optimized experimental condition for high ion energy will be presented. The difference between electronegative oxygen plasma and electropositive argon plasma is discussed as well.

  11. KOH modified graphene nanosheets for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Li, Yueming; van Zijll, Marshall; Chiang, Shirley; Pan, Ning

    Chemical modification of graphene nanosheets by KOH was examined as a way to enhance the specific capacity of graphene nanosheets in supercapacitor. Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy were used to investigate the effects of the treatment on the surface of the graphene nanosheets. The specific capacitance of 136 F g -1 was obtained for KOH treated graphene by integration of the cyclic voltammogram, an increase of about 35% compared with that for the pristine graphene nanosheets.

  12. Synthesis and fabrication of porous activated carbon/nano ZnO composite electrode for supercapacitor

    NASA Astrophysics Data System (ADS)

    P, Shabeeba; Thayyil, Mohammed Shahin; Pillai, M. P.

    2017-05-01

    Supercapacitors, also called as ultracapacitors, are electrochemical energy-storage devices that exploit the electrostatic interaction between high-surface-area nanoporous electrodes and electrolyte ions that combine properties of conventional batteries and conventional capacitors. A symmetrical ZnO-Activated Carbon (ZAC) electrode supercapacitor have been fabricated in a simple and inexpensive manner. The electrochemical characteristics of fabricated supercapacitor was analyzed using Cyclic Voltammetry (CV), galvanostatic charge discharge technique, and impedance spectroscopy methods. Capacitance of fabricated ZAC electrode were showed capacitance in the range of 60-70 F/g respectively. It has been found that the cells have excellent electro chemical reversibility, capacitive characteristics in electrolyte and stable in cyclings, which is promising for energy storage applications.

  13. Anomalous change in dielectric constant of CaCu{sub 3}Ti{sub 4}O{sub 12} under violet-to-ultraviolet irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masingboon, C.; Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000; Eknapakul, T.

    2013-05-20

    The influence of light illumination on the dielectric constant of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) polycrystals is studied in this work. When exposed to 405-nm laser light, a reversible enhancement in the room temperature capacitance as high as 22% was observed, suggesting application of light-sensitive capacitance devices. To uncover the microscopic mechanisms mediating this change, we performed electronic structure measurements, using photoemission spectroscopy, and measured the electrical conductivity of the CCTO samples under different conditions of light exposure and oxygen partial pressure. Together, these results suggest that the large capacitance enhancement is driven by oxygen vacancies induced by the irradiation.

  14. Characteristics of molecular hydrogen and CH* radicals in a methane plasma in a magnetically enhanced capacitive RF discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avtaeva, S. V.; Lapochkina, T. M.

    2007-09-15

    The parameters of a methane-containing plasma in an asymmetric RF capacitive discharge in an external magnetic field were studied using optical emission spectroscopy. The power deposited in the discharge was 90 W and the gas pressure and magnetic field were varied in the ranges 1-5 Pa and 50-200 G, respectively. The vibrational and rotational temperatures of hydrogen molecules and CH* radicals were measured as functions of the magnetic field and methane pressure. The ratio between the densities of atomic and molecular hydrogen was estimated. The processes responsible for the excitation of molecular hydrogen and CH* radicals in a methane-containing plasmamore » in an RF capacitive discharge are analyzed.« less

  15. Humic acids as pseudocapacitive electrolyte additive for electrochemical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Wasiński, Krzysztof; Walkowiak, Mariusz; Lota, Grzegorz

    2014-06-01

    Novel electrolyte additive for electrochemical capacitors has been reported. It has been demonstrated for the first time that addition of humic acids (HA) to KOH-based electrolyte significantly increases capacitance of symmetrical capacitors with electrodes made of activated carbon. Specific capacitances determined by means of galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy consistently showed increases for HA concentrations ranging from 2% w/w up to saturated solution with maximum positive effect observed for 5% w/w of the additive. The capacitance increase has been attributed to complex faradaic processes involving oxygen-containing groups of HA molecules. Due to abundant resources, low cost and easy processability the reported solution can find application in electrochemical capacitor technologies.

  16. Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid Langmuir-Blodgett Films.

    PubMed

    Rodrigues, Raul T; Morais, Paulo V; Nordi, Cristina S F; Schöning, Michael J; Siqueira, José R; Caseli, Luciano

    2018-03-06

    Algal polysaccharides (extracellular polysaccharides) and carbon nanotubes (CNTs) were adsorbed on dioctadecyldimethylammonium bromide Langmuir monolayers to serve as a matrix for the incorporation of urease. The physicochemical properties of the supramolecular system as a monolayer at the air-water interface were investigated by surface pressure-area isotherms, surface potential-area isotherms, interfacial shear rheology, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to hydrophilic solid supports, quartz, mica, or capacitive electrolyte-insulator-semiconductor (EIS) devices, through the Langmuir-Blodgett (LB) technique, forming mixed films, which were investigated by quartz crystal microbalance, fluorescence spectroscopy, and field emission gun scanning electron microscopy. The enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the thin film as a urea sensor was essayed in an EIS sensor device. The presence of CNT in the enzyme-lipid LB film not only tuned the catalytic activity of urease but also helped to conserve its enzyme activity. Viability as a urease sensor was demonstrated with capacitance-voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results are related to the synergism between the compounds on the active layer, leading to a surface morphology that allowed fast analyte diffusion owing to an adequate molecular accommodation, which also preserved the urease activity. This work demonstrates the feasibility of employing LB films composed of lipids, CNT, algal polysaccharides, and enzymes as EIS devices for biosensing applications.

  17. Carbon Nanotubes Arranged As Smart Interfaces in Lipid Langmuir-Blodgett Films Enhancing the Enzymatic Properties of Penicillinase for Biosensing Applications.

    PubMed

    Scholl, Fabio A; Morais, Paulo V; Gabriel, Rayla C; Schöning, Michael J; Siqueira, José R; Caseli, Luciano

    2017-09-13

    In this paper, carbon nanotubes (CNTs) were incorporated in penicillinase-phospholipid Langmuir and Langmuir-Blodgett (LB) films to enhance the enzyme catalytic properties. Adsorption of the penicillinase and CNTs at dimyristoylphosphatidic acid (DMPA) monolayers at the air-water interface was investigated by surface pressure-area isotherms, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to solid supports through the LB technique, forming mixed DMPA-CNTs-PEN films, which were investigated by quartz crystal microbalance, vibrational spectroscopy, and atomic force microscopy. Enzyme activity was studied with UV-vis spectroscopy and the feasibility of the supramolecular device nanostructured as ultrathin films were essayed in a capacitive electrolyte-insulator-semiconductor (EIS) sensor device. The presence of CNTs in the enzyme-lipid LB film not only tuned the catalytic activity of penicillinase but also helped conserve its enzyme activity after weeks, showing increased values of activity. Viability as penicillin sensor was demonstrated with capacitance/voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results may be related not only to the nanostructured system provided by the film, but also to the synergism between the compounds on the active layer, leading to a surface morphology that allowed a fast analyte diffusion because of an adequate molecular accommodation, which also preserved the penicillinase activity. This work therefore demonstrates the feasibility of employing LB films composed of lipids, CNTs, and enzymes as EIS devices for biosensing applications.

  18. Highly Uniform Anodically Deposited Film of MnO2 Nanoflakes on Carbon Fibers for Flexible and Wearable Fiber-Shaped Supercapacitors.

    PubMed

    Rafique, Amjid; Massa, Andrea; Fontana, Marco; Bianco, Stefano; Chiodoni, Angelica; Pirri, Candido F; Hernández, Simelys; Lamberti, Andrea

    2017-08-30

    A highly uniform porous film of MnO 2 was deposited on carbon fiber by anodic electrodeposition for the fabrication of high-performance electrodes in wearable supercapacitors (SCs) application. The effects of potentiostatic and galvanostatic electrodeposition and the deposition time were investigated. The morphology, crystalline structure, and chemical composition of the obtained fiber-shaped samples were analyzed by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The charge storage performance of the carbon fibers@MnO 2 composite electrode coupled to a gel-like polymeric electrolyte was investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The specific capacitance of the optimized carbon fiber@MnO 2 composite electrodes could reach up to 62 F g -1 corresponding to 23 mF cm -1 in PVA/NaCl gel-polymer electrolyte, i.e., the highest capacitance value ever reported for fiber-shaped SCs. Finally, the stability and the flexibility of the device were studied, and the results indicate exceptional capacitance retention and superior stability of the device subjected to bending even at high angles up to 150°.

  19. Facile One-Pot Synthesis of Flower Like Cobalt Oxide Nanostructures on Nickel Plate and Its Supercapacitance Properties.

    PubMed

    Kandasamy, N; Venugopal, T; Kannan, K

    2018-06-01

    A flower like cobalt oxide nanostructured thin film (Co2O3) on Nickel (Ni) plate as have been successfully developed via alcoholic Seed Layer assisted chemical bath Deposition (SLD) process. Through the controlled alkaline electrolytes, the flower and paddles like Co2O3 nanoarchitectures were formed. The prepared thin film was characterized by X-ray diffraction (XRD), scanning electron microscope with energy dispersive X-ray (SEM and EDX), Atomic Force Microscope (AFM), Raman spectroscopy techniques. Electron micrograph reveals the flower and paddles like nanostructured Co2O3 thin film deposited on Ni plates. The electrochemical characteristics were investigated using cyclic voltammetry (CV), charge-discharge and AC impedance spectroscopy in different aqueous electrolytes such as NaOH, KOH, and LiOH. The maximum specific capacitance of 856 Fg-1 was attained with 2 M KOH electrolyte with 2 mVs-1 of the Co2O3 thin film coated Ni plate at 80 °C using SLD method. The capacitance values obtained with various electrolytes are in the order of KOH > NaOH > LiOH. The results indicate that the present method is economical and the material is ecofriendly with enhanced capacitance property.

  20. Influences of internal resistance and specific surface area of electrode materials on characteristics of electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Mizutani, Akitaka; Harigai, Toru; Takikawa, Hirofumi; Ue, Hitoshi; Umeda, Yoshito

    2017-01-01

    We fabricated electric double layer capacitors (EDLCs) using particulate and fibrous types of carbon nanomaterials with a wide range of specific surface areas and resistivity as an active material. The carbon nanomaterials used in this study are carbon nanoballoons (CNBs), onion-like carbon (OLC), and carbon nanocoils (CNCs). A commercially used activated carbon (AC) combined with a conductive agent was used as a comparison. We compared the EDLC performance using cyclic voltammetry (CV), galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy (EIS). OLC showed a poor EDLC performance, although it has the lowest resistivity among the carbon nanomaterials. CNB, which has a 1/16 lower specific surface area than AC but higher specific surface area than CNC and OLC, had a higher specific capacitance than CNC and OLC. Moreover, at current densities of 1.5 Ag-1 and larger, the specific capacitance of the EDLC using CNB was almost the same as that using AC. Electrochemical impedance spectroscopy of the EDLCs revealed that the CNB and CNC electrodes had a much lower internal resistance than the AC electrode, which correlated with a low capacitance maintenance factor as the current density increased.

  1. Micropatterned ferrocenyl monolayers covalently bound to hydrogen-terminated silicon surfaces: effects of pattern size on the cyclic voltammetry and capacitance characteristics.

    PubMed

    Fabre, Bruno; Pujari, Sidharam P; Scheres, Luc; Zuilhof, Han

    2014-06-24

    The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 μm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 μm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.

  2. Towards a Molecular Movie: Real Time Observation of Hydrogen Bond Breaking by Transient 2D-IR Spectroscopy in a Cyclic Peptide

    NASA Astrophysics Data System (ADS)

    Kolano, Christoph; Helbing, Jan; Sander, Wolfram; Hamm, Peter

    Transient two-dimensional infrared spectroscopy (T2D-IR) has been used to observe in real time the non-equilibrium structural dynamics of intramolecular hydrogen bond breaking in a small cyclic disulfide-bridged peptide.

  3. Thermal modelling and control of 130kw direct contact (salt/air) heat exchanger

    NASA Astrophysics Data System (ADS)

    Qureshi, Omer A.; Calvet, Nicolas; Armstrong, Peter R.

    2017-06-01

    This work investigates the transient response of a certain type of direct contact heat exchanger (DCHX) that consists of packing (Raschig Rings) to increase the surface area for effective heat transfer between molten salt and air. Molten salt from the hot tank enters the heat exchanger (HX) and exit after heating the air still in the molten form. Thermal capacitance of the HX, mainly due to packing and resident salt inside the HX, results in strong transient response. Pure delay from salt residence time may also impact transient response. Both phenomena have been modelled in this paper. A Proportional-Integral controller (PI control) performance has been evaluated to maintain the minimum salt temperature above avoid crystallization temperature of the salt.

  4. Excellent capacitive performance of a three-dimensional hierarchical porous graphene/carbon composite with a superhigh surface area.

    PubMed

    Li, Xue Jin; Xing, Wei; Zhou, Jin; Wang, Gui Qiang; Zhuo, Shu Ping; Yan, Zi Feng; Xue, Qing Zhong; Qiao, Shi Zhang

    2014-10-06

    Three-dimensional hierarchical porous graphene/carbon composite was successfully synthesized from a solution of graphene oxide and a phenolic resin by using a facile and efficient method. The morphology, structure, and surface property of the composite were investigated intensively by a variety of means such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). It is found that graphene serves as a scaffold to form a hierarchical pore texture in the composite, resulting in its superhigh surface area of 2034 m(2) g(-1), thin macropore wall, and high conductivity (152 S m(-1)). As evidenced by electrochemical measurements in both EMImBF4 ionic liquid and KOH electrolyte, the composite exhibits ideal capacitive behavior, high capacitance, and excellent rate performance due to its unique structure. In EMImBF4 , the composite has a high energy density of up to 50.1 Wh kg(-1) and also possesses quite stable cycling stability at 100 °C, suggesting its promising application in high-temperature supercapacitors. In KOH electrolyte, the specific capacitance of this composite can reach up to an unprecedented value of 186.5 F g(-1), even at a very high current density of 50 A g(-1), suggesting its prosperous application in high-power applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Line transients with corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saied, M.M.; Safar, Y.A.; Salama, M.H.

    1987-01-01

    This paper investigates the effect of corona on the electromagnetic transients along high voltage overhead lines. A method is presented to simulate the line by dividing it into a number of sections connected in cascade. For {ital n} line sections, the number of the unknown variables is 2{ital n} + 1. The method allows any waveform of the exciting voltage function, as well as any impedance loading condition. The corona is represented by voltage-dependent shunt current sources. A systematic way for writing a sufficient number of differential equations is shown. For their solution, a digital computer subroutine based on themore » Runge--Kutta--Verner method was used. An artificial frequency-dependent damping by means of linear resistors was used to suppress the Gibb's oscillations in the solution. The proposed method is applied to study the transients on a 40 km high voltage line with 30-ft flat phase spacing and a single 1.4 inch ACSR conductor per phase. The exciting voltage has a double-exponential impulse waveform. Solutions are given for three values of resistive loads Z{sub {ital c}}2Z{sub {ital c}} and Z{sub {ital c}}/2, where Z{sub {ital c}} is the line surge impedance. The results of two interesting cases of inductive and capacitive loads are also given. Physical interpretations for the different solutions are given. Also, the current-voltage duality between inductive and capacitive loads is recognized. The corona was found to attenuate and distort the travelling waves. For example, during one wave excursion, the reduction of the current wave peaks can reach values as high as 8.5%. The effect is more noticeable in the current than in the voltage waves. As expected, it increases also with the line corona losses. The effect of the increase of the line effective capacitance due to the corona discharge is also demonstrated.« less

  6. Dynamic characteristics of organic bulk-heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Babenko, S. D.; Balakai, A. A.; Moskvin, Yu. L.; Simbirtseva, G. V.; Troshin, P. A.

    2010-12-01

    Transient characteristics of organic bulk-heterojunction solar cells have been studied using pulsed laser probing. An analysis of the photoresponse waveforms of a typical solar cell measured by varying load resistance within broad range at different values of the bias voltage provided detailed information on the photocell parameters that characterize electron-transport properties of active layers. It is established that the charge carrier mobility is sufficient to ensure high values of the fill factor (˜0.6) in the obtained photocells. On approaching the no-load voltage, the differential capacitance of the photocell exhibits a sixfold increase as compared to the geometric capacitance. A possible mechanism of recombination losses in the active medium is proposed.

  7. Suppression of transient enhanced diffusion in sub-micron patterned silicon template by dislocation loops formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Kuan-Kan; Woon, Wei Yen; Chang, Ruey-Dar

    We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.

  8. Suppression of transient enhanced diffusion in sub-micron patterned silicon template by dislocation loops formation

    NASA Astrophysics Data System (ADS)

    Hu, Kuan-Kan; Chang, Ruey-Dar; Woon, Wei Yen

    2015-10-01

    We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.

  9. Covalent surface modification of chemically derived graphene and its application as supercapacitor electrode material.

    PubMed

    Jana, Milan; Khanra, Partha; Murmu, Naresh Chandra; Samanta, Pranab; Lee, Joong Hee; Kuila, Tapas

    2014-04-28

    A simple and effective method using 6-amino-4-hydroxy-2-naphthalenesulfonic acid (ANS) for the synthesis of water dispersible graphene has been described. Ultraviolet-visible (UV-vis) spectroscopy reveals that ANS-modified reduced graphene oxide (ANS-rGO) obeys Beers law at moderate concentrations. Fourier transform infrared and X-ray photoelectron spectroscopies provide quantitative information regarding the removal of oxygen functional groups from graphene oxide (GO) and the appearance of new functionalities in ANS-rGO. The electrochemical performances of ANS-rGO have been determined by cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy analysis. Charge-discharge experiments show that ANS-rGO is an outstanding supercapacitor electrode material due to its high specific capacitance (375 F g(-1) at a current density of 1.3 A g(-1)) and very good electrochemical cyclic stability (∼97.5% retention in specific capacitance after 1000 charge-discharge cycles). ANS-rGO exhibits promising characteristics with a very high power density (1328 W kg(-1)) and energy density (213 W h kg(-1)).

  10. Excimer laser assisted very fast exfoliation and reduction of graphite oxide at room temperature under air ambient for Supercapacitors electrode

    NASA Astrophysics Data System (ADS)

    Malek Hosseini, S. M. B.; Baizaee, S. M.; Naderi, Hamid Reza; Dare Kordi, Ali

    2018-01-01

    Excimer laser was used for reduction and exfoliation of graphite oxide (GO) at room temperature under air ambient. The prepared excimer laser reduced graphite oxide (XLRGO) is characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption (BET method), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption techniques for surface, structural functional groups and band gap analysis. Electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) and continues cyclic voltammetry (CCV) in 0.5 M Na2SO4 as electrolyte. Electrochemical investigations revealed that XLRGO electrode has enhanced supercapacitive performance including specific capacitance of 299 F/g at a scan rate of 2 mV/s. Furthermore, CCV measurement showed that XLRGO electrode kept 97.8% of its initial capacitance/capacity after 4000 cycles. The obtained results from electrochemical investigations confirm that the reduction of GO by using an excimer laser produces high-quality graphene for supercapacitor applications without the need for additional operations.

  11. Synthesis of Fluorinated Graphene/CoAl-Layered Double Hydroxide Composites as Electrode Materials for Supercapacitors.

    PubMed

    Peng, Weijun; Li, Hongqiang; Song, Shaoxian

    2017-02-15

    CoAl-layered double hydroxide/fluorinated graphene (CoAl-LDH/FGN) composites were fabricated via a two-step hydrothermal method. The synthesized CoAl-LDH/FGN composites have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and electrochemical measurements. The results indicated that the fluorinated carbon with various configuration forms were grafted onto the framework of graphene, and the C-F bond configuration and fluorine content could be tuned by the fluorination time. Most of semi-ionic C-F bonds were formed at an appropriate fluorination time and, then, converted into fluorine rich surface groups (such as CF 2 , CF 3 , etc.) which were electrochemically inactive as the fluorination time prolonged. Moreover, the CoAl-LDH/FGN composites prepared at the optimal fluorination time exhibited the highest specific capacitance (1222 F/g at 1 A/g), the best rate capability, and the most stable capacitance retention, which offered great promise as electrode materials for supercapacitors.

  12. Effects of nitroglycerin and nitroprusside on vascular capacitance of anesthetized ganglion-blocked dogs.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1991-10-01

    To determine whether changes in vascular capacitance induced by nitroglycerin (NTG) and nitroprusside were due to changes in compliance or unstressed vascular volume, doses producing similar reductions in arterial pressure (Psa) were studied on separate days in six dogs anesthetized and ventilated with pentobarbital after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline blood volumes and after increases of 5 and 10 ml/kg. Central blood volumes (CBVs, pulmonary artery to aortic root) were determined from transit times, and separately measured cardiac output (CO) was estimated by thermodilution (right atrium to pulmonary artery). NTG and nitroprusside produced similar reductions in Psa and Pmcf without significantly altering right atrial pressure (Pra), pressure gradient for venous return, or CO. Total vascular compliance was not altered, but total vascular capacitance was increased on an average of 4.0 +/- 1.4 ml/kg after NTG and 3.0 +/- 1.3 ml/kg after nitroprusside by increases in unstressed volume. Both drugs caused a variable reduction in CBV, averaging 2 ml/kg. Thus, both drugs produced a large increase in peripheral venous capacitance by increasing unstressed vascular volume without altering total vascular compliance.

  13. Monitoring of biofilm aging in a Sphingomonas sp. strain from public drinking water sites through changes in capacitance.

    PubMed

    Gulati, Parul; Singh, Pawandeep; Chatterjee, Arun Kumar; Ghosh, Moushumi

    2017-09-01

    This study reports the applicability of a capacitance-based technique for evaluating the biofilm progression of Sphingomonas sp. One hundred and forty isolates of Sphingomonas were screened from public drinking water sites, and one potential strain with biofilm-forming ability was used for the study. The biofilm production by this strain was established in microtiter plates and aluminum coupons. The standard biofilm-forming strain Sphingomonas terrae MTCC 7766 was used for comparison. Changes in biofilm were analyzed by energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM). Capacitance values were measured at 1, 100 and 200 kHz frequency; however, 1 kHz was selected since resulted in reproducible values, which could be correlated to biofilm age measured as dry weight over a time of 96 h (4 days) depicting the biofilm growth/progression over time. The EDX, SEM and capacitance values obtained in parallel indicated the related physiological profile usually displayed by biofilms upon growth, suggesting authenticity to the observed capacitance profile. The results of this study demonstrated the feasibility of a capacitance-based method for analyzing biofilm development/progression by Sphingomonas sp. and suggested a simple approach for developing an online system to detect biofilms by this opportunistic pathogen of concern in drinking water.

  14. Nanotubular polyaniline electrode for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Athira, A. R.; Vimuna, V. M.; Vidya, K.; Xavier, T. S.

    2018-05-01

    Polyaniline(PANI) nanotubes have been successfully synthesised at room temperature by the chemical oxidative polymerization of aniline with Ammoniumpersulphate(APS) in aqueous acetic acid. Chemically synthesised PANI nanotubes were characterized using Field emission scanning electron microscopy(FESEM), Brunauer - Emmett-Teller (BET) analysis, X ray diffraction analysis (XRD) and Fourier transform infrared spectroscopy (FTIR). The super capacitive performance of the synthesised PANI nanotubes was tested using cyclic voltammetry (CV) technique in H2SO4 electrolyte with in potential range of -0.2 to 0.8V. The effect of scan rates on specific capacitance of PANI electrode was studied. The highest specific capacitance of 232.2Fg-1 was obtained for the scan rate of 5mVs-1. This study suggests that the synthesized PANI nanotubes are excellent candidate for developing electrode materials for supercapacitors.

  15. Capacitance properties and structure of electroconducting hydrogels based on copoly(aniline - p-phenylenediamine) and polyacrylamide

    NASA Astrophysics Data System (ADS)

    Smirnov, Michael A.; Sokolova, Maria P.; Bobrova, Natalya V.; Kasatkin, Igor A.; Lahderanta, Erkki; Elyashevich, Galina K.

    2016-02-01

    Electroconducting hydrogels (EH) based on copoly(aniline - p-phenylenediamine) grafted to the polyacrylamide for the application as pseudo-supercapacitor's electrodes have been prepared. The influence of preparation conditions on the structure and capacitance properties of the systems were investigated: we determined the optimal amount of p-phenylenediamine to obtain the network of swollen interconnected nanofibrils inside the hydrogel which provides the formation of continuous conducting phase. Structure and morphology of the prepared samples were investigated with UV-VIS spectroscopy, scanning electron microscopy (SEM) and wide-angle X-ray diffraction (WAXD). The maximal value of capacitance was 364 F g-1 at 0.2 A g-1. It was shown that the EH samples demonstrate the retention of 50% of their capacity at high current density 16 A g-1. Cycle-life measurements show evidence that capacitance of EH electrodes after 1000 cycles is higher than its initial value for all prepared samples. Changes of the copolymer structure during swelling in water have been studied with WAXD.

  16. A capacitive sensor for 2,4-D determination in water based on 2,4-D imprinted polypyrrole coated pencil electrode

    NASA Astrophysics Data System (ADS)

    Prusty, Arun Kumar; Bhand, Sunil

    2017-03-01

    A capacitive sensor for 2,4-dichloro phenoxy acetic acid(2,4-D) determination in drinking water has been developed using molecularly imprinted polypyrrole on pencil graphite electrode (PGE). Molecular imprinted polymer (MIP) coated PGE was prepared by electropolymerization of pyrrole via chronopotentiometry in the presence of 2,4-D as the template molecule. The prepared electrodes were characterized by field emission gun-scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The capacitance change of MIP electrode was measured in the presence of 2,4-D using EIS. The developed capacitive sensor exhibited a linear range 0.06-1.25 µg l-1 2,4-D with limit of detection of 0.02 µg l-1 and good selectivity towards 2,4-D in water with recovery from 92 to 110%. The results suggest the viable applicability of the MIP/PGE based sensor for the determination of the 2,4-D in water samples.

  17. Nano ZnO-activated carbon composite electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Selvakumar, M.; Krishna Bhat, D.; Manish Aggarwal, A.; Prahladh Iyer, S.; Sravani, G.

    2010-05-01

    A symmetrical (p/p) supercapacitor has been fabricated by making use of nanostructured zinc oxide (ZnO)-activated carbon (AC) composite electrodes for the first time. The composites have been characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction analysis (XRD). Electrochemical properties of the prepared nanocomposite electrodes and the supercapacitor have been studied using cyclic voltammetry (CV) and AC impedance spectroscopy in 0.1 M Na 2SO 4 as electrolyte. The ZnO-AC nanocomposite electrode showed a specific capacitance of 160 F/g for 1:1 composition. The specific capacitance of the electrodes decreased with increase in zinc oxide content. Galvanostatic charge-discharge measurements have been done at various current densities, namely 2, 4, 6 and 7 mA/cm 2. It has been found that the cells have excellent electrochemical reversibility and capacitive characteristics in 0.1 M Na 2SO 4 electrolyte. It has also been observed that the specific capacitance is constant up to 500 cycles at all current densities.

  18. Picosecond sulfur K-edge X-ray absorption spectroscopy with applications to excited state proton transfer

    DOE PAGES

    Van Kuiken, Benjamin E.; Ross, Matthew R.; Strader, Matthew L.; ...

    2017-05-08

    Picosecond X-ray absorption (XA) spectroscopy at the S K-edge (~2.4 keV) is demonstrated and used to monitor excited state dynamics in a small organosulfur molecule (2-Thiopyridone, 2TP) following optical excitation. Multiple studies have reported that the thione (2TP) is converted into the thiol (2-Mercaptopyridine, 2MP) following photoexcitation. However, the timescale and photochemical pathway of this reaction remain uncertain. In this work, time-resolved XA spectroscopy at the S K-edge is used to monitor the formation and decay of two transient species following 400nm excitation of 2TP dissolved in acetonitrile. The first transient species forms within the instrument response time (70 ps)more » and decays within 6 ns. The second transient species forms on a timescale of ~400 ps and decays on a 15 ns timescale. Time-dependent density functional theory is used to identify the first and second transient species as the lowestlying triplet states of 2TP and 2MP, respectively. This study demonstrates transient S K-edge XA spectroscopy as a sensitive and viable probe of time-evolving charge dynamics near sulfur sites in small molecules with future applications towards studying complex biological and material systems.« less

  19. Colloid electrostatic self-assembly synthesis of SnO2/graphene nanocomposite for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Yankun; Liu, Yushan; Zhang, Jianmin

    2015-10-01

    In this paper, a simple and fast colloid electrostatic self-assembly method was adopted to prepare the SnO2/graphene nanocomposite (SGNC). The crystal structure, chemical composition, and porous property of composite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman microscopy, X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption experiments. The morphology analyses showed that the SnO2 nanoparticles about 5 nm were distributed homogenously on the reduced graphene oxide (rGO) sheets surface. The electrochemical performance measurements exhibited that SGNC possessed the specific capacitance of 347.3 F g-1 at a scan rate of 5 mV s-1 in 1 M Na2SO4 electrolyte solution. Furthermore, this material also showed excellent cycling stability, and the specific capacitance still retained 90 % after 3000 cycles. These results indicate that the SGNC is a promising electrode material for high-performance supercapacitors.

  20. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Reduced Graphene Oxide Sheets for Supercapacitors

    PubMed Central

    Wang, Li; Ye, Yinjian; Lu, Xingping; Wen, Zhubiao; Li, Zhuang; Hou, Haoqing; Song, Yonghai

    2013-01-01

    Here we reported a novel route to synthesize a hierarchical nanocomposite (PANI-frGO) of polyaniline (PANI) nanowire arrays covalently bonded on reduced graphene oxide (rGO). In this strategy, nitrophenyl groups were initially grafted on rGO via C-C bond, and then reduced to aminophenyl to act as anchor sites for the growth of PANI arrays on rGO. The functionalized process was confirmed by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis. The electrochemical properties of the PANI-frGO as supercapacitor materials were investigated. The PANI-frGO nanocomposites showed high capacitance of 590 F g−1 at 0.1 A g−1, and had no loss of capacitance after 200 cycles at 2 A g−1. The improved electrochemical performance suggests promising application of the PANI-frGO nanocomposites in high-performance supercapacitors. PMID:24356535

  1. Attofarad resolution potentiostat for electrochemical measurements on nanoscale biomolecular interfacial systems.

    PubMed

    Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco

    2009-12-01

    We present an instrument that enables electrochemical measurements (cyclic voltammetry, impedance tracking, and impedance spectroscopy) on submicrometric samples. The system features a frequency range from dc to 1 MHz and a current resolution of 10 fA for a measurement time of 1 s, giving a sensitivity of few attofarads in terms of measurable capacitance with an applied voltage of only 100 mV. These performances are obtained using a low-noise wide-bandwidth integrator/differentiator stage to sense the input current and a modular approach to minimize the effect of input stray capacitances. A digitally implemented lock-in filter optimally extracts the impedance of the sample, providing time tracking and spectroscopy operating modes. This computer-based and flexible instrument is well suited for characterizing and tracking the electrical properties of biomolecules kept in the physiological solution down to the nanoscale.

  2. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Reduced Graphene Oxide Sheets for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Li; Ye, Yinjian; Lu, Xingping; Wen, Zhubiao; Li, Zhuang; Hou, Haoqing; Song, Yonghai

    2013-12-01

    Here we reported a novel route to synthesize a hierarchical nanocomposite (PANI-frGO) of polyaniline (PANI) nanowire arrays covalently bonded on reduced graphene oxide (rGO). In this strategy, nitrophenyl groups were initially grafted on rGO via C-C bond, and then reduced to aminophenyl to act as anchor sites for the growth of PANI arrays on rGO. The functionalized process was confirmed by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis. The electrochemical properties of the PANI-frGO as supercapacitor materials were investigated. The PANI-frGO nanocomposites showed high capacitance of 590 F g-1 at 0.1 A g-1, and had no loss of capacitance after 200 cycles at 2 A g-1. The improved electrochemical performance suggests promising application of the PANI-frGO nanocomposites in high-performance supercapacitors.

  3. Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors.

    PubMed

    Wang, Li; Ye, Yinjian; Lu, Xingping; Wen, Zhubiao; Li, Zhuang; Hou, Haoqing; Song, Yonghai

    2013-12-20

    Here we reported a novel route to synthesize a hierarchical nanocomposite (PANI-frGO) of polyaniline (PANI) nanowire arrays covalently bonded on reduced graphene oxide (rGO). In this strategy, nitrophenyl groups were initially grafted on rGO via C-C bond, and then reduced to aminophenyl to act as anchor sites for the growth of PANI arrays on rGO. The functionalized process was confirmed by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis. The electrochemical properties of the PANI-frGO as supercapacitor materials were investigated. The PANI-frGO nanocomposites showed high capacitance of 590 F g(-1) at 0.1 A g(-1), and had no loss of capacitance after 200 cycles at 2 A g(-1). The improved electrochemical performance suggests promising application of the PANI-frGO nanocomposites in high-performance supercapacitors.

  4. Impedance Spectroscopy Study of the Effect of Environmental Conditions on the Microstructure Development of Sustainable Fly Ash Cement Mortars.

    PubMed

    Ortega, José Marcos; Sánchez, Isidro; Climent, Miguel Ángel

    2017-09-25

    Today, the characterisation of the microstructure of cement-based materials using non-destructive techniques has become an important topic of study, and among them, the impedance spectroscopy has recently experienced great progress. In this research, mortars with two different contents of fly ash were exposed to four different constant temperature and relative humidity environments during a 180-day period. The evolution of their microstructure was studied using impedance spectroscopy, whose results were contrasted with mercury intrusion porosimetry. The hardening environment has an influence on the microstructure of fly ash cement mortars. On one hand, the impedance resistances R₁ and R₂ are more influenced by the drying of the materials than by microstructure development, so they are not suitable for following the evolution of the porous network under non-optimum conditions. On the other hand, the impedance spectroscopy capacitances C₁ and C₂ allow studying the microstructure development of fly ash cement mortars exposed to those conditions, and their results are in accordance with mercury intrusion porosimetry ones. Finally, it has been observed that the combined analysis of the abovementioned capacitances could be very useful for studying shrinkage processes in cement-based materials kept in low relative humidity environments.

  5. Partially Ionized Beam Deposition of Silicon-Dioxide and Aluminum Thin Films - Defects Generation.

    NASA Astrophysics Data System (ADS)

    Wong, Justin Wai-Chow

    1987-09-01

    Detect formation in SiO_2 and Al thin films and interfaces were studied using a partially ionized beam (PIB) deposition technique. The evaporated species (the deposition material) were partially ionized to give an ion/atom ratio of <=q0.1% and the substrate was biased at 0-5kV during the deposition. The results suggest that due to the ion bombardment, stoichiometric SiO_2 films can be deposited at a low substrate temperature (~300 ^circC) and low oxygen pressure (<=q10^{-4} Torr). Such deposition cannot be achieved using conventional evaporation-deposition techniques. However, traps and mobile ions were observed in the oxide and local melt-down was observed when a sufficiently high electric field was applied to the film. For the PIB Al deposition on the Si substrate, stable Al/Si Schottky contact was formed when the substrate bias was <=q1kV. For a substrate bias of 2.5kV, the capacitance of the Al/Si interface increased dramatically. A model of self-ion implantation with a p-n junction created by the Al^+ ion implantation was proposed and tested to explain the increase of the interface capacitance. Several deep level states at the Al/Si interface were observed using Deep Level Transient Spectroscopy (DLTS) technique when the film was deposited at a bias of 3kV. The PIB Al films deposited on the Si substrate showed unusually strong electromigration resistance under high current density operation. This phenomenon was explained by the highly oriented microstructure of the Al films created by the self-ion bombardment during deposition. These findings show that PIB has potential applications in a number of areas, including low temperature thin film deposition, and epitaxial growth of thin films in the microelectronics thin film industry.

  6. Single and double core-hole ion emission spectroscopy of transient neon plasmas produced by ultraintense x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2016-05-01

    Single core-hole (SCH) and double core-hole (DCH) spectroscopy is investigated systematically for neon gas in the interaction with ultraintense x-ray pulses with photon energy from 937 eV to 2000 eV. A time-dependent rate equation, implemented in the detailed level accounting approximation, is utilized to study the dynamical evolution of the level population and emission properties of the laser-produced highly transient plasmas. The plasma density effects on level populations are demonstrated with an x-ray photon energy of 2000 eV. For laser photon energy in the range of 937 - 1360 eV, resonant absorptions (RA) of 1s-np (n> = 2) transitions play important roles in time evolution of the population and DCH emission spectroscopy. For x-ray photon energy larger than 1360 eV, no RA exist and transient plasmas show different features in the DCH spectroscopy.

  7. Polyimide-Based Capacitive Humidity Sensor

    PubMed Central

    Steinmaßl, Matthias; Endres, Hanns-Erik; Drost, Andreas; Eisele, Ignaz; Kutter, Christoph; Müller-Buschbaum, Peter

    2018-01-01

    The development of humidity sensors with simple transduction principles attracts considerable interest by both scientific researchers and industrial companies. Capacitive humidity sensors, based on polyimide sensing material with different thickness and surface morphologies, are prepared. The surface morphology of the sensing layer is varied from flat to rough and then to nanostructure called nanograss by using an oxygen plasma etch process. The relative humidity (RH) sensor selectively responds to the presence of water vapor by a capacitance change. The interaction between polyimide and water molecules is studied by FTIR spectroscopy. The complete characterization of the prepared capacitive humidity sensor performance is realized using a gas mixing setup and an evaluation kit. A linear correlation is found between the measured capacitance and the RH level in the range of 5 to 85%. The morphology of the humidity sensing layer is revealed as an important parameter influencing the sensor performance. It is proved that a nanograss-like structure is the most effective for detecting RH, due to its rapid response and recovery times, which are comparable to or even better than the ones of commercial polymer-based sensors. This work demonstrates the readiness of the developed RH sensor technology for industrialization. PMID:29751632

  8. Gallium interstitial in irradiated germanium: Deep level transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolkovsky, Vl.; Petersen, M. Christian; Larsen, A. Nylandsted

    Two electronic levels at 0.34 eV above the valence band and 0.32 eV below the conduction band, in gallium doped, p-type Ge irradiated with 2 MeV electrons have been studied by deep level transient spectroscopy (DLTS) with both majority- and minority-carrier injections, and Laplace DLTS spectroscopy. It is concluded that these levels, having donor and acceptor characters, respectively, are correlated with interstitial Ga atoms, formed by the Watkins-replacement mechanism via self-interstitials.

  9. Gallium interstitial in irradiated germanium: Deep level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Petersen, M. Christian; Mesli, A.; van Gheluwe, J.; Clauws, P.; Larsen, A. Nylandsted

    2008-12-01

    Two electronic levels at 0.34 eV above the valence band and 0.32 eV below the conduction band, in gallium doped, p -type Ge irradiated with 2 MeV electrons have been studied by deep level transient spectroscopy (DLTS) with both majority- and minority-carrier injections, and Laplace DLTS spectroscopy. It is concluded that these levels, having donor and acceptor characters, respectively, are correlated with interstitial Ga atoms, formed by the Watkins-replacement mechanism via self-interstitials.

  10. Non-Destructive and Discriminating Identification of Illegal Drugs by Transient Absorption Spectroscopy in the Visible and Near-IR Wavelength Range

    NASA Astrophysics Data System (ADS)

    Sato, Chie; Furube, Akihiro; Katoh, Ryuzi; Nonaka, Hidehiko; Inoue, Hiroyuki

    2008-11-01

    We have tested the possibility of identifying illegal drugs by means of nanosecond transient absorption spectroscopy with a 10-ns UV-laser pulse for the excitation light and visible-to-near-IR light for the probe light. We measured the transient absorption spectra of acetonitrile solutions of d-methamphetamine, dl-3,4-methylenedioxymethamphetamine hydrochloride (MDMA), and dl-N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine hydrochloride (MBDB), which are illegal drugs widely consumed in Japan. Transient absorption signals of these drugs were observed between 400 and 950 nm, a range in which they are transparent in the ground state. By analyzing the spectra in terms of exponential and Gaussian functions, we could identify the drugs and discriminate them from chemical substances having similar structures. We propose that transient absorption spectroscopy will be a useful, non-destructive method of inspecting for illegal drugs, especially when they are dissolved in liquids. Such a method may even be used for drugs packed in opaque materials if it is further extended to utilize intense femtosecond laser pulses.

  11. The role of ionic electrolytes on capacitive performance of ZnO-reduced graphene oxide nanohybrids with thermally tunable morphologies.

    PubMed

    Prakash, Anand; Bahadur, D

    2014-02-12

    In the present work, the role of the reaction temperatures on the morphologies of zinc oxide-reduced graphene oxide (ZnO-RGO) nanohybrids and their supercapacitive performance in two different aqueous electrolytes (1.0 M KCl and Na2SO4) were investigated. The ZnO-RGO nanohybrids were synthesized at two different temperatures (ca. 95 and 145 °C) by solvothermal method and labeled as ZnO-RGO-1 and ZnO-RGO-2, respectively. The structure and composition of ZnO-RGO nanohybrids were confirmed by means of X-ray diffraction, electron microscopes (scanning and transmission), X-ray photoelectron, photoluminescence, and Raman spectroscopy. These results show that the temperature allows a good control on loading and morphology of ZnO nanoassemblies in ZnO-RGO nanohybrids and at elevated temperature of 145 °C, ZnO nanoassemblies break and get completely embedded into RGO matrices. The electrochemical performance of ZnO-RGO nanohybrids was examined by cyclic voltammograms (CVs), galvanostatic charge-discharge (chronopotentiometry) and electrochemical impedance spectroscopy (EIS) in 1.0 M KCl and Na2SO4 aqueous electrolytes respectively. Combining the EIS and zeta potential behavior, a direct link between the charge transfer resistance and electrical double layers is established which is responsible for excellent capacitive performance of ZnO-RGO-2. The ZnO-RGO-2 displays high specific capacitance (107.9 F/g, scan rate = 50 mVs(-1)) in 1.0 M KCl and exhibits merely 4.2% decay in specific capacitance values over 200 cycles.

  12. Preparation of layered graphene and tungsten oxide hybrids for enhanced performance supercapacitors.

    PubMed

    Xing, Ling-Li; Huang, Ke-Jing; Fang, Lin-Xia

    2016-11-01

    Tungsten oxide (WO 3 ), which was originally poor in capacitive performance, is made into an excellent electrode material for supercapacitors by dispersing it on graphene (Gr). The obtained Gr-WO 3 hybrids are characterized by X-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy and scanning electron microscopy techniques, and evaluated as electrode materials for high-performance supercapacitors by cyclic voltammetry, galvanostatic charge-discharge curves and electrochemical impedance spectroscopy. A great improvement in specific capacitance is achieved with the present hybrids, from 255 F g -1 for WO 3 nanoparticles to 580 F g -1 for Gr-WO 3 hybrids (scanned at 1 A g -1 in 2 M KOH over a potential window of 0 to 0.45 V). The Gr-WO 3 hybrid exhibits an excellent high rate capability and good cycling stability with more than 92% capacitance retention over 1000 cycles at a current density of 5 A g -1 . The enhancement in supercapacitor performance of Gr-WO 3 is not only attributed to its unique nanostructure with large specific surface area, but also its excellent electro-conductivity, which facilitates efficient charge transport and promotes electrolyte diffusion. As a whole, this work indicates that Gr-WO 3 hybrids are a promising electrode material for high-performance supercapacitors.

  13. Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array.

    PubMed

    Li, Huihua; Song, Juan; Wang, Linlin; Feng, Xiaomiao; Liu, Ruiqing; Zeng, Wenjin; Huang, Zhendong; Ma, Yanwen; Wang, Lianhui

    2017-01-07

    Flexible all-solid-state supercapacitors are crucial to meet the growing needs for portable electronic devices such as foldable phones and wearable electronics. As promising candidates for pseudocapacitor electrode materials, polyaniline (PANI) orderly nanotube arrays are prepared via a simple template electrodeposition method. The structures of the final product were characterized using various characterization techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The obtained PANI nanotube film could be directly used as a flexible all-solid-state supercapacitor electrode. Electrochemical results show that the areal capacitance of a PANI nanotube-based supercapacitor with the deposition cycle number of 100 can achieve a maximum areal capacitance of 237.5 mF cm -2 at a scan rate of 10 mV s -1 and maximum energy density of 24.31 mW h cm -2 at a power density of 2.74 mW cm -2 . In addition, the prepared supercapacitor exhibits excellent flexibility under different bending conditions. It retains 95.2% of its initial capacitance value after 2000 cycles at a current density of 1.0 mA cm -1 , which displays its superior cycling stability. Moreover, the prepared flexible all-solid-state supercapacitor can power a light-emitting-diode (LED), which meets the practical applications of micropower supplies.

  14. Fabrication of 3D lawn-shaped N-doped porous carbon matrix/polyaniline nanocomposite as the electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuling; Ma, Li; Gan, Mengyu; Fu, Gang; Jin, Meng; Lei, Yao; Yang, Peishu; Yan, Maofa

    2017-02-01

    A facile approach to acquire electrode materials with prominent electrochemical property is pivotal to the progress of supercapacitors. 3D nitrogen-doped porous carbon matrix (PCM), with high specific surface area (SSA) up to 2720 m2 g-1, was obtained from the carbonization and activation of the nitrogen-enriched composite precursor (graphene/polyaniline). Then 3D lawn-shaped PCM/PANI composite was obtained by the simple in-situ polymerization. The morphology and structure of these resulting composites were characterized by combining SEM and TEM measurements, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) spectroscopy analyses and Raman spectroscope. The element content of all samples was evaluated using CHN analysis. The results of electrochemical testing indicated that the PCM/PANI composite displays a higher capacitance value of 527 F g-1 at 1 A g-1 compared to 338 F g-1 for pure PANI, and exhibits appreciable rate capability with a retention of 76% at 20 A g-1 as well as fine long-term cycling performance (with 88% retention of specific capacitance after 1000 cycles at 10 A g-1). Simultaneously, the excellent capacitance performance coupled with the facile synthesis of PCM/PANI indicates it is a promising electrode material for supercapacitors.

  15. Application of atmospheric-pressure plasma jet processed carbon nanotubes to liquid and quasi-solid-state gel electrolyte supercapacitors

    NASA Astrophysics Data System (ADS)

    Kuok, Fei-Hong; Kan, Ken-Yuan; Yu, Ing-Song; Chen, Chieh-Wen; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang

    2017-12-01

    We use a dc-pulse nitrogen atmospheric-pressure plasma jet (APPJ) to calcine carbon nanotubes (CNTs) pastes that are screen-printed on carbon cloth. 30-s APPJ treatment can efficiently oxidize and vaporize the organic binders, thereby forming porous structures. As indicated by X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA), the oxygen content decreases after APPJ treatment owing to the oxidation and vaporization of ethyl cellulose, terpineol, and ethanol. Nitrogen doping was introduced to the materials by the nitrogen APPJ. APPJ-calcination improves the wettability of the CNTs printed on carbon cloth, as evidenced by water contact angle measurement. Raman spectroscopy indicates that reactive species of nitrogen APPJ react violently with CNTs in only 30-s APPJ processing time and introduce defects and/or surface functional groups on CNTs. Carbon cloths with calcined CNT layers are used as electrodes for liquid and quasi-solid-state electrolyte supercapacitors. Under a cyclic voltammetry test with a 2 mV/s potential scan rate, the specific capacitance is 73.84 F/g (areal capacitance = 5.89 mF/cm2) with a 2 M KCl electrolyte and 66.47 F/g (areal capacitance = 6.10 mF/cm2) with a H2SO4/polyvinyl alcohol (PVA) gel electrolyte.

  16. Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation

    NASA Astrophysics Data System (ADS)

    Xiang, HE; Chong, LIU; Yachun, ZHANG; Jianping, CHEN; Yudong, CHEN; Xiaojun, ZENG; Bingyan, CHEN; Jiaxin, PANG; Yibing, WANG

    2018-02-01

    The capacitively coupled radio frequency (CCRF) plasma has been widely used in various fields. In some cases, it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma. In this paper, a glass vacuum chamber and a pair of plate electrodes were designed and fabricated, using 13.56 MHz radio frequency (RF) discharge technology to ionize the working gas of Ar. This discharge was mathematically described with equivalent circuit model. The discharge voltage and current of the plasma were measured at different pressures and different powers. Based on the capacitively coupled homogeneous discharge model, the equivalent circuit and the analytical formula were established. The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation. The experimental results show that when RF discharge power is 50-300 W and pressure is 25-250 Pa, the average electron temperature is about 1.7-2.1 eV and the average electron density is about 0.5 × 1017-3.6 × 1017 m-3. Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.

  17. Enhancing the performance of green solid-state electric double-layer capacitor incorporated with fumed silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Chong, Mee Yoke; Numan, Arshid; Liew, Chiam-Wen; Ng, H. M.; Ramesh, K.; Ramesh, S.

    2018-06-01

    Solid polymer electrolyte (SPE) based on fumed silica nanoparticles as nanofillers, hydroxylethyl cellulose (HEC) as host polymer, magnesium trifluoromethanesulfonate salt and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid is prepared by solution casting technique. The ionic conductivity, interactions of adsorbed ions on the host polymer, structural crystallinity and thermal stability are evaluated by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Ionic conductivity studies at room temperature reveals that the SPE with 2 wt. % of fumed silica nanoparticles gives the highest conductivity compared to its counterpart. The XRD and FTIR studies confirm the dissolution of salt, ionic liquid and successful incorporation of fumed silica nanoparticles with host polymer. In order to examine the performance of SPEs, electric double-layer capacitor (EDLC) are fabricated by using activated carbon electrodes. EDLC studies demonstrate that SPE incorporated with 2 wt. % fumed silica nanoparticles gives high specific capacitance (25.0 F/g) at a scan rate of 5 mV/s compared to SPE without fumed silica. Additionally, it is able to withstand 71.3% of capacitance from its initial capacitance value over 1600 cycles at a current density of 0.4 A/g.

  18. Femtosecond transient absorption, Raman, and electrochemistry studies of tetrasulfonated copper phthalocyanine in water solutions.

    PubMed

    Abramczyk, H; Brozek-Płuska, B; Kurczewski, K; Kurczewska, M; Szymczyk, I; Krzyczmonik, P; Błaszczyk, T; Scholl, H; Czajkowski, W

    2006-07-20

    Ultrafast time-resolved electronic spectra of the primary events induced in the copper tetrasulfonated phthalocyanine Cu(tsPc)4-) in aqueous solution has been measured by femtosecond pump-probe transient absorption spectroscopy. The primary events initiated by the absorption of a photon occurring within the femtosecond time scale are discussed on the basis of the electron transfer mechanism between the adjacent phthalocyanine rings proposed recently in our laboratory. The femtosecond transient absorption results are compared with the low temperature emission spectra obtained with Raman spectroscopy and the voltammetric curves.

  19. Combined electrical transport and capacitance spectroscopy of a MoS2-LiNbO3 field effect transistor

    NASA Astrophysics Data System (ADS)

    Michailow, Wladislaw; Schülein, Florian J. R.; Möller, Benjamin; Preciado, Edwin; Nguyen, Ariana E.; von Son, Gretel; Mann, John; Hörner, Andreas L.; Wixforth, Achim; Bartels, Ludwig; Krenner, Hubert J.

    2017-01-01

    We have measured both the current-voltage ( ISD - VGS ) and capacitance-voltage (C- VGS ) characteristics of a MoS2-LiNbO3 field effect transistor. From the measured capacitance, we calculate the electron surface density and show that its gate voltage dependence follows the theoretical prediction resulting from the two-dimensional free electron model. This model allows us to fit the measured ISD - VGS characteristics over the entire range of VGS . Combining this experimental result with the measured current-voltage characteristics, we determine the field effect mobility as a function of gate voltage. We show that for our device, this improved combined approach yields significantly smaller values (more than a factor of 4) of the electron mobility than the conventional analysis of the current-voltage characteristics only.

  20. Electronic properties of the Cu2ZnSn(Se,S)4 absorber layer in solar cells as revealed by admittance spectroscopy and related methods

    NASA Astrophysics Data System (ADS)

    Gunawan, Oki; Gokmen, Tayfun; Warren, Charles W.; Cohen, J. David; Todorov, Teodor K.; Barkhouse, D. Aaron R.; Bag, Santanu; Tang, Jiang; Shin, Byungha; Mitzi, David B.

    2012-06-01

    Admittance spectra and drive-level-capacitance profiles of several high performance Cu2ZnSn(Se,S)4 (CZTSSe) solar cells with bandgap ˜1.0-1.5 eV are reported. In contrast to the case for Cu(In,Ga)(S,Se)2, the CZTSSe capacitance spectra exhibit a dielectric freeze out to the geometric capacitance plateau at moderately low frequencies and intermediate temperatures (120-200 K). These spectra reveal important information regarding the bulk properties of the CZTSSe films, such as the dielectric constant and a dominant acceptor with energy level of 0.13-0.2 eV depending on the bandgap. This deep acceptor leads to a carrier freeze out effect that quenches the CZTSSe fill factor and efficiency at low temperatures.

  1. Sol-gel processed thin-layer ruthenium oxide/carbon black supercapacitors: A revelation of the energy storage issues

    NASA Astrophysics Data System (ADS)

    Panić, V. V.; Dekanski, A. B.; Stevanović, R. M.

    Hydrous ruthenium oxide/carbon black nanocomposites were prepared by impregnation of the carbon blacks by differently aged inorganic RuO 2 sols, i.e. of different particle size. Commercial Black Pearls 2000 ® (BP) and Vulcan ® XC-72 R (XC) carbon blacks were used. Capacitive properties of BP/RuO 2 and XC/RuO 2 composites were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in H 2SO 4 solution. Capacitance values and capacitance distribution through the composite porous layer were found different if high- (BP) and low- (XC) surface-area carbons are used as supports. The aging time (particle size) of Ru oxide sol as well as the concentration of the oxide solid phase in the impregnating medium influenced the capacitive performance of prepared composites. While the capacitance of BP-supported oxide decreases with the aging time, the capacitive ability of XC-supported oxide is promoted with increasing oxide particle size. The increase in concentration of the oxide solid phase in the impregnating medium caused an improvement of charging/discharging characteristics due to pronounced pseudocapacitance contribution of the increasing amount of inserted oxide. The effects of these variables in the impregnation process on the energy storage capabilities of prepared nanocomposites are envisaged as a result of intrinsic way of population of the pores of carbon material by hydrous Ru oxide particle.

  2. Discerning apical and basolateral properties of HT-29/B6 and IPEC-J2 cell layers by impedance spectroscopy, mathematical modeling and machine learning.

    PubMed

    Schmid, Thomas; Bogdan, Martin; Günzel, Dorothee

    2013-01-01

    Quantifying changes in partial resistances of epithelial barriers in vitro is a challenging and time-consuming task in physiology and pathophysiology. Here, we demonstrate that electrical properties of epithelial barriers can be estimated reliably by combining impedance spectroscopy measurements, mathematical modeling and machine learning algorithms. Conventional impedance spectroscopy is often used to estimate epithelial capacitance as well as epithelial and subepithelial resistance. Based on this, the more refined two-path impedance spectroscopy makes it possible to further distinguish transcellular and paracellular resistances. In a next step, transcellular properties may be further divided into their apical and basolateral components. The accuracy of these derived values, however, strongly depends on the accuracy of the initial estimates. To obtain adequate accuracy in estimating subepithelial and epithelial resistance, artificial neural networks were trained to estimate these parameters from model impedance spectra. Spectra that reflect behavior of either HT-29/B6 or IPEC-J2 cells as well as the data scatter intrinsic to the used experimental setup were created computationally. To prove the proposed approach, reliability of the estimations was assessed with both modeled and measured impedance spectra. Transcellular and paracellular resistances obtained by such neural network-enhanced two-path impedance spectroscopy are shown to be sufficiently reliable to derive the underlying apical and basolateral resistances and capacitances. As an exemplary perturbation of pathophysiological importance, the effect of forskolin on the apical resistance of HT-29/B6 cells was quantified.

  3. Transient ultrafast coherent spectroscopy of 2-propanol

    NASA Astrophysics Data System (ADS)

    Meiselman, Seth; Decamp, Matthew; Lorenz, Virginia

    We use transient coherent spontaneous Raman spectroscopy to measure the coherence lifetimes of vibrational states in liquid propanol. By creating single-photon-level collective excitations of the vibrational states in the system we observe coherence oscillations due to simultaneous excitation of the 2885 cm-1, 2938 cm-1, and 2976 cm-1 modes. These lifetimes and oscillation frequencies agree with frequency-domain lineshape measurements.

  4. Nonlinear antiferroelectric-like capacitance-voltage curves in ferroelectric BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Jiang, A. Q.; Zhang, D. W.; Tang, T. A.

    2013-07-01

    The ferroelectric capacitance is usually nonlinear against increasing/decreasing voltage in sweeping time longer than 1 s and achieves a maximum value at around a coercive voltage within each loop. With the improved short-pulse measurements, we estimated the differential capacitance of ferroelectric Au/BiFeO3/LaNiO3/SrTiO3 thin-film capacitors from a nanosecond discharging current induced by a delta voltage after a stressing voltage pulse with widths of 500 ns-50 ms. With the shortening of the voltage sweeping time, we clearly observed two capacitance maxima from each branch of a capacitance-voltage (C-V) loop, reminiscent of an antiferroelectric behavior. After transformation of nanosecond domain switching current transients under pulses into polarization-voltage hysteresis loops, we further measured time dependent polarization retention as well as imprint in the range of 100 ns-1 s. Both positive and negative polarizations decay exponentially at characteristic times of 2.25 and 198 μs, suggesting the coexistence of preferred domains pointing to top and bottom electrodes in most epitaxial films. This exponential time dependence is similar to the dielectric degradation under a dc voltage, and the polarization retention can be improved through long-time opposite voltage stressing. With this improvement, the additional antiferroelectric-like dielectric maximum within each branch of a C-V loop disappears. This experiment provides the strong evidence of the effect of time-dependent charge injection on polarization retention and dielectric degradation.

  5. Effects of hypercapnia and hypoxia on the cardiovascular system: vascular capacitance and aortic chemoreceptors.

    PubMed

    Rothe, C F; Maass-Moreno, R; Flanagan, A D

    1990-09-01

    Aortic chemoreceptor influences on vascular capacitance after changes in blood carbon dioxide and oxygen were studied in mongrel dogs anesthetized with methoxyflurane and nitrous oxide. The mean circulatory filling pressure (Pmcf), measured during transient cardiac fibrillation, provided a measure of capacitance vessel tone. Hypercapnia, hypoxia, and hypoxic hypercapnia significantly increased most variables, except that hypercapnia caused the total peripheral resistance (TPR) to decrease. Hypocapnia caused a significant decrease in mean systemic (Psa) and pulmonary (Ppa) arterial blood pressures, cardiac output (CO), and central blood volume and an increase in TPR and heart rate. The changes in Pmcf on changing blood gas tensions could be described by the equation delta Pmcf = -1.60 + 0.036 (arterial PCO2) + 50.8/arterial PO2. Thus a 10 mmHg increase in arterial PCO2 caused a 0.36 mmHg increase in Pmcf with receptors intact. Cold block (2 degrees C) of the cervical vagosympathetic trunks did not significantly influence the measured variables at control. During severe hypercapnia, vagal cooling caused a small but significant decrease in Pmcf, Psa, Ppa, and CO but not TPR. During hypoxia, vagal cooling caused the Pmcf, Psa, and TPR to decrease. We conclude that although hypercapnia or hypoxia acts reflexly to increase the capacitance vessel tone (an increase in Pmcf), the aortic and cardiopulmonary chemoreceptors with afferents in the vagi have only a small influence on the capacitance system, accounting for only approximately 25% of the total body response.

  6. Modulation of intracellular Ca(2+) via alpha(1B)-adrenoreceptor signaling molecules, G alpha(h) (transglutaminase II) and phospholipase C-delta 1.

    PubMed

    Kang, Sung Koo; Kim, Dae Kyong; Damron, Derek S; Baek, Kwang Jin; Im, Mie-Jae

    2002-04-26

    We characterized the alpha(1B)-adrenoreceptor (alpha(1B)-AR)-mediated intracellular Ca(2+) signaling involving G alpha(h) (transglutaminase II, TGII) and phospholipase C (PLC)-delta 1 using DDT1-MF2 cell. Expression of wild-type TGII and a TGII mutant lacking transglutaminase activity resulted in significant increases in a rapid peak and a sustained level of intracellular Ca(2+) concentration ([Ca(2+)](i)) in response to activation of the alpha(1B)-AR. Expression of a TGII mutant lacking the interaction with the receptor or PLC-delta 1 substantially reduced both the peak and sustained levels of [Ca(2+)](i). Expression of TGII mutants lacking the interaction with PLC-delta 1 resulted in a reduced capacitative Ca(2+) entry. Reduced expression of PLC-delta 1 displayed a transient elevation of [Ca(2+)](i) and a reduction in capacitative Ca(2+) entry. Expression of the C2-domain of PLC-delta 1, which contains the TGII interaction site, resulted in reduction of the alpha(1B)-AR-evoked peak increase in [Ca(2+)](i), while the sustained elevation in [Ca(2+)](i) and capacitative Ca(2+) entry remained unchanged. These findings demonstrate that stimulation of PLC-delta 1 via coupling of the alpha(1B)-AR with TGII evokes both Ca(2+) release and capacitative Ca(2+) entry and that capacitative Ca(2+) entry is mediated by the interaction of TGII with PLC-delta 1.

  7. Highly Conductive PEDOT:PSS Transparent Hole Transporting Layer with Solvent Treatment for High Performance Silicon/Organic Hybrid Solar Cells.

    PubMed

    Li, Qingduan; Yang, Jianwei; Chen, Shuangshuang; Zou, Jizhao; Xie, Weiguang; Zeng, Xierong

    2017-08-23

    Efficient Si/organic hybrid solar cells were fabricated with dimethyl sulfoxide (DMSO) and surfactant-doped poly(3,4-ethylenedioxythiophene): polystyrene (PEDOT:PSS). A post-treatment on PEDOT:PSS films with polar solvent was performed to increase the device performance. We found that the performance of hybrid solar cells increase with the polarity of solvent. A high conductivity of 1105 S cm - 1 of PEDOT:PSS was achieved by adopting methanol treatment, and the best efficiency of corresponding hybrid solar cells reaches 12.22%. X-ray photoelectron spectroscopy (XPS) and RAMAN spectroscopy were utilized to conform to component changes of PEDOT:PSS films after solvent treatment. It was found that the removal of the insulator PSS from the film and the conformational changes are the determinants for the device performance enhancement. Electrochemical impedance spectroscopy (EIS) was used to investigate the recombination resistance and capacitance of methanol-treated and untreated hybrid solar cells, indicating that methanol-treated devices had a larger recombination resistance and capacitance. Our findings bring a simple and efficient way for improving the performance of hybrid solar cell.

  8. Multilayer Black Phosphorus Exfoliated with the Aid of Sodium Hydroxide: An Improvement in Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Liu, Wanying; Zhu, Yabo; Chen, Zhiyan; Lei, Jia; Feng, Peizhong

    2018-05-01

    We generated multilayer black phosphorus (MBP) as a precipitate in centrifugation under 3000 rpm for 25 min, preceded by liquid exfoliation, in which saturated sodium hydroxide (NaOH(s)) was added as an exfoliation auxiliary. The MBP exfoliated with NaOH(s) was characterized by scanning electron microscope, energy dispersive x-ray detector, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Its electrochemical performance was investigated by cyclic voltammetry, charge/discharge and electrochemical impedance spectroscopy. It was found that the appropriate amount of NaOH(s) can make MBP present a ladder-shaped structure or plackets on the layer edge, which may provide more active sites and channels for charge storage to improve its electrochemical performance. The specific capacitance of MBP samples exfoliated with appropriate amounts of NaOH(s) can quickly enter a relatively stable range of 110-90 F/g after the 75th cycle, and finally stabilize at about 90 F/g after thousands of cycles under the current density of 2 A/g, which demonstrates their good stability in the range of long charge/discharge cycles. MBP exhibits double-layer capacitance properties.

  9. Egg water from the amphibian Bufo arenarum induces capacitation-like changes in homologous spermatozoa.

    PubMed

    Krapf, Darío; Visconti, Pablo E; Arranz, Silvia E; Cabada, Marcelo O

    2007-06-15

    Mammalian sperm acquire fertilizing capacity after residing in the female tract, where physiological changes named capacitation take place. In animals with external fertilization as amphibians, gamete interactions are first established between sperm and molecules of the egg jelly coat released into the medium. Since dejellied oocytes are not normally fertilized, the aim of this study was to determine if the jelly coat of the toad Bufo arenarum promotes a "capacitating" activity on homologous sperm. We found that sperm incubation in diffusible substances of the jelly coat (egg water) for 90-180 s is sufficient to render sperm transiently capable of fertilizing dejellied oocytes. The fertilizing state was correlated with an increase of protein tyrosine phosphorylation and a decrease of sperm cholesterol content. Inhibition of either the increase in tyrosine phosphorylation or cholesterol efflux affected the acquisition of fertilizing capacity. Phosphorylation and fertilization could be promoted with NaHCO(3) and also by addition of beta cyclodextrin. Moreover, sperm could gain the ability to fertilize dejellied oocytes in the presence of these compounds. These data indicate that sperm should undergo a series of molecular changes to gain fertilizing capacity; these changes are reminiscent of mammalian sperm capacitation and take place before the acrosome reaction.

  10. Charge Trapping Properties of Ge Nanocrystals Grown via Solid-State Dewetting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steven; Jadli, I.; Aouassa, M.

    2018-05-04

    In the present work, we report on the charge trapping properties of Germanium Nanocrystals (Ge NCs) self assembled on SiO2 thin layer for promising applications in next-generation non volatile memory by the means of Deep Level Transient Spectroscopy (DLTS) and high frequency C-V method. The Ge NCs were grown via dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing and passivated with silicon before SiO2 capping. The role of the surface passivation is to reduce the electrical defect density at the Ge NCs-SiO2 interface. The presence of the Ge NCs in the oxide of the MOS capacitors strongly affectsmore » the C-V characteristics and increases the accumulation capacitance, causes a negative flat band voltage (VFB) shift. The DLTS has been used to study the individual Ge NCs as a single point deep level defect in the oxide. DLTS reveals two main features: the first electron traps around 255 K could correspond to dangling bonds at the Si/SiO2 interface and the second, at high-temperature (>300 K) response, could be originated from minority carrier generation in Ge NCs.« less

  11. A simplified fractional order impedance model and parameter identification method for lithium-ion batteries

    PubMed Central

    Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing

    2017-01-01

    Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405

  12. SCAT Classification of 4 Optical Transients

    NASA Astrophysics Data System (ADS)

    Tucker, Michael A.; Rowan, Dominick M.; Shappee, Benjamin J.; Dong, Subo; Bose, Subhash; Stanek, K. Z.

    2018-06-01

    The Spectral Classification of Astronomical Transients (SCAT) survey (ATel #11444) presents the classification of 4 optical transients. We report optical spectroscopy (330-970nm) taken with the University of Hawaii 88-inch (UH88) telescope using the SuperNova Integral Field Spectrograph (SNIFS).

  13. Transient response of sap flow to wind speed.

    PubMed

    Chu, Chia R; Hsieh, Cheng-I; Wu, Shen-Yuang; Phillips, Nathan G

    2009-01-01

    Transient responses of sap flow to step changes in wind speed were experimentally investigated in a wind tunnel. A Granier-type sap flow sensor was calibrated and tested in a cylindrical tube for analysis of its transient time response. Then the sensor was used to measure the transient response of a well-watered Pachira macrocarpa plant to wind speed variations. The transient response of sap flow was described using the resistance-capacitance model. The steady sap flow rate increased as the wind speed increased at low wind speeds. Once the wind speed exceeded 8.0 m s(-1), the steady sap flow rate did not increase further. The transpiration rate, measured gravimetrically, showed a similar trend. The response of nocturnal sap flow to wind speed variation was also measured and compared with the results in the daytime. Under the same wind speed, the steady sap flow rate was smaller than that in the daytime, indicating differences between diurnal and nocturnal hydraulic function, and incomplete stomatal closure at night. In addition, it was found that the temporal response of the Granier sensor is fast enough to resolve the transient behaviour of water flux in plant tissue.

  14. Electro-optic modulator based gate transient suppression for sine-wave gated InGaAs/InP single photon avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Zhang, Yixin; Zhang, Xuping; Shi, Yuanlei; Ying, Zhoufeng; Wang, Shun

    2014-06-01

    Capacitive gate transient noise has been problematic for the high-speed single photon avalanche photodiode (SPAD), especially when the operating frequency extends to the gigahertz level. We proposed an electro-optic modulator based gate transient noise suppression method for sine-wave gated InGaAs/InP SPAD. With the modulator, gate transient is up-converted to its higher-order harmonics that can be easily removed by low pass filtering. The proposed method enables online tuning of the operating rate without modification of the hardware setup. At 250 K, detection efficiency of 14.7% was obtained with 4.8×10-6 per gate dark count and 3.6% after-pulse probabilities for 1550-nm optical signal under 1-GHz gating frequency. Experimental results have shown that the performance of the detector can be maintained within a designated frequency range from 0.97 to 1.03 GHz, which is quite suitable for practical high-speed SPAD applications operated around the gigahertz level.

  15. Hierarchical MoS2 nanowires/NiCo2O4 nanosheets supported on Ni foam for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Wen, Shiyang; Liu, Yu; Zhu, Fangfang; Shao, Rong; Xu, Wei

    2018-01-01

    The hierarchical MoS2 nanowires/NiCo2O4 nanosheets (MS/NCO) supercapacitor electrode materials supported on Ni foam were synthesized by a two-step hydrothermal method. The capacitance was investigated by using various electrochemical methods including cyclic voltammetry, constant-current galvanostatic charge/discharge curves and electrochemical impedance spectroscopy. The MS/NCO networks show 7 times more capacitance (7.1 F cm-2) than pure NiCo2O4 nanosheets by CV at a scan rate of 2 mV s-1. The specific capacitance of the assembled MS/NCO//active carbon (AC) asymmetric supercapacitor could reach up to 51.7 F g-1 at a current density of 1.5 A g-1. Also, the maximum energy density of 18.4 W h kg-1 at a power density of 1200.2 W kg-1 was achieved, with 98.2% specific capacitance retention after 8000 cycles. These exciting results exhibit potential application in developing energy storage devices with high energy density and high power density.

  16. Plasma Treated Active Carbon for Capacitive Deionization of Saline Water

    DOE PAGES

    Zeng, Aiping; Shrestha, Maheshwar; Wang, Keliang; ...

    2017-01-01

    The plasma treatment on commercial active carbon (AC) was carried out in a capacitively coupled plasma system using Ar + 10% O 2at pressure of 4.0 Torr. The RF plasma power ranged from 50 W to 100 W and the processing time was 10 min. The carbon film electrode was fabricated by electrophoretic deposition. Micro-Raman spectroscopy revealed the highly increased disorder of sp 2C lattice for the AC treated at 75 W. An electrosorption capacity of 6.15 mg/g was recorded for the carbon treated at 75 W in a 0.1 mM NaCl solution when 1.5 V was applied for 5more » hours, while the capacity of the untreated AC was 1.0 mg/g. The plasma treatment led to 5.09 times increase in the absorption capacity. The jump of electrosorption capacity by plasma treatment was consistent with the Raman spectra and electrochemical double layer capacitance. This work demonstrated that plasma treatment was a potentially efficient approach to activating biochar to serve as electrode material for capacitive deionization (CDI).« less

  17. Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor.

    PubMed

    Ghasemi, Shahram; Hosseini, Sayed Reza; Boore-Talari, Omid

    2018-01-01

    Manganese dioxide (MnO 2 ) needle-like nanostructures are successfully synthesized by a sonochemical method from an aqueous solution of potassium bromate and manganese sulfate. Also, hybride of MnO 2 nanoparticles wrapped with graphene oxide (GO) nanosheets are fabricated through an electrostatic coprecipitation procedure. With adjusting pH at 3.5, positive and negative charges are created on MnO 2 and on GO, respectively which can electrostatically attract to each other and coprecipitate. Then, MnO 2 /GO pasted on stainless steel mesh is electrochemically reduced by applying -1.1V to obtain MnO 2 /RGO nanohybrid. The structure and morphology of the MnO 2 and MnO 2 /RGO nanohybrid are examined by Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDX), and thermal gravimetric analysis (TGA). The capacitive behaviors of MnO 2 and MnO 2 /RGO active materials on stainless steel meshes are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge test and electrochemical impedance spectroscopy (EIS) by a three-electrode experimental setup in an aqueous solution of 0.5M sodium sulfate in the potential window of 0.0-1.0V. The electrochemical investigations reveal that MnO 2 /RGO exhibits high specific capacitance (C s ) of 375Fg -1 at current density of 1Ag -1 and good cycle stability (93% capacitance retention after 500 cycles at a scan rate of 200mVs -1 ). The obtained results give good prospect about the application of electrostatic coprecipitation method to prepare graphene/metal oxides nanohybrids as effective electrode materials for supercapacitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Synthesis of In2O3 nanostructures with different morphologies as potential supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Tuzluca, Fatma Nur; Yesilbag, Yasar Ozkan; Ertugrul, Mehmet

    2018-01-01

    In this study performed using a chemical vapor deposition (CVD) system, one-dimensional (1-D) single crystal indium oxide (In2O3) nanotowers, nanobouqets, nanocones, and nanowires were investigated as a candidate for a supercapacitor electrode material. These nanostructures were grown via Vapor-Liquid-Solid (VLS) and Vapor-Solid (VS) mechanisms according to temperature differences (1000-600 °C). The morphologies, growth mechanisms and crystal structures of these 1-D single crystal In2O3 nanostructures were defined by Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HR-TEM), X-Ray Diffraction (XRD) and Raman Spectroscopy analyses. The elemental analyses of the nanostructures were carried out by energy dispersive X-Ray Spectroscopy (EDS); they gave photoluminescence (PL) spectra with 3.39, 2.65, and 1.95 eV band gap values, corresponding to 365 nm, 467 nm, and 633 wavelengths, respectively. The electrochemical performances of these 1-D single crystal In2O3 nanostructures in an aqueous electrolyte solution (1 M Na2SO4) were determined by Cyclic Voltammetry (CV), Galvanostatic Charge Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS) analyses. According to GCD measurements at 0.04 mA cm-2 current density, areal capacitance values were 10.1 mF cm-2 and 6.7 mF cm-2 for nanotowers, 12.5 mF cm-2 for nanobouquets, 4.9 mF cm-2 for nanocones, and 16.6 mF cm-2 for nanowires. The highest areal capacitance value was observed in In2O3 nanowires, which retained 66.8% of their initial areal capacitance after a 10000 charge-discharge cycle, indicating excellent cycle stability.

  19. Influence of reactivation on the electrochemical performances of activated carbon based on coconut shell.

    PubMed

    Geng, Xin; Li, Lixiang; Zhang, Meiling; An, Baigang; Zhu, Xiaoming

    2013-12-01

    Coconut shell-based activated carbon (AC) were prepared by CO2 activation, and then the ACs with higher mesopore ratio were obtained by steam activation and by impregnating iron catalyst followed by steam activation, respectively. The AC with the highest mesopore ratio (AChmr) shows superior capacitive behavior, power output and high-frequency performance in supercapacitors. The results should attribute to the connection of its wide micropores and mesopores larger than 3 nm, which is more favorable for fast ionic transportation. The pore size distribution exhibits that the mesopore ratios of the ACs are significantly increased by reactivation of steam or catalyst up to 75% and 78%, respectively. As evidenced by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic measurements, the AChmr shows superior capacitive behaviors, conductivity and performance of electrolytic ionic transportation. The response current densities are evidently enhanced through the cyclic voltammery test at 50 mV/sec scan rate. The electrochemical impedance spectroscopy demonstrates that the conductivity and ion transport performance of the ACs are improved. The specific capacitances of the ACs were increased from 140 to 240 F/g at 500 mA/g current density. The AChmr can provide much higher power density while still maintaining good energy density, and demonstrate excellent high-frequency performances. The pore structure and conductivity of the AChmr also improve the cycleability and self-discharge of supercapacitors. Such AChmr exhibits a great potential in supercapacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. Polypyrrole electrodes doped with sulfanilic acid azochromotrop for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, S.; Zhitomirsky, I.

    2013-12-01

    In this work we demonstrate the feasibility of deposition of polypyrrole (PPy) films by electropolymerization on stainless steel substrates and fabrication of PPy powders by chemical polymerization using sulfanilic acid azochromotrop (SPADNS) as a new anionic dopant. The problem of low adhesion of PPy films to stainless steel substrates is addressed by the use of SPADNS, which exhibits chelating properties, promoting film formation. The use of fine particles, prepared by the chemical polymerization method, allows impregnation of Ni foams and fabrication of porous electrodes with high materials loading for electrochemical supercapacitors (ES). PPy films and Ni foam based PPy electrodes show capacitive behaviour in Na2SO4 electrolyte. The electron microscopy studies, impedance spectroscopy data and analysis of the SPADNS structure provide an insight into the factors, controlling capacitive behaviour. The Ni foam based electrodes offer advantages of improved capacitive behaviour at high materials loadings and good cycling stability. The area normalized and volume normalized specific capacitances are as high as 5.43 F cm-2 and 93.6 F cm-3, respectively, for materials loading of 35.4 mg cm-2. The capacitance retention of Ni foam based electrodes is 91.5% after 1000 cycles. The Ni foam based PPy electrodes are promising for application in ES.

  1. Label-free capacitive immunosensor based on quartz crystal Au electrode for rapid and sensitive detection of Escherichia coli O157:H7.

    PubMed

    Li, Dujuan; Feng, Yangyang; Zhou, Ling; Ye, Zunzhong; Wang, Jianping; Ying, Yibin; Ruan, Chuanmin; Wang, Ronghui; Li, Yanbin

    2011-02-14

    A label-free capacitive immunosensor based on quartz crystal Au electrode was developed for rapid and sensitive detection of Escherichia coli O157:H7. The immunosensor was fabricated by immobilizing affinity-purified anti-E. coli O157:H7 antibodies onto self-assembled monolayers (SAMs) of 3-mercaptopropionic acid (MPA) on the surface of a quartz crystal Au electrode. Bacteria suspended in solution became attached to the immobilized antibodies when the immunosensor was tested in liquid samples. The change in capacitance caused by the bacteria was directly measured by an electrochemical detector. An equivalent circuit was introduced to simulate the capacitive immunosensor. The immunosensor was evaluated for E. coli O157:H7 detection in pure culture and inoculated food samples. The experimental results indicated that the capacitance change was linearly correlated with the cell concentration of E. coli O157:H7. The immunosensor was able to discriminate between cellular concentrations of 10(2)-10(5) cfu mL(-1) and has applications in detecting pathogens in food samples. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were also employed to characterize the stepwise assembly of the immunosensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Facile preparation and electrochemical characterization of kassite-based materials for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Meng, Weijie; Zhao, Gaoling; Song, Bin; Xie, Junliang; Lu, Wangwei; Han, Gaorong

    2017-12-01

    In this study, kassite was synthesized by employing a simple, green hydrothermal method. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, cyclic voltammetry, galvanostatic charge/discharge test and electrochemical impedance spectroscopy were carried out to study its crystal phases, morphologies and electrochemical performance. With the extension of reaction time, the crystallinity of the samples became higher and the specific capacitance increased correspondingly. The result shows that kassite has a promising application in electrode material for capacitors. To improve the electrical conductivity of kassite and the accessibility of the surface area, graphene nanosheet (GNS) was introduced to form composites with kassite. The capacitive performance improved with increasing weight percentage of GNS and reached an optimum with the specific capacitance of 129.8 F/g at weight percentage of 10%, then decreased with further increasing GNS, showing a synergistic effect of kassite and the GNS.

  3. High rate capacitive performance of single-walled carbon nanotube aerogels

    DOE PAGES

    Van Aken, Katherine L.; Pérez, Carlos R.; Oh, Youngseok; ...

    2015-05-30

    Single-walled carbon nanotube (SWCNT) aerogels produced by critical-point-drying of wet-gel precursors exhibit unique properties, such as high surface-area-to-volume and strength-to-weight ratios. They are free-standing, are binder-free, and can be scaled to thicknesses of more than 1 mm. In this paper, we examine the electric double layer capacitive behavior of these materials using a common room temperature ionic liquid electrolyte, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI). Electrochemical performance is assessed through galvanostatic cycling, cyclic voltammetry and impedance spectroscopy. Results indicate stable capacitive performance over 10,000 cycles as well as an impressive performance at high charge and discharge rates, due to accessible pore networks andmore » enhanced electronic and ionic conductivities of SWCNT aerogels. Finally, these materials can find applications in mechanically compressible and flexible supercapacitor devices with high power requirements.« less

  4. Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors.

    PubMed

    Mazeina, Lena; Perkins, F Keith; Bermudez, Victor M; Arnold, Stephen P; Prokes, S M

    2010-08-17

    We report the first evidence for functionalization of Ga(2)O(3) nanowires (NWs), which have been incorporated as the active material in room temperature capacitance gas-sensing devices. An adsorbed layer of pyruvic acid (PA) was successfully formed on Ga(2)O(3) NWs by simple room temperature vapor transport, which was confirmed by Fourier transform infrared spectroscopy. The effect of the adsorbed PA on the surface properties was demonstrated by the change in the response of the NW gas-sensing devices. Results indicate that the adsorption of PA reduced the sensitivity of the Ga(2)O(3) NW device to common hydrocarbons such as nitromethane and acetone while improving the response to triethylamine by an order of magnitude. Taking into account the simplicity of this functionalization together with the ease of producing these capacitance-based gas-sensing devices, this approach represents a viable technique for sensor development.

  5. Three-dimensional sulphur/nitrogen co-doped reduced graphene oxide as high-performance supercapacitor binder-free electrodes

    NASA Astrophysics Data System (ADS)

    Huo, Jinghao; Zheng, Peng; Wang, Xiaofei; Guo, Shouwu

    2018-06-01

    Sulphur/nitrogen co-doped reduced graphene oxide (SNG) aerogels were prepared by a simple solvothermal method with l-cysteine-assisted in ethylene glycol. The morphology and composition tests showed that the S/N heteroatoms were evenly distributed on SNG microsheets, and these microsheets were further composed of SNG aerogels with three-dimensional (3D) porous structure. The cyclic voltammetry and galvanostatic charge/discharge tests illustrated the SNG bind-free electrode possessed electric double-layer capacitance and pseudocapacitance, and had a capacitance of 254 F g-1 at a current density of 1 A g-1. After the 5000 cycles tests, the capacitance retained 83.54% at a current density of 2 A g-1. Meanwhile, the electrochemical impedance spectroscopy data shown the electrode materials had excellent capacity and good conductivity. Hence, the SNG aerogel prepared by l-cysteine-assisted solvothermal method is a great material for high-performance supercapacitors.

  6. Surfactant free nickel sulphide nanoparticles for high capacitance supercapacitors

    NASA Astrophysics Data System (ADS)

    Nandhini, S.; Muralidharan, G.

    2018-04-01

    The surfactant free nickel sulphide nanoparticles were synthesized via facile hydrothermal method towards supercapacitor applications. The formation of crystalline spherical nanoparticles was confirmed through structural and morphological studies. Electrochemical behaviour of the electrode was analyzed using cyclic voltammetry (CV), galvanostatic charge-discharge studies (GCD) and electrochemical impedance spectroscopy (EIS). The CV studies imply that specific capacitance of the electrode arises from a combination of surface adsorption and Faradic reaction. The NiS electrode delivered a specific capacitance of about 529 F g-1 at a current density of 2 A g-1 (GCD measurements). A profitable charge transfer resistance of 0.5 Ω was obtained from EIS. The 100 % of capacity retention even after 2000 repeated charge-discharge cycles could be observed in 2 M KOH electrolyte at a much larger rate of 30 A g-1. The experimental results suggest that nickel sulphide is a potential candidate for supercapacitor applications.

  7. Effects of nifedipine and captopril on vascular capacitance of ganglion-blocked anesthetized dogs.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1990-03-01

    The hemodynamic effects of nifedipine and captopril at doses producing similar reductions in arterial pressure were studied in pentobarbital-anesthetized ventilated dogs after splenectomy during ganglion blockade with hexamethonium. Mean circulatory filling pressure (Pmcf) was determined during transient circulatory arrest induced by acetylcholine at baseline circulating blood volumes and after increases of 5 and 10 mL/kg. Central blood volumes (pulmonary artery to aortic root) were determined from transit times, and separately determined cardiac outputs (right atrium to pulmonary artery) were estimated by thermodilution. Nifedipine (n = 5) increased Pmcf at all circulating blood volumes and reduced total vascular capacitance without a change in total vascular compliance. Central blood volume, right atrial pressure, and cardiac output were increased with induced increases in circulating blood volume. In contrast, captopril (n = 5) did not alter total vascular capacitance, central blood volume, right atrial pressure, or cardiac output at baseline or with increased circulating volume. Thus, at doses producing similar reductions in arterial pressure, nifedipine but not captopril increased venous return and cardiac output in ganglion-blocked dogs.

  8. Understanding of carbon-based supercapacitors ageing mechanisms by electrochemical and analytical methods

    NASA Astrophysics Data System (ADS)

    Liu, Yinghui; Soucaze-Guillous, Benoît; Taberna, Pierre-Louis; Simon, Patrice

    2017-10-01

    In order to shed light on ageing mechanisms of Electrochemical Double Layer Capacitor (EDLC), two kinds of activated carbons are studied in tetraethyl ammonium tetrafluoroborate (Et4NBF4) in acetonitrile. In floating mode, it turns out that two different ageing mechanisms are observed, depending on the activated carbon electrode materials used. On one hand, carbon A exhibits a continuous capacitance and series resistance fall-off; on the other hand, for carbon B, only the series resistance degrades after ageing while the capacitance keeps unchanged. Additional electrochemical characterizations (Electrochemical Impedance Spectroscopy - EIS - and diffusion coefficient calculations) were carried out showing that carbon A's ageing behavior is suspected to be primarily related to the carbon degradation while for carbon B a passivation occurs leading to the formation of a Solid Electrolyte Interphase-Like (SEI-L) film. These hypotheses are supported by TG-IR and Raman spectroscopy analysis. The outcome forms the latter is an increase of carbon defects on carbon A on positive electrode.

  9. New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.

    PubMed

    Nakanishi, Masahiro; Sasaki, Yasutaka; Nozaki, Ryusuke

    2010-12-01

    A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.

  10. Deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase-epitaxy n-GaAs

    NASA Technical Reports Server (NTRS)

    Partin, D. L.; Chen, J. W.; Milnes, A. G.; Vassamillet, L. F.

    1979-01-01

    The paper presents deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase epitaxy n-GaAs. Nickel diffused into VPE n-GaAs reduces the hole diffusion length L sub p from 4.3 to 1.1 microns. Deep-level transient spectroscopy was used to identify energy levels in Ni-diffused GaAs; the as-grown VPE GaAs contains traces of these levels and an electron trap. Ni diffusion reduces the concentration of this level by an amount that matches the increase in concentration of each of the two Ni-related levels. A technique for measuring minority-carrier capture cross sections was developed, which indicates that L sub p in Ni-diffused VPE n-GaAs is controlled by the E sub c - 0.39 eV defect level.

  11. Determination of specific capacitance of modified candlenut shell based carbon as electrode material for supercapacitor

    NASA Astrophysics Data System (ADS)

    Zakir, M.; Budi, P.; Raya, I.; Karim, A.; Wulandari, R.; Sobrido, A. B. J.

    2018-03-01

    Surface modification of candlenut shell carbon (CSC) using three chemicals: nitric acid (HNO3), hydrogen peroxide (H2O2), and sulfuric acid (H2SO4) has been carried out. Activation of CSC was performed using H3PO4 solution with different ratio between CSC and activator. Carbon surface area was determined by methylene blue adsorption method. Surface characterization was performed using FTIR spectroscopy and Boehm titration method. Specific capacitance of electrode prepared from CSAC (candlenuts shell activated carbon) materials was quantified by Cyclic Voltammetry (CV) measurement. The surface area before and after activation are 105,127 m2/g, 112,488 m2/g, 124,190 m2/g, and 135,167 m2/g, respectively. Surface modification of CSAC showed the improvement in the chemical functionality of CSAC surface. Analyses using FTIR spectroscopy and Boehm titration showed that modifications with HNO3, H2SO4 and H2O2 on the surface of the CSAC increased the number of oxygen functional groups. As a consequence, the specific capacitance of CSAC modified with 65% HNO3 attained the highest value (127 μF/g). There is an incredible increase by a factor of 298% from electrode which was constructed with un-modified CSAC material. This increase correlates to the largest number of oxygen functional groups of CSAC modified with nitric acid (HNO3).

  12. Enhanced electrochemical performance of in situ reduced graphene oxide-polyaniline nanotubes hybrid nanocomposites using redox-additive aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Devi, Madhabi; Kumar, A.

    2018-02-01

    Reduced graphene oxide (RGO)-polyaniline nanotubes (PAniNTs) nanocomposites have been synthesized by in situ reduction of GO. The morphology and structure of the nanocomposites are characterized by HRTEM, XRD and micro-Raman spectroscopy. The electrical and electrochemical performances of the nanocomposites are investigated for different RGO concentrations by conductivity measurements, cyclic voltammetry, charge-discharge and electrochemical impedance spectroscopy. Highest gravimetric specific capacitance of 448.71 F g-1 is obtained for 40 wt.% of RGO-PAniNTs nanocomposite as compared to 194.92 F g-1 for pure PAniNTs in 1 M KCl electrolyte. To further improve the electrochemical performance of the nanocomposite electrode, KI is used as redox-additive with 1 M KCl electrolyte. Highest gravimetric specific capacitance of 876.43 F g-1 and an improved cyclic stability of 91% as compared to 79% without KI after 5000 cycles is achieved for an optimized 0.1 M KI concentration. This is attributed to the presence of different ionic species of I- ions that give rise to a number of possible redox reactions improving the pseudocapacitance of the electrode. This improved capacitive performance is compared with that of catechol redox-additive in 1 M KCl electrolyte, and that of KI and catechol redox-additives added to 1 M H2SO4 electrolyte.

  13. Synthesis and characterization of β-Ni(OH)2 embedded with MgO and ZnO nanoparticles as nanohybrids for energy storage devices

    NASA Astrophysics Data System (ADS)

    Kumar, C. R. Ravi; Santosh, M. S.; Nagaswarupa, H. P.; Prashantha, S. C.; Yallappa, S.; Kumar, M. R. Anil

    2017-06-01

    In this study, the electrode material (nickel hydroxide powder) has been synthesized by a co-precipitation method using sodium hydroxide and nickel sulphate as precipitator and nickel source, respectively. The obtained nickel hydroxide powder has been subsequently embedded with biosynthesized MgO and ZnO nanoparticles as nanohybrids, which have been investigated as a novel hybrid electrode material for power-storage applications. The powder x-ray diffraction pattern of nickel hydroxide (Ni(OH)2)-based nanohybrid materials reveals a typical β-phase. Fourier transform infrared spectroscopy confirms the embedded structures of nanohybrids and thermal stability by thermogravimetry and differential thermal) analysis. The electrochemical properties of these materials have been studied using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The specific capacitance values are found to be 439, 1076, and 622 F g-1 for bare β-Ni(OH)2, and for β-Ni(OH)2 embedded with ZnO and MgO nanohybrids, respectively, at a scan rate of 10 mVs-1. The enhanced capacitance of nanohybrids is also evident from EIS measurements. Galvanostatic charge-discharge tests for these designed nanohybrids show excellent capacitance performance in battery and supercapacitor applications. These innovative results could be considered for the expansion of novel resources to scale for power-storage applications and may contribute to the development of this niche area at large.

  14. Terahertz Metasurfaces Optimized for Biomolecular Detection

    NASA Astrophysics Data System (ADS)

    Naranjo, Guillermo A.

    In the last decade, there has been an increase in the use of metasurfaces to detect biological compounds at terahertz frequencies. This increased interest has been fueled by the fact that various biomolecules have rotational and vibrational modes at THz frequencies. The metasurface's resonant units can be considered as inductive-capacitive circuits therefore the detection mechanism is the change in dielectric constant in the capacitive region due to the presence of an analyte. In this project we utilized a facing split ring resonator design with three different tip geometries defining the capacitive region; square, triangular and round tips. We also utilized complementary facing split ring resonators, which present a larger capacitive region that their positive counterparts, with the same three tip geometries. In addition, we added micro wells in the capacitive region of the resonators where they serve to infiltrate the analyte into the substrate and increases their interaction with the electric field. The samples were then fabricated using photolithography, electron beam lithography and reactive ion etching to define the micro wells. They were characterized by obtaining the terahertz transmission spectra using terahertz time domain spectroscopy with and without an overlayer of Ara-h-2 or Ara-h-6. Results show that the metasurfaces can detect the presence of the allergens, and present a different response for Ara-h-2 than for Ara-h-6. The results indicate that utilizing complementary metasurfaces and/ or the addition of micro wells in the capacitive region are promising avenues to develop a sensitive terahertz metasurface based biosensor.

  15. Uncovering the density of nanowire surface trap states hidden in the transient photoconductance.

    PubMed

    Xu, Qiang; Dan, Yaping

    2016-09-21

    The gain of nanoscale photoconductors is closely correlated with surface trap states. Mapping out the density of surface trap states in the semiconductor bandgap is crucial for engineering the performance of nanoscale photoconductors. Traditional capacitive techniques for the measurement of surface trap states are not readily applicable to nanoscale devices. Here, we demonstrate a simple technique to extract the information on the density of surface trap states hidden in the transient photoconductance that is widely observed. With this method, we found that the density of surface trap states of a single silicon nanowire is ∼10(12) cm(-2) eV(-1) around the middle of the upper half bandgap.

  16. Characterization of photo-induced valence tautomerism in a cobalt-dioxolene complex by ultrafast spectroscopy

    NASA Astrophysics Data System (ADS)

    Beni, A.; Bogani, L.; Bussotti, L.; Dei, A.; Gentili, P. L.; Righini, R.

    2005-01-01

    The valence tautomerism of low-spin CoIII(Cat-N-BQ)(Cat-N-SQ) was investigated by means of UV-vis pump-probe transient absorption spectroscopy in chloroform. By exciting the CT transition of the complex at 480 nm, an intramolecular electron transfer process is selectively triggered. The photo-induced charge transfer is pursued by a cascade of two main molecular events characterized by the ultrafast transient absorption spectroscopy: the first gives rise to the metastable high-spin CoII(Cat-N-BQ)2 that, secondly, reaches the chemical equilibrium with the reactant species.

  17. Ultrafast relaxation dynamics of nitric oxide synthase studied by visible broadband transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S.

    2017-09-01

    Ultrafast dynamics of endothelial nitric oxide synthase (eNOS) oxygenase domain was studied by transient absorption spectroscopy pumping at Soret band. The broadband visible probe spectrum has visualized the relaxation dynamics from the Soret band to Q-band and charge transfer (CT) band. Supported by two-dimensional correlation spectroscopy, global fitting analysis has successfully concluded the relaxation dynamics from the Soret band to be (1) electronic transition to Q-band (0.16 ps), (2) ligand dissociation and CT (0.94 ps), (3) relaxation of the CT state (4.0 ps), and (4) ligand rebinding (59 ps).

  18. Nonlinear femtosecond pump-probe spectroscopy using a power-encoded soliton delay line.

    PubMed

    Saint-Jalm, Sarah; Andresen, Esben Ravn; Bendahmane, Abdelkrim; Kudlinski, Alexandre; Rigneault, Hervé

    2016-01-01

    We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep. We demonstrate the concept by performing transient absorption spectroscopy in a test sample and validate it against a conventional pump-probe setup.

  19. Large-scale preparation of shape controlled SnO and improved capacitance for supercapacitors: from nanoclusters to square microplates

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Ji, Hongmei; Zhu, Feng; Chen, Zhi; Yang, Yang; Jiang, Xuefan; Pinto, João; Yang, Gang

    2013-07-01

    Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g-1 at 0.1 A g-1), good rate capability (65.8 F g-1 at 40 A g-1), and excellent cycling stability (retention 119.3% after 10 000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles.Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g-1 at 0.1 A g-1), good rate capability (65.8 F g-1 at 40 A g-1), and excellent cycling stability (retention 119.3% after 10 000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00951c

  20. Characterization of graphene oxide produced by Hummers method and its supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akgül, Ö., E-mail: omeraakgul@gmail.com; Tanrıverdi, A., E-mail: aa.kudret@hotmail.com; Alver, Ü., E-mail: ualver@ktu.edu.tr

    2016-03-25

    In this study, Graphene Oxide (GO) is produced using Hummers method. The produced GO were investigated by x-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), UV-Vis spectrum, Raman spectroscopy and scanning electron microscopy (SEM). GO films on Ni foam were prepared by doctor-blading technique. The electrochemical performances of the as-synthesized GO electrode was evaluated using cyclic voltammetry (CV) in 6 M KOH aqueous solution. Capacitances of GO electrode was measured as 0.76 F/g.

  1. Discerning Apical and Basolateral Properties of HT-29/B6 and IPEC-J2 Cell Layers by Impedance Spectroscopy, Mathematical Modeling and Machine Learning

    PubMed Central

    Schmid, Thomas; Bogdan, Martin; Günzel, Dorothee

    2013-01-01

    Quantifying changes in partial resistances of epithelial barriers in vitro is a challenging and time-consuming task in physiology and pathophysiology. Here, we demonstrate that electrical properties of epithelial barriers can be estimated reliably by combining impedance spectroscopy measurements, mathematical modeling and machine learning algorithms. Conventional impedance spectroscopy is often used to estimate epithelial capacitance as well as epithelial and subepithelial resistance. Based on this, the more refined two-path impedance spectroscopy makes it possible to further distinguish transcellular and paracellular resistances. In a next step, transcellular properties may be further divided into their apical and basolateral components. The accuracy of these derived values, however, strongly depends on the accuracy of the initial estimates. To obtain adequate accuracy in estimating subepithelial and epithelial resistance, artificial neural networks were trained to estimate these parameters from model impedance spectra. Spectra that reflect behavior of either HT-29/B6 or IPEC-J2 cells as well as the data scatter intrinsic to the used experimental setup were created computationally. To prove the proposed approach, reliability of the estimations was assessed with both modeled and measured impedance spectra. Transcellular and paracellular resistances obtained by such neural network-enhanced two-path impedance spectroscopy are shown to be sufficiently reliable to derive the underlying apical and basolateral resistances and capacitances. As an exemplary perturbation of pathophysiological importance, the effect of forskolin on the apical resistance of HT-29/B6 cells was quantified. PMID:23840862

  2. Dimensionless figure of merit and its efficiency estimation for transient response of thermoelectric module based on impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Otsuka, Mioko; Hasegawa, Yasuhiro; Arisaka, Taichi; Shinozaki, Ryo; Morita, Hiroyuki

    2017-11-01

    The dimensionless figure of merit and its efficiency for the transient response of a Π-shaped thermoelectric module are estimated according to the theory of impedance spectroscopy. The effective dimensionless figure of merit is described as a function of the product of the characteristic time to reduce the temperature and the representative angular frequency of the module, which is expressed by the thermal diffusivity and the length of the elements used. The characteristic time required for achieving a higher dimensionless figure of merit and efficiency is derived quantitatively for the transient response using the properties of a commercial thermoelectric module.

  3. Surface potentials measure ion concentrations near lipid bilayers during rapid solution changes.

    PubMed Central

    Laver, D R; Curtis, B A

    1996-01-01

    We describe a puffing method for changing solutions near one surface of lipid bilayers that allows simultaneous measurement of channel activity and extent of solution change at the bilayer surface. Ion adsorption to the lipid headgroups and screening of the bilayer surface charge by mobile ions provided a convenient probe for the ionic composition of the solution at the bilayer surface. Rapid ionic changes induced a shift in bilayer surface potential that generated a capacitive transient current under voltage-clamp conditions. This depended on the ion species and bilayer composition and was accurately described by the Stern-Gouy-Chapman theory. The time course of solute concentrations during solution changes could also be modeled by an exponential exchange of bath and puffing solutions with time constants ranging from 20 to 110 ms depending on the flow pressure. During changes in [Cs+] and [Ca2+] (applied separately or together) both the mixing model and capacitive currents predicted [Cs+] and [Ca2+] transients consistent with those determined experimentally from: 1) the known Cs(+)-dependent conductance of open ryanodine receptor channels and 2) the Ca(2+)-dependent gating of ryanodine receptor Ca2+ channels from cardiac and skeletal muscle. Images FIGURE 1 FIGURE 4 FIGURE 5 FIGURE 8 PMID:8842210

  4. Noncovalently-functionalized reduced graphene oxide sheets by water-soluble methyl green for supercapacitor application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaoying; Hu, Zhongai, E-mail: zhongai@nwnu.edu.cn; Hu, Haixiong

    2015-10-15

    Graphical abstract: Electroactive methyl green (MG) is selected to functionalize reduced graphene oxide (RGO) through non-covalent modification and the composite achieves high specific capacitance, good rate capability and excellent long life cycle. - Highlights: • MG–RGO composites were firstly prepared through non-covalent modification. • The mass ratio in composites is a key for achieving high specific capacitance. • MG–RGO 5:4 exhibits the highest specific capacitance of 341 F g{sup −1}. • MG–RGO 5:4 shows excellent rate capability and long life cycle. - Abstract: In the present work, water-soluble electroactive methyl green (MG) has been used to non-covalently functionalize reduced graphenemore » oxide (RGO) for enhancing supercapacitive performance. The microstructure, composition and morphology of MG–RGO composites are systematically characterized by UV–vis absorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical performances are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). The fast redox reactions from MG could generate additional pseudocapacitance, which endows RGO higher capacitances. As a result, the MG–RGO composite (with the 5:4 mass ratio of MG:RGO) achieve a maximum value of 341 F g{sup −1} at 1 A g{sup −1} within the potential range from −0.25 to 0.75 V and provide a 180% enhancement in specific capacitance in comparison with pure RGO. Furthermore, excellent rate capability (72% capacitance retention from 1 A g{sup −1} to 20 A g{sup −1}) and long life cycle (12% capacitance decay after 5000 cycles) are achieved for the MG–RGO composite electrode.« less

  5. Facile preparation of 3D hierarchical coaxial-cable-like Ni-CNTs@beta-(Ni, Co) binary hydroxides for supercapacitors with ultrahigh specific capacitance.

    PubMed

    Zhang, Manyu; Ma, Xiaowei; Bi, Han; Zhao, Xuebing; Wang, Chao; Zhang, Jie; Li, Yuesheng; Che, Renchao

    2017-09-15

    A facile chemical method for Co doping Ni-CNTs@α-Ni(OH) 2 combining with an in situ phase transformation process is successfully proposed and employed to synthesize three-dimensional (3D) hierarchical Ni-CNTs@β-(Ni, Co) binary hydroxides. This strategy can effectively maintain the coaxial-cable-like structure of Ni-CNTs@α-Ni(OH) 2 and meanwhile increase the content of Co as much as possible. Eventually, the specific capacitances and electrical conductivity of the composites are remarkably enhanced. The optimized composite exhibits high specific capacitances of 2861.8F g -1 at 1A g -1 (39.48F cm -2 at 15mAcm -2 ), good rate capabilities of 1221.8F g -1 at 20A g -1 and cycling stabilities (87.6% of capacitance retention after 5000cycles at 5A g -1 ). The asymmetric supercapacitor (ASC) constructed with the as-synthesized composite and activated carbon as positive and negative electrode delivers a high specific capacitance of 287.7F g -1 at 1A g -1 . The device demonstrates remarkable energy density (96Whkg -1 ) and high power density (15829.4Wkg -1 ). The retention of capacitance remains 83.5% at the current density of 5A g -1 after 5000cycles. The charged and discharged samples are further studied by ex situ electron energy loss spectroscopy (EELS) analysis, XRD and SEM to figure out the reasons of capacitance fading. Overall, it is believable that this facile synthetic strategy can be applied to prepare various nanostructured metal hydroxide/CNT composites for high performance supercapacitor electrode materials. Copyright © 2017. Published by Elsevier Inc.

  6. Material quality frontiers of MOVPE grown AlGaAs for minority carrier devices

    NASA Astrophysics Data System (ADS)

    Heckelmann, S.; Lackner, D.; Dimroth, F.; Bett, A. W.

    2017-04-01

    In this study, secondary ion mass spectroscopy of oxygen, deep level transient spectroscopy and power dependent relative photoluminescence are compared regarding their ability to resolve differences in AlxGa1-xAs material quality. AlxGa1-xAs samples grown with two different trimethylaluminum sources showing low and high levels of oxygen contamination are compared. As tested in the growth of minority carrier devices, i.e. AlxGa1-xAs solar cells, the two precursors clearly lead to different device characteristics. It is shown that secondary ion mass spectroscopy could not resolve the difference in oxygen concentration, whereas deep level transient spectroscopy and photoluminescence based measurements indicate the influence of the precursor oxygen level on the material quality.

  7. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    NASA Astrophysics Data System (ADS)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-02-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  8. Interdigital Capacitance Local Non-Destructive Examination of Nuclear Power Plant Cable for Aging Management Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, Samuel W.; Fifield, Leonard S.; Bowler, Nicola

    This Pacific Northwest National Laboratory milestone report describes progress to date on the investigation of non-destructive test methods focusing on local cable insulation and jacket testing using an interdigital capacitance (IDC) approach. Earlier studies have assessed a number of non-destructive examination (NDE) methods for bulk, distributed, and local cable tests. A typical test strategy is to perform bulk assessments of the cable response using dielectric spectroscopy, Tan , or partial discharge followed by distributed tests like time domain reflectometry or frequency domain reflectometry to identify the most likely defect location followed by a local test that can include visual inspection,more » indenter modulus tests, or Fourier Transform Infrared Spectroscopy (FTIR) or Near Infrared Spectroscopy FTIR (FTNIR). If a cable is covered with an overlaying jacket, the jacket’s condition is likely to be more severely degraded than the underlying insulation. None of the above local test approaches can be used to evaluate insulation beneath a cable jacket. Since the jacket’s function is neither structural nor electrical, a degraded jacket may not have any significance regarding the cable’s performance or suitability for service. IDC measurements offer a promising alternative or complement to these local test approaches including the possibility to test insulation beneath an overlaying jacket.« less

  9. Hole transport characteristics in phosphorescent dye-doped NPB films by admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Chen, Jiangshan; Huang, Jinying; Dai, Yanfeng; Zhang, Zhiqiang; Liu, Su; Ma, Dongge

    2014-05-01

    Admittance spectroscopy is a powerful tool to determine the carrier mobility. The carrier mobility is a significant parameter to understand the behavior or to optimize the organic light-emitting diode or other organic semiconductor devices. Hole transport in phosphorescent dye, bis[2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1Hbenzoimidazol-N,C3] iridium(acetylacetonate [(fbi)2Ir(acac)]) doped into N,N-diphenyl-N,N-bis(1-naphthylphenyl)-1,1-biphenyl-4,4-diamine (NPB) films was investigated by admittance spectroscopy. The results show that doped (fbi)2Ir(acac) molecules behave as hole traps in NPB, and lower the hole mobility. For thicker films(≳300 nm), the electric field dependence of hole mobility is as expected positive, i.e., the mobility increases exponentially with the electric field. However, for thinner films (≲300 nm), the electric field dependence of hole mobility is negative, i.e., the hole mobility decreases exponentially with the electric field. Physical mechanisms behind the negative field dependence of hole mobility are discussed. In addition, three frequency regions were divided to analyze the behaviors of the capacitance in the hole-only device and the physical mechanism was explained by trap theory and the parasitic capacitance effect.

  10. FT-MIR supported Electrical Impedance Spectroscopy based study of sugar adulterated honeys from different floral origin.

    PubMed

    Das, Chirantan; Chakraborty, Subhadip; Acharya, Krishnendu; Bera, Nirmal Kumar; Chattopadhyay, Dipankar; Karmakar, Anupam; Chattopadhyay, Sanatan

    2017-08-15

    This study sought to detect the presence of sucrose as an adulterant in selected honey varieties from different floral origins by employing Electrical Impedance Spectroscopy (EIS) technique which has been simultaneously supported by Fourier Transform-Mid Infrared Spectroscopy (FT-MIR) measurements to provide a rapid, robust yet simple platform for honey quality evaluation. Variation of electrical parameters such as impedance, capacitance and conductance for 10%, 20%, 30%, 40%, 50%, 60% and 70% (w/w) sucrose syrup (SS) adulterated honey samples are analyzed and their respective current-voltage (I-V) characteristics are studied. Capacitance, conductance and net current flowing through the system are observed to decrease linearly whereas system impedance has been found to increase similarly with the increase in adulterant content. Also, FT-MIR measurements in the spectral region between 1800cm -1 and 650cm -1 reveal the increment of absorbance values due to the addition of SS. Full-Width-at-Half-Maximum (FWHM) is estimated from the spectral peak 1056cm -1 for all pure and adulterated honey samples and is observed to be linearly increasing with increase in adulterant content. Finally, the coefficient of sensitivity has been extracted for all varieties of honey considered in terms of the measured conductance values. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Probing the mechanism of high capacitance in two-dimensional titanium carbide using in-situ X-Ray absorption spectroscopy

    DOE PAGES

    Lukatskaya, Maria R.; Bak, Seong -Min; Yu, Xiqian; ...

    2015-05-28

    The field of supercapacitors (electrochemical capacitors) is constantly evolving. The global motivation is to create devices that possess a significant energy density without compromising the power density. To achieve this goal, new materials must be discovered and complex electrode architectures developed.

  12. Highly Uniform Atomic Layer-Deposited MoS2@3D-Ni-Foam: A Novel Approach To Prepare an Electrode for Supercapacitors.

    PubMed

    Nandi, Dip K; Sahoo, Sumanta; Sinha, Soumyadeep; Yeo, Seungmin; Kim, Hyungjun; Bulakhe, Ravindra N; Heo, Jaeyeong; Shim, Jae-Jin; Kim, Soo-Hyun

    2017-11-22

    This article takes an effort to establish the potential of atomic layer deposition (ALD) technique toward the field of supercapacitors by preparing molybdenum disulfide (MoS 2 ) as its electrode. While molybdenum hexacarbonyl [Mo(CO) 6 ] serves as a novel precursor toward the low-temperature synthesis of ALD-grown MoS 2 , H 2 S plasma helps to deposit its polycrystalline phase at 200 °C. Several ex situ characterizations such as X-ray diffractometry (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and so forth are performed in detail to study the as-grown MoS 2 film on a Si/SiO 2 substrate. While stoichiometric MoS 2 with very negligible amount of C and O impurities was evident from XPS, the XRD and high-resolution transmission electron microscopy analyses confirmed the (002)-oriented polycrystalline h-MoS 2 phase of the as-grown film. A comparative study of ALD-grown MoS 2 as a supercapacitor electrode on 2-dimensional stainless steel and on 3-dimensional (3D) Ni-foam substrates clearly reflects the advantage and the potential of ALD for growing a uniform and conformal electrode material on a 3D-scaffold layer. Cyclic voltammetry measurements showed both double-layer capacitance and capacitance contributed by the faradic reaction at the MoS 2 electrode surface. The optimum number of ALD cycles was also found out for achieving maximum capacitance for such a MoS 2 @3D-Ni-foam electrode. A record high areal capacitance of 3400 mF/cm 2 was achieved for MoS 2 @3D-Ni-foam grown by 400 ALD cycles at a current density of 3 mA/cm 2 . Moreover, the ALD-grown MoS 2 @3D-Ni-foam composite also retains high areal capacitance, even up to a high current density of 50 mA/cm 2 . Finally, this directly grown MoS 2 electrode on 3D-Ni-foam by ALD shows high cyclic stability (>80%) over 4500 charge-discharge cycles which must invoke the research community to further explore the potential of ALD for such applications.

  13. Application of surface complexation models to anion adsorption by natural materials.

    PubMed

    Goldberg, Sabine

    2014-10-01

    Various chemical models of ion adsorption are presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model, are described in the present study. Characteristics common to all the surface complexation models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Methods for determining parameter values for surface site density, capacitances, and surface complexation constants also are discussed. Spectroscopic experimental methods of establishing ion adsorption mechanisms include vibrational spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity. Experimental determinations of point of zero charge shifts and ionic strength dependence of adsorption results and molecular modeling calculations also can be used to deduce adsorption mechanisms. Applications of the surface complexation models to heterogeneous natural materials, such as soils, using the component additivity and the generalized composite approaches are described. Emphasis is on the generalized composite approach for predicting anion adsorption by soils. Continuing research is needed to develop consistent and realistic protocols for describing ion adsorption reactions on soil minerals and soils. The availability of standardized model parameter databases for use in chemical speciation-transport models is critical. Published 2014 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the in the United States of America.

  14. The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.

    PubMed

    Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R

    2016-05-01

    The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.

  15. Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Zheng, Ruilin; Chen, Xuyuan

    To achieve higher energy density and power density, we have designed and fabricated a symmetric redox supercapacitor based on microelectromechanical system (MEMS) technologies. The supercapacitor consists of a three-dimensional (3D) microstructure on silicon substrate micromachined by high-aspect-ratio deep reactive ion etching (DRIE) method, two sputtered Ti current collectors and two electrochemical polymerized polypyrrole (PPy) films as electrodes. Electrochemical tests, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatical charge/discharge methods have been carried out on the single PPy electrodes and the symmetric supercapacitor in different electrolytes. The specific capacitance (capacitance per unit footprint area) and specific power (power per unit footprint area) of the PPy electrodes and symmetric supercapacitor can be calculated from the electrochemical test data. It is found that NaCl solution is a good electrolyte for the polymerized PPy electrodes. In NaCl electrolyte, single PPy electrodes exhibit 0.128 F cm -2 specific capacitance and 1.28 mW cm -2 specific power at 20 mV s -1 scan rate. The symmetric supercapacitor presents 0.056 F cm -2 specific capacitance and 0.56 mW cm -2 specific power at 20 mV s -1 scan rate.

  16. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires.

    PubMed

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-16

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g -1 at a scan rate of 20 mV s -1 , which is almost twice that of ZnO NWs (191.5 F g -1 ). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g -1 at a current density of 1.33 A g -1 with an energy density of 25.2 W h kg -1 at the power density of 896.44 W kg -1 . In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  17. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    NASA Astrophysics Data System (ADS)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  18. Room-temperature ultrafast nonlinear spectroscopy of a single molecule

    NASA Astrophysics Data System (ADS)

    Liebel, Matz; Toninelli, Costanza; van Hulst, Niek F.

    2018-01-01

    Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system's ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach.

  19. Voltage Stress on Y Capacitors from Indirect Lightning Pulses According to ED-14/DO-160

    NASA Astrophysics Data System (ADS)

    Meier, F.

    2012-05-01

    Transients due to lightning strikes on an aircraft's fuselage impose stress on the input filters of elec- tronic equipment. Permanent damage can occur when exceeding the voltage handling capacity of filter components causing a short circuit to ground. In ED-14/DO-160, section 22, a number of waveforms and levels are defined which are used to check the airworthiness of avionics equipment. Depending on pro- cedure and level, Y-capacitors are stressed by transient voltages which exceed their dielectric strength. The design engineer's task is a properly select the type and voltage rating of capacitors. With moderate simplifications, a LCR-series network is justified to calculate the peak voltage dependent on the capacitance.

  20. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. O'Brien; Andrew C. Klein; William T. Taitano

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  1. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  2. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2017-03-06

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  3. Tracking coherent population transfer and thermal population relaxation in condensed system by broad-band transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Xiaosong; Wu, Honglin; Song, Yunfei; Liu, Weilong; Yang, Yanqiang

    2018-04-01

    Broad-band transient grating (BB-TG) spectroscopy was proposed to track both coherent population transfer (CPT) and thermal population relaxation processes in a condensed system of solvated molecules in solution (Rhodamine101 in methanol). A broad band around 1500 cm‑1 and a relative narrow band near 2900 cm‑1 emerge in TG and transient absorption contour plots when pump and probe pulses overlap in the sample. The experimental results matched well with the vibrational modes of Rhodamine101 that were obtained by theoretical calculation. In addition, it was found that the population of CPT particles can be evaluated quantitatively through the intensity of the TG signal.

  4. Defect properties of InGaAsN layers grown as sub-monolayer digital alloys by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Baranov, Artem I.; Gudovskikh, Alexander S.; Kudryashov, Dmitry A.; Lazarenko, Alexandra A.; Morozov, Ivan A.; Mozharov, Alexey M.; Nikitina, Ekaterina V.; Pirogov, Evgeny V.; Sobolev, Maxim S.; Zelentsov, Kirill S.; Egorov, Anton Yu.; Darga, Arouna; Le Gall, Sylvain; Kleider, Jean-Paul

    2018-04-01

    The defect properties of InGaAsN dilute nitrides grown as sub-monolayer digital alloys (SDAs) by molecular beam epitaxy for photovoltaic application were studied by space charge capacitance spectroscopy. Alloys of i-InGaAsN (Eg = 1.03 eV) were lattice-matched grown on GaAs wafers as a superlattice of InAs/GaAsN with one monolayer of InAs (<0.5 nm) between wide GaAsN (7-12 nm) layers as active layers in single-junction solar cells. Low p-type background doping was demonstrated at room temperature in samples with InGaAsN layers 900 nm and 1200 nm thick (less 1 × 1015 cm-3). According to admittance spectroscopy and deep-level transient spectroscopy measurements, the SDA approach leads to defect-free growth up to a thickness of 900 nm. An increase in thickness to 1200 nm leads to the formation of non-radiative recombination centers with an activation energy of 0.5 eV (NT = 8.4 × 1014 cm-3) and a shallow defect level at 0.20 eV. The last one leads to the appearance of additional doping, but its concentration is low (NT = 5 × 1014 cm-3) so it does not affect the photoelectric properties. However, further increase in thickness to 1600 nm, leads to significant growth of its concentration to (3-5) × 1015 cm-3, while the concentration of deep levels becomes 1.3 × 1015 cm-3. Therefore, additional free charge carriers appearing due to ionization of the shallow level change the band diagram from p-i-n to p-n junction at room temperature. It leads to a drop of the external quantum efficiency due to the effect of pulling electric field decrease in the p-n junction and an increased number of non-radiative recombination centers that negatively impact lifetimes in InGaAsN.

  5. Large-scale preparation of shape controlled SnO and improved capacitance for supercapacitors: from nanoclusters to square microplates.

    PubMed

    Wang, Lu; Ji, Hongmei; Zhu, Feng; Chen, Zhi; Yang, Yang; Jiang, Xuefan; Pinto, João; Yang, Gang

    2013-08-21

    Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(II), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g(-1) at 0.1 A g(-1)), good rate capability (65.8 F g(-1) at 40 A g(-1)), and excellent cycling stability (retention 119.3% after 10,000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles.

  6. Vertically aligned cobalt hydroxide nano-flake coated electro-etched carbon fiber cloth electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Cheng, Qian; Tang, Jie; Zhang, Han; Qin, Lu-Chang

    2014-11-01

    We describe preparation and characterization of nanostructured electrodes using Co(OH)2 nano-flakes and carbon fiber cloth for supercapacitors. Nanostructured Co(OH)2 flakes are produced by electrodeposition and they are coated onto the electro-etched carbon fiber cloth. A highest specific capacitance of 3404.8 F g-1 and an area-normalized specific capacitance of 3.3 F cm-2 have been obtained from such electrodes. Morphology and structure of the nanostructured electrodes have been characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical properties have been studied by cyclic voltammetry (CV), constant-current charge and discharge, electrochemical impedance spectroscopy (EIS), and long-time cycling.

  7. Large change in dielectric constant of CaCu3Ti4O12 under violet laser

    NASA Astrophysics Data System (ADS)

    Masingboon, C.; Thongbai, P.; King, P. D. C.; Maensiri, S.; Meevasana, W.

    2013-03-01

    This work reports the influence of light illumination on the dielectric constant of CaCu3Ti4O12 (CCTO) polycrystals which exhibit giant dielectric constant. When the CCTO samples were exposed to 405-nm laser light, the enhancement in capacitance as high as 22% was observed for the first time, suggesting application of light-sensitive capacitance devices. To understand this change better microscopically, we also performed electronic-structure measurements using photoemission spectroscopy, and measured the electrical conductivity of the CCTO samples under different conditions of light exposure and oxygen partial pressure. All these measurements suggest that this large change is driven by oxygen vacancy induced by the irradiation.

  8. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    NASA Astrophysics Data System (ADS)

    Basirun, Wan J.; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R.; Ebadi, Mehdi

    2013-09-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  9. Origin of electrically heterogeneous microstructure in CuO from scanning tunneling spectroscopy study

    NASA Astrophysics Data System (ADS)

    Sarkar, Sudipta; Jana, Pradip Kumar; Chaudhuri, B. K.

    2008-04-01

    We report electronic structure of the grains and grain boundaries (GBs) of the high permittivity (κ˜104) ceramic CuO from scanning tunneling spectroscopy (STS) studies. The p-type semiconducting character of the CuO grains and insulating behavior of the corresponding GBs, observed from STS studies, have been explained. This type of electrically inhomogeneous microstructure leads to the formation of barrier layer capacitance elements in CuO and, hence, provides an explanation of the colossal-κ response exhibited by CuO.

  10. Transport and charging mechanisms in Ta2O5 thin films for capacitive RF MEMS switches application

    NASA Astrophysics Data System (ADS)

    Persano, A.; Quaranta, F.; Martucci, M. C.; Cretı, P.; Siciliano, P.; Cola, A.

    2010-06-01

    The potential of sputtered Ta2O5 thin films to be used as dielectric layers in capacitive radio frequency microelectromechanical system switches is evaluated by investigating two factors of crucial importance for the performance of these devices which are the transport mechanisms and the charging effects in the dielectric layer. We find that Ta2O5 films show good electrical and dielectrical properties for the considered application in terms of a low leakage current density of 4 nA/cm2 for E =1 MV/cm, a high breakdown field of 4 MV/cm and a high dielectric constant of 32. For electric fields lower than 1 MV/cm the conduction mechanism is found to be variable-range hopping in the temperature range 300-400 K, while nearest-neighbor hopping is observed at higher temperatures. For fields in the range 1-4 MV/cm Poole-Frenkel becomes the dominant conduction mechanism. Current and capacitance transients used to investigate the charging effects show a decay which is well described by the stretched-exponential law, thus providing further insights on capture and emission processes.

  11. Characterization of commercial supercapacitors for low temperature applications

    NASA Astrophysics Data System (ADS)

    Iwama, E.; Taberna, P. L.; Azais, P.; Brégeon, L.; Simon, P.

    2012-12-01

    Electrochemical characterizations at low temperature and floating tests have been performed on 600F commercial supercapacitor (SC) for acetonitrile (AN)-based and AN + methyl acetate (MA) mixed electrolytes. From -40 to +20 °C, AN electrolyte showed slightly higher capacitance than those of AN + MA mixed electrolytes (25 and 33 vol.% of MA). At -55 °C, however, AN electrolyte did not cycle at all, while MA mixed electrolyte normally cycled with a slight decrease in their capacitance. From electrochemical impedance spectroscopy measurements, the whole resistance for AN-based cells at -55 °C was found to be about 10,000 times higher than that of +20 °C, while a 40-fold increase in the cell resistance was obtained for the MA mixture between 20 and -55 °C. From the results of floating tests at 2.7 V and 60 °C for 1 month, the 25 vol.% MA mixture showed no change and slight decreased but stable capacitance.

  12. Ultrathin NiO nanoflakes electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xiao, Huanhao; Qu, Fengyu; Wu, Xiang

    2016-01-01

    In this work, large scale ultrathin NiO nanoflakes grown on nickel foam have been successfully obtained by a facile, low cost and eco-friendly route under mild temperature. The average thickness of the as-obtained NiO nanoflakes is about 10 nm. And they possess large surface area of 89.56 m2 g-1 and the dominant pore size of 2.313 nm. The electrochemical properties of the obtained product were evaluated by cyclic voltammetry (CV), galvanostatic charge-discharge measurement and electrochemical impedance spectroscopy (EIS). The electrochemical tests demonstrate the highest discharge areal capacitance of 870 mF cm-2 at 1 mA cm-2 and excellent long cycle-life stability with 84.2% of its discharge areal capacitance retention after 6000 cycles at the current density of 10 mA cm-2. The remarkable electrochemical capacitive performance revealed NiO nanoflakes grown on nickel foam might be promising supercapacitor electrode materials for future energy storage applications.

  13. Central role of TiO2 anatase grain boundaries on resistivity of CaCu3Ti4O12-based materials probed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    De Almeida-Didry, Sonia; Autret, Cécile; Honstettre, Christophe; Lucas, Anthony; Zaghrioui, Mustapha; Pacreau, François; Gervais, François

    2016-11-01

    This study focuses on characterization and control of grain boundaries to enhance the properties of CaCu3Ti4O12 (CCTO) ceramics capacitors for industrial applications. A novel factor deals with TiO2 anatase revealed by Raman scattering in grain boundaries, found as a dominant parameter of largest sample resistivity, consistent with higher grain boundary resistivity and higher breakdown voltage. Four selected samples of CCTO-based compositions showing very different properties in terms of permittivity ranging from 1000 to 684 000 measured at 1 kHz, capacitance of grain boundaries ranging from 8 10-10 to 4.5 10-7 F cm-1, grain boundary resistivity ranging from 193 to 30,000,000 Ω cm and sample resistivity extending from 450 to 1011 Ω cm. The relationship between permittivity weighted by grain size and capacitance of grain boundaries confirms the internal barrier layer capacitance model over 5 orders of magnitude.

  14. A porous carbon material from pyrolysis of fructus cannabis’s shells for supercapacitor electrode application

    NASA Astrophysics Data System (ADS)

    Li, Kai; Zhang, Wei-Bin; Zhao, Zhi-Yun; Zhao, Yue; Chen, Xi-Wen; Kong, Ling-Bin

    2018-02-01

    The porous carbon material is obtained via pyrolysis and activation of fructus cannabis’s shells, an easy-to-get biomass source, and is used as an active electrode material for supercapacitors. The obtained carbon exhibit a high specific surface area of 2389 m2 g-1. And the result of x-ray photoelectron spectroscopy (XPS) shows that the obtained porous carbon possess numerous oxygen groups, which can facilitate the wettability of the electrode. The prepared porous carbon also exhibit remarkable electrochemical properties, such as high specific capacitance of 357 F g-1 at a current density of 0.5 A g-1 in 6 mol L-1 aqueous KOH electrolyte, good rate capability of 77% capacitance retention as the current density increase from 0.5 A g-1 to 10 A g-1. In addition, it also presents a superior cycling stability of 100% capacitance retention after 10 000 cycles at the current density of 1 A g-1.

  15. Electrical response of Pt/Ru/PbZr0.52Ti0.48O3/Pt capacitor as function of lead precursor excess

    NASA Astrophysics Data System (ADS)

    Gueye, Ibrahima; Le Rhun, Gwenael; Renault, Olivier; Defay, Emmanuel; Barrett, Nicholas

    2017-11-01

    We investigated the influence of the surface microstructure and chemistry of sol-gel grown PbZr0.52Ti0.48O3 (PZT) on the electrical performance of PZT-based metal-insulator-metal (MIM) capacitors as a function of Pb precursor excess. Using surface-sensitive, quantitative X-ray photoelectron spectroscopy and scanning electron microscopy, we confirm the presence of ZrOx surface phase. Low Pb excess gives rise to a discontinuous layer of ZrOx on a (100) textured PZT film with a wide band gap reducing the capacitance of PZT-based MIMs whereas the breakdown field is enhanced. At high Pb excess, the nanostructures disappear while the PZT grain size increases and the film texture becomes (111). Concomitantly, the capacitance density is enhanced by 8.7%, and both the loss tangent and breakdown field are reduced by 20 and 25%, respectively. The role of the low permittivity, dielectric interface layer on capacitance and breakdown is discussed.

  16. Modification of carbon fabrics by radio-frequency capacitive discharge at low pressure to regulate mechanical properties of carbon fiber reinforced plastics based on it

    NASA Astrophysics Data System (ADS)

    Garifullin, A. R.; Krasina, I. V.; Skidchenko, E. A.; Shaekhov, M. F.; Tikhonova, N. V.

    2017-01-01

    To increase the values of mechanical properties of carbon fiber (CF) composite materials used in sports equipment production the method of radio-frequency capacitive (RFC) low-pressure plasma treatment in air was proposed. Previously it was found that this type of modification allows to effectively regulate the surface properties of fibers of different nature. This treatment method differs from the traditional ones by efficiency and environmental friendliness as it does not require the use of aggressive, environmentally hazardous chemicals. In this paper it was established that RFC low-pressure air plasma treatment of carbon fabrics enhances the interlaminar shear strength (ILSS) of carbon fiber reinforced plastic (CFRP). As a result of experimental studies of CF by Fourier Transform Infrared (FTIR) spectroscopy method it was proved that after radio-frequency capacitive plasma treatment at low pressure in air the oxygen-containing functional groups is grafted on the surface. These groups improve adhesion at the interface “matrix-fiber”.

  17. The influence of hard-baking temperature applied for SU8 sensor layer on the sensitivity of capacitive chemical sensor

    NASA Astrophysics Data System (ADS)

    Klanjšek Gunde, Marta; Hauptman, Nina; Maček, Marijan; Kunaver, Matjaž

    2009-06-01

    SU8, the near-UV photosensitive epoxy-based polymer was used as a sensor layer in the capacitive chemical sensor, ready for integration with a generic double-metal CMOS technology. It was observed that the response of the sensor slowly increases with the temperature applied in hard-baking process as long as it remains below 300°C. At this temperature the response of the sensor abruptly increases and becomes almost threefold. It was shown that fully crosslinked structure of the sensor layer becomes opened and disordered when the sensor is hard-baked at temperatures between 300°C and 320°C, that is, still well below the degradation temperature of the polymer. These changes in chemical structure were analyzed by Fourier-transform infrared spectroscopy. The temperature-dependent changes of the sensor layer structure enable one to prepare a combination of capacitive chemical sensors with good discrimination between some volatile organic compounds.

  18. Electrochemical capacitance voltage measurements in highly doped silicon and silicon-germanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sermage, B.; Essa, Z.; Taleb, N.

    2016-04-21

    The electrochemical capacitance voltage technique has been used on highly boron doped SiGe and Si layers. Although the boron concentration is constant over the space charge depth, the 1/C{sup 2} versus voltage curves are not linear. They indeed present a negative curvature. This can be explained by the existence of deep acceptors which ionise under a high electric field (large inverse voltage) and not at a low inverse voltage. The measured doping concentration in the electrochemical capacitance voltage increases strongly as the inverse voltage increases. Thanks to a comparison with the boron concentration measured by secondary ions mass spectrometry, wemore » show that the relevant doping concentrations in device layers are obtained for small inverse voltage in agreement with the existence of deep acceptors. At the large inverse voltage, the measured doping can be more than twice larger than the boron concentration measured with a secondary ion mass spectroscopy.« less

  19. Effect of Fe doping on the electrochemical capacitor behavior of MnO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Poonguzhali, R.; Shanmugam, N.; Gobi, R.; Senthilkumar, A.; Viruthagiri, G.; Kannadasan, N.

    2015-10-01

    In this work, the influence of Fe doping on the capacitance behavior of MnO2 nanoparticles synthesized by chemical precipitation was investigated. During the doping process the concentration of Fe was increased from 0.025 M to 0.125 M in steps of 0.025 M. The products obtained were characterized by X-ray diffraction, Fourier infrared spectroscopy, scanning electron microscopy and N2 adsorption-desorption isotherms. To demonstrate the suitability of Fe-doped MnO2 for capacitor applications, cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance were recorded. Among the different levels of doping, the specific capacitance of 912 F/g was delivered by 0.075 M of Fe-doped MnO2 at a scan rate of 10 mV/s, which is almost more than fourfold that of the bare MnO2 electrode (210 F/g). Moreover, for the same concentration the charge, discharge studies revealed the highest specific capacitance of 1084 F/g at a current density of 10 A/g.

  20. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zheng, Liping; Wang, Ying; Wang, Xianyou; Li, Na; An, Hongfang; Chen, Huajie; Guo, Jia

    Calcium carbide (CaC 2)-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N 2 sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g -1 measured by cyclic voltammetry at 1 mV s -1. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles.

  1. Laser-muon spin spectroscopy in liquids - a technique to study the excited state chemistry of transients.

    PubMed

    Ghandi, Khashayar; Clark, Ian P; Lord, James S; Cottrell, Stephen P

    2007-01-21

    This study introduces laser-muon spin spectroscopy in the liquid phase, which extends muonium chemistry in liquids to the realm of excited states and enables the detection of muoniated molecules by their spin evolution after laser excitation. This leads to new opportunities to study the Kinetic Isotope Effects (KIEs) of muonium/atomic hydrogen reactions and to probe transient chemistry in radiolysis processes involved in muonium formation, as well as muoniated intermediates in excited states.

  2. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process

    NASA Astrophysics Data System (ADS)

    Wang, Libo; Zhang, Heng; Wang, Bo; Shen, Changjie; Zhang, Chuanxiang; Hu, Qianku; Zhou, Aiguo; Liu, Baozhong

    2016-09-01

    In this study, a simple hydrothermal method has been developed to prepare Ti3C2Tx from Ti3AlC2 as a high-performance electrode material for supercapacitors. This method is environmentally friendly and has a low level of danger. The morphology and structure of the Ti3C2Tx can be controlled by hydrothermal reaction time, temperature and NH4F amounts. The prepared Ti3C2Tx was characterized by X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and Brunauer-Emmet-Teller. The results show that the prepared Ti3C2Tx is terminated by O, OH, and F groups. The electrochemical properties of the Ti3C2Tx sample exhibit specific capacitance up to 141 Fcm-3 in 3 M KOH aqueous electrolyte, and even after 1000 cycles, no significant degradation of the volumetric capacitance was observed. These results indicate that the Ti3C2Tx material prepared by this hydrothermal method can be used in high performance supercapacitors.

  3. Combined analysis of energy band diagram and equivalent circuit on nanocrystal solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kano, Shinya, E-mail: kano@eedept.kobe-u.ac.jp, E-mail: fujii@eedept.kobe-u.ac.jp; Sasaki, Masato; Fujii, Minoru, E-mail: kano@eedept.kobe-u.ac.jp, E-mail: fujii@eedept.kobe-u.ac.jp

    We investigate a combined analysis of an energy band diagram and an equivalent circuit on nanocrystal (NC) solids. We prepared a flat silicon-NC solid in order to carry out the analysis. An energy band diagram of a NC solid is determined from DC transport properties. Current-voltage characteristics, photocurrent measurements, and conductive atomic force microscopy images indicate that a tunneling transport through a NC solid is dominant. Impedance spectroscopy gives an equivalent circuit: a series of parallel resistor-capacitors corresponding to NC/metal and NC/NC interfaces. The equivalent circuit also provides an evidence that the NC/NC interface mainly dominates the carrier transport throughmore » NC solids. Tunneling barriers inside a NC solid can be taken into account in a combined capacitance. Evaluated circuit parameters coincide with simple geometrical models of capacitances. As a result, impedance spectroscopy is also a useful technique to analyze semiconductor NC solids as well as usual DC transport. The analyses provide indispensable information to implement NC solids into actual electronic devices.« less

  4. Electrical and absorption properties of fresh cassava tubers and cassava starch

    NASA Astrophysics Data System (ADS)

    Harnsoongnoen, S.; Siritaratiwat, A.

    2015-09-01

    The objective of this study was to analyze the electrical and absorption properties of fresh cassava tubers and cassava starch at various frequencies using electric impedance spectroscopy and near-infrared spectroscopy, as well as determine the classification of the electrical parameters of both materials using the principle component analysis (PCA) method. All samples were measured at room temperature. The electrical and absorption parameters consisted of dielectric constant, dissipation factor, parallel capacitance, resistance, reactance, impedance and absorbance. It was found that the electrical and absorption properties of fresh cassava tubers and cassava starch were a function of frequency, and there were significant differences between the materials. The dielectric constant, parallel capacitance, resistance and impedance of fresh cassava tubers and cassava starch had similar dramatic decreases with increasing frequency. However, the reactance of both materials increased with an increasing frequency. The electrical parameters of both materials could be classified into two groups. Moreover, the dissipation factor and phase of impedance were the parameters that could be used in the separation of both materials. According to the absorbance patterns of the fresh cassava tubers and cassava starch, there were significant differences.

  5. In-situ synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, M.; Srikesh, G.; Mohan, A.; Arivazhagan, V.

    2017-05-01

    In this work, a low cost and pollution free in-situ synthesis of phase pure Co3O4 nanoparticles and Co3O4/graphite nanocomposite have been successfully developed via co-precipitation method followed by the thermal treatment process. The prepared samples were characterized by powder X-ray diffraction, scanning electron microscope, high resolution transmission electron microscope, Fourier Transform Infrared Spectroscopy and electrochemical measurements. Electrochemical measurements such as cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy were carried out in 6 M KOH aqueous electrolytic solution. The results show the excellent maximum specific capacitive behavior of 239.5 F g-1 for pure and 395.04 F g-1 for Co3O4/graphite nanocomposite at a current density of 0.5 A g-1. This composite exhibits a good cyclic stability, with a small loss of 2.68% of maximum capacitance over a consecutive 1000 cycles. The investigation indicates that the prepared electrode material could be a potential and promising candidate for electrochemical supercapacitors.

  6. Carbon/CuO nanosphere-anchored g-C3N4 nanosheets as ternary electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Vattikuti, S. V. Prabhakar; Reddy, B. Purusottam; Byon, Chan; Shim, Jaesool

    2018-06-01

    Novel electrode materials for supercapacitors comprised of carbon and copper oxide (CuO) nanospheres on graphitic carbon nitride (g-C3N4) nanosheets, denoted as C/CuO@g-C3N4 are self-assembled via a one-step co-pyrolysis decomposition method. The pure g-C3N4 and C/CuO@g-C3N4 were confirmed by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), thermal gravimetric and differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption studies and Fourier-transform infrared spectroscopy (FTIR). The specific capacitance was 247.2 F g-1 in 0.5 M NaOH at a current density of 1 A g-1, and more than 92.1% of the capacitance was retained after 6000 cycles. The property enhancement was ascribed to the synergistic effects of the three components in the composite. These results suggest that C/CuO@g-C3N4 possessed an excellent cyclic stability with respect to their capacity performance as electrode materials.

  7. Probing the electrochemical double layer of an ionic liquid using voltammetry and impedance spectroscopy: a comparative study of carbon nanotube and glassy carbon electrodes in [EMIM](+)[EtSO(4)](-).

    PubMed

    Zheng, J P; Goonetilleke, P C; Pettit, C M; Roy, D

    2010-05-15

    Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are compared as techniques for analyzing double layer capacitances of ionic liquids (ILs) at the surfaces of two carbon-based electrodes. These systems are relevant for energy storage supercapacitors and often are associated with unconventional electrochemical properties. Certain theoretical and experimental aspects of CV and EIS necessary for quantitative evaluation of the capacitance characteristics of such systems are explored. The experiments use 1-ethyl-3-methyl imidazolium ethylsulfate as a model IL electrolyte in combination with a porous electrode of carbon nanotubes (CNTs). The results are compared with those obtained with a nonporous glassy carbon (GC) electrode. The time is constant, and hence the power delivery characteristics of the experimental cell are affected by the electrolyte resistance and residual faradaic reactions of the IL, as well as by the spatially inhomogeneous electrode surfaces. It is shown that adequate characterization of these IL-electrode systems can be achieved by combining CV with EIS. A phenomenological framework for utilizing this combination is discussed.

  8. Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Chen, Yujuan; Liu, Zhaoen; Sun, Li; Lu, Zhiwei; Zhuo, Kelei

    2018-06-01

    Nitrogen and sulfur co-doped graphene aerogel (NS-GA) is prepared by one-pot process. The as-prepared materials are investigated as supercapacitors electrodes in an ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate, EMIMBF4) electrolyte. The NS-GA is characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy scanning electron microscopy. The results show that the NS-GA has hierarchical porous structure. Electrochemical performance is investigated by cycle voltammetry and galvanostatic charge-discharge. Notably, the supercapacitor based on the NS-GA-5 possesses a maximum energy density of 100.7 Wh kg-1 at power density of 0.94 kW kg-1. The electrode materials also offer a large specific capacitance of 203.2 F g-1 at a current density of 1 A g-1 and the capacitance retention of NS-GA-5 is 90% after 3000 cycles at a scan rate of 2 A g-1. The NS-GA-5 with numerous advantages including low cost and remarkable electrochemical behaviors can be a promising electrode material for the application of supercapacitors.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L. X.; Zhang, X.; Lockard, J. V.

    Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes havemore » been studied in disordered media from homogeneous solutions to heterogeneous solution-solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled.« less

  10. Insight into the Near-Conduction Band States at the Crystallized Interface between GaN and SiN x Grown by Low-Pressure Chemical Vapor Deposition.

    PubMed

    Liu, Xinyu; Wang, Xinhua; Zhang, Yange; Wei, Ke; Zheng, Yingkui; Kang, Xuanwu; Jiang, Haojie; Li, Junfeng; Wang, Wenwu; Wu, Xuebang; Wang, Xianping; Huang, Sen

    2018-06-12

    Constant-capacitance deep-level transient Fourier spectroscopy is utilized to characterize the interface between a GaN epitaxial layer and a SiN x passivation layer grown by low-pressure chemical vapor deposition (LPCVD). A near-conduction band (NCB) state E LP ( E C - E T = 60 meV) featuring a very small capture cross section of 1.5 × 10 -20 cm -2 was detected at 70 K at the LPCVD-SiN x /GaN interface. A partially crystallized Si 2 N 2 O thin layer was detected at the interface by high-resolution transmission electron microscopy. Based on first-principles calculations of crystallized Si 2 N 2 O/GaN slabs, it was confirmed that the NCB state E LP mainly originates from the strong interactions between the dangling bonds of gallium and its vicinal atoms near the interface. The partially crystallized Si 2 N 2 O interfacial layer might also give rise to the very small capture cross section of the E LP owing to the smaller lattice mismatch between the Si 2 N 2 O and GaN epitaxial layer and a larger mean free path of the electron in the crystallized portion compared with an amorphous interfacial layer.

  11. Ultrafast carrier dynamics of titanic acid nanotubes investigated by transient absorption spectroscopy.

    PubMed

    Wang, Li; Zhao, Hui; Pan, Lin Yun; Weng, Yu Xiang; Nakato, Yoshihiro; Tamai, Naoto

    2010-12-01

    Carrier dynamics of titanic acid nanotubes (phase of H2Ti2O5.H2O) deposited on a quartz plate was examined by visible/near-IR transient absorption spectroscopy with an ultraviolet excitation. The carrier dynamics of titanic acid nanotubes follows the fast trapping process which attributed to the intrinsic tubular structure, the relaxation of shallow trapped carriers and the recombination as a second-order kinetic process. Transient absorption of titanic acid nanotubes was dominated by the absorption of surface-trapped holes in visible region around 500 nm, which was proved by the faster decay dynamics in the presence of polyvinyl alcohol as a hole-scavenger. However, the slow relaxation of free carriers was much more pronounced in the TiO2 single crystals, as compared with the transient absorption spectra of titanic acid nanotubes under the similar excitation.

  12. Electrochemical Properties of Organosilane Self Assembled Monolayers on Aluminum 2024

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz Marina

    2004-01-01

    Self assembled monolayers are commonly used to modify surfaces. Within the last 15 years, self assembled monolayers have been investigated as a way to protect from corrosion[1,2] or biofouling.[3] In this study, self assembled monolayers of decitriethoxysilane (C10H21Si(OC2H5)3) and octadecyltriethoxysilane (C18H37Si(OC2H5)3) were formed on aluminum 2024-T3. The modified surfaces and bare Al 2024 were characterized by dynamic water contact angle measurements, x-ray photoelectron spectroscopy (XIPS) and infrared spectroscopy. Electrochemical impedance spectroscopy (EIS) in 0.5 M NaCl was used to characterize the monolayers and evaluate their corrosion protection properties. The advancing water contact angle and infrared measurements show that the mono layers form a surface where the hydrocarbon chains are packed and oriented away from the surface, consistent with what is found in similar systems. The contact angle hysteresis measured in these systems is relatively large, perhaps indicating that the hydrocarbon chains are not as well packed as monolayers formed on other substrates. The results of the EIS measurements were modeled using a Randle's circuit modified by changing the capacitor to a constant phase element. The constant phase element values were found to characterize the monolayer. The capacitance of the monolayer modified surface starts lower than the bare Al 2024, but approaches values similar to the bare Al 2024 within 24 hours as the monolayer is degraded. The n values found for bare Al 2024 quickly approach the value of a true capacitor and are greater than 0.9 within hours after the start of exposure. For the monolayer modified structure, n can stay lower than 0.9 for a longer period of time. In fact, n for the monolayer modified surfaces is different from the bare surface even after the capacitance values have converged. This indicates that the deviation from ideal capacitance is the most sensitive indicator of the presence of the monolayer.

  13. A theoretical description of arterial pressure-flow relationships with verification in the isolated hindlimb of the dog.

    PubMed

    Jackman, A P; Green, J F

    1990-01-01

    We developed and tested a new two-compartment serial model of the arterial vasculature which unifies the capacitance (downstream arterial compliance) and waterfall (constant downstream pressure load) theories of blood flow through the arteries. In this model, blood drains from an upstream compliance through a resistance into a downstream compliance which empties into the veins through a downstream resistance which terminates in a constant pressure load. Using transient arterial pressure data obtained from an isolated canine hindlimb preparation, we tested this model, using a stop-flow technique. Numerical parameter estimation techniques were used to estimate the physiologic parameters of the model. The downstream compliance was found to be more than ten times larger than the upstream compliance and the constant pressure load was significantly above venous pressures but decreased in response to vasodilation. Our results support the applicability of both the capacitance and waterfall theories.

  14. Light-induced radical formation and isomerization of an aromatic thiol in solution followed by time-resolved x-ray absorption spectroscopy at the sulfur K-edge

    DOE PAGES

    Ochmann, Miguel; von Ahnen, Inga; Cordones, Amy A.; ...

    2017-02-20

    Here, we applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ~70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemicalmore » reaction pathways and transient products of sulfur-containing molecules in solution.« less

  15. Light-induced radical formation and isomerization of an aromatic thiol in solution followed by time-resolved x-ray absorption spectroscopy at the sulfur K-edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochmann, Miguel; von Ahnen, Inga; Cordones, Amy A.

    Here, we applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ~70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemicalmore » reaction pathways and transient products of sulfur-containing molecules in solution.« less

  16. Interpretation of deep levels in Si-GaAs crystals observed by photo-induced current transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Hlinomaz, P.; Šmíd, V.; Krištofik, J.

    1993-05-01

    Deep levels measured by Photo-Induced Current Transient Spectroscopy (PICTS) are interpreted taking into account different bulk and surface properties of semi-insulating crystals, results of directly measured isothermal transients and types of observed deep levels determined from the measurements with different voltage polarity. The principal interest is focused on the temperature interval 250-450 K where peaks related to the deep levels causing semiinsulating properties are observed in the PICTS spectra. Majority of deep levels observed in various samples may be ascribed to the EL2, EL3, EL4, HL1 and HL9 levels. Maxima exhibiting inverse polarity in PICTS spectra are not related to EL2 or HL1.

  17. The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zheng, Kaiwen; Li, Yuanyuan; Zhu, Ming; Yu, Xi; Zhang, Mengyan; Shi, Ling; Cheng, Jue

    2017-10-01

    A hierarchical porous water hyacinth-derived carbon (WHC) is fabricated by pre-carbonization and KOH activation for supercapacitors. The physicochemical properties of WHC are researched by scanning electron microscopy (SEM), N2 adsorption-desorption measurements, X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results indicate that WHC exhibits hierarchical porous structure and high specific surface area of 2276 m2/g. And the electrochemical properties of WHC are studied by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) tests. In a three-electrode test system, WHC shows considerable specific capacitance of 344.9 F/g at a current density of 0.5 A/g, good rate performance with 225.8 F/g even at a current density of 30 A/g, and good cycle stability with 95% of the capacitance retention after 10000 cycles of charge-discharge at a current density of 5 A/g. Moreover, WHC cell delivers an energy density of 23.8 Wh/kg at 0.5 A/g and a power density of 15.7 kW/kg at 10 A/g. Thus, using water hyacinth as carbon source to fabricate supercapacitors electrodes is a promising approach for developing inexpensive, sustainable and high-performance carbon materials. Additionally, this study supports the sustainable development and the control of biological invasion.

  18. Fabrication and electrochemical properties of activated CNF/Cu x Mn1- x Fe2O4 composite nanostructures

    NASA Astrophysics Data System (ADS)

    Nilmoung, Sukanya; Sonsupap, Somchai; Sawangphruk, Montree; Maensiri, Santi

    2018-06-01

    This work reports the fabrication and electrochemical properties of activated carbon nanofibers composited with copper manganese ferrite (ACNF/Cu x Mn1- x Fe2O4: x = 0.0, 0.2, 0.4, 0.6, 0.8) nanostructures. The obtained samples were characterized by means of X-ray diffraction, field emission scanning electron microscopy, Brunauer-Emmett-Teller analyzer, thermal gravimetric analysis, X-ray photoemission spectroscopy, and X-ray absorption spectroscopy. The supercapacitive behavior of the electrodes is tested using cyclic voltammetery, galvanostatic charge-discharge and electrochemical impedance spectroscopy. By varying ` x', the highest specific capacitance of 384 F/g at 2 mV/s using CV and 314 F/g at 2 A/g using GCD are obtained for the x = 0.2 electrode. The second one of 235 F/g at 2 mV/s using CV and 172 F/g at 2 A/g using GCD are observed for x = 0.8 electrode. The corresponding energy densities are 74 and 41 Wh/kg, respectively. It is observed that the cyclic stability of the prepared samples strongly depend on the amount of carbon, while the specific capacitance was enhanced by the sample with nearly proportional amount between carbon and CuMnFe2O4. Such results may arise from the synergetic effect between CuMnFe2O4 and ACNF.

  19. Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Naderi, Hamid Reza; Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Ganjali, Mohammad Reza

    2017-11-01

    A composite of cobalt tungstate nanoparticles coated on nitrogen-doped reduced graphene oxide (CoWO4/NRGO) was prepared through an in situ sonochemical approach. The composite was next evaluated as an electrode material for use supercapacitors electrodes. The characterization of the various CoWO4/NRGO nanocomposite samples was carried out through field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Brunauer-Emmett-Teller (BET) method and Raman spectroscopy. Complementary studies were also performed through cyclic voltammetry (CV), galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS), and continues cyclic voltammetry (CCV). The electrochemical evaluations were carried out in a 2 M H2SO4 solution as the electrolyte. The electrochemical evaluations on the nano-composite samples indicated that CoWO4/NRGO-based electrodes reveal enhanced supercapacitive characteristics (i.e. a high specific capacitance (SC) of 597 F g-1 at a scan rate of 5 mV s-1, an energy density (ED) value of 67.9 W h kg-1, and high rate capability). CCV studies indicated that CoWO4/NRGO-based electrodes keep 97.1% of their original capacitance after 4000 cycles. The results led to the conclusion that CoWO4/NRGO effectively merge the merits of CoWO4 and CoWO4/RGO in one new nanocomposite material.

  20. Thermally stimulated capacitance in gamma irradiated epitaxial 4H-SiC Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Vigneshwara Raja, P.; Narasimha Murty, N. V. L.

    2018-04-01

    Deep level defects in 4H-SiC Schottky barrier diodes (SBDs) fabricated on n-type epitaxial 4H-SiC have been identified by thermally stimulated capacitance (TSCAP) spectroscopy prior to and after 60Co-gamma irradiation. The TSCAP measurements on the non-irradiated SBDs reveal two electron traps at Ec-0.63 eV (˜250 K) and Ec-1.13 eV (˜525 K), whereas only one trap at Ec-0.63 eV is identified by conventional thermally stimulated current (TSC) measurements. Hence, TSCAP spectroscopy is more effective in identifying deep level defects in epitaxial 4 H-SiC SBDs as compared to the TSC spectroscopy. Upon exposure to 60Co-gamma rays up to a dose of 100 Mrad, significant changes in the concentration of the traps at Ec-0.63 eV, Ec-1.13 eV, and one new trap at Ec-0.89 eV (˜420 K) are observed. The electrical characteristics of the SBDs are considerably changed after gamma irradiation. The dominant mechanisms responsible for the irradiation induced changes in the SBD electrical characteristics are analyzed by incorporating the trap signatures in the commercial Silvaco® TCAD device simulator. The extracted trap parameters of the irradiated SBDs may be helpful in predicting the survival of 4H-SiC SBD detectors at higher irradiation levels.

  1. Active pore space utilization in nanoporous carbon-based supercapacitors: Effects of conductivity and pore accessibility

    NASA Astrophysics Data System (ADS)

    Seredych, Mykola; Koscinski, Mikolaj; Sliwinska-Bartkowiak, Malgorzata; Bandosz, Teresa J.

    2012-12-01

    Composites of commercial graphene and nanoporous sodium-salt-polymer-derived carbons were prepared with 5 or 20 weight% graphene. The materials were characterized using the adsorption of nitrogen, SEM/EDX, thermal analysis, Raman spectroscopy and potentiometric titration. The samples' conductivity was also measured. The performance of the carbon composites in energy storage was linked to their porosity and electronic conductivity. The small pores (<0.7) were found as very active for double layer capacitance. It was demonstrated that when double layer capacitance is a predominant mechanism of charge storage, the degree of the pore space utilization for that storage can be increased by increasing the conductivity of the carbons. That active pore space utilization is defined as gravimetric capacitance per unit pore volume in pores smaller than 0.7 nm. Its magnitude is affected by conductivity of the carbon materials. The functional groups, besides pseudocapacitive contribution, increased the wettability and thus the degree of the pore space utilization. Graphene phase, owing to its conductivity, also took part in an insitu increase of the small pore accessibility and thus the capacitance of the composites via enhancing an electron transfer to small pores and thus imposing the reduction of groups blocking the pores for electrolyte ions.

  2. Converting Ni-loaded biochars into supercapacitors: Implication on the reuse of exhausted carbonaceous sorbents

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Zhang, Yue; Pei, Lei; Ying, Diwen; Xu, Xiaoyun; Zhao, Ling; Jia, Jinping; Cao, Xinde

    2017-01-01

    Biochar derived from waste biomass has proven as a promising sorbent for removal of heavy metals from wastewater. However, proper disposal of such a heavy metal-containing biochar is challengeable. The major objective of this study is to create a reuse way by converting the heavy metal-loaded biochar into supercapacitor. Two biochars were produced from dairy manure and sewage sludge, respectively, and subjected to sorption of Ni from solution, and then the Ni-loaded biochar underwent microwave treatments for fabrication of supercapacitor. The specific capacitance of biochar supercapacitor increased with Ni loading, especially the Ni-loaded biochar further treated with microwave in which the capacitance increased by over 2 times, compared to the original biochar supercapacitors. The increase of capacitance in the Ni-loaded biochar supercapacitor following microwave treatment was mainly attributed to the conversion of Ni into NiO and NiOOH, which was evidenced by X-ray diffraction and X-ray photoelectron spectroscopy. The biochar supercapacitors, especially microwave-treated Ni-loaded biochar supercapacitors exhibited the high stability of specific capacitance, with less than 2% loss after 1000 charge-discharge cycles. This study demonstrated that Ni-loaded biochar can be further utilized for generation of supercapacitor, providing a potential way for the reuse of exhausted carbonaceous sorbents.

  3. Converting Ni-loaded biochars into supercapacitors: Implication on the reuse of exhausted carbonaceous sorbents

    PubMed Central

    Wang, Yifan; Zhang, Yue; Pei, Lei; Ying, Diwen; Xu, Xiaoyun; Zhao, Ling; Jia, Jinping; Cao, Xinde

    2017-01-01

    Biochar derived from waste biomass has proven as a promising sorbent for removal of heavy metals from wastewater. However, proper disposal of such a heavy metal-containing biochar is challengeable. The major objective of this study is to create a reuse way by converting the heavy metal-loaded biochar into supercapacitor. Two biochars were produced from dairy manure and sewage sludge, respectively, and subjected to sorption of Ni from solution, and then the Ni-loaded biochar underwent microwave treatments for fabrication of supercapacitor. The specific capacitance of biochar supercapacitor increased with Ni loading, especially the Ni-loaded biochar further treated with microwave in which the capacitance increased by over 2 times, compared to the original biochar supercapacitors. The increase of capacitance in the Ni-loaded biochar supercapacitor following microwave treatment was mainly attributed to the conversion of Ni into NiO and NiOOH, which was evidenced by X-ray diffraction and X-ray photoelectron spectroscopy. The biochar supercapacitors, especially microwave-treated Ni-loaded biochar supercapacitors exhibited the high stability of specific capacitance, with less than 2% loss after 1000 charge-discharge cycles. This study demonstrated that Ni-loaded biochar can be further utilized for generation of supercapacitor, providing a potential way for the reuse of exhausted carbonaceous sorbents. PMID:28128297

  4. Microstructure and supercapacitive properties of buserite-type manganese oxide with a large basal spacing

    NASA Astrophysics Data System (ADS)

    Sun, Zhenjie; Shu, Dong; Chen, Hongyu; He, Chun; Tang, Shaoqing; Zhang, Jie

    2012-10-01

    A hydration-layered structure of buserite-type manganese oxide (Mg-buserite) was successfully synthesized by an ion exchange method. The as-prepared Mg-buserite possesses a large basal spacing of 10 Å, and contains Mg2+ ions and two sheets of water molecules in the interlayer region. The supercapacitive behaviors of Mg-buserite were systematically investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (CD) experiments and electrochemical impedance spectroscopy (EIS). The results showed that the specific capacitance of the Mg-buserite electrode sharply increased during the initial 500 cycles and reached a maximum of 164 F g-1 at approximately the 500th cycle at a scan rate of 1 mV s-1, and then it remained an almost constant value and decreased slightly upon prolonged cycling. After 22,000 cycles, the specific capacitance decreased by approximately 6% of the maximum specific capacitance. The superior capacitive behavior and excellent cycling stability of the as-prepared Mg-buserite are attributed to the large basal spacing, which can accommodate a larger amount of electrolyte cations and provide more favorable pathways for electrolyte cations intercalation and deintercalation. The experimental results demonstrate that Mg-buserite is a promising candidate as an electrode material for supercapacitors.

  5. BATSE spectroscopy analysis system

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Bansal, Sandhia; Basu, Anju; Brisco, Phil; Cline, Thomas L.; Friend, Elliott; Laubenthal, Nancy; Panduranga, E. S.; Parkar, Nuru; Rust, Brad

    1992-01-01

    The Burst and Transient Source Experiment (BATSE) Spectroscopy Analysis System (BSAS) is the software system which is the primary tool for the analysis of spectral data from BATSE. As such, Guest Investigators and the community as a whole need to know its basic properties and characteristics. Described here are the characteristics of the BATSE spectroscopy detectors and the BSAS.

  6. Charge density dependent mobility of organic hole-transporters and mesoporous TiO₂ determined by transient mobility spectroscopy: implications to dye-sensitized and organic solar cells.

    PubMed

    Leijtens, Tomas; Lim, Jongchul; Teuscher, Joël; Park, Taiho; Snaith, Henry J

    2013-06-18

    Transient mobility spectroscopy (TMS) is presented as a new tool to probe the charge carrier mobility of commonly employed organic and inorganic semiconductors over the relevant range of charge densities. The charge density dependence of the mobility of semiconductors used in hybrid and organic photovoltaics gives new insights into charge transport phenomena in solid state dye sensitized solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of picosecond time-resolved X-ray absorption spectroscopy by high-repetition-rate laser pump/X-ray probe at Beijing Synchrotron Radiation Facility.

    PubMed

    Wang, Hao; Yu, Can; Wei, Xu; Gao, Zhenhua; Xu, Guang Lei; Sun, Da Rui; Li, Zhenjie; Zhou, Yangfan; Li, Qiu Ju; Zhang, Bing Bing; Xu, Jin Qiang; Wang, Lin; Zhang, Yan; Tan, Ying Lei; Tao, Ye

    2017-05-01

    A new setup and commissioning of transient X-ray absorption spectroscopy are described, based on the high-repetition-rate laser pump/X-ray probe method, at the 1W2B wiggler beamline at the Beijing Synchrotron Radiation Facility. A high-repetition-rate and high-power laser is incorporated into the setup with in-house-built avalanche photodiodes as detectors. A simple acquisition scheme was applied to obtain laser-on and laser-off signals simultaneously. The capability of picosecond transient X-ray absorption spectroscopy measurement was demonstrated for a photo-induced spin-crossover iron complex in 6 mM solution with 155 kHz repetition rate.

  8. Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    PubMed Central

    Malý, Pavel; Ravensbergen, Janneke; Kennis, John T. M.; van Grondelle, Rienk; Croce, Roberta; Mančal, Tomáš; van Oort, Bart

    2017-01-01

    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by (or compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy. PMID:28262765

  9. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    PubMed

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.

  10. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy

    PubMed Central

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-01-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account. PMID:23940503

  11. An Introduced Hybrid Graphene/Polyaniline Composites for Improvement of Supercapacitor

    NASA Astrophysics Data System (ADS)

    Tayel, Mazhar B.; Soliman, Moataz M.; Ebrahim, Shaker; Harb, Mohamed E.

    2016-01-01

    Supercapacitors represent an attractive alternative for portable electronics and automotive applications due to their high capacitance, specific power and extended life. In fact, the growing demand of portable systems and hybrid electric vehicles, memory protection in complementary metal-oxide-semiconductor (CMOS), logic circuit, videocassette recorders (VCRs), compact disc (CD) players, personal computers (PCs), uninterruptible power supply (UPS) in security alarm systems, remote sensing, smoke detectors, etc. require high power in short-term pulses. Therefore, in the last 20 years, supercapacitors have been required for the development of large and small devices driven by electrical power. In this paper, graphene oxide (GO) was synthesized by improved Hummers method. Two polyaniline (PANI)/graphene oxide nanocomposites electrode materials were prepared from aniline, GO and ammoniumpersulfate (APS) by in situ chemical polymerization with the mass ratios (mGO:mAniline) 10:90 and 30: 70 in ice bath. The crystal structure and the surface topography of all materials were characterized by means of x-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of the composites were evaluated by cyclic voltammetry (CV), charge-discharge measurements and electrical impedance spectroscopy (EIS), respectively. The results show that the composites have similar and enhanced cyclic voltammetry performance compared with pure PANI based electrode material. The graphene/PANI composite synthesized with the mass ratio (mANI:mGO) 90:10 possessed good capacitive behavior with a specific capacitance as high as 1509.35 F/g at scan rate of 1 mV/s in scanning potential window from -0.8 V to 0.8 V.

  12. Photo-induced electronic properties in single quantum well system: effect of excitonic lifetime

    NASA Astrophysics Data System (ADS)

    Patwari, Jayita; Ghadi, Hemant; Sardar, Samim; Singhal, Jashan; Tongbram, Binita; Shyamal, Sanjib; Bhattacharya, Chinmoy; Chakrabarti, Subhananda; Pal, Samir Kumar

    2017-01-01

    In the present study, we have established a correlation between the photo-induced electronic phenomena and excited state lifetime of the photo generated carriers in double barrier Al0.3Ga0.7As\\GaAs quantum well (QW) structures. The excited state lifetime was measured experimentally by picosecond time resolved photoluminescence spectroscopy for two samples with different well widths (5.3 nm and 16.5 nm). The faster nonradiative decay time of the narrower well can be attributed to the facile escape of electrons from well to barrier due to lower associated energy compared to that of the thicker well which resembles the simulated results of the energy level distribution. The proposed mechanism of carrier escape is further proven from the higher value of unconventional excitonic capacitance value in the thicker well, measured by impedance spectroscopy. The dependence of photo-induced capacitance on well thickness is explained by the lifetime of the excited carriers in this study. Dependence of the photo-generated capacitance (C) on externally applied bias voltage (V) was also studied to quantitatively establish a proportional relation between the carrier holding capacity of the well and the excitonic lifetime. The higher accumulation of charge and lower ground state energy of the thicker well is evident from the higher tunnelling current found for the same in the photocurrent (I) versus voltage (V) measurement. Thus the escape of electrons from the well to barrier is the key factor affecting the photo generated charge accumulation and its holding capacity which in turn influences the device performances.

  13. Comparison and Interpretation of Admittance Spectroscopy and Deep Level Transient Spectroscopy from Co-Evaporated and Solution-Deposited Cu2ZnSn(Sx, Se1-x)4 Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caruso, A. E.; Lund, E. A.; Kosyak, V.

    2016-11-21

    Cu2ZnSn(S, Se)4 (CZTSe) is an earth-abundant semiconductor with potential for economical thin-film photovoltaic devices. Short minority carrier lifetimes contribute to low open circuit voltage and efficiency. Deep level defects that may contribute to lower minority carrier lifetimes in kesterites have been theoretically predicted, however very little experimental characterization of these deep defects exists. In this work we use admittance spectroscopy (AS) and deep level transient spectroscopy (DLTS) to characterize devices built using CZTSSe absorber layers deposited via both coevaporation and solution processing. AS reveals a band of widely-distributed activation energies for traps or energy barriers for transport, especially in themore » solution deposited case. DLTS reveals signatures of deep majority and minority traps within both types of samples.« less

  14. Poly(ortho-phenylenediamine-co-aniline) based copolymer with improved capacitance

    NASA Astrophysics Data System (ADS)

    Olmedo-Martínez, Jorge L.; Farías-Mancilla, Bárbara I.; Vega-Rios, Alejandro; Zaragoza-Contreras, E. Armando

    2017-10-01

    A poly(ortho-phenylenediamine-co-aniline) copolymer is synthesized via the oxidative route, using a 1:1 M ratio of aniline to ortho-phenylenediamine (oPDA) and ammonium persulfate as the oxidizing agent. Infrared spectroscopy indicates that the copolymer contains the functional groups typically present in polyaniline and poly(ortho-phenylenediamine); whereas UV-vis-NIR spectroscopy shows that the copolymer adopts a phenazine-type structure. Cyclic voltammetry evidences the copolymer synthesis, as a redox peak at -65 mV, different from those exhibited by polyaniline (160 mV and 600 mV) or poly(o-phenylenediamine) (-240 mV) is observed. Finally, electrochemical impedance spectroscopy and the charge/discharge test provide support to propose the copolymer application in electrodes for supercapacitors.

  15. Nonlinear Optical Properties of Semiconducting Polymers.

    DTIC Science & Technology

    1990-01-01

    geberation in both cis and trans- polyacetylene. In the fast transient photoconductivity area, we will attempt to move into the sub-picosecond regime...spectroscopy (ir through visible) of third harmonic geberation in both cis and trans- polyacetylene. In the fast transient photoconductivity area, we will

  16. Mild degradation processes in ZnO-based varistors: the role of Zn vacancies

    NASA Astrophysics Data System (ADS)

    Ponce, M. A.; Macchi, C.; Schipani, F.; Aldao, C. M.; Somoza, A.

    2015-03-01

    The effects of a degradation process on the structural and electrical properties of ZnO-based varistors induced by the application of dc bias voltage were analysed. Capacitance and resistance measurements were carried out to electrically characterize the polycrystalline semiconductor before and after different degrees of mild degradation. Vacancies' changes in the varistors were studied with positron annihilation lifetime spectroscopy. Variations on the potential barrier height and effective doping concentration were determined by fitting the experimental data from impedance spectroscopy measurements. These results indicate two different stages in the degradation process consistent with vacancy-like concentration changes.

  17. Bipolar Transistor and Diode Failure to Electrical Transients-Predictive Failure Modeling versus Experimental Damage Testing. 1 Junction Capacitance Damage Model

    DTIC Science & Technology

    1981-06-01

    into the Wunsch-Bell equation) are P = A R , 1t-0 5 1.2 PD) = A26B2t-.5 (3) JAJ where A,*, A, B1, and B2 are experimentally determined constants and TJ...ATTN CODE 7240, S. N. LICHT’NAN PATRICK AID, FL 32J25 DIV COIMAND SAN DIEGO, CA 92152 ATTN D]PN-ATC AF WEAPONS LABORATORY, AFSC ATTN DRCFN- TDS -DSI

  18. Absorption of a laser light pulse in a dense plasma.

    NASA Technical Reports Server (NTRS)

    Mehlman-Balloffet, G.

    1973-01-01

    An experimental study of the absorption of a laser light pulse in a transient, high-density, high-temperature plasma is presented. The plasma is generated around a metallic anode tip by a fast capacitive discharge occurring in vacuum. The amount of transmitted light is measured for plasmas made of different metallic ions in the regions of the discharge of high electronic density. Variation of the transmission during the laser pulse is also recorded. Plasma electrons are considered responsible for the very high absorption observed.

  19. Bio Organic-Semiconductor Field-Effect Transistor (BioFET) Based on Deoxyribonucleic Acid (DNA) Gate Dielectric

    DTIC Science & Technology

    2010-03-31

    in OFETs have been investigated extensively in the past couple of years. They are mainly attributed to the (i) charge trapping and release in the...This sharp rise in capacitance can be attributed due to trap charges or impurities such as ions which is most likely in the bulk of DNA-CTMA as well...5 Transient response of BiOFETs As mentioned before, charge trapping and release time can be strong function of applied voltage as well as device

  20. Formation of copper precipitates in silicon

    NASA Astrophysics Data System (ADS)

    Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.

    1999-12-01

    The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.

  1. Electrical properties of grain boundaries and dislocations in crystalline silicon: Influence of impurity incorporation and hydrogenation

    NASA Astrophysics Data System (ADS)

    Park, Yongkook

    This thesis examines the electrical properties of grain boundaries (GBs) and dislocations in crystalline silicon. The influence of impurity incorporation and hydrogenation on the electrical properties of grain boundaries , as well as the electrical activity of impurity decorated dislocations and the retention of impurities at dislocations at high temperatures have been investigated. The electrical properties of Si GB were examined by C-V, J-V , and capacitance transient methods using aluminum/Si(100)/Si(001) junctions. First, the density of states and the carrier capture cross-sections of the clean GB were evaluated by C-V/J-V analyses. The density of GB states was determined as 4.0x1012 cm-2eV -1. It was found that the states close to the valance band edge have relatively smaller hole capture cross sections than those at higher energy position, and electron capture cross sections are at least two or three orders larger than the corresponding hole capture cross sections. Secondly, the influence of iron contamination and hydrogenation following iron contamination on the electrical properties of (110)/(001) Si GB was characterized by a capacitance transient technique. Compared with the clean sample, iron contamination increased both the density of states by at least three times and the zero-bias barrier height by 70 meV, while reducing by two orders of magnitude the electron/hole capture cross-section ratio. Hydrogenation following iron contamination led to the reduction of the density of Fe-decorated GB states, which was increased to over 2x1013 cm-2eV-1 after iron contamination, to ˜1x1013 cm-2 eV-1 after hydrogenation treatment. The increased zero-bias GB energy barrier due to iron contamination was reversed as well by hydrogen treatment. The density of GB states before and after hydrogenation was evaluated by J-V, C-V and capacitance transient methods using gold/direct-silicon-bonded (DSB) (110) thin silicon top layer/(100) silicon substrate junctions. The GB potential energy barrier in thermal equilibrium was reduced by 70 meV. Whereas the clean sample had a density of GB states of ˜6x1012 cm-2eV-1 in the range of Ev+0.54˜0.64 eV, hydrogenation reduced the density of GB states to ˜9x1011 cm-2eV -1 in the range of Ev+0.56˜0.61 eV, which is about a seven-fold reduction from that of the clean sample. Segregation and thermal dissociation kinetics of hydrogen at a large-angle general GB in crystalline silicon have been investigated using deuterium as a readily identifiable isotope which duplicates hydrogen chemistry. Segregation or trapping of deuterium (hydrogen) introduced was found to take place at (110)/(001) Si GB. The segregation coefficient (k) of deuterium (hydrogen) at GB was determined as k≈24+/-3 at 100°C. Thermal dissociation of deuterium (hydrogen) from GB obeyed first-order kinetics with an activation energy of ˜1.62 eV. The electrical activities of dislocations in a SiGe/Si heterostructure were examined by deep level transient spectroscopy (DLTS) after iron contamination and phosphorous diffusion gettering. DLTS of iron contaminated samples revealed a peak at 210 K, which was assigned to individual iron atoms or very small (<2 nm) precipitates decorated along dislocations. Arrhenius plot of the 210 K peak yielded a hole capture cross section of 2.4x10-14 cm2 and an energy level of 0.42 eV above the valance band. DLTS of the iron contaminated sample revealed that 6x10 14 cm-3 of boron can more effectively trap interstitial iron at room temperature than the strain field/defect sites at 107 ˜108 cm-2 dislocations. Phosphorous diffusion experiments revealed that the gettering efficiency of iron impurities depends on the dislocation density. For regions of high dislocation density, phosphorous diffusion cannot remove all iron impurities decorated at dislocations, suggesting a strong binding of iron impurities at dislocation core defects.

  2. Deep level study of Mg-doped GaN using deep level transient spectroscopy and minority carrier transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Duc, Tran Thien; Pozina, Galia; Amano, Hiroshi; Monemar, Bo; Janzén, Erik; Hemmingsson, Carl

    2016-07-01

    Deep levels in Mg-doped GaN grown by metal organic chemical vapor deposition (MOCVD), undoped GaN grown by MOCVD, and halide vapor phase epitaxy (HVPE)-grown GaN have been studied using deep level transient spectroscopy and minority charge carrier transient spectroscopy on Schottky diodes. One hole trap, labeled HT1, was detected in the Mg-doped sample. It is observed that the hole emission rate of the trap is enhanced by increasing electric field. By fitting four different theoretical models for field-assisted carrier emission processes, the three-dimensional Coulombic Poole-Frenkel (PF) effect, three-dimensional square well PF effect, phonon-assisted tunneling, and one-dimensional Coulombic PF effect including phonon-assisted tunneling, it is found that the one-dimensional Coulombic PF model, including phonon-assisted tunneling, is consistent with the experimental data. Since the trap exhibits the PF effect, we suggest it is acceptorlike. From the theoretical model, the zero field ionization energy of the trap and an estimate of the hole capture cross section have been determined. Depending on whether the charge state is -1 or -2 after hole emission, the zero field activation energy Ei 0 is 0.57 eV or 0.60 eV, respectively, and the hole capture cross section σp is 1.3 ×10-15c m2 or 1.6 ×10-16c m2 , respectively. Since the level was not observed in undoped GaN, it is suggested that the trap is associated with an Mg related defect.

  3. Egg water from the amphibian Bufo arenarum induces capacitation-like changes in homologous spermatozoa

    PubMed Central

    Krapf, Darío; Visconti, Pablo E.; Arranz, Silvia E; Cabada, Marcelo O

    2007-01-01

    Mammalian sperm acquire fertilizing capacity after residing in the female tract, where physiological changes named capacitation take place. In animals with external fertilization as amphibians, gamete interactions are first established between sperm and molecules of the egg jelly coat released into the medium. Since dejellied oocytes are not normally fertilized, the aim of this study was to determine if the jelly coat of the toad Bufo arenarum promotes a “capacitating” activity on homologous sperm. We found that sperm incubation in diffusible substances of the jelly coat (Egg Water) for 90–180 sec is sufficient to render sperm transiently capable of fertilizing dejellied oocytes. The fertilizing state was correlated with an increase of protein tyrosine phosphorylation and a decrease of sperm cholesterol content. Inhibition of either the increase in tyrosine phosphorylation or cholesterol efflux affected the acquisition of fertilizing capacity. Phosphorylation and fertilization could be promoted with NaHCO3, and also by addition of beta cyclodextrin. Moreover, sperm could gain the ability to fertilize dejellied oocytes in the presence of these compounds. These data indicate that sperm should undergo a series of molecular changes to gain fertilizing capacity; these changes are reminiscent of mammalian sperm capacitation and take place before the acrosome reaction. PMID:17459363

  4. Fusion of Ultraviolet-Visible and Infrared Transient Absorption Spectroscopy Data to Model Ultrafast Photoisomerization.

    PubMed

    Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel

    2017-08-03

    Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.

  5. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    PubMed

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.

  6. Tracking Co(I) Intermediate in operando in Photocatalytic Hydrogen Evolution by X-ray transient Absorption Spectroscopy and DFT Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhi-Jun; Zhan, Fei; Xiao, Hongyan

    X-ray transient absorption spectroscopy (XTA) and optical transient spectroscopy (OTA) were used to probe the Co(I) intermediate generated in situ from an aqueous photocatalytic hydrogen evolution system, with [RuII(bpy)3]Cl2·6H2O as the photosensitizer, ascorbic acid/ascorbate as the electron donor, and the Co-polypyridyl complex ([CoII(DPABpy) Cl]Cl) as the pre-catalyst. Upon exposure to light, the XTA measured at Co K-edge visualizes the grow and decay of the Co(I) intermediate, and reveals its Co-N bond contraction of 0.09 ± 0.03 Å. Density functional theory (DFT) calculations support the bond contraction and illustrate that the metal-to-ligand π back-bonding greatly stabilizes the penta-coordinated Co(I) intermediate, whichmore » provides easy photon access. To the best of our knowledge, this is the first example of capturing the penta-coordinated Co(I) intermediate in operando with bond contraction by XTA, thereby providing new insights for fundamental understanding of structure– function relationship of cobalt-based molecular catalysts.« less

  7. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction

    NASA Astrophysics Data System (ADS)

    Jiang, Baojiang; Tian, Chungui; Wang, Lei; Sun, Li; Chen, Chen; Nong, Xiaozhen; Qiao, Yingjie; Fu, Honggang

    2012-02-01

    In this work, we developed a concentrated ammonia-assisted hydrothermal method to obtain N-doped graphene sheets by simultaneous N-doping and reduction of graphene oxide (GO) sheets. The effects of hydrothermal temperature on the surface chemistry and the structure of N-doped graphene sheets were also investigated. X-ray photoelectron spectroscopy (XPS) study of N-doped graphene reveals that the highest doping level of 7.2% N is achieved at 180 °C for 12 h. N binding configurations of sample consist of pyridine N, quaternary N, and pyridine-N oxides. N doping is accompanied by the reduction of GO with decreases in oxygen levels from 34.8% in GO down to 8.5% in that of N-doped graphene. Meanwhile, the sample exhibits excellent N-doped thermal stability. Electrical measurements demonstrate that products have higher capacitive performance than that of pure graphene, the maximum specific capacitance of 144.6 F/g can be obtained which ascribe the pseudocapacitive effect from the N-doping. The samples also show excellent long-term cycle stability of capacitive performance.

  8. Electrochemical Study of Hydrocarbon-Derived Electrolytes for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Noorden, Zulkarnain A.; Matsumoto, Satoshi

    2013-10-01

    In this paper, we evaluate the essential electrochemical properties - capacitive and resistive behaviors - of hydrocarbon-derived electrolytes for supercapacitor application using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrolytes were systematically prepared from three hydrocarbon-derived compounds, which have different molecular structures and functional groups, by treatment with high-concentration sulfuric acid (H2SO4) at room temperature. Two-electrode cells were assembled by sandwiching an electrolyte-containing glass wool separator with two active electrodes of activated carbon sheets. The dc electrical properties of the tested cells in terms of their capacitive behavior were investigated by CV, and in order to observe the frequency characteristics of the constructed cells, EIS was carried out. Compared with the tested cell with only high-concentration H2SO4 as the electrolyte, the cell with the derived electrolytes exhibit a capacitance as high as 135 F/g with an improved overall internal resistance of 2.5 Ω. Through the use of a simple preparation method and low-cost precursors, hydrocarbon-derived electrolytes could potentially find large-scale and higher-rating supercapacitor applications.

  9. Insight into capacitive performance of polyaniline/graphene oxide composites with ecofriendly binder

    NASA Astrophysics Data System (ADS)

    Bilal, Salma; Fahim, Muhammad; Firdous, Irum; Ali Shah, Anwar-ul-Haq

    2018-03-01

    The behaviour of gold electrode modified with polyaniline/graphene oxide composites (PGO) was studied for electrochemical and charge storage properties in aqueous acidic media. The surface of gold electrode was modified with aqueous slurry of PGO by using Carboxymethyl cellulose (CMC) as binder. The intercalation of polyaniline in the GO layers, synthesized by in situ polymerization was confirmed by scanning electron microscopy (SEM). The electrochemical behaviour and charge storing properties were investigated using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS). A high specific capacitance of 1721 F g-1 was obtained for PGO with 69.8% retention of capacitance even after 1000 voltammetric cycles in the potential range of 0-0.9 V at 20 mV s-1. EIS indicated low charge transfer resistance (Rct) and solution resistance (Rs) values of 0.51 Ω and 0.07 Ω, respectively. This good performance of PGO coated electrode is attributed to the use of CMC binder which generate a high electrode/ electrolyte contact area and short path lengths for electronic transport and electrolyte ion.

  10. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less

  11. High-surface-area nitrogen-doped reduced graphene oxide for electric double-layer capacitors

    DOE PAGES

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; ...

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH₃ gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007m²g⁻¹), high electrical conductivity (1532S m⁻¹), and low oxygen content (1.5 wt%) for electric double-layer capacitor applications. The specific capacitance of N-RGO was 291 Fg⁻¹ at a current density of 1 A g⁻¹, and a capacitance of 261 F g⁻¹ was retained at 50 A g⁻¹, indicating a very good rate capability. N-RGO also showed excellent cycling stability, preserving 96% of the initial specific capacitance after 100,000 cycles. Near-edge X-ray absorptionmore » fine-structure spectroscopy evidenced the recover of π-conjugation in the carbon networks with the removal of oxygenated groups and revealed the chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content.« less

  12. Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach.

    PubMed

    Ali, Gomaa A M; Divyashree, A; Supriya, S; Chong, Kwok Feng; Ethiraj, Anita S; Reddy, M V; Algarni, H; Hegde, Gurumurthy

    2017-10-17

    Carbon nanospheres derived from a natural source using a green approach were reported. Lablab purpureus seeds were pyrolyzed at different temperatures to produce carbon nanospheres for supercapacitor electrode materials. The synthesized carbon nanospheres were analyzed using SEM, TEM, FTIR, TGA, Raman spectroscopy, BET and XRD. They were later fabricated into electrodes for cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy testing. The specific capacitances were found to be 300, 265 and 175 F g -1 in 5 M KOH electrolyte for carbon nanospheres synthesized at 800, 700 and 500 °C, respectively. These are on a par with those of prior electrodes made of biologically derived carbon nanospheres but the cycle lives were remarkably higher than those of any previous efforts. The electrodes showed 94% capacitance retention even after 5200 charge/discharge cycles entailing excellent recycling durability. In addition, the practical symmetrical supercapacitor showed good electrochemical behaviour under a potential window up to 1.7 V. This brings us one step closer to fabricating a commercial green electrode which exhibits high performance for supercapacitors. This is also a waste to wealth approach based carbon material for cost effective supercapacitors with high performance for power storage devices.

  13. Interfacial characterization and supercapacitive properties of polyaniline-Gum arabic nanocomposite/graphene oxide LbL modified electrodes

    NASA Astrophysics Data System (ADS)

    Oliveira, Rafaela D.; Santos, Cleverson S.; Ferreira, Rodolfo T.; Marciniuk, Gustavo; Marchesi, Luís F.; Garcia, Jarem R.; Vidotti, Marcio; Pessoa, Christiana A.

    2017-12-01

    In this manuscript, we describe the synthesis and electrochemical characterization of polyaniline-gum arabic nanocomposites and graphene oxide (PANI-GA/GO) modified electrodes with a detailed study concerning their supercapacitive properties. The electrode modification was carried out by using the Layer-by-Layer technique (LbL), where the PANI-GA nanocomposite dispersion was used as polycation and the GO colloidal dispersion as polyanion. The bilayer growth was followed by both UV-vis spectroscopy and cyclic voltammetry, and an increase in the characteristic PANI absorption and in the electrochemical signal was verified, confirming the electrode build up. Galvanostatic charge-discharge curves (GCDC) were performed to evaluate the supercapacitive properties of the modified electrodes, these results showed the dependence of the specific capacitance with the number of bilayers, where values of CS around 15 mF cm-2 (i = 0.1 mA cm-2) were found. Electrochemical impedance spectroscopy confirmed the pseudocapacitive properties of the modified electrodes, showing an increase in the low-frequency capacitance with the number of bilayers. Hereby the (PANI-GA/GO)-LbL electrodes were shown to be good candidates for active materials in supercapacitors.

  14. Vapor-phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT) on commercial carbon coated aluminum foil as enhanced electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Tong, Linyue; Skorenko, Kenneth H.; Faucett, Austin C.; Boyer, Steven M.; Liu, Jian; Mativetsky, Jeffrey M.; Bernier, William E.; Jones, Wayne E.

    2015-11-01

    Laminar composite electrodes are prepared for application in supercapacitors using a catalyzed vapor-phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on the surface of commercial carbon coated aluminum foil. These highly electrically conducting polymer films provide for rapid and stable power storage per gram at room temperature. The chemical composition, surface morphology and electrical properties are characterized by Raman spectroscopy, scanning electron microscopy (SEM), and conducting atomic force microscopy (C-AFM). A series of electrical measurements including cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy are also used to evaluate electrical performance. The processing temperature of VPP shows a significant effect on PEDOT morphology, the degree of orientation and its electrical properties. The relatively high temperature leads to high specific area and large conductive domains of PEDOT layer which benefits the capacitive behavior greatly according to the data presented. Since the substrate is already highly conductive, the PEDOT based composite can be used as electrode materials directly without adding current collector. By this simple and efficient process, PEDOT based composites exhibit specific capacitance up to 134 F g-1 with the polymerization temperature of 110 °C.

  15. A novel approach for supercapacitors degradation characterization

    NASA Astrophysics Data System (ADS)

    Oz, Alon; Gelman, Danny; Goren, Emanuelle; Shomrat, Neta; Baltianski, Sioma; Tsur, Yoed

    2017-07-01

    A novel approach to analyze electrochemical impedance spectroscopy (EIS), based on evolutionary programming, has been utilized to characterize supercapacitors operation mechanism and degradation processes. This approach poses the ability of achieving a comprehensive study of supercapacitors via solely AC measurements. Commercial supercapacitors were examined during accelerated degradation. The microstructure of the electrode-electrolyte interface changes upon degradation; electrolyte parasitic reactions yield the formation of precipitates on the porous surface, which limit the access of the electrolyte ions to the active area and thus reduces performance. EIS analysis using Impedance Spectroscopy Genetic Programming (ISGP) technique enables identifying how the changing microstructure is affecting the operation mechanism of supercapacitors, in terms of each process effective capacitance and time constant. The most affected process is the transport of electrolyte ions at the porous electrode. Their access to the whole active area is hindered, which is shown in our analysis by the decrease of the capacitance gained in the transport and the longer time it takes to penetrate the entire pores depth. Early failure detection is also demonstrated, in a way not readily possible via conventional indicators. ISGP advanced analysis method has been verified using conventional and proven techniques: cyclic voltammetry and post mortem measurements.

  16. Construction of NiO/MnO2/CeO2 hybrid nanoflake arrays as platform for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Cui, Lihua; Cui, Jiewu; Zheng, Hongmei; Wang, Yan; Qin, Yongqiang; Shu, Xia; Liu, Jiaqin; Zhang, Yong; Wu, Yucheng

    2017-09-01

    Rational design and fabrication of novel electrode materials are of great importance for developing supercapacitors with remarkable capacitance and enhanced cycling stability. In this paper, we present a simple one-pot hydrothermal deposition followed by calcinations process for the in situ construction of homogeneous NiO/MnO2/CeO2 (NMC) nanoflake arrays on Ni foam substrate, which could be directly adopted as the binder-free electrode materials for high performance supercapacitors. The field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) are carried out to investigate the morphology, microstructure and composition of NMC nanoflake arrays. As-prepared hierarchical NMC nanoflake arrays exhibit the specific capacitance of 1027.8 F g-1 at a current density of 3.1 A g-1 and excellent cycling stability of 97.8% after 5000 charge/discharge cycles. This facile, cost-effective and controllable fabrication route and the robust supercapacitive activity suggest that the ordered NMC nanoflake arrays could be promising candidate electrode materials for high performance electrochemical energy storage devices.

  17. Carbon electrode for desalination purpose in capacitive deionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endarko,, E-mail: endarko@physics.its.ac.id; Fadilah, Nurul; Anggoro, Diky

    Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 – 1400 m{sup 2}/g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consistedmore » of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.« less

  18. The role of lipopolysaccharide on the electrochemical behavior of titanium.

    PubMed

    Barão, V A; Mathew, M T; Assunção, W G; Yuan, J C; Wimmer, M A; Sukotjo, C

    2011-05-01

    Lipopolysaccharide (LPS) may induce peri-implantitis and implant failure. However, the role of LPS in titanium (Ti) electrochemical behavior remains unknown. We hypothesized that LPS in saliva with different pHs affects Ti corrosion properties. Thirty-six Ti discs (15 mm × 3 mm) were divided into 12 groups according to saliva pH (3, 6.5, and 9) and Escherichia coli LPS concentration (0, 0.15, 15, and 150 µg/mL). Electrochemical tests, such as open circuit potential, potentiodynamic, and electrochemical impedance spectroscopy, were conducted in a controlled environment. Data were evaluated by Pearson correlation and regression analysis (α = 0.05). LPS and pH affected Ti corrosive behavior. In general, lower pH and higher LPS concentration accelerated Ti corrosion. In the control group, the increase of pH significantly reduced the corrosion rate and increased the capacitance of the double layer. In LPS groups, the decrease of pH significantly increased the corrosion rate of Ti. LPS negatively influenced Ti corrosion behavior. C(dl), capacitance of double layer; E(corr), corrosion potential; EIS, electrochemical impedance spectroscopy; I(corr), corrosion current density; I(pass), passivation current density; LPS, lipopolysaccharide; OCP, open circuit potential; R(p), polarization resistance; Ti, titanium.

  19. Embedded silver PDMS electrodes for single cell electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Yuan; Xu, Zhensong; Cachia, Mark A.; Nguyen, John; Zheng, Yi; Wang, Chen; Sun, Yu

    2016-09-01

    This paper presents a microfluidic device with wide channels and embedded AgPDMS electrodes for measuring the electrical properties of single cells. The work demonstrates the feasibility of using a large channel design and embedded electrodes for impedance spectroscopy to circumvent issues such as channel clogging and limited device re-usability. AgPDMS electrodes were formed on channel sidewalls for impedance detection and cell electrical properties measurement. Equivalent circuit models were used to interpret multi-frequency impedance data to quantify each cell’s cytoplasm conductivity and specific membrane capacitance. T24 cells were tested to validate the microfluidic system and modeling results. Comparisons were then made by measuring two leukemia cell lines (AML-2 and HL-60) which were found to have different cytoplasm conductivity values (0.29  ±  0.15 S m-1 versus 0.47  ±  0.20 S m-1) and specific membrane capacitance values (41  ±  25 mF m-2 versus 55  ±  26 mF m-2) when the cells were flown through the wide channel and measured by the AgPDMS electrodes.

  20. Green synthesis of cobalt (II, III) oxide nanoparticles using Moringa Oleifera natural extract as high electrochemical electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Matinise, N.; Mayedwa, N.; Fuku, X. G.; Mongwaketsi, N.; Maaza, M.

    2018-05-01

    The research work involved the development of a better, inexpensive, reliable, easily and accurate way for the fabrication of Cobalt (II, III) oxide (Co3O4) nanoparticles through a green synthetic method using Moringa Oleifera extract. The electrochemical activity, crystalline structure, morphology, isothermal behaviour and optical properties of Co3O4 nanoparticles were studied using various characterization techniques. The X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS) analysis confirmed the formation of Co3O4 nanoparticles. The pseudo-capacitor behaviour of spinel Co3O4 nanoparticles on Nickel foam electrode was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in 3M KOH solution. The CV curve revealed a pairs of redox peaks, indicating the pseudo-capacitive characteristics of the Ni/Co3O4 electrode. EIS results showed a small semicircle and Warburg impedance, indicating that the electrochemical process on the surface electrode is kinetically and diffusion controlled. The charge-discharge results indicating that the specific capacitance Ni/Co3O4 electrode is approximately 1060 F/g at a discharge current density of at 2 A/g.

  1. High performance supercapacitor from activated carbon derived from waste orange skin

    NASA Astrophysics Data System (ADS)

    Ahmed, Sultan; Hussain, S.; Ahmed, Ahsan; Rafat, M.

    2018-05-01

    Activated carbon due to its inherent properties such as large surface area and low cost is most frequently used electrode material for supercapacitor. Activated carbon has been previously derived from various biomass such as coconut shell, coffee bean etc. Herein, we report the synthesis of activated carbon from waste orange skin. The material was synthesized employing chemical activation method and the success of synthesis was confirmed by its physical and electrochemical properties. The physical properties of the as-prepared sample were studied using the techniques of XRD, SEM, Raman spectroscopy and N2 adsorption/desorption analysis while its electrochemical properties were studied in two-electrode assembly using liquid electrolyte (consisting of 1 M solution of LiTFSI dispersed in ionic liquid EMITFSI) and employing the techniques of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge- discharge. The synthesized sample of activated carbon exhibits high specific capacitance of 115 F g-1 at 10 mV s-1. Also, the activated carbon electrode shows the retention of ˜75% in initial capacitance value for more than 2000 initial cycles, indicating the as-prepared activated carbon can be profitably used as electrode material for energy storage devices.

  2. A core–shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Z.B., E-mail: zbwen@jxnu.edu.cn; Yu, F.; College of Energy, Nanjing Tech University, Nanjing 211816, Jiangsu Province

    2016-02-15

    Highlights: • A core–shell structured NiO@CNTs nanocomposite is synthesized by a simple hydrothermal method. • The CNTs core effectively improves the capacitance, rate and cycling performance of NiO. • A supercapacitor is assembled when activated carbon is used as the negative electrode. • The supercapacitor presents an energy density up to 52.6 Wh kg{sup −1}. - Abstract: A nanocomposite of carbon nanotubes coated with nickel oxide was prepared by a simple hydrothermal method. The structure, morphology and electrochemical performance of the nanocomposite were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, electrochemical tests including cyclic voltammogram, galvanostaticmore » charge–discharge and electrochemical impedance spectroscopy, respectively. It presents the highest specific capacitance of 1844 F g{sup −1} at 1 A g{sup −1} and 1145 F g{sup −1} at current density of 10 A g{sup −1} with 88.9% (at 1 A g{sup −1}) capacitance retention after 1000 cycles. The specific capacitance of the nanocomposite is almost double of that of the virginal NiO (972 F g{sup −1} at 1 A g{sup −1}). Its cycling behavior is also very good. When combined with activated carbon as the negative electrode, the energy density can be up to 52.6 Wh kg{sup −1}. Such good electrochemical behavior indicates that the nanocomposite is a promising electrode material for supercapacitors.« less

  3. Vanadium Pentoxide Nanobelt-Reduced Graphene Oxide Nanosheet Composites as High-Performance Pseudocapacitive Electrodes: ac Impedance Spectroscopy Data Modeling and Theoretical Calculations

    PubMed Central

    Gupta, Sanju; Aberg, Bryce; Carrizosa, Sara B.; Dimakis, Nicholas

    2016-01-01

    Graphene nanosheets and graphene nanoribbons, G combined with vanadium pentoxide (VO) nanobelts (VNBs) and VNBs forming GVNB composites with varying compositions were synthesized via a one-step low temperature facile hydrothermal decomposition method as high-performance electrochemical pseudocapacitive electrodes. VNBs from vanadium pentoxides (VO) are formed in the presence of graphene oxide (GO), a mild oxidant, which transforms into reduced GO (rGOHT), assisting in enhancing the electronic conductivity coupled with the mechanical robustness of VNBs. From electron microscopy, surface sensitive spectroscopy and other complementary structural characterization, hydrothermally-produced rGO nanosheets/nanoribbons are decorated with and inserted within the VNBs’ layered crystal structure, which further confirmed the enhanced electronic conductivity of VNBs. Following the electrochemical properties of GVNBs being investigated, the specific capacitance Csp is determined from cyclic voltammetry (CV) with a varying scan rate and galvanostatic charging-discharging (V–t) profiles with varying current density. The rGO-rich composite V1G3 (i.e., VO/GO = 1:3) showed superior specific capacitance followed by VO-rich composite V3G1 (VO/GO = 3:1), as compared to V1G1 (VO/GO = 1:1) composite, besides the constituents, i.e., rGO, rGOHT and VNBs. Composites V1G3 and V3G1 also showed excellent cyclic stability and a capacitance retention of >80% after 500 cycles at the highest specific current density. Furthermore, by performing extensive simulations and modeling of electrochemical impedance spectroscopy data, we determined various circuit parameters, including charge transfer and solution resistance, double layer and low frequency capacitance, Warburg impedance and the constant phase element. The detailed analyses provided greater insights into physical-chemical processes occurring at the electrode-electrolyte interface and highlighted the comparative performance of thin heterogeneous composite electrodes. We attribute the superior performance to the open graphene topological network being beneficial to available ion diffusion sites and the faster transport kinetics having a larger accessible geometric surface area and synergistic integration with optimal nanostructured VO loading. Computational simulations via periodic density functional theory (DFT) with and without V2O5 adatoms on graphene sheets are also performed. These calculations determine the total and partial electronic density of state (DOS) in the vicinity of the Fermi level (i.e., higher electroactive sites), in turn complementing the experimental results toward surface/interfacial charge transfer on heterogeneous electrodes. PMID:28773738

  4. Characterizing caged molecules through flash photolysis and transient absorption spectroscopy.

    PubMed

    Kao, Joseph P Y; Muralidharan, Sukumaran

    2013-01-01

    Caged molecules are photosensitive molecules with latent biological activity. Upon exposure to light, they are rapidly transformed into bioactive molecules such as neurotransmitters or second messengers. They are thus valuable tools for using light to manipulate biology with exceptional spatial and temporal resolution. Since the temporal performance of the caged molecule depends critically on the rate at which bioactive molecules are generated by light, it is important to characterize the kinetics of the photorelease process. This is accomplished by initiating the photoreaction with a very brief but intense pulse of light (i.e., flash photolysis) and monitoring the course of the ensuing reactions through various means, the most common of which is absorption spectroscopy. Practical guidelines for performing flash photolysis and transient absorption spectroscopy are described in this chapter.

  5. Surface Transient Binding-Based Fluorescence Correlation Spectroscopy (STB-FCS), a Simple and Easy-to-Implement Method to Extend the Upper Limit of the Time Window to Seconds.

    PubMed

    Peng, Sijia; Wang, Wenjuan; Chen, Chunlai

    2018-05-10

    Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.

  6. Direct observation of back energy transfer in blue phosphorescent materials for organic light emitting diodes by time-resolved optical waveguide spectroscopy.

    PubMed

    Hirayama, H; Sugawara, Y; Miyashita, Y; Mitsuishi, M; Miyashita, T

    2013-02-25

    We demonstrate a high-sensitive transient absorption technique for detection of excited states in an organic thin film by time-resolved optical waveguide spectroscopy. By using a laser beam as a probe light, we detect small change in the transient absorbance which is equivalent to 10 -7 absorbance unit in a conventional method. This technique was applied to organic thin films of blue phosphorescent materials for organic light emitting diodes. We directly observed the back energy transfer from emitting guest molecules to conductive host molecules.

  7. TAP 2: A finite element program for thermal analysis of convectively cooled structures

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1980-01-01

    A finite element computer program (TAP 2) for steady-state and transient thermal analyses of convectively cooled structures is presented. The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature-dependent thermal parameters is performed using the Newton-Raphson iteration method. Transient analyses are performed using an implicit Crank-Nicolson time integration scheme with consistent or lumped capacitance matrices as an option. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. User instructions and sample problems are presented in appendixes.

  8. Effect of trapped electrons on the transient current density and luminance of organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Lee, Jiun-Haw; Chen, Chia-Hsun; Lin, Bo-Yen; Shih, Yen-Chen; Lin, King-Fu; Wang, Leeyih; Chiu, Tien-Lung; Lin, Chi-Feng

    2018-04-01

    Transient current density and luminance from an organic light-emitting diode (OLED) driven by voltage pulses were investigated. Waveforms with different repetition rate, duty cycle, off-period, and on-period were used to study the injection and transport characteristics of electron and holes in an OLED under pulse operation. It was found that trapped electrons inside the emitting layer (EML) and the electron transporting layer (ETL) material, tris(8-hydroxyquinolate)aluminum (Alq3) helped for attracting the holes into the EML/ETL and reducing the driving voltage, which was further confirmed from the analysis of capacitance-voltage and displacement current measurement. The relaxation time and trapped filling time of the trapped electrons in Alq3 layer were ~200 µs and ~600 µs with 6 V pulse operation, respectively.

  9. Hierarchical carbon nanopetal/polypyrrole nanocomposite electrodes with brush-like architecture for supercapacitors.

    PubMed

    Cherusseri, Jayesh; Kar, Kamal K

    2016-03-28

    Hierarchical 3D nanocomposite electrodes with tube brush-like morphology are synthesized by electrochemically depositing polypyrrole (PPY) on carbon nanopetal (CNP) coated carbon fibers (CFs). Initially CNPs are synthesized on CF substrate by chemical vapour deposition. The CNPs synthesized on CF (CNPCF) are further used as an electrically conducting large surface area bearing template for the electropolymerization of PPY in order to fabricate CNPCF-PPY nanocomposite electrodes for supercapacitors (SCs). The CF in CNPCF-PPY nanocomposite functions as (i) a mechanical support for the CNPs, (ii) a current collector for the SC cell and also (iii) to prevent the agglomeration of CNPs within the CNPCF-PPY nanocomposite. Transmission electron microscopy and scanning electron microscopy are used to examine the surface morphology of CNPCF-PPY nanocomposites. The chemical structure of the nanocomposites is analysed by Fourier transform infrared spectroscopy. X-Ray photoelectron spectroscopy has been used to understand the chemical bonding states of the hierarchical CNPCF-PPY nanocomposites. The electrochemical properties of symmetric type CNPCF-PPY SC cells are examined by electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge measurements. The hierarchical CNPCF-PPY SC exhibits a maximum gravimetric capacitance of 280.4 F g(-1) and an area specific capacitance of 210.3 mF cm(-2) at a current density of 0.42 mA cm(-2). The CNPCF-PPY SC cell exhibits good cycling stability of more than 5000 cycles. The present study proclaims the development of a novel lightweight SC with high-performance.

  10. Comparison of methods applied in photoinduced transient spectroscopy to determining the defect center parameters: The correlation procedure and the signal analysis based on inverse Laplace transformation

    NASA Astrophysics Data System (ADS)

    Suproniuk, M.; Pawłowski, M.; Wierzbowski, M.; Majda-Zdancewicz, E.; Pawłowski, Ma.

    2018-04-01

    The procedure for determination of trap parameters by photo-induced transient spectroscopy is based on the Arrhenius plot that illustrates a thermal dependence of the emission rate. In this paper, we show that the Arrhenius plot obtained by the correlation method is shifted toward lower temperatures as compared to the one obtained with the inverse Laplace transformation. This shift is caused by the model adequacy error of the correlation method and introduces errors to a calculation procedure of defect center parameters. The effect is exemplified by comparing the results of the determination of trap parameters with both methods based on photocurrent transients for defect centers observed in tin-doped neutron-irradiated silicon crystals and in gallium arsenide grown with the Vertical Gradient Freeze method.

  11. A novel interdigitated capacitor based biosensor for detection of cardiovascular risk marker.

    PubMed

    Quershi, Anjum; Gurbuz, Yasar; Kang, Weng P; Davidson, Jimmy L

    2009-12-15

    C-reactive protein (CRP) is a potential biomarker whose elevated levels in humans determine cardiovascular disease risk and inflammation. In this study, we have developed a novel capacitive biosensor for detection of CRP-antigen using capacitor with interdigitated gold (GID) electrodes on nanocrystalline diamond (NCD) surface. The NCD surface served as a dielectric layer between the gold electrodes. GID-surface was functionalized by antibodies and the immobilization was confirmed by Fourier transform spectroscopy (FT-IR) and contact angle measurements. The CRP-antigen detection was performed by capacitive/dielectric-constant measurements. The relaxation time and polarizability constants were estimated using Cole-Cole model. Our results showed that the relaxation time constant (tau) of only CRP-antibody was within 10(-16)-10(-13)s, which was increased to 10(-11)s after the incubation with CRP-antigen, suggesting that the CRP-antigen was captured by the antibodies on GID-surface. In addition, polarizability constant (m) of CRP was also increased upon incubation with increasing concentration of CRP-antigen. Our results showed that the response of GID-NCD-based capacitive biosensor for CRP-antigen was dependent on both concentration (25-800ng/ml) as well as frequency (50-350MHz). Furthermore, using optimized conditions, the GID-NCD based capacitive biosensor developed in this study can potentially be used for detection of elevated levels of protein risk markers in suspected subjects for early diagnosis of disease.

  12. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.

    PubMed

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J

    2015-01-21

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.

  13. SPECIAL ISSUE DEVOTED TO THE 80TH BIRTHDAY OF S.A. AKHMANOV: Transient coherent anti-Stokes Raman scattering spectroscopy as a tool for measuring the diffusion coefficient and size of gas molecules

    NASA Astrophysics Data System (ADS)

    Nikitin, Sergei Yu

    2009-07-01

    Formulas are derived for evaluating the diffusion coefficient and size of gas molecules from transient coherent anti-Stokes Raman scattering measurements. Numerical estimates are presented for hydrogen.

  14. Alkali reduction of graphene oxide in molten halide salts: production of corrugated graphene derivatives for high-performance supercapacitors.

    PubMed

    Abdelkader, Amr M; Vallés, Cristina; Cooper, Adam J; Kinloch, Ian A; Dryfe, Robert A W

    2014-11-25

    Herein we present a green and facile approach to the successful reduction of graphene oxide (GO) materials using molten halide flux at 370 °C. GO materials have been synthesized using a modified Hummers method and subsequently reduced for periods of up to 8 h. Reduced GO (rGO) flakes have been characterized using X-ray-diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), all indicating a significantly reduced amount of oxygen-containing functionalities on the rGO materials. Furthermore, impressive electrical conductivities and electrochemical capacitances have been measured for the rGO flakes, which, along with the morphology determined from scanning electron microscopy, highlight the role of surface corrugation in these rGO materials.

  15. Triplet-State Dissolved Organic Matter Quantum Yields and Lifetimes from Direct Observation of Aromatic Amine Oxidation.

    PubMed

    Schmitt, Markus; Erickson, Paul R; McNeill, Kristopher

    2017-11-21

    Excited triplet state chromophoric dissolved organic matter ( 3 CDOM*) is a short-lived mixture of excited-state species that plays important roles in aquatic photochemical processes. Unlike the study of the triplet states of well-defined molecules, which are amenable to transient absorbance spectroscopy, the study of 3 CDOM* is hampered by it being a complex mixture and its low average intersystem crossing quantum yield (Φ ISC ). This study is an alternative approach to investigating 3 CDOM* using transient absorption laser spectroscopy. The radical cation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), formed through oxidation by 3 CDOM*, was directly observable by transient absorption spectroscopy and was used to probe basic photophysical properties of 3 CDOM*. Quenching and control experiments verified that TMPD •+ was formed from 3 CDOM* under anoxic conditions. Model triplet sensitizers with a wide range of excited triplet state reduction potentials and CDOM oxidized TMPD at near diffusion-controlled rates. This gives support to the idea that a large cross-section of 3 CDOM* moieties are able to oxidize TMPD and that the complex mixture of 3 CDOM* can be simplified to a single signal. Using the TMPD •+ transient, the natural triplet lifetime and Φ ISC for different DOM isolates and natural waters were quantified; values ranged from 12 to 26 μs and 4.1-7.8%, respectively.

  16. Single- and double-core-hole ion emission spectroscopy of transient neon plasmas produced by ultraintense x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2016-02-01

    Single-core-hole (SCH) and double-core-hole (DCH) spectroscopy is investigated systematically for neon gas in the interaction with ultraintense x-ray pulses with photon energy from 937 eV to 2000 eV. A time-dependent rate equation, implemented in detailed level accounting approximation, is utilized to study the dynamical evolution of the level population and emission properties of the laser-produced highly transient plasmas. The plasma-density effects on level populations and charge-state distribution are demonstrated with an x-ray photon energy of 2000 eV. It is shown that atomic number density of relevant experiment is about 1 × 1018 cm-3, which is comparable to a recent experiment. At this density, we systematically investigate the emissivity of the transient neon plasmas. For laser photon energy in the range 937-1360 eV, resonant absorptions (RA) of 1s\\to {np} (n≥slant 2) transitions play important roles in time evolution of the population and DCH emission spectroscopy. The RA effects are illustrated in detail for an x-ray pulse of 944 eV photon energy, which creates the 1s\\to 2p RA from the SCH states (1s2{s}22{p}4, 1s2s2p5, and 1s2p6) of Ne3+. After averaging over the space and time distribution of x-ray pulse, DCH emission spectroscopy is studied at x-ray photon energies of 937, 944, 955, 968, 980, and 990 eV, where there exist 1s\\to 2p resonances from SCH states of Ne2+-Ne7+. The processes with producing DCH states are discussed. For x-ray photon energy larger than 1360 eV, no RA exist and transient plasmas show different features in the DCH spectroscopy.

  17. "Negative capacitance" in resistor-ferroelectric and ferroelectric-dielectric networks: Apparent or intrinsic?

    NASA Astrophysics Data System (ADS)

    Saha, Atanu K.; Datta, Suman; Gupta, Sumeet K.

    2018-03-01

    In this paper, we describe and analytically substantiate an alternate explanation for the negative capacitance (NC) effect in ferroelectrics (FE). We claim that the NC effect previously demonstrated in resistance-ferroelectric (R-FE) networks does not necessarily validate the existence of "S" shaped relation between polarization and voltage (according to Landau theory). In fact, the NC effect can be explained without invoking the "S"-shaped behavior of FE. We employ an analytical model for FE (Miller model) in which the steady state polarization strictly increases with the voltage across the FE and show that despite the inherent positive FE capacitance, reduction in FE voltage with the increase in its charge is possible in a R-FE network as well as in a ferroelectric-dielectric (FE-DE) stack. This can be attributed to a large increase in FE capacitance near the coercive voltage coupled with the polarization lag with respect to the electric field. Under certain conditions, these two factors yield transient NC effect. We analytically derive conditions for NC effect in R-FE and FE-DE networks. We couple our analysis with extensive simulations to explain the evolution of NC effect. We also compare the trends predicted by the aforementioned Miller model with Landau-Khalatnikov (L-K) model (static negative capacitance due to "S"-shape behaviour) and highlight the differences between the two approaches. First, with an increase in external resistance in the R-FE network, NC effect shows a non-monotonic behavior according to Miller model but increases according to L-K model. Second, with the increase in ramp-rate of applied voltage in the FE-DE stack, NC effect increases according to Miller model but decreases according to L-K model. These results unveil a possible way to experimentally validate the actual reason of NC effect in FE.

  18. Electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP

    NASA Astrophysics Data System (ADS)

    Ferrandis, Philippe; Billaud, Mathilde; Duvernay, Julien; Martin, Mickael; Arnoult, Alexandre; Grampeix, Helen; Cassé, Mikael; Boutry, Hervé; Baron, Thierry; Vinet, Maud; Reimbold, Gilles

    2018-04-01

    To overcome the Fermi-level pinning in III-V metal-oxide-semiconductor capacitors, attention is usually focused on the choice of dielectric and surface chemical treatments prior to oxide deposition. In this work, we examined the influence of the III-V material surface cleaning and the semiconductor growth technique on the electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP(100) substrates. By means of the capacitance-voltage measurements, we demonstrated that samples do not have the same total oxide charge density depending on the cleaning solution used [(NH4)2S or NH4OH] prior to oxide deposition. The determination of the interface trap density revealed that a Fermi-level pinning occurs for samples grown by metalorganic chemical vapor deposition but not for similar samples grown by molecular beam epitaxy. Deep level transient spectroscopy analysis explained the Fermi-level pinning by an additional signal for samples grown by metalorganic chemical vapor deposition, attributed to the tunneling effect of carriers trapped in oxide toward interface states. This work emphasizes that the choice of appropriate oxide and cleaning treatment is not enough to prevent a Fermi-level pinning in III-V metal-oxide-semiconductor capacitors. The semiconductor growth technique needs to be taken into account because it impacts the trapping properties of the oxide.

  19. Structural and electrical properties of AlN layers grown on silicon by reactive RF magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazlov, N., E-mail: n.bazlov@spbu.ru; Pilipenko, N., E-mail: nelly.pilipenko@gmail.com; Vyvenko, O.

    2016-06-17

    AlN films of different thicknesses were deposited on n-Si (100) substrates by reactive radio frequency (rf) magnetron sputtering. Dependences of structure and electrical properties on thickness of deposited films were researched. The structures of the films were analyzed with scanning electron microscopy (SEM) and with transmitting electron microscopy (TEM). Electrical properties of the films were investigated on Au-AlN-(n-Si) structures by means of current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Electron microscopy investigations had shown that structure and chemical composition of the films were thickness stratified. Near silicon surface layer was amorphous aluminum oxide one contained trapsmore » of positive charges with concentration of about 4 × 10{sup 18} cm{sup −3}. Upper layers were nanocrystalline ones consisted of both wurzite AlN and cubic AlON nanocrystals. They contained traps both positive and negative charges which were situated within 30 nm distance from silicon surface. Surface densities of these traps were about 10{sup 12} cm{sup −2}. Electron traps with activation energies of (0.2 ÷ 0.4) eV and densities of about 10{sup 10} cm{sup −2} were revealed on interface between aluminum oxide layer and silicon substrate. Their densities varied weakly with the film thickness.« less

  20. Photoelectrical Stimulation of Neuronal Cells by an Organic Semiconductor-Electrolyte Interface.

    PubMed

    Abdullaeva, Oliya S; Schulz, Matthias; Balzer, Frank; Parisi, Jürgen; Lützen, Arne; Dedek, Karin; Schiek, Manuela

    2016-08-23

    As a step toward the realization of neuroprosthetics for vision restoration, we follow an electrophysiological patch-clamp approach to study the fundamental photoelectrical stimulation mechanism of neuronal model cells by an organic semiconductor-electrolyte interface. Our photoactive layer consisting of an anilino-squaraine donor blended with a fullerene acceptor is supporting the growth of the neuronal model cell line (N2A cells) without an adhesion layer on it and is not impairing cell viability. The transient photocurrent signal upon illumination from the semiconductor-electrolyte layer is able to trigger a passive response of the neuronal cells under physiological conditions via a capacitive coupling mechanism. We study the dynamics of the capacitive transmembrane currents by patch-clamp recordings and compare them to the dynamics of the photocurrent signal and its spectral responsivity. Furthermore, we characterize the morphology of the semiconductor-electrolyte interface by atomic force microscopy and study the stability of the interface in dark and under illuminated conditions.

  1. Analysis of high vacuum systems using SINDA'85

    NASA Technical Reports Server (NTRS)

    Spivey, R. A.; Clanton, S. E.; Moore, J. D.

    1993-01-01

    The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.

  2. A label-free approach to detect ligand binding to cell surface proteins in real time.

    PubMed

    Burtscher, Verena; Hotka, Matej; Li, Yang; Freissmuth, Michael; Sandtner, Walter

    2018-04-26

    Electrophysiological recordings allow for monitoring the operation of proteins with high temporal resolution down to the single molecule level. This technique has been exploited to track either ion flow arising from channel opening or the synchronized movement of charged residues and/or ions within the membrane electric field. Here, we describe a novel type of current by using the serotonin transporter (SERT) as a model. We examined transient currents elicited on rapid application of specific SERT inhibitors. Our analysis shows that these currents originate from ligand binding and not from a long-range conformational change. The Gouy-Chapman model predicts that adsorption of charged ligands to surface proteins must produce displacement currents and related apparent changes in membrane capacitance. Here we verified these predictions with SERT. Our observations demonstrate that ligand binding to a protein can be monitored in real time and in a label-free manner by recording the membrane capacitance. © 2018, Burtscher et al.

  3. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE PAGES

    Hammons, Joshua A.; Ilavsky, Jan

    2017-01-18

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  4. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, Joshua A.; Ilavsky, Jan

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl –: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 Vmore » (vs. Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g –1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  5. Diiodobodipy-styrylbodipy Dyads: Preparation and Study of the Intersystem Crossing and Fluorescence Resonance Energy Transfer.

    PubMed

    Wang, Zhijia; Xie, Yun; Xu, Kejing; Zhao, Jianzhang; Glusac, Ksenija D

    2015-07-02

    2,6-Diiodobodipy-styrylbodipy dyads were prepared to study the competing intersystem crossing (ISC) and the fluorescence-resonance-energy-transfer (FRET), and its effect on the photophysical property of the dyads. In the dyads, 2,6-diiodobodipy moiety was used as singlet energy donor and the spin converter for triplet state formation, whereas the styrylbodipy was used as singlet and triplet energy acceptors, thus the competition between the ISC and FRET processes is established. The photophysical properties were studied with steady-state UV-vis absorption and fluorescence spectroscopy, electrochemical characterization, and femto/nanosecond time-resolved transient absorption spectroscopies. FRET was confirmed with steady state fluorescence quenching and fluorescence excitation spectra and ultrafast transient absorption spectroscopy (kFRET = 5.0 × 10(10) s(-1)). The singlet oxygen quantum yield (ΦΔ = 0.19) of the dyad was reduced as compared with that of the reference spin converter (2,6-diiodobodipy, ΦΔ = 0.85), thus the ISC was substantially inhibited by FRET. Photoinduced intramolecular electron transfer (ET) was studied by electrochemical data and fluorescence quenching. Intermolecular triplet energy transfer was studied with nanosecond transient absorption spectroscopy as an efficient (ΦTTET = 92%) and fast process (kTTET = 5.2 × 10(4) s(-1)). These results are useful for designing organic triplet photosensitizers and for the study of the photophysical properties.

  6. Dynamic Optoelectronic Properties in Perovskite Oxide Thin Films Measured with Ultrafast Transient Absorption & Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smolin, Sergey Y.

    Ultrafast transient absorption and reflectance spectroscopy are foundational techniques for studying photoexcited carrier recombination mechanisms, lifetimes, and charge transfer rates. Because quantifying photoexcited carrier dynamics is central to the intelligent design and improvement of many solid state devices, these transient optical techniques have been applied to a wide range of semiconductors. However, despite their promise, interpretation of transient absorption and reflectance data is not always straightforward and often relies on assumptions of physical processes, especially with respect to the influence of heating. Studying the material space of perovskite oxides, the careful collection, interpretation, and analysis of ultrafast data is presented here as a guide for future research into novel semiconductors. Perovskite oxides are a class of transition metal oxides with the chemical structure ABO3. Although traditionally studied for their diverse physical, electronic, and magnetic properties, perovskite oxides have gained recent research attention as novel candidates for light harvesting applications. Indeed, strong tunable absorption, unique interfacial properties, and vast chemical flexibility make perovskite oxides a promising photoactive material system. However, there is limited research characterizing dynamic optoelectronic properties, such as recombination lifetimes, which are critical to know in the design of any light-harvesting device. In this thesis, ultrafast transient absorption and reflectance spectroscopy was used to understand these dynamic optoelectronic properties in highquality, thin (<50 nm) perovskite oxide films grown by molecular beam epitaxy. Starting with epitaxial LaFeO3 (LFO) grown on (LaAlO 3)0.3(Sr2AlTaO6)0.7 (LSAT), transient absorption spectroscopy reveals two photoinduced absorption features at the band gap of LFO at 2.4 eV and at the higher energy absorption edge at 3.5 eV. Using a combination of temperature-dependent, variable-angle spectroscopic ellipsometry and time-resolved ultrafast optical spectroscopy on a type I heterostructure, we clarify thermal and electronic contributions to spectral transients in LaFeO3. Upon comparison to thermally-derived static spectra of LaFeO3, we find that thermal contributions dominate the transient absorption and reflectance spectra above the band gap. A transient photoinduced absorption feature below the band gap at 1.9 eV is not reproduced in the thermally derived spectra and has significantly longer decay kinetics from the thermallyinduced features; therefore, this long lived photoinduced absorption is likely derived, at least partially, from photoexcited carriers with lifetimes much longer than 3 nanoseconds. LaFeO3 has a wide band gap of 2.4 eV but its absorption can be decreased with chemical substitution of Sr for Fe to make it more suitable for various applications. This type of A-site substitution is a common route to change static optical absorption in perovskite oxides, but there are no systematic studies looking at how A-site substitution changes dynamic optoelectronic properties. To understand the relationship between composition and static and dynamic optical properties we worked with the model system of La1-xSrxFeO 3-delta epitaxial films grown on LSAT, uncovering the effects of A-site cation substitution and oxygen stoichiometry. Variable-angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy with broadband visible (1.6 eV to 4 eV) and near-infrared (0.9 eV to 1.5 eV) probes. The sign of the reflectance change in the near-infrared region in LSFO is indicative of carrier bandfilling of newly created electronic states by photoexcited carriers. Moreover, we find that similar transient spectral trends can be induced with A-site substitution or through oxygen vacancies, which is a surprising result. Probing the near-infrared region reveals similar nanosecond (1-3 ns) photoexcited carrier lifetimes for oxygen deficient and stoichiometric films. These results demonstrate that while the static optical absorption is strongly dependent on nominal Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in long lived recombination kinetics. Although this thesis represents one of the first comprehensive studies using broad band transient absorption and reflectance spectroscopy to study dynamic optoelectronic phenomena in perovskite oxides, it can also serve as a guide for the implementation and interpretation of ultrafast spectroscopy in other material systems. Moreover, the ultrafast work on perovskite oxides indicates that these materials have long nanosecond lifetimes required for light harvesting devices and should be investigated further.

  7. [Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].

    PubMed

    Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong

    2014-07-01

    Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.

  8. Evolution of a plasma vortex in air

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Mu; Chu, Hong-Yu

    2016-01-01

    We report the generation of a vortex-shaped plasma in air by using a capacitively coupled dielectric barrier discharge system. We show that a vortex-shaped plasma can be produced inside a helium gas vortex and is capable of propagating for 3 cm. The fluctuation of the plasma ring shows a scaling relation with the Reynolds number of the vortex. The transient discharge reveals the property of corona discharge, where the conducting channel within the gas vortex and the blur plasma emission are observed at each half voltage cycle.

  9. Evolution of a plasma vortex in air.

    PubMed

    Tsai, Cheng-Mu; Chu, Hong-Yu

    2016-01-01

    We report the generation of a vortex-shaped plasma in air by using a capacitively coupled dielectric barrier discharge system. We show that a vortex-shaped plasma can be produced inside a helium gas vortex and is capable of propagating for 3 cm. The fluctuation of the plasma ring shows a scaling relation with the Reynolds number of the vortex. The transient discharge reveals the property of corona discharge, where the conducting channel within the gas vortex and the blur plasma emission are observed at each half voltage cycle.

  10. Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes.

    PubMed

    Hudari, Felipe F; Bessegato, Guilherme G; Bedatty Fernandes, Flávio C; Zanoni, Maria V B; Bueno, Paulo R

    2018-06-19

    TiO 2 nanotube electrodes were self-doped by electrochemical cathodic polarization, potentially converting Ti 4+ into Ti 3+ , and thereby increasing both the normalized conductance and capacitance of the electrodes. One-hundred (from 19.2 ± 0.1 μF cm -2 to 1.9 ± 0.1 mF cm -2 for SD-TNT) and two-fold (from ∼6.2 to ∼14.4 mS cm -2 ) concomitant increases in capacitance and conductance, respectively, were achieved in self-doped TiO 2 nanotubes; this was compared with the results for their undoped counterparts. The increases in the capacitance and conductance indicate that the Ti 3+ states enhance the density of the electronic states; this is attributed to an existing relationship between the conductance and capacitance for nanoscale structures built on macroscopic electrodes. The ratio between the conductance and capacitance was used to detect and quantify, in a reagentless manner, the triamterene (TRT) diuretic by designing an appropriate doping level of TiO 2 nanotubes. The sensitivity was improved when using immittance spectroscopy (Patil et al. Anal. Chem. 2015, 87, 944-950; Bedatty Fernandes et al. Anal. Chem. 2015, 87, 12137-12144) (2.4 × 10 6 % decade -1 ) compared to cyclic voltammetry (5.8 × 10 5 % decade -1 ). Furthermore, a higher linear range from 0.5 to 100 μmol L -1 (5.0 to 100 μmol L -1 for cyclic voltammetry measurements) and a lower limit-of-detection of approximately 0.2 μmol L -1 were achieved by using immittance function methodology (better than the 4.1 μmol L -1 obtained by using cyclic voltammetry).

  11. New insights into the interface between a single-crystalline metal electrode and an extremely pure ionic liquid: slow interfacial processes and the influence of temperature on interfacial dynamics.

    PubMed

    Drüschler, Marcel; Borisenko, Natalia; Wallauer, Jens; Winter, Christian; Huber, Benedikt; Endres, Frank; Roling, Bernhard

    2012-04-21

    Ionic liquids are of high interest for the development of safe electrolytes in modern electrochemical cells, such as batteries, supercapacitors and dye-sensitised solar cells. However, electrochemical applications of ionic liquids are still hindered by the limited understanding of the interface between electrode materials and ionic liquids. In this article, we first review the state of the art in both experiment and theory. Then we illustrate some general trends by taking the interface between the extremely pure ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and an Au(111) electrode as an example. For the study of this interface, electrochemical impedance spectroscopy was combined with in situ STM and in situ AFM techniques. In addition, we present new results for the temperature dependence of the interfacial capacitance and dynamics. Since the interfacial dynamics are characterised by different processes taking place on different time scales, the temperature dependence of the dynamics can only be reliably studied by recording and carefully analysing broadband capacitance spectra. Single-frequency experiments may lead to artefacts in the temperature dependence of the interfacial capacitance. We demonstrate that the fast capacitive process exhibits a Vogel-Fulcher-Tamman temperature dependence, since its time scale is governed by the ionic conductivity of the ionic liquid. In contrast, the slower capacitive process appears to be Arrhenius activated. This suggests that the time scale of this process is determined by a temperature-independent barrier, which may be related to structural reorganisations of the Au surface and/or to charge redistributions in the strongly bound innermost ion layer. This journal is © the Owner Societies 2012

  12. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Deyong; Li, Yunliang; Li, Hao

    2015-05-15

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate thatmore » this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.« less

  13. Solid-state supercapacitors with ionic liquid gel polymer electrolyte based on poly (3, 4-ethylenedioxythiophene), carbon nanotubes, and metal oxides nanocomposites for electrical energy storage

    NASA Astrophysics Data System (ADS)

    Obeidat, Amr M.

    Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also studied in solid-state design based on PEDOT and graphene electrodes that produced areal capacitance density of 198.26 mF cm-2. Symmetrical PEDOT-manganese oxide nanocomposites were synthesized by co-deposition and dip-coating techniques to fabricate solid-state supercapacitor systems achieving areal capacitance density of 122.08 mF cm-2 credited to the PEDOT-MnO2 supercapacitor that was synthesized by dipping the PEDOT electrode in pure KMnO4 solution. The electrochemical performance of PEDOT-carbon nanotube solid-state supercapacitors was also investigated in both acetonitrile and aqueous medium showing good dispersion characteristics with optimum CNT content of 1 mg. The PEDOT-CNT solid-state supercapacitor system synthesized in acetonitrile displayed areal capacitance density of 297.43 mF cm-2. PEDOT-Fe2O3 nanocomposites were synthesized by single-step co-deposition techniques, and these were used to fabricate solid-state supercapacitors achieving areal capacitance density of 96.89 mF cm-2. Furthermore, some of these thin flexible solid-state supercapacitors were integrated with solar cells for direct storage of solar electricity, which proved to be promising as autonomous power source for flexible and wearable electronics. This dissertation describes the electrode synthesis, design and properties of solid-state supercapacitors, and their electrochemical performance in the storage of electrical energy.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutzer, B.; Simsek, S.; Zimmermann, C.

    In order to improve the electrical behaviour of metal-insulator-metal capacitors with ZrO{sub 2} insulator grown by Atomic Layer Deposition, the influence of the insertion of interfacial Cr layers between Pt electrodes and the zirconia is investigated. An improvement of the α-voltage coefficient of capacitance as low as 567 ppm/V{sup 2} is achieved for a single layer of Cr while maintaining a high capacitance density of 10.7 fF/μm{sup 2} and a leakage current of less than 1.2 × 10{sup −8} A/cm{sup 2} at +1 V. The role of the interface is discussed by means of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy showing themore » formation of Zr stabilized chromia oxide phase with a dielectric constant of 16.« less

  15. MnO2-Graphene Oxide-PEDOT:PSS Nanocomposite for an Electrochemical Supercapacitor

    NASA Astrophysics Data System (ADS)

    Patil, Dipali S.; Pawar, Sachin A.; Shin, Jae Cheol; Kim, Hyo Jin

    2018-04-01

    A ternary nanocomposite with poly (3,4 ethylene dioxythiophene:poly(styrene sulfonate) (PEDOT:PSS)-MnO2 nanowires-graphene oxide (PMn-GO) was synthesized by using simple chemical route. The formation of the nanocomposite was analyzed by using X-ray diffraction and X-ray photoelectron spectroscopy. Field-emission scanning microscopy (FESEM) revealed the formation of MnO2 nanowires and graphene oxide nanosheets. The highest specific capacitance (areal capacitance) of 841 Fg -1 (177 mFcm -2) at 10 mVs -1 and energy density of 0.593 kWhkg -1 at 0.5 mA were observed for PMn-GO, indicating a constructive synergistic effect of PEDOT:PSS, MnO2 nanowires and graphene oxide. The achieved promising electrochemical characteristics showed that this ternary nanocomposite is a good alternative as an electrode material for supercapacitor.

  16. Potassium chloride templated carbon preparation for supercapacitor

    NASA Astrophysics Data System (ADS)

    Cao, Yuhe; Wang, Xiaomin; Gu, Zhengrong; Fan, Qihua; Gibbons, William; Gadhamshetty, Venkataramana; Ai, Ning; Zeng, Ganning

    2018-04-01

    This is the first report of KCl templated carbon preparation from walnut shell. Activated carbon (AC) with high specific surface area (1958 m2 g-1) was obtained by CO2 activation of KCl templated biochar at 900 °C. The electrochemical properties were evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. WS-90 had relatively low inner resistance of 1.7 Ω. The specific capacitance was 245.0 F g-1 in 6 mol L-1 KOH electrolyte at a current density of 0.1 A g-1, and it can maintain very good cyclic stability with capacitance retention ratio of 95.4% (from 245.0 to 233.7 F g-1 at current density of 0.1 A g-1 after 4000 cycles (0.1, 0.5, 1.0 and 5.0 A g-1 for 1000 cycles, respectively)).

  17. Carbon coated textiles for flexible energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost, Kristy; Perez, Carlos R.; McDonough, John K.

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at ~0.25more » A·g⁻¹ achieved a high gravimetric and areal capacitance, an average of 85 F·g⁻¹ on cotton lawn and polyester microfiber, both corresponding to ~0.43 F·cm⁻².« less

  18. Carbon coated textiles for flexible energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost, Kristy; Perez, Carlos O; Mcdonough, John

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at 0.25more » A$g1 achieved a high gravimetric and areal capacitance, an average of 85 F$g1 on cotton lawn and polyester microfiber, both corresponding to 0.43 F$cm2.« less

  19. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2012-09-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor ( Q ) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory.

  20. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.

    PubMed

    Meng, Chuizhou; Gall, Oren Z; Irazoqui, Pedro P

    2013-12-01

    We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm(2), and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm(2) to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.

  1. The Circuit Theory Behind Coupled-Mode Magnetic Resonance-Based Wireless Power Transmission

    PubMed Central

    Kiani, Mehdi; Ghovanloo, Maysam

    2014-01-01

    Inductive coupling is a viable scheme to wirelessly energize devices with a wide range of power requirements from nanowatts in radio frequency identification tags to milliwatts in implantable microelectronic devices, watts in mobile electronics, and kilowatts in electric cars. Several analytical methods for estimating the power transfer efficiency (PTE) across inductive power transmission links have been devised based on circuit and electromagnetic theories by electrical engineers and physicists, respectively. However, a direct side-by-side comparison between these two approaches is lacking. Here, we have analyzed the PTE of a pair of capacitively loaded inductors via reflected load theory (RLT) and compared it with a method known as coupled-mode theory (CMT). We have also derived PTE equations for multiple capacitively loaded inductors based on both RLT and CMT. We have proven that both methods basically result in the same set of equations in steady state and either method can be applied for short- or midrange coupling conditions. We have verified the accuracy of both methods through measurements, and also analyzed the transient response of a pair of capacitively loaded inductors. Our analysis shows that the CMT is only applicable to coils with high quality factor (Q) and large coupling distance. It simplifies the analysis by reducing the order of the differential equations by half compared to the circuit theory. PMID:24683368

  2. SALT high resolution spectroscopy of GX339-4 in outburst

    NASA Astrophysics Data System (ADS)

    Buckley, D. A. H.; Aydi, E.; Kotze, M. M.; Gandhi, P.; Altamirano, D.; Charles, P. A.; Russell, D.

    2017-10-01

    High resolution (R = 15,000) spectroscopy of the current outbursting black hole transient GX339-4 (ATel #10797) was obtained with the SALT High Resolution Spectrograph (HRS; Crause et al. 2014, Proc SPIE, 91476) on 2017-09-29 starting at 17:28 UTC, during evening twilight.

  3. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

    PubMed

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Lei, Chunhong; Wilson, Peter; Lekakou, Constantina

    Electrochemical double layer supercapacitor cells were fabricated and tested using composite electrodes of activated carbon with carbon black and poly(3,4-ethylenedioxythiophene) (PEDOT), and an organic electrolyte 1 M TEABF 4/PC solution. The effect of PEDOT on the performance of the EDLC cells was explored and the cells were characterised by electrochemical impedance spectroscopy (EIS), cyclic voltammetry and galvanostatic charge-discharge. A generalised equivalent circuit model was developed for which numerical simulations were performed to determine the properties and parameters of its components from the EIS data. It was found that the proposed model fitted successfully the data of all tested cells. PEDOT enhanced the electrode and cell capacitance via its pseudo-capacitance effect up to a maximum value for an optimum PEDOT loading and greatly increased the energy density of the cell while the maximum power density has been still maintained at supercapacitor levels. Furthermore, PEDOT replaced PVDF as a binder and harmful solvent release was reduced during electrode processing. Activated carbon-carbon black composite electrodes with PEDOT as binder were found to have specific capacitance superior to that of activated carbon-carbon black electrodes with PVDF binder.

  5. A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Cao, Qi; Wang, Xianyou; Jing, Bo; Kuang, Hao; Zhou, Ling

    2013-03-01

    Micropopous chicken feather carbon (CFC) severing as electrode materials for the first time is prepared via the activation with KOH agent to different extents. The structure and electrochemical properties of CFC materials are characterized with N2 adsorption/desorption measurements, X-ray diffraction (XRD), transmission electron microscope (TEM), cyclic voltammetry (CV), galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The obtained results show that CFC activated by KOH with KOH/CFC weight ratio of 4/1 (CFCA4) possesses the specific surface area of 1839 m2 g-1, average micropore diameter of 1.863 nm, and exhibits the highest initial specific capacitance of 302 F g-1 at current density of 1 A g-1 in 1 M H2SO4, and that even after 5000 cycles, CFCA4 specific capacitance is still as high as 253 F g-1. Furthermore, CFCA4 also delivers specific capacitance of 181 F g-1 at current density of 5 A g-1 and 168 F g-1 at current density of 10 A g-1. Accordingly, the microporous activated carbon material derived from chicken feather provides favorable prospect in electrode materials application in supercapacitors.

  6. Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Karthikeyan; Pazhamalai, Parthiban; Veerasubramani, Ganesh Kumar; Kim, Sang Jae

    2016-07-01

    Two dimensional nanostructures are increasingly used as electrode materials in flexible supercapacitors for portable electronic applications. Herein, we demonstrated a ball milling approach for achieving few layered molybdenum disulfide (MoS2) via exfoliation from their bulk. Physico-chemical characterizations such as X-ray diffraction, field emission scanning electron microscope, and laser Raman analyses confirmed the occurrence of exfoliated MoS2 sheets with few layers from their bulk via ball milling process. MoS2 based wire type solid state supercapacitors (WSCs) are fabricated and examined using cyclic voltammetry (CV), electrochemical impedance spectroscopy, and galvanostatic charge discharge (CD) measurements. The presence of rectangular shaped CV curves and symmetric triangular shaped CD profiles suggested the mechanism of charge storage in MoS2 WSC is due to the formation of electrochemical double layer capacitance. The MoS2 WSC device delivered a specific capacitance of 119 μF cm-1, and energy density of 8.1 nW h cm-1 with better capacitance retention of about 89.36% over 2500 cycles, which ensures the use of the ball milled MoS2 for electrochemical energy storage devices.

  7. Magnetoimpedance behavior and its equivalent circuit analysis of Co/Cu/Co/Py pseudo-spin-valve with a nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Chien, Wei-Chih; Yao, Yeong-Der; Wu, Jiann-Kuo; Lo, Chi-Kuen; Hung, Ruei-Feng; Lan, M. D.; Lin, Pang

    2009-02-01

    Magnetoimpedance behaviors and thermal effects of a Co/Cu/Co/Py pseudo-spin-valve (PSV) with a nano-oxide layer (NOL) were studied. The PSV can be regarded as a combination of resistances, inductances, and capacitances. In addition, equivalent circuit theory can be used to analyze the ac behavior of this system. The imaginary part of the magnetoimpedance (magnetoreactance) ratio is more than 1700% at the resonance frequency (fr)=476 kHz at room temperature (RT). The dc magnetoresistance (MR) ratio decreases as the annealing temperature increases because the NOL is formed at the interface between the spacer and the magnetic layer. The NOL deteriorates the differential spin scattering and reduces the dc MR ratio. Impedance spectroscopy was utilized to analyze the capacitance effect from NOL after annealing. The effective capacitance of the PSV was 21.8 nF at RT and changed to 11.8 nF after annealing at 200 °C. The useful equivalent capacitor circuit not only is a nondestructive measurement technology but can also explain the experimental results and prove the formation of the NOL.

  8. Preparation of nitrogen-doped graphene/activated carbon composite papers to enhance energy storage in supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Yong-feng; Liu, Yan-zhen; Liang, Yu; Guo, Xiao-hui; Chen, Cheng-meng

    2017-09-01

    This report presents a facile and effective method to synthesize freestanding nitrogen-doped reduced graphene oxide (rGO)/activated carbon (AC) composite papers for supercapacitors by a method combining vacuum filtration with post-annealing in NH3 atmosphere. The effect of activated carbon contents on the microstructure and capacitive behavior of the resulting composite papers before and after the annealing was investigated by X-ray diffraction, scanning electron microscopy, and Raman and X-ray photoelectron spectroscopy. Results show that the composite paper with a 30% activated carbon loading has a high nitrogen content of 14.6 at% and superior capacitive performance (308 F/g, 1 A/g) to the other composite papers with various activated carbon loadings. Nitrogen was doped and GO reduced during the annealing. The rGO nanosheets acted as a framework, and the AC particles served as spacers to avoid agglomeration of graphene sheets. The high capacitance of the composite paper is ascribed to the electric double-layer behavior and the reversible redox reactions of the nitrogen and oxygen groups. The entire process is simple, environmental friendly and easily scalable for mass production.

  9. Growth of highly mesoporous CuCo2O4@C core-shell arrays as advanced electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Yan, Hailong; Lu, Yang; Zhu, Kejia; Peng, Tao; Liu, Xianming; Liu, Yunxin; Luo, Yongsong

    2018-05-01

    A series of CuCo2O4 nanostructures with different morphologies were prepared by a hydrothermal method in combination with thermal treatment. The morphology, structure and composition were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. As the electrode materials for supercapacitors, CuCo2O4 nanoneedles delivered the highest specific capacitance compared with other CuCo2O4 nanostructures. Electrochemical performance measurements demonstrate that the carbon layer can improve the electrochemical stability of CuCo2O4 nanoneedles. The CuCo2O4@C electrode exhibits a high specific capacitance of 1432.4 F g-1 at a current density of 1 A g-1, with capacitance retention of 98.2% after 3000 circles. These characteristics of CuCo2O4@C composite are mainly due to the unique one dimensional needle-liked architecture and the conducting carbon, which provide a faster ion/electron transfer rate. These excellent performances of the CuCo2O4@C electrode confirmed the material as a positive electrode for hybrid supercapacitor application.

  10. Tunnel barrier design in donor nanostructures defined by hydrogen-resist lithography

    NASA Astrophysics Data System (ADS)

    Pascher, Nikola; Hennel, Szymon; Mueller, Susanne; Fuhrer, Andreas

    2016-08-01

    A four-terminal donor quantum dot (QD) is used to characterize potential barriers between degenerately doped nanoscale contacts. The QD is fabricated by hydrogen-resist lithography on Si(001) in combination with n-type doping by phosphine. The four contacts have different separations (d = 9, 12, 16 and 29 nm) to the central 6 nm × 6 nm QD island, leading to different tunnel and capacitive coupling. Cryogenic transport measurements in the Coulomb-blockade (CB) regime are used to characterize these tunnel barriers. We find that field enhancement near the apex of narrow dopant leads is an important effect that influences both barrier breakdown and the magnitude of the tunnel current in the CB transport regime. From CB-spectroscopy measurements, we extract the mutual capacitances between the QD and the four contacts, which scale inversely with the contact separation d. The capacitances are in excellent agreement with numerical values calculated from the pattern geometry in the hydrogen resist. Furthermore, we show that by engineering the source-drain tunnel barriers to be asymmetric, we obtain a much simpler excited-state spectrum of the QD, which can be directly linked to the orbital single-particle spectrum.

  11. Structure of the Global Nanoscience and Nanotechnology Research Literature

    DTIC Science & Technology

    2006-01-01

    Transistors, Nature, 424 (6949): 654-657, 2003. Joannopoulos, JD, Meade, RD, Winn, JN, Photonic Crystals: Molding the Flow of Light, Princeton...1.27 Force Microscopy 40 0.10 0.00 Electron Spectroscopy 40 0.10 0.00 Rutherford backscattering spectrometry 38 0.10 0.00 flow cytometry 36 0.09...Backscattering Spectroscopy/Spectrometry • Flow Cytometry • Spectrophotometry (UV-Visible) • Deep Level Transient Spectroscopy • Inductively

  12. Carbon nanotubes/cobalt sulfide composites as potential high-rate and high-efficiency supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Ying; Shih, Zih-Yu; Yang, Zusing; Chang, Huan-Tsung

    2012-10-01

    We have prepared carbon nanotube (CNT)/cobalt sulfide (CoS) composites from cobalt nitrate, thioacetamide, and CNTs in the presence of poly(vinylpyrrolidone). CNT/CoS composites are deposited onto fluorine-doped tin oxide glass substrates and then subjected to simple annealing at 300 °C for 0.5 h to fabricate CNT/CoS electrodes. Data collected from Raman spectroscopy, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and d-spacing reveal the changes in the CoS structures and crystalline lattices after annealing. Cyclic voltammetry results reveal that the annealed CNT/CoS composite electrodes yield values of 2140 ± 90 and 1370 ± 50 F g-1 for specific capacitance at scan rates of 10 and 100 mV s-1, respectively. To the best of our knowledge, the annealed CNT/CoS composite electrodes provide higher specific capacitance relative to other reported ones at a scan rate of 100 mV s-1. CNT/CoS composite electrodes yield a power density of 62.4 kW kg-1 at a constant discharge current density of 217.4 A g-1. With such a high-rate capacity and power density, CNT/CoS composite supercapacitors demonstrate great potential as efficient energy storage devices.

  13. Synthesis of microsphere silicon carbide/nanoneedle manganese oxide composites and their electrochemical properties as supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, Myeongjin; Yoo, Youngjae; Kim, Jooheon

    2014-11-01

    Synthesis of microsphere silicon carbide/nanoneedle MnO2 (SiC/N-MnO2) composites for use as high-performance materials in supercapacitors is reported herein. The synthesis procedure involves the initial treatment of silicon carbide (SiC) with hydrogen peroxide to obtain oxygen-containing functional groups to provide anchoring sites for connection of SiC and the MnO2 nanoneedles (N-MnO2). MnO2 nanoneedles are subsequently formed on the SiC surface. The morphology and microstructure of the as-prepared composites are characterized via X-ray diffractometry, field-emission scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The characterizations indicate that MnO2 nanoneedles are homogeneously formed on the SiC surface in the composite. The capacitive properties of the as-prepared SiC/N-MnO2 electrodes are evaluated using cyclic voltammetry, galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy in a three-electrode experimental setup using a 1-M Na2SO4 aqueous solution as the electrolyte. The SiC/N-MnO2(5) electrode, for which the MnO2/SiC feed ratio is 5:1, displays a specific capacitance as high as 273.2 F g-1 at 10 mV s-1.

  14. Synthesis and Characterization of Methylammonium Lead Iodide Perovskite and its Application in Planar Hetero-junction Devices

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Aditi; Mohan Singh Negi, Chandra; Yadav, Anjali; Gupta, Saral K.; Singh Verma, Ajay

    2018-06-01

    The present paper reports on the synthesis and characterization of methylammonium lead iodide perovskite thin film and its applications in heterojunction devices. Perovskite thin films were deposited by a simple spin-coating method using a precursor solution including methyl ammonium iodide and lead iodide onto a glass substrate. The surface morphology study via field emission scanning electron microscopy of the perovskite thin film shows complete surface coverage on glass substrate with negligible pin-holes. UV–visible spectroscopy study revealed a broad absorption range and the exhibition of a band-gap of 1.6 eV. The dark current-voltage (I–V) characteristics of all the devices under study show rectifying behaviour similar to the Schottky diode. Various device parameters such as ideality factor and barrier height are extracted from the I–V curve. At low voltages the devices exhibit Ohmic behaviour, trap free space charge limited conduction governs the charge transport at an intermediate voltage range, while at much higher voltages the devices show trap controlled space charge limited conduction. Furthermore, impedance spectroscopy measurements enable us to extract the various internal parameters of the devices. Correlations between these parameters and I–V characteristics are discussed. The different capacitive process arising in the devices was discussed using the capacitance versus frequency curve.

  15. Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy.

    PubMed

    Opel, Cary F; Li, Jincai; Amanullah, Ashraf

    2010-01-01

    Dielectric spectroscopy was used to analyze typical batch and fed-batch CHO cell culture processes. Three methods of analysis (linear modeling, Cole-Cole modeling, and partial least squares regression), were used to correlate the spectroscopic data with routine biomass measurements [viable packed cell volume, viable cell concentration (VCC), cell size, and oxygen uptake rate (OUR)]. All three models predicted offline biomass measurements accurately during the growth phase of the cultures. However, during the stationary and decline phases of the cultures, the models decreased in accuracy to varying degrees. Offline cell radius measurements were unsuccessfully used to correct for the deviations from the linear model, indicating that physiological changes affecting permittivity were occurring. The beta-dispersion was analyzed using the Cole-Cole distribution parameters Deltaepsilon (magnitude of the permittivity drop), f(c) (critical frequency), and alpha (Cole-Cole parameter). Furthermore, the dielectric parameters static internal conductivity (sigma(i)) and membrane capacitance per area (C(m)) were calculated for the cultures. Finally, the relationship between permittivity, OUR, and VCC was examined, demonstrating how the definition of viability is critical when analyzing biomass online. The results indicate that the common assumptions of constant size and dielectric properties used in dielectric analysis are not always valid during later phases of cell culture processes. The findings also demonstrate that dielectric spectroscopy, while not a substitute for VCC, is a complementary measurement of viable biomass, providing useful auxiliary information about the physiological state of a culture. (c) 2010 American Institute of Chemical Engineers

  16. A critical review on the carrier dynamics in 2D layered materials investigated using THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Junpeng; Liu, Hongwei

    2018-01-01

    Accurately illustrating the photocarrier dynamics and photoelectrical properties of two dimensional (2D) materials is crucial in the development of 2D material-based optoelectronic devices. Considering this requirement, terahertz (THz) spectroscopy has emerged as a befitting characterization tool to provide deep insights into the carrier dynamics and measurements of the electrical/photoelectrical conductivity of 2D materials. THz spectroscopic measurements would provide information of transient behaviors of carriers with high accuracy in a nondestructive and noncontact manner. In this article, we present a comprehensive review on recent research efforts on investigations of 2D materials of graphene and transition metal dichalcogenides (TMDs) using THz spectroscopy. A brief introduction of THz time-domain spectroscopy (THz-TDS) and optical pump-THz probe spectroscopy (OPTP) is provided. The characterization of the electron transport of graphene at equilibrium state and transient behavior at non-equilibrium state is reviewed. We also review the characterizations of TMDs including MoS2 and WSe2. Finally, we conclude the recent reports and give a prospect on how THz characterizations would guide the design and optimization of 2D material-based optoelectronic devices.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasper, M.; Gramse, G.; Hoffmann, J.

    We measured the DC and RF impedance characteristics of micrometric metal-oxide-semiconductor (MOS) capacitors and Schottky diodes using scanning microwave microscopy (SMM). The SMM consisting of an atomic force microscopy (AFM) interfaced with a vector network analyser (VNA) was used to measure the reflection S11 coefficient of the metallic MOS and Schottky contact pads at 18 GHz as a function of the tip bias voltage. By controlling the SMM biasing conditions, the AFM tip was used to bias the Schottky contacts between reverse and forward mode. In reverse bias direction, the Schottky contacts showed mostly a change in the imaginary part ofmore » the admittance while in forward bias direction the change was mostly in the real part of the admittance. Reference MOS capacitors which are next to the Schottky diodes on the same sample were used to calibrate the SMM S11 data and convert it into capacitance values. Calibrated capacitance between 1–10 fF and 1/C{sup 2} spectroscopy curves were acquired on the different Schottky diodes as a function of the DC bias voltage following a linear behavior. Additionally, measurements were done directly with the AFM-tip in contact with the silicon substrate forming a nanoscale Schottky contact. Similar capacitance-voltage curves were obtained but with smaller values (30–300 aF) due to the corresponding smaller AFM-tip diameter. Calibrated capacitance images of both the MOS and Schottky contacts were acquired with nanoscale resolution at different tip-bias voltages.« less

  18. Synthesis of Co3O4 nanosheets via electrodeposition followed by ozone treatment and their application to high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Kung, Chung-Wei; Chen, Hsin-Wei; Lin, Chia-Yu; Vittal, R.; Ho, Kuo-Chuan

    2012-09-01

    A thin film of Co3O4 nanosheets is electrodeposited on a flexible Ti substrate by a one-step potentiostatic method, followed by an UV-ozone treatment for 30 min. The films before and after the UV-ozone treatment are characterized with X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The film is composed of Co(OH)2 before UV-ozone treatment, and of Co3O4 after the treatment. The morphologies of both films are examined by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The obtained films are composed of nanosheets, and there is no change in their sheet-like morphology before and after the UV-ozone treatment. When applied for a supercapacitor, the Co3O4 modified Ti electrode (Co3O4/Ti) shows a far higher capacitance than that of the Co(OH)2 modified Ti electrode. The electrodeposition time and NaOH concentration in the electrolyte are optimized. A remarkably high specific capacitance of 1033.3 F g-1 is obtained for the Co3O4 thin film at a charge-discharge current density of 2.5 A g-1. The long-term stability data shows that there is still 77% of specific capacitance remaining after 3000 repeated charge-discharge cycles. The high specific capacitance and long-term stability suggest the potential use of Co3O4/Ti for making a flexible supercapacitor.

  19. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.

    PubMed

    Yang, Chunzhen; Zhou, Ming; Xu, Qian

    2013-12-07

    MnO2/carbon composites with ultrathin MnO2 nanofibers (diameter of 5-10 nm) uniformly deposited on three dimensional ordered macroporous (3DOM) carbon frameworks were fabricated via a self-limiting redox process. The MnO2 nanofibers provide a large surface area for charge storage, whereas the 3DOM carbon serves as a desirable supporting material providing rapid ion and electron transport through the composite electrodes. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) were used to characterize the capacitive performance of these composites. Optimization of the composition results in a composite with 57 wt% MnO2 content, which gives both a high specific capacitance (234 F g(-1) at a discharge current of 0.1 A g(-1)) and good rate capability (52% retention of the capacitance at 5 A g(-1)). An asymmetric supercapacitor was fabricated by assembling the optimized MnO2/carbon composite as the positive electrode and 3DOM carbon as the negative electrode. The asymmetric supercapacitor exhibits superior electrochemical performances, which can be reversibly charged and discharged at a maximum cell voltage of 2.0 V in 1.0 M Na2SO4 aqueous electrolyte, delivering both high energy density (30.2 W h kg(-1)) and power density (14.5 kW kg(-1)). Additionally, the asymmetric supercapacitor exhibits an excellent cycle life, with 95% capacitance retained after 1000 cycles.

  20. Preparation and electrochemical performances of nanoporous/cracked cobalt oxide layer for supercapacitors

    NASA Astrophysics Data System (ADS)

    Gobal, Fereydoon; Faraji, Masoud

    2014-12-01

    Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc-cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g-1 at a current density of 1.0 A g-1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.

  1. Engineering hierarchical ultrathin CuCo2O4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder-free supercapacitors

    NASA Astrophysics Data System (ADS)

    Abbasi, Laleh; Arvand, Majid

    2018-07-01

    In the present work, we engineer hierarchical ultrathin CuCo2O4 nanosheets arrays on Ni foam through a facile, controllable and low-cost electrodeposition method by controlling deposition time and adjusting precursor's type, as a binder-free electrode for high performance supercapacitors. The effects of deposition time and types of precursors on the morphology of the as-prepared electrodes were investigated by X-ray diffraction, energy dispersive X-ray analysis, field-emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. As a results, the CuCo2O4 electrode prepared by nitrate salts at the deposition time of 10 min, includes the most uniform and ultrathin nanosheet arrays and exhibits the highest capacitance performance, such as ultrahigh specific capacitance of 1330 F g-1 at 2 A g-1 with 70% capacitance retention (938 F g-1) at ultrahigh current density of 60 A g-1, excellent cycling stability of 93.6% capacitance retention after 5000CD cycles and the maximum energy density of 29.55 Wh kg-1 at the power density of 0.4 kW kg-1. These superior electrochemical performances have been attributed to its unique structures with direct connected ultrathin nanosheets on the surface of Ni foam and abundant pores provide large electroactive sites for electrochemical reactions, as well as facile electron, ion transport and high electrical conductivity.

  2. ERGO grown on Ni-Cu foam frameworks by constant potential method as high performance electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Mirzaee, Majid; Dehghanian, Changiz; Sabet Bokati, Kazem

    2018-04-01

    This study presents composite electrode materials based on Electrochemically Reduced graphene oxide (ERGO) and Ni-Cu Foam for supercapacitor applications. Constant potential (CP) method was used to form reduced graphene oxide on Ni-Cu foam and characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-Ray Photoelectron Spectra (XPS), Raman Spectroscopy and electrochemical measurements. ERGO improves the electrical conduction leading to decrease of the internal resistance of the heterostructure. The ERGO served as a conductive network to facilitate the collection and transportation of electrons during the cycling, improved the conductivity of Ni-Cu foam, and allowed for a larger specific surface area. The irregular porous structure allowed for the easy diffusion of the electrolyte into the inner region of the electrode. Moreover, the nanocomposite directly fabricated on Ni-Cu foam with a better adhesion and avoided the use of polymer binder. This method efficiently reduced ohmic polarization and enhanced the rate capability. As a result, the Ni-Cu foam/ERGO nanocomposite exhibited a specific capacitance of 1259.3 F g-1 at 2 A g-1and about 99.3% of the capacitance retained after 5000 cycles. The capacitance retention was about 3% when the current density increased from 2 A g-1 to 15 A g-1. This two-step process drop cast and GO reduction by potentiostatic method is nontoxic and scalable and holds promise for improved energy density from redox capacitance in comparison with the conventional double layer supercapacitors.

  3. Ion track etching revisited: II. Electronic properties of aged tracks in polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz Hernández, G.; Cruz, S. A.; Garcia-Arellano, H.; Vacik, J.; Hnatowicz, V.; Kiv, A.; Alfonta, L.

    2018-02-01

    We compile here electronic ion track etching effects, such as capacitive-type currents, current spike emission, phase shift, rectification and background currents that eventually emerge upon application of sinusoidal alternating voltages across thin, aged swift heavy ion-irradiated polymer foils during etching. Both capacitive-type currents and current spike emission occur as long as obstacles still prevent a smooth continuous charge carrier passage across the foils. In the case of sufficiently high applied electric fields, these obstacles are overcome by spike emission. These effects vanish upon etchant breakthrough. Subsequent transmitted currents are usually of Ohmic type, but shortly after breakthrough (during the track' core etching) often still exhibit deviations such as strong positive phase shifts. They stem from very slow charge carrier mobility across the etched ion tracks due to retarding trapping/detrapping processes. Upon etching the track's penumbra, one occasionally observes a split-up into two transmitted current components, one with positive and another one with negative phase shifts. Usually, these phase shifts vanish when bulk etching starts. Current rectification upon track etching is a very frequent phenomenon. Rectification uses to inverse when core etching ends and penumbra etching begins. When the latter ends, rectification largely vanishes. Occasionally, some residual rectification remains which we attribute to the aged polymeric bulk itself. Last not least, we still consider background currents which often emerge transiently during track etching. We could assign them clearly to differences in the electrochemical potential of the liquids on both sides of the etched polymer foils. Transient relaxation effects during the track etching cause their eventually chaotic behaviour.

  4. A preliminary study of the electro-oxidation of L-ascorbic acid on polycrystalline silver in alkaline solution

    NASA Astrophysics Data System (ADS)

    Majari Kasmaee, L.; Gobal, F.

    Electrochemical oxidation of L-ascorbic acid on polycrystalline silver in alkaline aqueous solutions is studied by cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (IS). The anodic electro-oxidation starts at -500 mV versus SCE and shows continued anodic oxidation in the cathodic half cycle in the CV regime signifying slowly oxidizing adsorbates. Diffusion coefficient of ascorbate ion measured under both voltammetric regimes is around 1.4 × 10 -5 cm 2 s -1. Impedance spectroscopy measures the capacitances associated with double layer and adsorption around 50 μF cm -2 and 4 mF cm -2 as well as the adsorption and decomposition resistances (rates).

  5. Optical and interfacial electronic properties of diamond-like carbon films

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Natarajan, V.; Lamb, J.; Khan, A. A.; Bu-Abbud, G.; Banks, B.; Pouch, J.; Gulino, D. A.; Domitz, S.; Liu, D. C.

    1984-01-01

    Hard, semitransparent carbon films were prepared on oriented polished crystal wafers of silicon, indium phosphide and gallium arsenide, as well as on KBr and quartz. Properties of the films were determined using IR and visible absorption spectrocopy, ellipsometry, conductance-capacitance spectroscopy and alpha particle-proton recoil spectroscopy. Preparation techniques include RF plasma decomposition of methane (and other hydrocarbons), ion beam sputtering, and dual-ion-beam sputter deposition. Optical energy band gaps as large as 2.7 eV and extinction coefficients lower than 0.1 at long wavelengths are found. Electronic state densities at the interface with silicon as low as 10 to the 10th states/eV sq cm per were found.

  6. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Li, Baosong; Ying, Guobing

    2018-05-01

    In the present work, the electrochemical behavior and semiconducting properties of a tin alloyed ferritic stainless steel in simulated concrete solution in presence of NaCl were estimated by conventional electrochemical methods such as potentiodynamic polarization, electrochemical impedance spectroscopy, and capacitance measurement (Mott-Schottky approach). The surface passive film was analyzed by X-ray photoelectron spectroscopy. The results revealed a good agreement between pitting corrosion, electrochemical behaviour, and electronic properties. The p and n-type bilayer structure passive film were observed. The increase of Sn4+ oxide species in the passive film shows no beneficial effects on the pitting corrosion. In addition, the dehydration of the passive film was further discussed.

  7. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    NASA Astrophysics Data System (ADS)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  8. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes.

    PubMed

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ∼400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  9. Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio; Hueber, Dennis; Franceschini, Maria Angela; Gratton, Enrico; Rosenfeld, Warren; Stubblefield, Phillip G.; Maulik, Dev; Stankovic, Miljan R.

    1999-06-01

    We have used continuous-wave (CW) and frequency-domain spectroscopy to investigate the optical properties of the newborn piglet brain in vivo and non-invasively. Three anaesthetized, intubated, ventilated and instrumented newborn piglets were placed into a stereotaxic instrument for optimal experimental stability, reproducible probe-to-scalp optical contact and 3D adjustment of the optical probe. By measuring the absolute values of the brain absorption and reduced scattering coefficients at two wavelengths (758 and 830 nm), frequency-domain spectroscopy provided absolute readings (in contrast to the relative readings of CW spectroscopy) of cerebral haemoglobin concentration and saturation during experimentally induced perturbations in cerebral haemodynamics and oxygenation. Such perturbations included a modulation of the inspired oxygen concentration, transient brain asphyxia, carotid artery occlusion and terminal brain asphyxia. The baseline cerebral haemoglobin saturation and concentration, measured with frequency-domain spectroscopy, were about 60% and 42 µM respectively. The cerebral saturation values ranged from a minimum of 17% (during transient brain asphyxia) to a maximum of 80% (during recovery from transient brain asphyxia). To analyse the CW optical data, we have (a) derived a mathematical relationship between the cerebral optical properties and the differential pathlength factor and (b) introduced a method based on the spatial dependence of the detected intensity (dc slope method). The analysis of the cerebral optical signals associated with the arterial pulse and with respiration demonstrates that motion artefacts can significantly affect the intensity recorded from a single optode pair. Motion artefacts can be strongly reduced by combining data from multiple optodes to provide relative readings in the dc slope method. We also report significant biphasic changes (initial decrease and successive increase) in the reduced scattering coefficient measured in the brain after the piglet had been sacrificed.

  10. Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy.

    PubMed

    Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R

    2007-04-06

    Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.

  11. Deep level transient spectroscopy (DLTS) on colloidal-synthesized nanocrystal solids.

    PubMed

    Bozyigit, Deniz; Jakob, Michael; Yarema, Olesya; Wood, Vanessa

    2013-04-24

    We demonstrate current-based, deep level transient spectroscopy (DLTS) on semiconductor nanocrystal solids to obtain quantitative information on deep-lying trap states, which play an important role in the electronic transport properties of these novel solids and impact optoelectronic device performance. Here, we apply this purely electrical measurement to an ethanedithiol-treated, PbS nanocrystal solid and find a deep trap with an activation energy of 0.40 eV and a density of NT = 1.7 × 10(17) cm(-3). We use these findings to draw and interpret band structure models to gain insight into charge transport in PbS nanocrystal solids and the operation of PbS nanocrystal-based solar cells.

  12. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    DOE PAGES

    Sistrunk, Emily; Grilj, Jakob; Jeong, Jaewoo; ...

    2015-02-11

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). The study demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO 2 film with EUV diffraction from the optically excited sample. The VO 2 exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separatemore » the two features.« less

  13. Detection of Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy

    PubMed Central

    Hogg, Neil

    2010-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been used in a number of ways to study nitric oxide chemistry and biology. As an intrinsically stable and relatively unreactive diatomic free radical, the challenges for detecting this species by EPR are somewhat different than those for transient radical species. This review gives a basic introduction to EPR spectroscopy and discusses its uses to assess and quantify nitric oxide formation in biological systems. PMID:20304044

  14. A facile production of microporous carbon spheres and their electrochemical performance in EDLC

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Shi, Lei; Liu, Hongbo; Yang, Li; He, Yuede

    2012-03-01

    In the absence of activation process, we prepared a series of carbon particles from saccharine, in which hydrothermal carbonization method was used. These particles have spherical or near-spherical morphology, controllable monodisperse particle size from the analyses of SEM. Raman and XRD results show that they are nongraphitizable. The BET surface area of these carbon spherules is around 400-500 m2 g-1 and the microporosity is about 84%, suggesting that the carbon particles are rich in micropores. The electrochemical behaviors were characterized by means of galvanostatic charging/discharging, cycle voltammetry and impedance spectroscopy. The results show that the specific capacitance of sucrose-based carbon spherule reached 164 F g-1 in 30% KOH electrolyte and a high volumetric capacitance over 170 F cm-3 was obtained. These carbon spherules could be promising materials for EDLC according to their facile preparation way, low cost and high packing density.

  15. Effect of NaI/I 2 mediators on properties of PEO/LiAlO 2 based all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Yin, Yijing; Zhou, Juanjuan; Mansour, Azzam N.; Zhou, Xiangyang

    NaI/I 2 mediators and activated carbon were added into poly(ethylene oxide) (PEO)/lithium aluminate (LiAlO 2) electrolyte to fabricate composite electrodes. All solid-state supercapacitors were fabricated using the as prepared composite electrodes and a Nafion 117 membrane as a separator. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge measurements were conducted to evaluate the electrochemical properties of the supercapacitors. With the addition of NaI/I 2 mediators, the specific capacitance increased by 27 folds up to 150 F g -1. The specific capacitance increased with increases in the concentration of mediators in the electrodes. The addition of mediators also reduced the electrode resistance and rendered a higher electron transfer rate between mediator and mediator. The stability of the all-solid-state supercapacitor was tested over 2000 charge/discharge cycles.

  16. Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors.

    PubMed

    Gnana Sundara Raj, Balasubramaniam; Asiri, Abdullah M; Qusti, Abdullah H; Wu, Jerry J; Anandan, Sambandam

    2014-11-01

    In this study, manganese oxide (MnO2) nanoparticles were synthesized by sonochemical reduction of KMnO4 using polyethylene glycol (PEG) as a reducing agent as well as structure directing agent under room temperature in short duration of time and characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis. A supercapacitor device constructed using the ultrasonically-synthesized MnO2 nanoparticles showed maximum specific capacitance (SC) of 282Fg(-1) in the presence of 1M Ca(NO3)2 as an electrolyte at a current density of 0.5mAcm(-2) in the potential range from 0.0 to 1.0V and about 78% of specific capacitance was retained even after 1000 cycles indicating its high electrochemical stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Supercapacitors from Activated Carbon Derived from Granatum.

    PubMed

    Wang, Qiannan; Yang, Lin; Wang, Zhao; Chen, Kexun; Zhang, Lipeng

    2015-12-01

    Granatum carbon (GC) as electrode materials for supercapacitors is prepared via the chemical activation with different activating agent such as ZnC2 and KOH with an intention to improve the surface area and their electrochemical performance. The structure and electrochemical properties of GC materials are characterized with N2 adsorption/desorption measurements, scanning electron microscope (SEM), cyclic voltammetry (CV), galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The obtained results show that the specific surface area of the granatum-based activated carbons increased obviously from 573 m2 x g(-1) to 1341 m2 x g(-1) by ZnC2 activation and to 930 m2 x g(-1) by KOH treatment. Furthermore, GCZ also delivers specific capacitance of 195.1 Fx g(-1) at the current density of 0.1 A x g(-1) in 30 wt.% KOH aqueous electrolyte and low capacitance loss of 28.5% when the current density increased by 10 times.

  18. Polydopamine and MnO2 core-shell composites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hou, Ding; Tao, Haisheng; Zhu, Xuezhen; Li, Maoguo

    2017-10-01

    Polydopamine and MnO2 core-shell composites (PDA@MnO2) for high-performance supercapacitors had been successfully synthesized by a facile and fast method. The morphology, crystalline phase and chemical composition of PDA@MnO2 composites are characterized using SEM, TEM, XRD, EDS and XPS. The performance of PDA@MnO2 composites are further investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte. The PDA@MnO2 core-shell nanostructure composites exhibit a high capacitance of 193 F g-1 at the current density of 1A g-1 and retained over 81.2% of its initial capacitance after 2500 cycles of charge-discharge at 2 A g-1. The results manifest that the PDA@MnO2 composites can be potentially applied in supercapacitors.

  19. Effect of illumination on the dielectrical properties of P3HT:PC70BM nanocomposites

    NASA Astrophysics Data System (ADS)

    Hamza, Saidi; Mhamdi, Asya; Aloui, Walid; Bouazizi, Abdelaziz; Khirouni, Kamel

    2017-05-01

    In this work, the effects of light-generated carriers on the dielectric properties of the structure ITO/PEDOT: PSS/P3HT:PC70BM/Al were carried out. Impedance spectroscopy was performed at an applied bias equal to the open-circuit. From the real and imaginary part of the impedance, a dipolar relaxation type was observed, which decreased in the presence of light due to an increase in the electron mobility. The Cole-Cole diagram fit using a parallel model R-CPE equivalent circuit leads to the comparison of parallel resistances (R p) and capacitance (CPE) in dark and under illumination. The decrease of R p is related to the increases in the photo-generated charge carrier density. The increase in the capacitance is related to the enhancement of the P3HT/PCBM interface homogeneity.

  20. Capacitive deionization on-chip as a method for microfluidic sample preparation.

    PubMed

    Roelofs, Susan H; Kim, Bumjoo; Eijkel, Jan C T; Han, Jongyoon; van den Berg, Albert; Odijk, Mathieu

    2015-03-21

    Desalination as a sample preparation step is essential for noise reduction and reproducibility of mass spectrometry measurements. A specific example is the analysis of proteins for medical research and clinical applications. Salts and buffers that are present in samples need to be removed before analysis to improve the signal-to-noise ratio. Capacitive deionization is an electrostatic desalination (CDI) technique which uses two porous electrodes facing each other to remove ions from a solution. Upon the application of a potential of 0.5 V ions migrate to the electrodes and are stored in the electrical double layer. In this article we demonstrate CDI on a chip, and desalinate a solution by the removal of 23% of Na(+) and Cl(-) ions, while the concentration of a larger molecule (FITC-dextran) remains unchanged. For the first time impedance spectroscopy is introduced to monitor the salt concentration in situ in real-time in between the two desalination electrodes.

  1. High-performance super capacitors based on activated anthracite with controlled porosity

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Chul; Byamba-Ochir, Narandalai; Shim, Wang-Geun; Balathanigaimani, M. S.; Moon, Hee

    2015-02-01

    Mongolian anthracite is chemically activated using potassium hydroxide as an activation agent to make activated carbon materials. Prior to the chemical activation, the chemical agent is introduced by two different methods as follows, (1) simple physical mixing, (2) impregnation. The physical properties such as specific surface area, pore volume, pore size distribution, and adsorption energy distribution are measured to assess them as carbon electrode materials for electric double-layer capacitors (EDLC). The surface functional groups and morphology are also characterized by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analyses respectively. The electrochemical results for the activated carbon electrodes in 3 M sulfuric acid electrolyte solution indicate that the activated Mongolian anthracite has relatively large specific capacitances in the range of 120-238 F g-1 and very high electrochemical stability, as they keep more than 98% of initial capacitances until 1000 charge/discharge cycles.

  2. The platinum microelectrode/Nafion interface - An electrochemical impedance spectroscopic analysis of oxygen reduction kinetics and Nafion characteristics

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Dave, Bhasker; Srinivasan, Supramaniam; Appleby, John A.; Martin, Charles R.

    1992-01-01

    The objectives of this study were to use electrochemical impedance spectroscopy (EIS) to study the oxygen-reduction reaction under lower humidification conditions than previously studied. The EIS technique permits the discrimination of electrode kinetics of oxygen reduction, mass transport of O2 in the membrane, and the electrical characteristics of the membrane. Electrode-kinetic parameters for the oxygen-reduction reaction, corrosion current densities for Pt, and double-layer capacitances were calculated. The production of water due to electrochemical reduction of oxygen greatly influenced the EIS response and the electrode kinetics at the Pt/Nafion interface. From the finite-length Warburg behavior, a measure of the diffusion coefficient of oxygen in Nafion and diffusion-layer thickness was obtained. An analysis of the EIS data in the high-frequency domain yielded membrane and interfacial characteristics such as ionic conductivity of the membrane, membrane grain-boundary capacitance and resistance, and uncompensated resistance.

  3. Novel synthesis of Ni-ferrite (NiFe{sub 2}O{sub 4}) electrode material for supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatachalam, V.; Jayavel, R., E-mail: rjvel@annauniv.edu

    Novel nanocrystalline NiFe{sub 2}O{sub 4} has been synthesized through combustion route using citric acid as a fuel. Phase of the synthesized material was analyzed using powder X-ray diffraction. The XRD study revealed the formation of spinel phase cubic NiFe{sub 2}O{sub 4} with high crystallinity. The average crystallite size of NiFe{sub 2}O{sub 4} nanomaterial was calculated from scherrer equation. The electrochemical properties were realized by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The electrode material shows a maximum specific capacitance of 454 F/g with pseudocapacitive behavior. High capacitance retention of electrode material over 1000 continuous charging-discharging cycles suggests its excellent electrochemicalmore » stability. The results revealed that the nickel ferrite electrode is a potential candidate for energy storage applications in supercapacitor.« less

  4. thin film capacitors

    NASA Astrophysics Data System (ADS)

    Bodeux, Romain; Gervais, Monique; Wolfman, Jérôme; Gervais, François

    2014-09-01

    CaCu3Ti4O12 (CCTO) thin films were grown by pulsed laser deposition on Pt and La0.9Sr1.1NiO4 (LSNO) bottom electrodes. The electrical characteristics of the CCTO/Pt and CCTO/LSNO Schottky junctions have been analyzed by impedance spectroscopy, capacitance-voltage (C-V) and current-voltage (I-V) measurements as a function of frequency (40 Hz-1 MHz) and temperature (300-475 K). Similar results were obtained for the two Schottky diodes. The conduction mechanism through the Schottky junctions was described using a thermionic emission model and the electrical parameters were determined. The strong deviation from the ideal I-V characteristics and the increase in capacitance at low frequency for -0.5 V bias are in agreement with the presence of traps near the interfaces. Results point toward the important effect of defects generated at the interface by deposition of CCTO.

  5. Real Space Imaging of the Microscopic Origins of the Ultrahigh Dielectric Constant in Polycrystalline CaCu 3Ti 4O 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, Sergei V; Shin, Junsoo; Veith, Gabriel M

    2005-01-01

    The origins of an ultrahigh dielectric constant in polycrystalline CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) were studied using the combination of impedance spectroscopy, electron microscopy, and scanning probe microscopy (SPM). Impedance spectra indicate that the transport properties in the 0.1 Hz-1 MHz frequency range are dominated by a single parallel resistive-capacitive (RC) element with a characteristic relaxation frequency of 16 Hz. dc potential distributions measurements by SPM illustrate that significant potential drops occur at the grain boundaries, which thus can be unambiguously identified as the dominant RC element. High frequency ac amplitude and phase distributions illustrate very weak grain boundary contrastmore » in SPM, indicative of strong capacitive coupling across the interfaces. These results demonstrate that the ultrahigh dielectric constant reported for polycrystalline CCTO materials is related to grain-boundary behavior.« less

  6. Investigation of deep-level defects in Cu(In,Ga)Se2 thin films by two-wavelength excitation photo-capacitance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Xiaobo; Gupta, Amit; Sakurai, Takeaki; Yamada, Akimasa; Ishizuka, Shogo; Niki, Shigeru; Akimoto, Katsuhiro

    2013-10-01

    The properties of the defect level located 0.8 eV above the valence band in Cu(In1-x,Gax)Se2 thin films were investigated by a photo-capacitance method using a monochromatic probe light with an energy of 0.7 to 1.8 eV. In addition to the probe light, laser light with a wavelength of 1.55 μm, corresponding to 0.8 eV, was also used to study the saturation effect of the defect level at 0.8 eV. A suppression of electron-hole recombination due to saturation of the defect level was observed at room temperature while no saturation effect was observed at 140 K. The results suggest that the defect level at 0.8 eV acts as a recombination center at least at room temperature.

  7. Biopolymer stabilized water dispersible polyaniline for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Anbalagan, Amarnath Chellachamy; Sawant, Shilpa Nandkishor

    2018-04-01

    Polyaniline colloidal nanoparticles (PANI CNs) were synthesized, employing biopolymer pectin (Pec) as a stabilizer along with hydrochloric acid dopant and ammonium persulfate oxidant. Chemical nature and electronic structure was studied by FT-IR and UV-visible spectroscopy respectively. FE-SEM revealed spindle like morphology of PANI CNs and displayed the nearly discrete particles without aggregation, showing stabilizing capacity of the Pec. Cyclic voltammetry and galvanostatic charge-discharge measurements demonstrated the electroactivity and supercapacitive property of the PANI CNs in 1 M HCl. The specific capacitance of PANI CNs in 1 M HCl at 1.5 A/g was found to be 197 F/g, where 70% of specific capacitance was retained even after 1000 cycles. These findings establish the feasibility of using the PANI CNs as a potential material for energy storage in aqueous acidic medium. Furthermore, this colloidal dispersion can find potential application in electrodes of flexible supercapacitor device and printable electronics.

  8. Design and properties of a cryogenic dip-stick scanning tunneling microscope with capacitive coarse approach control.

    PubMed

    Schlegel, R; Hänke, T; Baumann, D; Kaiser, M; Nag, P K; Voigtländer, R; Lindackers, D; Büchner, B; Hess, C

    2014-01-01

    We present the design, setup, and operation of a new dip-stick scanning tunneling microscope. Its special design allows measurements in the temperature range from 4.7 K up to room temperature, where cryogenic vacuum conditions are maintained during the measurement. The system fits into every (4)He vessel with a bore of 50 mm, e.g., a transport dewar or a magnet bath cryostat. The microscope is equipped with a cleaving mechanism for cleaving single crystals in the whole temperature range and under cryogenic vacuum conditions. For the tip approach, a capacitive automated coarse approach is implemented. We present test measurements on the charge density wave system 2H-NbSe2 and the superconductor LiFeAs which demonstrate scanning tunneling microscopy and spectroscopy data acquisition with high stability, high spatial resolution at variable temperatures and in high magnetic fields.

  9. Three-dimensional polypyrrole-derived carbon nanotube framework for dye adsorption and electrochemical supercapacitor

    NASA Astrophysics Data System (ADS)

    Xin, Shengchang; Yang, Na; Gao, Fei; Zhao, Jing; Li, Liang; Teng, Chao

    2017-08-01

    Three-dimensional carbon nanotube frameworks have been prepared via pyrolysis of polypyrrole nanotube aerogels that are synthesized by the simultaneous self-degraded template synthesis and hydrogel assembly followed by freeze-drying. The microstructure and composition of the materials are investigated by thermal gravimetric analysis, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, and specific surface analyzer. The results confirm the formation of three-dimensional carbon nanotube frameworks with low density, high mechanical properties, and high specific surface area. Compared with PPy aerogel precursor, the as-prepared three-dimensional carbon nanotube frameworks exhibit outstanding adsorption capacity towards organic dyes. Moreover, electrochemical tests show that the products possess high specific capacitance, good rate capability and excellent cycling performance with no capacitance loss over 1000 cycles. These characteristics collectively indicate the potential of three-dimensional polypyrrole-derived carbon nanotube framework as a promising macroscopic device for the applications in environmental and energy storages.

  10. Transient-Absorption Spectroscopy of Cis-Trans Isomerization of N,N-dimethyl-4,4'-Azodianiline with 3D-Printed Temperature-Controlled Sample Holder

    ERIC Educational Resources Information Center

    Kosenkov, Dmytro; Shaw, James; Zuczek, Jennifer; Kholod, Yana

    2016-01-01

    The laboratory unit demonstrates a project based approach to teaching physical chemistry laboratory where upper-division undergraduates carry out a transient-absorption experiment investigating the kinetics of cis-trans isomerization of N,N-dimethyl-4,4'-azodianiline. Students participate in modification of a standard flash-photolysis spectrometer…

  11. Giant dielectric constant in CaCu3Ti4O12 nanoceramics

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohamad M.

    2013-06-01

    Nanoceramics of CaCu3Ti4O12 (CCTO) were synthesized by mechanosynthesis and spark plasma sintering with grain size of 150-200 nm. Giant dielectric constant properties are observed in the CCTO nanoceramics due to internal barrier layer capacitance (IBLC) effects. Impedance spectroscopy data suggest that the presence of resistive grain boundaries in addition to resistive domain boundaries is the origin of the IBLCs in CCTO nanoceramics.

  12. High Harmonic Generation XUV Spectroscopy for Studying Ultrafast Photophysics of Coordination Complexes

    NASA Astrophysics Data System (ADS)

    Ryland, Elizabeth S.; Lin, Ming-Fu; Benke, Kristin; Verkamp, Max A.; Zhang, Kaili; Vura-Weis, Josh

    2017-06-01

    Extreme ultraviolet (XUV) spectroscopy is an inner shell technique that probes the M_{2,3}-edge excitation of atoms. Absorption of the XUV photon causes a 3p→3d transition, the energy and shape of which is directly related to the element and ligand environment. This technique is thus element-, oxidation state-, spin state-, and ligand field specific. A process called high-harmonic generation (HHG) enables the production of ultrashort (˜20fs) pulses of collimated XUV photons in a tabletop instrument. This allows transient XUV spectroscopy to be conducted as an in-lab experiment, where it was previously only possible at accelerator-based light sources. Additionally, ultrashort pulses provide the capability for unprecedented time resolution (˜50fs IRF). This technique has the capacity to serve a pivotal role in the study of electron and energy transfer processes in materials and chemical biology. I will present the XUV transient absorption instrument we have built, along with ultrafast transient M_{2,3}-edge absorption data of a series of small inorganic molecules in order to demonstrate the high specificity and time resolution of this tabletop technique as well as how our group is applying it to the study of ultrafast electronic dynamics of coordination complexes.

  13. Voltage and Current Clamp Transients with Membrane Dielectric Loss

    PubMed Central

    Fitzhugh, R.; Cole, K. S.

    1973-01-01

    Transient responses of a space-clamped squid axon membrane to step changes of voltage or current are often approximated by exponential functions of time, corresponding to a series resistance and a membrane capacity of 1.0 μF/cm2. Curtis and Cole (1938, J. Gen. Physiol. 21:757) found, however, that the membrane had a constant phase angle impedance z = z1(jωτ)-α, with a mean α = 0.85. (α = 1.0 for an ideal capacitor; α < 1.0 may represent dielectric loss.) This result is supported by more recently published experimental data. For comparison with experiments, we have computed functions expressing voltage and current transients with constant phase angle capacitance, a parallel leakage conductance, and a series resistance, at nine values of α from 0.5 to 1.0. A series in powers of tα provided a good approximation for short times; one in powers of t-α, for long times; for intermediate times, a rational approximation matching both series for a finite number of terms was used. These computations may help in determining experimental series resistances and parallel leakage conductances from membrane voltage or current clamp data. PMID:4754194

  14. Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duc, Tran Thien; School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi; Pozina, Galia

    2016-03-07

    Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of twomore » electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.« less

  15. Transient Spectroscopy of Photoexcitations and Morphology Control of Organometal Trihalide Perovskites

    NASA Astrophysics Data System (ADS)

    Zhai, Yaxin; Lafalce, Evan; Sheng, Chuan-Xiang; Zhang, Chuang; Sun, Dali; Vardeny, Zeev Valy

    We studied the photoexcitation dynamics in various hybrid perovskites by using broadband ps transient photomodulation (PM) spectroscopy and variable stripe length (VSL) technique. We observed both excitonic and free carriers spectral features in MAPbI3 but mainly excitonic transition in MAPbI1.1Br1.9 and MAPbI3-xClx films. We also fabricated MAPbBr3 films with nano-crystal pinning (NCP) treatment, which allows for smaller crystalline grain size. The transient spectra show a narrower and longer-lived photobleaching band in NCP treated films consistent with the increase in the photoluminescence efficiency. In addition the net optical gain measured by VSL is markedly increased up to 300 cm-1, and the lasing threshold is concurrently reduced. Measurement of the waveguide losses in the NCP films shows that the improvement in lasing properties can partly be attributed to the reduced optical scattering. Work supported by the AFOSR through a MURI Grant RA 9550-14-1-0037.

  16. Femtosecond pump-supercontinuum probe and transient lens spectroscopy of adonixanthin.

    PubMed

    Lenzer, Thomas; Schubert, Steffen; Ehlers, Florian; Lohse, Peter W; Scholz, Mirko; Oum, Kawon

    2009-03-15

    The ultrafast internal conversion (IC) dynamics of adonixanthin in organic solvents were studied by pump-supercontinuum probe (PSCP) and transient lens (TL) spectroscopy after photoexcitation to the S(2) state. Transient PSCP spectra in the range 344-768 nm provided the spectral evolution of the S(0)-->S(2) ground state bleach and S(1)-->S(n) excited state absorption. Time constants were tau(2) =115 and 111 fs for the S(2)-->S(1) IC and tau(1)=6.4 and 5.8 ps for the S(1)-->S(0) IC in acetone and methanol, respectively. There was only an insignificant polarity dependence of tau(1), underlining the negligible importance of intramolecular charge transfer (ICT) in the lowest-lying excited state of C(40) carotenoids with carbonyl substitution on the beta-ionone ring. A blueshift and a spectral narrowing of the S(1)-->S(n) ESA band, likely due to solvation dynamics, and formation of the adonixanthin radial cation at high pump energies via resonant two-photon ionization were found.

  17. Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers.

    PubMed

    Gao, Xuejiao; Guan, Bin; Mesli, Abdelmadjid; Chen, Kaixiang; Dan, Yaping

    2018-01-09

    It is known that self-assembled molecular monolayer doping technique has the advantages of forming ultra-shallow junctions and introducing minimal defects in semiconductors. In this paper, we report however the formation of carbon-related defects in the molecular monolayer-doped silicon as detected by deep-level transient spectroscopy and low-temperature Hall measurements. The molecular monolayer doping process is performed by modifying silicon substrate with phosphorus-containing molecules and annealing at high temperature. The subsequent rapid thermal annealing drives phosphorus dopants along with carbon contaminants into the silicon substrate, resulting in a dramatic decrease of sheet resistance for the intrinsic silicon substrate. Low-temperature Hall measurements and secondary ion mass spectrometry indicate that phosphorus is the only electrically active dopant after the molecular monolayer doping. However, during this process, at least 20% of the phosphorus dopants are electrically deactivated. The deep-level transient spectroscopy shows that carbon-related defects are responsible for such deactivation.

  18. Ultrafast electric phase control of a single exciton qubit

    NASA Astrophysics Data System (ADS)

    Widhalm, Alex; Mukherjee, Amlan; Krehs, Sebastian; Sharma, Nandlal; Kölling, Peter; Thiede, Andreas; Reuter, Dirk; Förstner, Jens; Zrenner, Artur

    2018-03-01

    We report on the coherent phase manipulation of quantum dot excitons by electric means. For our experiments, we use a low capacitance single quantum dot photodiode which is electrically controlled by a custom designed SiGe:C BiCMOS chip. The phase manipulation is performed and quantified in a Ramsey experiment, where ultrafast transient detuning of the exciton energy is performed synchronous to double pulse π/2 ps laser excitation. We are able to demonstrate electrically controlled phase manipulations with magnitudes up to 3π within 100 ps which is below the dephasing time of the quantum dot exciton.

  19. A compact model for selectors based on metal doped electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Song, Wenhao; Yang, J. Joshua; Li, Hai; Chen, Yiran

    2018-04-01

    A selector device that demonstrates high nonlinearity and low switching voltages was fabricated using HfOx as a solid electrolyte doped with Ag electrodes. The electronic conductance of the volatile conductive filaments responsible for the switching was studied under both static and dynamic conditions. A compact model is developed from this study that describes the physical processes of the formation and rupture of the Ag filament(s). A dynamic capacitance model is used to fit the transient current traces under different voltage bias, which enables the extraction of parameters associated with the various parasitic components in the device.

  20. Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter alkaliphilus.

    PubMed

    Kajimoto, Kousuke; Kikukawa, Takashi; Nakashima, Hiroki; Yamaryo, Haruki; Saito, Yuta; Fujisawa, Tomotsumi; Demura, Makoto; Unno, Masashi

    2017-05-04

    Sodium-ion-pump rhodopsin (NaR) is a microbial rhodopsin that transports Na + during its photocycle. Here we explore the photocycle mechanism of NaR from Indibacter alkaliphilus with transient absorption and transient resonance Raman spectroscopy. The transient absorption data indicate that the photocycle of NaR is K (545 nm) → L (490 nm)/M (420 nm) → O 1 (590 nm) → O 2 (560 nm) → NaR, where the L and M are formed as equilibrium states. The presence of K, L, M, and O intermediates was confirmed by the resonance Raman spectra with 442 and 532 nm excitation. The main component of the transient resonance Raman spectra was due to L which contains a 13-cis retinal protonated Schiff base. The presence of an enhanced hydrogen out-of-plane band as well as its sensitivity to the H/D exchange indicate that the retinal chromophore is distorted near the Schiff base region in L. Moreover, the retinal Schiff base of the L state forms a hydrogen bond that is stronger than that of the dark state. These observations are consistent with a Na + pumping mechanism that involves a proton transfer from the retinal Schiff base to a key aspartate residue (Asp116 in Krokinobacter eikastus rhodopsin 2) in the L/M states.

  1. Solutions for transients in arbitrarily branching cables: III. Voltage clamp problems.

    PubMed

    Major, G

    1993-07-01

    Branched cable voltage recording and voltage clamp analytical solutions derived in two previous papers are used to explore practical issues concerning voltage clamp. Single exponentials can be fitted reasonably well to the decay phase of clamped synaptic currents, although they contain many underlying components. The effective time constant depends on the fit interval. The smoothing effects on synaptic clamp currents of dendritic cables and series resistance are explored with a single cylinder + soma model, for inputs with different time courses. "Soma" and "cable" charging currents cannot be separated easily when the soma is much smaller than the dendrites. Subtractive soma capacitance compensation and series resistance compensation are discussed. In a hippocampal CA1 pyramidal neurone model, voltage control at most dendritic sites is extremely poor. Parameter dependencies are illustrated. The effects of series resistance compound those of dendritic cables and depend on the "effective capacitance" of the cell. Plausible combinations of parameters can cause order-of-magnitude distortions to clamp current waveform measures of simulated Schaeffer collateral inputs. These voltage clamp problems are unlikely to be solved by the use of switch clamp methods.

  2. An Energy Saving Green Plug Device for Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed

    2018-03-01

    The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..

  3. Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhi-Jun; Fan, Xiang-Bing; Li, Xu-Bing

    2017-01-01

    Here we present a facile aqueous approach to synthesize heterostructured CdSe/CdS QDs with all-inorganic chalcogenide S2- ligands under mild conditions. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and steady-state emission spectroscopy demonstrate that the heterostructured CdSe/CdS QDs with sulfur-rich surface composition are formed by heterogeneous nucleation of Cd2+ and S2- precursors on the CdSe QDs. After adsorption of small Ni(OH)(2) clusters over the surface in situ, the CdSe/CdS-Ni(OH)(2) photocatalyst enables H-2 production efficiently with an internal quantum yield of 52% under visible light irradiation at 455 nm, up to an 8-fold increase ofmore » activity to that of spherical CdSe QDs-Ni(OH)(2) under the same conditions. Femtosecond transient absorption spectroscopy, X-ray transient absorption (XTA) spectroscopy, steady-state and time-resolved emission spectroscopy show that the quasi-type-II band alignment in the CdSe/CdS heterostructure is responsible for the efficiency enhancement of light harvesting and surface/interfacial charge separation in solar energy conversion. The unprecedented results exemplify an easily accessible pattern of aqueous synthesis of all-inorganic heterostructured QDs for advanced photosynthetic H-2 evolution.« less

  4. Fabrication of flower-like Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} and their electrochemical properties evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Ling-Bin, E-mail: konglb@lut.cn; School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050; Deng, Li

    Graphical abstract: Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} nano-flakes materials, which have a flower-like structure, were successfully synthesized by a facile solvothermal method without adding any surfactant. The as-prepared Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} possesses a maximum specific capacitance of 2212.5 F g{sup −1} at the current density of 5 mA, suggesting its potential application in electrode material for secondary batteries and electrochemical capacitors. Highlights: ► Flower-like Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} materials were fabricated in a simple method. ► High specific capacitance of 2212.5 F g{sup −1} has been achieved. ► For the first time the effects of concentration andmore » temperature on its specific capacitance has been studied. -- Abstract: Flower-like Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} was successfully synthesized by a facile solvothermal method. The microstructure and surface morphology of prepared Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} were physically characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and transmission electron microscope (TEM). The electrochemical properties studies were carried out using cyclic voltammetry (CV), chronopotentiometry technology and AC impedance spectroscopy, respectively. The results indicate that the flower-like structure has a profound impact on electrode performance at high discharge capacitance. A maximum specific capacitance of 2212.5 F g{sup −1} at the current density of 5 mA could be achieved, suggesting its potential application in electrode material for secondary batteries and electrochemical capacitors. Furthermore, the effects of Ni(NO{sub 3}){sub 2}·6H{sub 2}O concentration and temperature on the microstructure and specific capacitance of prepared Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} have also been systematically studied. The results show that flower-like structure can be formed when the concentration is appropriate, while the temperature has just little effect on its electrochemical properties.« less

  5. Introduction to Time-Resolved Spectroscopy: Nanosecond Transient Absorption and Time-Resolved Fluorescence of Eosin B

    ERIC Educational Resources Information Center

    Farr, Erik P.; Quintana, Jason C.; Reynoso, Vanessa; Ruberry, Josiah D.; Shin, Wook R.; Swartz, Kevin R.

    2018-01-01

    Here we present a new undergraduate laboratory that will introduce the concepts of time-resolved spectroscopy and provide insight into the natural time scales on which chemical dynamics occur through direct measurement. A quantitative treatment of the acquired data will provide a deeper understanding of the role of quantum mechanics and various…

  6. The influence of thermal annealing on the characteristics of Au/Ni Schottky contacts on n-type 4 H-SiC

    NASA Astrophysics Data System (ADS)

    Omotoso, E.; Auret, F. D.; Igumbor, E.; Tunhuma, S. M.; Danga, H. T.; Ngoepe, P. N. M.; Taleatu, B. A.; Meyer, W. E.

    2018-05-01

    The effects of isochronal annealing on the electrical, morphological and structural characteristics of Au/Ni/4 H-SiC Schottky barrier diodes (SBDs) have been studied. Current-voltage ( I- V), capacitance-voltage ( C- V), deep-level transient spectroscopy, scanning electron microscope (SEM) and X-ray diffraction measurements were employed to study the thermal effect on the characteristics of the SBDs. Prior to thermal annealing of Schottky contacts, the I- V measurements results confirmed the good rectification behaviour with ideality factor of 1.06, Schottky barrier height of 1.20 eV and series resistance of 7 Ω. The rectification properties after annealing was maintained up to an annealing temperature of 500 °C, but deviated slightly above 500 °C. The uncompensated ionized donor concentration decreased with annealing temperature, which could be attributed to out-diffusion of the 4 H-SiC into the Au/Ni contacts and decrease in bonding due to formation of nickel silicides. We observed the presence of four deep-level defects with energies 0.09, 0.11, 0.16 and 0.65 eV below the conduction band before and after the isochronal annealing up to 600 °C. The conclusion drawn was that annealing did not affect the number of deep-level defects present in Au/Ni/4 H-SiC contacts. The variations in electrical properties of the devices were attributed to the phase transformations and interfacial reactions that occurred after isochronal annealing.

  7. Non-Ideal Properties of Gallium Nitride Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Shan, Qifeng

    The spectacular development of gallium nitride (GaN) based light-emitting diodes (LEDs) in recent years foreshadows a new era for lighting. There are still several non-ideal properties of GaN based LEDs that hinder their widespread applications. This dissertation studies these non-ideal properties including the large reverse leakage current, large subthreshold forward leakage current, an undesired parasitic cyan luminescence and high-concentration deep levels in GaInN blue LEDs. This dissertation also studies the thermal properties of GaInN LEDs. Chapter 1 gives a brief introduction of non-ideal properties of GaN based LEDs. The leakage current of GaN based LEDs, defects in epitaxially grown GaN devices, and doping problems of p-type GaN materials are discussed. The transient junction temperature measurement technique for GaN based LEDs is introduced. The leakage current of an LED includes the subthreshold forward leakage current and the reverse leakage current. The leakage current of GaN based LEDs affects the reliability, electrostatic discharge resilience, and sub-threshold power consumption. In Chapter 2, the reverse leakage current of a GaInN LED is analyzed by temperaturedependent current-voltage measurements. At low temperature, the reverse leakage current is attributed to the variable-range-hopping conduction. At high temperature, the reverse leakage current is attributed to a thermally-assisted multi-step tunneling. The thermal activation energies (95 meV ~ 162 meV), extracted from the Arrhenius plot for the reverse current in the high-temperature range, indicate a thermally activated tunneling process. Additional room-temperature capacitance-voltage (C-V) measurements are performed to obtain information on the depletion width and doping concentration of the LED. The average internal electric field is estimated by the C-V measurements. The strong internal electric field enhances the thermal emission of electrons in the thermally-assisted multi-step tunneling process. Another problem of GaInN blue LEDs is the undesired parasitic cyan emission band. The undesired parasitic emission band strongly influence the electrical and optical properties of GaInN blue LEDs including the subthreshold forward leakage current and the color purity of the emission. In Chapter 3 , GaInN blue LEDs emitting at 445 nm with a parasitic cyan (blue-green) emission band (480 nm), which dominates the emission spectrum at low injection current, are analyzed. Photoluminescence using resonant optical excitation shows that the cyan emission originates from the active region of the LED. The current- and excitation-density-dependent blue-to-cyan intensity ratio reveals that the cyan emission is due to a transition from the conduction band to a Mg acceptor having diffused into the last-grown quantum well of the active region. The Mg in the active region provides an additional carrier-transport path, and therefore can explain the high subthreshold forward leakage current that is measured in these LEDs. Deep levels in GaN-based materials strongly affect the electrical and optical properties of GaN-based LEDs. Chapter 4 describes the basic principle and the setup of a deep-level transient spectroscopy (DLTS) measurement system. This DLTS system is used to determine the concentration and thermal activation energy of deep levels in the depletion region of the GaInN LED. Two types of hole traps in the n-type side of the depletion region are observed in the DLTS measurement. The thermal activation energies of these two types of hole traps are compared with the results reported in literature. The hole trap associated with the major DLTS peak with a thermal activation energy of 0.80 eV is presumably related to the “yellow luminescence band”. Self-heating of LEDs is an important issue that affects the efficiency and reliability. In Chapter 5, the thermal properties, including thermal time constants, of GaN LEDs are analyzed. The transient-junction-temperature behavior of unpackaged LED chips is described by a single time constant, which is the product of a thermal resistance Rth and a thermal capacitance Cth. Furthermore, a multistage RthCth thermal model for packaged LEDs is developed. The transient response of the junction temperature of LEDs after the power is switched on or switched off can be described by a multi-exponential function. Each time constant of this function is approximately the product of a thermal resistance, Rth, and a thermal capacitance, Cth. The transient junction temperature after the power is switched off is measured for a high-power flip-chip LED by the forward-voltage method. A two-stage RthCth model is used to analyze the thermal properties of the packaged LED. Two time constants, 2.72 ms and 18.7 ms are extracted from the junction temperature decay measurement and attributed to the thermal time constant of the LED GaN / sapphire chip and LED Si submount, respectively.

  8. Boosting the Supercapacitance of Nitrogen-Doped Carbon by Tuning Surface Functionalities.

    PubMed

    Biemolt, Jasper; Denekamp, Ilse M; Slot, Thierry K; Rothenberg, Gadi; Eisenberg, David

    2017-10-23

    The specific capacitance of a highly porous, nitrogen-doped carbon is nearly tripled by orthogonal optimization of the microstructure and surface chemistry. First, the carbons' hierarchical pore structure and specific surface area were tweaked by controlling the temperature and sequence of the thermal treatments. The best process (pyrolysis at 900 °C, washing, and subsequent annealing at 1000 °C) yielded a carbon with a specific capacitance of 117 F g -1 -nearly double that of a carbon made by a typical single-step synthesis at 700 °C. Following the structural optimization, the surface chemistry of the carbons was enriched by applying an oxidation routine based on a mixture of nitric and sulfuric acid in a 1:4 ratio at two different treatment temperatures (0 and 20 °C) and different treatment times. The optimal treatment times were 4 h at 0 °C and only 1 h at 20 °C. Overall, the specific capacitance nearly tripled relative to the original carbon, reaching 168 F g -1 . The inherent nitrogen doping of the carbon comes into interplay with the acid-induced surface functionalization, creating a mixture of oxygen- and nitrogen-oxygen functionalities. The evolution of the surface chemistry was carefully followed by X-ray photoelectron spectroscopy and by N 2 sorption porosimetry, revealing stepwise surface functionalization and simultaneous carbon etching. Overall, these processes are responsible for the peak-shaped capacitance trends in the carbons. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Supercapacitors based on ordered mesoporous carbon derived from furfuryl alcohol: effect of the carbonized temperature.

    PubMed

    Li, Na; Xu, Jianxiong; Chen, Han; Wang, Xianyou

    2014-07-01

    Supercapacitors are successfully prepared from ordered mesoporous carbon (OMC) synthesized by employing the mesoporous silica, SBA-15 as template and furfuryl alcohol as carbon source. It is found that the carbonized temperature greatly influences the physical properties of the synthesized mesoporous carbon materials. The optimal carbonized temperature is measured to be 600 degrees C under which OMC with the specific surface area of 1219 m2/g and pore volume of 1.31 cm3/g and average pore diameter of - 3 nm are synthesized. The OMC materials synthesized under different carbonized temperature are used as electrode material of supercapacitors and the electrochemical properties of the OMC materials are compared by using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge-discharge and self-discharge tests. The results show that the electrochemical properties of the OMC materials are directly related to the specific surface area and pore volume of the mesoporous carbon and the electrode prepared from the OMC synthesized under the carbonized temperature of 600 degrees C (OMC-600) exhibits the most excellent electrochemical performance with the specific capacitance of 207.08 F/g obtained from cyclic voltammetry at the scan rate of 1 mV/s, small resistance and low self-discharge rate. Moreover, the supercapacitor based on the OMC-600 material exhibits good capacitance properties and stable cycle behavior with the specific capacitance of 105 F/g at the current density of 700 mA/g, and keeps a specific capacitance of 98 F/g after 20000 consecutive charge/discharge cycles.

  10. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid

    NASA Astrophysics Data System (ADS)

    Li, Hanlu; Wang, Jixiao; Chu, Qingxian; Wang, Zhi; Zhang, Fengbao; Wang, Shichang

    The theoretical mass specific capacitance (C s) of polyaniline (PANI) is firstly estimated by combining electrical double-layer capacitance and pseudocapacitance. The maximum C s is 2.0 × 10 3 F g -1 for one single PANI electrode. In present work, the PANI nanofiber modified stainless-steel (SS) electrode (PANI/SS) was used to assemble supercapacitors. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images indicate that the PANI nanofiber has a coarse surface arising from the heterogeneous structure which likes an aggregation of nanoparticles. The performance of the assembled PANI/SS supercapacitors was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge methods in 1.0 M H 2SO 4. The maximum C s obtained from these methods in present work is 608, 445.0, and 524.9 F g -1, respectively, which is only 30%, 22%, and 26% of the theoretical one. The significant difference between the experimental and the theoretical value indicates that only a low percentage of PANI (effective) has contribution to capacitance. The percentage of effective PANI depends on both the diffusion of dopants (counter-anions) and the conductivity of PANI. Under practical conditions, the former factor makes PANI nanofiber behave like a concentric cable with only the shell part involved in the charge/discharge process. The latter one which determines the electron transfer rate in PANI has an influence on the degree of redox reaction. In present work, the heterogeneous structure of the PANI nanofiber has a negative effect on the conductivity.

  11. Characterisation of Nd2O3 thick gate dielectric for silicon

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.

    2004-03-01

    Thin neodymium films were prepared by the reactive synthesis method on Si (P) substrates to form MOS devices. The oxide films were characterised by UV absorption spectroscopy, X-ray fluorescence (EDXRF) and X-ray diffraction (XRD). The ac conductance and capacitance of the devices were studied as a function of frequency in the range 100 Hz-100 kHz, of temperature in the range 293-473 K and of gate voltage. It was proved that a suitable formalism to explain the frequency dependence of the ac conductivity and capacitance of the insulator is controlled by a universal power law based on the relaxation processes of the hopping or tunnelling of the current carriers between equilibrium sites. The temperature dependence of the ac conductance at the accumulation state shows a small activation energy of about 0.07 eV for a MOS device with amorphous neodymium oxide. The temperature dependence of the accumulation capacitance for a MOS structure with crystalline neodymium oxide shows a maximum at about 390 K; such a maximum was not observed for the structure with amorphous neodymium oxide. The method of capacitance-gate voltage (C-Vg) measurements was used to investigate the effect of annealing in air and in vacuum on the surface density of states (Nss) at the insulator/semiconductor (I/S) interface. It was concluded that the density of surface states in the mid-gap increases by about five times while the density of the trapped charges in the oxide layer decreases by about eight times when the oxide crystallises into a polycrystalline structure.

  12. Enhanced performance of ultracapacitors using redox additive-based electrolytes

    NASA Astrophysics Data System (ADS)

    Jain, Dharmendra; Kanungo, Jitendra; Tripathi, S. K.

    2018-05-01

    Different concentrations of potassium iodide (KI) as redox additive had been added to 1 M sulfuric acid (H2SO4) electrolyte with an aim of enhancing the capacitance and energy density of ultracapacitors via redox reactions at the interfaces of electrode-electrolyte. Ultracapacitors were fabricated using chemically treated activated carbon as electrode with H2SO4 and H2SO4-KI as an electrolyte. The electrochemical performances of fabricated supercapacitors were investigated by impedance spectroscopy, cyclic voltammetry and charge-discharge techniques. The maximum capacitance ` C' was observed with redox additives-based electrolyte system comprising 1 M H2SO4-0.3 M KI (1072 F g- 1), which is very much higher than conventional 1 M H2SO4 (61.3 F g- 1) aqueous electrolyte-based ultracapacitors. It corresponds to an energy density of 20.49 Wh kg- 1 at 2.1 A g- 1 for redox additive-based electrolyte, which is six times higher as compared to that of pristine electrolyte (1 M H2SO4) having energy density of only 3.36 Wh kg- 1. The temperature dependence behavior of fabricated cell was also analyzed, which shows increasing pattern in its capacitance values in a temperature range of 5-70 °C. Under cyclic stability test, redox electrolyte-based system shows almost 100% capacitance retention up to 5000 cycles and even more. For comparison, ultracapacitors based on polymer gel electrolyte polyvinyl alcohol (PVA) (10 wt%)—{H2SO4 (1 M)-KI (0.3 M)} (90 wt%) have been fabricated and characterized with the same electrode materials.

  13. Investigations on silver/polyaniline electrodes for electrochemical supercapacitors.

    PubMed

    Patil, Dipali S; Shaikh, J S; Pawar, S A; Devan, R S; Ma, Y R; Moholkar, A V; Kim, J H; Kalubarme, R S; Park, C J; Patil, P S

    2012-09-14

    Polyaniline (PANI) and silver doped polyaniline (Ag/PANI) thin films were deposited on stainless steel substrates by a dip coating technique. To study the effect of doping concentration of Ag on the specific capacitance of PANI the concentration of Ag was varied from 0.3 to 1.2 weight percent. Fourier transform-infrared and Fourier transform-Raman spectroscopy, and energy dispersion X-ray techniques were used for the phase identification and determination of the doping content in the PANI films, respectively. The surface morphology of the films was examined by Field Emission Scanning Electron Microscopy, which revealed a nanofiber like structure for PANI and nanofibers with bright spots of Ag particles for the Ag/PANI films. There was decrease in the room temperature electrical resistivity of the Ag/PANI films of the order of 10(2) with increasing Ag concentration. The supercapacitive behavior of the electrodes was tested in a three electrode system using 1.0 M H(2)SO(4) electrolyte. The specific capacitance increased from 285 F g(-1) (for PANI) to 512 F g(-1) for Ag/PANI at 0.9 weight percent doping of Ag, owing to the synergic effect of PANI and silver nanoparticles. This work demonstrates a simple strategy of improving the specific capacitance of polymer electrodes and may also be easily adopted for other dopants.

  14. The effect of ultrasonic and HNO3 treatment of activated carbon from fruit stones on capacitive and pseudocapacitive energy storage in electrochemical supercapacitors.

    PubMed

    Venhryn, B Ya; Stotsko, Z A; Grygorchak, I I; Bakhmatyuk, B P; Mudry, S I

    2013-09-01

    The effect of ultrasonic treatment and modification with nitric acid of activated carbon obtained from fruit stones, on the parameters of electric double-layer (EDL) as well as on farad-volt characteristics of its boundary with electrolyte 7.6 m KОН, 4 m KI and 2 m ZnI2 aqueous solutions has been studied by means of precision porometry, cyclic voltamperometry, electrochemical impedance spectroscopy and computer simulation methods. It is shown that HNO3 treatment results in an increase of the electrostatic capacitance up to 202 F/g in 7.6 m KОН-solution as well as pseudocapacitance up to 1250 F/g in 4 m KI. This increase is supposed to be related both with hydrophilicity and with an increase of the density of states on Fermi level. The ultrasonic treatment enables one to significantly increase (more than 200 times) the density of states on Fermi level which in turn causes both quantitative and qualitative changes in farad-volt dependences. A hybrid supercapacitor with specific capacitance of 1100 F/g and specific energy of 49 Wh/kg per active mass of two electrodes was developed. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Atomic Layer Deposition of Nickel on ZnO Nanowire Arrays for High-Performance Supercapacitors.

    PubMed

    Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Wang, Yong-Ping; Liu, Wen-Jun; Ji, Xin-Ming; Devi, Anjana; Jiang, An-Quan; Zhang, David Wei

    2018-01-10

    A novel hybrid core-shell structure of ZnO nanowires (NWs)/Ni as a pseudocapacitor electrode was successfully fabricated by atomic layer deposition of a nickel shell, and its capacitive performance was systemically investigated. Transmission electron microscopy and X-ray photoelectron spectroscopy results indicated that the NiO was formed at the interface between ZnO and Ni where the Ni was oxidized by ZnO during the ALD of the Ni layer. Electrochemical measurement results revealed that the Ti/ZnO NWs/Ni (1500 cycles) electrode with a 30 nm thick Ni-NiO shell layer had the best supercapacitor properties including ultrahigh specific capacitance (∼2440 F g -1 ), good rate capability (80.5%) under high current charge-discharge conditions, and a relatively better cycling stability (86.7% of the initial value remained after 750 cycles at 10 A g -1 ). These attractive capacitive behaviors are mainly attributed to the unique core-shell structure and the combined effect of ZnO NW arrays as short charge transfer pathways for ion diffusion and electron transfer as well as conductive Ni serving as channel for the fast electron transport to Ti substrate. This high-performance Ti/ZnO NWs/Ni hybrid structure is expected to be one of a promising electrodes for high-performance supercapacitor applications.

  16. Nanoporous carbon for electric double layer supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Garcia, Betzaida Batalla

    The subject of this study is the synthesis, characterization, chemical composition, and tuning of the porous structure of organic and carbon cryogels for electrochemical applications, particularly supercapacitors. Alternate methods such as an improved synthesis using a reactive catalyst, surface chemical modifications and an electrochemical characterization that takes into account the pore morphology are discussed. Impedance spectroscopy, complex capacitance and power were used to identify key energy losses in the capacitor; an optimal pore size of ca. 2 nm and other features were found. Also, synthesis modification and surface chemistry were used to improve the chemistry and structure of the electrodes reducing metal impurities and removing detrimental functional groups. First, carbon cryogels produced without metal ion impurities were synthesized using hexamine (an amine base catalyst), resorcinol, furaldehyde and solvent mixtures. These metal ion free amine-catalyzed gels also produced strong cryogels that can be machined. The carbon cryogels produced using the amine catalyst have cycle stability performances that exceed that of commercial samples. Carbon cryogels were also doped using ammonia borane to promote boron and nitrogen esters and improved the capacitance up to 30% due to faradaic reactions. Furthermore, nitrogen esters were also introduced into the carbon (via pyrolysis of hexamine) with yields of up to 14 at%. These new esters have low content of oxygen and increased the capacitance up to 50%.

  17. Electrochemical properties and electrocatalytic activity of conducting polymer/copper nanoparticles supported on reduced graphene oxide composite

    NASA Astrophysics Data System (ADS)

    Ehsani, Ali; Jaleh, Babak; Nasrollahzadeh, Mahmoud

    2014-07-01

    Reduced graphene oxide (rGO) was used to support Cu nanoparticles. As electro-active electrodes for supercapacitors composites of reduced graphene oxide/Cu nanoparticles (rGO/CuNPs) and polytyramine (PT) with good uniformity are prepared by electropolymerization. Composite of rGO/CuNPs-PT was synthesized by cyclic voltammetry (CV) methods and electrochemical properties of film were investigated by using electrochemical techniques. The results show that, the rGO/CuNPs-PT/G has better capacitance performance. This is mainly because of the really large surface area and the better electronic and ionic conductivity of rGO/CuNPs-PT/G, which lead to greater double-layer capacitance and faradic pseudo capacitance. Modified graphite electrodes (rGO/CuNPs-PT/G) were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) were employed. In comparison with a Cu-PT/G (Graphite), rGO/CuNPs-PT/G modified electrode shows a significantly higher response for methanol oxidation. A mechanism based on the electro-chemical generation of Cu(III) active sites and their subsequent consumptions by methanol have been discussed.

  18. Performance, stability and operation voltage optimization of screen-printed aqueous supercapacitors

    PubMed Central

    Lehtimäki, Suvi; Railanmaa, Anna; Keskinen, Jari; Kujala, Manu; Tuukkanen, Sampo; Lupo, Donald

    2017-01-01

    Harvesting micropower energy from the ambient environment requires an intermediate energy storage, for which printed aqueous supercapacitors are well suited due to their low cost and environmental friendliness. In this work, a systematic study of a large set of devices is used to investigate the effect of process variability and operating voltage on the performance and stability of screen printed aqueous supercapacitors. The current collectors and active layers are printed with graphite and activated carbon inks, respectively, and aqueous NaCl used as the electrolyte. The devices are characterized through galvanostatic discharge measurements for quantitative determination of capacitance and equivalent series resistance (ESR), as well as impedance spectroscopy for a detailed study of the factors contributing to ESR. The capacitances are 200–360 mF and the ESRs 7.9–12.7 Ω, depending on the layer thicknesses. The ESR is found to be dominated by the resistance of the graphite current collectors and is compatible with applications in low-power distributed electronics. The effects of different operating voltages on the capacitance, leakage and aging rate of the supercapacitors are tested, and 1.0 V found to be the optimal choice for using the devices in energy harvesting applications. PMID:28382962

  19. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.

    PubMed

    Hu, Liwen; Tu, Jiguo; Jiao, Shuqiang; Hou, Jungang; Zhu, Hongmin; Fray, Derek J

    2012-12-05

    Highly porous nanorod-PANI-Graphene composite films were prepared by in situ electrochemical polymerization onto an ITO substrate in a reverse micelle electrolyte. The morphology and microstructure of the composite films were analyzed by using a field emission scanning electron microscope. It was observed that the films were highly porous and the nanorod PANI films were inserted by graphene nanosheets. This indicated that a good conductive network between PANI nanorods and graphene sheets was formed. Further electrochemical tests involved cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in 1 mol L(-1) HClO(4) solution. The results showed that the composite film had a favorable capacitance with a high electron transfer rate and low resistance. The highest specific capacitance that could be achieved was as high as 878.57 F g(-1) with the charge loading of 500 mC at a current density of 1 A g(-1). The GCD at different charge loadings showed good cycle stability with a low fading rate of specific capacitance after 1000 cycles. The results demonstrated that the nanorod-PANI-Graphene composite was proved to be of great potential as an electrode material for supercapacitors.

  20. Highly crumpled solar reduced graphene oxide electrode for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Mohanapriya, K.; Ahirrao, Dinesh J.; Jha, Neetu

    2018-04-01

    Highly crumpled solar reduced graphene oxide (CSRGO) was synthesized by simple and rapid method through freezing the solar reduced graphene oxide aqueous suspension using liquid nitrogen and used as electrode material for supercapacitor application. This electrode material was characterized by transmission electron microscope (TEM), X-Ray diffractometer (XRD) and Raman Spectroscopy techniques to understand the morphology and structure. The electrochemical performance was studied by cyclic voltammetry (CV), galvanostatic charge/discharge (CD) and electrochemical impedance spectroscopy (EIS) using 6M KOH electrolyte. The CSRGO exhibit high specifc capacitance of 210.1 F g-1 at the current density of 0.5 A g-1 and shows excellent rate capability. These features make the CSRGO material as promising electrode for high-performance supercapacitors.

  1. Origin of dislocation luminescence centers and their reorganization in p-type silicon crystal subjected to plastic deformation and high temperature annealing.

    PubMed

    Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro

    2017-12-01

    Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects (N ≥ 10 4  cm -2 ) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.

  2. In vivo CH3(CH2)11SAu SAM electrodes in the beating heart: in situ analytical studies relevant to pacemakers and interstitial biosensors.

    PubMed

    Chou, Howard A; Zavitz, Daniel H; Ovadia, Marc

    2003-01-01

    To study in vivo modification of the SAM equivalent circuit when a highly ordered SAM is used as a bioelectrode, dodecanethiolate SAM-Au intramuscular electrodes were studied in living rat heart in a challenging in situ perfused rat model by impedance spectroscopy, cyclic voltammetry, and neutron activation analysis (NAA). The SAM layer experienced disintegration in vivo biological system, as NAA detected the presence of Au atoms that had leached into the surrounding living tissue. Therefore, the underlying Au surface became exposed during biological implant. Study by impedance spectroscopy, however, revealed perfect capacitive behavior for the SAM, similar to in vitro behavior. Electrodes showed a pure capacitive Nyquist plot with 86.1-89.4 degrees near-vertical line segments as the equivalent circuit locus, as for a parallel plate capacitor. Impedance magnitude varied linearly with 1/omega excluding diffusionally limited ionic charge transport. There was no diffusional conductive element Z(W infinity ) or spatially confined Warburg impedance Z(D). The effect of in vivo exposure of a highly ordered SAM is a 'sealing over' effect of new defects by the binding of proteinaceous or lipid species in the biological milieu, a fact of significance for SAM electrodes used either as pacemaker electrodes or as a platform for in vivo biosensors.

  3. Facile preparation, optical and electrochemical properties of layer-by-layer V2O5 quadrate structures

    NASA Astrophysics Data System (ADS)

    Zhang, Yifu; Zheng, Jiqi; Wang, Qiushi; Hu, Tao; Tian, Fuping; Meng, Changgong

    2017-03-01

    Layer-by-layer V2O5 structures self-assembly by quadrate sheets like "multilayer cake" were successfully synthesized using NH4VO3 as the vanadium sources by a facile hydrothermal route and combination of the calcination. The structure and composition were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectrometer, X-ray powder diffraction, Raman and Fourier transform infrared spectroscopy. The optical properties of the as-obtained V2O5 layer-by-layer structures were investigated by the Ultraviolet-visible spectroscopy and photoluminescence spectrum. The electrochemical properties of the as-obtained V2O5 layer-by-layer structures as electrodes in supercapacitor device were measured by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) both in the aqueous and organic electrolyte. The specific capacitance is 347 F g-1 at 1 A g-1 in organic electrolyte, which is improved by 46% compared with 238 F g-1 in aqueous electrolyte. During the cycle performance, the specific capacitances of V2O5 layer-by-layer structures after 100 cycles are 30% and 82% of the initial discharge capacity in the aqueous and organic electrolyte, respectively, indicating the cycle performance is significantly improved in organic electrolyte. Our results turn out that layer-by-layer V2O5 structures are an ideal material for supercapacitor electrode in the present work.

  4. Chemical synthesis and supercapacitive properties of lanthanum telluride thin film.

    PubMed

    Patil, S J; Lokhande, A C; Lee, D-W; Kim, J H; Lokhande, C D

    2017-03-15

    Lanthanum telluride (La 2 Te 3 ) thin films are synthesized via a successive ionic layer adsorption and reaction (SILAR) method. The crystal structure, surface morphology and surface wettability properties are investigated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM) and contact angle goniometer techniques, respectively. The La 2 Te 3 material exhibits a specific surface area of 51m 2 g -1 determined by Brunauer-Emmett-Teller (BET) method. La 2 Te 3 thin film electrode has a hydrophilic surface which consists of interconnected pine leaf-like flaky arrays that affect the performance of the supercapacitor. The supercapacitive performance of La 2 Te 3 film electrode is evaluated in 1M LiClO 4 /PC electrolyte using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy techniques. La 2 Te 3 film electrode exhibits a specific capacitance of 194Fg -1 at a scan rate of 5mVs -1 and stored energy density of 60Whkg -1 with delivering power density of 7.22kWkg -1 . La 2 Te 3 film electrode showed capacitive retention of 82% over 1000cycles at a scan rate of 100mVs -1 . Further, flexible La 2 Te 3 |LiClO 4 -PVA|La 2 Te 3 supercapacitor cell is fabricated. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Yong-Qing; Lu, Min; Tao, Peng-Yu; Zhang, Yun-Jie; Gong, Xiao-Ting; Yang, Zhi; Zhang, Guo-Qing; Li, Hu-Lin

    2016-03-01

    A novel tobacco rods-derived carbon (TC) has been prepared by hydrothermal carbonization and potassium hydroxide activation strategy for supercapacitors application. The physicochemical properties of TC are investigated by X-ray diffraction, Raman spectra, Scanning electron microscopy, Nitrogen adsorption-desorption isotherms, X-ray photoelectron spectroscopy, and four-probe tests. Results show TC derived from different tobacco rods possesses similar properties, such as amorphous state, high specific surface area, hierarchical porous structure, numerous heteroatom groups, and good electrical conductivity. The electrochemical characteristics of TC are examined via cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy measurements. In a three-electrode system, TC exhibits high capacitance with 286.6 F g-1 at 0.5 A g-1, excellent rate performance with 212.1 F g-1 even at 30 A g-1, and outstanding cyclic stability with 96% capacitance retention after 10,000 cycles at 5 A g-1. Furthermore, TC supercapacitor devices can deliver an energy density of 31.3 Wh kg-1 at 0.5 A g-1 and power density of 11.8 kW kg-1 at 15 A g-1. Therefore, this novel concept of tobacco use, namely tobacco rods from cigarette (the harmful) to high-performance carbon for supercapacitors (the beneficial), is an extremely promising strategy for developing high-performance carbon from renewable sources, and supporting the tobacco control.

  6. Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors.

    PubMed

    Shi, Kaiyuan; Zhitomirsky, Igor

    2013-10-01

    Thin films of multiwalled carbon nanotubes (MWCNT), graphene and polypyrrole (PPy) nanofibers were prepared by cathodic electrophoretic deposition (EPD) from aqueous suspensions, containing safranin (SAF) as a new dispersant. The results of Fourier transform infrared spectroscopy, UV-Vis spectroscopy studies and sedimentation tests, coupled with deposition yield and electron microscopy data showed that SAF adsorbed on MWCNT, graphene and PPy, provided their dispersion and charging in the suspensions and allowed efficient EPD. The deposition yield can be controlled by the variation of SAF concentration in the suspensions and deposition time. The use of SAF as a co-dispersant for MWCNT, graphene and PPy, allowed controlled EPD of composite graphene-MWCNT and graphene-PPy films. The proposed approach for the deposition of PPy paves the way for EPD of neutral polymers using organic dyes as dispersing and charging agents. The composite films were investigated for application in electrochemical supercapacitors (ES). The graphene-MWCNT and graphene-PPy films showed significant increase in capacitance, decrease in resistance and increase in capacitance retention at high charge-discharge rates compared to the films of individual components. The analysis of electrochemical testing results and electron microscopy data provided an insight into the influence of composite microstructure on electrochemical performance. The composites, prepared by EPD are promising materials for electrodes of ES. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Influence of solvents in the preparation of cobalt sulfide for supercapacitors

    NASA Astrophysics Data System (ADS)

    Anil Kumar, Yedluri; Srinivasa Rao, S.; Punnoose, Dinah; Venkata Tulasivarma, Chebrolu; Gopi, Chandu V. V. M.; Prabakar, Kandasamy; Kim, Hee-Je

    2017-09-01

    In this study, cobalt sulfide (CoS) electrodes are synthesized using various solvents such as water, ethanol and a combination of the two via a facile chemical bath deposition method on Ni foam. The crystalline nature, chemical states and surface morphology of the prepared CoS nanoparticles are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transition electron microscopy. The electrochemical properties of CoS electrodes are also evaluated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. When used as an electrode for a supercapacitor, CoS prepared with ethanol as a solvent exhibits a capacitance of 41.36 F g-1 at 1.5 A g-1, which is significantly better than that prepared using water and water/ethanol-based solvents (31.66 and 18.94 F g-1 at 1.5 A g-1, respectively). This superior capacitance is attributed to the ideal surface morphology of the solvent, which allows for easy diffusion of electrolyte ions into the inner region of the electrode. High electrical conduction enables a high rate capability. These results suggest that CoS nanoparticles are highly promising for energy storage applications as well as photocatalysis, electrocatalysis, water splitting and solar cells, among others. These results show that CoS is a promising positive electrode material for practical supercapacitors.

  8. An application for impedance spectroscopy in the characterisation of the glass transition during the lyophilization cycle: the example of a 10% w/v maltodextrin solution.

    PubMed

    Smith, Geoff; Arshad, Muhammad Sohail; Polygalov, Eugene; Ermolina, Irina

    2013-11-01

    Impedance spectroscopy has been used for the measurement of the glass transition of a 10 % maltodextrin solution contained within a glass vial, with externally attached electrodes. Features of the pseudo-relaxation process, associated with the composite impedance of the glass vial-solution assembly, were characterised by the peak amplitude, C(peak)(″), and peak frequency, f(peak), of the capacitance spectra and the equivalent circuit elements that model the impedance spectra (i.e. the solution resistance and solution capacitance) and monitored every 3 min during re-heating of the solution. The time derivatives of all four parameters studied provided a glass transition in close agreement with DSC measurements (-17 °C) and at a precision of ± 0.5 °C. The temperature dependencies of the solution resistance and peak frequency were then characterised with the Arrhenius and Vogel-Fulcher-Tammann fit functions, at temperatures below and above Tg, respectively. The energy of activation (below Tg) was estimated at ~20 kJ mol(-1), and the fragility index (If) of the glass forming liquid (above Tg) was estimated at 0.9. The significance of the fragility index to the development, optimisation and control of the freeze-drying cycle is highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Effect of lithium and sodium salt on the performance of Nb2O5/rGO nanocomposite based supercapacitor

    NASA Astrophysics Data System (ADS)

    Ahmed, Sultan; Rafat, M.

    2018-03-01

    The present work reports the synthesis of Nb2O5/rGO composite using hydrothermal method and thermal annealing process. The prepared composite was found to have suitable characteristics necessary to be used as electrode material in supercapacitors. These characteristics were ascertained employing the techniques of scanning electron microscopy (SEM), x-ray diffraction (XRD), Raman spectroscopy and N2 adsorption-desorption isotherm. Further, the electrochemical performance of the prepared composite was compared in two different organic electrolytes, of lithium and sodium salt using the techniques of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge-discharge measurements. The organic electrolyte solutions were prepared by dispersing 1 M LiClO4/NaClO4 in a mixture of ethylene carbonate/propylene carbonate (1:1 by volume). The observed results indicate that the composite of Nb2O5/rGO offers higher value of specific capacitance in sodium salt electrolyte and higher cyclic stability in lithium salt electrolyte. This is probably due to ion properties of electrolyte. Specific capacitance is observed according to efficient ion/charge diffusion/exchange and relaxation time (Li+ < Na+), while the cyclic stability is observed according to cation size (Na+ > Li+). Thus, the present study reveals the significant effect of electrolyte ions on electrochemical performance of Nb2O5/rGO composite.

  10. Effect of carbon entrapped in Co-Al double oxides on structural restacking and electrochemical performances

    NASA Astrophysics Data System (ADS)

    Su, Ling-Hao; Zhang, Xiao-Gang

    Co-Al layered double hydroxides (LDH) were synthesized from nitrates and sodium benzoate by direct coprecipitation, and heated at 600 °C for 3 h in argon gas flow to obtain Co-Al double oxides. The effect of carbon, created during the pyrolysis of benzoate and inserted in resulting double oxides, on structural reconstruction was investigated by X-ray diffraction, scanning electron microscope, Raman spectroscopy, and infrared spectroscopy techniques. It is horizontal arrangement rather than vertical dilayer orientation in the interlayer spacing that was adopted by benzoate. An abnormal phenomenon was found that when immersed in aqueous 6 M KOH solution in air, the double oxides restacked to Co-Al layered double hydroxides with more regular crystal than before. The reason is believed that carbon was confined in the matrix of resulting double oxides, which prevented further collapse of the layered structure. Cyclic voltammetries (CV) and constant current charge/discharge measurements reveal that the restacked Co-Al layered double hydroxide has good long-life capacitive performance with a capacitance up to 145 F g -1 even at a large current of 2 A g -1. In addition, two clear slopes in chronoampermetric test demonstrated two different diffusion coefficients, explaining the slope of about 118.4 mV in the plot of formal potential E f versus pOH.

  11. Mesoporous silica wrapped with graphene oxide-conducting PANI nanowires as a novel hybrid electrode for supercapacitor

    NASA Astrophysics Data System (ADS)

    Javed, Mohsin; Abbas, Syed Mustansar; Siddiq, Mohammad; Han, Dongxue; Niu, Li

    2018-02-01

    A high charge-carrier transport is an important aim in the synthesis of nanostructures for an effective supercapacitor. This article describes a methodology to prepare mesoporous silica nanoparticles (MSNs) wrapped with graphene oxide (GO) together with conducting polyaniline (PANI) wires. The morphology and chemical structure of the prepared samples have been tested by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and X-ray diffraction (XRD), whereas the stability and electrostatic interaction of the structures have been verified by thermogravimetric analysis (TGA) and Fourier-transform infrared (FT-IR) spectroscopy, respectively. The supercapacitive behaviour of these nanocomposites has been analysed by cyclic voltammetry (CV), charge-discharge tests, and electrochemical impedance spectroscopy (EIS). Compared with pristine MSNs and PANI, the 20%-GO@MSNs/PANI nanocomposite had the highest specific capacitance, reaching 412 F g-1. The nanocomposite structure maximizes the synergy between mesoporous metal oxide, conducting PANI, and GO, yielding a significantly enhanced specific capacitance, rapid charge-discharge rates, and good cycling stability of the resulting device. The wrapping with GO prevents the structural breakdown and acts as a highly conductive pathway by bridging the individual particles, whereas the MSNs nanoparticles greatly enlarge the specific surface area to facilitate ion transport and charge transfer throughout the cycling performance of supercapacitor. The approach adopted in this article can be applied for preparing similar novel functional materials in future for electrochemical applications.

  12. Influence of solvents in the preparation of cobalt sulfide for supercapacitors

    PubMed Central

    Srinivasa Rao, S.; Punnoose, Dinah; Venkata Tulasivarma, Chebrolu; Gopi, Chandu V. V. M.; Prabakar, Kandasamy; Kim, Hee-Je

    2017-01-01

    In this study, cobalt sulfide (CoS) electrodes are synthesized using various solvents such as water, ethanol and a combination of the two via a facile chemical bath deposition method on Ni foam. The crystalline nature, chemical states and surface morphology of the prepared CoS nanoparticles are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transition electron microscopy. The electrochemical properties of CoS electrodes are also evaluated using cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. When used as an electrode for a supercapacitor, CoS prepared with ethanol as a solvent exhibits a capacitance of 41.36 F g−1 at 1.5 A g−1, which is significantly better than that prepared using water and water/ethanol-based solvents (31.66 and 18.94 F g−1 at 1.5 A g−1, respectively). This superior capacitance is attributed to the ideal surface morphology of the solvent, which allows for easy diffusion of electrolyte ions into the inner region of the electrode. High electrical conduction enables a high rate capability. These results suggest that CoS nanoparticles are highly promising for energy storage applications as well as photocatalysis, electrocatalysis, water splitting and solar cells, among others. These results show that CoS is a promising positive electrode material for practical supercapacitors. PMID:28989753

  13. X-Ray Photoelectron Spectroscopy and Ultrahigh Vacuum Contactless Capacitance-Voltage Characterization of Novel Oxide-Free InP Passivation Process Using a Silicon Surface Quantum Well

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Hashizume, Tamotsu; Hasegawa, Hideki

    1999-02-01

    In order to understand and optimize a novel oxide-free InP passivation process using a silicon surface quantum well, a detailed in situ X-ray photoelectron spectroscopy (XPS) and ultrahigh vacuum (UHV) contactless capacitance-voltage (C-V) study of the interface was carried out. Calculation of quantum levels in the silicon quantum well was performed on the basis of the band lineup of the strained Si3N4/Si/InP interface and the result indicated that the interface should become free of gap states when the silicon layer thickness is below 5 Å. Experimentally, such a delicate Si3N4/Si/InP structure was realized by partial nitridation of a molecular beam epitaxially (MBE) grown pseudomorphic silicon layer using an electron cyclotron resonance (ECR) N2 plasma. The progress of nitridation was investigated in detail by angle-resolved XPS. A newly developed UHV contactless C-V method realized in situ characterization of surface electronic properties of InP at each processing step for passivation. It was found that the interface state density decreased substantially into the 1010 cm-2 eV-1 range by optimizing the nitridation process of the silicon layer. It was concluded that both the surface bond termination and state removal by quantum confinement are responsible for the NSS reduction.

  14. Donors, Acceptors, and Traps in AlGaN and AlGaN/GaN Epitaxial Layers

    DTIC Science & Technology

    2006-07-31

    the background. 3.3 Positron annihilation spectroscopy (PAS): acceptor-type defects Positrons injected into defect-free GaN are annihilated by electrons...electron concentration n, and the average Ga-vacancy VGa concentration deduced from positron annihilation spectroscopy . 0.09 3.47 3.46 - 3.45 •ŗ.47225...of this paper, are often investigated by deep level transient spectroscopy (DLTS), and the usual analysis of DLTS data is based on the assumption that

  15. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium

    DOE PAGES

    Zurch, Michael; Chang, Hung -Tzu; Borja, Lauren J.; ...

    2017-06-01

    Understanding excited carrier dynamics in semiconductors is crucial for the development of photovoltaics and efficient photonic devices. However, overlapping spectral features in optical pump-probe spectroscopy often render assignments of separate electron and hole carrier dynamics ambiguous. Here, ultrafast electron and hole dynamics in germanium nanocrystalline thin films are directly and simultaneously observed by ultrafast transient absorption spectroscopy in the extreme ultraviolet at the germanium M 4,5 edge. We decompose the spectra into contributions of electronic state blocking and photo-induced band shifts at a carrier density of 8 × 10 20 cm –3. Separate electron and hole relaxation times are observedmore » as a function of hot carrier energies. A first-order electron and hole decay of ~1 ps suggests a Shockley–Read–Hall recombination mechanism. Furthermore, the simultaneous observation of electrons and holes with extreme ultraviolet transient absorption spectroscopy paves the way for investigating few- to sub-femtosecond dynamics of both holes and electrons in complex semiconductor materials and across junctions.« less

  16. Crystallization Caught in the Act with Terahertz Spectroscopy: Non-Classical Pathway for l-(+)-Tartaric Acid.

    PubMed

    Soltani, Amin; Gebauer, Denis; Duschek, Lennart; Fischer, Bernd M; Cölfen, Helmut; Koch, Martin

    2017-10-12

    Crystal formation is a highly debated problem. This report shows that the crystallization of l-(+)-tartaric acid from water follows a non-classical path involving intermediate hydrated states. Analytical ultracentrifugation indicates solution clusters of the initial stages aggregate to form an early intermediate. Terahertz spectroscopy performed during water evaporation highlights a transient increase in the absorption during nucleation; this indicates the recurrence of water molecules that are expelled from the intermediate phase. Besides, a transient resonance at 750 GHz, which can be assigned to a natural vibration of large hydrated aggregates, vanishes after the final crystal has formed. Furthermore, THz data reveal the vibration of nanosized clusters in the dilute solution indicated by analytical ultracentrifugation. Infrared spectroscopy and wide-angle X-ray scattering highlight that the intermediate is not a crystalline hydrate. These results demonstrate that nanoscopic intermediate units assemble to form the first solvent-free crystalline nuclei upon dehydration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multiphoton-gated cycloreversion reaction of a fluorescent diarylethene derivative as revealed by transient absorption spectroscopy.

    PubMed

    Nagasaka, Tatsuhiro; Kunishi, Tomohiro; Sotome, Hikaru; Koga, Masafumi; Morimoto, Masakazu; Irie, Masahiro; Miyasaka, Hiroshi

    2018-06-07

    The one- and two-photon cycloreversion reactions of a fluorescent diarylethene derivative with oxidized benzothiophene moieties were investigated by means of ultrafast laser spectroscopy. Femtosecond transient absorption spectroscopy under the one-photon excitation condition revealed that the excited closed-ring isomer is simply deactivated into the initial ground state with a time constant of 2.6 ns without remarkable cycloreversion, the results of which are consistent with the very low cycloreversion reaction yield (<10-5) under steady-state light irradiation. On the other hand, an efficient cycloreversion reaction was observed under irradiation with a picosecond laser pulse at 532 nm. The excitation intensity dependence of the cycloreversion reaction indicates that a highly excited state attained by the stepwise two-photon absorption is responsible for the marked increase of the cycloreversion reaction, and the quantum yield at the highly excited state was estimated to be 0.018 from quantitative analysis, indicating that the reaction is enhanced by a factor of >1800.

  18. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurch, Michael; Chang, Hung -Tzu; Borja, Lauren J.

    Understanding excited carrier dynamics in semiconductors is crucial for the development of photovoltaics and efficient photonic devices. However, overlapping spectral features in optical pump-probe spectroscopy often render assignments of separate electron and hole carrier dynamics ambiguous. Here, ultrafast electron and hole dynamics in germanium nanocrystalline thin films are directly and simultaneously observed by ultrafast transient absorption spectroscopy in the extreme ultraviolet at the germanium M 4,5 edge. We decompose the spectra into contributions of electronic state blocking and photo-induced band shifts at a carrier density of 8 × 10 20 cm –3. Separate electron and hole relaxation times are observedmore » as a function of hot carrier energies. A first-order electron and hole decay of ~1 ps suggests a Shockley–Read–Hall recombination mechanism. Furthermore, the simultaneous observation of electrons and holes with extreme ultraviolet transient absorption spectroscopy paves the way for investigating few- to sub-femtosecond dynamics of both holes and electrons in complex semiconductor materials and across junctions.« less

  19. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium.

    PubMed

    Zürch, Michael; Chang, Hung-Tzu; Borja, Lauren J; Kraus, Peter M; Cushing, Scott K; Gandman, Andrey; Kaplan, Christopher J; Oh, Myoung Hwan; Prell, James S; Prendergast, David; Pemmaraju, Chaitanya D; Neumark, Daniel M; Leone, Stephen R

    2017-06-01

    Understanding excited carrier dynamics in semiconductors is crucial for the development of photovoltaics and efficient photonic devices. However, overlapping spectral features in optical pump-probe spectroscopy often render assignments of separate electron and hole carrier dynamics ambiguous. Here, ultrafast electron and hole dynamics in germanium nanocrystalline thin films are directly and simultaneously observed by ultrafast transient absorption spectroscopy in the extreme ultraviolet at the germanium M 4,5 edge. We decompose the spectra into contributions of electronic state blocking and photo-induced band shifts at a carrier density of 8 × 10 20  cm -3 . Separate electron and hole relaxation times are observed as a function of hot carrier energies. A first-order electron and hole decay of ∼1 ps suggests a Shockley-Read-Hall recombination mechanism. The simultaneous observation of electrons and holes with extreme ultraviolet transient absorption spectroscopy paves the way for investigating few- to sub-femtosecond dynamics of both holes and electrons in complex semiconductor materials and across junctions.

  20. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium

    PubMed Central

    Zürch, Michael; Chang, Hung-Tzu; Borja, Lauren J.; Kraus, Peter M.; Cushing, Scott K.; Gandman, Andrey; Kaplan, Christopher J.; Oh, Myoung Hwan; Prell, James S.; Prendergast, David; Pemmaraju, Chaitanya D.; Neumark, Daniel M.; Leone, Stephen R.

    2017-01-01

    Understanding excited carrier dynamics in semiconductors is crucial for the development of photovoltaics and efficient photonic devices. However, overlapping spectral features in optical pump-probe spectroscopy often render assignments of separate electron and hole carrier dynamics ambiguous. Here, ultrafast electron and hole dynamics in germanium nanocrystalline thin films are directly and simultaneously observed by ultrafast transient absorption spectroscopy in the extreme ultraviolet at the germanium M4,5 edge. We decompose the spectra into contributions of electronic state blocking and photo-induced band shifts at a carrier density of 8 × 1020 cm−3. Separate electron and hole relaxation times are observed as a function of hot carrier energies. A first-order electron and hole decay of ∼1 ps suggests a Shockley–Read–Hall recombination mechanism. The simultaneous observation of electrons and holes with extreme ultraviolet transient absorption spectroscopy paves the way for investigating few- to sub-femtosecond dynamics of both holes and electrons in complex semiconductor materials and across junctions. PMID:28569752

  1. Electrical properties associated with wide intercellular clefts in rabbit Purkinje fibres.

    PubMed Central

    Colatsky, T J; Tsien, R W

    1979-01-01

    1. Rabbit Purkinje fibres were studied using micro-electrode recordings of electrical activity or a two-micro-electrode voltage clamp. Previous morphological work had suggested that these preparations offer structural advantages for the analysis of ionic permeability mechanisms. 2. Viable preparations could be obtained consistently by exposure to a K glutamate Tyrode solution during excision and recovery. In NaCl Tyrode solution, the action potential showed a large overshoot and fully developed plateau, but no pacemaker depolarization at negative potentials. 3. The passive electrical properties were consistent with morphological evidence for the accessibility of cleft membranes within the cell bundle. Electrotonic responses to intracellular current steps showed the behaviour expected for a simple leaky capacitative cable. Capacitative current transients under voltage clamp were changed very little by an eightfold reduction in the external solution conductivity. 4. Slow current changes attributable to K depletion were small compared to those found in other cardiac preparations. The amount of depletion was close to that predicted by a cleft model which assumed free K diffusion in 1 micron clefts. 5. Step depolarizations over the plateau range of potentials evoked a slow inward current which was resistant to tetrodotoxin but blocked by D600. 6. Strong depolarizations to potentials near 0 mV elicited a transient outward current and a slowly activating late outward current. Both components resembled currents found in sheep or calf Purkinje fibres. 7. These experiments support previous interpretations of slow plateau currents in terms of genuine permeability changes. The rabbit Purkinje fibre may allow various ionic channels to be studied with relatively little interference from radial non-uniformities in membrane potential or ion concentration. Images Fig. 7 PMID:469754

  2. HgCdTe Surface and Defect Study Program.

    DTIC Science & Technology

    1984-07-01

    double layer heterojunction (DLHJ) devices. There are however many complications on this once we consider implanted junctions, LWIR devices or even the...It is not possible from this measurement to discriminate between real interface states and charge nonuniformities . Admittance spectroscopy (discussed...earlier) and deep level transient spectroscopy (DLTS) are not usually affected by these nonuniformities due to their observation of a speci- fic

  3. Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Perumal, Suguna; Lee, Yong Rok

    2017-01-01

    Nitrogen-doped graphitic carbon sheets (N-GCSs) were prepared from the extract of unripe Prunus persica fruit by a direct hydrothermal method. The synthesized N-GCSs were examined by high resolution transmission electron microscopy (HRTEM), nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy. HRTEM showed that the synthesized carbon sheets were graphitic with lattice fringes and an inter-layer distance of 0.36 nm. Doping with the nitrogen moiety present over the synthesized GCSs was confirmed by XPS, FT-IR spectroscopy, and energy dispersive X-ray spectroscopy elemental mapping. The fruit extract associated with hydrothermal-carbonization method is economical and eco-friendly with a single step process. The resulting carbon sheets could be modified and are promising candidates for nano-electronic applications, including supercapacitors. The synthesized N-GCSs-2 provided a high specific capacitance of 176 F g-1 at a current density of 0.1 A g-1. This electrode material has excellent cyclic stability, even after 2000 cycles of charge-discharge at a current density of 0.5 A g-1.

  4. Unique membrane properties and enhanced signal processing in human neocortical neurons.

    PubMed

    Eyal, Guy; Verhoog, Matthijs B; Testa-Silva, Guilherme; Deitcher, Yair; Lodder, Johannes C; Benavides-Piccione, Ruth; Morales, Juan; DeFelipe, Javier; de Kock, Christiaan Pj; Mansvelder, Huibert D; Segev, Idan

    2016-10-06

    The advanced cognitive capabilities of the human brain are often attributed to our recently evolved neocortex. However, it is not known whether the basic building blocks of the human neocortex, the pyramidal neurons, possess unique biophysical properties that might impact on cortical computations. Here we show that layer 2/3 pyramidal neurons from human temporal cortex (HL2/3 PCs) have a specific membrane capacitance ( C m ) of ~0.5 µF/cm 2 , half of the commonly accepted 'universal' value (~1 µF/cm 2 ) for biological membranes. This finding was predicted by fitting in vitro voltage transients to theoretical transients then validated by direct measurement of C m in nucleated patch experiments. Models of 3D reconstructed HL2/3 PCs demonstrated that such low C m value significantly enhances both synaptic charge-transfer from dendrites to soma and spike propagation along the axon. This is the first demonstration that human cortical neurons have distinctive membrane properties, suggesting important implications for signal processing in human neocortex.

  5. Probing the non-linear transient response of a carbon nanotube mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Willick, Kyle; Tang, Xiaowu Shirley; Baugh, Jonathan

    2017-11-01

    Carbon nanotube (CNT) electromechanical resonators have demonstrated unprecedented sensitivities for detecting small masses and forces. The detection speed in a cryogenic setup is usually limited by the CNT contact resistance and parasitic capacitance of cabling. We report the use of a cold heterojunction bipolar transistor amplifying circuit near the device to measure the mechanical amplitude at microsecond timescales. A Coulomb rectification scheme, in which the probe signal is at much lower frequency than the mechanical drive signal, allows investigation of the strongly non-linear regime. The behaviour of transients in both the linear and non-linear regimes is observed and modeled by including Duffing and non-linear damping terms in a harmonic oscillator equation. We show that the non-linear regime can result in faster mechanical response times, on the order of 10 μs for the device and circuit presented, potentially enabling the magnetic moments of single molecules to be measured within their spin relaxation and dephasing timescales.

  6. Capturing local structure modulations of photoexcited BiVO4 by ultrafast transient XAFS.

    PubMed

    Uemura, Yohei; Kido, Daiki; Koide, Akihiro; Wakisaka, Yuki; Niwa, Yasuhiro; Nozawa, Shunsuke; Ichiyanagi, Kohei; Fukaya, Ryo; Adachi, Shin-Ichi; Katayama, Tetsuo; Togashi, Tadashi; Owada, Shigeki; Yabashi, Makina; Hatada, Keisuke; Iwase, Akihide; Kudo, Akihiko; Takakusagi, Satoru; Yokoyama, Toshihiko; Asakura, Kiyotaka

    2017-06-29

    Ultrafast excitation of photocatalytically active BiVO 4 was characterized by femto- and picosecond transient X-ray absorption fine structure spectroscopy. An initial photoexcited state (≪500 fs) changed to a metastable state accompanied by a structural change with a time constant of ∼14 ps. The structural change might stabilize holes on oxygen atoms since the interaction between Bi and O increases.

  7. Transient and stationary spectroscopy of cytochrome c: ultrafast internal conversion controls photoreduction.

    PubMed

    Löwenich, Dennis; Kleinermanns, Karl; Karunakaran, Venugopal; Kovalenko, Sergey Alexander

    2008-01-01

    Photoreduction of cytochrome c (Cyt c) has been reinvestigated using femtosecond-to-nanosecond transient absorption and stationary spectroscopy. Femtosecond spectra of oxidized Cyt c, recorded in the probe range 270-1000 nm, demonstrate similar evolution upon 266 or 403 nm excitation: an ultrafast 0.3 ps internal conversion followed by a 4 ps vibrational cooling. Late transient spectra after 20 ps, from the cold ground-state chromophore, reveal a small but measurable signal from reduced Cyt c. The yield phi for Fe3+-->Fe2+ photoreduction is measured to be phi(403) = 0.016 and phi(266) = 0.08 for 403 and 266 nm excitation. These yields lead to a guess of the barrier E(f)(A) = 55 kJ mol(-1) for thermal ground-state electron transfer (ET). Nanosecond spectra initially show the typical absorption from reduced Cyt c and then exhibit temperature-dependent sub-microsecond decays (0.5 micros at 297 K), corresponding to a barrier E(A)(b) = 33 kJ mol(-1) for the back ET reaction and a reaction energy DeltaE = 22 kJ mol(-1). The nanosecond transients do not decay to zero on a second time scale, demonstrating the stability of some of the reduced Cyt c. The yields calculated from this stable reduced form agree with quasistationary reduction yields. Modest heating of Cyt c leads to its efficient thermal reduction as demonstrated by differential stationary absorption spectroscopy. In summary, our results point to ultrafast internal conversion of oxidized Cyt c upon UV or visible excitation, followed by Fe-porphyrin reduction due to thermal ground-state ET as the prevailing mechanism.

  8. Sequential picosecond isomerizations in a photochromic ruthenium sulfoxide complex triggered by pump-repump-probe spectroscopy.

    PubMed

    King, Albert W; Jin, Yuhuan; Engle, James T; Ziegler, Christopher J; Rack, Jeffrey J

    2013-02-18

    The complex [Ru(bpy)(2)(bpSO)](PF(6))(2), where bpy is 2,2'-bipydine and bpSO is 1,2-bis(phenylsulfinyl)ethane, exhibits three distinct isomers which are accessible upon metal-to-ligand charge-transfer (MLCT) irradiation. This complex and its parent, [Ru(bpy)(2)(bpte)](PF(6))(2), where bpte is 1,2-bis(phenylthio)ethane, have been synthesized and characterized by UV-visible spectroscopy, NMR, X-ray crystallography, and femtosecond transient absorption spectroscopy. A novel method of 2-color Pump-Repump-Probe spectroscopy has been employed to investigate all three isomers of the bis-sulfoxide complex. This method allows for observation of the isomerization dynamics of sequential isomerizations of each sulfoxide from MLCT irradiation of the S,S-bonded complex to ultimately form the O,O-bonded metastable complex. One-dimensional (1-D) and two-dimensional (2-D) (COSY, NOESY, and TOCSY) (1)H NMR data show the thioether and ground state S,S-bonded sulfoxide complexes to be rigorously C(2) symmetric and are consistent with the crystal structures. Transient absorption spectroscopy reveals that the S,S to S,O isomerization occurs with an observed time constant of 56.8 (±7.4) ps. The S,O to O,O isomerization time constant was found to be 59 (±4) ps by pump-repump-probe spectroscopy. The composite S,S- to O,O-isomer quantum yield is 0.42.

  9. Setup for in situ deep level transient spectroscopy of semiconductors during swift heavy ion irradiation.

    PubMed

    Kumar, Sandeep; Kumar, Sugam; Katharria, Y S; Safvan, C P; Kanjilal, D

    2008-05-01

    A computerized system for in situ deep level characterization during irradiation in semiconductors has been set up and tested in the beam line for materials science studies of the 15 MV Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. This is a new facility for in situ irradiation-induced deep level studies, available in the beam line of an accelerator laboratory. It is based on the well-known deep level transient spectroscopy (DLTS) technique. High versatility for data manipulation is achieved through multifunction data acquisition card and LABVIEW. In situ DLTS studies of deep levels produced by impact of 100 MeV Si ions on Aun-Si(100) Schottky barrier diode are presented to illustrate performance of the automated DLTS facility in the beam line.

  10. Bond-center hydrogen in dilute Si1-xGex alloys: Laplace deep-level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Bonde Nielsen, K.; Dobaczewski, L.; Peaker, A. R.; Abrosimov, N. V.

    2003-07-01

    We apply Laplace deep-level transient spectroscopy in situ after low-temperature proton implantation into dilute Si1-xGex alloys and identify the deep donor state of hydrogen occupying a strained Si-Si bond-center site next to Ge. The activation energy of the electron emission from the donor is ˜158 meV when extrapolated to zero electrical field. We construct a configuration diagram of the Ge-strained site from formation and annealing data and deduce that alloying with ˜1% Ge does not significantly influence the low-temperature migration of hydrogen as compared to elemental Si. We observe two bond-center-type carbon-hydrogen centers and conclude that carbon impurities act as much stronger traps for hydrogen than the alloy Ge atoms.

  11. Enhancing photocurrent transient spectroscopy by electromagnetic modeling.

    PubMed

    Diesinger, H; Panahandeh-Fard, M; Wang, Z; Baillargeat, D; Soci, C

    2012-05-01

    The shape and duration of photocurrent transients generated by a photoconductive switch depend on both the intrinsic response of the active material and the geometry of the transmission line structure. The present electromagnetic model decouples both shape forming contributions. In contrast to previously published work, it accounts for the particular operating mode of transient spectroscopy. The objective is to increase the time resolution by two approaches, by optimizing structural response and by deconvolving it from experimental data. The switch structure is represented by an effective transimpedance onto which the active material acts as current generator. As proof of concept, the response of a standard microstrip switch is modeled and deconvolved from experimental data acquired in GaAs, yielding a single exponential material response and hence supporting the validity of the approach. Beyond compensating for the response deterioration by the structure, switch architectures can be a priori optimized with respect to frequency response. As an example, it is shown that a microstrip gap that can be deposited on materials incompatible with standard lithography reduces pulse broadening by an order of magnitude if it is provided with transitions to coplanar access lines.

  12. Study on the Transient Process of 500kV Substations Secondary Equipment

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Li, Pei; Zhang, Yanyan; Niu, Lin; Gao, Nannan; Si, Tailong; Guo, Jiadong; Xu, Min-min; Li, Guofeng; Guo, Liangfeng

    2017-05-01

    By analyzing on the reason of the lightning accident occur in the substation, the way of lightning incoming surge invading the secondary system is summarized. The interference source acts on the secondary system through various coupling paths. It mainly consists of four ways: the conductance coupling mode, the Capacitive Coupling Mode, the inductive coupling mode, The Radiation Interference Model. Then simulated the way with the program-ATP. At last, from the three aspects of low-voltage power supply system, the impact potential distribution of grounding grid, the secondary system and the computer system. The lightning protection measures is put forward.

  13. Design and electrical performance of CdS/Sb2Te3 tunneling heterojunction devices

    NASA Astrophysics Data System (ADS)

    Khusayfan, Najla M.; Qasrawi, A. F.; Khanfar, Hazem K.

    2018-02-01

    In the current work, a tunneling barrier device made of 20 nm thick Sb2Te3 layer deposited onto 500 nm thick CdS is designed and characterized. The design included a Yb metallic substrate and Ag point contact of area of 10-3 cm2. The heterojunction properties are investigated by means of x-ray diffraction and impedance spectroscopy techniques. It is observed that the coating of the Sb2Te3 onto the surface of CdS causes a further deformation to the already strained structure of hexagonal CdS. The designed energy band diagram for the CdS/Sb2Te3 suggests a straddling type of heterojunction with an estimated conduction and valence band offsets of 0.35 and 1.74 eV, respectively. In addition, the analysis of the capacitance-voltage characteristic curve revealed a depletion region width of 14 nm. On the other hand, the capacitance and conductivity spectra which are analyzed in the frequency domain of 0.001-1.80 GHz indicated that the conduction in the device is dominated by the quantum mechanical tunneling in the region below 0.26 GHz and by the correlated barrier hopping in the remaining region. While the modeling of the conductivity spectra allowed investigation of the density of states near Fermi levels and an average scattering time of 1.0 ns, the capacitance spectra exhibited resonance at 0.26 GHz followed by negative differential capacitance effect in the frequency domain of 0.26-1.8 GHz. Furthermore, the evaluation of the impedance and reflection coefficient spectra indicated the usability of these devices as wide range low pass filters with ideal values of voltage standing wave ratios.

  14. Diamond-Based Supercapacitors: Realization and Properties.

    PubMed

    Gao, Fang; Nebel, Christoph E

    2016-10-26

    In this Spotlight on Applications, we describe our recent progress on the fabrication of surface-enlarged boron-doped polycrystalline diamond electrodes, and evaluate their performance in supercapacitor applications. We begin with a discussion of the fabrication methods of porous diamond materials. The diamond surface enlargement starts with a top-down plasma etching method. Although the extra surface area provided by surface roughening or nanostructuring provides good outcome for sensing applications, a capacitance value <1 mF cm -2 or a surface-enlargement factor <100 fail to meet the requirement of a practical supercapacitor. Driven by the need for large surface areas, we recently focused on the tempated-growth method. We worked on both supported and free-standing porous diamond materials to enhance the areal capacitance to the "mF cm -2 " range. With our newly developed free-standing diamond paper, areal capacitance can be multiplied by stacking multilayers of the electrode material. Finally, considering the fact that there is no real diamond-based supercapacitor device up to now, we fabricated the first prototype pouch-cell device based on the free-standing diamond paper to evaluate its performance. The results reveal that the diamond paper is suitable for operation in high potential windows (up to 2.5 V) in aqueous electrolyte with a capacitance of 0.688 mF cm -2 per layer of paper (or 0.645 F g -1 ). Impedance spectroscopy revealed that the operation frequency of the device exceeds 30 Hz. Because of the large potential window and the ability to work at high frequency, the specific power of the device reached 1 × 10 5 W kg -1 . In the end, we made estimations on the future target performance of diamond supercapacitors based on the existing information.

  15. Screening length and quantum capacitance in graphene by scanning probe microscopy.

    PubMed

    Giannazzo, F; Sonde, S; Raineri, V; Rimini, E

    2009-01-01

    A nanoscale investigation on the capacitive behavior of graphene deposited on a SiO2/n(+) Si substrate (with SiO2 thickness of 300 or 100 nm) was carried out by scanning capacitance spectroscopy (SCS). A bias V(g) composed by an AC signal and a slow DC voltage ramp was applied to the macroscopic n(+) Si backgate of the graphene/SiO(2)/Si capacitor, while a nanoscale contact was obtained on graphene by the atomic force microscope tip. This study revealed that the capacitor effective area (A(eff)) responding to the AC bias is much smaller than the geometrical area of the graphene sheet. This area is related to the length scale on which the externally applied potential decays in graphene, that is, the screening length of the graphene 2DEG. The nonstationary charges (electrons/holes) induced by the AC potential spread within this area around the contact. A(eff) increases linearly with the bias and in a symmetric way for bias inversion. For each bias V(g), the value of A(eff) is related to the minimum area necessary to accommodate the not stationary charges, according to the graphene density of states (DOS) at V(g). Interestingly, by decreasing the SiO(2) thickness from 300 to 100 nm, the slope of the A(eff) versus bias curve strongly increases (by a factor of approximately 50). The local quantum capacitance C(q) in the contacted graphene region was calculated starting from the screening length, and the distribution of the values of C(q) for different tip positions was obtained. Finally the lateral variations of the DOS in graphene was determined.

  16. Rapid culture-based detection of living mycobacteria using microchannel electrical impedance spectroscopy (m-EIS).

    PubMed

    Kargupta, Roli; Puttaswamy, Sachidevi; Lee, Aiden J; Butler, Timothy E; Li, Zhongyu; Chakraborty, Sounak; Sengupta, Shramik

    2017-06-10

    Multiple techniques exist for detecting Mycobacteria, each having its own advantages and drawbacks. Among them, automated culture-based systems like the BACTEC-MGIT™ are popular because they are inexpensive, reliable and highly accurate. However, they have a relatively long "time-to-detection" (TTD). Hence, a method that retains the reliability and low-cost of the MGIT system, while reducing TTD would be highly desirable. Living bacterial cells possess a membrane potential, on account of which they store charge when subjected to an AC-field. This charge storage (bulk capacitance) can be estimated using impedance measurements at multiple frequencies. An increase in the number of living cells during culture is reflected in an increase in bulk capacitance, and this forms the basis of our detection. M. bovis BCG and M. smegmatis suspensions with differing initial loads are cultured in MGIT media supplemented with OADC and Middlebrook 7H9 media respectively, electrical "scans" taken at regular intervals and the bulk capacitance estimated from the scans. Bulk capacitance estimates at later time-points are statistically compared to the suspension's baseline value. A statistically significant increase is assumed to indicate the presence of proliferating mycobacteria. Our TTDs were 60 and 36 h for M. bovis BCG and 20 and 9 h for M. smegmatis with initial loads of 1000 CFU/ml and 100,000 CFU/ml respectively. The corresponding TTDs for the commercial BACTEC MGIT 960 system were 131 and 84.6 h for M. bovis BCG and 41.7 and 12 h for M smegmatis, respectively. Our culture-based detection method using multi-frequency impedance measurements is capable of detecting mycobacteria faster than current commercial systems.

  17. Controlling the dynamics of electrons and ions in large area capacitive radio frequency plasmas via the Electrical Asymmetry Effect

    NASA Astrophysics Data System (ADS)

    Schuengel, Edmund

    2014-10-01

    The processing of large area surfaces in capacitive radio-frequency plasmas is a crucial step in the manufacturing of various high-technological products. To optimize these discharges for applications, understanding and controlling the dynamics of electrons and ions is vitally important. A recently proposed method of controlling these dynamics is based on the Electrical Asymmetry Effect (EAE): By driving the capacitive discharge with a dual-frequency voltage waveform composed of two consecutive harmonics, the symmetry of the discharge can be varied by tuning the relative phase. In this experimental study, the EAE is tested in hydrogen diluted silane discharges. The electron dynamics visualized by Phase Resolved Optical Emission Spectroscopy depends on the electrical asymmetry, the heating mode, and the presence of dust particles agglomerating in the plasma volume. In particular, a transition from the α-mode (heating by sheath expansion and field reversal) to the Ω-mode (heating by drift field in the bulk) is observed. The ion dynamics are strongly affected by the sheaths electric fields, which can be controlled via the EAE: Separate control of the flux and mean energy of ions onto the electrodes is possible via the EAE. Furthermore, investigations of the spatially resolved ion flux in the electromagnetic regime, i.e. using higher driving frequencies, reveal that the ion flux profile is controllable via the phase, as well, allowing for a significant improvement of the uniformity. Thus, it is demonstrated that the EAE is a powerful tool to control the properties of large area capacitive discharges in the volume and at the surfaces in various ways. Funded by the German Federal Ministry for the Environment, Nature conservation, and Nuclear Safety (0325210B).

  18. Single Event Transients in Voltage Regulators for FPGA Power Supply Applications

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Sanders, Anthony; Kim, Hak; Phan, Anthony; Forney, Jim; LaBel, Kenneth A.; Karsh, Jeremy; Pursley, Scott; Kleyner, Igor; Katz, Richard

    2006-01-01

    As with other bipolar analog devices, voltage regulators are known to be sensitive to single event transients (SET). In typical applications, large output capacitors are used to provide noise immunity. Therefore, since SET amplitude and duration are generally small, they are often of secondary importance due to this capacitance filtering. In low voltage applications, however, even small SET are a concern. Over-voltages may cause destructive conditions. Under-voltages may cause functional interrupts and may also trigger electrical latchup conditions. In addition, internal protection circuits which are affected by load as well as internal thermal effects can also be triggered from heavy ions, causing dropouts or shutdown ranging from milliseconds to seconds. In the case of FPGA power supplies applications, SETS are critical. For example, in the case of Actel FPGA RTAX family, core power supply voltage is 1.5V. Manufacturer specifies an absolute maximum rating of 1.6V and recommended operating conditions between 1.425V and 1.575V. Therefore, according to the manufacturer, any transient of amplitude greater than 75 mV can disrupt normal circuit functions, and overvoltages greater than 100 mV may damage the FPGA. We tested five low dropout voltage regulators for SET sensitivity under a large range of circuit application conditions.

  19. Polythiophene-carbon nanotubes composites as energy storage materials for supercapacitor application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, A. K., E-mail: anukulphyism@gmail.com; Choudhary, R. B.; Sartale, S. D.

    Polythiophene incorporated carbon materials have sought huge attention due to various improved electrochemical properties including enhanced electrical conductivity. Our work includes the synthesis of polythiophene (PTP)-multi-wallcarbon nanotubes (MWCNTs) via in-situ polymerization method. The homogeneous distribution of MWCNT in PTP was confirmed by Field Emission Scanning Electron Microscope (FESEM). Examination of the specimen using X-Ray diffraction (XRD), Fourier Transform-Infrared (FTIR) and Raman spectroscopy confirmed the composite formation. Other electrochemical characterizations like electrochemical impendence spectroscopy (EIS) and cyclic voltammetry (CV)of the PTP-MWCNT composite affirmed that incorporation of MWCNT improves the electrochemical properties of neat PTP including a significant increase in the capacitance.more » Hence making PTP-MWCNT isa better material for supercapacitor application than neat PTP.« less

  20. Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers

    PubMed Central

    Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I

    2014-01-01

    We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1 V with maximum luminance of 87 cd/m2 obtained at 10 kHz and 15 Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage. PMID:25523436

  1. Structural, morphological, dielectric and impedance spectroscopy of lead-free Bi(Zn2/3Ta1/3)O3 electronic material

    NASA Astrophysics Data System (ADS)

    Halder, S.; Bhuyan, S.; Das, S. N.; Sahoo, S.; Choudhary, R. N. P.; Das, P.; Parida, K.

    2017-12-01

    A lead-free dielectric material [Bi(Zn2/3Ta1/3)O3] has been prepared using a solid state reaction technique at high-temperature. The resistive, conducting and capacitive characteristics of the prepared electronic material have been studied in different experimental conditions. The determination of basic crystal parameters and reflection indices confirm the development of polycrystalline compound with orthorhombic crystal structure. The study of frequency-temperature dependence of ac conductivity illustrates the nature and conduction mechanism of the material. On the basis of observed impedance data and detailed dielectric analysis, the existence of non-Debye type relaxation has been affirmed. The electronic charge carriers of compound have short range order that has been validated from the complex modulus and impedance spectrum. The detailed studies of resistive, capacitive, microstructural characteristics of the prepared material provide some useful data for considering the material as an electronic component for fabrication of devices.

  2. Nanoscale calibration of n-type ZnO staircase structures by scanning capacitance microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L., E-mail: lin.wang@insa-lyon.fr; Laurent, J.; Brémond, G.

    2015-11-09

    Cross-sectional scanning capacitance microscopy (SCM) was performed on n-type ZnO multi-layer structures homoepitaxially grown by molecular beam epitaxy method. Highly contrasted SCM signals were obtained between the ZnO layers with different Ga densities. Through comparison with dopant depth profiles from secondary ion mass spectroscopy measurement, it is demonstrated that SCM is able to distinguish carrier concentrations at all levels of the samples (from 2 × 10{sup 17 }cm{sup −3} to 3 × 10{sup 20 }cm{sup −3}). The good agreement of the results from the two techniques indicates that SCM can be a useful tool for two dimensional carrier profiling at nanoscale for ZnO nanostructure development. Asmore » an example, residual carrier concentration inside the non-intentionally doped buffer layer was estimated to be around 2 × 10{sup 16 }cm{sup −3} through calibration analysis.« less

  3. Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Ting; Jiang, Hao; Ma, Jan

    A N-methylpyrrolidone (NMP) assisted electrochemical deposition route has been developed to realize the synthesis of a dense α-Co(OH) 2 layered structure, which is composed of nanosheets, each with a thickness of 10 nm. The capacitive characteristics of the as-obtained α-Co(OH) 2 are investigated by means of cyclic voltammetry (CV), charge/discharge characterization, and electrochemical impedance spectroscopy (EIS), in 1 M KOH electrolyte. The results indicate that α-Co(OH) 2 prepared in the presence of 20 vol.% NMP has denser and thin layered structure which promotes an increased surface area and a shortened ion diffusion path. The as-prepared α-Co(OH) 2 shows better electrochemical performance with specific capacitance of 651 F g -1 in a potential range of -0.1 to 0.45 V. These findings suggest that the surfactant-assisted electrochemical deposition is a promising process for building densely packed material systems with enhanced properties, for application in supercapacitors.

  4. Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria.

    PubMed

    Malvankar, Nikhil S; Mester, Tünde; Tuominen, Mark T; Lovley, Derek R

    2012-02-01

    Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c-type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders of magnitude. We employ genetic engineering, protein unfolding and Nernstian modeling for in vivo demonstration of charge storage capacity of c-type cytochromes and perform electrochemical impedance spectroscopy, cyclic voltammetry and charge-discharge cycling to confirm the pseudocapacitive, redox nature of biofilm capacitance. The biofilms also show low self-discharge and good charge/discharge reversibility. The superior electrochemical performance of the biofilm is related to its high abundance of cytochromes, providing large electron storage capacity, its nanostructured network with metallic-like conductivity, and its porous architecture with hydrous nature, offering prospects for future low cost and environmentally sustainable energy storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Supercapacitors based on pillared graphene nanostructures.

    PubMed

    Lin, Jian; Zhong, Jiebin; Bao, Duoduo; Reiber-Kyle, Jennifer; Wang, Wei; Vullev, Valentine; Ozkan, Mihrimah; Ozkan, Cengiz S

    2012-03-01

    We describe the fabrication of highly conductive and large-area three dimensional pillared graphene nanostructure (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils for applications in electric double layer capacitors (EDLC). The PGN films synthesized via a one-step chemical vapor deposition process on flexible copper foils exhibit high conductivity with sheet resistance as low as 1.6 ohms per square and possessing high mechanical flexibility. Raman spectroscopy indicates the presence of multi walled carbon nanotubes (MWCNT) and their morphology can be controlled by the growth conditions. It was discovered that nitric acid treatment can significantly increase the specific capacitance of the devices. EDLC devices based on PGN electrodes (surface area of 565 m2/g) demonstrate enhanced performance with specific capacitance value as high as 330 F/g extracted from the current density-voltage (CV) measurements and energy density value of 45.8 Wh/kg. The hybrid graphene-CNT nanostructures are attractive for applications including supercapacitors, fuel cells and batteries.

  6. Hydrothermal synthesis of reduced graphene sheets/Fe2O3 nanorods composites and their enhanced electrochemical performance for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yang, Wanlu; Gao, Zan; Wang, Jun; Wang, Bin; Liu, Lianhe

    2013-06-01

    Reduced graphene nanosheets/Fe2O3 nanorods (GNS/Fe2O3) composite has been fabricated by a hydrothermal route for supercapacitor electrode materials. The obtained GNS/Fe2O3 composite formed a uniform structure with the Fe2O3 nanorods grew on the graphene surface and/or filled between the graphene sheets. The electrochemical performances of the GNS/Fe2O3 hybrid supercapacitor were tested by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge tests in 6 M KOH electrolyte. Comparing with the pure Fe2O3 electrode, GNS/Fe2O3 composite electrode exhibits an enhanced specific capacitance of 320 F g-1 at 10 mA cm-2 and an excellent cycle-ability with capacity retention of about 97% after 500 cycles. The simple and cost-effective preparation technique of this composite with good capacitive behavior encourages its potential commercial application.

  7. Diamond and Carbon Nanotube Composites for Supercapacitor Devices

    NASA Astrophysics Data System (ADS)

    Moreira, João Vitor Silva; May, Paul William; Corat, Evaldo José; Peterlevitz, Alfredo Carlos; Pinheiro, Romário Araújo; Zanin, Hudson

    2017-02-01

    We report on the synthesis and electrochemical properties of diamond grown onto vertically aligned carbon nanotubes with high surface areas as a template, resulting in a composite material exhibiting high double-layer capacitance as well as low electrochemical impedance electrodes suitable for applications as supercapacitor devices. We contrast results from devices fabricated with samples which differ in both their initial substrates (Si and Ti) and their final diamond coatings, such as boron-doped diamond and diamond-like carbon (DLC). We present for first time a conducting model for non-doped DLC thin-films. All samples were characterized by scanning and transmission electron microscopy and Fourier transform infrared and Raman spectroscopy. Our results show specific capacitance as high as 8.25 F g-1 (˜1 F cm-2) and gravimetric specific energy and power as high as 0.7 W h kg-1 and 176.4 W kg-1, respectively, which suggest that these diamond/carbon nanotube composite electrodes are excellent candidates for supercapacitor fabrication.

  8. Zn2+-Doped Polyaniline/Graphene Oxide as Electrode Material for Electrochemical Supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Tang, Jing; Chen, Yong; Liu, Jian; Pu, Jinjuan; Li, Qi

    2017-10-01

    Electrodes based on Zn2+-doped polyaniline/graphene oxide (Zn2+/PANI/GO) were synthesized on stainless steel mesh substrates in H2SO4 solution via electrochemical codeposition. Different concentrations of graphene oxide (GO) were incorporated into the films to improve the electrochemical performance of the electrodes. Electrochemical properties of the films were tested by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy, in a three-electrode system. The maximum specific capacitance of the Zn2+/PANI/GO film with a GO concentration of 15 mg L-1 was found to be 1266 F g-1 at a scan rate of 3 mV s-1. This value was higher than that of a Zn2+ doped polyaniline (Zn2+/PANI) film (814 F g-1). The Zn2+/PANI/GO film also showed good cycling stability, retaining over 86% of its initial capacitance after 1000 cycles. These results indicate that the Zn2+/PANI/GO composites can be applied as high performance supercapacitor electrodes.

  9. Effects of Small Polar Molecules (MA+ and H2O) on Degradation Processes of Perovskite Solar Cells.

    PubMed

    Ma, Chunqing; Shen, Dong; Qing, Jian; Thachoth Chandran, Hrisheekesh; Lo, Ming-Fai; Lee, Chun-Sing

    2017-05-03

    Degradation mechanisms of methylammonium lead halide perovskite solar cells (PSCs) have drawn much attention recently. Herein, the bulk and surface degradation processes of the perovskite were differentiated for the first time by employing combinational studies using electrochemical impedance spectroscopy (EIS), capacitance frequency (CF), and X-ray diffraction (XRD) studies with particular attention on the roles of small polar molecules (MA + and H 2 O). CF study shows that short-circuit current density of the PSCs is increased by H 2 O at the beginning of the degradation process coupled with an increased surface capacitance. On the basis of EIS and XRD analysis, we show that the bulk degradation of PSCs involves a lattice expansion process, which facilitates MA + ion diffusion by creating more efficient channels. These results provide a better understanding of the roles of small polar molecules on degradation processes in the bulk and on the surface of the perovskite film.

  10. Study on the water flooding in the cathode of direct methanol fuel cells.

    PubMed

    Im, Hun Suk; Kim, Sang-Kyung; Lim, Seongyop; Peck, Dong-Hyun; Jung, Doohwan; Hong, Won Hi

    2011-07-01

    Water flooding phenomena in the cathode of direct methanol fuel cells were analyzed by using electrochemical impedance spectroscopy. Two kinds of commercial gas diffusion layers with different PTFE contents of 5 wt% (GDL A5) and 20 wt% (GDL B20) were used to investigate the water flooding under various operating conditions. Water flooding was divided into two types: catalyst flooding and backing flooding. The cathode impedance spectra of each gas diffusion layer was obtained and compared under the same conditions. The diameter of the capacitive semicircle became larger with increasing current density for both, and this increase was greater for GDL B20 than GDL A5. Catalyst flooding is dominant and backing flooding is negligible when the air flow rate is high and current density is low. An equivalent model was suggested and fitted to the experimental data. Parameters for catalyst flooding and backing flooding were individually obtained. The capacitance of the catalyst layer decreases as the air flow rate decreases when the catalyst flooding is dominant.

  11. Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices.

    PubMed

    Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong

    2018-01-01

    Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.

  12. Improved electrical properties after post annealing of Ba0.7Sr0.3TiO3 thin films for MIM capacitor applications

    NASA Astrophysics Data System (ADS)

    Rouahi, A.; Kahouli, A.; Sylvestre, A.; Jomni, F.; Defaÿ, E.; Yangui, B.

    2012-11-01

    Dielectric measurements have been performed on ion beam sputtering (IBS) barium strontium titanate Ba0.7Sr0.3TiO3 thin films at annealing temperatures 470 and 700 °C using impedance spectroscopy. The effect of the annealing temperature upon the electrical properties of the films is also investigated using capacitance-voltage techniques. Increasing annealing temperature suggested the increases of density and grain size, whereas the density of the trapped oxygen vacancy may be decreasing with increasing annealing temperature. The barrier height ( E a) of the oxygen vacancy decreases with increasing annealing temperature. The C- V characteristics were investigated in relation to the annealing temperature to identify the anomalous capacitance in the MIM configuration films. Among all measurement temperatures, it was observed that the data fit well by the "LGD" model. The interfacial effect and its dependence of morphology structure have been studied, and the results are discussed.

  13. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: excitation dynamics and ion flux asymmetry

    DOE PAGES

    Bruneau, B.; Diomede, P.; Economou, D. J.; ...

    2016-06-08

    Parallel plate capacitively coupled plasmas in hydrogen at relatively high pressure (~1 Torr) are excited with tailored voltage waveforms containing up to five frequencies. Predictions of a hybrid model combining a particle-in-cell simulation with Monte Carlo collisions and a fluid model are compared to phase resolved optical emission spectroscopy measurements, yielding information on the dynamics of the excitation rate in these discharges. When the discharge is excited with amplitude asymmetric waveforms, the discharge becomes electrically asymmetric, with different ion energies at each of the two electrodes. Unexpectedly, large differences in themore » $$\\text{H}_{2}^{+}$$ fluxes to each of the two electrodes are caused by the different $$\\text{H}_{3}^{+}$$ energies. When the discharge is excited with slope asymmetric waveforms, only weak electrical asymmetry of the discharge is observed. In this case, electron power absorption due to fast sheath expansion at one electrode is balanced by electron power absorption at the opposite electrode due to a strong electric field reversal.« less

  14. Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices

    NASA Astrophysics Data System (ADS)

    Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong

    2018-01-01

    Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.

  15. Size dependence in tunneling spectra of PbSe quantum-dot arrays.

    PubMed

    Ou, Y C; Cheng, S F; Jian, W B

    2009-07-15

    Interdot Coulomb interactions and collective Coulomb blockade were theoretically argued to be a newly important topic, and experimentally identified in semiconductor quantum dots, formed in the gate confined two-dimensional electron gas system. Developments of cluster science and colloidal synthesis accelerated the studies of electron transport in colloidal nanocrystal or quantum-dot solids. To study the interdot coupling, various sizes of two-dimensional arrays of colloidal PbSe quantum dots are self-assembled on flat gold surfaces for scanning tunneling microscopy and scanning tunneling spectroscopy measurements at both room and liquid-nitrogen temperatures. The tip-to-array, array-to-substrate, and interdot capacitances are evaluated and the tunneling spectra of quantum-dot arrays are analyzed by the theory of collective Coulomb blockade. The current-voltage of PbSe quantum-dot arrays conforms properly to a scaling power law function. In this study, the dependence of tunneling spectra on the sizes (numbers of quantum dots) of arrays is reported and the capacitive coupling between quantum dots in the arrays is explored.

  16. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.

    PubMed

    Zhang, Hongxin; Bhat, Vinay V; Gallego, Nidia C; Contescu, Cristian I

    2012-06-27

    Graphene materials were synthesized by reduction of exfoliated graphite oxide and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction pattern analysis, and nitrogen adsorption/desorption studies. RGO forms a continuous network of crumpled sheets, which consist of large amounts of few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. These results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving its specific capacitance, energy, and power density.

  17. Central venous pressure and mean circulatory filling pressure in the dogfish Squalus acanthias: adrenergic control and role of the pericardium.

    PubMed

    Sandblom, Erik; Axelsson, Michael; Farrell, Anthony P

    2006-11-01

    Subambient central venous pressure (Pven) and modulation of venous return through cardiac suction (vis a fronte) characterizes the venous circulation in sharks. Venous capacitance was estimated in the dogfish Squalus acanthias by measuring the mean circulatory filling pressure (MCFP) during transient occlusion of cardiac outflow. We tested the hypothesis that venous return and cardiac preload can be altered additionally through adrenergic changes of venous capacitance. The experiments involved the surgical opening of the pericardium to place a perivascular occluder around the conus arteriosus. Another control group was identically instrumented, but lacked the occluder, and was subjected to the same pharmacological protocol to evaluate how pericardioectomy affected cardiovascular status. Routine Pven was negative (-0.08+/-0.02 kPa) in control fish but positive (0.09+/-0.01 kPa) in the pericardioectomized group. Injections of 5 microg/kg body mass (Mb) of epinephrine and phenylephrine (100 microg/kg Mb) increased Pven and MCFP, whereas isoproterenol (1 microg/kg Mb) decreased both variables. Thus, constriction and relaxation of the venous vasculature were mediated through the respective stimulation of alpha- and beta-adrenergic receptors. Alpha-adrenergic blockade with prazosin (1 mg/kg Mb) attenuated the responses to phenylephrine and decreased resting Pven in pericardioectomized animals. Our results provide convincing evidence for adrenergic control of the venous vasculature in elasmobranchs, although the pericardium is clearly an important component in the modulation of venous function. Thus active changes in venous capacitance have previously been underestimated as an important means of modulating venous return and cardiac performance in this group.

  18. Non-activated high surface area expanded graphite oxide for supercapacitors

    NASA Astrophysics Data System (ADS)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G. E.; Boukos, N.; Giannouri, M.; Lei, C.; Lekakou, C.; Trapalis, C.

    2015-12-01

    Microwave irradiation of graphite oxide constitutes a facile route toward production of reduced graphene oxide, since during this treatment both exfoliation and reduction of graphite oxide occurs. In this work, the effect of pristine graphite (type, size of flakes), pretreatment and oxidation cycles on the finally produced expanded material was examined. All the types of graphite that were tested afforded materials with high BET surface areas ranging from 940 m2/g to 2490 m2/g, without intervening an activation stage at elevated temperature. SEM and TEM images displayed exfoliated structures, where the flakes were significantly detached and curved. The quality of the reduced graphene oxide sheets was evidenced both by X-ray photoelectron spectroscopy and Raman spectroscopy. The electrode material capacitance was determined via electrochemical impedance spectroscopy and cyclic voltammetry. The materials with PEDOT binder had better performance (∼97 F/g) at low operation rates while those with PVDF binder performed better (∼20 F/g) at higher rates, opening up perspectives for their application in supercapacitors.

  19. Facile route to covalently-jointed graphene/polyaniline composite and it's enhanced electrochemical performances for supercapacitors

    NASA Astrophysics Data System (ADS)

    Qiu, Hanxun; Han, Xuebin; Qiu, Feilong; Yang, Junhe

    2016-07-01

    A polyaniline/graphene composite with covalently-bond is synthesized by a novel approach. In this way, graphene oxide is functionalized firstly by introducing amine groups onto the surface with the reduction of graphene oxide in the process and then served as the anchor sites for the growth of polyaniline (PANI) via in-situ polymerization. The composite material is characterized by electron microscopy, the resonant Raman spectra, X-ray diffraction, transform infrared spectroscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the composite are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. With the functionalization process, the graphene/polyaniline composite electrode exhibits remarkably enhanced electrochemical performance with specific capacitance of 489 F g-1 at 0.5 A g-1, which is superior to those of its individual components. The outstanding electrochemical performance of the hybrid can be attributed to its covalently synergistic effect between graphene and polyaniline, suggesting promising potentials for supercapacitors.

  20. High-pressure cell for simultaneous dielectric and neutron spectroscopy.

    PubMed

    Sanz, Alejandro; Hansen, Henriette Wase; Jakobsen, Bo; Pedersen, Ib H; Capaccioli, Simone; Adrjanowicz, Karolina; Paluch, Marian; Gonthier, Julien; Frick, Bernhard; Lelièvre-Berna, Eddy; Peters, Judith; Niss, Kristine

    2018-02-01

    In this article, we report on the design, manufacture, and testing of a high-pressure cell for simultaneous dielectric and neutron spectroscopy. This cell is a unique tool for studying dynamics on different time scales, from kilo- to picoseconds, covering universal features such as the α relaxation and fast vibrations at the same time. The cell, constructed in cylindrical geometry, is made of a high-strength aluminum alloy and operates up to 500 MPa in a temperature range between roughly 2 and 320 K. In order to measure the scattered neutron intensity and the sample capacitance simultaneously, a cylindrical capacitor is positioned within the bore of the high-pressure container. The capacitor consists of two concentric electrodes separated by insulating spacers. The performance of this setup has been successfully verified by collecting simultaneous dielectric and neutron spectroscopy data on dipropylene glycol, using both backscattering and time-of-flight instruments. We have carried out the experiments at different combinations of temperature and pressure in both the supercooled liquid and glassy state.

Top