Science.gov

Sample records for capacite plastique des

  1. Analyse Pharmaceutique de la prescription des antibiotiques au service des brules et chirurgie plastique de l'Hopital Militaire d'Instruction Mohammed V, Maroc

    PubMed Central

    Benziane, H.; Karfo, R.; Siah, S.; Taoufik, J.

    2011-01-01

    Summary L'infection est longtemps restée la principale cause de mortalité chez le brûlé grave. Ce travail a pour but d'évaluer la prescription des antibiotiques dans notre Service des Brûlés et Chirurgie Plastique, au regard du dossier d'autorisation de mise sur le marché (Résumé des caractéristiques du produit). Tous les patients sous antibiothérapie, au Service des Brûlés et Chirurgie Plastique de l'Hôpital Militaire d'Instruction Mohammed V de Rabat, Maroc, durant la période janvier 2008/mai 2009, ont été inclus. Il s'agit d'une étude rétrospective qui a analysé 41 dossiers de patients. Les antibiotiques utilisés par le service appartiennent à différentes familles. Les plus utilisés sont les bêta-lactamines (65%), glycopeptides (10,5%), aminosides (9%), quinolones (7%) et colistine (4,3%), avec 4,2% pour les autres classes d'antibiotiques (métronidazole 500 mg en perfusion, fluconazole injectable 100 mg/50 ml, rifampicine 600 mg en perfusion, sulfadiazine argentique crème, acide fusidique 2% crème, etc.); 70% des prescriptions sont non documentées. La voie injectable est prépondérante (89%). En tout, 227 ordonnances nominatives d'antibiothérapie ont été analysées: la posologie et les contre-indications ont été respectées par rapport à l'autorisation de mise sur le marché. Trois cas d'interactions médicamenteuses ont été relevés (fluconazole-rifampicine, fluconazole-Saccharomyces boulardii, amikacine-vancomycine). Ce constat montre l'importance de l'analyse pharmaceutique des prescriptions des antibiotiques dans un service utilisant des antibiotiques de la réserve hospitalière, donc actifs mais très toxiques. PMID:22396670

  2. Épidémiologie des brûlures de la main chez les enfants vus dans le Centre National des Brûlés et de Chirurgie Plastique de Casablanca, Maroc

    PubMed Central

    Rafik, A.; Lahlou, M.; Diouri, M.; Bahechar, N.; Chlihi, A.

    2015-01-01

    Summary Les brûlures de la main chez l’enfant constituent une source de séquelles invalidantes. A cet régard, la conservation et la restauration complète de la fonction de la main demeurent le but primordial de la prise en charge. Afin de répertorier les caractéristiques épidémiologiques, cliniques et évolutives des mains brûlées, nous avons réalisé une étude rétrospective étalée sur 4 ans, de janvier 2011 à janvier 2015. Cette étude a permis de colliger les cas de 313 enfants atteints de brûlure de la main vus dans le Centre National des Brulés et de Chirurgie Plastique du CHU Ibn Rochd de Casablanca. La majorité des brûlures touche les enfants de 3 à 6 ans (70% des cas), avec une légère prédominance masculine. La principale cause des brûlures survenant à cet âge est l’ébouillantement. Les brûlures par flamme représentent 33% des cas, celles par électricité 4,5%. Les brûlures chimiques et par contact sont anecdotiques (1 cas chacune). L’accident survient le plus souvent à domicile. Soixante douze pour cent des brûlures ont guéri spontanément. Afin de diminuer l’incidence de ces accidents, une approche préventive faite de sensibilisation et d’éducation devrait faire partie du cursus scolaire. PMID:27777543

  3. La Greffe de Peau dans le Traitement des Sequelles de la Main Brulee. A Propos de 152 Cas - Experience du Service de Chirurgie Plastique du Centre Hospitalier Universitaire Ibn-Sina, Rabat, Maroc

    PubMed Central

    El Mazouz, S.; Fejjal, N.; Hafidi, J.; Cherkab, L.; Mejjati, H.; Belfqih, R.; Gharib, N.; Abbassi, A.

    2010-01-01

    Summary La main est fréquemment exposée aux brûlures, entraînant des séquelles esthétiques et fonctionnelles. Le traitement de ces séquelles est surtout chirurgical et consiste en la greffe de peau, dont le type dépend de la localisation de la brûlure et du type des séquelles. Dans ce travail rétrospectif, nous rapportons une série de 152 cas de brûlures des mains colligés au service de chirurgie plastique du Centre Hospitalier Universitaire Ibn-Sina de Rabat sur une période de dix ans, allant de 1998 à 2007. Les indications thérapeutiques dépendent du type de séquelles et de la localisation de la brûlure. En tout, 97 patients ont bénéficié d'une greffe cutanée, dont 76% par greffe de peau totale, 21% par greffe de peau demi-épaisse et 3% par peau fine. Les séquelles des brûlures des mains posent un problème thérapeutique majeur, malgré la diversité des procédés chirurgicaux, d'où l'intérêt de la prévention. PMID:21991196

  4. Cellules solaires photovoltaïques plastiques enjeux et perspectives

    NASA Astrophysics Data System (ADS)

    Sicot, L.; Dumarcher, V.; Raimond, P.; Rosilio, C.; Sentein, C.; Fiorini, C.

    2002-04-01

    Après avoir détaillé le fonctionnement d'une cellule photovoltaïque plastique et les paramètres photovoltaïques permettant de caractéiser son efficacité, un état de l'art des technologies de fabrication des cellules est présenté. Des moyens d'amélioration des performances des cellules photovoltaïques organiques sont ensuite illustrés par l'étude de dispositifs développés au Laboratoire Composants Organiques (LCO) du CEA Saclay.

  5. Ablation laser pour la microélectronique plastique

    NASA Astrophysics Data System (ADS)

    Alloncle, A.-P.; Thomas, B.; Grojo, D.; Delaporte, Ph.; Sentis, M.; Sanaur, S.; Barret, M.; Collot, Ph.

    2006-12-01

    La microélectronique plastique connaît un développement sans précédent dans le domaine de la recherche. Cette étude s'intéresse à l'utilisation des lasers impulsionnels pour la réalisation de composants organiques sur supports souples. Les deux aspects plus particulièrement étudiés sont d'une part la gravure de polymère pour réaliser un canal entre la source et le drain, et d'autre part le développement d'un procédéde dépôt appelé LIFT pour Laser Induced Forward Transfer. Ce dernier pourrait notamment permettre dedéposer des composés organiques non solubles.

  6. Optimisation thermique de moules d'injection construits par des processus génératifs

    NASA Astrophysics Data System (ADS)

    Boillat, E.; Glardon, R.; Paraschivescu, D.

    2002-12-01

    Une des potentialités les plus remarquables des procédés de production génératifs, comme le frittage sélectif par laser, est leur capacité à fabriquer des moules pour l'injection plastique équipés directement de canaux de refroidissement conformes, parfaitement adaptés aux empreintes Pour que l'industrie de l'injection puisse tirer pleinement parti de cette nouvelle opportunité, il est nécessaire de mettre à la disposition des moulistes des logiciels de simulation capables d'évaluer les gains de productivité et de qualité réalisables avec des systèmes de refroidissement mieux adaptés. Ces logiciels devraient aussi être capables, le cas échéant, de concevoir le système de refroidissement optimal dans des situations où l'empreinte d'injection est complexe. Devant le manque d'outils disponibles dans ce domaine, le but de cet article est de proposer un modèle simple de moules d'injection. Ce modèle permet de comparer différentes stratégies de refroidissement et peut être couplé avec un algorithme d'optimisation.

  7. Capacité de transport et de limitation du courant des matériaux YBaCuO texturés

    NASA Astrophysics Data System (ADS)

    Porcar, L.; Bourgault, D.; Belmont, O.; Noudem, J. G.; Barbut, J. M.; Barrault, M.; Tixador, P.; Chaud, X.; Tournier, R.

    1998-01-01

    Pulsed and permanent sinusoidal transport current have been applied to melt textured Y_1Ba_2Cu_3O_{7-δ} in order to estimate its current limitation capability. High pulsed transport currents reaching 9000 A (23 000 A / cm^2) crossed a 4 cm long sample. In permanent sinusoidal current, 3000 A (7800 A / cm^2) crossed the sample without showing any resistive losses. Above the critical current, the transition from the superconducting to the normal state is strongly abrupt. Afin de déterminer la capacité à limiter le courant du composé Y_1Ba_2Cu_3O_{7-δ} texturé, des études en courants de transport élevés, en régime pulsé et en régime permanent alternatif, ont été menées. Il en résulte que YBaCuO possède une forte capacité de transport du courant en régime pulsé (9000 A soit 23 000 A / cm^2 dans un barreau de 4 cm de long) et en régime permanent alternatif (3000 A soit 7800 A / cm^2) et que le retour à l'état normal par dépassement du courant critique est très abrupt.

  8. T-bone plastique for treatment of brachy-turricephaly.

    PubMed

    Donauer, E; Bernardy, M; Neuenfeldt, D

    1993-01-01

    The "T-Bone Plastique", which is presented in this paper, allows a surgical correction even of extreme cases of brachy-turricephaly together with malformations of the occipital region in one operative session. Brachy-turricephaly is characterized by abnormal vertical height of the skull and a shortening of its anterior-posterior length, frequently combined with malformations of the occipital region. Resection of the prematurely closed coronal suture, bi-parietal trepanations with 90 degrees rotation and side-exchange of the parietal bone flaps, double transverse trepanation of the occipital bone and outward bending and shifting of the bone fragments enable a bony remodeling and normalization of the deformed skull. Using this operative technique in three children we achieved a significant improvement of the skull form with an aesthetically pleasing result, without any neurologic sequelae and with normal development of the children during follow-up.

  9. Étude par la méthode de Monte Carlo de la phase plastique de la quinuclidine à différentes températures

    NASA Astrophysics Data System (ADS)

    Jumeau, Daniel; André, Daniel

    La phase plastique (c.f.c.) de la quinuclidine est étudiée à différentes températures par la méthode de Monte Carlo utilisant la technique des matrices de compatibilité. Afin de ne pas modifier la symétrie moyenne du réseau, les centres de masse de molécules sont supposés fixes. Les orientations moléculaires sont choisies de façon aléatoire parmi les 48 orientations équivalentes et discernables du groupe c.f.c. Cela permet une mémorisation préalable des énergies d'interaction entre molécules voisines et un gain de temps de calcul considérable. Nous observons alors un blocage des réorientations moléculaires à basse température, tandis que la symétrie cristalline devient monoclinique. Ceci est interprété en termes de transition de phase dont la température (215 K) et la variation d'énergie (5 kJ mol-1) sont très proches des valeurs expérimentales.

  10. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  11. Optimisation des structures métalliques fléchies dans un calcul plastique

    NASA Astrophysics Data System (ADS)

    Geara, F.; Raphael, W.; Kaddah, F.

    2005-05-01

    The steel structure is a type of construction that is very developed in civil engineering. In the phase of survey and then of execution and installation of a metal work, the phase of conception is often the place of discontinuities that prevents the global optimization of material steel. In our survey, we used the traditional approach of optimization that is essentially based on the minimization of the weight of the structure, while taking advantages of plastic properties of steel in the case of a bending structure. It has been permitted because of to the relation found between the areas of the sections of the steel elements and the plastic moment of these sections. These relations have been drawn for different types of steel. In order to take advantages of the linear programming, a simplification has been introduced in transforming these relation to linear relations, which permits us to use simple methods as the simplex theorem. This procedure proves to be very interesting in the first phases of the survey and give very interesting results.

  12. L’évaluation systématique des instruments pour mesurer la douleur chez les personnes âgées ayant des capacités réduites à communiquer*

    PubMed Central

    Aubin, Michèle; Giguère, Anik; Hadjistavropoulos, Thomas; Verreault, René

    2007-01-01

    La douleur chronique est souvent sous-détectée et insuffisamment traitée dans les milieux de soins de longue durée. Les outils d’autorapport (ou autoévaluation) de la douleur, comme l’échelle visuelle analogique, n’ont été validés que partiellement chez les populations âgées, en raison de la prévalence élevée de déficits visuels, auditifs, moteurs et cognitifs que l’on y trouve. Des outils d’observation des patients ont été développés pour pallier ces difficultés d’utilisation des échelles d’autorapport de la douleur. Le présent projet vise l’identification de ces échelles et leur évaluation sur la base de la validité de contenu (12 questions), de la validité de construit (12 questions), de la fiabilité (13 questions) et de l’utilité clinique (10 questions). Parmi les 24 instruments recensés, plusieurs apparaissent prometteurs pour évaluer la douleur chez les personnes âgées atteintes de démence sévère. Des efforts additionnels de validation sont cependant requis avant leur intégration à la pratique régulière en soins de longue durée. PMID:17717611

  13. Trielectrode capacitive pressure transducer

    NASA Technical Reports Server (NTRS)

    Coon, G. W. (Inventor)

    1976-01-01

    A capacitive transducer and circuit especially suited for making measurements in a high-temperature environment are described. The transducer includes two capacitive electrodes and a shield electrode. As the temperature of the transducer rises, the resistance of the insulation between the capacitive electrode decreases and a resistive current attempts to interfere with the capacitive current between the capacitive electrodes. The shield electrode and the circuit coupled there reduce the resistive current in the transducer. A bridge-type circuit coupled to the transducer ignores the resistive current and measures only the capacitive current flowing between the capacitive electrodes.

  14. Capacitive Power Transfer

    DTIC Science & Technology

    2010-12-15

    capacitive charger achieves near 80% e ciency at 3.7W with only 63 pF of coupling capacitance. An automatic tuning loop adjusts the frequency from...find the optimum circuit component values and operating point. A prototype capacitive charger achieves near 80% efficiency at 3.7 W with only 63 pF of...delivery in a smartphone sized package . Section 5 presents work in progress on a capacitively isolated LED driver. 2 Analysis The analysis is based on a

  15. Capacitive electrodes in electroencephalography.

    PubMed

    von Ellenrieder, Nicolás; Spinelli, Enrique; Muravchik, Carlos H

    2006-01-01

    We present a forward problem formulation for computing biopotentials measured with dry or capacitive electrodes. This formulation is not quasistatic and has mixed boundary conditions. Our results show that simple approximations to the measurements based on capacitive coupling are adequate in most situations. We study the range of validity and errors committed in the EEG forward and inverse problems when using this approximation.

  16. Capacitance measuring device

    DOEpatents

    Andrews, W.H. Jr.

    1984-08-01

    A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.

  17. Injectabilite des coulis de ciment dans des milieux fissures

    NASA Astrophysics Data System (ADS)

    Mnif, Thameur

    Le travail presente ici est un bilan du travaux de recherche effectues sur l'injectabilite des coulis de ciment dans lu milieux fissures. Un certain nombre de coulis a base de ciment Portland et microfin ont ete selectionnes afin de caracteriser leur capacite a penetrer des milieux fissures. Une partie des essais a ete menee en laboratoire. L'etude rheologique des differents melanges a permis de tester l'influence de l'ajout de superplastifiant et/ou de fumee de silice sur la distribution granulometrique des coulis et par consequent sur leur capacite a injecter des colonnes de sable simulant un milieu fissure donne. La classe granulometrique d'un coulis, sa stabilite et sa fluidite sont apparus comme les trois facteurs principaux pour la reussite d'une injection. Un facteur de finesse a ete defini au cours de cette etude: base sur la classe granulometrique du ciment et sa stabilite, il peut entrer dans la formulation theorique du debit d'injection avant application sur chantier. La deuxieme et derniere partie de l'etude presente les resultats de deux projets de recherche sur l'injection realises sur chantier. L'injection de dalles de beton fissurees a permis le suivi de l'evolution des pressions avec la distance au point d'injection. L'injection de murs de maconnerie a caractere historique a montre l'importance de la definition de criteres de performance des coulis a utiliser pour traiter un milieu donne et pour un objectif donne. Plusieurs melanges peuvent ainsi etre predefinis et mis a disposition sur le chantier. La complementarite des ciments traditionnels et des ciments microfins devient alors un atout important. Le choix d'utilisation de ces melanges est fonction du terrain rencontre. En conclusion, cette recherche etablit une methodologie pour la selection des coulis a base de ciment et des pressions d'injection en fonction de l'ouverture des fissures ou joints de construction.

  18. Capacitance pressure sensor

    DOEpatents

    Eaton, William P.; Staple, Bevan D.; Smith, James H.

    2000-01-01

    A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

  19. Capacitive chemical sensor

    DOEpatents

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  20. Online capacitive densitometer

    DOEpatents

    Porges, K.G.

    1988-01-21

    This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained. 7 figs.

  1. Steerable Capacitive Proximity Sensor

    NASA Technical Reports Server (NTRS)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Steerable capacitive proximity sensor of "capaciflector" type based partly on sensing units described in GSC-13377 and GSC-13475. Position of maximum sensitivity adjusted without moving sensor. Voltage of each driven shield adjusted separately to concentrate sensing electric field more toward one side or other.

  2. Digital capacitance measuring system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The hardware phase of a digital capacitance measuring system is presented with the major emphasis placed on the electrical design and operation. Test results are included of the three units fabricated. The system's interface is applicable to existing requirements for the space shuttle vehicle.

  3. Online capacitive densitometer

    DOEpatents

    Porges, Karl G.

    1990-01-01

    This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained.

  4. Capacitive deionization of seawater

    SciTech Connect

    Farmer, J.C.; Fix, D.V.; Mack, G.V.

    1995-10-01

    Capacitive deionization with carbon aerogel electrodes is an efficient and economical new process for removing salt and impurities from water. Carbon aerogel is a material that enables the successful purification of water because of its high surface area, optimum pore size, and low electrical resistivity. The electrodes are maintained at a potential difference of about one volt; ions are removed from the water by the imposed electrostatic field and retained on the electrode surface until the polarity is reversed. The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated. The overall process offers advantages when compared to conventional water-purification methods, requiring neither pumps, membranes, distillation columns, nor thermal heaters. Consequently, the overall process is both robust and energy efficient. The current state of technology development, commercialization, and potential applications of this process are reviewed.

  5. Capacitive skin characterization

    NASA Technical Reports Server (NTRS)

    Mcconnell, Robert; Manzo, Michael

    1992-01-01

    NASA is currently involved in research that utilizes a capacitive sensor that is used for proximity detection of objects. This sensor is sensitive to conductive and dielectric materials including metal objects and humans. The range of the sensor has been found to be about twelve inches. It is the goal of this research project to further characterize the sensor so that it can be tailored to specific requirements. The characterization of the sensor should be with respect to shield size, sensor size, object size, and object distance. The method of finite elements to calculate the capacitance of the sensor while varying different parameters was used. Each of the parameters was varied in turn, often by selecting data points from different runs. The plotted results are shown and an apparent functionality developed for each.

  6. Modelisation des emissions de particules microniques et nanometriques en usinage

    NASA Astrophysics Data System (ADS)

    Khettabi, Riad

    La mise en forme des pieces par usinage emet des particules, de tailles microscopiques et nanometriques, qui peuvent etre dangereuses pour la sante. Le but de ce travail est d'etudier les emissions de ces particules pour fins de prevention et reduction a la source. L'approche retenue est experimentale et theorique, aux deux echelles microscopique et macroscopique. Le travail commence par des essais permettant de determiner les influences du materiau, de l'outil et des parametres d'usinage sur les emissions de particules. E nsuite un nouveau parametre caracterisant les emissions, nomme Dust unit , est developpe et un modele predictif est propose. Ce modele est base sur une nouvelle theorie hybride qui integre les approches energetiques, tribologiques et deformation plastique, et inclut la geometrie de l'outil, les proprietes du materiau, les conditions de coupe et la segmentation des copeaux. Il ete valide au tournage sur quatre materiaux: A16061-T6, AISI1018, AISI4140 et fonte grise.

  7. U.S. plastic surgeons who contributed to the Revue de Chirurgie Plastique and the Revue de Chirurgie Structive (1931-1938): "Giants" in our specialty.

    PubMed

    Rogers, B O

    1999-01-01

    The Revue de Chirurgie Plastique and the Revue de Chirurgie Structive, Brussels (1931-1938), edited by Maurice Coelst, M.D. from Brussels, were the first, full-fledged medical publications specifically devoted to plastic, reconstructive, and aesthetic surgery. Publishing original articles by J.W. Maliniac, J. Eastman Sheehan, and brief summaries of papers read at plastic surgery societies by C.R. Straatsma, L.A. Peer, G. Aufricht, and other well-known American plastic surgeons, these Revues drew attention to surgeons, most of whom were responsible for organizing the American Society of Plastic and Reconstructive Surgeons in 1931, the same year in which the Revue de Chirurgie Plastique first appeared.

  8. Improved Capacitive Liquid Sensor

    NASA Technical Reports Server (NTRS)

    Waldman, Francis A.

    1992-01-01

    Improved capacitive sensor used to detect presence and/or measure thickness of layer of liquid. Electrical impedance or admittance of sensor measured at prescribed frequency, and thickness of liquid inferred from predetermined theoretical or experimental relationship between impedance and thickness. Sensor is basically a three-terminal device. Features interdigitated driving and sensing electrodes and peripheral coplanar ground electrode that reduces parasitic effects. Patent-pending because first to utilize ground plane as "shunting" electrode. System less expensive than infrared, microwave, or refractive-index systems. Sensor successfully evaluated in commercial production plants to characterize emulsions, slurries, and solutions.

  9. Capacitive label reader

    DOEpatents

    Arlowe, H.D.

    1983-07-15

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.

  10. Capacitive label reader

    DOEpatents

    Arlowe, H.D.

    1985-11-12

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label. 5 figs.

  11. Capacitive label reader

    DOEpatents

    Arlowe, H. Duane

    1985-01-01

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.

  12. Programmable electronic synthesized capacitance

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1987-01-01

    A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise.

  13. Elaboration de nouvelles approches micromecaniques pour l'optimisation des performances mecaniques des materiaux heterogenes

    NASA Astrophysics Data System (ADS)

    Aboutajeddine, Ahmed

    donner de bons resultats. Finalement, ce modele de Mori-Tanaka corrige est utilise avec les operateurs de Hill pour construire un modele de transition d'echelle pour les materiaux ayant une interphase elastoplastique. La loi de comportement effective trouvee est de nature incrementale et elle est conjuguee a la relation de la plasticite de l'interphase. Des simulations d'essais mecaniques pour plusieurs proprietes de l'interphase plastique a permis de dresser des profils de l'enrobage octroyant un meilleur comportement au materiau.

  14. [Thoughts on the Revue de Chirurgie Plastique (1931-34) and the Revue de Chirurgie Structive (1935-38)].

    PubMed

    Vrebos, J

    2007-08-01

    The history of modern plastic surgery starts when a young, restless ENT man, Dr M. Coelst, started a training in Plastic Surgery with Sebileau in Paris and Joseph in Berlin. This man of vision and far-sighted imagination realized that the separated efforts and publications of so many pioneers, scaterred all over the world, would be lost if not gathered in a scientific journal only devoted to plastic surgery for the benefit of all. This brought him to the idea of establishing, in 1931, at his own initiative, the first international Journal of Plastic Surgery ever published, the Revue de Chirurgie Plastique, fifteen years before the USA Journal Plastic and Reconstructive Surgery and sixteen years before the British Journal of Plastic Surgery. The name of the journal was changed in 1935 to the Revue de Chirurgie Structive. Coelst' Revue was promptly accepted as the leading Journal of Plastic Surgery and all the internationally known plastic Surgeons contributed to it by scientific papers of great value, even today.

  15. Shielded capacitive electrode

    DOEpatents

    Kireeff Covo, Michel

    2013-07-09

    A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.

  16. Capacitive deionization system

    SciTech Connect

    Richardson, J. H., LLNL

    1996-10-01

    The new capacitive deionization system (CDI) removes ions, contaminants impurities from water and other aqueous process streams, and further selectively places the removed ions back into solution during regeneration. It provides a separation process that does not utilize chemical regeneration processes, and thus significantly reduces or completely eliminates secondary wastes associated with the operation of ion exchange resins. In the CDI, electrolyte flows in open channels formed between adjacent electrodes, and consequently the pressure drop is much lower than conventional separation processes. The fluid flow can be gravity fed through these open channels, and does not require membranes. This feature represents a significant advantage over the conventional reverse osmosis systems which include water permeable cellulose acetate membranes, and over the electrodialysis systems which require expensive and exotic ion exchange membranes. The CDI is adaptable for use in a wide variety of commercial applications, including domestic water softening, industrial water softening, waste water purification, sea water desalination, treatment of nuclear and aqueous wastes, treatment of boiler water in nuclear and fossil power plants, production of high-purity water for semiconductor processing, and removal of salt from water for agricultural irrigation. CDI accomplishes this removal of impurities by a variety of mechanisms, but predominantly by electrostatic removal of organic and inorganic ions from water or any other dielectric solvent.

  17. British plastic surgeons who contributed to the Revue de Chirurgie Plastique and the Revue de Chirurgie Structive (1931-1938): "the Big Four" in their Speciality.

    PubMed

    Rogers, B O

    2001-01-01

    The Revue de Chirurgie Plastique and the Revue de Chirurgie Structive, Brussels (1931-1938), edited by Maurice Coelst, M.D. from Brussels, were the first, full-fledged medical publications devoted specifically to plastic, reconstructive, and aesthetic surgery. Publishing original articles by H.D. Gillies, P.T. Kilner, A.H. McIndoe, and R. Mowlem--the "Big Four" as they were known to both English and American plastic surgeons--the Revues drew attention to these four surgeons who were mainly responsible for developing the prestige of English plastic surgery in the early 1930s.

  18. Scientific contributions of U.S. plastic surgeons to the Revue de Chirurgie Plastique and the Revue de Chirurgie Structive, Brussels (1931-1938).

    PubMed

    Vrebos, J

    1999-01-01

    The author emphasizes the close cooperation between U.S. plastic surgeons and the first international journal entirely devoted to plastic surgery, the Revue de Chirurgie Plastique (1931-1934) later to become the Revue de Chirurgie Structive (1935-1938) published under the editorship of Maurice Coelst, M.D. from Brussels. By the accurate recording of original articles, book reviews, proceedings of their annual meetings and summaries in three different languages (English, French, German), the author stresses the intense scientific dynamism and the achievements made by the U.S. pioneers of this new speciality, which really started during World War I.

  19. Dislocations et propriétés mécaniques des matériaux céramiques: Quelques problèmes

    NASA Astrophysics Data System (ADS)

    Castaing, J.; Dominguez Rodriguez, A.

    1995-11-01

    The study of plastic deformation of ceramic materials raised new problems on low temperature dislocation glide and high temperature dislocation climb. Mechanical behaviour can be explained. In this paper, we review some examples related to oxides which are linked to the activity of J. Philibert. L'étude de la déformation plastique de matériaux céramiques monocristallins a donné l'occasion de poser des nouveaux problèmes sur le glissement des dislocations à basse température et sur leur montée à haute température. Le comportement mécanique peut ainsi être expliqué. Nous passons en revue des cas concernant les oxydes dans lesquels J. Philibert a joué un rôle important.

  20. Bioenergetics of Mammalian Sperm Capacitation

    PubMed Central

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods. PMID:24791005

  1. Unified capacitance modelling of MOSFETs

    NASA Astrophysics Data System (ADS)

    Johannessen, O. G.; Fjeldly, T. A.; Ytterdal, T.

    1994-01-01

    A unified physics based capacitance model for MOSFETs suitable for implementation in circuit simulators is presented. This model is based on the charge conserving, so-called Meyer-like approach proposed by Turchetti et al., and utilizes a unified charge control model to assure a continuous description of the MOSFET capacitances both above and below threshold. The capacitances associated with the model are comparable to those of the well-known BSIM model in the above-threshold regime, but it is more precise in the description of near-threshold and subthreshold behaviour. Moreover, the discontinuities at the transitions between the various regimes of operation are removed. The present modelling scheme was implemented in our circuit simulator AIM-Spice, and simulations of the dynamic behaviour of various demanding benchmark circuits clearly reveal its superiority over simulations using the simple Meyer model.

  2. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  3. Traitement de surface par explosif du cuivre polycristallin : caractérisation microstructurale et comportement en fatigue plastique

    NASA Astrophysics Data System (ADS)

    Gerland, M.; Dufour, J. P.; Presles, H. N.; Violan, P.; Mendez, J.

    1991-10-01

    A new surface treatment technique with a primary explosive deposited in thin layer was applied to a polycrystalline pure copper. After treatment, surface roughness remains of high quality especially when compared to shot peened surfaces. The treated zone extends over several hundreds microns in depth and the microhardness profile exhibits a significant increasing of hardness with a maximum reaching 100% at the surface. The transmission electron microscopy shows a microstructure which changes with depth : below the surface, there is a thin recrystallized layer with very small grains followed by a region with numerous mechanical twins the density of which decreases when depth increases. Tested in fatigue with a constant plastic strain amplitude, the treated copper specimens exhibit a strong hardening from the first cycles compared to the untreated specimen ; however this initial hardening erases after 2% of the fatigue life. The fatigue resistance is not modified by the treatment. Une nouvelle technique de traitement de surface à l'aide d'un explosif primaire déposé en couche mince a été utilisée sur du cuivre pur polycristallin. L'état de surface après traitement reste de très bonne qualité, surtout comparé aux surfaces grenaillées. La zone traitée s'étend sur une profondeur de quelques centaines de microns et le profil de microdureté montre une importante augmentation de dureté avec un maximum en surface pouvant atteindre 100%. La micrcrostructure, observée par microscopie électronique en transmission, est caractérisée par une fine recristallisation en surface, puis par un abondant maclage dont la densité décroît lorsque la profondeur augmente. Testé en fatigue à déformation plastique imposée, le cuivre traité présente un fort écrouissage initial dès les premiers cycles, mais qui s'efface progressivement au cours du cyclage après 2% de la durée de vie, cette dernière n'étant pas modifiée par le traitement.

  4. Driven shielding capacitive proximity sensor

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor); McConnell, Robert L. (Inventor)

    2000-01-01

    A capacitive proximity sensing element, backed by a reflector driven at the same voltage as and in phase with the sensor, is used to reflect the field lines away from a grounded robot arm towards an intruding object, thus dramatically increasing the sensor's range and sensitivity.

  5. Capacitive Proximity Sensor Has Longer Range

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1992-01-01

    Capacitive proximity sensor on robot arm detects nearby object via capacitive effect of object on frequency of oscillator. Sensing element part of oscillator circuit operating at about 20 kHz. Total capacitance between sensing element and ground constitutes tuning capacitance of oscillator. Sensor circuit includes shield driven by replica of alternating voltage applied to sensing element. Driven shield concentrates sensing electrostatic field in exterior region to enhance sensitivity to object. Sensitivity and dynamic range has corresponding 12-to-1 improvement.

  6. Capacitance Property of a Resonant Tunneling Diode

    NASA Astrophysics Data System (ADS)

    Sheng, Hanyu; Chua, Soo-Jin; Sinkkonen, Juha

    A simple capacitance formula based on a semiclassical electron transport theory is given. The results show that the charges stored in the quantum well of a resonant tunneling diode have a considerable effect on the capacitance in the resonant region. The calculated capacitance is consistent with the experimental results.

  7. Active Targets For Capacitive Proximity Sensors

    NASA Technical Reports Server (NTRS)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Lightweight, low-power active targets devised for use with improved capacitive proximity sensors described in "Capacitive Proximity Sensor Has Longer Range" (GSC-13377), and "Capacitive Proximity Sensors With Additional Driven Shields" (GSC-13475). Active targets are short-distance electrostatic beacons; they generate known alternating electro-static fields used for alignment and/or to measure distances.

  8. Quantum Capacitance in Topological Insulators

    PubMed Central

    Xiu, Faxian; Meyer, Nicholas; Kou, Xufeng; He, Liang; Lang, Murong; Wang, Yong; Yu, Xinxin; Fedorov, Alexei V.; Zou, Jin; Wang, Kang L.

    2012-01-01

    Topological insulators show unique properties resulting from massless, Dirac-like surface states that are protected by time-reversal symmetry. Theory predicts that the surface states exhibit a quantum spin Hall effect with counter-propagating electrons carrying opposite spins in the absence of an external magnetic field. However, to date, the revelation of these states through conventional transport measurements remains a significant challenge owing to the predominance of bulk carriers. Here, we report on an experimental observation of Shubnikov-de Haas oscillations in quantum capacitance measurements, which originate from topological helical states. Unlike the traditional transport approach, the quantum capacitance measurements are remarkably alleviated from bulk interference at high excitation frequencies, thus enabling a distinction between the surface and bulk. We also demonstrate easy access to the surface states at relatively high temperatures up to 60 K. Our approach may eventually facilitate an exciting exploration of exotic topological properties at room temperature. PMID:22993694

  9. The scientific contributions of British Plastic Surgeons to the Revue de Chirurgie Plastique and the Revue de Chirurgie Structive, Brussels (1931-1938).

    PubMed

    Vrebos, J

    2001-01-01

    In 1931, Maurice Coelst, M.D. from Brussels started the publication of the first international journal of plastic surgery ever published: the Revue de Chirurgie Plastique (1931-1934), which eventually became the Revue de Chirurgie Structive (1935-1938). In 1936, he established the first European Society of Structive Surgery, which held its first congress in Brussels. Further congresses were held in London in 1937 and in Milan in 1938. It is the collaboration and the participation of British plastic surgeons in this Society, this journal, and these meetings that I want to stress, because I am firmly convinced that these documents fill a gap in the history of Plastic Surgery in Great Britain, since--as far as I know--no detailed information concerning this period was ever published in Plastic Surgery literature.

  10. Capacitive de-ionization electrode

    DOEpatents

    Daily, III, William D.

    2013-03-19

    An electrode "cell" for use in a capacitive deionization (CDI) reactor consists of the electrode support structure, a non-reactive conductive material, the electrode accompaniment or substrate and a flow through screen/separator. These "layers" are repeated and the electrodes are sealed together with gaskets between two end plates to create stacked sets of alternating anode and cathode electrodes in the CDI reactor.

  11. A l'ecole maternelle francaise: Vivre ensemble et pratiquer des activities d'art plastique. [In a French Nursery School: Living and Creating Together].

    ERIC Educational Resources Information Center

    International Journal of Early Childhood, 1999

    1999-01-01

    Discusses the role of collective creative activity in developing preschool children's multicultural understanding and ability to live together. Notes artistic and language-based activities used in French preschools to teach these concepts and develop critical and responsible behavior. (JPB)

  12. Redox regulation of mammalian sperm capacitation

    PubMed Central

    O’Flaherty, Cristian

    2015-01-01

    Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS) that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P) H for sperm capacitation. Peroxiredoxins (PRDXs) are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility. PMID:25926608

  13. Capacitance enhancement via electrode patterning

    NASA Astrophysics Data System (ADS)

    Ho, Tuan A.; Striolo, Alberto

    2013-11-01

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties.

  14. Capacitance enhancement via electrode patterning

    SciTech Connect

    Ho, Tuan A.; Striolo, Alberto

    2013-11-28

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties.

  15. Versatile and compact capacitive dilatometer

    SciTech Connect

    Schmiedeshoff, G. M.; Lounsbury, A. W.; Luna, D. J.; Tracy, S. J.; Schramm, A. J.; Tozer, S. W.; Correa, V. F.; Hannahs, S. T.; Murphy, T. P.; Palm, E. C.; Lacerda, A. H.; Bud'ko, S. L.; Canfield, P. C.; Smith, J. L.; Lashley, J. C.; Cooley, J. C.

    2006-12-15

    We describe the design, construction, calibration, and operation of a relatively simple differential capacitive dilatometer suitable for measurements of thermal expansion and magnetostriction from 300 to below 1 K with a low-temperature resolution of about 0.05 A ring . The design is characterized by an open architecture permitting measurements on small samples with a variety of shapes. Dilatometers of this design have operated successfully with a commercial physical property measurement system, with several types of cryogenic refrigeration systems, in vacuum, in helium exchange gas, and while immersed in liquid helium (magnetostriction only) to temperatures of 30 mK and in magnetic fields to 45 T.

  16. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  17. Nucleotide capacitance calculation for DNA sequencing

    SciTech Connect

    Lu, Jun-Qiang; Zhang, Xiaoguang

    2008-01-01

    Using a first-principles linear response theory, the capacitance of the DNA nucleotides, adenine, cytosine, guanine and thymine, are calculated. The difference in the capacitance between the nucleotides is studied with respect to conformational distortion. The result suggests that although an alternate current capacitance measurement of a single-stranded DNA chain threaded through a nano-gap electrodes may not sufficient to be used as a stand alone method for rapid DNA sequencing, the capacitance of the nucleotides should be taken into consideration in any GHz-frequency electric measurements and may also serve as an additional criterion for identifying the DNA sequence.

  18. Lambeaux autofermants pour le traitement des brulures electriques du scalp par haut voltage

    PubMed Central

    Hafidi, J.; El Mazouz, S.; El Mejatti, H.; Fejjal, N.; Gharib, N.E.; Abbassi, A.; Belmahi, A.M.

    2011-01-01

    Summary Les brûlures électriques par haut voltage sont responsables de gros dégâts tissulaires en immédiat et dans les jours suivant l’accident du fait de la chaleur importante dégagée par effet joule et de la thrombose microvasculaire évolutive. Les pertes de substances du scalp secondaires à ces brûlures nécessitent une couverture par lambeaux vu la destruction du périoste et du calvarium en regard. De juin 1997 à juin 2008, 15 patients ont été traités pour des pertes de substance du scalp secondaires à des brûlures électriques par haut voltage de diamètre allant de 8 à 11 cm et siégeant dans la région tonsurale. Ces patients ont été opérés dans la première semaine suivant l’accident. Les pertes de substance du scalp de taille moyenne secondaires à ces brûlures peuvent être couvertes per primam de façon fiable par des lambeaux locaux axialisés et multiples. Nous relatons l’expérience du Service de Chirurgie Plastique du Centre Hospitalier Universitaire Ibn-Sina, Rabat, Maroc, dans la gestion et la prise en charge de ces brûlures. PMID:22262963

  19. High Temperature Capacitive Strain Gage

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  20. High temperature capacitive strain gage

    NASA Astrophysics Data System (ADS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  1. Capacitive Feedthroughs for Medical Implants

    PubMed Central

    Grob, Sven; Tass, Peter A.; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging. PMID:27660602

  2. Ultrahigh Temperature Capacitive Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  3. Capacitance Measurement with a Sigma Delta Converter for 3D Electrical Capacitance Tomography

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2005-01-01

    This paper will explore suitability of a newly available capacitance to digital converter for use in a 3D Electrical Capacitance Tomography system. A switch design is presented along with circuitry needed to extend the range of the capacitance to digital converter. Results are then discussed for a 15+ hour drift and noise test.

  4. Module Eleven: Capacitance; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will learn about another circuit quantity, capacitance, and discover the effects of this component on circuit current, voltage, and power. The module is divided into seven lessons: the capacitor, theory of capacitance, total capacitance, RC (resistive-capacitive circuit) time constant, capacitive reactance, phase and…

  5. Des Moines.

    ERIC Educational Resources Information Center

    Gore, Deborah, Ed.

    1988-01-01

    This document, intended for elementary students, contains articles and activities designed to acquaint young people with the history of Des Moines, Iowa. The articles are short, and new or difficult words are highlighted and defined for young readers. "The Raccoon River Indian Agency" discusses the archeological exploration of the indian…

  6. Characterization of Textile-Insulated Capacitive Biosensors.

    PubMed

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-03-12

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test.

  7. Characterization of Textile-Insulated Capacitive Biosensors

    PubMed Central

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493

  8. Capacitive Biosensors and Molecularly Imprinted Electrodes

    PubMed Central

    Ertürk, Gizem; Mattiasson, Bo

    2017-01-01

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications. PMID:28218689

  9. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    PubMed

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  10. Reducing the capacitance of piezoelectric film sensors.

    PubMed

    González, Martín G; Sorichetti, Patricio A; Santiago, Guillermo D

    2016-04-01

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N(2), whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  11. Improved capacitive melting curve measurements

    NASA Astrophysics Data System (ADS)

    Sebedash, Alexander; Tuoriniemi, Juha; Pentti, Elias; Salmela, Anssi

    2009-02-01

    Sensitivity of the capacitive method for determining the melting pressure of helium can be enhanced by loading the empty side of the capacitor with helium at a pressure nearly equal to that desired to be measured and by using a relatively thin and flexible membrane in between. This way one can achieve a nanobar resolution at the level of 30 bar, which is two orders of magnitude better than that of the best gauges with vacuum reference. This extends the applicability of melting curve thermometry to lower temperatures and would allow detecting tiny anomalies in the melting pressure, which must be associated with any phenomena contributing to the entropy of the liquid or solid phases. We demonstrated this principle in measurements of the crystallization pressure of isotopic helium mixtures at millikelvin temperatures by using partly solid pure 4He as the reference substance providing the best possible universal reference pressure. The achieved sensitivity was good enough for melting curve thermometry on mixtures down to 100 μK. Similar system can be used on pure isotopes by virtue of a blocked capillary giving a stable reference condition with liquid slightly below the melting pressure in the reference volume. This was tested with pure 4He at temperatures 0.08-0.3 K. To avoid spurious heating effects, one must carefully choose and arrange any dielectric materials close to the active capacitor. We observed some 100 pW loading at moderate excitation voltages.

  12. Taylor expansions of band-bending in MOS capacitance: application to scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Murray, Hugues; Martin, Patrick; Bardy, Serge; Murray, Franck

    2008-03-01

    The differential capacitance C(Vg) = dQM/dVg in a metal-oxide-semiconductor structure introduces the silicon capacitance Cs(ΨS) = -dQS/dΨS depending on the surface band-bending ΨS at the oxide-semiconductor interface. In order to calculate the dependence of Cs on the gate voltage Vg, we propose in this paper a simple numerical method, based on first-order Taylor expansions, to inverse the explicit equation Vg = f(ΨS). This method is then applied to calculate the analytic differential capacitance of the scanning capacitance microscope (SCM) in all conditions relative to physical parameters of SCM such as oxide thickness, doping profiles and probe erosion. It results in a competitive tool for SCM users to evaluate the theoretical values of capacitance and differential capacitance in all configurations.

  13. Effect of surface asperities on the capacitances of capacitive RF MEMS switches

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqiang; Tian, Wenchao; Zhang, Xiaotong

    2017-03-01

    The effects of surface asperities on the up- and down-state capacitances of the capacitive radio frequency (RF) micro electromechanical system (MEMS) switches were studied in this paper based on the single asperity model and statics. The research results demonstrated that surface asperities effects on the up-state capacitance could be neglected, whereas surface asperities must be taken into consideration at the down-state position in the RF MEMS switches because the surface asperities significantly affected the down-state capacitance. The down-state capacitance typically decreased as the root mean square (RMS) roughness and asperity radius increased. The down-state capacitance was approximately 26% of the theoretical value when the RMS roughness was 20 nm, and 32% of the theoretical value when the asperity radius was 100 nm. The experimental results were in good agreement with the simulation results.

  14. Interconnection capacitance models for VLSI circuits

    NASA Astrophysics Data System (ADS)

    Wong, Shyh-Chyi; Liu, Patrick S.; Ru, Jien-Wen; Lin, Shi-Tron

    1998-06-01

    A new set of capacitance models is developed for delay estimation of VLSI interconnections. The set of models is derived for five representative wiring structures, with their combinations covering arbitrary VLSI layouts. A semi-empirical approach is adopted to deal with complicated geometry nature in VLSI and to allow for closed-form capacitance formulas to be developed to provide direct observation of capacitance variation vs process parameters as well as computational efficiency for circuit simulation. The formulas are given explicitly in terms of wire width, wire thickness, dielectric thickness and inter-wire spacing. The models show good agreement with numerical solutions from RAPHAEL and measurement data of fabricated capacitance test structures. The models are further applied and validated on a ring oscillator. It is shown that the frequency of the ring oscillator obtained from HSPICE simulation with our models agrees well with the bench measurement.

  15. Capacitive Cells for Dielectric Constant Measurement

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  16. Cognitive Task Analysis (l’Analyse des taches cognitives)

    DTIC Science & Technology

    2000-10-01

    pilotage, guidage, gestion de produits chimiques), aujourd’hui, le CTA est principalement utilisé pour des tâches décisionnelles telles que le...adéquation entre les fonctions système et les capacités cognitives humaines (2) optimisation des performances système et de la charge de travail (3...S.E. DGA Etas Division Facteurs Humains Professor Emeritus Cognitive & Neural S&T Division BP 36 Route de Laval The University of Warwick Office of

  17. Experimental determination of dielectric barrier discharge capacitance

    NASA Astrophysics Data System (ADS)

    Pipa, A. V.; Hoder, T.; Koskulics, J.; Schmidt, M.; Brandenburg, R.

    2012-07-01

    The determination of electrical parameters (such as instantaneous power, transferred charge, and gas gap voltage) in dielectric barrier discharge (DBD) reactors relies on estimates of key capacitance values. In the classic large-scale sinusoidal-voltage driven DBD, also known as silent or ozonizer discharge, capacitance values can be determined from charge-voltage (Q-V) plot, also called Lissajous figure. For miniature laboratory reactors driven by fast pulsed voltage waveforms with sub-microsecond rise time, the capacitance of the dielectric barriers cannot be evaluated from a single Q-V plot because of the limited applicability of the classical theory. Theoretical determination can be problematic due to electrode edge effects, especially in the case of asymmetrical electrodes. The lack of reliable capacitance estimates leads to a "capacitance bottleneck" that obstructs the determination of other DBD electrical parameters in fast-pulsed reactors. It is suggested to obtain capacitance of dielectric barriers from a plot of the maximal charge versus maximal voltage amplitude (Qmax - Vmax plot) in a manner analogous to the classical approach. The method is examined using measurements of current and voltage waveforms of a coaxial DBD reactor in argon at 100 mbar driven by square voltage pulses with a rise time of 20 ns and with different voltage amplitudes up to 10 kV. Additionally, the applicability of the method has been shown for the data reported in literature measured at 1 bar of nitrogen-oxygen gas mixtures and xenon.

  18. Narrow gap electronegative capacitive discharges

    SciTech Connect

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2013-10-15

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  19. Energy breakdown in capacitive deionization

    SciTech Connect

    Hemmatifar, Ali; Palko, James W.; Stadermann, Michael; Santiago, Juan G.

    2016-08-12

    We explored the energy loss mechanisms in capacitive deionization (CDI). We hypothesize that resistive and parasitic losses are two main sources of energy losses. We measured contribution from each loss mechanism in water desalination with constant current (CC) charge/discharge cycling. Resistive energy loss is expected to dominate in high current charging cases, as it increases approximately linearly with current for fixed charge transfer (resistive power loss scales as square of current and charging time scales as inverse of current). On the other hand, parasitic loss is dominant in low current cases, as the electrodes spend more time at higher voltages. We built a CDI cell with five electrode pairs and standard flow between architecture. We performed a series of experiments with various cycling currents and cut-off voltages (voltage at which current is reversed) and studied these energy losses. To this end, we measured series resistance of the cell (contact resistances, resistance of wires, and resistance of solution in spacers) during charging and discharging from voltage response of a small amplitude AC current signal added to the underlying cycling current. We performed a separate set of experiments to quantify parasitic (or leakage) current of the cell versus cell voltage. We then used these data to estimate parasitic losses under the assumption that leakage current is primarily voltage (and not current) dependent. Our results confirmed that resistive and parasitic losses respectively dominate in the limit of high and low currents. We also measured salt adsorption and report energy-normalized adsorbed salt (ENAS, energy loss per ion removed) and average salt adsorption rate (ASAR). As a result, we show a clear tradeoff between ASAR and ENAS and show that balancing these losses leads to optimal energy efficiency.

  20. Energy breakdown in capacitive deionization

    DOE PAGES

    Hemmatifar, Ali; Palko, James W.; Stadermann, Michael; ...

    2016-08-12

    We explored the energy loss mechanisms in capacitive deionization (CDI). We hypothesize that resistive and parasitic losses are two main sources of energy losses. We measured contribution from each loss mechanism in water desalination with constant current (CC) charge/discharge cycling. Resistive energy loss is expected to dominate in high current charging cases, as it increases approximately linearly with current for fixed charge transfer (resistive power loss scales as square of current and charging time scales as inverse of current). On the other hand, parasitic loss is dominant in low current cases, as the electrodes spend more time at higher voltages.more » We built a CDI cell with five electrode pairs and standard flow between architecture. We performed a series of experiments with various cycling currents and cut-off voltages (voltage at which current is reversed) and studied these energy losses. To this end, we measured series resistance of the cell (contact resistances, resistance of wires, and resistance of solution in spacers) during charging and discharging from voltage response of a small amplitude AC current signal added to the underlying cycling current. We performed a separate set of experiments to quantify parasitic (or leakage) current of the cell versus cell voltage. We then used these data to estimate parasitic losses under the assumption that leakage current is primarily voltage (and not current) dependent. Our results confirmed that resistive and parasitic losses respectively dominate in the limit of high and low currents. We also measured salt adsorption and report energy-normalized adsorbed salt (ENAS, energy loss per ion removed) and average salt adsorption rate (ASAR). As a result, we show a clear tradeoff between ASAR and ENAS and show that balancing these losses leads to optimal energy efficiency.« less

  1. Les infections à Pseudomonas aeruginosa au service des maladies infectieuses du CHU YO, Burkina Faso: à propos deux cas

    PubMed Central

    Mamoudou, Savadogo; Lassina, Dao; Fla, Koueta

    2015-01-01

    Nous rapportons deux cas d'infection à Pseudomonas aeruginosa: un cas de méningite et un cas d'infection urinaire. Les auteurs rappellent qu’à côté des étiologies classiques des méningites et des infections urinaires, des germes résistants comme Pseudomonas aeruginosa peuvent être responsables d'infections à localisation méningées et urinaires et dont il faut connaître pour une bonne prise en charge. Le traitement de ces infections requiert un antibiogramme au regard de la grande capacité de résistance de Pseudomonas aeruginosa en milieu hospitalier. La limitation des gestes invasifs et l'application rigoureuse des mesures de prévention des infections en milieu hospitalier contribueront à lutter efficacement contre ces infections en milieu de soins. PMID:26491521

  2. Instrumentation for direct, low frequency scanning capacitance microscopy, and analysis of position dependent stray capacitance

    NASA Astrophysics Data System (ADS)

    Lee, David T.; Pelz, J. P.; Bhushan, Bharat

    2002-10-01

    We describe instrumentation for scanning capacitance microscopy (SCM), using an atomic force microscope, that is designed to make calibrated, low frequency measurements of tip-sample capacitance and spreading resistance of thin dielectric films. We also characterize spatial variations in stray capacitance Cstray that must be understood before such measurements can be interpreted. Existing SCM circuits are generally optimized for measuring dC/dV, and not for calibrated low frequency measurements of absolute capacitance. Our circuit uses a commercially available current amplifier and low frequency (˜5 kHz) lock-in detection. This circuit adds an inverted, constant amplitude current to suppress the stray displacement current from the large (˜0.5 pF) stray capacitance Cstray between the sample and the mm-sized cantilever-probe assembly. The capacitance noise spectrum is ˜0.35 aF/√Hz and is flat down to 1 Hz measurement frequency, with an integrated noise <5 aF integrated over a 1-160 Hz bandwidth. We have also used this instrumentation to identify and characterize significant (>1 fF) variations in Cstray that must be understood in order to accurately measure aF-level variations in the nm-scale tip-sample capacitance. We find that Cstray varies with lateral probe position. This is due to tilting of the probe assembly as the piezoelectric scanner tube bends during scanning. We also find that Cstray varies significantly with probe-assembly height. This causes topography related artifacts in capacitance images of rough surfaces. However, we show that stray capacitance artifacts can be mostly eliminated by properly characterizing position and height dependent variations in Cstray and subtracting them from measured capacitance data.

  3. Capacitive Deionization of High-Salinity Solutions

    SciTech Connect

    Sharma, Ketki; Gabitto, Jorge; Mayes, Richard T.; Yiacoumi, Sotira; Bilheux, Hassina Z.; Walker, Lakeisha M.H.; Dai, Sheng; Tsouris, Costas

    2014-12-22

    Desalination of high salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization for water desalination. Experiments were conducted with a flow-through capacitive deionization cell designed for neutron imaging and with lithium chloride (6LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of lithium chloride (6LiCl) solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profiles inside mesoporous carbon electrodes has been used to simulate the capacitive deionization process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why capacitive deionization is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of capacitive deionization devices, which can improve the process for high ionic-strength solutions.

  4. Ion channels, phosphorylation and mammalian sperm capacitation

    PubMed Central

    Visconti, Pablo E; Krapf, Dario; de la Vega-Beltrán, José Luis; Acevedo, Juan José; Darszon, Alberto

    2011-01-01

    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies. PMID:21540868

  5. Capacitive Deionization of High-Salinity Solutions

    DOE PAGES

    Sharma, Ketki; Gabitto, Jorge; Mayes, Richard T.; ...

    2014-12-22

    Desalination of high salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization for water desalination. Experiments were conducted with a flow-through capacitive deionization cell designed for neutron imaging and with lithium chloride (6LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of lithium chloride (6LiCl) solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionic concentration profilesmore » inside mesoporous carbon electrodes has been used to simulate the capacitive deionization process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why capacitive deionization is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of capacitive deionization devices, which can improve the process for high ionic-strength solutions.« less

  6. Studies of Electric Capacitance of Membranes

    PubMed Central

    Kobatake, Yonosuke; Irimajiri, Akihiko; Matsumoto, Nobuyoshi

    1970-01-01

    A hydrophobic filter paper of a given pore size containing a synthetic lipid, i.e. dioleyl phosphate, was interposed between aqueous electrolyte solutions having the same chemical composition and temperature. The electric capacitance and conductance of the membrane immersed in various concentrations of KCl were measured in the frequency range from 20 to 3 × 106 cycle/sec. The observed capacitance and conductance were found to be strongly dependent on the applied frequency. A theory is proposed to account for this dispersion of impedance observed in the present membrane-electrolyte system. The dispersion is attributed to the formation of bilayer membranes of the lipid inside the filter paper. The effects of the salt concentration, the adsorbed quantity of the lipid, and the pore size of the filter paper on the capacitance and conductance of the membrane are discussed in terms of the distribution function of bilayers formed within the filter paper. PMID:5475731

  7. Capacitive behavior of highly-oxidized graphite

    NASA Astrophysics Data System (ADS)

    Ciszewski, Mateusz; Mianowski, Andrzej

    2014-09-01

    Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte. It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.

  8. Negative capacitance in a ferroelectric capacitor.

    PubMed

    Khan, Asif Islam; Chatterjee, Korok; Wang, Brian; Drapcho, Steven; You, Long; Serrao, Claudy; Bakaul, Saidur Rahman; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2015-02-01

    The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny. Negative capacitance in ferroelectric materials, which stems from the stored energy of a phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive. Here, we report the observation of negative capacitance in a thin, epitaxial ferroelectric film. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time--in exactly the opposite direction to which voltage for a regular capacitor should change. Analysis of this 'inductance'-like behaviour from a capacitor presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material and could pave the way for completely new applications.

  9. Developpement des betons semi autoplacants a rheologie adaptee pour des infrastructures

    NASA Astrophysics Data System (ADS)

    Sotomayor Cruz, Cristian Daniel

    BSAP-I optimisés à travers une caractérisation complète des propriétés mécaniques et de la durabilité a été réalisée. A la suite de cette étude, les résultats obtenus nous permettent de conclure que : (1) L'utilisation d'un BSAP-I avec un gros granulat de 5 - 14 mm, des rapports E/L = 0,37 et S/G = 0,52 et une teneur en air de 6 à 9% a été possible en conférant un équilibre optimal fluidité / stabilité à l'état frais, ainsi qu'un niveau de thixotropie adéquate au chantier permettant d'optimiser la conception du coffrage des piliers de pont et de conférer des qualités de surfaces très acceptables de ces infrastructures. (2) La méthode adaptée pour l'essai L-Box contenant 2 barres et une vibration de 5 secondes a permis de bien caractériser la capacité de remplissage d'un BSAP-I. (3) L'utilisation d'un plan factoriel 23 a permis d'obtenir des modèles statistiques fiables, capables de prédire les propriétés rhéologiques à l'état frais et les résistances en compression des BSAP-I avec des dosages en liant entre 370 et 420 kg/m3, des rapports E/L entre 0,34 et 0,40 et S/G entre 0,47 et 0,53. (4) Des mesures de vitesse d'écoulement T40 d'un BSAP-I sont très semblables à celles d'un BAP. En plus, des valeurs T40 montrent une bonne corrélation linéaire avec celles de T400 mesurés dans la boîte L-Box. (5) À la frontière du BAP et du BCV, une bande rhéologique possédant un τ0 entre 30 et 320 Pa et un η entre 10 et 140 Pa.s a été trouvée pour la conception optimale des BSAP-I. (6) Les BSAP-I optimisés ont également conféré une très bonne performance à l'état frais, en permettant maintenir un bon équilibre entre la rhéologie et la stabilité dans le temps, lorsqu'on utilise une énergie de vibration minimale pour amorcer son écoulement. (7) À l'état durci Les BSAP-I ont conféré une bonne performance présentant des résistances mécaniques élevées et des niveaux négligeables de pénétration aux ions chlores

  10. Site Specific Evaluation of Multisensor Capacitance Probes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multisensor capacitance probes (MCPs) are widely used for measuring soil water content (SWC) at the field scale. Although manufacturers supply a generic MCP calibration, many researchers recognize that MCPs should be calibrated for specific field conditions. MCPs measurements are typically associa...

  11. Impact of stray capacitance on hvdc harmonics

    SciTech Connect

    Larsen, E.V.; Sublich, M.; Kapoor, S.C.

    1989-01-01

    Recent experience suggests that a new approach is needed to determining harmonic generation from hvdc converters for the purpose of telephone interference evaluation. This paper presents simulation results showing the effect on harmonic generation of stray capacitances inherent to hvdc converters. These simulation results illustrate the basic characteristics of the phenomenon, which agree qualitatively with field experience.

  12. Negative capacitance in multidomain ferroelectric superlattices

    NASA Astrophysics Data System (ADS)

    Zubko, Pavlo; Wojdeł, Jacek C.; Hadjimichael, Marios; Fernandez-Pena, Stéphanie; Sené, Anaïs; Luk'Yanchuk, Igor; Triscone, Jean-Marc; Íñiguez, Jorge

    2016-06-01

    The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of their current applications, which range from the simple electric cigarette lighter to non-volatile random access memories. Research on nanoscale ferroelectrics reveals that their behaviour is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena with potential for future devices. As ferroelectrics become thinner, maintaining a stable polarization becomes increasingly challenging. On the other hand, intentionally destabilizing this polarization can cause the effective electric permittivity of a ferroelectric to become negative, enabling it to behave as a negative capacitance when integrated in a heterostructure. Negative capacitance has been proposed as a way of overcoming fundamental limitations on the power consumption of field-effect transistors. However, experimental demonstrations of this phenomenon remain contentious. The prevalent interpretations based on homogeneous polarization models are difficult to reconcile with the expected strong tendency for domain formation, but the effect of domains on negative capacitance has received little attention. Here we report negative capacitance in a model system of multidomain ferroelectric-dielectric superlattices across a wide range of temperatures, in both the ferroelectric and paraelectric phases. Using a phenomenological model, we show that domain-wall motion not only gives rise to negative permittivity, but can also enhance, rather than limit, its temperature range. Our first-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation.

  13. Comparison of piezoresistive and capacitive ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Neumann, John J.; Greve, David W.; Oppenheim, Irving J.

    2004-07-01

    MEMS ultrasonic transducers for flaw detection have heretofore been built as capacitive diaphragm-type devices. A diaphragm forms a moveable electrode, placed at a short gap from a stationary electrode, and diaphragm movement has been detected by capacitance change. Although several research teams have successfully demonstrated that technology, the detection of capacitance change is adversely affected by stray and parasitic capacitances, limiting the sensitivity of such transducers and typically requiring relatively large diaphragm areas. We describe the design and fabrication of what to our knowledge is the first CMOS-MEMS ultrasonic phased array transducer using piezoresistive strain sensing. Piezoresistors have been patterned within the diaphragms, and diaphragm movement creates bending strain which is detected by a bridge circuit, for which conductor losses will be less significant. The prospective advantage of such piezoresistive transducers is that sufficient sensitivity may be achieved with very small diaphragms. We compare transducer response under fluid-coupled ultrasonic excitation and report the experimental gauge factor for the piezoresistors. We also discuss the phased array performance of the transducer in sensing the direction of an incoming wave.

  14. Negative capacitance in multidomain ferroelectric superlattices.

    PubMed

    Zubko, Pavlo; Wojdeł, Jacek C; Hadjimichael, Marios; Fernandez-Pena, Stéphanie; Sené, Anaïs; Luk'yanchuk, Igor; Triscone, Jean-Marc; Íñiguez, Jorge

    2016-06-23

    The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of their current applications, which range from the simple electric cigarette lighter to non-volatile random access memories. Research on nanoscale ferroelectrics reveals that their behaviour is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena with potential for future devices. As ferroelectrics become thinner, maintaining a stable polarization becomes increasingly challenging. On the other hand, intentionally destabilizing this polarization can cause the effective electric permittivity of a ferroelectric to become negative, enabling it to behave as a negative capacitance when integrated in a heterostructure. Negative capacitance has been proposed as a way of overcoming fundamental limitations on the power consumption of field-effect transistors. However, experimental demonstrations of this phenomenon remain contentious. The prevalent interpretations based on homogeneous polarization models are difficult to reconcile with the expected strong tendency for domain formation, but the effect of domains on negative capacitance has received little attention. Here we report negative capacitance in a model system of multidomain ferroelectric-dielectric superlattices across a wide range of temperatures, in both the ferroelectric and paraelectric phases. Using a phenomenological model, we show that domain-wall motion not only gives rise to negative permittivity, but can also enhance, rather than limit, its temperature range. Our first-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation.

  15. Constant capacitance in nanopores of carbon monoliths.

    PubMed

    García-Gómez, Alejandra; Moreno-Fernández, Gelines; Lobato, Belén; Centeno, Teresa A

    2015-06-28

    The results obtained for binder-free electrodes made of carbon monoliths with narrow micropore size distributions confirm that the specific capacitance in the electrolyte (C2H5)4NBF4/acetonitrile does not depend significantly on the micropore size and support the foregoing constant result of 0.094 ± 0.011 F m(-2).

  16. Teaching of Inductive and Capacitive Reactance.

    ERIC Educational Resources Information Center

    MacInnes, I.; Jeffrey, W. S.

    1983-01-01

    Discusses how understanding mechanical systems and their graphic representation can be of value when teaching inductive and capacitive reactance, in particular, the response of inductors and capacitors to an alternating potential difference. Suggests that mechanical systems be taught, not just before introducing reactance but earlier in the…

  17. Capacitors and Resistance-Capacitance Networks.

    ERIC Educational Resources Information Center

    Balabanian, Norman; Root, Augustin A.

    This programed textbook was developed under a contract with the United States Office of Education as Number 5 in a series of materials for use in an electrical engineering sequence. It is divided into three parts--(1) capacitors, (2) voltage-current relationships, and (3) simple resistance-capacitance networks. (DH)

  18. Reconnaissance optique des formes en parallele utilisant des reseaux de neurones et une mire de reduction de dimensions

    NASA Astrophysics Data System (ADS)

    Gagne, Philippe

    Cette recherche vise à la mise en OEuvre optique de la reconnaissance des images en utilisant une mire d'anneaux afin de générer des vecteurs caractéristiques qui seront ensuite classifiés par un réseau de neurones. On proposera deux architectures originales: une qui permettra la reconnaissance invariante sous rotation en utilisant un corrélateur conjoint; l'autre montage permettra une classification en parallèle de plusieurs images grâce à la capacité des mires d'anneaux de compresser l'information. Ce dernier montage est basé sur un corrélateur 4F. On présentera des résultats optiques expérimentaux pour ces deux montages. Pour arriver à des résultats concluants on analysera le comportement des vecteurs obtenus à partir d'une mire d'anneaux, on introduira une règle d'apprentissage optimisant le pic de corrélation en réduisant les pics parasites et on corrigera à l'aide d'un algorithme génétique les modulations de phases générées par le modulateur spatial à cristaux liquides.

  19. ``Zeptofarad'' (10-21 F) resolution capacitance sensor for scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Tran, T.; Oliver, D. R.; Thomson, D. J.; Bridges, G. E.

    2001-06-01

    We describe a sensor for use in a scanning capacitance microscope (SCM) that is capable of "zeptofarad" (10-21 F) capacitance measurement resolution in a 1 Hz bandwidth with a peak-to-peak sense voltage on the probe tip of no more than 300 mV. This sensitivity is based on experimental data and simulation results that are in excellent agreement. The complete sensor incorporates an oscillator (phase locked to a 10 MHz crystal oscillator), a coupled transmission line resonator, an amplifier, and a peak detector. The resonator is fabricated from copper-clad, low-loss dielectric material and its size is such that it is easily incorporated with a scanning probe microscope. The sensor's use in the SCM enables capacitance resolution that has not previously been possible while retaining the instrumental advantages of imaging at low sense voltages. The performance of this sensor is discussed and compared to alternative scanning capacitance microscopy methodologies.

  20. Membrane hyperpolarization during human sperm capacitation

    PubMed Central

    López-González, I.; Torres-Rodríguez, P.; Sánchez-Carranza, O.; Solís-López, A.; Santi, C.M.; Darszon, A.; Treviño, C.L.

    2014-01-01

    Sperm capacitation is a complex and indispensable physiological process that spermatozoa must undergo in order to acquire fertilization capability. Spermatozoa from several mammalian species, including mice, exhibit a capacitation-associated plasma membrane hyperpolarization, which is necessary for the acrosome reaction to occur. Despite its importance, this hyperpolarization event has not been adequately examined in human sperm. In this report we used flow cytometry to show that a subpopulation of human sperm indeed undergo a plasma membrane hyperpolarization upon in vitro capacitation. This hyperpolarization correlated with two other well-characterized capacitation parameters, namely an increase in intracellular pH and Ca2+ concentration, measured also by flow cytometry. We found that sperm membrane hyperpolarization was completely abolished in the presence of a high external K+ concentration (60 mM), indicating the participation of K+ channels. In order to identify, which of the potential K+ channels were involved in this hyperpolarization, we used different K+ channel inhibitors including charybdotoxin, slotoxin and iberiotoxin (which target Slo1) and clofilium (a more specific blocker for Slo3). All these K+ channel antagonists inhibited membrane hyperpolarization to a similar extent, suggesting that both members of the Slo family may potentially participate. Two very recent papers recorded K+ currents in human sperm electrophysiologically, with some contradictory results. In the present work, we show through immunoblotting that Slo3 channels are present in the human sperm membrane. In addition, we found that human Slo3 channels expressed in CHO cells were sensitive to clofilium (50 μM). Considered altogether, our data indicate that Slo1 and Slo3 could share the preponderant role in the capacitation-associated hyperpolarization of human sperm in contrast to what has been previously reported for mouse sperm, where Slo3 channels are the main contributors to the

  1. Comportement rhéologique des systèmes mixtes biopolymères / protéines

    NASA Astrophysics Data System (ADS)

    Rebiha, M.; Moulai-Mostefa, N.; Sadok, A. Hadj; Sabri, N.

    2005-05-01

    Dans ce travail, on s'est intéressé à l'étude des effets du caséinate de sodium et du xanthane sur les propriétés rhéologiques des solutions aqueuses, préparées suivant un plan d'expériences. Les caractéristiques mécaniques obtenues sont traduites par les coefficients du modèle rhéologique de Casson, en l'occurrence la contrainte seuil, τ 0, et la viscosité plastique, η _c. Ainsi, à l'issue de la modélisation en surface de réponses, il apparaît une interaction répulsive à l'échelle structurale entre le caséinate de sodium et le xanthane, traduite par un abaissement considérable de τ 0. Cet baissement de la rigidité peut conduire à une séparation de phases, phénomène conditionné par la viscosité limite de Casson,η _c.

  2. Capacitive Measurement Of Coating Thickness On Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Eftekhari, Abe; Chapman, John J.

    1994-01-01

    Technique for gauging coating thickness during prepreg processing of carbon fibers developed. Technique based on measurement of capacitance of cylindrical condenser through which bundle of prepregged fibers passed axially. Empirical results indicate capacitance linearly related to thickness of polymer coat on fibers in bundle. Capacitive transducer used successfully to measure thickness of polymer coats on several test bundles of fibers under static conditions.

  3. Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous sample-rotated small angle x-ray scattering and electrochemical methods approach [Surface Pb nanoparticle aggregation, coalescence and differential capacitance in a deep eutectic solvent using a simultaneous grazing transmission small angle x-ray scattering and electrochemical methods approach

    DOE PAGES

    Hammons, Joshua A.; Ilavsky, Jan

    2017-01-18

    Nanoparticle electrodeposition is a simple and scalable approach to synthesizing supported nanoparticles. Used with a deep eutectic solvent (DES), surface nanoparticles can be assembled and exhibit unique surface charge separation when the DES is adsorbed on the nanoparticle surface. Key to understanding and controlling the assembly and the capacitance is a thorough understanding of surface particle mobility and charge screening, which requires an in-situ approach. In this study, Pb particle formation, size, shape and capacitance are resolved in a 1:2 choline Cl–: urea deep eutectic solvent whilst sweeping the cell potential in the range: 0.2 V to –1.2 V (vs.more » Ag/AgCl). These system parameters were resolved using a complementary suite of sample-rotated small angle X-ray scattering (SR-SAXS) and electrochemical impedance spectroscopy (EIS), which are presented and discussed in detail. This approach is able to show that both particle and ion transport are impeded in the DES, as aggregation occurs over the course of 6 minutes, and dissolved Pb ions accumulate and remain near the surface after a nucleation pulse is applied. The DES-Pb interactions strongly depend on the cell potential as evidenced by the specific differential capacitance of the Pb deposit, which has a maximum value of 2.5 +/– 0.5 F g–1 at –1.0 V vs. Ag/AgCl. Together, the SR-SAXS-EIS approach is able to characterize the unique nanoparticle capacitance, mobility and ion mobility in a DES and can be used to study a wide range of nanoparticle deposition systems in-situ.« less

  4. Quantum Effects on the Capacitance of Graphene-Based Electrodes

    DOE PAGES

    Zhan, Cheng; Neal, Justin; Wu, Jianzhong; ...

    2015-09-08

    We recently measured quantum capacitance for electric double layers (EDL) at electrolyte/graphene interfaces. However, the importance of quantum capacitance in realistic carbon electrodes is not clear. Toward understanding that from a theoretical perspective, here we studied the quantum capacitance and total capacitance of graphene electrodes as a function of the number of graphene layers. The quantum capacitance was obtained from electronic density functional theory based on fixed band approximation with an implicit solvation model, while the EDL capacitances were from classical density functional theory. We found that quantum capacitance plays a dominant role in total capacitance of the single-layer graphenemore » both in aqueous and ionic-liquid electrolytes but the contribution decreases as the number of graphene layers increases. Moreover, the total integral capacitance roughly levels off and is dominated by the EDL capacitance beyond about four graphene layers. Finally, because many porous carbons have nanopores with stacked graphene layers at the surface, this research provides a good estimate of the effect of quantum capacitance on their electrochemical performance.« less

  5. Quantum Effects on the Capacitance of Graphene-Based Electrodes

    SciTech Connect

    Zhan, Cheng; Neal, Justin; Wu, Jianzhong; Jiang, De-en

    2015-09-08

    We recently measured quantum capacitance for electric double layers (EDL) at electrolyte/graphene interfaces. However, the importance of quantum capacitance in realistic carbon electrodes is not clear. Toward understanding that from a theoretical perspective, here we studied the quantum capacitance and total capacitance of graphene electrodes as a function of the number of graphene layers. The quantum capacitance was obtained from electronic density functional theory based on fixed band approximation with an implicit solvation model, while the EDL capacitances were from classical density functional theory. We found that quantum capacitance plays a dominant role in total capacitance of the single-layer graphene both in aqueous and ionic-liquid electrolytes but the contribution decreases as the number of graphene layers increases. Moreover, the total integral capacitance roughly levels off and is dominated by the EDL capacitance beyond about four graphene layers. Finally, because many porous carbons have nanopores with stacked graphene layers at the surface, this research provides a good estimate of the effect of quantum capacitance on their electrochemical performance.

  6. Shear-mode scanning capacitance microscope

    NASA Astrophysics Data System (ADS)

    Naitou, Yuichi; Ookubo, Norio

    2001-05-01

    Scanning capacitance microscope (SCM) is developed using an all-metallic probe, whose distance from the sample is controlled by detecting the shear-force drag on the laterally oscillating probe. The oscillatory motion of the probe is electromechanically excited and detected. Using this SCM, a set of images of topography, dC/dV, and dC/dX is simultaneously obtained, where C and V are, respectively, capacitance and applied voltage between the probe and the sample, and X is the coordinate along probe tip oscillation. The SCM developed shows sensitivity for dC/dV higher than the conventional SCM. The dC/dX image clearly indicates the built-in depletion region due to the p-n junction.

  7. Biochemical capacitance of Geobacter sulfurreducens biofilms.

    PubMed

    Bueno, Paulo R; Schrott, Germán D; Bonanni, Pablo S; Simison, Silvia N; Busalmen, Juan P

    2015-08-10

    An electrical model able to decouple the electron pathway from microbial cell machinery impedance terms is introduced. In this context, capacitance characteristics of the biofilm are clearly resolved. In other words, the model allows separating, according to the advantage of frequency and spectroscopic response approach, the different terms controlling the performance of the microbial biofilm respiratory process and thus the directly related electricity production process. The model can be accurately fitted to voltammetry measurements obtained under steady-state conditions and also to biofilm discharge amperometric measurements. The implications of biological aspects of the electrochemical or redox capacitance are discussed theoretically in the context of current knowledge with regard to structure and physiological activity of microbial Geobacter biofilms.

  8. A simple and reproducible capacitive electrode.

    PubMed

    Spinelli, Enrique; Guerrero, Federico; García, Pablo; Haberman, Marcelo

    2016-03-01

    Capacitive Electrodes (CE) allow the acquisition of biopotentials through a dielectric layer, without the use of electrolytes, just by placing them on skin or clothing, but demands front-ends with ultra-high input impedances. This must be achieved while providing a path for bias currents, calling for ultra-high value resistors and special components and construction techniques. A simple CE that uses bootstrap techniques to avoid ultra-high value components and special materials is proposed. When electrodes are placed on the skin; that is, with coupling capacitances C(S) of around 100 pF, they present a noise level of 3.3 µV(RMS) in a 0.5-100 Hz bandwidth, which is appropriate for electrocardiography (ECG) measurements. Construction details of the CE and the complete circuit, including a fast recovery feature, are presented.

  9. Compressed magnetic flux amplifier with capacitive load

    SciTech Connect

    Stuetzer, O.M.

    1980-03-01

    A first-order analysis is presented for a compressed magnetic flux (CMF) current amplifier working into a load with a capacitive component. Since the purpose of the investigation was to gain a general understanding of the arrangement, a number of approximations and limitations were accepted. The inductance of the transducer varies with time; the inductance/resistance/capacitance (LRC) circuit therefore is parametric and solutions are different for the stable regime (high C), the oscillation regime (low C), and the transition case. Solutions and performance depend strongly on circuit boundary conditions, i.e., energization of the circuit by either an injected current or by an applied capacitor charge. The behavior of current and energy amplification for the various cases are discussed in detail. A number of experiments with small CMF devices showed that the first-order theory presented predicts transducer performance well in the linear regime.

  10. Layer resolved capacitive probing of graphene bilayers

    NASA Astrophysics Data System (ADS)

    Zibrov, Alexander; Parmentier, François; Li, Jia; Wang, Lei; Hunt, Benjamin; Dean, Cory; Hone, James; Taniguchi, Takashi; Watanabe, Kenji; Young, Andrea

    Compared to single layer graphene, graphene bilayers have an additional ``which-layer'' degree of freedom that can be controlled by an external electric field in a dual-gated device geometry. We describe capacitance measurements capable of directly probing this degree of freedom. By performing top gate, bottom gate, and penetration field capacitance measurements, we directly extract layer polarization of both Bernal and twisted bilayers. We will present measurements of hBN encapsulated bilayers at both zero and high magnetic field, focusing on the physics of the highly degenerate zero-energy Landau level in the high magnetic field limit where spin, valley, and layer degeneracy are all lifted by electronic interactions.

  11. A new desalination technique using capacitive deionization

    NASA Astrophysics Data System (ADS)

    Rostamy, Mohammad Sajjad; Khashechi, Morteza; Pipelzadeh, Ehsan; desalination Team

    2016-11-01

    Capacitive deionization (CDI) is an emerging energy efficient, low pressure and low capital intensive desalination process where ions are separated by a pure electrostatic force imposed by a small bias potential as low as 1 V That funded by an external Renewable (Solar) power supply to materials with high specific surface area. The main objective of this configuration is to separate the cation and anions on oppositely charged electrodes. Various electrode materials have been developed in the past, which have suffered from instability and lack of performance. Preliminary experimental results using carbon black, graphite powder, graphene ∖graphite ∖PTFE (Active ∖Conductive ∖binder), show that the graphene reduced via urea method is a suitable method to develop CDI electrode materials with capacitance as high as 52.2 mg/g for free standing graphene electrode. The focus of these studies has been mainly on developing electrodes with high specific surface area, high capacitance, excellent electronic conductivity and fast charge discharge cycles for desalination. Although some progress has been made, production of efficient and stable carbon based electrode materials for large scale desalination has not been fully realized.

  12. Multi-Channel Capacitive Sensor Arrays.

    PubMed

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-25

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  13. Resonant capacitive MEMS acoustic emission transducers

    NASA Astrophysics Data System (ADS)

    Ozevin, D.; Greve, D. W.; Oppenheim, I. J.; Pessiki, S. P.

    2006-12-01

    We describe resonant capacitive MEMS transducers developed for use as acoustic emission (AE) detectors, fabricated in the commercial three-layer polysilicon surface micromachining process (MUMPs). The 1 cm square device contains six independent transducers in the frequency range between 100 and 500 kHz, and a seventh transducer at 1 MHz. Each transducer is a parallel plate capacitor with one plate free to vibrate, thereby causing a capacitance change which creates an output signal in the form of a current under a dc bias voltage. With the geometric proportions we employed, each transducer responds with two distinct resonant frequencies. In our design the etch hole spacing was chosen to limit squeeze film damping and thereby produce an underdamped vibration when operated at atmospheric pressure. Characterization experiments obtained by capacitance and admittance measurements are presented, and transducer responses to physically simulated AE source are discussed. Finally, we report our use of the device to detect acoustic emissions associated with crack initiation and growth in weld metal.

  14. Multi-Channel Capacitive Sensor Arrays

    PubMed Central

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-01

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023

  15. Distributed Capacitive Sensor for Sample Mass Measurement

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; McKinney, Colin; Jackson, Shannon P.; Mojarradi, Mohammad; Manohara, Harish; Trebi-Ollennu, Ashitey

    2011-01-01

    Previous robotic sample return missions lacked in situ sample verification/ quantity measurement instruments. Therefore, the outcome of the mission remained unclear until spacecraft return. In situ sample verification systems such as this Distributed Capacitive (DisC) sensor would enable an unmanned spacecraft system to re-attempt the sample acquisition procedures until the capture of desired sample quantity is positively confirmed, thereby maximizing the prospect for scientific reward. The DisC device contains a 10-cm-diameter pressure-sensitive elastic membrane placed at the bottom of a sample canister. The membrane deforms under the weight of accumulating planetary sample. The membrane is positioned in close proximity to an opposing rigid substrate with a narrow gap. The deformation of the membrane makes the gap narrower, resulting in increased capacitance between the two parallel plates (elastic membrane and rigid substrate). C-V conversion circuits on a nearby PCB (printed circuit board) provide capacitance readout via LVDS (low-voltage differential signaling) interface. The capacitance method was chosen over other potential approaches such as the piezoelectric method because of its inherent temperature stability advantage. A reference capacitor and temperature sensor are embedded in the system to compensate for temperature effects. The pressure-sensitive membranes are aluminum 6061, stainless steel (SUS) 403, and metal-coated polyimide plates. The thicknesses of these membranes range from 250 to 500 m. The rigid substrate is made with a 1- to 2-mm-thick wafer of one of the following materials depending on the application requirements glass, silicon, polyimide, PCB substrate. The glass substrate is fabricated by a microelectromechanical systems (MEMS) fabrication approach. Several concentric electrode patterns are printed on the substrate. The initial gap between the two plates, 100 m, is defined by a silicon spacer ring that is anodically bonded to the glass

  16. Quantification des besoins en intrants antipaludiques: contribution à l'actualisation des hypothèses pour la quantification des intrants de prise en charge des cas de paludisme grave en République Démocratique du Congo

    PubMed Central

    Likwela, Joris Losimba; Otokoye, John Otshudiema

    2015-01-01

    Les formes graves de paludisme à Plasmodium falciparum sont une cause majeure de décès des enfants de moins de 5 ans en Afrique Sub-saharienne. Un traitement rapide dépend de la disponibilité de médicaments appropriés au niveau des points de prestation de service. La fréquence des ruptures de stock des commodités antipaludiques, en particuliers celles utilisées pour le paludisme grave, avait nécessité une mise à jour des hypothèses de quantification. Les données issues de la collecte de routine du PNLP de 2007 à 2012 ont été comparées à celles rapportés par d'autres pays africains et utilisées pour orienter les discussions au cours d'un atelier organisé par le PNLP et ses partenaires techniques et financiers afin de dégager un consensus national. La proportion des cas de paludisme rapportés comme grave en RDC est resté autour d'une médiane de 7% avec un domaine de variation de 6 à 9%. Hormis la proportion rapportée au Kenya (2%), les pays africains ont rapporté une proportion de cas grave variant entre 5 et 7%. Il apparaît que la proportion de 1% précédemment utilisée pour la quantification en RDC a été sous-estimée dans le contexte de la gestion des cas graves sur terrain. Un consensus s'est dégagé autour de la proportion de 5% étant entendu que des efforts de renforcement des capacités seraient déployés afin d'améliorer le diagnostic au niveau des points de prestation des services. PMID:26213595

  17. Capacitation mechanisms, and the role of capacitation as seen in eutherian mammals.

    PubMed

    Harrison, R A

    1996-01-01

    Capacitation, the process whereby spermatozoa are rendered capable of interacting with and fertilizing the egg, was discovered more than 40 years ago. However, our understanding of it is still far from satisfactory. Several factors conspire to obfuscate studies of capacitation mechanisms: the inherent functional heterogeneity of sperm populations, the range of functions used as parameters of capacitation (whence the endpoint of the process has become conceptually uncertain), and the several profound differences between model in vitro fertilization (IVF) systems and the situation in vivo in the female reproductive tract. Recent investigations in the author's laboratory have shown that bicarbonate/CO2, an essential component for successful IVF, causes rapid changes in lipid architecture of the sperm plasma membrane and slower changes in surface coating. These changes are accompanied by membrane destabilization and cell death. Evidence suggests that bicarbonate's actions are mediated through cyclic nucleotide signalling. Of particular note is the heterogeneity in rate of response to bicarbonate shown by individual cells in the sperm populations. Taken together with other observations, the findings suggest that capacitation is a series of positive destabilizing events that eventually lead to cell death. The 'capacitated' state would then be a window of destabilization within which spermatozoa can undergo a zona-induced acrosome reaction and display hyperactivated motility. Further along the destabilization pathway, spontaneous acrosome reactions would occur before total membrane degeneration. In vivo, capacitation would be a conflict between destabilization and sperm survival. Concentrations of bicarbonate are maintained low in the cauda epididymidis, where sperm survive for long periods, and one may speculate that hormonal control of local bicarbonate/CO2 in oviducal 'storage' sites in the female tract could allow 'safe' sequestering of live spermatozoa until around

  18. Practical and simple circuitry for the measurement of small capacitance

    NASA Astrophysics Data System (ADS)

    Lin, D. Y.; Wu, J. D.; Chang, Y. J.; Wu, J. S.

    2007-01-01

    Practical and cost-effective circuitry with high sensitivity has been developed to measure a small capacitance using current compensation method. The circuitry uses an electronic switch to periodically connect or separate the capacitor under test (Cx) from a reference capacitor (Cr). When Cx is connected in parallel with Cr the total capacitance becomes Cx+Cr. On the other hand, as Cx is separated from Cr, the total capacitance is only Cr. This periodic change of the capacitance generates a periodic square-wave output with an amplitude in proportion to the capacitance of Cx. A high sensitivity of ΔV /ΔC=202.2mV/pF has been achieved, making the circuitry a powerful tool in measuring small capacitances. Three applications have been performed to present its capability: (a) displacement, (b) height of liquid, and (c) angle of tilt. The experimental results demonstrate the performance of the circuitry.

  19. Study the Z-Plane Strip Capacitance

    SciTech Connect

    Parikh, H.; Swain, S.; /SLAC

    2005-12-15

    The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate ({phi} coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m{sup 2}) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints.

  20. 3-D capacitance density imaging system

    DOEpatents

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  1. Vehicle identification by capacitance and infrared sensors

    NASA Astrophysics Data System (ADS)

    Yang, S.; Yang, W.; Yang, Y.

    2007-07-01

    Currently, large inductance coils buried underground are commonly used to detect passing vehicles at road toll stations. The inductance-based systems are vulnerable to environmental magnetic interference and hence are inaccurate in counting passing vehicles. Also they cannot categorise the vehicles. This paper presents a capacitance sensor array, which has been developed not only for detection of passing vehicles but also for identification of types of the vehicles. Together with infrared sensors, the new system can be used to control a road barrier and to keep a record of passed vehicles through a driveway accurately. Tests have demonstrated that it is more reliable than the inductance-based systems.

  2. Experimental observation of negative capacitance in ferroelectrics at room temperature.

    PubMed

    Appleby, Daniel J R; Ponon, Nikhil K; Kwa, Kelvin S K; Zou, Bin; Petrov, Peter K; Wang, Tianle; Alford, Neil M; O'Neill, Anthony

    2014-07-09

    Effective negative capacitance has been postulated in ferroelectrics because there is a hysteresis in plots of polarization-electric field. Compelling experimental evidence of effective negative capacitance is presented here at room temperature in engineered devices, where it is stabilized by the presence of a paraelectric material. In future integrated circuits, the incorporation of such negative capacitance into MOSFET gate stacks would reduce the subthreshold slope, enabling low power operation and reduced self-heating.

  3. Circuit analysis and simulation of an ultrahigh-frequency capacitance sensor for scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Postula, A.; Bialkowski, M.

    2004-03-01

    Quantitative two-dimensional dopant profiling tools are urgently needed for nowadays semiconductor industry. Scanning Capacitance Microscopy (SCM) holds most promise to become such a tool. The key component of SCM is an ultra high frequency (UHF) capacitance sensor. The output of the sensor has been approximately regarded as dC/dV, the derivative of the capacitance between the SCM tip and the sample versus the applied bias voltage. The SCM dopant profiling involves extracting the dopant profile from the SCM signal using analytic or numerical simulation models of Metal-Oxide-Semiconductor physics. To achieve a quantitative SCM dopant profiling, the operational principle of the whole SCM measurement has to be well understood and correctly included in those models. Recently, experimental evidences show the SCM signal is dramatically affected by many SCM experimental factors, including the behavior of the UHF capacitance sensor. However, till now, very little research has been reported on the behavior of the sensor in SCM measurement of semiconductors. In this paper, we derive an analytic expression of the sensor output, a circuit simulation model of the sensor is established using Advanced Design System 2003, and the dependences of the sensor output on the SCM operational factors are simulated.

  4. A capacitive biosensor based on an interdigitated electrode with nanoislands.

    PubMed

    Jung, Ha-Wook; Chang, Young Wook; Lee, Ga-yeon; Cho, Sungbo; Kang, Min-Jung; Pyun, Jae-Chul

    2014-09-24

    A capacitive biosensor based on an interdigitated electrode (IDE) with nanoislands was developed for label-free detection of antigen-antibody interactions. To enable sensitive capacitive detection of protein adsorption, the nanoislands were fabricated between finger electrodes of the IDE. The effect of the nanoislands on the sensitive capacitive measurement was estimated using horseradish peroxidase (HRP) as a model protein. Additionally, a parylene-A film was coated on the IDE with nanoislands to improve the efficiency of protein immobilization. By using HRP and hepatitis B virus surface antigen (HBsAg) as model analytes, the effect of the parylene-A film on the capacitive detection of protein adsorption was demonstrated.

  5. Quantum capacitance of graphene in contact with metal

    SciTech Connect

    Chang, Jin Hyun Dawson, Francis; Huzayyin, Ahmed; Lian, Keryn

    2015-11-09

    We report a versatile computation method to quantitatively determine the quantum capacitance of graphene when it is in contact with metal. Our results bridge the longstanding gap between the theoretically predicted and experimentally measured quantum capacitance of graphene. Contrary to popular assumptions, the presence of charged impurities or structural distortions of graphene are not the only sources of the asymmetric capacitance with respect to the polarity of the bias potential and the higher-than-expected capacitance at the Dirac point. They also originate from the field-induced electronic interactions between graphene and metal. We also provide an improved model representation of a metal–graphene junction.

  6. Optimization of the coplanar interdigital capacitive sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yunzhi; Zhan, Zheng; Bowler, Nicola

    2017-02-01

    Interdigital capacitive sensors are applied in nondestructive testing and material property characterization of low-conductivity materials. The sensor performance is typically described based on the penetration depth of the electric field into the sample material, the sensor signal strength and its sensitivity. These factors all depend on the geometry and material properties of the sensor and sample. In this paper, a detailed analysis is provided, through finite element simulations, of the ways in which the sensor's geometrical parameters affect its performance. The geometrical parameters include the number of digits forming the interdigital electrodes and the ratio of digit width to their separation. In addition, the influence of the presence or absence of a metal backplane on the sample is analyzed. Further, the effects of sensor substrate thickness and material on signal strength are studied. The results of the analysis show that it is necessary to take into account a trade-off between the desired sensitivity and penetration depth when designing the sensor. Parametric equations are presented to assist the sensor designer or nondestructive evaluation specialist in optimizing the design of a capacitive sensor.

  7. Active shunt capacitance cancelling oscillator circuit

    DOEpatents

    Wessendorf, Kurt O.

    2003-09-23

    An oscillator circuit is disclosed which can be used to produce oscillation using a piezoelectric crystal, with a frequency of oscillation being largely independent of any shunt capacitance associated with the crystal (i.e. due to electrodes on the surfaces of the crystal and due to packaging and wiring for the crystal). The oscillator circuit is based on a tuned gain stage which operates the crystal at a frequency, f, near a series resonance frequency, f.sub.S. The oscillator circuit further includes a compensation circuit that supplies all the ac current flow through the shunt resistance associated with the crystal so that this ac current need not be supplied by the tuned gain stage. The compensation circuit uses a current mirror to provide the ac current flow based on the current flow through a reference capacitor that is equivalent to the shunt capacitance associated with the crystal. The oscillator circuit has applications for driving piezoelectric crystals for sensing of viscous, fluid or solid media by detecting a change in the frequency of oscillation of the crystal and a resonator loss which occur from contact of an exposed surface of the crystal by the viscous, fluid or solid media.

  8. A capacitive electrode with fast recovery feature.

    PubMed

    Spinelli, Enrique; Haberman, Marcelo; García, Pablo; Guerrero, Federico

    2012-08-01

    Capacitive electrodes (CEs) allow for acquiring biopotentials without galvanic contact, avoiding skin preparation and the use of electrolytic gel. The signal quality provided by present CEs is similar to that of standard wet electrodes, but they are more sensitive to electrostatic charge interference and motion artifacts, mainly when biopotentials are picked up through clothing and coupling capacitances are reduced to tens of picofarads. When artifacts are large enough to saturate the preamplifier, several seconds (up to tens) are needed to recover a proper baseline level, and during this period biopotential signals are irremediably lost. To reduce this problem, a CE that includes a fast-recovery (FR) circuit is proposed. It works directly on the coupling capacitor, recovering the amplifier from saturation while preserving ultra-high input impedance, as a CE requires. A prototype was built and tested acquiring ECG signals. Several experimental data are presented, which show that the proposed circuit significantly reduces record segment losses due to amplifier saturation when working in real environments.

  9. Kinetic simulations of magnetized capacitively coupled discharges

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Shihab, Mohammed; Eremin, Denis; Brinkmann, Ralf Peter; Schulze, Julian; Mussenbrock, Thomas

    2012-10-01

    Capacitive high frequency discharges are of crucial importance in the context of plasma etching, deposition and surface modification. As these single or multiple frequency discharges are oftentimes operated at low pressures of less than a few pascal, a high plasma density is commonly achieved with the use of external magnetic fields. In this work kinetic simulations are used to investigate the effect of inhomogeneous external magnetic fields on the discharge dynamics in a strongly nonlocal pressure regime. We found that capacitively coupled discharges can be largely asymmetrized by applying strong magnetic fields in front of a given target electrode. This not only has an effect on the plasma density, but also on the ion energy distribution functions (IEDF) at the electrodes and on the acceleration of fast electrons in the plasma sheath regions. In consequence in the discharge currents a generation of higher harmonics of the driving frequency can be observed. We investigate these scenarios in terms of 1D-3V Particle in Cell simulations.

  10. Gestion des ressources hydriques adaptee aux changements climatiques pour la production optimale d'hydroelectricite. Etude de cas: Bassin versant de la riviere Manicouagan

    NASA Astrophysics Data System (ADS)

    Haguma, Didier

    deversements non productibles dans le climat futur. Des strategies d'adaptation structurale ont ete analysees pour augmenter la capacite de production et la capacite d'ecoulement de certaines centrales hydroelectriques afin d'ameliorer la performance du systeme. Une analyse economique a permis de choisir les meilleures mesures d'adaptation et de determiner le moment opportun pour la mise en oeuvre de ces mesures. Les resultats de la recherche offrent aux gestionnaires des systemes hydriques un outil qui permet de mieux anticiper les consequences des changements climatiques sur la production hydroelectrique, incluant le rendement de centrales, les deversements non productibles et le moment le plus opportun pour inclure des modifications aux systemes hydriques. Mots-cles : systemes hydriques, adaptation aux changements climatiques, riviere Manicouagan

  11. Integration et evaluation de capacites interactives d'un robot humanoide

    NASA Astrophysics Data System (ADS)

    Rosseau, Vincent

    Le domaine de l'Interaction Humain-Robot (HRI) est en pleine expansion. En effet, de. plus en plus de plateformes robotiques sont mises en œuvre pour faire évoluer ce domaine. Sur ces plateformes, toujours plus de modalités d'interaction sont mises en place telles que les mouvements corporels, la reconnaissance de gestes ou d'objets, la reconnaissance et la synthèse vocale ou encore la mobilité, pour pouvoir effectuer l'interaction la plus complète et la plus naturelle pour l'humain. Mais ceci amène aussi une complexité croissante de l'intégration de ces modalités sur une seule et même plateforme. Aussi, le domaine HRI étant à ses débuts, la méthodologie expérimentale des travaux se limite le plus souvent à des preuves de concept éprouvées en laboratoire ou en milieux ouverts non contrôlés. Il se trouve que peu de chercheurs présentent une démarche structurée et rigoureuse pour l'évaluation expérimentale d'interaction humain-robot en milieux ouverts, et il en résulte des recherches de types exploratoires qui examinent principalement la complexité technologique des modalités interactives à mettre en œuvre, et non l'impact de ces modalités sur la qualité des interactions. Le but de l'étude présentée dans ce document est d'étudier l'intégration de plusieurs modalités interactives sur un robot mobile humanoïde telles que la parole, les gestes et la mobilité sur la qualité des interactions humain-robot. Plus spécifiquement, le contexte de l'étude consiste à examiner l'impact de modalités interactives sur la capacité du robot à attirer l'attention d'une personne et à engager une interaction avec elle. Le scénario expérimental consiste à permettre au robot, à partir de la parole, d'expressions faciales, de mouvement de la tête, de gestes avec son bras et de sa mobilité, de demander de l'assistance à une personne à proximité de lui remettre un objet se trouvant au sol. L'hypothèse sous-jacente est que l

  12. Des ballons pour demain

    NASA Astrophysics Data System (ADS)

    Régipa, R.

    A partir d'une théorie sur la détermination des formes et des contraintes globales d'un ballon de révolution, ou s'en rapprochant, une nouvelle famille de ballons a été définie. Les ballons actuels, dits de ``forme naturelle'', sont calculés en général pour une tension circonférencielle nulle. Ainsi, pour une mission donnée, la tension longitudinale et la forme de l'enveloppe sont strictement imposées. Les ballons de la nouvelle génération sont globalement cylindriques et leurs pôles sont réunis par un câble axial, chargé de transmettre une partie des efforts depuis le crochet (pôle inférieur), directement au pôle supérieur. De plus, la zone latérale cylindrique est soumise à un faible champ de tensions circonférencielles. Ainsi, deux paramètres permettent de faire évoluer la distribution des tensions et la forme de l'enveloppe: - la tension du câble de liaison entre pôles (ou la longueur de ce câble) - la tension circonférencielle moyenne désirée (ou le rayon du ballon). On peut donc calculer et réaliser: - soit des ballons de forme adaptée, comme les ballons à fond plat pour le bon fonctionnement des montgolfières infrarouge (projet MIR); - soit des ballons optimisés pour une bonne répartition des contraintes et une meilleure utilisation des matériaux d'enveloppe, pour l'ensemble des programmes stratosphériques. Il s'ensuit une économie sensible des coûts de fabrication, une fiabilité accrue du fonctionnement de ces ballons et une rendement opérationnel bien supérieur, permettant entre autres, d'envisager des vols à très haute altitude en matériaux très légers.

  13. Etude par émission acoustique de la dynamique des dislocations pendant la déformation cyclique de polycristaux d'aluminium

    NASA Astrophysics Data System (ADS)

    Slimani, A.; Fleischmann, P.; Fougères, R.

    1992-06-01

    The cyclic plasticity of 5N polycrystalline aluminium have been studied at room temperature by measuring the continuous acoustic emission (A.E.) due to dislocations movements in the metal. In this study, original data have been obtained in the understanding of continuous A.E. sources. In comparison with classical interpretation given in the literature, the fact that dislocations are arranged according to a dislocation cell structure from the first cycle has been included in the analysis of the results. From this, it has been shown that the amplitude of the A.E. signal is not directly connected with the plastic strain rate prescribed to the fatigue sample and that the probability density function of dislocation loops created during the cycling can be determined. La plasticité cyclique de l'AI 5N polycristallin a été étudiée à la température ambiante à partir de mesures d'émission acoustique continue (E.A.). L'application de la technique de l'E.A. nous a permis d'obtenir des données originales quant aux mécanismes sources d'E.A. Par rapport aux interprétations classiques de la littérature, nous avons fait intervenir le fait que, dès les premiers cycles, une structure cellulaire de dislocations est établie. Nous montrons que l'amplitude du signal d'E.A. n'est plus liée directement à la vitesse de déformation plastique macroscopique. A partir de cette donnée, l'analyse des résultats d'E.A. permet d'obtenir des informations sur la fonction distribution des boucles de dislocations créées au cours de la déformation cyclique.

  14. Capacitive bioanodes enable renewable energy storage in microbial fuel cells.

    PubMed

    Deeke, Alexandra; Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N

    2012-03-20

    We developed an integrated system for storage of renewable electricity in a microbial fuel cell (MFC). The system contained a capacitive electrode that was inserted into the anodic compartment of an MFC to form a capacitive bioanode. This capacitive bioanode was compared with a noncapacitive bioanode on the basis of performance and storage capacity. The performance and storage capacity were investigated during polarization curves and charge-discharge experiments. During polarization curves the capacitive electrode reached a maximum current density of 1.02 ± 0.04 A/m(2), whereas the noncapacitive electrode reached a current density output of only 0.79 ± 0.03 A/m(2). During the charge-discharge experiment with 5 min of charging and 20 min of discharging, the capacitive electrode was able to store a total of 22,831 C/m(2), whereas the noncapacitive electrode was only able to store 12,195 C/m(2). Regarding the charge recovery of each electrode, the capacitive electrode was able to recover 52.9% more charge during each charge-discharge experiment compared with the noncapacitive electrode. The capacitive electrode outperformed the noncapacitive electrode throughout each charge-discharge experiment. With a capacitive electrode it is possible to use the MFC simultaneously for production and storage of renewable electricity.

  15. Nanoscale capacitance: A quantum tight-binding model

    NASA Astrophysics Data System (ADS)

    Zhai, Feng; Wu, Jian; Li, Yang; Lu, Jun-Qiang

    2017-01-01

    Landauer-Buttiker formalism with the assumption of semi-infinite electrodes as reservoirs has been the standard approach in modeling steady electron transport through nanoscale devices. However, modeling dynamic electron transport properties, especially nanoscale capacitance, is a challenging problem because of dynamic contributions from electrodes, which is neglectable in modeling macroscopic capacitance and mesoscopic conductance. We implement a self-consistent quantum tight-binding model to calculate capacitance of a nano-gap system consisting of an electrode capacitance C‧ and an effective capacitance Cd of the middle device. From the calculations on a nano-gap made of carbon nanotube with a buckyball therein, we show that when the electrode length increases, the electrode capacitance C‧ moves up while the effective capacitance Cd converges to a value which is much smaller than the electrode capacitance C‧. Our results reveal the importance of electrodes in modeling nanoscale ac circuits, and indicate that the concepts of semi-infinite electrodes and reservoirs well-accepted in the steady electron transport theory may be not applicable in modeling dynamic transport properties.

  16. Large Capacitance Measurement by Multiple Uses of MBL Charge Sensor

    ERIC Educational Resources Information Center

    Lee, Jung Sook; Chae, Min; Kim, Jung Bog

    2010-01-01

    A recent article by Morse described interesting electrostatics experiments using an MBL charge sensor. In this application, the charge sensor has a large capacitance compared to the charged test object, so nearly all charges can be transferred to the sensor capacitor from the capacitor to be measured. However, the typical capacitance of commercial…

  17. Effect of estrogens on boar sperm capacitation in vitro

    PubMed Central

    2010-01-01

    Background Mammalian sperm must undergo a series of controlled molecular processes in the female reproductive tract called capacitation before they are capable of penetrating and fertilizing the egg. Capacitation, as a complex biological process, is influenced by many molecular factors, among which steroidal hormone estrogens play their role. Estrogens, present in a high concentration in the female reproductive tract are generally considered as primarily female hormones. However, there is increasing evidence of their important impact on male reproductive parameters. The purpose of this study is to investigate the effect of three natural estrogens such as estrone (E1), 17beta-estradiol (E2) and estriol (E3) as well as the synthetical one, 17alpha-ethynylestradiol (EE2) on boar sperm capacitation in vitro. Methods Boar sperm were capacitated in vitro in presence of estrogens. Capacitation progress in control and experimental samples was analyzed by flow cytometry with the anti-acrosin monoclonal antibody (ACR.2) at selected times of incubation. Sperm samples were analyzed at 120 min of capacitation by CTC (chlortetracycline) assay, immunocytochemistry and flow cytometry with anti-acrosin ACR.2 antibody. Furthermore, sperm samples and capacitating media were analyzed by immunocytochemistry, ELISA with the ACR.2 antibody, and the acrosin activity assay after induced acrosomal reaction (AR). Results Estrogens stimulate sperm capacitation of boar sperm collected from different individuals. The stimulatory effect depends on capacitation time and is highly influenced by differences in the response to estrogens such as E2 by individual animals. Individual estrogens have relatively same effect on capacitation progress. In the boar samples with high estrogen responsiveness, estrogens stimulate the capacitation progress in a concentration-dependent manner. Furthermore, estrogens significantly increase the number of acrosome-reacted sperm after zona pellucida- induced acrosomal

  18. Shape recognition for capacitive touch display

    NASA Astrophysics Data System (ADS)

    Guarneri, I.; Capra, A.; Farinella, G. M.; Battiato, S.

    2013-03-01

    In this paper we present a technique to classify five common classes of shapes acquired with a capacitive touch display: finger, ear, cheek, hand hold, half ear-half cheek. The need of algorithms able to discriminate among the aforementioned shapes comes from the growing diffusion of touch screen based consumer devices (e.g. smartphones, tablet, etc.). In this context, detection and the recognition of fingers are fundamental tasks in many touch based user applications (e.g., mobile games). Shape recognition algorithms are also extremely useful to identify accidental touches in order to avoid involuntary activation of the device functionalities (e.g., accidental calls). Our solution makes use of simple descriptors designed to capture discriminative information of the considered classes of shapes. The recognition is performed through a decision tree based approach whose parameters are learned on a set of labeled samples. Experimental results demonstrate that the proposed solution achieves good recognition accuracy.

  19. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, J.W.

    1991-09-10

    Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

  20. Creatinine Diffusion Modeling in Capacitive Sensors

    NASA Astrophysics Data System (ADS)

    Mohabbati-Kalejahi, Elham; Azimirad, Vahid; Bahrami, Manouchehr

    2016-12-01

    In this paper, creatinine diffusion in capacitive sensors is discussed. The factors influencing the response time of creatinine biosensors are mathematically formulated and then three novel approaches for decreasing the response time are presented. At first, a piezoelectric actuator is used to vibrate the microtube that contains the blood sample, in order to reduce the viscosity of blood, and thus to increase the coefficient of diffusion. Then, the blood sample is assumed to be pushed through a porous medium, and the relevant conditions are investigated. Finally, the effect of the dentate shape of dielectric on response time is studied. The algorithms and the mathematical models are presented and discussed, and the results of simulations are illustrated. The response times for the first, second and third method are 60, 0.036 and about 31 s, respectively. It is also found that pumping results in very fast responses.

  1. Capacitance multiplier and filter synthesizing network

    NASA Technical Reports Server (NTRS)

    Kline, A. J. (Inventor)

    1974-01-01

    A circuit using a differential amplifier multiplies the capacitance of a discrete interating capacitor by (r sub 1 + R sub 2)/R sub 2, where R sub 1 and R sub 2 are values of discrete resistor coupling an input signal e sub 1 of the amplifier inputs. The output e sub 0 of the amplifier is fed back and added to the signal coupled by the resistor R sub 2 to the amplifier through a resistor of value R sub 1. A discrete resistor R sub x may be connected in series for a lag filter, and a discrete resistor may be connected in series with the capacitor for a lead-lag filter. Voltage dividing resistors R sub a and R sub b may be included in the feedback circuit of the amplifier output e sub o to independently adjust the circuit gain e sub i/e sub o.

  2. Fund allocation using capacitated vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita; Darus, Maslina

    2014-09-01

    In investment fund allocation, it is unwise for an investor to distribute his fund into several assets simultaneously due to economic reasons. One solution is to allocate the fund into a particular asset at a time in a sequence that will either maximize returns or minimize risks depending on the investor's objective. The vehicle routing problem (VRP) provides an avenue to this issue. VRP answers the question on how to efficiently use the available fleet of vehicles to meet a given service demand, subjected to a set of operational requirements. This paper proposes an idea of using capacitated vehicle routing problem (CVRP) to optimize investment fund allocation by employing data of selected stocks in the FTSE Bursa Malaysia. Results suggest that CRVP can be applied to solve the issue of investment fund allocation and increase the investor's profit.

  3. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.

  4. Rf capacitively-coupled electrodeless light source

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.; Fugitt, Jock A.

    2000-01-01

    An rf capacitively-coupled electrodeless light source is provided. The light source comprises a hollow, elongated chamber and at least one center conductor disposed within the hollow, elongated chamber. A portion of each center conductor extends beyond the hollow, elongated chamber. At least one gas capable of forming an electronically excited molecular state is contained within each center conductor. An electrical coupler is positioned concentric to the hollow, elongated chamber and the electrical coupler surrounds the portion of each center conductor that extends beyond the hollow, elongated chamber. A rf-power supply is positioned in an operable relationship to the electrical coupler and an impedance matching network is positioned in an operable relationship to the rf power supply and the electrical coupler.

  5. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    SciTech Connect

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-02

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  6. A method for measuring low capacitance for tomography

    NASA Astrophysics Data System (ADS)

    Shao, FuQun; Mong, QinGuo

    1999-07-01

    The applications of electrical capacitance tomography (ECT) to image multiphase flows in pipelines, fluidization process, interfaces in separation vessels, and combustion phenomena in internal combustion engines have been studied for some years. In these applications, none of the equipment imaged has an inner diameter exceeding 1 m. When ECT techniques for large industrial equipment like blast furnaces are explored, the existing methods for measuring low capacitance have some limitations. This article proposes a method for measuring low capacitance which is suitable to construct ECT systems for imaging large industrial equipment. The method is based on single high-voltage excitation and magnetic C/V converting principle which can resist interference by stray capacitance. Experiment results indicated that the method has good performance in regard to resolution, linearity, and stability. Though the method was designed for imaging large equipment, it can also be applicable to other fields where low capacitance measurements are required.

  7. Quantum and tunneling capacitance in charge and spin qubits

    NASA Astrophysics Data System (ADS)

    Mizuta, R.; Otxoa, R. M.; Betz, A. C.; Gonzalez-Zalba, M. F.

    2017-01-01

    We present a theoretical analysis of the capacitance of a double quantum dot in the charge and spin qubit configurations probed at high frequencies. We find that, in general, the total capacitance of the system consists of two state-dependent terms: the quantum capacitance arising from adiabatic charge motion and the tunneling capacitance that appears when repopulation occurs at a rate comparable or faster than the probing frequency. The analysis of the capacitance lineshape as a function of externally controllable variables offers a way to characterize the qubits' charge and spin state as well as relevant system parameters such as charge and spin relaxation rates, tunnel coupling, electron temperature, and electron g factor. Overall, our analysis provides a formalism to understand dispersive qubit-resonator interactions which can be applied to high-sensitivity and noninvasive quantum-state readout.

  8. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  9. Biasing of Capacitive Micromachined Ultrasonic Transducers.

    PubMed

    Caliano, Giosue; Matrone, Giulia; Savoia, Alessandro Stuart

    2017-02-01

    Capacitive micromachined ultrasonic transducers (CMUTs) represent an effective alternative to piezoelectric transducers for medical ultrasound imaging applications. They are microelectromechanical devices fabricated using silicon micromachining techniques, developed in the last two decades in many laboratories. The interest for this novel transducer technology relies on its full compatibility with standard integrated circuit technology that makes it possible to integrate on the same chip the transducers and the electronics, thus enabling the realization of extremely low-cost and high-performance devices, including both 1-D or 2-D arrays. Being capacitive transducers, CMUTs require a high bias voltage to be properly operated in pulse-echo imaging applications. The typical bias supply residual ripple of high-quality high-voltage (HV) generators is in the millivolt range, which is comparable with the amplitude of the received echo signals, and it is particularly difficult to minimize. The aim of this paper is to analyze the classical CMUT biasing circuits, highlighting the features of each one, and to propose two novel HV generator architectures optimized for CMUT biasing applications. The first circuit proposed is an ultralow-residual ripple (<5 [Formula: see text]) HV generator that uses an extremely stable sinusoidal power oscillator topology. The second circuit employs a commercially available integrated step-up converter characterized by a particularly efficient switching topology. The circuit is used to bias the CMUT by charging a buffer capacitor synchronously with the pulsing sequence, thus reducing the impact of the switching noise on the received echo signals. The small area of the circuit (about 1.5 cm(2)) makes it possible to generate the bias voltage inside the probe, very close to the CMUT, making the proposed solution attractive for portable applications. Measurements and experiments are shown to demonstrate the effectiveness of the new approaches

  10. The hysteresis-free negative capacitance field effect transistors using non-linear poly capacitance

    NASA Astrophysics Data System (ADS)

    Fan, S.-T.; Yan, J.-Y.; Lai, D.-C.; Liu, C. W.

    2016-08-01

    A gate structure design for negative capacitance field effect transistors (NCFETs) is proposed. The hysteresis loop in current-voltage performances is eliminated by the nonlinear C-V dependence of polysilicon in the gate dielectrics. Design considerations and optimizations to achieve the low SS and hysteresis-free transfer were elaborated. The effects of gate-to-source/drain overlap, channel length scaling, interface trap states and temperature impact on SS are also investigated.

  11. Maladie des vibrations

    PubMed Central

    Shen, Shixin (Cindy); House, Ronald A.

    2017-01-01

    Résumé Objectif Permettre aux médecins de famille de comprendre l’épidémiologie, la pathogenèse, les symptômes, le diagnostic et la prise en charge de la maladie des vibrations, une maladie professionnelle importante et courante au Canada. Sources d’information Une recherche a été effectuée sur MEDLINE afin de relever les recherches et comptes rendus portant sur la maladie des vibrations. Une recherche a été effectuée sur Google dans le but d’obtenir la littérature grise qui convient au contexte canadien. D’autres références ont été tirées des articles relevés. Message principal La maladie des vibrations est une maladie professionnelle répandue touchant les travailleurs de diverses industries qui utilisent des outils vibrants. La maladie est cependant sous-diagnostiquée au Canada. Elle compte 3 éléments : vasculaire, sous la forme d’un phénomène de Raynaud secondaire; neurosensoriel; et musculosquelettique. Aux stades les plus avancés, la maladie des vibrations entraîne une invalidité importante et une piètre qualité de vie. Son diagnostic exige une anamnèse minutieuse, en particulier des antécédents professionnels, un examen physique, des analyses de laboratoire afin d’éliminer les autres diagnostics, et la recommandation en médecine du travail aux fins d’investigations plus poussées. La prise en charge consiste à réduire l’exposition aux vibrations, éviter les températures froides, abandonner le tabac et administrer des médicaments. Conclusion Pour assurer un diagnostic rapide de la maladie des vibrations et améliorer le pronostic et la qualité de vie, les médecins de famille devraient connaître cette maladie professionnelle courante, et pouvoir obtenir les détails pertinents durant l’anamnèse, recommander les patients aux cliniques de médecine du travail et débuter les demandes d’indemnisation de manière appropriée. PMID:28292812

  12. Complex Capacitance Scaling in Ionic Liquids-filled Nanopores

    SciTech Connect

    Qiao, Rui; Huang, Jingsong; Meunier, Vincent; Sumpter, Bobby G; Peng, Wu

    2011-01-01

    Recent experiments have shown that the capacitance of sub-nanometer pores increases anomalously as the pore width decreases, thereby opening a new avenue for developing supercapacitors with enhanced energy density. However, this behavior is still subject to some controversy since its physical origins are not well understood. Using atomistic simulations, we show that the capacitance of slit-shaped nanopores in contact with room-temperature ionic liquids exhibits a U-shaped scaling behavior in pores with width from 0.75 to 1.26 nm. The left branch of the capacitance scaling curve directly corresponds to the anomalous capacitance increase and thus reproduces the experimental observations. The right branch of the curve indirectly agrees with experimental findings that so far have received little attention. The overall U-shaped scaling behavior provides insights on the origins of the difficulty in experimentally observing the pore-width dependent capacitance. We establish a theoretical framework for understanding the capacitance of electrical double layers in nanopores and provide mechanistic details into the origins of the observed scaling behavior. The framework highlights the critical role of ion solvation in controlling pore capacitance and the importance of choosing anion/cation couples carefully for optimal energy storage in a given pore system.

  13. Capacitance-level/density monitor for fluidized-bed combustor

    DOEpatents

    Fasching, George E.; Utt, Carroll E.

    1982-01-01

    A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).

  14. Computational insight into the capacitive performance of graphene edge planes

    DOE PAGES

    Zhan, Cheng; Zhang, Yu; Cummings, Peter T.; ...

    2017-02-01

    Recent experiments have shown that electric double-layer capacitors utilizing electrodes consisting of graphene edge plane exhibit higher capacitance than graphene basal plane. However, theoretical understanding of this capacitance enhancement is still limited. Here we applied a self-consistent joint density functional theory calculation on the electrode/electrolyte interface and found that the capacitance of graphene edge plane depends on the edge type: zigzag edge has higher capacitance than armchair edge due to the difference in their electronic structures. We further examined the quantum, dielectric, and electric double-layer (EDL) contributions to the total capacitance of the edge-plane electrodes. Classical molecular dynamics simulation foundmore » that the edge planes have higher EDL capacitance than the basal plane due to better adsorption of counter-ions and higher solvent accessible surface area. Finally, our work therefore has elucidated the capacitive energy storage in graphene edge planes that take into account both the electrode's electronic structure and the EDL structure.« less

  15. Four-point characterization using capacitive and ohmic contacts

    NASA Astrophysics Data System (ADS)

    Zhou, Wang; Kim, Brian; Shah, Yash; Zhou, Chuanle; Grayson, Matthew; Işik, Nebile

    2012-02-01

    A four-point characterization method is developed for semiconductor samples that have either capacitive or ohmic contacts. When capacitive contacts are used, capacitive current- and voltage-dividers result in a capacitive scaling factor which is not present in four-point measurements with only ohmic contacts. Both lock-in amplifier and pre-amplifier are used to measure low-noise response over a wide frequency range from 1 Hz -- 100 kHz. From a circuit equivalent of the complete measurement system after carefully being modeled, both the measurement frequency band and capacitive scaling factor can be determined for various four-point characterization configurations. This technique is first demonstrated with a discrete element four-point test device and then with a capacitively and ohmically contacted Hall bar sample using lock-in measurement techniques. In all cases, data fit well to a circuit simulation of the entire measurement system over the whole frequency range of interest, and best results are achieved with large area capacitive contacts and a high input-impedance preamplifier stage. Results of samples (substrates grown by Max Bichler Dieter Schuh, and Frank Fischer of the WSI) measured in the QHE regime in magnetic fields up to 15 T at temperatures down to 1.5 K will also be shown.

  16. Correcting For Capacitance In Tests Of Solar Cells

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L.

    1995-01-01

    Modified procedure for testing solar photovoltaic cells and modified software for processing test data provide corrections for effects of cell capacitance. Procedure and software needed because (a) some photovoltaic devices (for example, silicon solar cells with back-surface field region) store minority charge carriers in cell junction and thus exhibit significant capacitance, (b) capacitance affects current-vs.-voltage (I-V) measurements made when transient load connected to cell, and (c) transient load used in unmodified version of test procedure. Corrected I-V curve obtained in test of solar cell according to modified procedure approximates true cell voltage vs. cell current more closely.

  17. Measurement of the sheath capacitance of a planar probe

    SciTech Connect

    Oh, Se-Jin; Lee, Young-Kwang; Chung, Chin-Wook

    2011-10-15

    The sheath capacitance was measured on a planar probe dc-biased with respect to the plasma potential using the phase sensitive detection method in the region separated from the rf discharge plasmas by an immersed grid. It was observed that the sheath capacitance was negative when the collecting electrode of the probe was positioned downward toward the grid and biased near the plasma potential. This indicates that a double sheath had built up near the probe electrode. This tendency can be explained by the sheath capacitance, which is calculated using Poisson's equation with a non-zero electrical field and an ion velocity condition at the sheath edge.

  18. Des Vents et des Jets Astrophysiques

    NASA Astrophysics Data System (ADS)

    Sauty, C.

    well expected result from the theory. Although, collimation may be conical, paraboloidal or cylindrical (Part 4), cylindrical collimation is the more likely to occur. The shape of outflows may then be used as a tool to predict physical conditions on the flows or on their source. L'éjection continue de plasma autour d'objets massifs est un phénomène largement répandu en astrophysique, que ce soit sous la forme du vent solaire, de vents stellaires, de jets d'étoiles en formation, de jets stellaires autour d'objets compacts ou de jets extra-galactiques. Cette zoologie diversifiée fait pourtant l'objet d'un commun effort de modélisation. Le but de cette revue est d'abord de présenter qualitativement le développement, depuis leur origine, des diverses théories de vents (Partie 1) et l'inter disciplinarité dans ce domaine. Il s'agit d'une énumération, plus ou moins exhaustive, des idées proposées pour expliquer l'accélération et la morphologie des vents et des jets, accompagnée d'une présentation sommaire des aspects observationnels. Cette partie s'abstient de tout aspect faisant appel au formalisme mathématique. Ces écoulements peuvent être décrits, au moins partiellement, en résolvant les équations magnétohydrodynamiques, axisymétriques et stationnaires. Ce formalisme, à la base de la plupart des théories, est exposé dans la Partie 2. Il permet d'introduire quantitativement les intégrales premières qu'un tel système possède. Ces dernières sont amenées à jouer un rôle important dans la compréhension des phénomènes d'accélération ou de collimation, en particulier le taux de perte de masse, le taux de perte de moment angulaire ou l'énergie du rotateur magnétique. La difficulté de modélisation réside dans l'existence de points critiques, propres aux équations non linéaires, qu'il faut franchir. La nature physique et la localisation de ces points critiques fait l'objet d'un débat important car ils sont la clef de voute de la r

  19. Les reseaux de politique publique comme facteur d'influence du choix des instruments de politique energetique canadienne a des fins environnementales de 1993 a nos jours

    NASA Astrophysics Data System (ADS)

    Fathy El Dessouky, Naglaa

    Au cours de la derniere decennie, les modes de la gouvernance ont pris place dans un contexte totalement different de celui qu'ils avaient auparavant. Les gouvernements modernes se rendent compte qu'ils perdent de plus en plus leur capacite a elaborer et a gerer les changements d'une maniere autonome. Ainsi, les fonctions et les activites traditionnellement accomplies exclusivement par le gouvernement engagent de nos jours une gamme d'acteurs etatiques et non etatiques. A l'encontre du concept traditionnel de l'Etat controleur, la gouvernance contemporaine est ainsi devenue moins une question d'offre de service et davantage une gestion indirecte des reseaux de politique publique. Dans cette entreprise, les gouvernements contemporains, cherchant plus d'information, de soutien et de legitimite en matiere de formulation des decisions, ont besoin d'etablir des relations avec les divers groupes d'interet qui, a leur tour, voulaient plus de promotion et de protection en faveur de leurs interets a travers leur implication au processus de l'elaboration et de la mise en oeuvre des politiques publiques. Ainsi, l'approche des reseaux de politique publique represente aujourd'hui un courant considerable au sein du champ d'analyse des politiques publiques. Toutefois, les preoccupations des chercheurs pour cette approche, dans le domaine des politiques energetiques a des fins environnementales, semblent recentes, et les etudes realisees sont encore trop peu nombreuses. Au Canada, au debut des annees 1990, le gouvernement ainsi que plusieurs groupes d'interets, des differents secteurs energetique, industriel et environnemental, ont commence a intensifier leurs efforts pour s'attaquer au probleme du changement climatique d'origine energetique, genere surtout par le secteur de l'industrie. Au cours de la derniere decennie, la question touchant plutot le sujet du developpement energetique durable represente le plus important domaine des politiques publiques ayant surgi recemment dans

  20. Design Considerations in Capacitively Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Song, Sang-Heon; Ventzek, Peter; Ranjan, Alok

    2015-11-01

    Microelectronics industry has driven transistor feature size scaling from 10-6 m to 10-9 m during the past 50 years, which is often referred to as Moore's law. It cannot be overstated that today's information technology would not have been so successful without plasma material processing. One of the major plasma sources for the microelectronics fabrication is capacitively coupled plasmas (CCPs). The CCP reactor has been intensively studied and developed for the deposition and etching of different films on the silicon wafer. As the feature size gets to around 10 nm, the requirement for the process uniformity is less than 1-2 nm across the wafer (300 mm). In order to achieve the desired uniformity, the hardware design should be as precise as possible before the fine tuning of process condition is applied to make it even better. In doing this procedure, the computer simulation can save a significant amount of resources such as time and money which are critical in the semiconductor business. In this presentation, we compare plasma properties using a 2-dimensional plasma hydrodynamics model for different kinds of design factors that can affect the plasma uniformity. The parameters studied in this presentation include chamber accessing port, pumping port, focus ring around wafer substrate, and the geometry of electrodes of CCP.

  1. Acoustic lens for capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Chang, Chienliu; Firouzi, Kamyar; Park, Kwan Kyu; Sarioglu, Ali Fatih; Nikoozadeh, Amin; Yoon, Hyo-Seon; Vaithilingam, Srikant; Carver, Thomas; Khuri-Yakub, Butrus T.

    2014-08-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with traditional piezoelectric transducers in therapeutic ultrasound applications. In this paper we have designed, fabricated and developed an acoustic lens formed on the CMUT to mechanically focus ultrasound. The acoustic lens was designed based on the paraxial theory and made of silicone rubber for acoustic impedance matching and encapsulation. The CMUT was fabricated based on the local oxidation of silicon (LOCOS) and fusion-bonding. The fabricated CMUT was verified to behave like an electromechanical resonator in air and exhibited wideband response with a center frequency of 2.2 MHz in immersion. The fabrication for the acoustic lens contained two consecutive mold castings and directly formed on the surface of the CMUT. Applied with ac burst input voltages at the center frequency, the CMUT with the acoustic lens generated an output pressure of 1.89 MPa (peak-to-peak) at the focal point with an effective focal gain of 3.43 in immersion. Compared to the same CMUT without a lens, the CMUT with the acoustic lens demonstrated the ability to successfully focus ultrasound and provided a viable solution to the miniaturization of the multi-modality forward-looking endoscopes without electrical focusing.

  2. Systematic interpretation of differential capacitance data

    NASA Astrophysics Data System (ADS)

    Gavish, Nir; Promislow, Keith

    2015-07-01

    Differential capacitance (DC) data have been widely used to characterize the structure of electrolyte solutions near charged interfaces and as experimental validation of models for electrolyte structure. Fixing a large class of models of electrolyte free energy that incorporate finite-volume effects, a reduction is identified which permits the identification of all free energies within that class that return identical DC data. The result is an interpretation of DC data through the equivalence classes of nonideality terms, and associated boundary layer structures, that cannot be differentiated by DC data. Specifically, for binary salts, DC data, even if measured over a range of ionic concentrations, are unable to distinguish among models which exhibit charge asymmetry, charge reversal, and even ion crowding. The reduction applies to capacitors which are much wider than the associated Debye length and to finite-volume terms that are algebraic in charge density. However, within these restrictions the free energy is shown to be uniquely identified if the DC data are supplemented with measurements of the excess chemical potential of the system in the bulk state.

  3. Capacitance Probe Resonator for Multichannel Electrometer

    NASA Technical Reports Server (NTRS)

    Blaes, Brent R.; Schaefer, Rembrandt T> ; Glaser, Robert J.

    2012-01-01

    A multichannel electrometer voltmeter has been developed that employs a mechanical resonator with voltage-sensing capacitance-probe electrodes that enable high-impedance, high-voltage, radiation-hardened measurement of an Internal Electrostatic Discharge Monitor (IESDM) sensor. The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. The resonator solution relies on a non-contact, voltage-sensing, sinusoidal-varying capacitor to achieve input impedances as high as 10 petaohms as determined by the resonator materials, geometries, cleanliness, and construction. The resonator is designed with one dominant mechanical degree of freedom, so it resonates as a simple harmonic oscillator and because of the linearity of the variable sense capacitor to displacement, generates a pure sinusoidal current signal for a fixed input voltage under measurement. This enables the use of an idealized phase-lock sensing scheme for optimal signal detection in the presence of noise.

  4. Mechano-capacitive properties of polarized membranes.

    PubMed

    Mosgaard, Lars D; Zecchi, Karis A; Heimburg, Thomas

    2015-10-28

    Biological membranes are capacitors that can be charged by applying a field across the membrane. The charges on the capacitor exert a force on the membrane that leads to electrostriction, i.e. a thinning of the membrane. Since the force is quadratic in voltage, negative and positive voltage have an identical influence on the physics of symmetric membranes. However, this is not the case for a membrane with an asymmetry leading to a permanent electric polarization. Positive and negative voltages of identical magnitude lead to different properties. Such an asymmetry can originate from a lipid composition that is different on the two monolayers of the membrane, or from membrane curvature. The latter effect is called 'flexoelectricity'. As a consequence of permanent polarization, the membrane capacitor is discharged at a voltage different from zero. This leads to interesting electrical phenomena such as outward or inward rectification of membrane permeability. Here, we introduce a generalized theoretical framework, that treats capacitance, polarization, flexoelectricity, piezoelectricity and thermoelectricity in the same language. We show applications to electrostriction, membrane permeability and piezoelectricity and thermoelectricity close to melting transitions, where such effects are especially pronounced.

  5. Quantum Capacitance of a Topological Insulator-Ferromagnet Interface

    NASA Astrophysics Data System (ADS)

    Siu, Zhuo Bin; Chowdhury, Debashree; Jalil, Mansoor B. A.; Basu, Banasri

    2017-03-01

    We study the quantum capacitance in a topological insulator thin film system magnetized in the in-plane direction in the presence of an out-of-plane magnetic field and hexagonal warping. To first order, the modification in quantum capacitance due to hexagonal warping compared to the clean case, where both the in-plane magnetization and hexagonal warping are absent, is always negative, and increases in magnitude monotonically with the energy difference from the charge neutrality point. In contrast, the change in the quantum capacitance due to in-plane magnetization oscillates with the energy in general, except when a certain relation between the inter-surface coupling, out of plane Zeeman energy splitting and magnetic field strength is satisfied. In this special case, the quantum capacitance remains unchanged by the in-plane magnetization for all energies.

  6. Enhancement of the carbon electrode capacitance by brominated hydroquinones

    NASA Astrophysics Data System (ADS)

    Gastol, Dominika; Walkowiak, Jedrzej; Fic, Krzysztof; Frackowiak, Elzbieta

    2016-09-01

    This paper presents supercapacitors utilizing new redox-active electrolytes with bromine species. Two sources of Br specimen were investigated, i.e. dibromodihydroxybenzene dissolved in KOH and potassium bromide dissolved in KOH with hydroxybenzene additive. KOH-activated carbon, exhibiting a well-developed porosity, was incorporated as an electrode material. The tested systems revealed a capacitance enhancement explained by Br- and partial BrO3- redox activity. The optimisation of the electrolyte concentration resulted in a capacitance value of 314 F g-1 achieved at 1.1 V voltage range. Good cyclability performance (11% capacitance loss) combined with a high capacitance value (244 F g-1) were obtained for the system operating in 0.2 mol L- 1 C6H4Br2O2 in 2 mol L-1 KOH electrolytic solution.

  7. Quantum Capacitance of a Topological Insulator-Ferromagnet Interface

    PubMed Central

    Siu, Zhuo Bin; Chowdhury, Debashree; Jalil, Mansoor B. A.; Basu, Banasri

    2017-01-01

    We study the quantum capacitance in a topological insulator thin film system magnetized in the in-plane direction in the presence of an out-of-plane magnetic field and hexagonal warping. To first order, the modification in quantum capacitance due to hexagonal warping compared to the clean case, where both the in-plane magnetization and hexagonal warping are absent, is always negative, and increases in magnitude monotonically with the energy difference from the charge neutrality point. In contrast, the change in the quantum capacitance due to in-plane magnetization oscillates with the energy in general, except when a certain relation between the inter-surface coupling, out of plane Zeeman energy splitting and magnetic field strength is satisfied. In this special case, the quantum capacitance remains unchanged by the in-plane magnetization for all energies. PMID:28337992

  8. Quantum Capacitance of a Topological Insulator-Ferromagnet Interface.

    PubMed

    Siu, Zhuo Bin; Chowdhury, Debashree; Jalil, Mansoor B A; Basu, Banasri

    2017-03-24

    We study the quantum capacitance in a topological insulator thin film system magnetized in the in-plane direction in the presence of an out-of-plane magnetic field and hexagonal warping. To first order, the modification in quantum capacitance due to hexagonal warping compared to the clean case, where both the in-plane magnetization and hexagonal warping are absent, is always negative, and increases in magnitude monotonically with the energy difference from the charge neutrality point. In contrast, the change in the quantum capacitance due to in-plane magnetization oscillates with the energy in general, except when a certain relation between the inter-surface coupling, out of plane Zeeman energy splitting and magnetic field strength is satisfied. In this special case, the quantum capacitance remains unchanged by the in-plane magnetization for all energies.

  9. Fringe Capacitance of a Parallel-Plate Capacitor.

    ERIC Educational Resources Information Center

    Hale, D. P.

    1978-01-01

    Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)

  10. Current Progress of Capacitive Deionization for Removal of Pollutant Ions

    NASA Astrophysics Data System (ADS)

    Gaikwad, Mahendra S.; Balomajumder, Chandrajit

    2016-08-01

    A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.

  11. The origin of grain boundary capacitance in highly doped ceria.

    PubMed

    Souza, Eduardo Caetano C; Goodenough, John B

    2016-02-17

    The origin of a grain-boundary capacitance in mixed oxide-ion/electronic conductors has been investigated for the case of Ce0.8Sm0.2O1.9-δ using a.c. impedance spectroscopy under low pO2 from 250 to 400 °C. The observed capacitance is interpreted in terms of Ce(III):4f(1) electrons first introduced into the grains and not into the grain boundaries.

  12. Isothermal Capacitance Transient Spectroscopy for Determination of Deep Level Parameters

    NASA Astrophysics Data System (ADS)

    Okushi, Hideyo; Tokumaru, Yozo

    1980-06-01

    A new measurement method for deep levels in semiconductors is proposed, by which the measurement of the transient change of capacitance is performed under an isothermal condition (Isothermal Capacitance Transient Spectroscopy). The method allows us to construct a precise measurement and analysis system by a programmable calculator. Computer simulation and experiment by the method in the case of Au-doped Si are demonstrated. It is shown that the method is one of useful tools for spectroscopic analysis of deep levels in semiconductors.

  13. Modeling high-frequency capacitance in SOI MOS capacitors

    NASA Astrophysics Data System (ADS)

    Łukasiak, Lidia; Jasiński, Jakub; Beck, Romuald B.; Ikraiam, Fawzi A.

    2016-12-01

    This paper presents a model of high frequency capacitance of a SOI MOSCAP. The capacitance in strong inversion is described with minority carrier redistribution in the inversion layer taken into account. The efficiency of the computational process is significantly improved. Moreover, it is suitable for the simulation of thin-film SOI structures. It may also be applied to the characterization of non-standard SOI MOSCAPS e.g. with nanocrystalline body.

  14. A high voltage method for measuring low capacitance for tomography.

    PubMed

    Lu, Decai; Shao, Fuqun; Guo, Zhiheng

    2009-05-01

    Low capacitance measurement is involved in many industrial applications, especially in the applications of electrical capacitance tomography (ECT). Most of the low capacitance measurement circuits employ an ac-based method or a charge/discharge method because of high sensitivity, high resolution, and immunity to stray capacitance; and its excitation or charge voltage are not more than 20 V. When ECT techniques for large industrial equipment such as blast furnaces or grain barns are explored, the existing methods for measuring low capacitance have some limitations. This paper proposes a high excitation voltage ac-based method for measuring low capacitance to improve the resolution of measurement. The method uses a high excitation voltage of several hundred volts and a transformer ratio arms as the C/V transducer. Experimental results indicate that the new method has a resolution of 0.005 fF, a good stability (about 0.003 fF over 4 h) and linearity (0.9992).

  15. Capacitance of carbon-based electrical double-layer capacitors.

    PubMed

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S

    2014-01-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  16. Capacitance of carbon-based electrical double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H.; Ruoff, Rodney S.

    2014-02-01

    Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.

  17. Uncertainty quantification in capacitive RF MEMS switches

    NASA Astrophysics Data System (ADS)

    Pax, Benjamin J.

    Development of radio frequency micro electrical-mechanical systems (RF MEMS) has led to novel approaches to implement electrical circuitry. The introduction of capacitive MEMS switches, in particular, has shown promise in low-loss, low-power devices. However, the promise of MEMS switches has not yet been completely realized. RF-MEMS switches are known to fail after only a few months of operation, and nominally similar designs show wide variability in lifetime. Modeling switch operation using nominal or as-designed parameters cannot predict the statistical spread in the number of cycles to failure, and probabilistic methods are necessary. A Bayesian framework for calibration, validation and prediction offers an integrated approach to quantifying the uncertainty in predictions of MEMS switch performance. The objective of this thesis is to use the Bayesian framework to predict the creep-related deflection of the PRISM RF-MEMS switch over several thousand hours of operation. The PRISM switch used in this thesis is the focus of research at Purdue's PRISM center, and is a capacitive contacting RF-MEMS switch. It employs a fixed-fixed nickel membrane which is electrostatically actuated by applying voltage between the membrane and a pull-down electrode. Creep plays a central role in the reliability of this switch. The focus of this thesis is on the creep model, which is calibrated against experimental data measured for a frog-leg varactor fabricated and characterized at Purdue University. Creep plasticity is modeled using plate element theory with electrostatic forces being generated using either parallel plate approximations where appropriate, or solving for the full 3D potential field. For the latter, structure-electrostatics interaction is determined through immersed boundary method. A probabilistic framework using generalized polynomial chaos (gPC) is used to create surrogate models to mitigate the costly full physics simulations, and Bayesian calibration and forward

  18. Chloride and Salicylate Influence Prestin-dependent Specific Membrane Capacitance

    PubMed Central

    Santos-Sacchi, Joseph; Song, Lei

    2014-01-01

    The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (δCsa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented δCsa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers δCsa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of δCsa, leading to a better understanding of prestin. PMID:24554714

  19. Negative capacitance for ultra-low power computing

    NASA Astrophysics Data System (ADS)

    Khan, Asif Islam

    Owing to the fundamental physics of the Boltzmann distribution, the ever-increasing power dissipation in nanoscale transistors threatens an end to the almost-four-decade-old cadence of continued performance improvement in complementary metal-oxide-semiconductor (CMOS) technology. It is now agreed that the introduction of new physics into the operation of field-effect transistors---in other words, "reinventing the transistor'"--- is required to avert such a bottleneck. In this dissertation, we present the experimental demonstration of a novel physical phenomenon, called the negative capacitance effect in ferroelectric oxides, which could dramatically reduce power dissipation in nanoscale transistors. It was theoretically proposed in 2008 that by introducing a ferroelectric negative capacitance material into the gate oxide of a metal-oxide-semiconductor field-effect transistor (MOSFET), the subthreshold slope could be reduced below the fundamental Boltzmann limit of 60 mV/dec, which, in turn, could arbitrarily lower the power supply voltage and the power dissipation. The research presented in this dissertation establishes the theoretical concept of ferroelectric negative capacitance as an experimentally verified fact. The main results presented in this dissertation are threefold. To start, we present the first direct measurement of negative capacitance in isolated, single crystalline, epitaxially grown thin film capacitors of ferroelectric Pb(Zr0.2Ti0.8)O3. By constructing a simple resistor-ferroelectric capacitor series circuit, we show that, during ferroelectric switching, the ferroelectric voltage decreases, while the stored charge in it increases, which directly shows a negative slope in the charge-voltage characteristics of a ferroelectric capacitor. Such a situation is completely opposite to what would be observed in a regular resistor-positive capacitor series circuit. This measurement could serve as a canonical test for negative capacitance in any novel

  20. Method and apparatus for measuring low currents in capacitance devices

    DOEpatents

    Kopp, M.K.; Manning, F.W.; Guerrant, G.C.

    1986-06-04

    A method and apparatus for measuring subnanoampere currents in capacitance devices is reported. The method is based on a comparison of the voltages developed across the capacitance device with that of a reference capacitor in which the current is adjusted by means of a variable current source to produce a stable voltage difference. The current varying means of the variable current source is calibrated to provide a read out of the measured current. Current gain may be provided by using a reference capacitor which is larger than the device capacitance with a corresponding increase in current supplied through the reference capacitor. The gain is then the ratio of the reference capacitance to the device capacitance. In one illustrated embodiment, the invention makes possible a new type of ionizing radiation dose-rate monitor where dose-rate is measured by discharging a reference capacitor with a variable current source at the same rate that radiation is discharging an ionization chamber. The invention eliminates high-megohm resistors and low current ammeters used in low-current measuring instruments.

  1. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    PubMed Central

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method. PMID:25133237

  2. Logarithmic derivative method and system for capacitance measurement.

    PubMed

    Wu, Yichun; Wang, Lingzhi; Cai, Yuanfeng; Wu, Cunqiao

    2015-08-01

    A novel method based on logarithmic derivative is introduced to analyze multi-lifetime decay. As the discharge voltage signal of a RC circuit is a special kind of multi-lifetime exponential decay, the logarithmic derivative method can be used to measure single capacitance and multiple capacitances. With the logarithmic derivative method, a log(t) curve strongly peaked at precisely log(τ) is obtained, where the lifetime τ equals to RC. In a measurement system, if the resistance R is known, then the capacitance under test can be calculated. A logarithmic derivative curve fitting method is also presented, which has better anti-noise capability than the method that simply finds the maximum data on the peak. The curve fitting method can also be used for multiple capacitors measurement. To measure small capacitances, a large enough time window of the measuring instrument is required. Based on a field programmable gate array and a high speed analog-to-digital converter, a measurement system is developed. This system can provide the 16-bit resolution with sampling rate up to 250 MHz, which has a large enough time window for measuring lifetime shorter than 10(-8) s. To reduce the amount of data needed to be stored and the noise due to the derivative treatment of transient data, the interpolation and noise-filter algorithms are employed. Experiments indicate that the logarithmic derivative method and system are suitable for the measurement of capacitances discharge and other exponential decay processes.

  3. Capacitance-based frequency adjustment of micro piezoelectric vibration generator.

    PubMed

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  4. Realization of Negative Capacitance with Topological Insulator Based MOS Capacitor

    NASA Astrophysics Data System (ADS)

    Yuan, Hui; Zhang, Kai; Zhu, Hao; Li, Haitao; Ioannou, Dimitris; Baumgart, Helmut; Richter, Curt; Li, Qiliang; ECE, George Mason University Team; Semiconductor and Dimensional Metrology Division of NIST Team; ECE, Old Dominion University Team

    2013-03-01

    Negative capacitance is one of way to achieve steep subthreshold slope exceeding its thermal limit in metal-oxide-semiconductor field effect transistor (MOSFET). The common materials under study for negative capacitance are ferroelectric thin films. However, the integration of regular ferroelectric materials (e.g., PZT) into semiconductor based devices is usually difficult due to the high temperature required for crystallization and precise control of oxygen percentage in ferroelectric materials. In this work, we found that negative capacitance can be achieved by introducing a topological insulator interlayer into a conventional MOS capacitor. Three-dimensional topological insulators inherently contain a insulator/semiconductor bulk and a gapless conducting surface. When an electric field is added to topological insulator interlayer, imbalanced charge carriers (electrons and holes) would be generated and then accumulate on either surface of the film, resulting in a temporary residual polarization. As a result, a ferroelectric-like hysteresis and negative capacitance are achieved. We believe this approach will be very attractive to achieve steep subthreshold using negative capacitance. Supported by NSF Career grant 0846649.

  5. Capacitance and compressibility of heterostructures with strong electronic correlations

    NASA Astrophysics Data System (ADS)

    Steffen, Kevin; Frésard, Raymond; Kopp, Thilo

    2017-01-01

    Strong electronic correlations related to a repulsive local interaction suppress the electronic compressibility in a single-band model, and the capacitance of a corresponding metallic film is directly related to its electronic compressibility. Both statements may be altered significantly when two extensions to the system are implemented which we investigate here: (i) we introduce an attractive nearest-neighbor interaction V as antagonist to the repulsive onsite repulsion U , and (ii) we consider nanostructured multilayers (heterostructures) assembled from two-dimensional layers of these systems. We determine the respective total compressibility κ and capacitance C of the heterostructures within a strong coupling evaluation, which builds on a Kotliar-Ruckenstein slave-boson technique. Whereas the capacitance C (n ) for electronic densities n close to half-filling is suppressed, illustrated by a correlation induced dip in C (n ) , it may be appreciably enhanced close to a van Hove singularity. Moreover, we show that the capacitance may be a nonmonotonic function of U close to half-filling for both attractive and repulsive V . The compressibility κ can differ from C substantially, as κ is very sensitive to internal electrostatic energies which in turn depend on the specific setup of the heterostructure. In particular, we show that a capacitor with a polar dielectric has a smaller electronic compressibility and is more stable against phase separation than a standard nonpolar capacitor with the same capacitance.

  6. a Capacitive Image Analysis System to Characterize the Skin Surface

    NASA Astrophysics Data System (ADS)

    Gherardi, Alessandro; Bevilacqua, Alessandro

    The assessment of the skin surface is of a great importance in the dermocosmetic field to evaluate the response of individuals to medical or cosmetic treatments. In vivo quantitative measurements of changes in skin topographic structures provide a valuable tool, thanks to noninvasive devices. However, the high cost of the systems commonly employed is limiting, in practice, the widespread use of these devices for a routine-based approach. In this work we resume the research activity carried out to develop a compact low-cost system for skin surface assessment based on capacitive image analysis. The accuracy of the capacitive measurements has been assessed by implementing an image fusion algorithm to enable a comparison between capacitive images and the ones obtained using high-cost profilometry, the most accurate method in the field. In particular, very encouraging results have been achieved in the measurement of the wrinkles' width. On the other hand, experiments show all the native design limitations of the capacitive device, primarily conceived to work with fingerprints, to measure the wrinkles' depth, which point toward a specific re-designing of the capacitive device.

  7. Developpement d'un compresseur d'hydrogene base sur le cyclage thermique des hydrures metalliques

    NASA Astrophysics Data System (ADS)

    Laurencelle, Francois

    La compression de l'hydrogene est une etape incontournable de son utilisation dans l'industrie actuelle et dans les nouvelles applications energetiques de l'hydrogene (stockage stationnaire et transport). Les compresseurs mecaniques traditionnellement utilises posent plusieurs problemes d'ingenierie, de securite et de maintenance qui pourraient etre contournes en developpant de nouvelles technologies mieux adaptees a l'hydrogene. Dans cette these, notre objectif est de developper d'un compresseur d'hydrogene base sur les hydrures metalliques pouvant etre connecte a la sortie d'un electrolyseur fonctionnant a basse pression et d'ainsi repondre au besoin de productioncompression d'hydrogene decentralisee. La methodologie du projet comprend plusieurs etapes. Premierement, nous faisons la revue bibliographique des projets impliquant des compresseurs a hydrures metalliques. Deuxiemement, a travers des travaux experimentaux, nous recherchons des hydrures permettant une compression efficace entre 20 et 80°C. Les materiaux sont synthetises par fusion a arc electrique et caracterises sur bancs d'essais d'hydrogenation. La structure de certains materiaux est aussi investiguee par rayons X, methode de B.E.T. et microscopie electronique. Troisiemement, un reacteur d'hydrures est concu de maniere a promouvoir des echanges de chaleur rapides et efficaces. Quatriemement, le prototype et son interface de controle sont construits. Cinquiemement, le compresseur est caracterise pour en evaluer les performances en termes de debit et de capacite. Les resultats obtenus sont presentes dans trois articles publies et dans le chapitre 5 de cette these. Le compresseur (article I) est base sur trois hydrures (LaNi 4.8Sn0.2, LaNi5 et MMNi4.7Al0.3 ). Celui-ci permet d'atteindre un debit de compression de 10 a 20 L d'hydrogene par heure et son efficacite est, estimee a ˜5% par rapport a un compresseur adiabatique ideal. Il a ete demontre que l'efficacite pourrait etre augmentee en utilisant un

  8. Quantum capacitance modifies interionic interactions in semiconducting nanopores

    NASA Astrophysics Data System (ADS)

    Lee, Alpha A.; Vella, Dominic; Goriely, Alain

    2016-02-01

    Nanopores made with low-dimensional semiconducting materials, such as carbon nanotubes and graphene slit pores, are used in supercapacitors. For modelling purposes, it is often assumed that such pores screen ion-ion interactions like metallic pores, i.e. that screening leads to an exponential decay of the interaction potential with ion separation. By introducing a quantum capacitance that accounts for the density of states in the material, we show that ion-ion interactions in carbon nanotubes and graphene slit pores actually decay algebraically with ion separation. This result suggests a new avenue of capacitance optimization based on tuning the electronic structure of a pore: a marked enhancement in capacitance might be achieved by developing nanopores made with metallic materials or bulk semimetallic materials.

  9. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer.

    PubMed

    Li, Tie; Luo, Hui; Qin, Lin; Wang, Xuewen; Xiong, Zuoping; Ding, Haiyan; Gu, Yang; Liu, Zheng; Zhang, Ting

    2016-09-01

    Flexible tactile sensors are considered as an effective way to realize the sense of touch, which can perform the synchronized interactions with surrounding environment. Here, the utilization of bionic microstructures on natural lotus leaves is demonstrated to design and fabricate new-type of high-performance flexible capacitive tactile sensors. Taking advantage of unique surface micropattern of lotus leave as the template for electrodes and using polystyrene microspheres as the dielectric layer, the proposed devices present stable and high sensing performance, such as high sensitivity (0.815 kPa(-1) ), wide dynamic response range (from 0 to 50 N), and fast response time (≈38 ms). In addition, the flexible capacitive sensor is not only applicable to pressure (touch of a single hair), but also to bending and stretching forces. The results indicate that the proposed capacitive tactile sensor is a promising candidate for the future applications in electronic skins, wearable robotics, and biomedical devices.

  10. Strategies for dynamic soft-landing in capacitive microelectromechanical switches

    NASA Astrophysics Data System (ADS)

    Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad A.

    2011-06-01

    Electromechanical dielectric degradation associated with the hard landing of movable electrode is a technology-inhibiting reliability concern for capacitive RF-MEMS switches. In this letter, we propose two schemes for dynamic soft-landing that obviate the need for external feedback circuitry. Instead, the proposed resistive and capacitive braking schemes can reduce impact velocity significantly without compromising other performance characteristics like pull-in voltage and pull-in time. Resistive braking is achieved by inserting a resistance in series with the voltage source whereas capacitive braking requires patterning of the electrode or the dielectric. Our results have important implications to the design and optimization of reliability aware electrostatically actuated MEMS switches.

  11. A Wearable Capacitive Sensor for Monitoring Human Respiratory Rate

    NASA Astrophysics Data System (ADS)

    Kundu, Subrata Kumar; Kumagai, Shinya; Sasaki, Minoru

    2013-04-01

    Realizing an untethered, low-cost, and comfortably wearable respiratory rate sensor for long-term breathing monitoring application still remains a challenge. In this paper, a conductive-textile-based wearable respiratory rate sensing technique based on the capacitive sensing approach is proposed. The sensing unit consists of two conductive textile electrodes that can be easily fabricated, laminated, and integrated in garments. Respiration cycle is detected by measuring the capacitance of two electrodes placed on the inner anterior and posterior sides of a T-shirt at either the abdomen or chest position. A convenient wearable respiratory sensor setup with a capacitance-to-voltage converter has been devised. Respiratory rate as well as breathing mode can be accurately identified using the designed sensor. The sensor output provides significant information on respiratory flow. The effectiveness of the proposed system for different breathing patterns has been evaluated by experiments.

  12. CMOS capacitive biosensors for highly sensitive biosensing applications.

    PubMed

    Chang, An-Yu; Lu, Michael S-C

    2013-01-01

    Magnetic microbeads are widely used in biotechnology and biomedical research for manipulation and detection of cells and biomolecules. Most lab-on-chip systems capable of performing manipulation and detection require external instruments to perform one of the functions, leading to increased size and cost. This work aims at developing an integrated platform to perform these two functions by implementing electromagnetic microcoils and capacitive biosensors on a CMOS (complementary metal oxide semiconductor) chip. Compared to most magnetic-type sensors, our detection method requires no externally applied magnetic fields and the associated fabrication is less complicated. In our experiment, microbeads coated with streptavidin were driven to the sensors located in the center of microcoils with functionalized anti-streptavidin antibody. Detection of a single microbead was successfully demonstrated using a capacitance-to-frequency readout. The average capacitance changes for the experimental and control groups were -5.3 fF and -0.2 fF, respectively.

  13. Label-Free Capacitance-Based Identification of Viruses

    PubMed Central

    Ahmad, Mahmoud Al; Mustafa, Farah; Ali, Lizna M.; Karakkat, Jimsheena V.; Rizvi, Tahir A.

    2015-01-01

    This study was undertaken to quantitate a single virus suspension in culture medium without any pre-processing. The electrical capacitance per virus particle was used to identify the kind of virus present by measuring the suspension (virus plus medium) capacitance, de-embedding the medium contribution, and dividing by the virus count. The proposed technique is based on finding the single virus effective dielectric constant which is directly related to the virus composition. This value was used to identify the virus type accordingly. Two types of viruses thus tested were further quantified by a biochemical technique to validate the results. Furthermore, non-organic nanoparticles with known concentration and capacitance per particle were identified using the proposed method. The selectivity of the method was demonstrated by performing electrical measurements on a third virus, revealing that the proposed technique is specific and sensitive enough to permit detection of a few hundred virus particles per milliliter within a few minutes. PMID:25966875

  14. On machine capacitance dimensional and surface profile measurement system

    NASA Astrophysics Data System (ADS)

    Resnick, Ralph

    1993-02-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  15. Surface coupling effects on the capacitance of thin insulating films

    NASA Astrophysics Data System (ADS)

    Jamali, Tayeb; Farahani, S. Vasheghani; Jannesar, Mona; Palasantzas, George; Jafari, G. R.

    2015-05-01

    A general form for the surface roughness effects on the capacitance of a capacitor is proposed. We state that a capacitor with two uncoupled rough surfaces could be treated as two capacitors in series which have been divided from the mother capacitor by a slit. This is in contrast to the case where the two rough surfaces are coupled. When the rough surfaces are coupled, the type of coupling decides the modification of the capacitance in comparison to the uncoupled case. It is shown that if the coupling between the two surfaces of the capacitor is positive (negative), the capacitance is less (higher) than the case of two uncoupled rough plates. Also, we state that when the correlation length and the roughness exponent are small, the coupling effect is not negligible.

  16. On Machine Capacitance Dimensional and Surface Profile Measurement System

    NASA Technical Reports Server (NTRS)

    Resnick, Ralph

    1993-01-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  17. Anomalous high capacitance in a coaxial single nanowire capacitor.

    PubMed

    Liu, Zheng; Zhan, Yongjie; Shi, Gang; Moldovan, Simona; Gharbi, Mohamed; Song, Li; Ma, Lulu; Gao, Wei; Huang, Jiaqi; Vajtai, Robert; Banhart, Florian; Sharma, Pradeep; Lou, Jun; Ajayan, Pulickel M

    2012-06-06

    Building entire multiple-component devices on single nanowires is a promising strategy for miniaturizing electronic applications. Here we demonstrate a single nanowire capacitor with a coaxial asymmetric Cu-Cu(2)O-C structure, fabricated using a two-step chemical reaction and vapour deposition method. The capacitance measured from a single nanowire device corresponds to ~140 μF cm(-2), exceeding previous reported values for metal-insulator-metal micro-capacitors and is more than one order of magnitude higher than what is predicted by classical electrostatics. Quantum mechanical calculations indicate that this unusually high capacitance may be attributed to a negative quantum capacitance of the dielectric-metal interface, enhanced significantly at the nanoscale.

  18. THE MEMBRANE CAPACITANCE OF THE SEA URCHIN EGG

    PubMed Central

    Rothschild, Lord

    1957-01-01

    1. The surface of the unfertilized sea urchin egg is folded and the folds are reversibly eliminated by exposing the egg to hypotonic sea water. If the plasma membrane is outside the layer of cortical granules, unfolding may explain why the membrane capacitance per unit area decreases (and does not increase) when a sea urchin egg is put into hypotonic sea water. 2. The degree of surface folding markedly increases after fertilization, which provides an explanation for the increase in membrane capacitance per unit area observed after fertilization. 3. The percentage reduction in membrane folding in fertilized eggs after immersion in hypotonic sea water is probably sufficient to explain the decrease in membrane capacitance per unit area observed in these conditions. PMID:13416315

  19. Extraction method for parasitic capacitances and inductances of HEMT models

    NASA Astrophysics Data System (ADS)

    Zhang, HengShuang; Ma, PeiJun; Lu, Yang; Zhao, BoChao; Zheng, JiaXin; Ma, XiaoHua; Hao, Yue

    2017-03-01

    A new method to extract parasitic capacitances and inductances for high electron-mobility transistors (HEMTs) is proposed in this paper. Compared with the conventional extraction method, the depletion layer is modeled as a physically significant capacitance model and the extrinsic values obtained are much closer to the actual results. In order to simulate the high frequency behaviour with higher precision, series parasitic inductances are introduced into the cold pinch-off model which is used to extract capacitances at low frequency and the reactive elements can be determined simultaneously over the measured frequency range. The values obtained by this method can be used to establish a 16-elements small-signal equivalent circuit model under different bias conditions. The results show good agreements between the simulated and measured scattering parameters up to 30 GHz.

  20. Penicillamine prevents ram sperm agglutination in media that support capacitation.

    PubMed

    Leahy, T; Rickard, J P; Aitken, R J; de Graaf, S P

    2016-02-01

    Ram spermatozoa are difficult to capacitate in vitro. Here we describe a further complication, the unreported phenomenon of head-to-head agglutination of ram spermatozoa following dilution in the capacitation medium Tyrodes plus albumin, lactate and pyruvate (TALP). Sperm agglutination is immediate, specific and persistent and is not associated with a loss of motility. Agglutination impedes in vitro sperm handling and analysis. So the objectives of this study were to investigate the cause of sperm agglutination and potential agents which may reduce agglutination. The percentage of non-agglutinated, motile spermatozoa increased when bicarbonate was omitted from complete TALP suggesting that bicarbonate ions stimulate the agglutination process. d-penicillamine (PEN), a nucleophilic thiol, was highly effective at reducing agglutination. The inclusion of 250 μM PEN in TALP reduced the incidence of motile, agglutinated spermatozoa from 76.7 ± 2.7% to 2.8 ± 1.4%. It was then assessed if PEN (1 mM) could be included in existing ram sperm capacitation protocols (TALP +1 mM dibutyryl cAMP, caffeine and theophylline) to produce spermatozoa that were simultaneously capacitated and non-agglutinated. This protocol resulted in a sperm population which displayed high levels of tyrosine phosphorylated proteins and lipid disordered membranes (merocyanine-540) while remaining motile, viable, acrosome-intact and non-agglutinated. In summary, PEN (1 mM) can be included in ram sperm capacitation protocols to reduce sperm agglutination and allow for the in vitro assessment of ram sperm capacitation.

  1. Grundlagen des Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Mayer, Jörg; Blum, Janaki; Wintermantel, Erich

    Die Organtransplantation stellt eine verbreitete Therapie dar, um bei krankheitsoder unfallbedingter Schädigung eines Organs die Gesamtheit seiner Funktionen wieder herzustellen, indem es durch ein Spenderorgan ersetzt wird. Organtransplantationen werden für die Leber, die Niere, die Lunge, das Herz oder bei schweren grossflächigen Verbrennungen der Haut vorgenommen. Der grosse apparative, personelle und logistische Aufwand und die Risiken der Transplantationschirurgie (Abstossungsreaktionen) sowie die mangelnde Verfügbarkeit von immunologisch kompatiblen Spenderorganen führen jedoch dazu, dass der Bedarf an Organtransplantaten nur zu einem sehr geringen Teil gedeckt werden kann. Sind Spenderorgane nicht verfügbar, können in einzelnen Fällen lebenswichtige Teilfunktionen, wie beispielsweise die Filtrationsfunktion der Niere durch die Blutreinigung mittels Dialyse ersetzt oder, bei mangelnder Funktion der Bauchspeicheldrüse (Diabetes), durch die Verabreichung von Insulin ein normaler Zustand des Gesamtorganismus auch über Jahre hinweg erhalten werden. Bei der notwendigen lebenslangen Anwendung apparativer oder medikamentöser Therapie können für den Patienten jedoch häufig schwerwiegende, möglicherweise lebensverkürzende Nebenwirkungen entstehen. Daher werden in der Forschung Alternativen gesucht, um die Funktionen des ausgefallenen Organs durch die Implantation von Zellen oder in vitro gezüchteten Geweben möglichst umfassend wieder herzustellen. Dies erfordert biologisch aktive Implantate, welche die für den Stoffwechsel des Organs wichtigen Zellen enthalten und einen organtypischen Stoffwechsel entfalten.

  2. Apport de la simulation numérique à la compréhension des mécanismes d'interaction de cavités dans le cadre de la modélisation de l'endommagement ductile sous sollicitation dynamique

    NASA Astrophysics Data System (ADS)

    Roy, G.; Buy, F.; Llorca, F.

    2002-12-01

    L'étude présentée s'inscrit dans le cadre d'une démarche menant à la construction d'un modèle analytique ou semi analytique de comportement élasto-visco-plastique endommageable, applicable aux chargements rencontrés en configuration d'impact violent et générant de l'écaillage ductile. La prise en compte des effets de compressibilité et de micro inertie est essentielle pour modéliser la phase de croissance. Des simulations numériques globales de la structure et locales à l'échelle des hétérogénéités permettent d'évaluer les niveaux de sollicitations dans les zones susceptibles de s'endommager, dévaluer des critères analytiques de germination de l'endommagement et de comprendre les mécanismes d'interaction entre les défauts. Les effets micro inertiels et de compressibilité sont ainsi mis en évidence dans les phases de germination et de coalescence des micro défauts. II s'agit ici d'une illustration non exhaustive de travaux engagés au CEA Valduc sur le tantale, dans le cadre d'une thèse [10]. Un programme matériaux en partenariat CEA-CNRS sur la modélisation multi échelles du comportement de structures a également été initié dans ce contexte.

  3. The modelling of a capacitive microsensor for biosensing applications

    NASA Astrophysics Data System (ADS)

    Bezuidenhout, P. H.; Schoeman, J.; Joubert, T. H.

    2014-06-01

    Microsensing is a leading field in technology due to its wide application potential, not only in bio-engineering, but in other fields as well. Microsensors have potentially low-cost manufacturing processes, while a single device type can have various uses, and this consequently helps with the ever-growing need to provide better health conditions in rural parts of the world. Capacitive biosensors detect a change in permittivity (or dielectric constant) of a biological material, usually within a parallel plate capacitor structure which is often implemented with integrated electrodes of an inert metal such as gold or platinum on a microfluidic substrate typically with high dielectric constant. There exist parasitic capacitance components in these capacitive sensors, which have large influence on the capacitive measurement. Therefore, they should be considered for the development of sensitive and accurate sensing devices. An analytical model of a capacitive sensor device is discussed, which accounts for these parasitic factors. The model is validated with a laboratory device of fixed geometry, consisting of two parallel gold electrodes on an alumina (Al2O3) substrate mounted on a glass microscope slide, and with a windowed cover layer of poly-dimethyl-siloxane (PDMS). The thickness of the gold layer is 1μm and the electrode spacing is 300μm. The alumina substrate has a thickness of 200μm, and the high relative permittivity of 11.5 is expected to be a significantly contributing factor to the total device capacitance. The 155μm thick PDMS layer is also expected to contribute substantially to the total device capacitance since the relative permittivity for PDMS is 2.7. The wideband impedance analyser evaluation of the laboratory device gives a measurement result of 2pF, which coincides with the model results; while the handheld RLC meter readout of 4pF at a frequency of 10kHz is acceptable within the measurement accuracy of the instrument. This validated model will

  4. CONCEPTS FOR CAPACITIVELY RF-SHIELDED BELLOWS IN CRYOGENIC STRUCTURES.

    SciTech Connect

    ZHAO,Y.HAHN,H.

    2004-03-24

    Bellows are frequently required in accelerators and colliders. Usually RF-shields with spring fingers are employed to screen the bellows. The lack of accessibility in cryogenic systems can be a problem and asks for alternate solutions to eliminate possible overheating, sparking, etc that occurred in intensive beams. This note addresses an alternate kind of RF shield, which uses capacitive contact instead of mechanical contact. The analysis, as well as numerical example of a superconducting cavity structure, shows that the capacitive RF shield satisfies the impedance requirements of both beam and HOMs. The capability of thermal isolation is also analyzed.

  5. Flexible capacitive electrodes for minimizing motion artifacts in ambulatory electrocardiograms.

    PubMed

    Lee, Jeong Su; Heo, Jeong; Lee, Won Kyu; Lim, Yong Gyu; Kim, Youn Ho; Park, Kwang Suk

    2014-08-12

    This study proposes the use of flexible capacitive electrodes for reducing motion artifacts in a wearable electrocardiogram (ECG) device. The capacitive electrodes have conductive foam on their surface, a shield, an optimal input bias resistor, and guarding feedback. The electrodes are integrated in a chest belt, and the acquired signals are transmitted wirelessly for ambulatory heart rate monitoring. We experimentally validated the electrode performance with subjects standing and walking on a treadmill at speeds of up to 7 km/h. The results confirmed the highly accurate heart rate detection capacity of the developed system and its feasibility for daily-life ECG monitoring.

  6. Double-driven shield capacitive type proximity sensor

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1993-01-01

    A capacity type proximity sensor comprised of a capacitance type sensor, a capacitance type reference, and two independent and mutually opposing driven shields respectively adjacent to the sensor and reference and which are coupled in an electrical bridge circuit configuration and driven by a single frequency crystal controlled oscillator is presented. The bridge circuit additionally includes a pair of fixed electrical impedance elements which form adjacent arms of the bridge and which comprise either a pair of precision resistances or capacitors. Detection of bridge unbalance provides an indication of the mutual proximity between an object and the sensor. Drift compensation is also utilized to improve performance and thus increase sensor range and sensitivity.

  7. Quantum capacitance in monolayers of silicene and related buckled materials

    NASA Astrophysics Data System (ADS)

    Nawaz, S.; Tahir, M.

    2016-02-01

    Silicene and related buckled materials are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit coupling and the buckled structure. These materials have potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit coupling. We present a theoretical realization of quantum capacitance which has advantages over the scattering problems of traditional transport measurements. We derive and discuss quantum capacitance as a function of the Fermi energy and temperature taking into account electron-hole puddles through a Gaussian broadening distribution. Our predicted results are very exciting and pave the way for future spintronic and valleytronic devices.

  8. [Impact of sperm capacitation on various populations of human spermatozoa].

    PubMed

    Villanueva Díaz, C; Suárez Juárez, M; Díaz, M A; Ayala Ruiz, A

    1989-02-01

    With the purpose of evaluating the impact of spermatic capacitation on different spermatozooa populations, 49 samples of semen, before and after in vitro spermatic capacitation with Ham F-10 medium, were studied; motility of cells was evaluated according to WHO criteria. There was diminution of percentage of immobile cells, 27.8 to 20.0, as well as increase in population of cells with more mobility, 28.6% to 39.1%. Both difference were statistically significant (p = less than 0.05 and p = less than 0.005, respectively). These data suggest that spermatic capacitacion activates "in cascade" all groups of gametes.

  9. Capacitively coupled RF voltage probe having optimized flux linkage

    DOEpatents

    Moore, James A.; Sparks, Dennis O.

    1999-02-02

    An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.

  10. Reticulation des fibres lignocellulosiques

    NASA Astrophysics Data System (ADS)

    Landrevy, Christel

    Pour faire face à la crise économique la conception de papier à valeur ajoutée est développée par les industries papetières. Le but de se projet est l'amélioration des techniques actuelles de réticulation des fibres lignocellulosiques de la pâte à papier visant à produire un papier plus résistant. En effet, lors des réactions de réticulation traditionnelles, de nombreuses liaisons intra-fibres se forment ce qui affecte négativement l'amélioration anticipée des propriétés physiques du papier ou du matériau produit. Pour éviter la formation de ces liaisons intra-fibres, un greffage sur les fibres de groupements ne pouvant pas réagir entre eux est nécessaire. La réticulation des fibres par une réaction de « click chemistry » appelée cycloaddition de Huisgen entre un azide et un alcyne vrai, catalysée par du cuivre (CuAAC) a été l'une des solutions trouvée pour remédier à ce problème. De plus, une adaptation de cette réaction en milieux aqueux pourrait favoriser son utilisation en milieu industriel. L'étude que nous désirons entreprendre lors de ce projet vise à optimiser la réaction de CuAAC et les réactions intermédiaires (propargylation, tosylation et azidation) sur la pâte kraft, en milieu aqueux. Pour cela, les réactions ont été adaptées en milieu aqueux sur la cellulose microcristalline afin de vérifier sa faisabilité, puis transférée à la pâte kraft et l'influence de différents paramètres comme le temps de réaction ou la quantité de réactifs utilisée a été étudiée. Dans un second temps, une étude des différentes propriétés conférées au papier par les réactions a été réalisée à partir d'une série de tests papetiers optiques et physiques. Mots Clés Click chemistry, Huisgen, CuAAC, propargylation, tosylation, azidation, cellulose, pâte kraft, milieu aqueux, papier.

  11. Enhancing Graphene Capacitance by Nitrogen: Effects of Doping Configuration and Concentration

    DOE PAGES

    Zhan, Cheng; Cummings, Peter; Jiang, De-en

    2016-01-08

    Recent experiments have shown that nitrogen doping enhances capacitance in carbon electrode supercapacitors. However, a detailed study of the effect of N-doping on capacitance is still lacking. In this paper, we study the doping concentration and the configuration effect on the electric double-layer (EDL) capacitance, quantum capacitance, and total capacitance. It is found that pyridinic and graphitic nitrogens can increase the total capacitance by increasing quantum capacitance, but pyrrolic configuration limits the total capacitance due to its much lower quantum capacitance than the other two configurations. We also find that, unlike the graphitic and pyridinic nitrogens, the pyrrolic configuration's quantummore » capacitance does not depend on the nitrogen concentration, which may explain why some capacitance versus voltage measurements of N-doped graphene exhibit a V-shaped curve similar to that of undoped graphene. Our investigation provides a deeper understanding of the capacitance enhancement of the N-doping effect in carbon electrodes and suggests a potentially effective way to optimize the capacitance by controlling the type of N-doping.« less

  12. Enhancing Graphene Capacitance by Nitrogen: Effects of Doping Configuration and Concentration

    SciTech Connect

    Zhan, Cheng; Cummings, Peter; Jiang, De-en

    2016-01-08

    Recent experiments have shown that nitrogen doping enhances capacitance in carbon electrode supercapacitors. However, a detailed study of the effect of N-doping on capacitance is still lacking. In this paper, we study the doping concentration and the configuration effect on the electric double-layer (EDL) capacitance, quantum capacitance, and total capacitance. It is found that pyridinic and graphitic nitrogens can increase the total capacitance by increasing quantum capacitance, but pyrrolic configuration limits the total capacitance due to its much lower quantum capacitance than the other two configurations. We also find that, unlike the graphitic and pyridinic nitrogens, the pyrrolic configuration's quantum capacitance does not depend on the nitrogen concentration, which may explain why some capacitance versus voltage measurements of N-doped graphene exhibit a V-shaped curve similar to that of undoped graphene. Our investigation provides a deeper understanding of the capacitance enhancement of the N-doping effect in carbon electrodes and suggests a potentially effective way to optimize the capacitance by controlling the type of N-doping.

  13. La diffraction des neutrons et des rayons X pour l'étude structurale des liquides et des verres

    NASA Astrophysics Data System (ADS)

    Fischer, H. E.; Salmon, P. S.; Barnes, A. C.

    2003-02-01

    La compréhension de mainte propriété physique d'un verre ou d'un liquide nécessite la connaissance des facteurs de structure partiels (PSFs) qui décrivent chacun la distribution d'une espèce atomique autour d'une autre. La technique de diffraction des neutrons avec substitution isotopique (NDIS) [1,2,3], ayant bien réussi a déterminer les PSFs de certains composés [4,5], est pourtant restreinte aux isotopes présentant un contraste suffisant en longueur de diffusion. D'un autre cote, la technique de diffusion anomale des rayons X (AXS ou AXD) [6] permet de faire varier la longueur de diffusion d'une espèce atomique pourvu que son énergie d'absorption soit à la fois accessible et suffisamment élevée pour donner un assez grand transfert du moment. La combinaison des techniques de diffraction des neutrons (avec ou sans substitution isotopique) et de diffraction des rayons X (avec ou sans diffusion anomale) peut donc permettre d'obtenir un meilleur contraste en longueurs de diffusion pour un système donné, mais exige une analyse de données plus soignée pour pouvoir bien tenir compte des erreurs systématiques qui sont différentes pour les 2 techniques [7]. Pour les atomes ayant des distributions électroniques quasi-sphériques, e.g. dans le cas d'un alliage liquide, la combinaison des techniques de NDIS et de diffraction des rayons X s'est déjà montrée très avantageuse pour la détermination des PSFs [8,9]. Dans le cas des verres ayant d'importantes liaisons covalentes, l'effective combinaison des 2 techniques peut être moins directe mais facilitée lorsqu'il s'agit des atomes de grand Z [10,11]. Nous présentons ici un sommaire du méthode et quelques exemples des résultats.

  14. Capacitively decoupled tunable loop microstrip (TLM) array at 7 T.

    PubMed

    Wu, Bing; Zhang, Xiaoliang; Qu, Peng; Shen, Gary X

    2007-04-01

    Microstrip transmission-line loop arrays have been recently proposed for parallel imaging at ultrahigh fields due to their advantages in element decoupling and to their increased coil quality factor. In the microstrip loop array design, interconnecting capacitors become necessary to further improve the decoupling between the adjacent elements when nonoverlapped loops are placed densely. However, at ultrahigh fields, the capacitance required for sufficient decoupling is very small. Hence, the isolations between the elements are usually not optimized and the array is extremely sensitive to the load. In this study, a theoretical model is developed to analyze the capacitive decoupling circuit. Then, a novel tunable loop microstrip (TLM) array that can accommodate capacitive decoupling more easily at ultrahigh fields is proposed. As an example, a four-element TLM array is constructed at 7 T. In this array, the decoupling capacitance is increased to a more reasonable value. Isolation between the adjacent elements is better than -37 dB with the load. The performance of this TLM array is also demonstrated by MRI experiments.

  15. Solving the Quadratic Capacitated Facilities Location Problem by Computer.

    ERIC Educational Resources Information Center

    Cote, Leon C.; Smith, Wayland P.

    Several computer programs were developed to solve various versions of the quadratic capacitated facilities location problem. Matrices, which represent various business costs, are defined for the factors of sites, facilities, customers, commodities, and production units. The objective of the program is to find an optimization matrix for the lowest…

  16. Performance analysis of a digital capacitance measuring circuit

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Sun, Shijie; Cao, Zhang; Yang, Wuqiang

    2015-05-01

    This paper presents the design and study of a digital capacitance measuring circuit with theoretical analysis, numerical simulation, and experimental evaluation. The static and dynamic performances of the capacitance measuring circuit are first defined, including signal-to-noise ratio (SNR), standard deviation, accuracy, linearity, sensitivity, and response time, within a given measurement range. Then numerical simulation is carried out to analyze the SNR and standard deviation of the circuit, followed by experiments to validate the overall performance of the circuit. The simulation results show that when the standard deviation of noise is 0.08 mV and the measured capacitance decreases from 6 pF to 3 fF, the SNR decreases from 90 dB to 22 dB and the standard deviation is between 0.17 fF and 0.24 fF. The experimental results show that when the measured capacitance decreases from 6 pF to 40 fF and the data sampled in a single period are used for demodulation, the SNR decreases from 88 dB to 40 dB and the standard deviation is between 0.18 fF and 0.25 fF. The maximum absolute error and relative error are 5.12 fF and 1.26%, respectively. The SNR and standard deviation can be further improved if the data sampled in more than one period are used for demodulation by the circuit.

  17. Feasibility of a Gelatin Temperature Sensor Based on Electrical Capacitance

    PubMed Central

    Teixeira Silva, Fernando; Sorli, Brice; Calado, Veronica; Guillaume, Carole; Gontard, Nathalie

    2016-01-01

    The innovative use of gelatin as a temperature sensor based on capacitance was studied at a temperature range normally used for meat cooking (20–80 °C). Interdigital electrodes coated by gelatin solution and two sensors of different thicknesses (38 and 125 µm) were studied between 300 MHz and 900 MHz. At 38 µm, the capacitance was adequately measured, but for 125 µm the slope capacitance versus temperature curve decreased before 900 MHz due to the electrothermal breakdown between 60 °C and 80 °C. Thus, for 125 µm, the capacitance was studied applying 600 MHz. Sensitivity at 38 µm at 868 MHz (0.045 pF/°C) was lower than 125 µm at 600 MHz (0.14 pF/°C), influencing the results in the simulation (temperature range versus time) of meat cooking; at 125 µm, the sensitivity was greater, mainly during chilling steps. The potential of gelatin as a temperature sensor was demonstrated, and a balance between thickness and frequency should be considered to increase the sensitivity. PMID:27999415

  18. Waterproof, Ultrahigh Areal-Capacitance, Wearable Supercapacitor Fabrics.

    PubMed

    Yang, Yu; Huang, Qiyao; Niu, Liyong; Wang, Dongrui; Yan, Casey; She, Yiyi; Zheng, Zijian

    2017-02-24

    High-performance supercapacitors (SCs) are promising energy storage devices to meet the pressing demand for future wearable applications. Because the surface area of a human body is limited to 2 m(2) , the key challenge in this field is how to realize a high areal capacitance for SCs, while achieving rapid charging, good capacitive retention, flexibility, and waterproofing. To address this challenge, low-cost materials are used including multiwall carbon nanotube (MWCNT), reduced graphene oxide (RGO), and metallic textiles to fabricate composite fabric electrodes, in which MWCNT and RGO are alternatively vacuum-filtrated directly onto Ni-coated cotton fabrics. The composite fabric electrodes display typical electrical double layer capacitor behavior, and reach an ultrahigh areal capacitance up to 6.2 F cm(-2) at a high areal current density of 20 mA cm(-2) . All-solid-state fabric-type SC devices made with the composite fabric electrodes and water-repellent treatment can reach record-breaking performance of 2.7 F cm(-2) at 20 mA cm(-2) at the first charge-discharge cycle, 3.2 F cm(-2) after 10 000 charge-discharge cycles, zero capacitive decay after 10 000 bending tests, and 10 h continuous underwater operation. The SC devices are easy to assemble into tandem structures and integrate into garments by simple sewing.

  19. Parasitic capacitance characteristics of deep submicrometre grooved gate MOSFETs

    NASA Astrophysics Data System (ADS)

    Sreelal, S.; Lau, C. K.; Samudra, G. S.

    2002-03-01

    Grooved gate metal-oxide-semiconductor field-effect transistors (MOSFETs) are known to alleviate many of the short channel and hot carrier effects that arise when MOSFET devices are scaled down to very short channel lengths. However, they exhibit much higher parasitic capacitance with stronger bias dependence when compared to conventional planar devices. In this paper, we present a model for gate-to-drain and gate-to-source capacitance characteristics of a deep submicrometre grooved gate MOSFET. Both the intrinsic and extrinsic parts of the capacitance are modelled separately. In particular, the model presents a novel but simple way to account for the accumulation layer formation in the source/drain region of MOSFETs due to the application of the gate voltage. The results are compared with those obtained from a two-dimensional device simulator. The close match between the modelled and simulated data establishes the validity of the model. The model is then used to account for the superiority of capacitance characteristics of planar device structures and to arrive at optimization guidelines for grooved gate devices to match these characteristics.

  20. Interdigitated array microelectrode capacitive sensor for detection of paraffinophilic mycobacteria

    NASA Astrophysics Data System (ADS)

    Sampson, Andrew M.; Peterson, Erik T. K.; Papautsky, Ian

    2008-02-01

    Mycobacterium Avium Complex (MAC) is an opportunistic pathogen that threatens public health and has high clinical relevance. While culture-based and molecular biology techniques for identification are available, these methods are prone to error and require weeks to perform. There is a critical need for improved portable lab-on-a-chip sensor technology which will enable accurate and rapid point-of-care detection of these microorganisms. In this work, a new capacitive sensing strategy is explored utilizing interdigitated array (IDA) microelectrodes and exploiting the paraffinophilic nature of MAC. In this approach, paraffin wax is deposited over IDA microelectrodes to selectively extract these microorganisms from samples. As bacteria consume the dielectric paraffin layer, the charging current of the IDA capacitor changes to facilitate detection. Several IDA geometries were designed and simulated using CFD-ACE+ modeling software and compared with mathematical models. Capacitance of fabricated devices was determined using a charge-based capacitance measurement (CBCM) technique. Modeling and experimental results were in good agreement. Detection of femto-Farad changes in capacitance is possible, making this a feasible technique for sensing small changes in the paraffin for detection of paraffinophilic MAC.

  1. RF-MEMS capacitive switches with high reliability

    DOEpatents

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  2. Miniature electrometer preamplifier effectively compensates for input capacitance

    NASA Technical Reports Server (NTRS)

    Burrous, C. N.; Deboo, G. J.

    1966-01-01

    Negative capacitance preamplifier using a dual MOS /Metal Oxide Silicon/ transistor in conjunction with bipolar transistors is used with intracellular microelectrodes in recording bioelectric potentials. Applications would include use as a pickup plate video amplifier in storage tube tests and for pH and ionization chamber measurements.

  3. Recent advances in capacitance type of blade tip clearance measurements

    NASA Technical Reports Server (NTRS)

    Barranger, John P.

    1988-01-01

    Two recent electronic advances at NASA-Lewis that meet the blade tip clearance needs of a wide class of fans, compressors, and turbines are described. The first is a frequency modulated (FM) oscillator that requires only a single low cost ultrahigh frequency operational amplifier. Its carrier frequency is 42.8 MHz when used with a 61 cm long hermetically sealed coaxial cable. The oscillator can be calibrated in the static mode and has a negative peak frequency deviation of 400 kHz for a typical rotor blade. High temperature performance tests of the probe and 13 cm of the adjacent cable show good accuracy up to 600 C, the maximum which produces a clearance error of + or - 10 microns at a clearance of 500 microns. In the second advance, a guarded probe configuration allows a longer cable capacitance. The capacitance of the probe is part of a small time constant feedback in a high speed operational amplifier. The solution of the governing differential equation is applied to a ramp type of input. The results show an amplifier output that contains a term which is proportional to the derivative of the feedback capacitance. The capacitance is obtained by subtracting a balancing reference channel followed by an integration stage.

  4. Lightweight linear alternators with and without capacitive tuning

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1993-01-01

    Permanent magnet excited linear alternators rated tens of kW and coupled to free-piston Stirling engines are presently viewed as promising candidates for long term generation of electric power in both space and terrestrial applications. Series capacitive cancellation of the internal inductive reactance of such alternators was considered a viable way to both increase power extraction and to suppress unstable modes of the thermodynamic oscillation. Idealized toroidal and cylindrical alternator geometries are used for a comparative study of the issues of specific mass and capacitive tuning, subject to stability criteria. The analysis shows that the stator mass of an alternator designed to be capacitively tuned is always greater than the minimum achievable stator mass of an alternator designed with no capacitors, assuming equal utilization of materials ratings and the same frequency and power to a resistive load. This conclusion is not substantially altered when the usually lesser masses of the magnets and of any capacitors are added. Within the reported stability requirements and under circumstances of normal materials ratings, this study finds no clear advantage to capacitive tuning. Comparative plots of the various constituent masses are presented versus the internal power factor taken as a design degree of freedom. The explicit formulas developed for stator core, coil, capacitor, and magnet masses and for the degree of magnet utilization provide useful estimates of scaling effects.

  5. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  6. Organoaqueous calcium chloride electrolytes for capacitive charge storage in carbon nanotubes at sub-zero-temperatures.

    PubMed

    Gao, Yun; Qin, Zhanbin; Guan, Li; Wang, Xiaomian; Chen, George Z

    2015-07-11

    Solutions of calcium chloride in mixed water and formamide are excellent electrolytes for capacitive charge storage in partially oxidised carbon nanotubes at unprecedented sub-zero-temperatures (e.g. 67% capacitance retention at -60 °C).

  7. Missile Aerodynamics (Aerodynamique des Missiles)

    DTIC Science & Technology

    1998-11-01

    guerre froide la production des missiles a baisse’, avec pour consequence une diminution des budgets de d6veloppement. Les nouveaux types de conflits ...Roma) Directeur - Gestion de l’information LUXEMBOURG (Recherche et developpement) - DRDGI 3 Voir Belgique Ministbre de la Difense nationale NORVEGE

  8. Electrical and capacitive methods for detecting degradation in wire insulation

    NASA Astrophysics Data System (ADS)

    Sheldon, Robert T.

    Motivated by a need within the aerospace industry to detect and characterize degradation in the insulation of onboard wires, this thesis reports testing of several extant methods and development of novel capacitive sensors. This work focuses on measuring the electrical parameters resistance and capacitance that are directly related to the material parameters conductivity and permittivity, respectively, of the insulation. It is shown that the measured electrical parameters successfully indicate degradation in the wire insulation. Insulation resistance tests were performed on 17 wire samples, removed from various locations on a retired aircraft, and compared with those conducted on pristine wire samples, in order to assess any change in conductivity exhibited by degraded insulation. Timed resistance tests were also performed to determine the dielectric absorption of the insulation. Curved patch-electrode sensors were applied in order to measure the capacitance and dissipation factor of the same wires. Results from the resistive and capacitive tests both identified wire samples that were apparently significantly degraded, as indicated qualitatively by visual inspection. Further, a novel cylindrical interdigital capacitive sensor was developed. The interdigital sensor is designed with the goal of achieving a good signal-to-noise ratio, the lowest instrument error possible at 1 MHz, full circumferential coverage of the wire, and the ability to adjust the penetration depth of the electric field into the insulation layer by adjusting the separation of the sensor digits. With the aim, ultimately, of quantitative measurement of insulation complex permittivity, a numerical model was developed using a cylindrical Green's function and the Method of Moments to calculate theoretically the capacitance of the interdigital sensor. Benchmark experiments were carried out on large-scale dielectric-coated conductive cylinders to test the validity of the model. Experimental results

  9. Effects of Frequency-Dependent Membrane Capacitance on Neural Excitability

    PubMed Central

    Grill, Warren M.

    2015-01-01

    Objective Models of excitable cells consider the membrane specific capacitance as a ubiquitous and constant parameter. However, experimental measurements show that the membrane capacitance declines with increasing frequency, i.e., exhibits dispersion. We quantified the effects of frequency-dependent membrane capacitance, c(f), on the excitability of cells and nerve fibers across the frequency range from dc to hundreds of kilohertz. Approach We implemented a model of c(f) using linear circuit elements, and incorporated it into several models of neurons with different channel kinetics: the Hodgkin-Huxley (HH) model of an unmyelinated axon, the McIntyre-Richardson-Grill (MRG) of a mammalian myelinated axon, and a model of a cortical neuron from prefrontal cortex. We calculated thresholds for excitation and kHz frequency conduction block, the conduction velocity, recovery cycle, strength-distance relationship and firing rate. Main results The impact of c(f) on activation thresholds depended on the stimulation waveform and channel kinetics. We observed no effect using rectangular pulse stimulation, and a reduction for frequencies of 10 kHz and above using sinusoidal signals only for the MRG model. c(f) had minimal impact on the recovery cycle and the strength-distance relationship, whereas the conduction velocity increased by up to 7.9% and 1.7% for myelinated and unmyelinated fibers, respectively. Block thresholds declined moderately when incorporating c(f), the effect was greater at higher frequencies, and the maximum reduction was 11.5%. Finally, c(f) marginally altered the firing pattern of a model of a prefrontal cortex cell, reducing the median interspike interval by less than 2%. Significance This is the first comprehensive analysis of the effects of dispersive capacitance on neural excitability, and as the interest on stimulation with kHz signals gains more attention, it defines the regions over which frequency-dependent membrane capacitance, c(f), should be

  10. Critical phases of viral production processes monitored by capacitance.

    PubMed

    Petiot, Emma; Ansorge, Sven; Rosa-Calatrava, Manuel; Kamen, Amine

    2017-01-20

    Over the last decade industrial manufacturing of viral vaccines and viral vectors for prophylactic and therapeutic applications is experiencing a remarkable growth. Currently, the quality attributes of viral derived products are assessed only at the end-point of the production process, essentially because in-process monitoring tools are not available or not implemented at industrial scale. However, to demonstrate process reproducibility and robustness, manufacturers are strongly advised by regulatory agencies to adopt more on-line process monitoring and control. Dielectric spectroscopy has been successfully used as an excellent indicator of the cell culture state in mammalian and yeast cell systems. We previously reported the use of this technique for monitoring influenza and lentiviral productions in HEK293 cell cultures. For both viruses, multi-frequency capacitance measurements allowed not only the on-line monitoring of the production kinetics, but also the identification of the viral release time from the cells. The present study demonstrates that the same approach can be successfully exploited for the on-line monitoring of different enveloped and non-enveloped virus production kinetics in cell culture processes. The on-line monitoring multi-frequency capacitance method was assessed in human HEK293 and Sf9 insect cells expression systems, with viral productions initiated by either infection or transfection. The comparative analyses of all the data acquired indicate that the characteristic capacitance signals were highly correlated with the occurrence of viral replication phases. Furthermore the evolution of the cell dielectric properties (intracellular conductivity and membrane capacitance) were indicative of each main replication steps. In conclusion, multi-frequency capacitance has a great potential for on-line monitoring, supervision and control of viral vector production in cell culture processes.

  11. Capacitive charging system for high power battery charging

    SciTech Connect

    1998-12-31

    This document describes a project to design, build, demonstrate, and document a Level 3 capacitive charging system, and it will be based on the existing PEZIC prototype capacitive coupler. The capacitive coupler will be designed to transfer power at a maximum of 600 kW, and it will transfer power by electric fields. The power electronics will transfer power at 100 kW. The coupler will be designed to function with future increases in the power electronics output power and increases in the amp/hours capacity of sealed batteries. Battery charging algorithms will be programmed into the control electronics. The finished product will be a programmable battery charging system capable of transferring 100 kW via a capacitive coupler. The coupler will have a low power loss of less than 25 watts when transferring 240 kW (400 amps). This system will increase the energy efficiency of high power battery charging, and it will enhance mobility by reducing coupler failures. The system will be completely documented. An important deliverable of this project is information. The information will be distributed to the Army`s TACOM-TARDEC`s Advanced Concept Group, and it will be distributed to commercial organizations by the Society of Automotive Engineers. The information will be valuable for product research, development, and specification. The capacitive charging system produced in this project will be of commercial value for future electric vehicles. The coupler will be designed to rapid charge batteries that have a capacity of several thousand amp/hours at hundreds of volts. The charging system built here will rapid charge batteries with several hundred amp/hours capacity, depending on the charging voltage.

  12. Motion artifacts in capacitive ECG measurements: reducing the combined effect of DC voltages and capacitance changes using an injection signal.

    PubMed

    Serteyn, A; Vullings, R; Meftah, M; Bergmans, J W M

    2015-01-01

    Capacitive electrodes are a promising alternative to the conventional adhesive electrodes for ECG measurements. They provide more comfort to the patient when integrated in everyday objects (e.g., beds or seats) for long-term monitoring. However, the application of capacitive sensors is limited by their high sensitivity to motion artifacts. For example, motion at the body-electrode interface causes variations of the coupling capacitance which, in the presence of a dc voltage across the coupling capacitor, create strong artifacts in the measurements. The origin, relevance, and reduction of this specific and important type of artifacts are studied here. An injection signal is exploited to track the variations of the coupling capacitance in real time. This information is then used by an identification scheme to estimate the artifacts and subtract them from the measurements. The method was evaluated in simulations, lab environments, and in a real-life recording on an adult's chest. For the type of artifact under study, a strong artifact reduction ranging from 40 dB for simulated data to 9 dB for a given real-life recording was achieved. The proposed method is automated, does not require any knowledge about the measurement system parameters, and provides an online estimate for the dc voltage across the coupling capacitor.

  13. Emergence of Negative Capacitance in Multidomain Ferroelectric-Paraelectric Nanocapacitors at Finite Bias.

    PubMed

    Kasamatsu, Shusuke; Watanabe, Satoshi; Hwang, Cheol Seong; Han, Seungwu

    2016-01-13

    The emergence of negative capacitance in an ultrathin ferroelectric/paraelectric bilayer capacitor under electrical bias is examined using first-principles simulation. An antiferroelectric-like behavior is predicted, and negative capacitance is shown to emerge when the monodomain state becomes stable after bias application. The polydomain-monodomain transition is also shown to be a source of capacitance enhancement.

  14. Elaboration d'un dosimetre a fibres scintillantes

    NASA Astrophysics Data System (ADS)

    Archambault, Louis

    Le but de ce travail est de developper un dosimetre constitue d'une matrice de petits scintillateurs plastiques. Ce dosimetre doit presenter une bonne precision et reproductibilite pour satisfaire aux exigences imposees par des techniques de radiotherapie de pointe comme la radiotherapie d'intensite modulee, la radiochirurgie et la tomotherapie. Le desavantage majeur de cette forme de dosimetrie est la presence de bruit produit par l'effet de la radiation sur la fibre optique transportant la lumiere de scintillation jusqu'au photodetecteur. Pour en reduire l'impact, une etude approfondie des dosimetres a scintillation a ete effectuee. Commencant par une modelisation theorique de la collecte et du guidage lumineux, ce travail a ete suivi d'une comparaison experimentale de plusieurs scintillateurs plastiques, de methodes de couplage, de photodetecteurs et de techniques de filtrage. Ces etudes ont permis de choisir les fibres scintillantes pour leur gain de signal de 50% relativement aux autres scintillateurs plastiques. La camera CCD est le photodetecteur le plus adapte pour ce projet etant donne une sensibilite et une stabilite suffisantes, une capacite d'evaluer 3000 signaux dosimetriques simultanement et un systeme de separation chromatique. Apres la selection des meilleures composantes, un dosimetre a ete developpe pour etudier la performance des techniques de filtrage. Il a ete demontre que, apres utilisation du meilleur filtrage, une precision superieure a 1% pouvait etre atteinte. Un dosimetre a trois detecteurs de volumes differents (0,0014, 0,0034 et 0,0083 cm 3) a demontre une linearite face a des taux de doses allant de 10 a 600 cGy/min et pour des temps d'integration entre 0,05 et 50 s. Une reproductibilite superieure a 1% a ete observee pour des doses minimales de 45, 35 et 20 cGy respectivement pour le petit, le moyen et le grand detecteur. Une matrice de 10 detecteurs espaces de 5 mm sur une ligne a ensuite ete realisee. Ce dosimetre s'est montre

  15. Traitement des séquelles de brûlures de la main dans les pays à ressources limitées ; notre expérience en république démocratique du Congo

    PubMed Central

    Kibadi, K.; Moutet, F.

    2015-01-01

    Summary Les séquelles de brûlures de la main sont encore fréquentes dans les pays à ressources limitées. Trente-deux patients, représentant 38 mains, ont été admis et traités, entre le 1er décembre 2010 et le 1er mai 2014 aux Cliniques Universitaires de Kinshasa en République Démocratique du Congo (RDC). nous avons observé 22 patients (69 %) dans le groupe de jeunes (patients âgés de moins de 18 ans), et 10 patients (31 %) chez les adultes (18 à 59 ans). Aucun patient dans le groupe de seniors (60 ans et plus) n’a été observé. Dans le groupe de jeunes, la tranche d’âge de 1 à 5 ans a été la plus atteinte avec 13 malades (40 %). l’accident à la maison était le plus fréquent (72 %). le mécanisme de la brûlure était le plus souvent thermique par flammes (51 %) ou par liquide chaud (34 %). les rétractions et brides sont les lésions le plus observées (84 %). la rétraction dorsale globale « main en griffe» est observée chez 40 % de patients traités, associée à des cicatrices hypertrophiques et chéloïdiennes dans 84 % de cas. Chez les 32 mains traitées chirurgicalement, des excision-greffes ont été réalisées dans 43,7 %, des lambeaux locaux dans 43,7 % et des lambeaux à distance dans 12,5 % de cas. A la sortie de l’hôpital, 84 % de « bons » résultats ont été observés. le suivi a été de 18 mois. le traitement des séquelles de brûlures de la main est possible dans ces pays, exemple de la rDC. Mais les défis à surmonter dans ces pays sont nombreux : la faible accessibilité aux techniques actuelles de la chirurgie plastique, la prise en charge initiale inadéquate des brûlures, la pauvreté. PMID:26668560

  16. Capacitance effect on the oscillation and switching characteristics of spin torque oscillators

    PubMed Central

    2014-01-01

    We have studied the capacitance effect on the oscillation characteristics and the switching characteristics of the spin torque oscillators (STOs). We found that when the external field is applied, the STO oscillation frequency exhibits various dependences on the capacitance for injected current ranging from 8 to 20 mA. The switching characteristic is featured with the emerging of the canted region; the canted region increases with the capacitance. When the external field is absent, the STO free-layer switching time exhibits different dependences on the capacitance for different injected current. These results help to establish the foundation for capacitance-involved STO modeling. PMID:25404870

  17. Médecine des voyages

    PubMed Central

    Aw, Brian; Boraston, Suni; Botten, David; Cherniwchan, Darin; Fazal, Hyder; Kelton, Timothy; Libman, Michael; Saldanha, Colin; Scappatura, Philip; Stowe, Brian

    2014-01-01

    Résumé Objectif Définir la pratique de la médecine des voyages, présenter les éléments fondamentaux d’une consultation complète préalable aux voyages à des voyageurs internationaux et aider à identifier les patients qu’il vaudrait mieux envoyer en consultation auprès de professionnels de la médecine des voyages. Sources des données Les lignes directrices et les recommandations sur la médecine des voyages et les maladies liées aux voyages publiées par les autorités sanitaires nationales et internationales ont fait l’objet d’un examen. Une recension des ouvrages connexes dans MEDLINE et EMBASE a aussi été effectuée. Message principal La médecine des voyages est une spécialité très dynamique qui se concentre sur les soins préventifs avant un voyage. Une évaluation exhaustive du risque pour chaque voyageur est essentielle pour mesurer avec exactitude les risques particuliers au voyageur, à son itinéraire et à sa destination et pour offrir des conseils sur les interventions les plus appropriées en gestion du risque afin de promouvoir la santé et prévenir les problèmes médicaux indésirables durant le voyage. Des vaccins peuvent aussi être nécessaires et doivent être personnalisés en fonction des antécédents d’immunisation du voyageur, de son itinéraire et du temps qu’il reste avant son départ. Conclusion La santé et la sécurité d’un voyageur dépendent du degré d’expertise du médecin qui offre le counseling préalable à son voyage et les vaccins, au besoin. On recommande à ceux qui donnent des conseils aux voyageurs d’être conscients de l’ampleur de cette responsabilité et de demander si possible une consultation auprès de professionnels de la médecine des voyages pour tous les voyageurs à risque élevé.

  18. Capacitance of edge plane of pyrolytic graphite in acetonitrile solutions

    SciTech Connect

    Minick, S.K.; Ishida, Takanobu.

    1991-05-01

    The capacitance of the edge plane of pyrolytic graphite electrodes, in acetonitrile solutions, is measured by recording the current response to an applied triangular voltage sweep; TVS, and then fitting the current response with an appropriate function, (via a set of adjustable parameters). The pretreatment of the electrodes, the supporting electrolyte concentration used, and the frequency of the input TVS, were all found to affect the measured capacitance. In these experiments, a background current was also seen and the shape of the current output for the TVS; the charging/discharging curve, is shown to correlate with the magnitude of this background current. In addition, the size of the background current was found to have some dependence on the type of electrode pretreatment procedure used. 60 refs., 49 figs., 3 tabs.

  19. Capacitance Probe for Fluid Flow and Volume Measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  20. On the hydrophilicity of electrodes for capacitive energy extraction

    NASA Astrophysics Data System (ADS)

    Lian, Cheng; Kong, Xian; Liu, Honglai; Wu, Jianzhong

    2016-11-01

    The so-called Capmix technique for energy extraction is based on the cyclic expansion of electrical double layers to harvest dissipative energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the electrical potentials for the charging and discharging processes, which must be matched with the pore characteristics of the electrode materials. While a number of recent studies have examined the effects of the electrode pore size and geometry on the capacitive energy extraction processes, there is little knowledge on how the surface properties of the electrodes affect the thermodynamic efficiency. In this work, we investigate the Capmix processes using the classical density functional theory for a realistic model of electrolyte solutions. The theoretical predictions allow us to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different surface hydrophobicity. In agreement with recent experiments, we find that the thermodynamic efficiency can be much improved by using most hydrophilic electrodes.

  1. Capacitive network near the metal insulator transition in Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Ramirez, J. G.; Patino, E. J.; Schmidt, R.; Sharoni, A.; Gomez, M. E.; Schuller, I. K.

    2011-03-01

    Recent infrared spectroscopy and transport measurements in nano-scaled junction of VO2 have revealed the existence of phase separation into metallic and insulating phases. Here we present Impedance spectroscopy measurements performed in high quality Vanadium dioxide (VO2) thin films for the first time. This technique allows distinguishing between the resistive and capacitive response of the VO2 films and provides the dielectric properties across the metal-insulator transition (MIT). The film capacitance exhibits an unusual increase close to the MIT which implies the formation of a capacitor network produced by the nanoscale phase separation of metallic and insulating phases. This work has been supported by AFOSR, COLCIENCIAS, CENM and Ramon y Cajal Fellowship.

  2. An analytic model for MODFET capacitance-voltage characteristics

    NASA Astrophysics Data System (ADS)

    George, G.; Hauser, John R.

    1990-05-01

    An analytic model for the capacitance-voltage (C-V) characteristics of n-channel modulation doped FETs (MODFETs) is derived. Gauss law is used to relate the net areal gate charge density in an AlGaAs/GaAs MODFET to the electric field intensity at the metal-AlGaAs interface. An analytic expression for the electric field intensity which accounts for the neutralization of donors and the generation of free electrons is derived. The gate capacitance is derived as a closed-form analytic function of the gate voltage. The expression derived is easily computable and affords physical insight. The results, when compared with numerical calculations and experimental data, yield good agreement over a wide range of gate voltages.

  3. On the hydrophilicity of electrodes for capacitive energy extraction

    SciTech Connect

    Lian, Cheng; Kong, Xian; Liu, Honglai; Wu, Jianzhong

    2016-09-14

    The so-called Capmix technique for energy extraction is based on the cyclic expansion of electrical double layers to harvest dissipative energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the electrical potentials for the charging and discharging processes, which must be matched with the pore characteristics of the electrode materials. While a number of recent studies have examined the effects of the electrode pore size and geometry on the capacitive energy extraction processes, there is little knowledge on how the surface properties of the electrodes affect the thermodynamic efficiency. In this paper, we investigate the Capmix processes using the classical density functional theory for a realistic model of electrolyte solutions. The theoretical predictions allow us to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different surface hydrophobicity. Finally, in agreement with recent experiments, we find that the thermodynamic efficiency can be much improved by using most hydrophilic electrodes.

  4. Research and development of novel wireless digital capacitive displacement sensor

    NASA Astrophysics Data System (ADS)

    Cui, Junning; He, Zhangqiang; Sun, Tao; Bian, Xingyuan; Han, Lu

    2015-02-01

    In order to solve the problem of noncontact, wireless and nonmagnetic displacement sensing with nanometer resolution within critical limited space for ultraprecision displacement monitoring in the Joule balance device, a novel wireless digital capacitive displacement sensor (WDCDS) is proposed. The WDCDS is fabricated with brass and other nonmagnetic material and powered with a small battery inside, a small integrated circuit is assembled inside for converting and processing of capacitive signal, and low power Bluetooth is used for wireless signal transmission and communication. Experimental results show that the WDCDS proposed has a resolution of better than 1nm and a nonlinearity of 0.077%, therefore it is a delicate design for ultraprecision noncontact displacement monitoring in the Joule balance device, meeting the demand for properties of wireless, nonmagnetic and miniaturized size.

  5. Corrugated graphene layers for sea water desalination using capacitive deionization.

    PubMed

    Dahanayaka, Madhavi; Liu, Bo; Hu, Zhongqiao; Chen, Zhong; Law, Adrian Wing-Keung; Zhou, Kun

    2017-03-14

    The effect of the electric field and surface morphology of corrugated graphene (GE) layers on their capacitive deionization process is studied using molecular dynamics simulations. Deionization performances are evaluated in terms of water flow rate and ion adsorption and explained by analysing the water density distribution, radial distribution function and distribution of the ions inside the GE layers. The simulation results reveal that corrugation of GE layers reduces the water flow rate but largely enhances ion adsorption in comparison to the flat GE layers. Such enhancement is mainly due to the adsorption of ions on the GE layers due to the anchoring effect in the regions with wide interlayer distances. Moreover, it reveals that the entrance configuration of the GE layers also has a significant effect on the performance of deionization. Overall, the results from this study will be helpful in designing effective electrode configurations for capacitive deionization.

  6. Sugar Cube Purity: Capacitive Sensing and Image Processing Approach

    NASA Astrophysics Data System (ADS)

    Madhumitha, S.; Rajath, R.; Venkatanathan, N.; Raajan, N. R.; Sridharan, M.

    2016-12-01

    Several methods have been implemented to find out if impurity is present in sugar cubes or powders so far. Several high end imaging techniques with X-ray scanners have been used to check the quality of the sugar. In this present study, without disturbing the physical nature of sugar, we have simply used the dielectric property analysis to check the purity of the sugar. This method can detect even infinitesimal amounts of impurity present in sugar with good accuracy. The positional accuracy is derived using artificial neural networks, which is been trained with various capacitance values when the impurity is present and gives the details on the change in capacitance value as the impurity position changes.

  7. Capacitance probe for fluid flow and volume measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  8. A system for measuring thermal activation energy levels in silicon by thermally stimulated capacitance

    NASA Technical Reports Server (NTRS)

    Cockrum, R. H.

    1982-01-01

    One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.

  9. Biphasic Role of Calcium in Mouse Sperm Capacitation Signaling Pathways

    PubMed Central

    Alvau, Antonio; Escoffier, Jessica; Krapf, Dario; Sánchez-Cárdenas, Claudia; Salicioni, Ana M.; Darszon, Alberto; Visconti, Pablo E.

    2016-01-01

    Mammalian sperm acquire fertilizing ability in the female tract in a process known as capacitation. At the molecular level, capacitation is associated with up-regulation of a cAMP-dependent pathway, changes in intracellular pH, intracellular Ca2+ and an increase in tyrosine phosphorylation. How these signaling systems interact during capacitation is not well understood. Results presented in this study indicate that Ca2+ ions have a biphasic role in the regulation of cAMP-dependent signaling. Media without added Ca2+ salts (nominal zero Ca2+) still contain micromolar concentrations of this ion. Sperm incubated in this medium did not undergo PKA activation or the increase in tyrosine phosphorylation suggesting that these phosphorylation pathways require Ca2+. However, chelation of the extracellular Ca2+ traces by EGTA induced both cAMP-dependent phosphorylation and the increase in tyrosine phosphorylation. The EGTA effect in nominal zero Ca2+ media was mimicked by two calmodulin antagonists, W7 and calmidazolium, and by the calcineurin inhibitor cyclosporine A. These results suggest that Ca2+ ions regulate sperm cAMP and tyrosine phosphorylation pathways in a biphasic manner and that some of its effects are mediated by calmodulin. Interestingly, contrary to wild type mouse sperm, sperm from CatSper1 KO mice underwent PKA activation and an increase in tyrosine phosphorylation upon incubation in nominal zero Ca2+ media. Therefore, sperm lacking Catsper Ca2+ channels behave as wild-type sperm incubated in the presence of EGTA. This latter result suggests that Catsper transports the Ca2+ involved in the regulation of cAMP-dependent and tyrosine phosphorylation pathways required for sperm capacitation. PMID:25597298

  10. Mapping Capacitive Coupling Among Pixels in a Sensor Array

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh; Cole, David M.; Smith, Roger M.

    2010-01-01

    An improved method of mapping the capacitive contribution to cross-talk among pixels in an imaging array of sensors (typically, an imaging photodetector array) has been devised for use in calibrating and/or characterizing such an array. The method involves a sequence of resets of subarrays of pixels to specified voltages and measurement of the voltage responses of neighboring non-reset pixels.

  11. Capacitance-based damage detection sensing for aerospace structural composites

    NASA Astrophysics Data System (ADS)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket

  12. Capacitive Extensometer Particularly Suited for Measuring in Vivo Bone Strain

    NASA Technical Reports Server (NTRS)

    Perusek, Gail P. (Inventor)

    2000-01-01

    The present invention provides for in vivo measurements of the principal strain magnitudes and directions, and maximum shear strain that occurs in a material, such as human bone, when it is loaded (or subjected to a load). In one embodiment the invention includes a capacitive delta extensometer arranged with six sensors in a three piece configuration, with each sensor of each pair spaced apart from each other by 120 degrees.

  13. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    PubMed Central

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand–protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein–ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters. PMID:25591754

  14. DNA Nucleotides Detection via capacitance properties of Graphene

    NASA Astrophysics Data System (ADS)

    Khadempar, Nahid; Berahman, Masoud; Yazdanpanah, Arash

    2016-05-01

    In the present paper a new method is suggested to detect the DNA nucleotides on a first-principles calculation of the electronic features of DNA bases which chemisorbed to a graphene sheet placed between two gold electrodes in a contact-channel-contact system. The capacitance properties of graphene in the channel are surveyed using non-equilibrium Green's function coupled with the Density Functional Theory. Thus, the capacitance properties of graphene are theoretically investigated in a biological environment, and, using a novel method, the effect of the chemisorbed DNA nucleotides on electrical charges on the surface of graphene is deciphered. Several parameters in this method are also extracted including Electrostatic energy, Induced density, induced electrostatic potential, Electron difference potential and Electron difference density. The qualitative and quantitative differences among these parameters can be used to identify DNA nucleotides. Some of the advantages of this approach include its ease and high accuracy. What distinguishes the current research is that it is the first experiment to investigate the capacitance properties of gaphene changes in the biological environment and the effect of chemisorbed DNA nucleotides on the surface of graphene on the charge.

  15. Capacitive energy storage and recovery for synchrotron magnets

    NASA Astrophysics Data System (ADS)

    Koseki, K.

    2014-06-01

    Feasibility studies on capacitive energy storage and recovery in the main-ring synchrotron of the Japan Proton Accelerator Research Complex were conducted by circuit simulation. The estimated load fluctuation was 96 MVA in total for dipole magnets, which is likely to induce a serious disturbance in the main grid. It was found that the energy stored in the magnets after the excitation period can be recovered to the storage capacitor by controlling the voltage across the energy-storage capacitor using a pulse-width-modulation converter and reused in the next operational cycle. It was also found that the power fluctuation in the main grid can be reduced to 12 MVA. An experimental evaluation of an aluminum metalized film capacitor revealed that capacitance loss was induced by a fluctuating voltage applied to the storage capacitor when applying the proposed method. The capacitance loss was induced by corona discharge around the edges of segmented electrodes of a self-healing capacitor. The use of aluminum-zinc alloy was evaluated as a countermeasure to mitigate the effect induced by the corona discharge. For a zinc content of 8%, which was optimized experimentally, a capacitor with a sufficient life time expectancy of 20 years and a working potential gradient of 250 V/μm was developed.

  16. Investigation of capacitively coupled ultrasonic transducer system for nondestructive evaluation.

    PubMed

    Zhong, Cheng Huan; Wilcox, Paul D; Croxford, Anthony J

    2013-12-01

    Capacitive coupling offers a simple solution to wirelessly probe ultrasonic transducers. This paper investigates the theory, feasibility, and optimization of such a capacitively coupled transducer system (CCTS) in the context of nondestructive evaluation (NDE) applications. The noncontact interface relies on an electric field formed between four metal plates-two plates are physically connected to the electrodes of a transducer, the other two are in a separate probing unit connected to the transmit/receive channel of the instrumentation. The complete system is modeled as an electric network with the measured impedance of a bonded piezoelectric ceramic disc representing a transducer attached to an arbitrary solid substrate. A transmission line model is developed which is a function of the physical parameters of the capacitively coupled system, such as the permittivity of the material between the plates, the size of the metal plates, and their relative positions. This model provides immediate prediction of electric input impedance, pulse-echo response, and the effect of plate misalignment. The model has been validated experimentally and has enabled optimization of the various parameters. It is shown that placing a tuning inductor and series resistor on the transmitting side of the circuit can significantly improve the system performance in terms of the signal-to-crosstalk ratio. Practically, bulk-wave CCTSs have been built and demonstrated for underwater and through-composite testing. It has been found that electrical conduction in the media between the plates limits their applications.

  17. Direct measurement of specific membrane capacitance in neurons.

    PubMed Central

    Gentet, L J; Stuart, G J; Clements, J D

    2000-01-01

    The specific membrane capacitance (C(m)) of a neuron influences synaptic efficacy and determines the speed with which electrical signals propagate along dendrites and unmyelinated axons. The value of this important parameter remains controversial. In this study, C(m) was estimated for the somatic membrane of cortical pyramidal neurons, spinal cord neurons, and hippocampal neurons. A nucleated patch was pulled and a voltage-clamp step was applied. The exponential decay of the capacitative charging current was analyzed to give the total membrane capacitance, which was then divided by the observed surface area of the patch. C(m) was 0.9 microF/cm(2) for each class of neuron. To test the possibility that membrane proteins may alter C(m), embryonic kidney cells (HEK-293) were studied before and after transfection with a plasmid coding for glycine receptor/channels. The value of C(m) was indistinguishable in untransfected cells and in transfected cells expressing a high level of glycine channels, indicating that differences in transmembrane protein content do not significantly affect C(m). Thus, to a first approximation, C(m) may be treated as a "biological constant" across many classes of neuron. PMID:10866957

  18. Capacitive-coupled Series Spoof Surface Plasmon Polaritons

    PubMed Central

    Yin, Jia Yuan; Ren, Jian; Zhang, Hao Chi; Zhang, Qian; Cui, Tie Jun

    2016-01-01

    A novel method to realize stopband within the operating frequency of spoof surface plasmon polaritons (SPPs) is presented. The stopband is introduced by a new kind of capacitive-coupled series spoof SPPs. Two conventional H-shaped unit cells are proposed to construct a new unit cell, and every two new unit cells are separated by a gap with certain distance, which is designed to implement capacitive coupling. The original surface impedance matching is disturbed by the capacitive coupling, leading to the stopband during the transmission of SPPs. The proposed method is verified by both numerical simulations and experiments, and the simulated and measured results have good agreements. It is shown that the proposed structure exhibits a stopband in 9–9.5 GHz while the band-pass feature maintains in 5–9 GHz and 9.5–11 GHz. In the passband, the reflection coefficient is less than −10 dB, and the transmission loss is around 3 dB; in the stopband, the reflection coefficient is −2 dB, and the transmission coefficient is less than −30 dB. The compact size, easy fabrication and good band-pass and band-stop features make the proposed structure a promising plasmonic device in SPP communication systems. PMID:27089949

  19. Capacitive energy storage and recovery for synchrotron magnets

    SciTech Connect

    Koseki, K.

    2014-06-15

    Feasibility studies on capacitive energy storage and recovery in the main-ring synchrotron of the Japan Proton Accelerator Research Complex were conducted by circuit simulation. The estimated load fluctuation was 96 MVA in total for dipole magnets, which is likely to induce a serious disturbance in the main grid. It was found that the energy stored in the magnets after the excitation period can be recovered to the storage capacitor by controlling the voltage across the energy-storage capacitor using a pulse-width-modulation converter and reused in the next operational cycle. It was also found that the power fluctuation in the main grid can be reduced to 12 MVA. An experimental evaluation of an aluminum metalized film capacitor revealed that capacitance loss was induced by a fluctuating voltage applied to the storage capacitor when applying the proposed method. The capacitance loss was induced by corona discharge around the edges of segmented electrodes of a self-healing capacitor. The use of aluminum-zinc alloy was evaluated as a countermeasure to mitigate the effect induced by the corona discharge. For a zinc content of 8%, which was optimized experimentally, a capacitor with a sufficient life time expectancy of 20 years and a working potential gradient of 250 V/μm was developed.

  20. Defect tolerance in microfluidic chambers for capacitive biosensors

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn; Gray, Bonnie L.; Jain, Vijay K.

    2010-02-01

    Biomedical sensors combining microfluidic and electronics capabilities require defect avoidance in both the electronic processing circuits and microfluidic areas. Microfluidic sensors involve sealed channels through which sample fluids containing biomedical materials flow. Inserting microchannels between capacitive plates enable the detection of biomaterials by the changes in capacitance. However, faults occur when foreign particles, or fluid bubbles get lodged in the paths blocking a channel, thereby affecting the measured C. To achieve fault tolerance we investigate a Cathedral Chamber design, with pillars supporting the roof at regular intervals. This prevents single blockages from stopping fluid flow through the system in a channel, as there are many paths. We discuss the potential causes and effects of such blockages. Monte Carlo simulations show that the Cathedral Chamber design significantly increases lifetime of the system, an average of 6 times more particles are required before full blockage occurs compared to an array of parallel channels. Fluid flow modeling shows parallel channels show rapid rise of pressure with the number of blockages while the Cathedral chamber shows much slower rise, which reaches a plateau pressure until it is blocked. The impact of defects on the capacitive measurement is also discussed. Finally, an interesting application, one that uses patches of single chain Fragment variables (scFv's), the active part of antibodies, is also discussed.

  1. Capacitive energy storage and recovery for synchrotron magnets.

    PubMed

    Koseki, K

    2014-06-01

    Feasibility studies on capacitive energy storage and recovery in the main-ring synchrotron of the Japan Proton Accelerator Research Complex were conducted by circuit simulation. The estimated load fluctuation was 96 MVA in total for dipole magnets, which is likely to induce a serious disturbance in the main grid. It was found that the energy stored in the magnets after the excitation period can be recovered to the storage capacitor by controlling the voltage across the energy-storage capacitor using a pulse-width-modulation converter and reused in the next operational cycle. It was also found that the power fluctuation in the main grid can be reduced to 12 MVA. An experimental evaluation of an aluminum metalized film capacitor revealed that capacitance loss was induced by a fluctuating voltage applied to the storage capacitor when applying the proposed method. The capacitance loss was induced by corona discharge around the edges of segmented electrodes of a self-healing capacitor. The use of aluminum-zinc alloy was evaluated as a countermeasure to mitigate the effect induced by the corona discharge. For a zinc content of 8%, which was optimized experimentally, a capacitor with a sufficient life time expectancy of 20 years and a working potential gradient of 250 V/μm was developed.

  2. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    NASA Astrophysics Data System (ADS)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  3. Towards a Dynamic DES model

    NASA Astrophysics Data System (ADS)

    Subbareddy, Pramod; Candler, Graham

    2009-11-01

    Hybrid RANS/LES methods are being increasingly used for turbulent flow simulations in complex geometries. Spalart's detached eddy simulation (DES) model is one of the more popular ones. We are interested in examining the behavior of the Spalart-Allmaras (S-A) Detached Eddy Simulation (DES) model in its ``LES mode.'' The role of the near-wall functions present in the equations is analyzed and an explicit analogy between the S-A and a one-equation LES model based on the sub-grid kinetic energy is presented. A dynamic version of the S-A DES model is proposed based on this connection. Validation studies and results from DES and LES applications will be presented and the effect of the proposed modification will be discussed.

  4. Prises de risques chez les jeunes de Bobo Dioulasso: une analyse des facteurs associés à la précocité et au multipartenariat sexuel

    PubMed Central

    Adohinzin, Clétus Come; Meda, Nicolas; Belem, Adrien Marie Gaston; Ouédraogo, Georges Anicet; Sombie, Issiaka; Berthe, Abdramane; Fond-Harmant, Laurence

    2016-01-01

    Introduction Malgré les efforts d'éducation à la santé, les jeunes continuent d'adopter des comportements sexuels à risques, susceptibles d'avoir des répercussions importantes sur leur santé. Cette étude visait à analyser les facteurs associés à la précocité sexuelle et au multipartenariat chez les jeunes de 19-24 ans de Bobo-Dioulasso. Méthodes Il s'agit d'une étude quantitative et transversale. Les données d'enquête ont été recueillies en décembre 2014 à Bobo-Dioulasso (Burkina Faso), auprès de 573 jeunes de 15 à 24 ans. Ces enquêtés ont été sélectionnés par un sondage en grappes à deux degrés. Des facteurs à risques relatifs à la précocité sexuelle et au multipartenariat ont été analysés à l'aide du logiciel Stata IC 13. Le seuil de signification de P<0,05 a été utilisée. Résultats Plus de la moitié des enquêtés (54%) étaient sexuellement actifs dont 14% avant l'âge de 16 ans. Le multipartenariat sexuel avait été observé chez 24% des jeunes sexuellement actifs. Parmi les facteurs déterminants de la précocité sexuelle et du multipartenariat figuraient l'âge, le sexe, le niveau d'étude, et la situation économique des parents. Nos données avaient aussi montré que les rapports sexuels trop précoces étaient associés au multipartenariat sexuel (p<0,005). Conclusion Les actions visant à renforcer les capacités des jeunes à retarder les premiers rapports sexuels et à mieux évaluer les risques seront de toute importance. Les capacités des parents, des enseignants et des prestataires devraient être aussi renforcées pour l'amélioration de la qualité des relations entre eux et les jeunes. PMID:28292094

  5. A negative-capacitance equivalent circuit model for parallel-plate capacitive-gap-transduced micromechanical resonators.

    PubMed

    Akgul, Mehmet; Wu, Lingqi; Ren, Zeying; Nguyen, Clark T-C

    2014-05-01

    A small-signal equivalent circuit for parallel-plate capacitive-gap-transduced micromechanical resonators is introduced that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates circuit analysis, that better elucidates the mechanisms behind certain potentially puzzling measured phenomena, and that inspires circuit topologies that maximize performance in specific applications. For this work, a micromechanical disk resonator serves as the vehicle with which to derive the equivalent circuits for both radial-contour and wine-glass modes, which are then used in circuit simulations (via simulation) to match measurements on actual fabricated devices. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive- gap-transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for applications that must be stable against environmental perturbations, such as acceleration or power supply variations. Measurements on fabricated devices confirm predictions by the new model of up to 4× improvement in frequency stability against dc-bias voltage variations for contour- mode disk resonators as the resistance loading their ports increases. By enhancing circuit visualization, this circuit model makes more obvious the circuit design procedures and topologies most beneficial for certain mechanical circuits, e.g., filters and oscillators.

  6. Reconnaissance des Formes a L'aide du Filtre de Phase D'harmoniques Circulaires

    NASA Astrophysics Data System (ADS)

    Leclerc, Luc

    Cette these porte sur l'etude d'une nouvelle generation de filtres fabriques a partir de la phase du filtre d'harmoniques circulaires (FHC). Il s'agit du FHC de phase (FHCP), du FHC de phase binaire (FHCPB) et du FHC binaire (FHCB) qui, tout en etant invariants par rapport a la position et a l'orientation des cibles, offrent une meilleure capacite de discrimination que le FHC. Nous presentons egalement le FHC de covariance (FHCC) et ses derives de phase, lesquels permettent d'accroi tre davantage la capacite de discrimination du FHC dans les cas ou les objets composants la scene sont tres semblables. La performance de chacun des filtres est evaluee au moyen de simulations sur ordinateur avant d'etre mesuree sur un correlateur optique. Le FHC, FHCP, FHCC et FHCCP sont encodes dans un hologramme genere par ordinateur tandis que les filtres binaires sont affiches sur un televiseur a cristaux liquides. Enfin, nous termions ce manuscrit en presentant le FHCB multiplexe qui permet de correler, en une seule operation, un objet et plusieurs FHC de differents ordres.

  7. Impact of Materials Defects on Engine Structures Integrity (L’Impact des Defauts des Materiaux sur l’Integrite des Structures des Moteurs)

    DTIC Science & Technology

    1993-04-01

    participants ont fait le point des aspects traitement et contr6le des mat~riaux. en mettant I’accent sur les materiaux constitutifs des disques moteur en...adapte. Pour le physicien. un -d~faur’" peut tres bien se resumer A une imperfection de Ia structure rericulaire d’un materiau. En science des materiaux ... materiaux sur l~integrite des structures des moteurs Defence Research Ag~ency Matenials & Structures Department Farnborough. Hants GUt 14 fITD Rovaume-Uni

  8. A simple efficient model of parasitic capacitances of deep-submicron LDD MOSFETs

    NASA Astrophysics Data System (ADS)

    Prégaldiny, Fabien; Lallement, Christophe; Mathiot, Daniel

    2002-12-01

    Estimation of parasitic capacitances in a MOSFET device is very important, notably in mixed circuit simulation. For deep-submicron LDD MOSFETs, the extrinsic capacitance (overlap plus fringing capacitances) is a growing fraction of the total gate capacitance. A correct estimation of the extrinsic capacitance requires an accurate modeling of each of its constituents. However the major existing models do not correctly predict the overlap capacitance and the inner fringing capacitance (which is often ignored). In this paper a new approach to model the overlap Cov and fringing Cif+ Cof capacitances in the zero-current regime is presented. The bias dependence of the extrinsic capacitance is investigated and a detailed study of the influence of the LDD doping dose is also undertaken. Then, an efficient, simple and continuous model describing the evolution of overlap and fringing capacitances in all operating regimes of a n-channel LDD MOSFET is developed. Finally this model is incorporated in an existing compact-model for circuit simulation. It is shown that this new model leads to excellent results in comparison with full 2D numerical device simulation.

  9. Capacitation inducers act through diverse intracellular mechanisms in cryopreserved bovine sperm.

    PubMed

    Breininger, E; Cetica, P D; Beconi, M T

    2010-10-01

    The effect of various capacitation inducers, i.e. heparin, superoxide anion, bicarbonate, adenosine, and caffeine, and their role in intracellular mechanisms involved in capacitation, were studied in cryopreserved bovine sperm. Capacitation was determined by epifluorescence chlortetracycline, protein tyrosine phosphorylation, and the ability of capacitated sperm to undergo an acrosome reaction and fertilize in vitro matured oocytes. Participation of membrane adenylate cyclase and protein kinases (protein kinase A, protein kinase C, and protein tyrosine kinase) was evaluated indirectly (with specific inhibitors). Involvement of reactive oxygen species (ROS) was determined with scavengers of superoxide anion, hydrogen peroxide, or nitric oxide. Percentages of capacitated (27-29%) and acrosome-reacted sperm (23-26%) did not differ (P > 0.05) among various capacitation inducers. Significantly higher rates of IVF were obtained with heparin (43%) or bicarbonate plus caffeine (45%), when compared with control samples (17%). Adding the membrane adenylate cyclase inhibitor diminished capacitation rates with heparin (8%) or adenosine (10%). There was differential protein kinase participation in response to inducers; protein kinase inhibitors diminished cleavage rates in heparin-capacitated sperm relative to controls. There were differences between and within the studied inducers in protein tyrosine phosphorylation patterns. We inferred that capacitation in cryopreserved bovine sperm was promoted through diverse pathways. Mechanisms triggered by heparin, or caffeine plus bicarbonate-induced capacitation, involved activation of intracellular pathways to optimize fertilizing capability of cryopreserved bovine sperm.

  10. Investigation of Plastic Zone Development in Dynamic Tear Test Specimens - Phase 2

    DTIC Science & Technology

    2000-09-01

    essats elastlques-plasttques et on a constate une concordance assez precise . Sommaire II est important de pouvOlr predire ]a taille des zones elastiques... precis de predire les defaillances. Nous avons done cherche a developper des modeles de zone plastique afin de definir le rapport entre le rayon de la...defmitwn de ce parametre nous permettra de defimr les vraies limites des essais sur les proprietes elastiques et plastiques des materiaux en ce qui

  11. Effect of Microstructure on the Strength and Fracture Energy of Bimaterial Interfaces.

    DTIC Science & Technology

    1992-12-31

    croissance plastique des cavites et de decollement de l’interface. Les I energies de rupture sont beaucoup plus grandes que le travail d’adh6rence...dissipation plastique qui augmente pour les grandes ipasseurs de la couche m~tallique. Zusammeafassung-Die RiBausbreitung wird an der Grenzfliche Al2 03 /Au...On montre les influences importantes de [a relations plastique et de la difference de dilatation thermique et on d6,rit quelques caract6ristiques

  12. Peste des petits ruminants

    PubMed Central

    Parida, S.; Muniraju, M.; Mahapatra, M.; Muthuchelvan, D.; Buczkowski, H.; Banyard, A.C.

    2015-01-01

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants. PMID:26443889

  13. Peste des petits ruminants.

    PubMed

    Parida, S; Muniraju, M; Mahapatra, M; Muthuchelvan, D; Buczkowski, H; Banyard, A C

    2015-12-14

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants.

  14. Imagerie Resolue dans le Temps des Photons et Neutres Metastables Emis D'une Surface Par Stimulation Electronique

    NASA Astrophysics Data System (ADS)

    Leclerc, Gregoire

    L'appareil que nous presentons ici a ete mis au point pour permettre d'accumuler des images numeriques, resolues dans le temps, de la desorption par stimulation electronique (DSE) d'ions positifs et negatifs, de photons et de neutres metastables, tout en conservant des capacites de base de diffraction d'electrons lents (DEL) et de transmission d'electrons lents (TEL). Le spectrometre comporte un monochromateur d'electrons a secteur cylindrique de 127^ circ dont l'optique de sortie permet la focalisation du faisceau d'electrons sur une large gamme d'energies. Le detecteur consiste en un empilement de galettes de microcanaux et d'une anode resistive a encodage de division de charges. La reponse spatiale du detecteur a ete calibree et plusieurs causes de non-linearite ont ete localisees et corrigees. Des methodes de correction materielle et logicielle des distorsions spatiales sont presentees. La resolution temporelle des evenements est obtenue en pulsant le faisceau d'electrons, et de facon synchrone la detection, laquelle est couplee a un micro-ordinateur. La premiere partie de ce travail est consacree a la caracterisation du spectrometre et la presentation de nombreux parametres operationnels, obtenus soit au moment de la conception, soit experimentalement. Suit la presentation de donnees de DEL et de DSE pour le systeme Ar/Pt(111) en films minces a 15K. Les sequences temporelles d'images de metastables d'Ar desorbes ont revele la presence de plusieurs populations distinctes, ayant des distributions angulaires et distributions d'energie cinetique que nous avons pu separer. Les fonctions d'excitation de l'emission de photons et de la desorption de differentes composantes de metastables, ainsi que la dependance de ces signaux sur l'epaisseur des films d'Ar, sont aussi presentees et analysees. Les techniques que nous avons developpees ont permis de cerner les mecanismes en jeu pour la desorption et la luminescence.

  15. Anodized aluminum oxide-based capacitance sensors for the direct detection of DNA hybridization.

    PubMed

    Kang, Bongkeun; Yeo, Unjin; Yoo, Kyung-Hwa

    2010-03-15

    We fabricated a capacitance sensor based on an anodized aluminum oxide (AAO) nanoporous structure to detect DNA hybridization. We utilized Au film deposited on the surface of the AAO membrane and Au nanowires infiltrating the nanopores as the top and bottom electrodes, respectively. When completely complementary target DNA molecules were added to the sensor-immobilized DNA molecule probes, the capacitance was reduced; with a concentration of 1pM, the capacitance decreased by approximately 10%. We measured the capacitance change for different concentrations of the target DNA solution. A linear relationship was found between the capacitance change and DNA concentration on a semi-logarithmic scale. We also investigated the possibility of detecting DNA molecules with a single-base mismatch to the probe DNA molecule. In contrast to complementary target DNA molecules, the addition of one-base mismatch DNA molecules caused no significant change in capacitance, demonstrating that DNA hybridization was detected with single nucleotide polymorphism sensitivity.

  16. Contribution of dielectric screening to the total capacitance of few-layer graphene electrodes

    SciTech Connect

    Zhan, Cheng; Jiang, De-en

    2016-02-17

    We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (CQ) and EDL capacitance (CEDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (CDielec). We find that CDielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is more than three. In conclusion, our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.

  17. Contribution of dielectric screening to the total capacitance of few-layer graphene electrodes

    DOE PAGES

    Zhan, Cheng; Jiang, De-en

    2016-02-17

    We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (CQ) and EDL capacitance (CEDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (CDielec). We find that CDielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is more than three. In conclusion,more » our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.« less

  18. Theoretical and experimental analysis of a piezoelectric plate connected to a negative capacitance at MHz frequencies

    NASA Astrophysics Data System (ADS)

    Mansoura, S. A.; Benard, P.; Morvan, B.; Maréchal, P.; Hladky-Hennion, A.-C.; Dubus, B.

    2015-11-01

    In this paper, a theoretical and experimental study of the electric impedance of a piezoelectric plate connected to a negative capacitance is performed in the MHz frequency range. The negative capacitance is realized with a circuit using current conveyors (CCII+). This circuit allows us to achieve important values of negative capacitance, of the same order of the static capacitance of the piezoelectric plate studied. Mason’s model is considered for the theoretical characterization of the piezoelectric plate connected to the negative capacitance circuit. The experimental results show a large tunability of the frequency of the piezoelectric parallel resonance over a range of 1.1 MHz to 1.28 MHz. Moreover, according to the value of the negative capacitance, the effective electromechanical coupling factor of the piezoelectric plate is evaluated. With a very good agreement with the theoretical estimation, an increase of approximately 50% of the effective electromechanical coupling factor is experimentally measured.

  19. Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors.

    PubMed

    Hou, Ya-Fei; Li, Wei-Li; Zhang, Tian-Dong; Yu, Yang; Han, Ren-Lu; Fei, Wei-Dong

    2016-08-31

    Negative capacitances provide an approach to reduce heat generations in field-effect transistors during the switch processes, which contributes to further miniaturization of the conventional integrated circuits. Although there are many studies about negative capacitances using ferroelectric materials, the direct observation of stable ferroelectric negative capacitances has rarely been reported. Here, we put forward a dc bias assistant model in bilayer capacitors, where one ferroelectric layer with large dielectric constant and the other ferroelectric layer with small dielectric constant are needed. Negative capacitances can be obtained when external dc bias electric fields are larger than a critical value. Based on the model, BaTiO3/BiFeO3 bilayer capacitors are chosen as study objects, and negative capacitances are observed directly. Additionally, the upward self-polarization effect in the ferroelectric layer reduces the critical electric field, which may provide a method for realizing zero and/or small dc bias assistant negative capacitances.

  20. The Semen pH Affects Sperm Motility and Capacitation.

    PubMed

    Zhou, Ji; Chen, Li; Li, Jie; Li, Hongjun; Hong, Zhiwei; Xie, Min; Chen, Shengrong; Yao, Bing

    2015-01-01

    As the chemical environment of semen can have a profound effect on sperm quality, we examined the effect of pH on the motility, viability and capacitation of human sperm. The sperm in this study was collected from healthy males to avoid interference from other factors. The spermatozoa cultured in sperm nutrition solution at pH 5.2, 6.2, 7.2 and 8.2 were analyzed for sperm total motility, progressive motility (PR), hypo-osmotic swelling (HOS) rate, and sperm penetration. Our results showed that these parameters were similar in pH 7.2 and 8.2 sperm nutrition solutions, but decreased in pH 5.2 and 6.2 solutions. The HOS rate exhibited positive correlation with the sperm total motility and PR. In addition, the sperm Na(+)/K(+)-ATPase activity at different pHs was measured, and the enzyme activity was significantly lower in pH 5.2 and 6.2 media, comparing with that in pH 8.2 and pH 7.2 solutions. Using flow cytometry (FCM) and laser confocal scanning microscopy (LCSM) analysis, the intracellular Ca2(+ )concentrations of sperm cultured in sperm capacitation solution at pH 5.2, 6.2, 7.2 and 8.2 were determined. Compared with that at pH 7.2, the mean fluorescence intensity of sperm in pH 5.2 and 6.2 media decreased significantly, while that of pH 8.2 group showed no difference. Our results suggested that the declined Na(+)/K(+)-ATPase activity at acidic pHs result in decreased sperm movement and capacitation, which could be one of the mechanisms of male infertility.

  1. A New Technique for Troubleshooting Large Capacitive Energy Storage Banks

    SciTech Connect

    Fulkerson, S E; Hammon, J

    2001-06-05

    The Power Conditioning System (PCS) of the National Ignition Facility (NIF) like many pulse power systems relies on large numbers of inductively isolated high voltage capacitors configured in parallel for energy storage. When an energy storage capacitor fails in such a capacitor bank, there is often little or no external indication showing which capacitor failed. Identifying the failed component can be a time consuming and potentially hazardous operation. Conventional methods using capacitance meters require that each capacitor be disconnected and tested independently. They have developed a new non-invasive technique (i.e. no dismantling of the bank is required) that greatly improves personnel safety as well reducing troubleshooting time.

  2. Analytical carrier density and quantum capacitance for graphene

    NASA Astrophysics Data System (ADS)

    Wang, Lingfei; Wang, Wei; Xu, Guangwei; Ji, Zhuoyu; Lu, Nianduan; Li, Ling; Liu, Ming

    2016-01-01

    A disorder based analytical carrier density for graphene is presented here. The carrier density, a basic property of all semiconductors, is obtained based on exponential distribution describing the potential fluctuations induced by impurities and shows good agreement with numerical results. The quantum capacitance is subsequently derived from the carrier density, with a good agreement with experimental measurements. A method for extracting the gate coupling function is also proposed, which relates the internal surface potential with the external applied gate voltage. The essential properties of graphene device physics, such as the temperature, material disorder, and surface potential dependences, are captured in these analytical equations.

  3. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials.

    PubMed

    Lani, Shane W; Wasequr Rashid, M; Hasler, Jennifer; Sabra, Karim G; Levent Degertekin, F

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  4. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    SciTech Connect

    Lani, Shane W. E-mail: karim.sabra@me.gatech.edu Sabra, Karim G.; Wasequr Rashid, M.; Hasler, Jennifer; Levent Degertekin, F.

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  5. Analytical carrier density and quantum capacitance for graphene

    SciTech Connect

    Wang, Lingfei; Wang, Wei; Xu, Guangwei; Ji, Zhuoyu; Lu, Nianduan Li, Ling Liu, Ming

    2016-01-04

    A disorder based analytical carrier density for graphene is presented here. The carrier density, a basic property of all semiconductors, is obtained based on exponential distribution describing the potential fluctuations induced by impurities and shows good agreement with numerical results. The quantum capacitance is subsequently derived from the carrier density, with a good agreement with experimental measurements. A method for extracting the gate coupling function is also proposed, which relates the internal surface potential with the external applied gate voltage. The essential properties of graphene device physics, such as the temperature, material disorder, and surface potential dependences, are captured in these analytical equations.

  6. Contrast distortion induced by modulation voltage in scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Chang, M. N.; Hu, C. W.; Chou, T. H.; Lee, Y. J.

    2012-08-01

    With a dark-mode scanning capacitance microscopy (SCM), we directly observed the influence of SCM modulation voltage (MV) on image contrasts. For electrical junctions, an extensive modulated area induced by MV may lead to noticeable changes in the SCM signal phase and intensity, resulting in a narrowed junction image and a broadened carrier concentration profile. This contrast distortion in SCM images may occur even if the peak-to-peak MV is down to 0.3 V. In addition, MV may shift the measured electrical junction depth. The balance of SCM signals components explain these MV-induced contrast distortions.

  7. Capacitive deionization of water: An innovative new process

    SciTech Connect

    Farmer, J.; Fix, D.; Mack, G.

    1995-01-09

    The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated for the first time. Unlike ion exchange, one of the more conventional deionization processes, no chemicals were required for regeneration of the system. Electricity was used instead. Water with various anions and cations was pumped through the electrochemical cell. After polarization, ions were electrostatically removed from the water and held in the electric double layers formed at electrode surfaces. The water leaving the cell was purified, as desired.

  8. Sensor Interface for Multimodal Evaluation of Capacitive Sensors

    NASA Astrophysics Data System (ADS)

    Schlegl, Thomas; Zangl, Hubert

    2013-06-01

    Capacitive proximity sensing can be done in different modes. The single ended mode usually offers a higher signal to noise ratio (SNR) and - in conjunction with active guarding - high robustness. However, it can be blind for objects with low permittivity close to the sensor surface. The differential mode usually has a worse SNR but has the capability to detect objects in situations where the single ended mode is blind. Thus, we propose a measurement circuitry to combine both modes. It is compared to state of the art sensors and the benefits of this approach are demonstrated by means of experimental investigations.

  9. Concentric Coplanar Capacitive Sensor System with Quantitative Model

    NASA Technical Reports Server (NTRS)

    Bowler, Nicola (Inventor); Chen, Tianming (Inventor)

    2014-01-01

    A concentric coplanar capacitive sensor includes a charged central disc forming a first electrode, an outer annular ring coplanar with and outer to the charged central disc, the outer annular ring forming a second electrode, and a gap between the charged central disc and the outer annular ring. The first electrode and the second electrode may be attached to an insulative film. A method provides for determining transcapacitance between the first electrode and the second electrode and using the transcapacitance in a model that accounts for a dielectric test piece to determine inversely the properties of the dielectric test piece.

  10. Remote gate capacitance-voltage studies for noninvasive surface characterization

    NASA Technical Reports Server (NTRS)

    Chang, R. R.; Lile, D. L.; Gann, R.

    1987-01-01

    A measurement technique has been developed which allows noncontact capacitance-voltage measurements to be made using a gate electrode located remote from the semiconductor surface under study. With gate electrodes about 0.5 mm in diameter and gate to semiconductor separations of about 1500 A, it was possible to generate data entirely comparable to that obtained with integrated MIS structures but with the advantage that there was access directly to the free-semiconductor surface. This technique was applied to bulk single-crystal Si and InP samples.

  11. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2003-12-30

    The objective of this program was to develop and test a system that would detect and image buried plastic and ceramic pipe. The system is designed to detect variations in the electric permeability of soil corresponding to the presence of a buried plastic pipe. The Gas Technology Institute (GTI) proposed to develop a compact and inexpensive capacitive tomography-imaging sensor that can be placed on the ground to image objects embedded in the soil. The system provides a coarse image, which allows the operator to identify a buried object's location both horizontally and vertically.

  12. Pulse power applications of silicon diodes in EML capacitive pulsers

    NASA Astrophysics Data System (ADS)

    Dethlefsen, Rolf; McNab, Ian; Dobbie, Clyde; Bernhardt, Tom; Puterbaugh, Robert; Levine, Frank; Coradeschi, Tom; Rinaldi, Vito

    1993-01-01

    Crowbar diodes are used for increasing the energy transfer from capacitive pulse forming networks. They also prevent voltage reversal on the energy storage capacitors. 52 mm diameter diodes with a 5 kV reverse blocking voltage, rated 40 kA were successfully used for the 32 MJ SSG rail gun. An uprated diode with increased current capability and a 15 kV reverse blocking voltage has been developed. Transient thermal analysis has predicted the current ratings for different pulse length. Analysis verification is obtained from destructive testing.

  13. Development of a high temperature capacitive pressure transducer

    NASA Technical Reports Server (NTRS)

    Egger, R. L.

    1977-01-01

    High temperature pressure transducers capable of continuous operation while exposed to 650 C were developed and evaluated over a full-scale differential pressure range of + or - 69 kPa. The design of the pressure transducers was based on the use of a diaphragm to respond to pressure, variable capacitive elements arranged to operate as a differential capacitor to measure diaphragm response and on the use of fused silica for the diaphragm and its supporting assembly. The uncertainty associated with measuring + or - 69 kPa pressures between 20C and 650C was less than + or - 6%.

  14. 3-D capacitance density imaging of fluidized bed

    DOEpatents

    Fasching, George E.

    1990-01-01

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved.

  15. Charging characteritiscs of ultrananocrystalline diamond in RF MEMS capacitive switches.

    SciTech Connect

    Sumant, A. V.; Goldsmith, C.; Auciello, O.; Carlisle, J.; Zheng, H.; Hwang, J. C. M.; Palego, C.; Wang, W.; Carpick, R.; Adiga, V.; Datta, A.; Gudeman, C.; O'Brien, S.; Sampath, S.

    2010-05-01

    Modifications to a standard capacitive MEMS switch process have been made to allow the incorporation of ultra-nano-crystalline diamond as the switch dielectric. The impact on electromechanical performance is minimal. However, these devices exhibit uniquely different charging characteristics, with charging and discharging time constants 5-6 orders of magnitude quicker than conventional materials. This operation opens the possibility of devices which have no adverse effects of dielectric charging and can be operated near-continuously in the actuated state without significant degradation in reliability.

  16. Material characteristics and equivalent circuit models of stacked graphene oxide for capacitive humidity sensors

    NASA Astrophysics Data System (ADS)

    Han, Kook In; Kim, Seung Du; Yang, Woo Seok; Kim, Hyeong Seok; Shin, Myunghun; Kim, Jong Pil; Lee, In Gyu; Cho, Byung Jin; Hwang, Wan Sik

    2016-03-01

    The oxidation properties of graphene oxide (GO) are systematically correlated with their chemical sensing properties. Based on an impedance analysis, the equivalent circuit models of the capacitive sensors are established, and it is demonstrated that capacitive operations are related to the degree of oxidation. This is also confirmed by X-ray diffraction and Raman analysis. Finally, highly sensitive stacked GO sensors are shown to detect humidity in capacitive mode, which can be useful in various applications requiring low power consumption.

  17. Analytical comparison of circular diaphragm based simple, single and double touch mode - MEMS capacitive pressure sensor

    NASA Astrophysics Data System (ADS)

    Jindal, Sumit Kumar; Raghuwanshi, Sanjeev Kumar

    2016-03-01

    In this paper a comparative study is done between normal capacitive pressure sensor, a touch mode capacitive pressure sensor and a double touch mode capacitive pressure sensor. The diaphragm in use is of circular shape. The theory and underlying equations has been described for the said devices and then simulations have been done for different performance parameters to understand the advantage of one over the other.

  18. Hyaluronic acid as capacitation inductor: metabolic changes and membrane-associated adenylate cyclase regulation.

    PubMed

    Fernández, S; Córdoba, M

    2014-12-01

    The aim of this research was to study the effect of hyaluronic acid on bovine cryopreserved spermatozoa compared with heparin as regards the variation of capacitation induction, cellular oxidative metabolism and intracellular signal induced by membrane-associated adenylate cyclase to propose hyaluronic acid as a capacitation inductor. Heparin or hyaluronic acid and lysophosphatidylcholine were used to induce sperm capacitation and acrosome reaction, respectively. 2',5'-dideoxyadenosine was used as a membrane-associated adenylate cyclase inhibitor. The highest percentages of capacitated spermatozoa and live spermatozoa with acrosome integrity were obtained by incubating sperm for 60 min using 1000 μg/ml hyaluronic acid. In these conditions, capacitation induced by hyaluronic acid was lower compared with heparin; nonetheless both glycosaminoglycans promote intracellular changes that allow true acrosome reaction in vitro induced by lysophosphatidylcholine in bovine spermatozoa. Oxygen consumption in heparin-capacitated spermatozoa was significantly higher than in hyaluronic acid-treated spermatozoa. With all treatments, mitochondrial coupling was observed when a specific uncoupler of the respiratory chain was added. The inhibition of membrane-associated adenylate cyclase significantly blocked capacitation induction produced by hyaluronic acid, maintaining a basal sperm oxygen uptake in contrast to heparin effect in which both sperm parameters were inhibited, suggesting that the membrane-associated adenylate cyclase activation is involved in the intracellular signal mechanisms induced by both capacitation inductors, but only regulates mitochondrial oxidative phosphorylation in heparin-capacitated spermatozoa.

  19. Metal-insulator-semi-conductor studies of lead telluride. [capacitance and conductance-voltage characteristics

    NASA Technical Reports Server (NTRS)

    Lilly, D. A.; Joslin, D. E.; Kan, H. K. A.

    1976-01-01

    The capacitance and conductance-voltage characteristics were measured on metal-insulator-semiconductor capacitors fabricated with zirconium dioxide films on single-crystal lead telluride. At 77 K, on both n- and p-type substrates, evidence of surface potential control was obtained. Comparison of the measured capacitance-voltage characteristics with those calculated from the equilibrium solution of the one-dimensional Poisson equation indicated qualitative agreement, although the slope of the measured capacitance in the region near the capacitance minimum was less steep than calculated.

  20. Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Hao; Lee, Mon-Juan; Lee, Wei

    2016-08-01

    Liquid crystal (LC)-based biosensing is generally limited by the lack of accurate quantitative strategies. This study exploits the unique electric capacitance properties of LCs to establish quantitative assay methods for bovine serum albumin (BSA) biomolecules. By measuring the voltage-dependent electric capacitance of LCs under an alternating-current field with increasing amplitude, positive correlations were derived between the BSA concentration and the electric capacitance parameters of LCs. This study demonstrates that quantitative analysis can be achieved in LC-based biosensing through electric capacitance measurements extensively employed in LCD research and development.

  1. Double layer capacitance of porous platinum electrodes in zirconia electrochemical cells

    SciTech Connect

    Robertson, N.L.; Michaels, J.N. )

    1991-05-01

    This paper reports on the capacitance of the double layer at the interface between porous platinum electrodes and yttria-stabilized zirconia measured by potential step chronoampermetry. The capacitance is independent of oxygen partial pressure and electrode potential and increases from 0.2 {mu}F/cm{sup 2} at 555{degrees}C to 1.3 {mu}F/cm{sup 2} at 695{degrees}C. These value are at least an order of magnitude smaller than capacitances extracted from the low-frequency portion of ac impedance spectra. This indicates that the capacitive behavior of platinum electrodes in zirconia cells is dominated by time-dependent faradaic processes.

  2. Fabrication and radio frequency characterization of carbon nanotube field effect transistor: evidence of quantum capacitance.

    PubMed

    Hwang, D H; Kang, M G; Kim, T G; Hwang, J S; Kim, D W; Whang, D; Hwang, S W

    2011-08-01

    We fabricated an radio frequency (RF) carbon nanotube field effect transistor (CNTFET) whose electrode shapes were standard RF designed ground-signal-ground (GSG)-type pads. The S-parameters measured from our RF CNTFET in the frequency range up to 6 GHz were fitted with an RF equivalent circuit, and the extracted gate capacitance was shown to be the capacitance value of the series combination of the electrostatic capacitance and the quantum capacitance. The effect of the channel resistance and the kinetic inductance was also discussed.

  3. Single-shot high-voltage circuit for electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Smolik, W. T.; Kryszyn, J.; Radzik, B.; Stosio, M.; Wróblewski, P.; Wanta, D.; Dańko, Ł.; Olszewski, T.; Szabatin, R.

    2017-02-01

    A new method of capacitance measurement for electrical capacitance tomography is presented. A single-shot excitation is used to accelerate measurement. A high-voltage pulse and oversampling of received signal are applied to obtain an acceptable signal-to-noise ratio. The results of measurements of standard capacitors and mutual capacitance of electrodes in 16 electrode tomographic sensors are presented. The elaborated circuit is stray-immune. It can measure capacitance in a range from about 1 fF to 1 pF at one gain setting with good linearity and precision at the rate of 20 000 samples per second.

  4. An exactly solvable model for the graphene transistor in the quantum capacitance limit

    NASA Astrophysics Data System (ADS)

    Parrish, Kristen N.; Akinwande, Deji

    2012-07-01

    We explore the ultimate behavior of the graphene transistor in the quantum capacitance limit. The quantum capacitance formulation allows for an exactly solvable model, and the ideal assumptions provide an upper bound on performance, including peak currents of 1 mA/μm with mobilities as low as 2000 cm2/V s for channel length of 1 μm, as well as linearly increasing transconductance not observed in conventional transistors. A negative differential resistance is predicted under certain conditions, with a maximum peak-to-valley-current ratio of 4. Finally, the effects of oxide scaling are elucidated and the oxide capacitances required for quantum capacitance limited behavior are quantified.

  5. Modeling the Capacitive Deionization Process in Dual-Porosity Electrodes

    DOE PAGES

    Gabitto, Jorge; Tsouris, Costas

    2016-04-28

    In many areas of the world, there is a need to increase water availability. Capacitive deionization (CDI) is an electrochemical water treatment process that can be a viable alternative for treating water and for saving energy. A model is presented to simulate the CDI process in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two steps volume averaging technique is used to derive the averaged transport equations in the limit of thin electrical double layers. A one-equationmore » model based on the principle of local equilibrium is derived. The constraints determining the range of application of the one-equation model are presented. The effective transport parameters for isotropic porous media are calculated solving the corresponding closure problems. The source terms that appear in the average equations are calculated using theoretical derivations. The global diffusivity is calculated by solving the closure problem.« less

  6. Modeling the Capacitive Deionization Process in Dual-Porosity Electrodes

    SciTech Connect

    Gabitto, Jorge; Tsouris, Costas

    2016-04-28

    In many areas of the world, there is a need to increase water availability. Capacitive deionization (CDI) is an electrochemical water treatment process that can be a viable alternative for treating water and for saving energy. A model is presented to simulate the CDI process in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two steps volume averaging technique is used to derive the averaged transport equations in the limit of thin electrical double layers. A one-equation model based on the principle of local equilibrium is derived. The constraints determining the range of application of the one-equation model are presented. The effective transport parameters for isotropic porous media are calculated solving the corresponding closure problems. The source terms that appear in the average equations are calculated using theoretical derivations. The global diffusivity is calculated by solving the closure problem.

  7. Capacitance-voltage measurement in memory devices using ferroelectric polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, Chien A.; Lee, Pooi See

    2006-01-01

    Application of thin polymer film as storing mean for non-volatile memory devices is investigated. Capacitance-voltage (C-V) measurement of metal-ferroelectric-metal device using ferroelectric copolymer P(VDF-TrFE) as dielectric layer shows stable 'butter-fly' curve. The two peaks in C-V measurement corresponding to the largest capacitance are coincidental at the coercive voltages that give rise to zero polarization in the polarization hysteresis measurement. By comparing data of C-V and P-E measurement, a correlation between two types of hysteresis is established in which it reveals simultaneous electrical processes occurring inside the device. These processes are caused by the response of irreversible and reversible polarization to the applied electric field that can be used to present a memory window. The memory effect of ferroelectric copolymer is further demonstrated for fabricating polymeric non-volatile memory devices using metal-ferroelectric-insulator-semiconductor structure (MFIS). By applying different sweeping voltages at the gate, bidirectional flat-band voltage shift is observed in the ferroelectric capacitor. The asymmetrical shift after negative sweeping is resulted from charge accumulation at the surface of Si substrate caused by the dipole direction in the polymer layer. The effect is reversed for positive voltage sweeping.

  8. Implementing a capacitive pressure sensor realized on LTCC

    NASA Astrophysics Data System (ADS)

    Tămaş, Cosmin; Marghescu, Cristina; Ionescu, Ciprian; Vasile, Alexandru

    2010-11-01

    LTCC (Low Temperature Co-Fired Ceramic) has great potential in the field of sensors and transducers due to its thermal, electrical and mechanical properties. The paper describes work concerning a capacitive pressure sensor realized on LTCC with thick-film deposition technologies. A capacitive pressure sensor converts a change in the position of the conductive plates to an electrical signal; for this a deformable diaphragm is used. In the presented case one electrode is bonded to the deformable diaphragm (an edge-clamped, circular diaphragm) and the other electrode is fixed. The signal from the sensor is processed by the AD7745 circuit. This circuit is a high resolution digital capacity-signal converter with high performances, high linearity +/-0.01% and very good accuracy +/-4 fF. The circuit also encompasses a voltage reference and a temperature sensor with a resolution of 0.1°C. The external connection is made through the I2C interface, using a signal control unit which processes the signal and sends the information to an LCD (liquid crystal display) and/or to a computer which, in turn, records the information for later use through the USB interface.

  9. Graphene-containing flowable electrodes for capacitive energy storage

    SciTech Connect

    Boota, M.; Hatzell, K. B.; Alhabeb, M.; Kumbur, E. C.; Gogotsi, Y.

    2015-04-10

    High conductivity and extended particle contacts are required for rapid charge percolation in flowable electrodes. In this study, carbon spheres (CS) were wrapped by highly conductive reduced graphene oxide sheets (rGO) to address these issues. We synthesized various compositions of the conductive, 3D interconnected hybrid materials (rGO@CS) using the hydrothermal method. Synergistic effects of both materials were utilized where CS served to minimize the sheet stacking for better flowability of the suspensions, and wrapped rGO sheets enabled higher conductivity for fast charge transport throughout the suspension network. When we tested as flowable electrodes, the composition with a 1:2 ratio of GO to CS exhibited the highest capacitance of 200 F/g and an improved rate performance. Moreover, the improved performance is attributed to the fast charge transport in the suspension network due to higher conductivity and enhanced connectivity of the active material particles. Optimized electrodes were also examined in a flow mode which yielded a capacitance of 45 F/g.

  10. Single cell electric impedance topography: mapping membrane capacitance.

    PubMed

    Dharia, Sameera; Ayliffe, Harold E; Rabbitt, Richard D

    2009-12-07

    Single-cell electric impedance topography (sceTopo), a technique introduced here, maps the spatial distribution of capacitance (i.e. displacement current) associated with the membranes of isolated, living cells. Cells were positioned in the center of a circular recording chamber surrounded by eight electrodes. Electrodes were evenly distributed on the periphery of the recording chamber. Electric impedance measured between adjacent electrode pairs (10 kHz-5 MHz) was used to construct topographical maps of the spatial distribution of membrane capacitance. Xenopus Oocytes were used as a model cell to develop sceTopo because these cells consist of two visually distinguishable hemispheres, each with distinct membrane composition and structure. Results showed significant differences in the imaginary component of the impedance between the two oocyte hemispheres. In addition, the same circumferential array was used to map the size of the extracellular electrical shunt path around the cell, providing a means to estimate the location and shape of the cell in the recording chamber.

  11. Flexible Bond Wire Capacitive Strain Sensor for Vehicle Tyres.

    PubMed

    Cao, Siyang; Pyatt, Simon; Anthony, Carl J; Kubba, Ammar I; Kubba, Ali E; Olatunbosun, Oluremi

    2016-06-21

    The safety of the driving experience and manoeuvrability of a vehicle can be improved by detecting the strain in tyres. To measure strain accurately in rubber, the strain sensor needs to be flexible so that it does not deform the medium that it is measuring. In this work, a novel flexible bond wire capacitive strain sensor for measuring the strain in tyres is developed, fabricated and calibrated. An array of 25 micron diameter wire bonds in an approximately 8 mm × 8 mm area is built to create an interdigitated structure, which consists of 50 wire loops resulting in 49 capacitor pairs in parallel. Laser machining was used to pattern copper on a flexible printed circuit board PCB to make the bond pads for the wire attachment. The wire array was finally packaged and embedded in polydimethylsiloxane (PDMS), which acts as the structural material that is strained. The capacitance of the device is in a linear like relationship with respect to the strain, which can measure the strain up to at least ±60,000 micro-strain (±6%) with a resolution of ~132 micro-strain (0.013%). In-tyre testing under static loading has shown the ability of the sensor to measure large tyre strains. The technology used for sensor fabrication lends itself to mass production and so the design is considered to be consistent with low cost commercialisable strain sensing technology.

  12. Capacitively Coupled CMOS VCSEL Driver Circuits for Optical Communication

    NASA Astrophysics Data System (ADS)

    Kozlov, Victor

    This thesis presents the analysis, design and implementation of a common-cathode capacitively-coupled VCSEL driver in 65nm CMOS intended for short-reach optical interconnects. The driver consists of an AC-coupled high-frequency path and a low-frequency path that provides DC signal components. By increasing the low-frequency path bandwidth by 10 times compared to previous AC-coupled drivers allowed the on-chip coupling capacitor to be reduced to 2.1pF, occupying 3 times less area than prior art. The driver introduces capacitively-coupled two-tap emphasis to equalize the VCSEL's optical response. The VCSEL was modulated with an OMA of up to 5.1dBm and an ER of 9dB, measuring an RMS jitter of 5ps at a data rate of 15Gb/s, which represents the highest OMA and ER achieved in high-speed anode-driving LDDs. The driver could be programmed for a low-power mode, outputting 2.3dBm OMA at power consumption of only 30mW, corresponding to an energy efficiency of 2pJ/bit.

  13. Capacitive sensor for high resolution weld seam tracking

    SciTech Connect

    Schmitt, D.J.; Novak, J.L.; Akins, J.L.

    1995-05-01

    A non-contact capacitive sensing system has been developed for guiding automated welding equipment along typical v-groove geometries. The Multi-Axis Seam Tracking (MAST) sensor has been designed to produce four electric fields for locating and measuring the v-groove geometry. In this system, the MAST sensor is coupled with a set of signal conditioning electronics making it possible to output four varying voltages proportional to the electric field perturbations. This output is used for motion control purposes by the automated welding platform to guide the weld torch directly over the center of the v-groove. This report discusses the development of this capacitive sensing system. A functional description of the system and MAST sensor response characteristics for typical weld v-groove geometries are provided. The effects of the harsh thermal and electrical noise environments of plasma arc welding on sensor performance are discussed. A comparison of MAST sensor fabrication from glass-epoxy and thick-film ceramic substrates is provided. Finally, results of v-groove tracking experiments on a robotic welding platform are described.

  14. Effect of various commercial buffers on sperm viability and capacitation.

    PubMed

    Andrisani, Alessandra; Donà, Gabriella; Ambrosini, Guido; Bonanni, Guglielmo; Bragadin, Marcantonio; Cosmi, Erich; Clari, Giulio; Armanini, Decio; Bordin, Luciana

    2014-08-01

    A wide variety of sperm preparation protocols are currently available for assisted conception. They include density gradient separation and washing methods. Both aim at isolating and capacitating as much motile sperm as possible for subsequent oocyte fertilization. The aim of this study was to examine the effects of four commercial sperm washing buffers on sperm viability and capacitation. Semen samples from 48 healthy donors (normal values of sperm count, motility, morphology, and volume) were analyzed. After separation (density gradient 40/80%), sperm were incubated in various buffers then analysed for reactive oxygen species (ROS) production, viability, tyrosine phosphorylation (Tyr-P), cholera toxin B subunit (CTB) labeling, and the acrosome reaction (AR). The buffers affected ROS generation in various ways resulting either in rapid cell degeneration (when the amount of ROS was too high for cell survival) or the inability of the cells to maintain correct functioning (when ROS were too few). Only when the correct ROS generation curve was maintained, suitable membrane reorganization, evidenced by CTB labeling was achieved, leading to the highest percentages of both Tyr-P- and acrosome-reacted-cells. Distinguishing each particular pathological state of the sperm sample would be helpful to select the preferred buffer treatment since both ROS production and membrane reorganization can be significantly altered by commercial buffers.

  15. High capacitance of coarse-grained carbide derived carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; ...

    2016-01-01

    Here, we report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. We synthesized 70–250 μm sized particles with high surface area and a narrow pore size distribution, using a titanium carbide (TiC) precursor. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. Moreover, the material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250–1000 micron thick dense CDC films withmore » up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.« less

  16. High capacitance of coarse-grained carbide derived carbon electrodes

    SciTech Connect

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-01-01

    Here, we report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. We synthesized 70–250 μm sized particles with high surface area and a narrow pore size distribution, using a titanium carbide (TiC) precursor. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. Moreover, the material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250–1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  17. High capacitance of coarse-grained carbide derived carbon electrodes

    NASA Astrophysics Data System (ADS)

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-02-01

    We report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. Using a titanium carbide (TiC) precursor, we synthesized 70-250 μm sized particles with high surface area and a narrow pore size distribution. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. The material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250-1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  18. Fractal simulation of the resistivity and capacitance of arsenic selenide

    SciTech Connect

    Balkhanov, V. K. Bashkuev, Yu. B.

    2010-03-15

    The temperature dependences of the ac resistivity R and ac capacitance C of arsenic selenide were measured more than four decades ago [V. I. Kruglov and L. P. Strakhov, in Problems of Solid State Electronics, Vol. 2 (Leningrad Univ., Leningrad, 1968)]. According to these measurements, the frequency dependences are R {proportional_to} {omega}{sup -0.80{+-}0.01} and {Delta}C {proportional_to} {omega}{sup -0.120{+-}0.006} ({omega} is the circular frequency and {Delta}C is measured from the temperature-independent value C{sub 0}). According to fractal-geometry methods, R {proportional_to} {omega}{sup 1-3/h} and {Delta}C {proportional_to} {omega}{sup -2+3/h}, where h is the walk dimension of the electric current in arsenic selenide. Comparison of the experimental and theoretical results indicates that the walk dimensions calculated from the frequency dependences of resistivity and capacitance are h{sub R} = 1.67 {+-} 0.02 and h{sub C} = 1.60 {+-} 0.08, which are in agreement with each other within the measurement errors. The fractal dimension of the distribution of conducting sections is D = 1/h = 0.6. Since D < 1, the conducting sections are spatially separated and form a Cantor set.

  19. A high-performance digital system for electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Cui, Ziqiang; Wang, Huaxiang; Chen, Zengqiang; Xu, Yanbin; Yang, Wuqiang

    2011-05-01

    This paper describes a recently developed digital-based data acquisition system for electrical capacitance tomography (ECT). The system consists of high-capacity field-programmable gate arrays (FPGA) and fast data conversion circuits together with a specific signal processing method. In this system, digital phase-sensitive demodulation is implemented. A specific data acquisition scheme is employed to deal with residual charges in each measurement, resulting in a high signal-to-noise ratio (SNR) at high excitation frequency. A high-speed USB interface is employed between the FPGA and a host PC. Software in Visual C++ has been developed to accomplish operational functions. Various tests were performed to evaluate the system, e.g. frame rate, SNR, noise level, linearity, and static and dynamic imaging. The SNR is 60.3 dB at 1542 frames s-1 for a 12-electrode sensor. The mean absolute error between the measured capacitance and the linear fit value is 1.6 fF. The standard deviation of the measurements is in the order of 0.1 fF. The dynamic imaging test demonstrates the advantages of high temporal resolution of the system. The experimental results indicate that the digital signal processing devices can be used to construct a high-performance ECT system.

  20. Synthesis of Two-Dimensional Materials for Capacitive Energy Storage

    SciTech Connect

    Mendoza-Sánchez, Beatriz; Gogotsi, Yury

    2016-06-02

    The unique properties and great variety of two-dimensional (2D) nanomaterials make them highly attractive for energy storage applications. Here, an insight into the progress made towards the application of 2D nanomaterials for capacitive energy storage is provided. Moreover, synthesis methods, and electrochemical performance of various classes of 2D nanomaterials, particularly based on graphene, transition metal oxides, dichalcogenides, and carbides, are presented. Some factors that directly influence capacitive performance are discussed throughout the text and include nanosheet composition, morphology and texture, electrode architecture, and device configuration. Recent progress in the fabrication of 2D-nanomaterials-based microsupercapacitors and flexible and free-standing supercapacitors is presented. The main electrode manufacturing techniques with emphasis on scalability and cost-effectiveness are discussed, and include laser scribing, printing, and roll-to-roll manufacture. Some various issues that prevent the use of the full energy-storage potential of 2D nanomaterials and how they have been tackled are discussed, and include nanosheet aggregation and the low electrical conductivity of some 2D nanomaterials. In particular, the design of hybrid and hierarchical 2D and 3D structures based on 2D nanomaterials is presented. Other challenges and opportunities are discussed and include: control of nanosheets size and thickness, chemical and electrochemical instability, and scale-up of electrode films.

  1. Non-contact capacitance based image sensing method and system

    DOEpatents

    Novak, J.L.; Wiczer, J.J.

    1994-01-25

    A system and a method for imaging desired surfaces of a workpiece is described. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device. 18 figures.

  2. Non-contact capacitance based image sensing method and system

    DOEpatents

    Novak, James L.; Wiczer, James J.

    1994-01-01

    A system and a method for imaging desired surfaces of a workpiece. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device.

  3. Non-contact capacitance based image sensing method and system

    DOEpatents

    Novak, J.L.; Wiczer, J.J.

    1995-01-03

    A system and a method is provided for imaging desired surfaces of a workpiece. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device. 18 figures.

  4. Non-contact capacitance based image sensing method and system

    DOEpatents

    Novak, James L.; Wiczer, James J.

    1995-01-01

    A system and a method is provided for imaging desired surfaces of a workpiece. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device.

  5. Macroporous silicon for high-capacitance devices using metal electrodes

    PubMed Central

    2014-01-01

    In this paper, high-capacity energy storage devices based on macroporous silicon are demonstrated. Small footprint devices with large specific capacitances up to 100 nF/mm2, and an absolute capacitance above 15 μF, have been successfully fabricated using standard microelectronics and MEMS techniques. The fabricated devices are suitable for high-density system integration. The use of 3-D silicon structures allows achieving a large surface to volume ratio. The macroporous silicon structures are fabricated by electrochemical etching of silicon. This technique allows creating large structures of tubes with either straight or modulated radial profiles in depth. Furthermore, a very large aspect ratio is possible with this fabrication method. Macroporous silicon grown this way permits well-controlled structure definition with excellent repeatability and surface quality. Additionally, structure geometry can be accurately controlled to meet designer specifications. Macroporous silicon is used as one of the electrodes over which a silicon dioxide insulating layer is grown. Several insulator thicknesses have been tested. The second capacitor electrode is a solid nickel filling of the pores prepared by electroplating in a low-temperature industry standard process. The use of high-conductivity materials allows reaching small equivalent series resistance near 1 Ω. Thanks to these improvements, the presented devices are capable of operating up to 10 kHz. PACS 84.32.Tt; 81.15.Pq; 81.05.Rm PMID:25242906

  6. Capacitated arc routing problem and its extensions in waste collection

    NASA Astrophysics Data System (ADS)

    Fadzli, Mohammad; Najwa, Nurul; Luis, Martino

    2015-05-01

    Capacitated arc routing problem (CARP) is the youngest generation of graph theory that focuses on solving the edge/arc routing for optimality. Since many years, operational research devoted to CARP counterpart, known as vehicle routing problem (VRP), which does not fit to several real cases such like waste collection problem and road maintenance. In this paper, we highlighted several extensions of capacitated arc routing problem (CARP) that represents the real-life problem of vehicle operation in waste collection. By purpose, CARP is designed to find a set of routes for vehicles that satisfies all pre-setting constraints in such that all vehicles must start and end at a depot, service a set of demands on edges (or arcs) exactly once without exceeding the capacity, thus the total fleet cost is minimized. We also addressed the differentiation between CARP and VRP in waste collection. Several issues have been discussed including stochastic demands and time window problems in order to show the complexity and importance of CARP in the related industry. A mathematical model of CARP and its new version is presented by considering several factors such like delivery cost, lateness penalty and delivery time.

  7. Graphene-containing flowable electrodes for capacitive energy storage

    DOE PAGES

    Boota, M.; Hatzell, K. B.; Alhabeb, M.; ...

    2015-04-10

    High conductivity and extended particle contacts are required for rapid charge percolation in flowable electrodes. In this study, carbon spheres (CS) were wrapped by highly conductive reduced graphene oxide sheets (rGO) to address these issues. We synthesized various compositions of the conductive, 3D interconnected hybrid materials (rGO@CS) using the hydrothermal method. Synergistic effects of both materials were utilized where CS served to minimize the sheet stacking for better flowability of the suspensions, and wrapped rGO sheets enabled higher conductivity for fast charge transport throughout the suspension network. When we tested as flowable electrodes, the composition with a 1:2 ratio ofmore » GO to CS exhibited the highest capacitance of 200 F/g and an improved rate performance. Moreover, the improved performance is attributed to the fast charge transport in the suspension network due to higher conductivity and enhanced connectivity of the active material particles. Optimized electrodes were also examined in a flow mode which yielded a capacitance of 45 F/g.« less

  8. Flexible Bond Wire Capacitive Strain Sensor for Vehicle Tyres

    PubMed Central

    Cao, Siyang; Pyatt, Simon; Anthony, Carl J.; Kubba, Ammar I.; Kubba, Ali E.; Olatunbosun, Oluremi

    2016-01-01

    The safety of the driving experience and manoeuvrability of a vehicle can be improved by detecting the strain in tyres. To measure strain accurately in rubber, the strain sensor needs to be flexible so that it does not deform the medium that it is measuring. In this work, a novel flexible bond wire capacitive strain sensor for measuring the strain in tyres is developed, fabricated and calibrated. An array of 25 micron diameter wire bonds in an approximately 8 mm × 8 mm area is built to create an interdigitated structure, which consists of 50 wire loops resulting in 49 capacitor pairs in parallel. Laser machining was used to pattern copper on a flexible printed circuit board PCB to make the bond pads for the wire attachment. The wire array was finally packaged and embedded in polydimethylsiloxane (PDMS), which acts as the structural material that is strained. The capacitance of the device is in a linear like relationship with respect to the strain, which can measure the strain up to at least ±60,000 micro-strain (±6%) with a resolution of ~132 micro-strain (0.013%). In-tyre testing under static loading has shown the ability of the sensor to measure large tyre strains. The technology used for sensor fabrication lends itself to mass production and so the design is considered to be consistent with low cost commercialisable strain sensing technology. PMID:27338402

  9. Capacitated arc routing problem and its extensions in waste collection

    SciTech Connect

    Fadzli, Mohammad; Najwa, Nurul; Luis, Martino

    2015-05-15

    Capacitated arc routing problem (CARP) is the youngest generation of graph theory that focuses on solving the edge/arc routing for optimality. Since many years, operational research devoted to CARP counterpart, known as vehicle routing problem (VRP), which does not fit to several real cases such like waste collection problem and road maintenance. In this paper, we highlighted several extensions of capacitated arc routing problem (CARP) that represents the real-life problem of vehicle operation in waste collection. By purpose, CARP is designed to find a set of routes for vehicles that satisfies all pre-setting constraints in such that all vehicles must start and end at a depot, service a set of demands on edges (or arcs) exactly once without exceeding the capacity, thus the total fleet cost is minimized. We also addressed the differentiation between CARP and VRP in waste collection. Several issues have been discussed including stochastic demands and time window problems in order to show the complexity and importance of CARP in the related industry. A mathematical model of CARP and its new version is presented by considering several factors such like delivery cost, lateness penalty and delivery time.

  10. Synthesis of Two-Dimensional Materials for Capacitive Energy Storage

    DOE PAGES

    Mendoza-Sánchez, Beatriz; Gogotsi, Yury

    2016-06-02

    The unique properties and great variety of two-dimensional (2D) nanomaterials make them highly attractive for energy storage applications. Here, an insight into the progress made towards the application of 2D nanomaterials for capacitive energy storage is provided. Moreover, synthesis methods, and electrochemical performance of various classes of 2D nanomaterials, particularly based on graphene, transition metal oxides, dichalcogenides, and carbides, are presented. Some factors that directly influence capacitive performance are discussed throughout the text and include nanosheet composition, morphology and texture, electrode architecture, and device configuration. Recent progress in the fabrication of 2D-nanomaterials-based microsupercapacitors and flexible and free-standing supercapacitors is presented.more » The main electrode manufacturing techniques with emphasis on scalability and cost-effectiveness are discussed, and include laser scribing, printing, and roll-to-roll manufacture. Some various issues that prevent the use of the full energy-storage potential of 2D nanomaterials and how they have been tackled are discussed, and include nanosheet aggregation and the low electrical conductivity of some 2D nanomaterials. In particular, the design of hybrid and hierarchical 2D and 3D structures based on 2D nanomaterials is presented. Other challenges and opportunities are discussed and include: control of nanosheets size and thickness, chemical and electrochemical instability, and scale-up of electrode films.« less

  11. Single cell electric impedance topography: Mapping membrane capacitance

    PubMed Central

    Dharia, Sameera; Ayliffe, Harold E.

    2010-01-01

    Single-cell electric impedance topography (sceTopo), a technique introduced here, maps the spatial distribution of capacitance (i.e. displacement current) associated with the membranes of isolated, living cells. Cells were positioned in the center of a circular recording chamber surrounded by eight electrodes. Electrodes were evenly distributed on the periphery of the recording chamber. Electric impedance measured between adjacent electrode pairs (10 kHz–5 MHz) was used to construct topographical maps of the spatial distribution of membrane capacitance. Xenopus Oocytes were used as a model cell to develop sceTopo because these cells consist of two visually distinguishable hemispheres, each with distinct membrane composition and structure. Results showed significant differences in the imaginary component of the impedance between the two oocyte hemispheres. In addition, the same circumferential array was used to map the size of the extracellular electrical shunt path around the cell, providing a means to estimate the location and shape of the cell in the recording chamber. PMID:19904403

  12. MOS flat-band capacitance method at low temperatures

    SciTech Connect

    Huang, C.L.; Gildenblat, G.H. . Dept. of Electrical Engineering)

    1989-08-01

    The expression C/sub FB/ = C/sub ox/ x ({element of}/sub si//L/sub D/)/(C/sub ox/ + ({Epsilon}/sub si//L/sub D/)) (where L/sub D/ is the Debye length), commonly used for the flat-band capacitance of the MOS structure, is invalid in the temperature range below 100 {Kappa}. Consequently, significant error may be encountered when the flat-band capacitance method is used to extract the flat-band voltage V/sub FB/, which is of considerable interest for both the modeling and characterization of MOS devices. To extend this method to low-temperature CMOS applications one has to use a more general model that can be obtained by applying Fermi-Dirac statistics and taking into account the impurity freezeout effect. The authors show that when the temperature dependence of V/sub FB/ is extracted using this approach, the experimental data for n/sup +/ polysilicon gate MOS capacitors are in a good agreement with a simple model.

  13. Measurement strategy for rectangular electrical capacitance tomography sensor

    SciTech Connect

    Ye, Jiamin; Ge, Ruihuan; Qiu, Guizhi; Wang, Haigang

    2014-04-11

    To investigate the influence of the measurement strategy for the rectangular electrical capacitance tomography (ECT) sensor, a Finite Element Method (FEM) is utilized to create the model for simulation. The simulation was carried out using COMSOL Multiphysics(trade mark, serif) and Matlab(trade mark, serif). The length-width ratio of the rectangular sensing area is 5. Twelve electrodes are evenly arranged surrounding the pipe. The covering ratio of the electrodes is 90%. The capacitances between different electrode pairs are calculated for a bar distribution. The air of the relative permittivity 1.0 and the material of the permittivity 3.0 are used for the calibration. The relative permittivity of the second phase is 3.0. The noise free and noise data are used for the image reconstruction using the Linear Back Projection (LBP). The measurement strategies with 1-, 2- and 4- electrode excitation are compared using the correlation coefficient. Preliminary results show that the measurement strategy with 2-electrode excitation outperforms other measurement strategies with 1- or 4-electrode excitation.

  14. Design and measurement of improved capacitively-shunted flux qubits

    NASA Astrophysics Data System (ADS)

    Sears, Adam; Birenbaum, Jeffrey; Hover, David; Gudmundsen, Theodore; Kerman, Andrew; Welander, Paul; Yoder, Jonilyn L.; Gustavsson, Simon; Jin, Xiaoyue; Kamal, Archana; Clarke, John; Oliver, William

    2014-03-01

    The addition of a capacitive or inductive shunt across one of the junctions can alter the coherence properties of a classic flux or RF-SQUID qubit. We have studied the performance of capacitively shunted flux qubits fabricated with MBE aluminum, starting from a 2D coplanar waveguide geometry used in similar high-performance transmon qubits, and measured dispersively. We will detail the importance of design parameters that preserve the flux qubit's anharmonicity and discuss conclusions about materials quality based on calculations of the participation of junction, dielectric, and superconductor components. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA); and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract number FA8721-05-C-0002. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI, or the U.S. Government Present address: SLAC National Accelerator Laboratory, Menlo Park, CA.

  15. Redox-tagged peptide for capacitive diagnostic assays.

    PubMed

    Santos, Adriano; Piccoli, Julia P; Santos-Filho, Norival A; Cilli, Eduardo M; Bueno, Paulo R

    2015-06-15

    Early detection assays play a key role in the successful treatment of most diseases. Redox capacitive biosensors were recently introduced as a potential electroanalytical assay platform for point-of-care applications but alternative surfaces (besides a mixed layer containing ferrocene and antibody receptive component) for recruiting important clinical biomarkers are still needed. Aiming to develop alternative receptive surfaces for this novel electrochemical biosensing platform, we synthesized a ferrocene redox-tagged peptide capable of self-assembly into metallic interfaces, a potentially useful biological surface functionalization for bedside diagnostic assays. As a proof of concept we used C-reactive protein (CRP), as a model biomarker, and compared the obtained results to those of previously reported capacitive assays. The redox-tagged peptide approach shows a limit of detection of 0.8 nmol L(-1) (same as 94 ng mL(-1)) and a linear range (R(2)∼98%) with the logarithm of the concentration of the analyte comprising 0.5-10.0 nmol L(-1), within a clinical relevant range for CRP.

  16. Fluid Modeling of a Very High Frequency Capacitively Coupled Reactor

    NASA Astrophysics Data System (ADS)

    Upadhyay, Rochan; Raja, Laxminarayan; Ventzek, Peter; Iwao, Toshihiko; Ishibashi, Kiyotaka; Esgee Technologies Inc. Collaboration; University of Texas at Austin Collaboration; Tokyo Electron Ltd. Collaboration

    2016-09-01

    Very High Frequency Capacitively Coupled Plasma (VHF-CCP) discharges have been studied extensively for semiconductor manufacturing applications for well over a decade. Modeling of these discharges however poses significant challenges owing to complexity associated with simulation of multiple coupled phenomena (electro-static/magnetic fields and plasma physics) over different scales and the representation of these phenomena in a computational framework. We present 2D simulations of a self-consistent plasma with the electromagnetic field represented using vector and scalar potentials. For a range of operating conditions, the ratio of capacitive and inductive power, calculated using empirical correlations available in the literature, are matched by adjusting both the electrostatic and electromagnetic fields in a decoupled manner. We present results using this model that demonstrate most of the important VHF-CCP discharge phenomena reported in the literature, such as electromagnetic wave versus electrostatic heating and its impact on plasma non-uniformity, wave resonances, etc. while realizing a practically feasible computational model.

  17. On the hydrophilicity of electrodes for capacitive energy extraction

    DOE PAGES

    Lian, Cheng; East China Univ. of Science and Technology, Shanghai; Kong, Xian; ...

    2016-09-14

    The so-called Capmix technique for energy extraction is based on the cyclic expansion of electrical double layers to harvest dissipative energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the electrical potentials for the charging and discharging processes, which must be matched with the pore characteristics of the electrode materials. While a number of recent studies have examined the effects of the electrode pore size and geometry on the capacitive energy extraction processes, there is little knowledge on how the surface properties of the electrodes affect the thermodynamic efficiency. In thismore » paper, we investigate the Capmix processes using the classical density functional theory for a realistic model of electrolyte solutions. The theoretical predictions allow us to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different surface hydrophobicity. Finally, in agreement with recent experiments, we find that the thermodynamic efficiency can be much improved by using most hydrophilic electrodes.« less

  18. Electrical Capacitance Volume Tomography with High-Contrast Dielectrics

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2010-01-01

    The Electrical Capacitance Volume Tomography (ECVT) system has been designed to complement the tools created to sense the presence of water in nonconductive spacecraft materials, by helping to not only find the approximate location of moisture but also its quantity and depth. The ECVT system has been created for use with a new image reconstruction algorithm capable of imaging high-contrast dielectric distributions. Rather than relying solely on mutual capacitance readings as is done in traditional electrical capacitance tomography applications, this method reconstructs high-resolution images using only the self-capacitance measurements. The image reconstruction method assumes that the material under inspection consists of a binary dielectric distribution, with either a high relative dielectric value representing the water or a low dielectric value for the background material. By constraining the unknown dielectric material to one of two values, the inverse math problem that must be solved to generate the image is no longer ill-determined. The image resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. The cuboid geometry of the system has two parallel planes of 16 conductors arranged in a 4 4 pattern. The electrode geometry consists of parallel planes of copper conductors, connected through custom-built switch electronics, to a commercially available capacitance to digital converter. The figure shows two 4 4 arrays of electrodes milled from square sections of copper-clad circuit-board material and mounted on two pieces of glass-filled plastic backing, which were cut to approximately square shapes, 10 cm on a side. Each electrode is placed on 2.0-cm centers. The parallel arrays were mounted with the electrode arrays approximately 3 cm apart. The open ends

  19. Etude des Abondances de MG et de fe dans la Composante Stellaire des Disques des Galaxies Spirales

    NASA Astrophysics Data System (ADS)

    Beauchamp, Dominique

    Je presente ici une technique d'observation par imagerie des disques stellaires des galaxies spirales. Je tente, a l'aide d'un modele evolutif multiphase, de determiner les abondances de fer et de magnesium dans les disques. Dans ce but, je mesure les indices Mg2 et Fe5270 du systeme de Lick. Ces elements representent un choix judicieux d'indicateurs car ils sont formes par des supernovae de deux types differents ayant des durees de vie differentes. Le rapport d'abondances de ces deux elements est un indicateur du taux de formation des populations stellaires. Je decris, en premier lieu, les observations, la technique de mesure, ainsi que son application. J'analyse ensuite les indices mesures. A partir du modele multiphase, j'explore differents parametres physiques des spirales comme le taux de formation stellaire, l'evolution des abondances, les effets possibles de la presence de la barre, etc.

  20. Classification of 8 DES Supernova with OzDES

    NASA Astrophysics Data System (ADS)

    King, A.; Moller, A.; Sommer, N. E.; Tucker, B. E.; Childress, M. J.; Lewis, G. F.; Lidman, C.; OâNeill, C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.

    2016-09-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  1. Classification of 17 DES Supernova with OzDES

    NASA Astrophysics Data System (ADS)

    Hoormann, J. K.; Asorey, J.; Carollo, D.; Moller, A.; Sharp, R.; Sommer, N. E.; Tucker, B. E.; Zhang, B.; Lidman, C.; Brout, D. J.; D'Andrea, C.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Macaulay, E.; Nichol, R.; Childress, M.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Gupta, R.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Papadopoulos, A.; Morganson, E.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Yuan, F.; Davis, T. M.; Hinton, S.; Muthukrishna, D.; Parkinson, D.; Lewis, G. F.; Uddin, S.; Kessler, R.; Lasker, J.; Scolnic, D.

    2016-12-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  2. Classification of 13 DES supernova with OzDES

    NASA Astrophysics Data System (ADS)

    Sommer, N.; Tucker, B. E.; Moller, A.; Zhang, B.; Macualay, E.; Lidman, C.; Gshwend, J.; Martini, P.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.

    2016-09-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  3. Classification of 11 DES supernova with OzDES

    NASA Astrophysics Data System (ADS)

    Sharp, R.; Zhang, B.; Sommer, N. E.; Tucker, B. E.; Lidman, C.; Davis, T. M.; Asorey, J.; Mould, J.; Smith, M.; Macaulay, E.; Nichol, R.; Childress, M.; Prajs, S.; Sullivan, M.; Maartens, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Gupta, R.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Papadopoulos, A.; Morganson, E.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Carollo, D.; Moller, A.; Yuan, F.; Hinton, S.; Muthukrishna, D.; Parkinson, D.; Lewis, G. F.; Uddin, S.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; D'Andrea, C.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.

    2017-01-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  4. Classification of 2 DES supernova with OzDES

    NASA Astrophysics Data System (ADS)

    O'Neill, C. R.; Moller, A.; Sommer, N. E.; Tucker, B. E.; Childress, M. J.; Lewis, G. F.; Lidman, C.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; D'Andrea, C.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Macaulay, E.; Nichol, R.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Gupta, R.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Papadopoulos, A.; Morganson, E.

    2016-10-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  5. Classification of 3 DES Supernovae with OzDES

    NASA Astrophysics Data System (ADS)

    Moller, A.; Tucker, B. E.; Yuan, F.; Lewis, G.; Lidman, C.; Macaulay, E.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.

    2016-02-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  6. Classification of 20 DES Supernova with OzDES

    NASA Astrophysics Data System (ADS)

    Davis, T. M.; Kim, A. G.; Macualay, E.; Lidman, C.; Sharp, R.; Tucker, B. E.; Yuan, F.; Zhang, B.; Lewis, G. F.; Sommer, N. E.; Martini, P.; Mould, J.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.

    2015-12-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  7. Classification of 14 DES Supernova with OzDES

    NASA Astrophysics Data System (ADS)

    Tucker, B. E.; Sharp, R.; Yuan, F.; Zhang, B.; Lidman, C.; Davis, T. M.; Hinton, S.; Mould, J.; Smith, R. C.; Schubnell, M.; Kessler, R.; Scolnic, D.; Covarrubias, R. A.; Brout, D. J.; Fischer, J. A.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; D'Andrea, C.; Smith, M.; Sullivan, M.; Childress, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Castander, F. J.; Desai, S.; Paech, K.

    2015-10-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey. The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  8. Classification of 4 DES supernovae by OzDES

    NASA Astrophysics Data System (ADS)

    Glazebrook, K.; Amon, A.; Lidman, C.; Martini, P.; Tucker, B. E.; Yuan, F.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.

    2015-12-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  9. Classification of 6 DES Supernova with OzDES

    NASA Astrophysics Data System (ADS)

    Lewis, G. F.; Mould, J.; Lidman, C.; Tucker, B. E.; Sharp, R.; Yuan, F.; Martini, P.; Kessler, R.; Scolnic, D.; Covarrubias, R. A.; Brout, D. J.; Fischer, J. A.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; D'Andrea, C.; Smith, M.; Sullivan, M.; Childress, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.

    2015-10-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  10. Classification of 15 DES supernovae by OzDES

    NASA Astrophysics Data System (ADS)

    Yuan, F.; Tucker, B. E.; Lidman, C.; Martini, P.; Gshwend, Julia; Moller, A.; Zhang, B.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.

    2015-12-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  11. Classification of 17 DES supernova with OzDES

    NASA Astrophysics Data System (ADS)

    Mudd, D.; Martini, P.; Lewis, G. F.; Moller, A.; Sharp, R. G.; Sommer, N. E.; Tucker, B. E.; Yuan, F.; Zhang, B.; Asorey, J.; Davis, T. M.; Hinton, S.; Muthukrishna, D.; Parkinson, D.; Carnero, A.; King, A.; Lidman, C.; Webb, S.; Uddin, S.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; D'Andrea, C.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Macaulay, E.; Nichol, R.; Childress, M.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Gupta, R.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Papadopoulos, A.; Morganson, E.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.

    2016-11-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  12. Etude du stockage de l'hydrogene sur des nanostructures de carbone microporeuses

    NASA Astrophysics Data System (ADS)

    Poirier, Eric

    2007-12-01

    Le stockage de l'hydrogene par adsorption sur des adsorbants nano-structures a ete etudie sous differentes conditions de pression et de temperature. Les adsorbants etudies sont principalement des nanotubes de carbone a simple paroi ainsi que des structures metallo-organiques. Les mesures ont ete realisees a l'aide de systemes gravimetriques et volumetriques tres sensibles specialement mis au point pour de petits echantillons necessitant un degazage in situ. Les appareils developpes, au nombre de quatre, comprennent deux systemes gravimetriques et deux systemes volumetriques. Ensemble, ces systemes couvrent la plage de pressions (0-100) bars ainsi que la plage de temperatures (77-295) K. Les differentes analyses montrent que l'adsorption d'hydrogene sur les adsorbants nano-structures etudies est maximale a 77 K et varie entre environ (1.5 et 4) % masse. A temperature ambiante, l'adsorption croit lineairement avec la pression et demeure sous les 1% masse pour des pressions inferieures a 100 bars. L'adsorption d'hydrogene sur ces materiaux dans ces conditions se compare notamment a celle obtenue sur des charbons actives. La modelisation de l'adsorption a egalement ete realisee dans des conditions cryogeniques a l'aide du modele de Dubinin-Astakhov sous une forme adaptee pour l'adsorption supercritique. Les enthalpies d'adsorption calculees a partir de ce modele varient sous les 6 kJ/mole et sont donc consistantes avec des processus de physisorption. L'applicabilite du modele de Dubinin-Astakhov suggere que l'adsorption d'hydrogene puisse etre representee par un processus de remplissage des pores par un pseudo-liquide. Ces travaux s'inscrivent dans un contexte ou la capacite d'adsorption reelle des nanostructures de carbone est sujette a la controverse. En consequence, l'approche experimentale adoptee se distingue par les differentes demarches mises de l'avant pour l'obtention de mesures fiables sur des echantillons de faibles masses ainsi que par son caractere

  13. Latina Voices of Des Moines.

    ERIC Educational Resources Information Center

    Taylor, P. Dawn

    This dissertation examines the lives of Hispanic women living in Des Moines and includes their views of problems and opportunities involved in living in that city. Interviews were conducted with 24 Latino women over the age of 17 who had been in the area for over 2 years. Findings indicate that learning to speak English was the single most…

  14. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber; Christopher J. Ziolkowski

    2002-01-25

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain better resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  15. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2003-04-30

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain good resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  16. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2002-10-30

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain good resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  17. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2003-01-31

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain good resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  18. A scaleable technique for the measurement of intrinsic MOS capacitance with atto-farad resolution

    NASA Astrophysics Data System (ADS)

    Iwai, H.; Oristian, J. E.; Walker, J. T.; Dutton, R. W.

    1985-02-01

    An on-chip capacitance measurement technique used for interline capacitances has been extended to MOS transistor capacitance measurements. The gate of the test transistor is connected to a reference capacitance made on the same chip. Small ac signals are applied to one of the transistor terminals successively. The magnitude of the ac voltages appearing on the gate node is measured indirectly. C(gd), C(gs), and C(gb) are calculated accurately from the measured ac voltage and the reference capacitance value. It was found that C(gd) and C(gs) are measured completely free of parasitic capacitances resulting from both the internal on-chip circuit and external wiring. The on-chip circuitry is simple and can easily be scaled down. These features insure this technique is the most suitable for the measurement of minimum geometry transistors with atto-farad-range resolution. It is shown that this technique has the ability to detect the capacitance difference which comes from the misalignment of source and drain metal connections. Measurements with this technique are used to first describe the short- and narrow-channel effects on MOS transistor capacitance.

  19. Polycrystalline VO{sub 2} film characterization by quantum capacitance measurement

    SciTech Connect

    Wu, Zhe; Knighton, Talbot Tarquini, Vinicio; Huang, Jian; Torres, David; Wang, Tongyu; Sepúlveda, Nelson

    2015-09-07

    Capacitance measurement is performed using a home-built bridge on quasi two-dimensional vanadium dioxide films grown on silicon-dioxide/p-doped silicon substrates. Correlated effects appearing in the quantum capacitance are obtained as a function of temperature at low frequencies. The thermodynamic density of states reveals the opening band gap in the insulating monoclinic phase.

  20. Silicon-Neuron Junction: Capacitive Stimulation of an Individual Neuron on a Silicon Chip

    NASA Astrophysics Data System (ADS)

    Fromherz, Peter; Stett, Alfred

    1995-08-01

    An identified nerve cell of the leech is attached to a planar silicon microstructure of p-doped silicon covered by a thin layer of insulating silicon oxide. A voltage step, applied between silicon and electrolyte, induces a capacitive transient in the cell which elicits an action potential. The capacitive extracellular stimulation is described by an equivalent electrical four-pole.

  1. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy.

    PubMed

    Lu, Zhihao; Girguis, Peter; Liang, Peng; Shi, Haifeng; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-07-01

    It is known that cell potential increases while anode resistance decreases during the start-up of microbial fuel cells (MFCs). Biological capacitance, defined as the apparent capacitance attributed to biological activity including biofilm production, plays a role in this phenomenon. In this research, electrochemical impedance spectroscopy was employed to study anode capacitance and resistance during the start-up period of MFCs so that the role of biological capacitance was revealed in electricity generation by MFCs. It was observed that the anode capacitance ranged from 3.29 to 120 mF which increased by 16.8% to 18-20 times over 10-12 days. Notably, lowering the temperature and arresting biological activity via fixation by 4% para formaldehyde resulted in the decrease of biological capacitance by 16.9 and 62.6%, indicating a negative correlation between anode capacitance and anode resistance of MFCs. Thus, biological capacitance of anode should play an important role in power generation by MFCs. We suggest that MFCs are not only biological reactors and/or electrochemical cells, but also biological capacitors, extending the vision on mechanism exploration of electron transfer, reactor structure design and electrode materials development of MFCs.

  2. Room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure.

    PubMed

    Gao, Weiwei; Khan, Asif; Marti, Xavi; Nelson, Chris; Serrao, Claudy; Ravichandran, Jayakanth; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2014-10-08

    We demonstrate room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure. In epitaxially grown superlattice of ferroelectric BSTO (Ba0.8Sr0.2TiO3) and dielectric LAO (LaAlO3), capacitance was found to be larger compared to the constituent LAO (dielectric) capacitance. This enhancement of capacitance in a series combination of two capacitors indicates that the ferroelectric was stabilized in a state of negative capacitance. Negative capacitance was observed for superlattices grown on three different substrates (SrTiO3 (001), DyScO3 (110), and GdScO3 (110)) covering a large range of substrate strain. This demonstrates the robustness of the effect as well as potential for controlling the negative capacitance effect using epitaxial strain. Room-temperature demonstration of negative capacitance is an important step toward lowering the subthreshold swing in a transistor below the intrinsic thermodynamic limit of 60 mV/decade and thereby improving energy efficiency.

  3. L'astronomie des Anciens

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël

    2009-04-01

    Quelle que soit la civilisation à laquelle il appartient, l'être humain cherche dans le ciel des réponses aux questions qu'il se pose sur son origine, son avenir et sa finalité. Le premier mérite de ce livre est de nous rappeler que l'astronomie a commencé ainsi à travers les mythes célestes imaginés par les Anciens pour expliquer l'ordre du monde et la place qu'ils y occupaient. Mais les savoirs astronomiques passés étaient loin d'être négligeables et certainement pas limités aux seuls travaux des Grecs : c'est ce que l'auteur montre à travers une passionnante enquête, de Stonehenge à Gizeh en passant par Pékin et Mexico, fondée sur l'étude des monuments anciens et des sources écrites encore accessibles. Les tablettes mésopotamiennes, les annales chinoises, les chroniques médiévales, etc. sont en outre d'une singulière utilité pour les astronomes modernes : comment sinon remonter aux variations de la durée du jour au cours des siècles, ou percer la nature de l'explosion qui a frappé tant d'observateurs en 1054 ? Ce livre offre un voyage magnifiquement illustré à travers les âges, entre astronomie et archéologie.

  4. Multistatic Surveillance and Reconnaissance: Sensor, Signals and Data Fusion (Surveillance et Reconnaissance Multistatiques : Fusion des capteurs, des signaux et des donnees)

    DTIC Science & Technology

    2009-04-01

    capteurs , des signaux et des données) Research and Technology Organisation (NATO) BP 25, F-92201 Neuilly-sur-Seine Cedex, France RTO-EN-SET-133...Multistatiques : Fusion des capteurs , des signaux et des données) The material in this publication was assembled to support a Lecture Series under the...Surveillance et Reconnaissance Multistatiques : Fusion des capteurs , des signaux et des données (RTO-EN-SET-133) Synthèse Les systèmes radar

  5. Improved Circuits with Capacitive Feedback for Readout Resistive Sensor Arrays

    PubMed Central

    Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A.; Castellanos-Ramos, Julián; Hidalgo-López, José A.

    2016-01-01

    One of the most suitable ways of distributing a resistive sensor array for reading is an array with M rows and N columns. This allows reduced wiring and a certain degree of parallelism in the implementation, although it also introduces crosstalk effects. Several types of circuits can carry out the analogue-digital conversion of this type of sensors. This article focuses on the use of operational amplifiers with capacitive feedback and FPGAs for this task. Specifically, modifications of a previously reported circuit are proposed to reduce the errors due to the non-idealities of the amplifiers and the I/O drivers of the FPGA. Moreover, calibration algorithms are derived from the analysis of the proposed circuitry to reduce the crosstalk error and improve the accuracy. Finally, the performances of the proposals is evaluated experimentally on an array of resistors and for different ranges. PMID:26821024

  6. Differential Ring Oscillator Based Capacitance Sensor for Microfluidic Applications.

    PubMed

    Mohammad, Kaveh; Thomson, Douglas J

    2017-04-01

    A simple high frequency capacitance sensor with 180 aF sensitivity is designed for a wide range of microfluidic applications. The sensor is implemented utilizing differential ring oscillators operating at [Formula: see text] MHz with a differential signal at [Formula: see text] MHz. The sensor occupies [Formula: see text] cm × 2 cm on a printed circuit board. The sensor is tuned using two precision variable capacitors and has a full scale range of [Formula: see text] pF. The sensor was able to detect less than 1% Isopropyl Alcohol in DI water and to detect 15 μm polystyrene spheres flowing over 25 μm lines and spaces coplanar electrodes in a microfluidic channel. The compact differential ring oscillator based architecture of the design makes it suitable to be integrated into microprocessor based systems for detection in Lab on Chip or Lab on Board applications.

  7. Capacitive Trans-Impedance Amplifier Circuit with Charge Injection Compensation

    NASA Technical Reports Server (NTRS)

    Milkov, Mihail M. (Inventor); Gulbransen, David J. (Inventor)

    2016-01-01

    A capacitive trans-impedance amplifier circuit with charge injection compensation is provided. A feedback capacitor is connected between an inverting input port and an output port of an amplifier. A MOS reset switch has source and drain terminals connected between the inverting input and output ports of the amplifier, and a gate terminal controlled by a reset signal. The reset switch is open or inactive during an integration phase, and closed or active to electrically connect the inverting input port and output port of the amplifier during a reset phase. One or more compensation capacitors are provided that are not implemented as gate oxide or MOS capacitors. Each compensation capacitor has a first port connected to a compensation signal that is a static signal or a toggling compensation signal that toggles between two compensation voltage values, and a second port connected to the inverting input port of the amplifier.

  8. Frequency scanning capaciflector for capacitively determining the material properties

    NASA Technical Reports Server (NTRS)

    Campbell, Charles E. (Inventor)

    1996-01-01

    A capaciflector sensor system scanned in frequency is used to detect the permittivity of the material of an object being sensed. A capaciflector sensor element, coupled to current-measuring voltage follower circuitry, is driven by a frequency swept oscillator and generates an output which corresponds to capacity as a function of the input frequency. This swept frequency information is fed into apparatus e.g. a digital computer for comparing the shape of the capacitance vs. frequency curve against characteristic capacitor vs. frequency curves for a variety of different materials which are stored, for example, in a digital memory of the computer or a database. Using a technique of pattern matching, a determination is made as to the identification of the material. Also, when desirable, the distance between the sensor and the object can be determined.

  9. Electron heating in low pressure capacitive discharges revisited

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-12-01

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  10. A Tagless Indoor Localization System Based on Capacitive Sensing Technology

    PubMed Central

    Ramezani Akhmareh, Alireza; Lazarescu, Mihai Teodor; Bin Tariq, Osama; Lavagno, Luciano

    2016-01-01

    Accurate indoor person localization is essential for several services, such as assisted living. We introduce a tagless indoor person localization system based on capacitive sensing and localization algorithms that can determine the location with less than 0.2 m average error in a 3 m × 3 m room and has recall and precision better than 70%. We also discuss the effects of various noise types on the measurements and ways to reduce them using filters suitable for on-sensor implementation to lower communication energy consumption. We also compare the performance of several standard localization algorithms in terms of localization error, recall, precision, and accuracy of detection of the movement trajectory. PMID:27618049

  11. Scanning capacitance microscopy on ultranarrow doping profiles in Si

    NASA Astrophysics Data System (ADS)

    Giannazzo, F.; Goghero, D.; Raineri, V.; Mirabella, S.; Priolo, F.

    2003-09-01

    Scanning capacitance microscopy (SCM) has been performed both in cross-sectional and in angle-beveling configurations on ultranarrow B spikes with a full width at half-maximum smaller than the SCM probe diameter. The dependence of the SCM response on the magnification factor has been studied, demonstrating an improvement both in terms of spatial resolution and sensitivity by angle-beveling sample preparation. The range of applicability of the direct inversion approach for the quantification of SCM profiles on ultranarrow B spikes has been assessed for high doping spikes thicker than 3 nm and measured on bevel. Two-dimensional simulations allowed the reproduction of all the main features of the experimental SCM profiles.

  12. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors

    NASA Astrophysics Data System (ADS)

    Choi, Changsoon; Kim, Kang Min; Kim, Keon Jung; Lepró, Xavier; Spinks, Geoffrey M.; Baughman, Ray H.; Kim, Seon Jeong

    2016-12-01

    Yarn-based supercapacitors having improved performance are needed for existing and emerging wearable applications. Here, we report weavable carbon nanotube yarn supercapacitors having high performance because of high loadings of rapidly accessible charge storage particles (above 90 wt% MnO2). The yarn electrodes are made by a biscrolling process that traps host MnO2 nanoparticles within the galleries of helically scrolled carbon nanotube sheets, which provide strength and electrical conductivity. Despite the high loading of brittle metal oxide particles, the biscrolled solid-state yarn supercapacitors are flexible and can be made elastically stretchable (up to 30% strain) by over-twisting to produce yarn coiling. The maximum areal capacitance of the yarn electrodes were up to 100 times higher than for previously reported fibres or yarn supercapacitors. Similarly, the energy density of complete, solid-state supercapacitors made from biscrolled yarn electrodes with gel electrolyte coating were significantly higher than for previously reported fibre or yarn supercapacitors.

  13. Electron heating in low pressure capacitive discharges revisited

    SciTech Connect

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-12-15

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  14. A novel heuristic algorithm for capacitated vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Kır, Sena; Yazgan, Harun Reşit; Tüncel, Emre

    2017-02-01

    The vehicle routing problem with the capacity constraints was considered in this paper. It is quite difficult to achieve an optimal solution with traditional optimization methods by reason of the high computational complexity for large-scale problems. Consequently, new heuristic or metaheuristic approaches have been developed to solve this problem. In this paper, we constructed a new heuristic algorithm based on the tabu search and adaptive large neighborhood search (ALNS) with several specifically designed operators and features to solve the capacitated vehicle routing problem (CVRP). The effectiveness of the proposed algorithm was illustrated on the benchmark problems. The algorithm provides a better performance on large-scaled instances and gained advantage in terms of CPU time. In addition, we solved a real-life CVRP using the proposed algorithm and found the encouraging results by comparison with the current situation that the company is in.

  15. A novel design of micromachined capacitive Lamb wave transducers

    NASA Astrophysics Data System (ADS)

    Ge, Lifeng

    2006-11-01

    A new design for micromachined capacitive Lamb wave transducers (mCLWT) has been developed. The design is based on a theoretical TDK model previously developed for groove ultrasonic transducers. By the investigation of the dynamic behavior of a rectangular high aspect ratio diaphragm of the mCLWTs, the second order bending mode of the diaphragm is exploited to excite and detect Lamb wave. The new exiting mechanism can minimize the energy of the acoustic radiation at the normal direction of the diaphragm so as to provide more energy coupled into the Lamb wave in the silicon substrate. Also, the natural frequencies and mode shapes of such a mCLWT can be determined accurately from its geometry and materials used, so the TDK model provides guidance for the optimal design of mCLWTs.

  16. Variable neighbourhood simulated annealing algorithm for capacitated vehicle routing problems

    NASA Astrophysics Data System (ADS)

    Xiao, Yiyong; Zhao, Qiuhong; Kaku, Ikou; Mladenovic, Nenad

    2014-04-01

    This article presents the variable neighbourhood simulated annealing (VNSA) algorithm, a variant of the variable neighbourhood search (VNS) combined with simulated annealing (SA), for efficiently solving capacitated vehicle routing problems (CVRPs). In the new algorithm, the deterministic 'Move or not' criterion of the original VNS algorithm regarding the incumbent replacement is replaced by an SA probability, and the neighbourhood shifting of the original VNS (from near to far by k← k+1) is replaced by a neighbourhood shaking procedure following a specified rule. The geographical neighbourhood structure is introduced in constructing the neighbourhood structures for the CVRP of the string model. The proposed algorithm is tested against 39 well-known benchmark CVRP instances of different scales (small/middle, large, very large). The results show that the VNSA algorithm outperforms most existing algorithms in terms of computational effectiveness and efficiency, showing good performance in solving large and very large CVRPs.

  17. Single-electron capacitance spectroscopy of individual dopants in silicon.

    PubMed

    Gasseller, M; DeNinno, M; Loo, R; Harrison, J F; Caymax, M; Rogge, S; Tessmer, S H

    2011-12-14

    Motivated by recent transport experiments and proposed atomic-scale semiconductor devices, we present measurements that extend the reach of scanned-probe methods to discern the properties of individual dopants tens of nanometers below the surface of a silicon sample. Using a capacitance-based approach, we have both spatially resolved individual subsurface boron acceptors and detected spectroscopically single holes entering and leaving these minute systems of atoms. A resonance identified as the B+ state is shown to shift in energy from acceptor to acceptor. We examine this behavior with respect to nearest-neighbor distances. By directly measuring the quantum levels and testing the effect of dopant-dopant interactions, this method represents a valuable tool for the development of future atomic-scale semiconductor devices.

  18. Improved Circuits with Capacitive Feedback for Readout Resistive Sensor Arrays.

    PubMed

    Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A; Castellanos-Ramos, Julián; Hidalgo-López, José A

    2016-01-25

    One of the most suitable ways of distributing a resistive sensor array for reading is an array with M rows and N columns. This allows reduced wiring and a certain degree of parallelism in the implementation, although it also introduces crosstalk effects. Several types of circuits can carry out the analogue-digital conversion of this type of sensors. This article focuses on the use of operational amplifiers with capacitive feedback and FPGAs for this task. Specifically, modifications of a previously reported circuit are proposed to reduce the errors due to the non-idealities of the amplifiers and the I/O drivers of the FPGA. Moreover, calibration algorithms are derived from the analysis of the proposed circuitry to reduce the crosstalk error and improve the accuracy. Finally, the performances of the proposals is evaluated experimentally on an array of resistors and for different ranges.

  19. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance.

    PubMed

    Xu, Xingtao; Sun, Zhuo; Chua, Daniel H C; Pan, Likun

    2015-06-11

    As water shortage has become a serious global problem, capacitive deionization (CDI) with high energy efficiency and low cost, is considered as a promising desalination technique to solve this problem. To date, CDI electrodes are mainly made up of porous carbon materials. However, the electrosorption performance obtained by now still cannot meet the demand of practical application. Therefore, a rationally designed structure of electrode materials has been an urgent need for CDI application. Here, a novel nitrogen-doped graphene sponge (NGS), with high specific surface area and rationally designed structure was fabricated, and used as CDI electrodes for the first time. The results show that NGS exhibits an ultrahigh electrosorption capacity of 21.0 mg g(-1) in ∼ 500 mg L(-1) NaCl solution, and to our knowledge, it is the highest value reported for carbon electrodes in similar experimental conditions by now. NGS in this work is expected to be a promising candidate as CDI electrode material.

  20. Anomalous capacitance of quantum well double-barrier diodes

    NASA Technical Reports Server (NTRS)

    Boric, Olga; Tolmunen, Timo J.; Kollberg, Erik; Frerking, Margaret A.

    1992-01-01

    The S-parameters of several different quantum well double barrier diodes have been measured. A technique has been developed for measuring whisker contacted diodes with an HP 8510B automatic network analyzer. Special coaxial mounts using K-connectors were designed to enable measurements up to 20 GHz. The voltage-dependent conductance and capacitance were derived from the measured reflection coefficient of each device. The C/V characteristics were observed to exhibit an anomalous increase at voltages corresponding to the negative differential resistance region (NDR). These are the first reported S-parameter measurements in the negative differential resistance region of quantum well double barrier diodes. A theory is presented that explains, in part, the observed results.

  1. Capacitive immunosensor for the detection of host cell proteins.

    PubMed

    Teeparuksapun, Kosin; Hedström, Martin; Kanatharana, Proespichaya; Thavarungkul, Panote; Mattiasson, Bo

    2012-01-01

    A new analysis for monitoring host cell proteins in preparations of transgenically produced protein pharmaceuticals is described. A capacitive biosensor with a very high sensitivity is used to monitor trace amounts of host cell proteins. The sensor consists of a gold electrode, the surface of which is well insulated and on which a preparation of a population of polyclonal antibodies raised against the complete protein set-up of the host cell are immobilized. Host cell proteins are present at very low concentrations during the production of a transgenic protein. The system studied here is a model system with an enzyme expressed in Escherichia coli (E. coli). Due to the high sensitivity, it may even be possible to dilute the samples to be analyzed, thereby reducing a negative influence from non-specific binding to the sensor surface.

  2. Comparison and validation of capacitive accelerometers for health care applications.

    PubMed

    Büsching, Felix; Kulau, Ulf; Gietzelt, Matthias; Wolf, Lars

    2012-05-01

    Fall detection, gait analysis and context recognition are examples of applications where capacitive accelerometers are widely used in health care. In most of the existing work, algorithms were developed for a specific platform and accelerometers were used without explicitly choosing a specific type. With this work we present an inexpensive and practical test setup for replicable and repeatable testing of accelerometers. In addition we use this setup to evaluate six of the most commonly available accelerometers today and list their outcomes for linearity, power consumption and correlation of the tested sensors. We also attempt to an answer to the question of whether applications and algorithms developed for one platform and one type of accelerometer can be easily transferred to another accelerometer.

  3. Singulation for imaging ring arrays of capacitive micromachined ultrasonic transducers.

    PubMed

    Chang, Chienliu; Moini, Azadeh; Nikoozadeh, Amin; Sarioglu, Ali Fatih; Apte, Nikhil; Zhuang, Xuefeng; Khuri-Yakub, Butrus T

    2014-10-01

    Singulation of MEMS is a critical step in the transition from wafer-level to die-level devices. As is the case for capacitive micromachined ultrasound transducer (CMUT) ring arrays, an ideal singulation must protect the fragile membranes from the processing environment while maintaining a ring array geometry. The singulation process presented in this paper involves bonding a trench-patterned CMUT wafer onto a support wafer, deep reactive ion etching (DRIE) of the trenches, separating the CMUT wafer from the support wafer and de-tethering the CMUT device from the CMUT wafer. The CMUT arrays fabricated and singulated in this process were ring-shaped arrays, with inner and outer diameters of 5 mm and 10 mm, respectively. The fabricated CMUT ring arrays demonstrate the ability of this method to successfully and safely singulate the ring arrays and is applicable to any arbitrary 2D shaped MEMS device with uspended microstructures, taking advantage of the inherent planar attributes of DRIE.

  4. Soft capacitive tactile sensing arrays fabricated via direct filament casting

    NASA Astrophysics Data System (ADS)

    Li, Bin; Gao, Yang; Fontecchio, Adam; Visell, Yon

    2016-07-01

    Advances in soft electronics are enabling the development of mechanical sensors that can conform to curved surfaces or soft objects, allowing them to interface seamlessly with the human body. In this paper, we report on intrinsically deformable tactile sensing arrays that achieve a unique combination of high spatial resolution, sensitivity, and mechanical stretchability. The devices are fabricated via a casting process that yields arrays of microfluidic channels in low modulus polymer membranes with thickness as small as one millimeter. Using liquid metal alloy as a conductor, we apply matrix-addressed capacitive sensing in order to resolve spatially distributed strain with millimeter precision over areas of several square centimeters. Due to the use of low-modulus polymers, the devices readily achieve stretchability greater than 500%, making them well suited for novel applications in wearable tactile sensing for biomedical applications.

  5. Characterization of Resistances of a Capacitive Deionization System.

    PubMed

    Qu, Yatian; Baumann, Theodore F; Santiago, Juan G; Stadermann, Michael

    2015-08-18

    Capacitive deionization (CDI) is a promising desalination technology, which operates at low pressure, low temperature, requires little infrastructure, and has the potential to consume less energy for brackish water desalination. However, CDI devices consume significantly more energy than the theoretical thermodynamic minimum, and this is at least partly due to resistive power dissipation. We here report our efforts to characterize electric resistances in a CDI system, with a focus on the resistance associated with the contact between current collectors and porous electrodes. We present an equivalent circuit model to describe resistive components in a CDI cell. We propose measurable figures of merit to characterize cell resistance. We also show that contact pressure between porous electrodes and current collectors can significantly reduce contact resistance. Lastly, we propose and test an alternative electrical contact configuration which uses a pore-filling conductive adhesive (silver epoxy) and achieves significant reductions in contact resistance.

  6. Anomalous capacitance characteristics of TFTs with LDD structures in the saturation region

    NASA Astrophysics Data System (ADS)

    Kim, Miryeon; Sun, Wookyung; Shin, Minho; Kim, Kiwoo; Kang, Jongseuk; Shin, Hyungsoon

    2016-05-01

    The effect of lightly doped drain (LDD) doping concentration on the capacitance of a low-temperature polycrystalline silicon (LTPS) thin-film transistor (TFT) is investigated. An anomalous gate-to-source capacitance phenomenon is observed: first, the capacitance decreases, and then it increases according to the gate voltage in the saturation region. This phenomenon is not affected by the subgap density-of-states and arises as the doping concentration of the LDD region is reduced. To investigate the effects of each source and the drain LDD dose on the gate-to-source capacitance, two-dimensional device simulations were conducted in which each dose of the source and drain LDD was changed individually. The reduced controllability of the source voltage to the gate charge in the saturation region due to the increased resistance of the source LDD region with low LDD dose is identified as the reason for this anomalous capacitance phenomenon.

  7. Capacitance-based assay for real-time monitoring of endocytosis and cell viability.

    PubMed

    Lee, Rimi; Kim, Jihun; Kim, Sook Young; Jang, Seon Mi; Lee, Sun-Mi; Choi, In-Hong; Park, Seung Woo; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2012-07-07

    Label-free cell-based assays have emerged as a promising means for high-throughput screening. Most label-free sensors are based on impedance measurements that reflect the passive electrical properties of cells. Here we introduce a capacitance-based assay that measures the dielectric constant (capacitance) of biological cells, and demonstrate the feasibility of analyzing endocytosis and screening chemotherapeutic agents with this assay. Endocytosis induces a change in the zeta potential, leading to a change in the dielectric constant which enables real-time endocytosis monitoring using the capacitance sensor. Additionally, since the dielectric constant is proportional to cell radius and cell volume, cell viability can be estimated from the change in capacitance. Therefore, the capacitance sensor array can also be used for cytotoxicity testing for large-scale chemotherapeutic screening.

  8. Anomalous capacitance change in low-temperature grown ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Seo, O.; Kim, H.; Jo, J.

    2010-10-01

    We studied capacitance-voltage characteristics of ZnO thin-film transistors (TFT's), grown by metalorganic chemical vapor deposition (MOCVD). We compared two ZnO TFT's: one grown at 450 °C and the other at 350 °C. ZnO grown at 450 °C showed smooth capacitance profile with electron density of 1.5×1020 cm-3. In contrast, ZnO grown at 350 °C showed a capacitance jump when gate voltage was changed to negative voltages. Current-voltage characteristics measured in the two samples did not show much difference. We explain that the capacitance jump is related to p-type ZnO layer formed at the SiO2 interface. Current-voltage and capacitance-voltage data support that our ZnO films have anisotropic conductivity.

  9. A New Fully Differential CMOS Capacitance to Digital Converter for Lab-on-Chip Applications.

    PubMed

    Nabovati, Ghazal; Ghafar-Zadeh, Ebrahim; Mirzaei, Maryam; Ayala-Charca, Giancarlo; Awwad, Falah; Sawan, Mohamad

    2015-06-01

    In this paper, we present a new differential CMOS capacitive sensor for Lab-on-Chip applications. The proposed integrated sensor features a DC-input ΣΔ capacitance to digital converter (CDC) and two reference and sensing microelectrodes integrated on the top most metal layer in 0.35 μm CMOS process. Herein, we describe a readout circuitry with a programmable clocking strategy using a Charge Based Capacitance Measurement technique. The simulation and experimental results demonstrate a high capacitive dynamic range of 100 fF-110 fF, the sensitivity of 350 mV/fF and the minimum detectable capacitance variation of as low as 10 aF. We also demonstrate and discuss the use of this device for environmental applications through various chemical solvents.

  10. Modelling and extraction procedure for gate insulator and fringing gate capacitance components of an MIS structure

    NASA Astrophysics Data System (ADS)

    Tinoco, J. C.; Martinez-Lopez, A. G.; Lezama, G.; Mendoza-Barrera, C.; Cerdeira, A.; Estrada, M.

    2016-07-01

    CMOS technology has been guided by the continuous reduction of MOS transistors used to fabricate integrated circuits. Additionally, the use of high-k dielectrics as well as a metal gate electrode have promoted the development of nanometric MOS transistors. Under this scenario, the proper modelling of the gate capacitance, with the aim of adequately evaluating the dielectric film thickness, becomes challenging for nanometric metal-insulator-semiconductor (MIS) structures due to the presence of extrinsic fringing capacitance components which affect the total gate capacitance. In this contribution, a complete intrinsic-extrinsic model for gate capacitance under accumulation of an MIS structure, together with an extraction procedure in order to independently determine the different capacitance components, is presented. ATLAS finite element simulation has been used to validate the proposed methodology.

  11. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    DOEpatents

    Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.

    2010-11-23

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  12. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.

    PubMed

    Chen, Jian Z; Darhuber, Anton A; Troian, Sandra M; Wagner, Sigurd

    2004-10-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles. The capacitive resolution and time response of the current design is approximately 0.03 pF and 10 ms, respectively, which makes possible a number of sensing functions for nanoliter droplets. These include detection of droplet position, size, composition or percentage water uptake for hygroscopic liquids. Its rapid response time allows measurements of the rate of mass loss in evaporating droplets.

  13. Mass detection using capacitive resonant silicon resonator employing LC resonant circuit technique.

    PubMed

    Kim, Sang-Jin; Ono, Takahito; Esashi, Masayoshi

    2007-08-01

    Capacitive resonant mass sensing using a single-crystalline silicon resonator with an electrical LC oscillator was demonstrated in ambient atmosphere. Using capacitive detection method, the detectable minimum mass of 1 x 10(-14) g was obtained in the self-oscillation of cantilever with a thickness of 250 nm. The noise amplitude of the sensor output corresponds to a vibration amplitude of 0.05 nm(Hz)(0.5) in the frequency domain compared with the actuation signal, which is equivalent to the detectable minimum capacitance variation of 2.4 x 10(-21) F. Using the capacitive detection method, mass/stress induced resonance frequency shift due to the adsorption of ethanol and moist vapor in a pure N(2) gas as a carrier is successfully demonstrated. These results show the high potential of capacitive silicon resonator for high mass/stress-sensitive sensor.

  14. Very large capacitance enhancement in a two-dimensional electron system.

    PubMed

    Li, Lu; Richter, C; Paetel, S; Kopp, T; Mannhart, J; Ashoori, R C

    2011-05-13

    Increases in the gate capacitance of field-effect transistor structures allow the production of lower-power devices that are compatible with higher clock rates, driving the race for developing high-κ dielectrics. However, many-body effects in an electronic system can also enhance capacitance. Onto the electron system that forms at the LaAlO(3)/SrTiO(3) interface, we fabricated top-gate electrodes that can fully deplete the interface of all mobile electrons. Near depletion, we found a greater than 40% enhancement of the gate capacitance. Using an electric-field penetration measurement method, we show that this capacitance originates from a negative compressibility of the interface electron system. Capacitance enhancement exists at room temperature and arises at low electron densities, in which disorder is strong and the in-plane conductance is much smaller than the quantum conductance.

  15. Application of a Fringe Capacitive Sensor to Small-Distance Measurement

    NASA Astrophysics Data System (ADS)

    Wang, Dau-Chung; Chou, Jung-Chuan; Wang, Shih-Ming; Lu, Po-Lun; Liao, Lan-Pin

    2003-09-01

    In this paper, we used a fringe capacitive sensor to measure a short-distance variation of a target. High-precision displacement measurement was carried out based on the small fringing capacitance of the sensor measured. Sensing sensitivity was 38 μV/μm when the measurement was carried out in the distance range from 75 to 150 μm, which is the distance range between the sensor and the target. The sensitivity of the fringing capacitor is affected by its dimension, linewidth, and pattern. A printed circuit board (PCB)-based fabrication process was used to fabricate fringing capacitive sensors of various patterns. A simple and low cost sensing circuit transformed fringing capacitances into voltage output signal, which is also called capacitance-to-voltage (C/V) conversion. We accomplished the short-distance measurement with precision up to a submicron level.

  16. Conductive MOF electrodes for stable supercapacitors with high areal capacitance

    NASA Astrophysics Data System (ADS)

    Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2016-10-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  17. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.

    PubMed

    Sheberla, Dennis; Bachman, John C; Elias, Joseph S; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2017-02-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  18. Experimental and simulation study of capacitively coupled electronegative discharges

    NASA Astrophysics Data System (ADS)

    Derzsi, Aranka

    2016-09-01

    The application of tailored voltage waveforms, generated by using multiple harmonics of a base frequency, for the excitation of capacitive RF discharges has been recently introduced as a new method to control the ion flux and ion energy distribution at the electrodes. In plasma processing of surfaces complex mixtures of electronegative, reactive gases (e.g. CF4, O2) are usually required. Therefore, the question of whether this new approach to control ion properties can be applied efficiently to such systems is of exceptional importance. Here the electron heating and ionization dynamics, the possibilities and limitations of the efficient control of plasma parameters by voltage waveform tailoring in low-pressure capacitively coupled electronegative discharges are presented. The focus is on geometrically symmetric O2 plasmas, which are investigated by PIC/MCC simulations and experimental methods. O2 discharges driven by impulse-type and sawtooth-type voltage waveforms composed of a maximum of four consecutive harmonics are studied. Experimental results on the dc self-bias voltage, as well as the spatiotemporal distribution of the plasma emission are compared with simulation data for a wide range of operating conditions (fundamental driving frequencies of 5 MHz - 15 MHz, at pressures of 50 mTorr - 700 mTorr). Transitions between electron power absorption due to sheath expansion and the drift-ambipolar mode were induced both by changing the number of harmonics or by changing the gas pressure. A good agreement between simulation and experiment is found, which shows that the collision-reaction model for O2 discharges underlying the simulations describes reasonably the complicated chemistry of oxygen plasmas. An investigation of the dependence of the discharge characteristics on the surface destruction coefficient of the O2(a1Δg) singlet metastable molecules revealed the crucial role of these species, which strongly affects the negative ion balance of the plasma.

  19. Cellulose Derived Graphenic Fibers for Capacitive Desalination of Brackish Water.

    PubMed

    Pugazhenthiran, Nalenthiran; Sen Gupta, Soujit; Prabhath, Anupama; Manikandan, Muthu; Swathy, Jakka Ravindran; Raman, V Kalyan; Pradeep, Thalappil

    2015-09-16

    We describe a simple and inexpensive cellulose-derived and layer-by-layer stacked carbon fiber network electrode for capacitive deionization (CDI) of brackish water. The microstructure and chemical composition were characterized using spectroscopic and microscopic techniques; electrochemical/electrical performance was evaluated by cyclic voltammetry and 4-probe electrical conductivity and surface area by Brunauer-Emmett-Teller analysis, respectively. The desalination performance was investigated using a laboratory batch model CDI unit, under fixed applied voltage and varying salt concentrations. Electro-adsorption of NaCl on the graphite reinforced-cellulose (GrC) electrode reached equilibrium quickly (within 90 min) and the adsorbed salts were released swiftly (in 40 min) back into the solution, during reversal of applied potential. X-ray photoelectron spectroscopic studies clearly illustrate that sodium and chloride ions were physisorbed on the negative and positive electrodes, respectively during electro-adsorption. This GrC electrode showed an electro-adsorption capacity of 13.1 mg/g of the electrode at a cell potential of 1.2 V, with excellent recyclability and complete regeneration. The electrode has a high tendency for removal of specific anions, such as fluoride, nitrate, chloride, and sulfate from water in the following order: Cl->NO3->F->SO4(2-). GrC electrodes also showed resistance to biofouling with negligible biofilm formation even after 5 days of incubation in Pseudomonas putida bacterial culture. Our unique cost-effective methodology of layer-by-layer stacking of carbon nanofibers and concurrent reinforcement using graphite provides uniform conductivity throughout the electrode with fast electro-adsorption, rapid desorption, and extended reuse, making the electrode affordable for capacitive desalination of brackish water.

  20. Optimisation des transferts de chaleur dans un systeme de stockage d'hydrogene a base d'alanate de sodium

    NASA Astrophysics Data System (ADS)

    Bhouri, Maha

    Le déploiement des applications de transport basées sur l'hydrogène comme source d'énergie est assujetti à l'identification d'une méthode efficace pour son stockage. En ce qui concerne la voie de stockage solide, les principaux inconvénients sont les faibles propriétés thermiques de l'hydrure, le long temps de chargement du réservoir et sa faible capacité gravimétrique. Dans ce cadre, l'alanate de sodium est choisi comme matériau de référence pour optimiser le fonctionnement d'un système de stockage d'un kilogramme d'hydrogène, en termes d'efficacité thermique et de capacités gravimétrique et volumétrique. Trois configurations ont été considérées en variant la disposition du lit d'hydrure et du fluide de refroidissement ainsi que le choix des échangeurs de chaleur et des structures permettant l'amélioration des propriétés thermiques de ce lit. Le modèle mathématique décrivant les transferts de chaleur et de masse au sein du lit d'hydrure a été résolu avec le logiciel commercial COMSOL Multiphysics® 3.5a. Les résultats numériques nous ont permis de déterminer l'interaction entre les propriétés géométriques des éléments d'échange de chaleur et le taux de stockage d'hydrogène ainsi que sa dépendance des conditions opérationnelles. L'efficacité thermique du système de stockage est déterminée en comparant le taux de stockage d'hydrogène calculé à celui issu du modèle de cinétique et validé avec les données expérimentales. Une fois que la quantité d'hydrogène stocké est optimisée, la contribution des éléments d'échange de chaleur au poids et au volume du réservoir et les capacités gravimétrique et volumétrique des configurations correspondantes sont déterminées et discutées en fonction des critères de sélection fixées par le DOE.

  1. Developpement D'un Modele Climatique Regional: Fizr Simulation des Conditions de Janvier de la Cote Ouest Nord Americaine

    NASA Astrophysics Data System (ADS)

    Goyette, Stephane

    1995-11-01

    Le sujet de cette these concerne la modelisation numerique du climat regional. L'objectif principal de l'exercice est de developper un modele climatique regional ayant les capacites de simuler des phenomenes de meso-echelle spatiale. Notre domaine d'etude se situe sur la Cote Ouest nord americaine. Ce dernier a retenu notre attention a cause de la complexite du relief et de son controle sur le climat. Les raisons qui motivent cette etude sont multiples: d'une part, nous ne pouvons pas augmenter, en pratique, la faible resolution spatiale des modeles de la circulation generale de l'atmosphere (MCG) sans augmenter a outrance les couts d'integration et, d'autre part, la gestion de l'environnement exige de plus en plus de donnees climatiques regionales determinees avec une meilleure resolution spatiale. Jusqu'alors, les MCG constituaient les modeles les plus estimes pour leurs aptitudes a simuler le climat ainsi que les changements climatiques mondiaux. Toutefois, les phenomenes climatiques de fine echelle echappent encore aux MCG a cause de leur faible resolution spatiale. De plus, les repercussions socio-economiques des modifications possibles des climats sont etroitement liees a des phenomenes imperceptibles par les MCG actuels. Afin de circonvenir certains problemes inherents a la resolution, une approche pratique vise a prendre un domaine spatial limite d'un MCG et a y imbriquer un autre modele numerique possedant, lui, un maillage de haute resolution spatiale. Ce processus d'imbrication implique alors une nouvelle simulation numerique. Cette "retro-simulation" est guidee dans le domaine restreint a partir de pieces d'informations fournies par le MCG et forcee par des mecanismes pris en charge uniquement par le modele imbrique. Ainsi, afin de raffiner la precision spatiale des previsions climatiques de grande echelle, nous developpons ici un modele numerique appele FIZR, permettant d'obtenir de l'information climatique regionale valide a la fine echelle spatiale

  2. Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles (Technologies des systemes a commandes actives pour l’amelioration des performances operationnelles des aeronefs militaires, des vehicules terrestres et des vehicules maritimes)

    DTIC Science & Technology

    2001-06-01

    d’améliorer le comportement global des systèmes et des sous- systèmes. Il s’agit de matériaux intelligents, de technologies informatiques, de capteurs ...des servocommandes rapides et fiables, ainsi que des capteurs de fonctionnement fiable même dans des environnements défavorables, et en particulier...des sous-systèmes. Il s’agit de matériaux intelligents, de technologies de fabrication novatrices, de technologies informatiques, de capteurs et de

  3. Signature spectrale des grains interstellaires.

    NASA Astrophysics Data System (ADS)

    Léger, A.

    Notre connaissance de la nature des grains interstellaires reposait sur un nombre très restreint de signatures spectrales dans la courbe d'extinction du milieu interstellaire. Une information considérable est contenue dans les 40 bandes interstellaires diffuses dans le visible, mais reste inexploitée. L'interprétation récente des cinq bandes IR en émission, en terme de molécules d'hydrocarbures aromatiques polycycliques, est développée. Elle permet l'utilisation d'une information spectroscopique comparable, à elle seule, à ce sur quoi était basée jusqu'alors notre connaissance de la matière interstellaire condensée. Différentes implications de cette mise en évidence sont proposées.

  4. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    PubMed

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  5. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation.

    PubMed

    Roa-Espitia, Ana L; Hernández-Rendón, Eva R; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto; Hernández-González, Enrique O

    2016-09-15

    Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca(2+) dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton.

  6. Harvesting capacitive carbon by carbonization of waste biomass in molten salts.

    PubMed

    Yin, Huayi; Lu, Beihu; Xu, Yin; Tang, Diyong; Mao, Xuhui; Xiao, Wei; Wang, Dihua; Alshawabkeh, Akram N

    2014-07-15

    Conversion of waste biomass to value-added carbon is an environmentally benign utilization of waste biomass to reduce greenhouse gas emissions and air pollution caused by open burning. In this study, various waste biomasses are converted to capacitive carbon by a single-step molten salt carbonization (MSC) process. The as-prepared carbon materials are amorphous with oxygen-containing functional groups on the surface. For the same type of waste biomass, the carbon materials obtained in Na2CO3-K2CO3 melt have the highest Brunauer-Emmett-Teller (BET) surface area and specific capacitance. The carbon yield decreases with increasing reaction temperature, while the surface area increases with increasing carbonization temperature. A working temperature above 700 °C is required for producing capacitive carbon. The good dissolving ability of alkaline carbonate molten decreases the yield of carbon from waste biomasses, but helps to produce high surface area carbon. The specific capacitance data confirm that Na2CO3-K2CO3 melt is the best for producing capacitive carbon. The specific capacitance of carbon derived from peanut shell is as high as 160 F g(-1) and 40 μF cm(-2), and retains 95% after 10,000 cycles at a rate of 1 A g(-1). MSC offers a simple and environmentally sound way for transforming waste biomass to highly capacitive carbon as well as an effective carbon sequestration method.

  7. Microfluidic electromanipulation with capacitive detection for the mechanical analysis of cells

    PubMed Central

    Ferrier, G. A.; Hladio, A. N.; Thomson, D. J.; Bridges, G. E.; Hedayatipoor, M.; Olson, S.; Freeman, M. R.

    2008-01-01

    The mechanical behavior of cells offers insight into many aspects of their properties. We propose an approach to the mechanical analysis of cells that uses a combination of electromanipulation for stimulus and capacitance for sensing. To demonstrate this approach, polystyrene spheres and yeast cells flowing in a 25 μm×100 μm microfluidic channel were detected by a perpendicular pair of gold thin film electrodes in the channel, spaced 25 μm apart. The presence of cells was detected by capacitance changes between the gold electrodes. The capacitance sensor was a resonant coaxial radio frequency cavity (2.3 GHz) coupled to the electrodes. The presence of yeast cells (Saccharomyces cerevisiae) and polystyrene spheres resulted in capacitance changes of approximately 10 and 100 attoFarad (aF), respectively, with an achieved capacitance resolution of less than 2 aF in a 30 Hz bandwidth. The resolution is better than previously reported in the literature, and the capacitance changes are in agreement with values estimated by finite element simulations. Yeast cells were trapped using dielectrophoretic forces by applying a 3 V signal at 1 MHz between the electrodes. After trapping, the cells were displaced using amplitude and frequency modulated voltages to produce modulated dielectrophoretic forces. Repetitive displacement and relaxation of these cells was observed using both capacitance and video microscopy. PMID:19693366

  8. Theory of volumetric capacitance of an electric double-layer supercapacitor.

    PubMed

    Skinner, Brian; Chen, Tianran; Loth, M S; Shklovskii, B I

    2011-05-01

    Electric double-layer supercapacitors are a fast-rising class of high-power energy storage devices based on porous electrodes immersed in a concentrated electrolyte or ionic liquid. As yet there is no microscopic theory to describe their surprisingly large capacitance per unit volume (volumetric capacitance) of ~100 F/cm(3), nor is there a good understanding of the fundamental limits on volumetric capacitance. In this paper we present a non-mean-field theory of the volumetric capacitance of a supercapacitor that captures the discrete nature of the ions and the exponential screening of their repulsive interaction by the electrode. We consider analytically and via Monte Carlo simulations the case of an electrode made from a good metal and show that in this case the volumetric capacitance can reach the record values. We also study how the capacitance is reduced when the electrode is an imperfect metal characterized by some finite screening radius. Finally, we argue that a carbon electrode, despite its relatively large linear screening radius, can be approximated as a perfect metal because of its strong nonlinear screening. In this way the experimentally measured capacitance values of ~100 F/cm(3) may be understood.

  9. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation

    PubMed Central

    Roa-Espitia, Ana L.; Hernández-Rendón, Eva R.; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J.; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto

    2016-01-01

    ABSTRACT Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  10. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    PubMed Central

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-il Dan; Ko, Hyoungho

    2015-01-01

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms. PMID:26473877

  11. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2002-07-15

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain good resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  12. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2003-07-29

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain good resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  13. CAPACITIVE TOMOGRAPHY FOR THE LOCATION OF PLASTIC PIPE

    SciTech Connect

    Brian J. Huber

    2002-04-29

    Throughout the utility industry, there is high interest in subsurface imaging of plastic, ceramic, and metallic objects because of the cost, reliability, and safety benefits available in avoiding impacts with the existing infrastructure and in reducing inappropriate excavations. Industry interest in locating plastic pipe has resulted in funding available for the development of technologies that enable this imaging. Gas Technology Institute (GTI) proposes to develop a compact and inexpensive capacitive tomography imaging sensor that takes the form of a flat plate or flexible mat that can be placed on the ground to image objects embedded in the soil. A compact, low-cost sensor that can image objects through soil could be applied to multiple operations and will produce a number of cost savings for the gas industry. In a stand-alone mode, it could be used to survey an area prior to excavation. The technology would improve the accuracy and reliability of any operation that involves excavation by locating or avoiding buried objects. An accurate subsurface image of an area will enable less costly keyhole excavations and other cost-saving techniques. Ground penetrating radar (GPR) has been applied to this area with limited success. Radar requires a high-frequency carrier to be injected into the soil: the higher the frequency, the greater the image resolution. Unfortunately, high-frequency radio waves are more readily absorbed by soil. Also, high-frequency operation raises the cost of the associated electronics. By contrast, the capacitive tomography sensor uses low frequencies with a multiple-element antenna to obtain good resolution. Low-frequency operation lowers the cost of the associated electronics while improving depth of penetration. The objective of this project is to combine several existing techniques in the area of capacitive sensing to quickly produce a demonstrable prototype. The sensor itself will take the form of a flat array of electrodes that can be

  14. Capacitive micromachined ultrasonic transducers with through-wafer interconnects

    NASA Astrophysics Data System (ADS)

    Zhuang, Xuefeng

    Capacitive micromachined ultrasonic transducer (CMUT) is a promising candidate for making ultrasound transducer arrays for applications such as 3D medical ultrasound, non-destructive evaluation and chemical sensing. Advantages of CMUTs over traditional piezoelectric transducers include low-cost batch fabrication, wide bandwidth, and ability to fabricate arrays with broad operation frequency range and different geometric configurations on a single wafer. When incorporated with through-wafer interconnects, a CMUT array can be directly integrated with a front-end integrated circuit (IC) to achieve compact packaging and to mitigate the effects of the parasitic capacitance from the connection cables. Through-wafer via is the existing interconnect scheme for CMUT arrays, and many other types of micro-electro-mechanical system (MEMS) devices. However, to date, no successful through-wafer via fabrication technique compatible with the wafer-bonding method of making CMUT arrays has been demonstrated. The through-wafer via fabrication steps degrade the surface conditions of the wafer, reduce the radius of curvature, thus making it difficult to bond. This work focuses on new through-wafer interconnect techniques that are compatible with common MEMS fabrication techniques, including both surface-micromachining and direct wafer-to-wafer fusion bonding. In this dissertation, first, a through-wafer via interconnect technique with improved characteristics is presented. Then, two implementations of through-wafer trench isolation are demonstrated. The through-wafer trench methods differ from the through-wafer vias in that the electrical conduction is through the bulk silicon instead of the conductor in the vias. In the first implementation, a carrier wafer is used to provide mechanical support; in the second, mechanical support is provided by a silicon frame structure embedded inside the isolation trenches. Both implementations reduce fabrication complexity compared to the through

  15. Capacitive energy storage in nanostructured carbon-electrolyte systems.

    PubMed

    Simon, P; Gogotsi, Y

    2013-05-21

    Securing our energy future is the most important problem that humanity faces in this century. Burning fossil fuels is not sustainable, and wide use of renewable energy sources will require a drastically increased ability to store electrical energy. In the move toward an electrical economy, chemical (batteries) and capacitive energy storage (electrochemical capacitors or supercapacitors) devices are expected to play an important role. This Account summarizes research in the field of electrochemical capacitors conducted over the past decade. Overall, the combination of the right electrode materials with a proper electrolyte can successfully increase both the energy stored by the device and its power, but no perfect active material exists and no electrolyte suits every material and every performance goal. However, today, many materials are available, including porous activated, carbide-derived, and templated carbons with high surface areas and porosities that range from subnanometer to just a few nanometers. If the pore size is matched with the electrolyte ion size, those materials can provide high energy density. Exohedral nanoparticles, such as carbon nanotubes and onion-like carbon, can provide high power due to fast ion sorption/desorption on their outer surfaces. Because of its higher charge-discharge rates compared with activated carbons, graphene has attracted increasing attention, but graphene had not yet shown a higher volumetric capacitance than porous carbons. Although aqueous electrolytes, such as sodium sulfate, are the safest and least expensive, they have a limited voltage window. Organic electrolytes, such as solutions of [N(C2H5)4]BF4 in acetonitrile or propylene carbonate, are the most common in commercial devices. Researchers are increasingly interested in nonflammable ionic liquids. These liquids have low vapor pressures, which allow them to be used safely over a temperature range from -50 °C to at least 100 °C and over a larger voltage window

  16. Fringe Capacitance Correction for a Coaxial Soil Cell

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Schwartz, Robert C.; Lascano, Robert J.; Evett, Steven R.; Green, Tim R.; Wanjura, John D.; Holt, Greg A.

    2011-01-01

    Accurate measurement of moisture content is a prime requirement in hydrological, geophysical and biogeochemical research as well as for material characterization and process control. Within these areas, accurate measurements of the surface area and bound water content is becoming increasingly important for providing answers to many fundamental questions ranging from characterization of cotton fiber maturity, to accurate characterization of soil water content in soil water conservation research to bio-plant water utilization to chemical reactions and diffusions of ionic species across membranes in cells as well as in the dense suspensions that occur in surface films. One promising technique to address the increasing demands for higher accuracy water content measurements is utilization of electrical permittivity characterization of materials. This technique has enjoyed a strong following in the soil-science and geological community through measurements of apparent permittivity via time-domain-reflectometry (TDR) as well in many process control applications. Recent research however, is indicating a need to increase the accuracy beyond that available from traditional TDR. The most logical pathway then becomes a transition from TDR based measurements to network analyzer measurements of absolute permittivity that will remove the adverse effects that high surface area soils and conductivity impart onto the measurements of apparent permittivity in traditional TDR applications. This research examines an observed experimental error for the coaxial probe, from which the modern TDR probe originated, which is hypothesized to be due to fringe capacitance. The research provides an experimental and theoretical basis for the cause of the error and provides a technique by which to correct the system to remove this source of error. To test this theory, a Poisson model of a coaxial cell was formulated to calculate the effective theoretical extra length caused by the fringe capacitance

  17. In-process Measuring of Capacitance Per Unit Length for Single-core Electric Wires

    NASA Astrophysics Data System (ADS)

    Goldshtein, A. E.; Vavilova, G. V.; Mazikov, S. V.

    2016-01-01

    The paper describes technical in-process implementation of the electrical method to measure the electrical capacitance per unit length of a single core electric wire. The basic design values of the electro-capacitive measuring transducer are determined. The impact of changes in water conductivity on measurement results is analyzed. Techniques to offset from the impact of changes in water conductivity on the results of the electrical capacitance per unit length control based on indirect electrical conductivity measurement are considered. An appropriate correction of the conversion function is made.

  18. Approach to nonphotoperturbed differential capacitance measurements: A front-wing cantilever

    NASA Astrophysics Data System (ADS)

    Chang, M. N.; Chen, C. Y.; Huang, W. J.; Cheng, T. C.

    2005-07-01

    We have developed a front-wing (FW) cantilever structure that can significantly suppress photoperturbation effects during scanning capacitance microscopy (SCM) and scanning capacitance spectroscopy (SCS) measurements. The FW cantilever provides an effective shadow area that fully covers the scan region, allowing us to synchronously obtain SCM images and the corresponding topographic images without photoperturbation problems. Nonphotoperturbed differential capacitance characteristics versus tip biases were also obtained for SCS by the use of these FW cantilevers. This means that nonphotoperturbed SCM and SCS measurements can be carried out during the typical SCM operations.

  19. Frequency-dependent quantum capacitance and plasma wave in monolayer transition metal dichalcogenides

    SciTech Connect

    Lam, Kai-Tak; Guo, Jing

    2014-03-10

    Frequency-dependent quantum capacitance C{sub Q} of monolayer transition metal dichalcogenides (TMDs) is computed and compared to that of graphene. It is found that the frequency dependence of C{sub Q} in TMDs differs drastically from that of graphene which has a divergent point. The plasma resonance forms when the quantum capacitance is negative and has the same magnitude as the electrostatic capacitance. The calculation shows that the plasma in TMDs depends on the band-structure-limited velocity, band gap, and doping density, which can be controlled via gate biases. The plasma frequencies of TMDs are in the rage of terahertz useful for various applications.

  20. Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices.

    PubMed

    Krowne, C M; Kirchoefer, S W; Chang, W; Pond, J M; Alldredge, L M B

    2011-03-09

    We show here, using fundamental energy storage relationships for capacitors, that there are severe constraints upon what can be realized utilizing ferroelectric materials as FET dielectrics. A basic equation governing all small signal behavior is derived, a negative capacitance quality factor is defined based upon it, and thousands of carefully measured devices are evaluated. We show that no instance of negative capacitance occurs within our huge database. Furthermore, we demonstrate that highly nonlinear biasing behavior in a series stack could be misinterpreted as giving a negative capacitance.

  1. Transport quantique dans des nanostructures

    NASA Astrophysics Data System (ADS)

    Naud, C.

    2002-09-01

    structure des oscillations de conductance en fonction du flux du champ magnétique de période h/e dont l'amplitude est beaucoup plus importante que celle mesurée sur un réseau carré de même dimension. Cette différence constitue une signature d'un effet de localisation induit par le champ magnétique sur la topologie mathcal{T}3. Pour des valeurs spécifiques du champ magnétique, du fait des interférences destructives Aharonov-Bohm, la propagation des fonctions d'ondes est limitée à un ensemble fini de cellule du réseau appelé cage. De la dépendance en température des oscillations de période h/e mesurées sur le réseau mathcal{T}3 nous avons tiré une longueur caractéristique qui peut être rattachée au périmètre des cages. Un phénomène inattendu fut l'observation, pour des champs magnétiques plus importants, d'un doublement de fréquence des oscillations. Ces oscillations de période h/2e pouvant avoir une amplitude supérieure aux oscillations de période h/e, une interprétation en terme d'harmonique n'est pas possible. Enfin, l'influence de la largeur électrique des fils constituant le réseau et donc celle du nombre de canaux par brin a été étudiée en réalisant des grilles électrostatique. Les variations de l'amplitude des signaux en h/e et h/2e en fonction de la tension de grille ont été mesurés.

  2. Impact de la preparation des anodes crues et des conditions de cuisson sur la fissuration dans des anodes denses

    NASA Astrophysics Data System (ADS)

    Amrani, Salah

    La fabrication de l'aluminium est realisee dans une cellule d'electrolyse, et cette operation utilise des anodes en carbone. L'evaluation de la qualite de ces anodes reste indispensable avant leur utilisation. La presence des fissures dans les anodes provoque une perturbation du procede l'electrolyse et une diminution de sa performance. Ce projet a ete entrepris pour determiner l'impact des differents parametres de procedes de fabrication des anodes sur la fissuration des anodes denses. Ces parametres incluent ceux de la fabrication des anodes crues, des proprietes des matieres premieres et de la cuisson. Une recherche bibliographique a ete effectuee sur tous les aspects de la fissuration des anodes en carbone pour compiler les travaux anterieurs. Une methodologie detaillee a ete mise au point pour faciliter le deroulement des travaux et atteindre les objectifs vises. La majorite de ce document est reservee pour la discussion des resultats obtenus au laboratoire de l'UQAC et au niveau industriel. Concernant les etudes realisees a l'UQAC, une partie des travaux experimentaux est reservee a la recherche des differents mecanismes de fissuration dans les anodes denses utilisees dans l'industrie d'aluminium. L'approche etait d'abord basee sur la caracterisation qualitative du mecanisme de la fissuration en surface et en profondeur. Puis, une caracterisation quantitative a ete realisee pour la determination de la distribution de la largeur de la fissure sur toute sa longueur, ainsi que le pourcentage de sa surface par rapport a la surface totale de l'echantillon. Cette etude a ete realisee par le biais de la technique d'analyse d'image utilisee pour caracteriser la fissuration d'un echantillon d'anode cuite. L'analyse surfacique et en profondeur de cet echantillon a permis de voir clairement la formation des fissures sur une grande partie de la surface analysee. L'autre partie des travaux est basee sur la caracterisation des defauts dans des echantillons d'anodes crues

  3. High precision capacitive beam phase probe for KHIMA project

    NASA Astrophysics Data System (ADS)

    Hwang, Ji-Gwang; Yang, Tae-Keun; Forck, Peter

    2016-11-01

    In the medium energy beam transport (MEBT) line of KHIMA project, a high precision beam phase probe monitor is required for a precise tuning of RF phase and amplitude of Radio Frequency Quadrupole (RFQ) accelerator and IH-DTL linac. It is also used for measuring a kinetic energy of ion beam by time-of-flight (TOF) method using two phase probes. The capacitive beam phase probe has been developed. The electromagnetic design of the high precision phase probe was performed to satisfy the phase resolution of 1° (@200 MHz). It was confirmed by the test result using a wire test bench. The measured phase accuracy of the fabricated phase probe is 1.19 ps. The pre-amplifier electronics with the 0.125 ∼ 1.61 GHz broad-band was designed and fabricated for amplifying the signal strength. The results of RF frequency and beam energy measurement using a proton beam from the cyclotron in KIRAMS is presented.

  4. Hind-limb vascular-capacitance responses in anaesthetized dogs.

    PubMed Central

    Hainsworth, R; Karim, F; McGregor, K H; Wood, L M

    1983-01-01

    In anaesthetized dogs a hind limb was vascularly isolated, perfused through the femoral artery at either constant flow or constant pressure and drained from the femoral vein at constant pressure. Inflow and outflow were recorded. Vascular-resistance changes were calculated from changes in pressure or flow and volume changes from the differences between inflow and outflow. During constant-flow perfusion, both changes in carotid sinus pressure and direct stimulation of efferent sympathetic nerves resulted in large resistance responses. However, changes in carotid sinus pressure did not result in changes in limb blood volume and only small decreases were obtained in response to direct stimulation. During constant-pressure perfusion, both reflex and direct stimulation resulted not only in significant changes in resistance but also in significant volume changes which were much larger than those obtained during constant-flow perfusion. Similar responses were obtained when the flow rate was changed by altering the pump speed. These results indicate that changes in pressure to carotid baroreceptors do not result in active capacitance responses in the limb circulation and that only very small responses are obtained even to electrical stimulation of sympathetic nerves. The larger responses occurring during constant-pressure perfusion are thought to be secondary to changes in blood flow. PMID:6875939

  5. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1995-10-17

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  6. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1995-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  7. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1996-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  8. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1996-08-13

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  9. A sensitive DNA capacitive biosensor using interdigitated electrodes.

    PubMed

    Wang, Lei; Veselinovic, Milena; Yang, Lang; Geiss, Brian J; Dandy, David S; Chen, Tom

    2017-01-15

    This paper presents a label-free affinity-based capacitive biosensor using interdigitated electrodes. Using an optimized process of DNA probe preparation to minimize the effect of contaminants in commercial thiolated DNA probe, the electrode surface was functionalized with the 24-nucleotide DNA probes based on the West Nile virus sequence (Kunjin strain). The biosensor has the ability to detect complementary DNA fragments with a detection limit down to 20 DNA target molecules (1.5aM range), making it suitable for a practical point-of-care (POC) platform for low target count clinical applications without the need for amplification. The reproducibility of the biosensor detection was improved with efficient covalent immobilization of purified single-stranded DNA probe oligomers on cleaned gold microelectrodes. In addition to the low detection limit, the biosensor showed a dynamic range of detection from 1µL(-1) to 10(5)µL(-1) target molecules (20 to 2 million targets), making it suitable for sample analysis in a typical clinical application environment. The binding results presented in this paper were validated using fluorescent oligomers.

  10. Scanning capacitance detection and charge trapping in NOS

    NASA Astrophysics Data System (ADS)

    Terris, Bruce D.; Barrett, Rick; Mamin, H. Jonathon

    1993-06-01

    Charge trapping in thin films of silicon nitride has long been studied for use as a non-volatile semiconductor memory. Recently, this technology has been combined with scanned probe technologies with the sharp probe tip serving as the upper electrode in a Si3N4- SiO2Si (NOS) structure. By applying a voltage pulse between the tip and silicon substrate, charge carriers can be made to tunnel through the oxide and be trapped in the nitride. This trapped charge causes a shift in the capacitance-voltage curve along the voltage axis; the voltage at which depletion occurs is increased. It has been proposed that such a system could be used as a high density data storage device. We have begun to explore some of the issues related to such an application, including data lifetime and data rates. In thermally accelerated life tests, no sign of charge spreading was seen after 100 days at 150 degree(s)C and from the rate of charge decay we would predict room temperature lifetimes in excess of 1 million years. We have also used an air-bearing spindle to conduct high speed measurements on a spinning NOS sample and obtained data rates as high as 500 kHz with carrier-to-noise ratios of approximately 60 dB in a 3 kHz bandwidth.

  11. Comment on 'Sheath model for dual-frequency capacitive discharges'

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Cong; Pu, Yi-Kang

    2015-07-01

    Boyle et al (2004 J. Phys. D: Appl. Phys. 37 1451) introduced a sheath model for dual-frequency capacitive discharges. The electron sheath edge position s and the dc potential Φdc in the sheath are obtained with the assumption α/β  >> 1 (where α/β is the ratio of the low-frequency electric field to the high-frequency electric field). However, α/β  ≤  4 is usually found in processing applications. Under this condition, we show that the Boyle et al model gives multiple values for the dc potential Φdc(x) at any given position x in the sheath. For this reason, we introduce a model without the assumption α/β  >> 1. By comparing the results from the two models, it is found that, as the ratio α/β approaches 1, the sheath thickness sm and the sheath dc voltage Vdc obtained with the Boyle et al model are significantly underestimated.

  12. A surface-micromachined capacitive microphone with improved sensitivity

    NASA Astrophysics Data System (ADS)

    Je, Chang Han; Lee, Jaewoo; Yang, Woo Seok; Kim, Jongdae; Cho, Young-Ho

    2013-05-01

    We present a surface-micromachined capacitive microphone with a membrane center hole and back-plate supports. The proposed membrane center hole reduces air damping at the center of the membrane and increases the sensitivity and frequency response. The back-plate supports allow for a deep back-chamber and prevent deformation of the back-plate. The proposed microelectromechanical-system (MEMS) microphone is fabricated using fully CMOS-compatible processes. The fabricated MEMS microphone has a membrane 500 µm in diameter and a center hole 30 µm in diameter. A deep back-chamber with a depth of 100 µm is formed by the back-plate supporting structures. During fabrication, the residual stress of the membrane is minimized using PECVD silicon nitride inserted in the metal membrane. The measured residual stress of the sensing membrane is 14.8 MPa. Acoustic measurements show that the sensitivity of the microphone is -49.1 dBV Pa-1 @1 kHz at a 12 V dc bias voltage, which is in good agreement with the calculated value.

  13. Mutual capacitance of liquid conductors in deformable tactile sensing arrays

    SciTech Connect

    Li, Bin; Fontecchio, Adam K.; Visell, Yon

    2016-01-04

    Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.

  14. Exploitation of capacitive micromachined transducers for nonlinear ultrasound imaging.

    PubMed

    Novell, Anthony; Legros, Mathieu; Felix, Nicolas; Bouakaz, Ayache

    2009-12-01

    Capacitive micromachined ultrasonic transducers (CMUTs) present advantages such as wide frequency bandwidth, which could be further developed for nonlinear imaging. However, the driving electrostatic force induces a nonlinear behavior of the CMUT, thus generating undesirable harmonic components in the generated acoustic signal. Consequently, the use of CMUT for harmonic imaging (with or without contrast agents) becomes challenging. This paper suggests 2 compensation approaches, linear and nonlinear methods, to cancel unwanted nonlinear components. Furthermore, nonlinear responses from contrast agent were evaluated using CMUT in transmit before and after compensation. The results were compared with those obtained using a PZT transducer in transmit. Results showed that CMUT nonlinear behavior is highly influenced by the excitation to bias voltage ratio. Measurements of output pressure very close to the CMUT surface allow the estimation of optimal parameters for each compensation approach. Both methods showed a harmonic reduction higher than 20 dB when one element or several elements are excited. In addition, the study demonstrates that nonlinear approach seems to be more efficient because it is shown to be less sensitive to interelement variability and further avoids fundamental component deterioration. The results from contrast agent measurements showed that the responses obtained using CMUT elements in transmit with compensation were similar to those from PZT transducer excitation. This experimental study demonstrates the opportunity to use CMUT with traditional harmonic contrast imaging techniques.

  15. Capacitance-Voltage Measurement of Transporting Function at Cell Membrane

    NASA Astrophysics Data System (ADS)

    Sakata, Toshiya; Miyahara, Yuji

    In this paper, we report the detection of transporting function at cell membrane using capacitance-voltage (CV) measurement. The detection principle of our devices is based on the field-effect of electrostatic interaction between charged species at cell membrane in solution and surface electrons in silicon crystal through the gate insulator of Si3N4/SiO2 thin double-layer. We designed an oocyte-based field-effect capacitor, on which a Xenopus laevis oocyte was fixed. The transporter of human organic anion transporting peptide C (hOATP-C) was expressed at oocyte membrane by induction of cRNA. The electrical phenomena such as ion or molecular charge flux at the interface between cell membrane and gate surface could be detected as the change of flat band voltage in CV characteristics. The flat band voltage shift decreased with incubation time after introduction of substrate into the oocyte-based field-effect capacitor. The electrical signal is due to the change of charge flux from the oocyte at the gate surface inspired by transporter-substrate binding. The platform based on the oocyte-based field-effect capacitor is suitable for a simple and non-invasive detection system in order to analyze function of transporters related to drug efficacy.

  16. Transport of sputtered particles in capacitive sputter sources

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Mussenbrock, Thomas

    2015-07-01

    The transport of sputtered aluminum inside a multi frequency capacitively coupled plasma chamber is simulated by means of a kinetic test multi-particle approach. A novel consistent set of scattering parameters obtained for a modified variable hard sphere collision model is presented for both argon and aluminum. An angular dependent Thompson energy distribution is fitted to results from Monte Carlo simulations and used for the kinetic simulation of the transport of sputtered aluminum. For the proposed configuration, the transport of sputtered particles is characterized under typical process conditions at a gas pressure of p = 0.5 Pa. It is found that—due to the peculiar geometric conditions—the transport can be understood in a one dimensional picture, governed by the interaction of the imposed and backscattered particle fluxes. It is shown that the precise geometric features play an important role only in proximity to the electrode edges, where the effect of backscattering from the outside chamber volume becomes the governing mechanism.

  17. Capacitive, deionization with carbon aerogel electrodes: Carbonate, sulfate, and phosphate

    SciTech Connect

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-07-24

    A process for the capacitive deionization (CDI) of water with a stack of carbon aerogel electrodes has been developed by Lawrence Livermore National Laboratory. Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system. Electricity is used instead. Water with various anions and cations is pumped through the electrochemical cell. After polarization, ions are electrostatically removed from the water and held in the electric double layers formed at the surfaces of electrodes. The water leaving the cell is purified, as desired. The effects of cell voltage on the electrosorption capacities for Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4}, and Na{sub 2}CO{sub 3} have been investigated and are reported here. Results for NaCl and NaNO{sub 3} have been reported previously. Possible applications for CDI are as a replacement for ion exchange processes which remove heavy metals and radioisotopes from process and waste water in various industries, as well as to remove inorganic ions from feedwater for fossil and nuclear power plants.

  18. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors

    PubMed Central

    Choi, Changsoon; Kim, Kang Min; Kim, Keon Jung; Lepró, Xavier; Spinks, Geoffrey M.; Baughman, Ray H.; Kim, Seon Jeong

    2016-01-01

    Yarn-based supercapacitors having improved performance are needed for existing and emerging wearable applications. Here, we report weavable carbon nanotube yarn supercapacitors having high performance because of high loadings of rapidly accessible charge storage particles (above 90 wt% MnO2). The yarn electrodes are made by a biscrolling process that traps host MnO2 nanoparticles within the galleries of helically scrolled carbon nanotube sheets, which provide strength and electrical conductivity. Despite the high loading of brittle metal oxide particles, the biscrolled solid-state yarn supercapacitors are flexible and can be made elastically stretchable (up to 30% strain) by over-twisting to produce yarn coiling. The maximum areal capacitance of the yarn electrodes were up to 100 times higher than for previously reported fibres or yarn supercapacitors. Similarly, the energy density of complete, solid-state supercapacitors made from biscrolled yarn electrodes with gel electrolyte coating were significantly higher than for previously reported fibre or yarn supercapacitors. PMID:27976668

  19. A Novel Single-Excitation Capacitive Angular Position Sensor Design

    PubMed Central

    Hou, Bo; Zhou, Bin; Song, Mingliang; Lin, Zhihui; Zhang, Rong

    2016-01-01

    This paper presents a high-precision capacitive angular position sensor (CAPS). The CAPS is designed to be excited by a single voltage to eliminate the matching errors of multi-excitations, and it is mainly composed of excitation electrodes, coupling electrodes, petal-form sensitive electrodes and a set of collection electrodes. A sinusoidal voltage is applied on the excitation electrodes, then the voltage couples to the coupling electrodes and sensitive electrodes without contact. The sensitive electrodes together with the set of collection electrodes encode the angular position to amplitude-modulated signals, and in order to increase the scale factor, the sensitive electrodes are patterned in the shape of petal-form sinusoidal circles. By utilizing a resolver demodulation method, the amplitude-modulated signals are digitally decoded to get the angular position. A prototype of the CAPS is fabricated and tested. The measurement results show that the accuracy of the sensor is 0.0036°, the resolution is 0.0009° and the nonlinearity over the full range is 0.008° (after compensation), indicating that the CAPS has great potential to be applied in high-precision applications with a low cost. PMID:27483278

  20. A simple capacitive method to evaluate ethanol fuel samples

    NASA Astrophysics Data System (ADS)

    Vello, Tatiana P.; de Oliveira, Rafael F.; Silva, Gustavo O.; de Camargo, Davi H. S.; Bufon, Carlos C. B.

    2017-02-01

    Ethanol is a biofuel used worldwide. However, the presence of excessive water either during the distillation process or by fraudulent adulteration is a major concern in the use of ethanol fuel. High water levels may cause engine malfunction, in addition to being considered illegal. Here, we describe the development of a simple, fast and accurate platform based on nanostructured sensors to evaluate ethanol samples. The device fabrication is facile, based on standard microfabrication and thin-film deposition methods. The sensor operation relies on capacitance measurements employing a parallel plate capacitor containing a conformational aluminum oxide (Al2O3) thin layer (15 nm). The sensor operates over the full range water concentration, i.e., from approximately 0% to 100% vol. of water in ethanol, with water traces being detectable down to 0.5% vol. These characteristics make the proposed device unique with respect to other platforms. Finally, the good agreement between the sensor response and analyses performed by gas chromatography of ethanol biofuel endorses the accuracy of the proposed method. Due to the full operation range, the reported sensor has the technological potential for use as a point-of-care analytical tool at gas stations or in the chemical, pharmaceutical, and beverage industries, to mention a few.

  1. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance

    NASA Astrophysics Data System (ADS)

    Xu, Xingtao; Sun, Zhuo; Chua, Daniel H. C.; Pan, Likun

    2015-06-01

    As water shortage has become a serious global problem, capacitive deionization (CDI) with high energy efficiency and low cost, is considered as a promising desalination technique to solve this problem. To date, CDI electrodes are mainly made up of porous carbon materials. However, the electrosorption performance obtained by now still cannot meet the demand of practical application. Therefore, a rationally designed structure of electrode materials has been an urgent need for CDI application. Here, a novel nitrogen-doped graphene sponge (NGS), with high specific surface area and rationally designed structure was fabricated, and used as CDI electrodes for the first time. The results show that NGS exhibits an ultrahigh electrosorption capacity of 21.0 mg g-1 in ˜500 mg L-1 NaCl solution, and to our knowledge, it is the highest value reported for carbon electrodes in similar experimental conditions by now. NGS in this work is expected to be a promising candidate as CDI electrode material.

  2. Mesoporous Carbon for Capacitive Deionization of Saline Water

    SciTech Connect

    Tsouris, Costas; Mayes, Richard T; Kiggans, Jim; Sharma, Ms. Ketki; Yiacoumi, Sotira; DePaoli, David W; Dai, Sheng

    2011-01-01

    Self-assembled mesoporous carbon (MC) materials have been synthesized and tested for application in capacitive deionization (CDI) of saline water. MC was prepared by self-assembly of a triblock copolymer with hydrogen-bonded chains via a phenolic resin, such as resorcinol or phloroglucinol in acidic conditions, followed by carbonization and, in some cases, activation by KOH. Carbon synthesized in this way was ground into powder, from which activated MC sheets were produced. In a variation of this process, after the reaction of triblock copolymer with resorcinol or phloroglucinol, the gel that was formed was used to coat a graphite plate and then carbonized. The coated graphite plate in this case was not activated and was tested to serve as current collector during the CDI process. The performance of these MC materials was compared to that of carbon aerogel for salt concentrations ranging between 1000 ppm and 35,000 ppm. Resorcinol-based MC removed up to 15.2 mg salt per gram of carbon, while carbon aerogel removed 5.8 mg salt per gram of carbon. Phloroglucinol-based MC-coated graphite exhibited the highest ion removal capacity at 21 mg of salt per gram of carbon for 35,000 ppm salt concentration.

  3. Three-dimensional model of magnetized capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid; Kenney, Jason; Collins, Ken

    2009-05-01

    A three-dimensional plasma model is used to understand the characteristics of magnetized capacitively coupled plasma discharges. The simulations consider plasmas generated using high frequency (13.5 MHz) and very high frequency (162 MHz) sources, electropositive (Ar) and electronegative (O2) gases, and spatially uniform and nonuniform magnetic fields. Application of a magnetic field parallel to the electrodes is found to enhance the plasma density due to improved electron confinement and shift the plasma due to the E ×B drift. The plasma is electrically symmetric at 162 MHz so it drifts in opposite directions adjacent to the two electrodes due to the E ×B drift. On the other hand, the 13.5 MHz plasma is electrically asymmetric and it predominantly moves in one direction under the influence of the E ×B drift. The E ×B drift focuses the plasma into a smaller volume in regions with convex magnetic field lines. Conversely, the E ×B drift spreads out the plasma in regions with concave magnetic field lines. In a magnetized O2 plasma, the overall plasma is found to move in one direction due to the E ×B drift while the plasma interior moves in the opposite direction. This behavior is linked to the propensity of negative ions to reside in regions of peak plasma potential, which moves closer to the chamber center opposite to the E ×B drift direction.

  4. A simple capacitive method to evaluate ethanol fuel samples

    PubMed Central

    Vello, Tatiana P.; de Oliveira, Rafael F.; Silva, Gustavo O.; de Camargo, Davi H. S.; Bufon, Carlos C. B.

    2017-01-01

    Ethanol is a biofuel used worldwide. However, the presence of excessive water either during the distillation process or by fraudulent adulteration is a major concern in the use of ethanol fuel. High water levels may cause engine malfunction, in addition to being considered illegal. Here, we describe the development of a simple, fast and accurate platform based on nanostructured sensors to evaluate ethanol samples. The device fabrication is facile, based on standard microfabrication and thin-film deposition methods. The sensor operation relies on capacitance measurements employing a parallel plate capacitor containing a conformational aluminum oxide (Al2O3) thin layer (15 nm). The sensor operates over the full range water concentration, i.e., from approximately 0% to 100% vol. of water in ethanol, with water traces being detectable down to 0.5% vol. These characteristics make the proposed device unique with respect to other platforms. Finally, the good agreement between the sensor response and analyses performed by gas chromatography of ethanol biofuel endorses the accuracy of the proposed method. Due to the full operation range, the reported sensor has the technological potential for use as a point-of-care analytical tool at gas stations or in the chemical, pharmaceutical, and beverage industries, to mention a few. PMID:28240312

  5. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance

    PubMed Central

    Xu, Xingtao; Sun, Zhuo; Chua, Daniel H. C.; Pan, Likun

    2015-01-01

    As water shortage has become a serious global problem, capacitive deionization (CDI) with high energy efficiency and low cost, is considered as a promising desalination technique to solve this problem. To date, CDI electrodes are mainly made up of porous carbon materials. However, the electrosorption performance obtained by now still cannot meet the demand of practical application. Therefore, a rationally designed structure of electrode materials has been an urgent need for CDI application. Here, a novel nitrogen-doped graphene sponge (NGS), with high specific surface area and rationally designed structure was fabricated, and used as CDI electrodes for the first time. The results show that NGS exhibits an ultrahigh electrosorption capacity of 21.0 mg g−1 in ∼500 mg L−1 NaCl solution, and to our knowledge, it is the highest value reported for carbon electrodes in similar experimental conditions by now. NGS in this work is expected to be a promising candidate as CDI electrode material. PMID:26063676

  6. Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Lu, Yijia; Ji, Linhong; Cheng, Jia

    2016-12-01

    Dual-electrode capacitively coupled plasma discharges are investigated here to lower the non-uniformity of plasma density. The dual-electrode structure proposed by Jung splits the electrode region and increases the flexibility of fine tuning non-uniformity. Different RF voltages, frequencies, phase-shifts and electrode areas are simulated and the influences are discussed. RF voltage and electrode area have a non-monotonic effect on non-uniformity, while frequency has a monotonic effect. Phase-shift has a cyclical influence on non-uniformity. A special combination of 224 V voltage and 11% area ratio with 10 MHz lowers the non-uniformity of the original set (200 V voltage and 0% area ratio with 10 MHz) by 46.5%. The position of the plasma density peak at the probe line has been tracked and properly tuning the phase-shift can obtain the same trace as tuning frequency or voltage. supported by National Natural Science Foundation of China (No. 51405261)

  7. General heuristics algorithms for solving capacitated arc routing problem

    NASA Astrophysics Data System (ADS)

    Fadzli, Mohammad; Najwa, Nurul; Masran, Hafiz

    2015-05-01

    In this paper, we try to determine the near-optimum solution for the capacitated arc routing problem (CARP). In general, NP-hard CARP is a special graph theory specifically arises from street services such as residential waste collection and road maintenance. By purpose, the design of the CARP model and its solution techniques is to find optimum (or near-optimum) routing cost for a fleet of vehicles involved in operation. In other words, finding minimum-cost routing is compulsory in order to reduce overall operation cost that related with vehicles. In this article, we provide a combination of various heuristics algorithm to solve a real case of CARP in waste collection and benchmark instances. These heuristics work as a central engine in finding initial solutions or near-optimum in search space without violating the pre-setting constraints. The results clearly show that these heuristics algorithms could provide good initial solutions in both real-life and benchmark instances.

  8. Mutual capacitance of liquid conductors in deformable tactile sensing arrays

    NASA Astrophysics Data System (ADS)

    Li, Bin; Fontecchio, Adam K.; Visell, Yon

    2016-01-01

    Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.

  9. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, E.I. Jr.; Peterson, K.A.; Barton, D.L.

    1998-07-14

    An electron beam apparatus and method for testing a circuit are disclosed. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 {micro}m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits. 7 figs.

  10. Capacitive charge generation apparatus and method for testing circuits

    DOEpatents

    Cole, Jr., Edward I.; Peterson, Kenneth A.; Barton, Daniel L.

    1998-01-01

    An electron beam apparatus and method for testing a circuit. The electron beam apparatus comprises an electron beam incident on an outer surface of an insulating layer overlying one or more electrical conductors of the circuit for generating a time varying or alternating current electrical potential on the surface; and a measurement unit connected to the circuit for measuring an electrical signal capacitively coupled to the electrical conductors to identify and map a conduction state of each of the electrical conductors, with or without an electrical bias signal being applied to the circuit. The electron beam apparatus can further include a secondary electron detector for forming a secondary electron image for registration with a map of the conduction state of the electrical conductors. The apparatus and method are useful for failure analysis or qualification testing to determine the presence of any open-circuits or short-circuits, and to verify the continuity or integrity of electrical conductors buried below an insulating layer thickness of 1-100 .mu.m or more without damaging or breaking down the insulating layer. The types of electrical circuits that can be tested include integrated circuits, multi-chip modules, printed circuit boards and flexible printed circuits.

  11. Application des codes de Monte Carlo à la radiothérapie par rayonnement à faible TEL

    NASA Astrophysics Data System (ADS)

    Marcié, S.

    1998-04-01

    In radiation therapy, there is low LET rays: photons of 60Co, photons and electrons to 4 at 25 MV created in a linac, photons 137Cs, of 192Ir and of 125I. To know the most exactly possible the dose to the tissu by this rays, software and measurements are used. With the development of the power and the capacity of computers, the application of Monte Carlo codes expand to the radiation therapy which have permitted to better determine effects of rays and spectra, to explicit parameters used in dosimetric calculation, to verify algorithms , to study measuremtents systems and phantoms, to calculate the dose in inaccessible points and to consider the utilization of new radionuclides. En Radiothérapie, il existe une variété, de rayonnements ? faible TLE : photons du cobalt 60, photons et ,électron de 4 à? 25 MV générés dans des accélérateurs linéaires, photons du césium 137, de l'iridium 192 et de l'iode 125. Pour connatre le plus exactement possible la dose délivrée aux tissus par ces rayonnements, des logiciels sont utilisés ainsi que des instruments de mesures. Avec le développement de la puissance et de la capacité, des calculateurs, l'application des codes de Monte Carlo s'est ,étendue ? la Radiothérapie ce qui a permis de mieux cerner les effets des rayonnements, déterminer les spectres, préciser les valeurs des paramètres utilisés dans les calculs dosimétriques, vérifier les algorithmes, ,étudier les systèmes de mesures et les fantomes utilisés, calculer la dose en des points inaccessibles ?à la mesure et envisager l'utilisation de nouveaux radio,éléments.

  12. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  13. In vivo skin capacitive imaging analysis by using grey level co-occurrence matrix (GLCM).

    PubMed

    Ou, Xiang; Pan, Wei; Xiao, Perry

    2014-01-02

    We present our latest work on in vivo skin capacitive imaging analysis by using grey level co-occurrence matrix (GLCM). The in vivo skin capacitive images were taken by a capacitance based fingerprint sensor, the skin capacitive images were then analysed by GLCM. Four different GLCM feature vectors, angular second moment (ASM), entropy (ENT), contrast (CON) and correlation (COR), are selected to describe the skin texture. The results show that angular second moment increases as age increases, and entropy decreases as age increases. The results also suggest that the angular second moment values and the entropy values reflect more about the skin texture, whilst the contrast values and the correlation values reflect more about the topically applied solvents. The overall results shows that the GLCM is an effective way to extract and analyse the skin texture information, which can potentially be a valuable reference for evaluating effects of medical and cosmetic treatments.

  14. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres.

    PubMed

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A; Tao, Lu; Gao, Faming

    2015-09-29

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm(-3) in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g(-1). This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  15. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  16. Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates

    NASA Astrophysics Data System (ADS)

    Lu, Beihu; Xiao, Zuoan; Zhu, Hua; Xiao, Wei; Wu, Wenlong; Wang, Dihua

    2015-12-01

    Simple, affordable and green methods to improve capacitive properties of commercial activated carbon (AC) are intriguing since ACs possess a predominant role in the commercial supercapacitor market. Herein, we report a green reactivation of commercial ACs by soaking ACs in molten Na2CO3-K2CO3 (equal in mass ratios) at 850 °C combining the merits of both physical and chemical activation strategies. The mechanism of molten carbonate treatment and structure-capacitive activity correlations of the ACs are rationalized. Characterizations show that the molten carbonate treatment increases the electrical conductivity of AC without compromising its porosity and wettability of electrolytes. Electrochemical tests show the treated AC exhibited higher specific capacitance, enhanced high-rate capability and excellent cycle performance, promising its practical application in supercapacitors. The present study confirms that the molten carbonate reactivation is a green and effective method to enhance capacitive properties of ACs.

  17. Measurement of photoacid generation kinetics in photoresist thin films via capacitance techniques

    NASA Astrophysics Data System (ADS)

    Berger, Cody M.; Henderson, Clifford L.

    2003-06-01

    A novel technique for determining the Dill C rate constant for photoacid generation has been investigated. This technique involves using capacitance measurements of interdigitated electrodes (IDE) coated with chemically amplified resist to monitor the generation of photoacid within the resist polymer matrix. It is shown that a linear relationship exists between measured capacitance of the IDE and photoacid or PAG concentration within the polymer matrix. Based on this linear relationship, a method is developed for calculating the Dill C parameter for chemically amplified resists based on interdigitated electrode capacitance data. This approach is demonstrated by measuring the Dill C parameter for acid generation using 248 nm exposure of triphenylsulfonium triflate photoacid generator in a poly(p-hydroxystyrene) matrix. A Dill C parameter value of 0.0445 was calculated using this capacitance method which is in good agreement with other literature reported values for this PAG.

  18. Quantum capacitance measurement for a black phosphorus field-effect transistor.

    PubMed

    Kang, Jiahao

    2016-01-29

    The unique electrical, optical and thermal properties of black phosphorus have triggered the development of black phosphorus transistors as well as a wide range of other relevant applications. However, there are still challenges in understanding and modeling gated black phosphorus, among which the exploration of quantum capacitance is crucial. Understanding quantum capacitance requires specified measurements other than typical characterizations done before for black phosphorus transistors. Recently, Kuiri et al (Nanotechnology 26 485704) reported the quantum capacitance measured on few layer black phosphorus and its difference compared to that from conductance measurement. Localized states near the band edge were observed by the capacitance measurement, which was considered as the main reason for the difference. The new findings provide guidelines for theoretical understanding and modeling of black phosphorus devices.

  19. Real-time monitoring of 3D cell culture using a 3D capacitance biosensor.

    PubMed

    Lee, Sun-Mi; Han, Nalae; Lee, Rimi; Choi, In-Hong; Park, Yong-Beom; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2016-03-15

    Three-dimensional (3D) cell cultures have recently received attention because they represent a more physiologically relevant environment compared to conventional two-dimensional (2D) cell cultures. However, 2D-based imaging techniques or cell sensors are insufficient for real-time monitoring of cellular behavior in 3D cell culture. Here, we report investigations conducted with a 3D capacitance cell sensor consisting of vertically aligned pairs of electrodes. When GFP-expressing human breast cancer cells (GFP-MCF-7) encapsulated in alginate hydrogel were cultured in a 3D cell culture system, cellular activities, such as cell proliferation and apoptosis at different heights, could be monitored non-invasively and in real-time by measuring the change in capacitance with the 3D capacitance sensor. Moreover, we were able to monitor cell migration of human mesenchymal stem cells (hMSCs) with our 3D capacitance sensor.

  20. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    PubMed Central

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-01-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm−3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g−1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems. PMID:26415838

  1. One Dimensional Capacitive Loading in a Frequency Selective Surface for Low Profile Antenna Applications

    NASA Technical Reports Server (NTRS)

    Cure, David; Weller, Thomas; Miranda, Felix A.; Herzig, Paul

    2011-01-01

    In this paper, the impact of adding discrete capacitive loading along one dimension of a frequency selective surface for low profile antenna applications is presented for the first time. The measured data demonstrates comparable performance between a non-loaded and a capacitively-loaded FSS with a significant reduction in the number of cells and/or cell geometry size. Additionally, the provision of discrete capacitive loads reduces the FSS susceptibility to fabrication tolerances based on placement of a fixed grid capacitance. The bandwidth increased from 1.8% to 7.3% for a total antenna thickness of approx. lambda/22, and from 1.5% to 9.2% for a thickness of approx. lambda/40. The total antenna area for each case was reduced by 55% and 12%, respectively.

  2. Compact model for ballistic single wall CNTFET under quantum capacitance limit

    NASA Astrophysics Data System (ADS)

    Singh, Amandeep; Khosla, Mamta; Raj, Balwinder

    2016-10-01

    This paper proposes a compact model for carbon nanotube field effect transistor (CNTFET) based on surface potential and conduction band minima. The proposed model relates the I-V characteristics to chirality under quantum capacitance limit. C-V characteristics have been efficiently modelled for different capacitance models which are used to find the relationship between CNT surface potential and gate voltage. The role of different capacitances is discussed and it has been found that the proposed circuit compact model strictly follows quantum capacitance limit. The proposed model is efficiently designed for circuit simulations as it denies self-consistent numerical simulation. Furthermore, this compact model is compared with experimental results. The model has been used to simulate an inverter using HSPICE.

  3. Influence of Parasitic Capacitance on Output Voltage for Series-Connected Thin-Film Piezoelectric Devices

    PubMed Central

    Kanda, Kensuke; Saito, Takashi; Iga, Yuki; Higuchi, Kohei; Maenaka, Kazusuke

    2012-01-01

    Series-connected thin film piezoelectric elements can generate large output voltages. The output voltage ideally is proportional to the number of connections. However, parasitic capacitances formed by the insulation layers and derived from peripheral circuitry degrade the output voltage. Conventional circuit models are not suitable for predicting the influence of the parasitic capacitance. Therefore we proposed the simplest model of piezoelectric elements to perform simulation program with integrated circuit emphasis (SPICE) circuit simulations). The effects of the parasitic capacitances on the thin-film Pb(Zr, Ti)O3, (PZT) elements connected in series on a SiO2 insulator are demonstrated. The results reveal the negative effect on the output voltage caused by the parasitic capacitances of the insulation layers. The design guidelines for the devices using series-connected piezoelectric elements are explained. PMID:23211754

  4. Negative quantum capacitance induced by midgap states in single-layer graphene.

    PubMed

    Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning

    2013-01-01

    We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions.

  5. Influence of parasitic capacitance on output voltage for series-connected thin-film piezoelectric devices.

    PubMed

    Kanda, Kensuke; Saito, Takashi; Iga, Yuki; Higuchi, Kohei; Maenaka, Kazusuke

    2012-12-04

    Series-connected thin film piezoelectric elements can generate large output voltages. The output voltage ideally is proportional to the number of connections. However, parasitic capacitances formed by the insulation layers and derived from peripheral circuitry degrade the output voltage. Conventional circuit models are not suitable for predicting the influence of the parasitic capacitance. Therefore we proposed the simplest model of piezoelectric elements to perform simulation program with integrated circuit emphasis (SPICE) circuit simulations). The effects of the parasitic capacitances on the thin-film Pb(Zr, Ti)O(3), (PZT) elements connected in series on a SiO(2) insulator are demonstrated. The results reveal the negative effect on the output voltage caused by the parasitic capacitances of the insulation layers. The design guidelines for the devices using series-connected piezoelectric elements are explained.

  6. Anomalous effects on radiation detectors and capacitance measurements inside a modified Faraday cage

    NASA Astrophysics Data System (ADS)

    Milián-Sánchez, V.; Mocholí-Salcedo, A.; Milián, C.; Kolombet, V. A.; Verdú, G.

    2016-08-01

    We present experimental results showing certain anomalies in the measurements performed inside a modified Faraday cage of decay rates of Ra-226, Tl-204 and Sr-90/I-90, of the gamma spectrum of a Cs-137 preparation, and of the capacitance of both a class-I multilayer ceramic capacitor and of the interconnection cable between the radiation detector and the scaler. Decay rates fluctuate significantly up to 5% around the initial value and differently depending on the type of nuclide, and the spectrum photopeak increases in 4.4%. In the case of the capacitor, direct capacitance measurements at 100 Hz, 10 kHz and 100 kHz show variations up to 0.7%, the most significant taking place at 100 Hz. In the case of the interconnection cable, the capacitance varies up to 1%. Dispersion also tends to increase inside the enclosure. However, the measured capacitance variations do not explain the variations observed in decay rates.

  7. Computationally efficient bioelectric field modeling and effects of frequency-dependent tissue capacitance

    NASA Astrophysics Data System (ADS)

    Tracey, Brian; Williams, Michael

    2011-06-01

    Standard bioelectric field models assume that the tissue is purely resistive and frequency independent, and that capacitance, induction, and propagation effects can be neglected. However, real tissue properties are frequency dependent, and tissue capacitance can be important for problems involving short stimulation pulses. A straightforward interpolation scheme is introduced here that can account for frequency-dependent effects, while reducing runtime over a direct computation by several orders of magnitude. The exact Helmholtz solution is compared to several approximate field solutions and is used to study neural stimulation. Results show that frequency-independent tissue capacitance always acts to attenuate the stimulation pulse, thereby increasing firing thresholds, while the dispersion effects introduced by frequency-dependent capacitance may decrease firing thresholds.

  8. Design of auto-tuning capacitive power transfer system for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Lu, Kai; Kiong Nguang, Sing

    2016-09-01

    This paper presents the design of capacitive wireless power transfer systems based on a Class-E inverter approach. The main reason for adopting the Class-E inverter approach is because of its high efficiency, theoretically 100%. However, the operation of a Class-E inverter is highly sensitive to its circuit's parameters. In a typical capacitive wireless power transfer application, the capacitive coupling distance between plates is subject to changes, and hence its power transfer efficiency is greatly affected if the Class-E inverter is properly tuned. This drawback motivates us to develop an auto frequency tuning algorithm for a Class-E inverter which maintains its power transfer efficiency in spite of the variations of capacitive coupling distances between plates and circuit's parameters. Finally, simulation and experiment are carried out to verify the effectiveness of the auto frequency tuning algorithm.

  9. Ultrananocrystalline diamond films with optimized dielectric properties for advanced RF MEMS capacitive switches

    DOEpatents

    Sumant, Anirudha V.; Auciello, Orlando H.; Mancini, Derrick C.

    2013-01-15

    An efficient deposition process is provided for fabricating reliable RF MEMS capacitive switches with multilayer ultrananocrystalline (UNCD) films for more rapid recovery, charging and discharging that is effective for more than a billion cycles of operation. Significantly, the deposition process is compatible for integration with CMOS electronics and thereby can provide monolithically integrated RF MEMS capacitive switches for use with CMOS electronic devices, such as for insertion into phase array antennas for radars and other RF communication systems.

  10. Development of 345-kV capacitive-graded joint. Final report

    SciTech Connect

    Allam, E.M.

    1980-09-01

    The design of a 345-kV prefabricated capacitive-graded joint for oil-filled cables and the manufacture and testing of prototype joints are described. Tests on prototype No. 4 demonstrated the adequacy of the printed circuit design. It was not possible to consistently obtain high-quality capacitive sheets and substantial effort is required to remedy this problem. Advantages of these prefabricated joints are summarized, and specific recommendations are made for further development of the concept.

  11. Facile labelling of graphene oxide for superior capacitive energy storage and fluorescence applications.

    PubMed

    Eng, Alex Yong Sheng; Chua, Chun Kiang; Pumera, Martin

    2016-04-14

    The majority of supercapacitor research studies on graphene materials today have been based upon developing electrochemical double-layer capacitors (EDLCs) using reduced graphenes. In contrast, graphene oxide (GO) is often neglected as a supercapacitor candidate due to its low electrical conductivity and surface area. Nonetheless, we present herein a fast (1 h) labelling of GO with o-phenylenediamine (PD) to produce PD-GO, exploiting inherent oxygen groups in creating new functionalities that exhibit capacitive enhancement from pseudo-capacitance. A high specific capacitance of 191 F g(-1) was obtained (at 0.2 A g(-1)), comparable to recent binder-free graphene supercapacitors. The large surface-normalized capacitance of up to 628 μF cm(-2) is also many times greater than the intrinsic capacitance of single-layer graphene (21 μF cm(-2)) as a result of additional pseudo-capacitance. A high capacity retention of ∼85% with each 10-fold increase in current density further indicates excellent rate performance. Hence, this approach in enhancing GO pseudo-capacitance may be similarly feasible as graphene EDLCs. Additionally, PD-GO was also found to exhibit a bright green fluorescence with a 540 nm maximum. The strongest fluorescence intensities arose from the smallest PD-GO fragments, and we attribute the origin to localised sp(2) domains and newly formed phenazine edge groups. The dual enhancement of dissimilar properties such as capacitance and fluorescence emphasizes the continued significance of covalent functionalisation towards tuning of properties in graphene-type materials.

  12. Protein Phosphatases Decrease Their Activity during Capacitation: A New Requirement for This Event

    PubMed Central

    Signorelli, Janetti R.; Díaz, Emilce S.; Fara, Karla; Barón, Lina; Morales, Patricio

    2013-01-01

    There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free) or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate). The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1) NCM; 2) NCM plus inhibitors; 3) RCM; and 4) RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min) increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important requirement for the

  13. Capacitance sounding: a new geophysical method for asphalt pavement quality evaluation

    NASA Astrophysics Data System (ADS)

    Dashevsky, Yu. A.; Dashevsky, O. Yu.; Filkovsky, M. I.; Synakh, V. S.

    2005-02-01

    A capacitance sounding method has been proposed and developed for evaluation of the actual thickness and dielectric permittivity of asphalt pavement. The method is based on the continuous measurements of the electrical capacitance between two electrodes in real time. One of them is grounded within the soil immediately adjacent to the side of the road. Another one (sensing electrode) is mounted on a motor-driven positioner to obtain the capacitance measurements at multiple locations along the direction perpendicular to asphalt surface. The principle of the method is to vary the clearance of the sensing electrode to sound the 1D structure of the pavement beneath that electrode. A distinguished feature of the proposed technology is that the measured signal depends only on the thickness and the permittivity of the asphalt layer. All underlying layers do not affect the capacitance readings. A set of capacitance values versus sensing electrode positions is considered as a sounding curve. Software tools were created for solving forward and inverse problems of the capacitance sounding. An unknown thickness and permittivity are derived from a real-time inversion of the data obtained. Upon completing the inversion, an operator can move the assembling with the second electrode across the asphalt surface to the next sounding site. The capacitance sounding method proved to have a good lateral resolution: the dielectric permittivity values and the asphalt layer thickness are accurately detected over distances of 40 cm from a measuring point. An extensive feasibility study of capacitance sounding using both mathematical modeling and field measurements has been carried out. As a result, portable, low-frequency equipment has been designed and created. Asphalt layer thickness and the dielectric permittivity measurements were carried out on a high-traffic highway. The comparison of field trial results with core sampling analysis demonstrated the efficiency of the proposed method.

  14. Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases

    PubMed Central

    Ickowicz, Debby; Finkelstein, Maya; Breitbart, Haim

    2012-01-01

    Mammalian sperm must undergo a series of biochemical and physiological modifications, collectively called capacitation, in the female reproductive tract prior to the acrosome reaction (AR). The mechanisms of these modifications are not well characterized though protein kinases were shown to be involved in the regulation of intracellular Ca2+ during both capacitation and the AR. In the present review, we summarize some of the signaling events that are involved in capacitation. During the capacitation process, phosphatidyl-inositol-3-kinase (PI3K) is phosphorylated/activated via a protein kinase A (PKA)-dependent cascade, and downregulated by protein kinase C α (PKCα). PKCα is active at the beginning of capacitation, resulting in PI3K inactivation. During capacitation, PKCα as well as PP1γ2 is degraded by a PKA-dependent mechanism, allowing the activation of PI3K. The activation of PKA during capacitation depends mainly on cyclic adenosine monophosphate (cAMP) produced by the bicarbonate-dependent soluble adenylyl cyclase. This activation of PKA leads to an increase in actin polymerization, an essential process for the development of hyperactivated motility, which is necessary for successful fertilization. Actin polymerization is mediated by PIP2 in two ways: first, PIP2 acts as a cofactor for phospholipase D (PLD) activation, and second, as a molecule that binds and inhibits actin-severing proteins such as gelsolin. Tyrosine phosphorylation of gelsolin during capacitation by Src family kinase (SFK) is also important for its inactivation. Prior to the AR, gelsolin is released from PIP2 and undergoes dephosphorylation/activation, resulting in fast F-actin depolymerization, leading to the AR. PMID:23001443

  15. Regulation of Sperm Capacitation and the Acrosome Reaction by PIP 2 and Actin Modulation.

    PubMed

    Breitbart, Haim; Finkelstein, Maya

    2015-01-01

    Actin polymerization and development of hyperactivated (HA) motility are two processes that take place during sperm capacitation. Actin polymerization occurs during capacitation and prior to the acrosome reaction, fast F-actin breakdown takes place. The increase in F-actin during capacitation depends upon inactivation of the actin severing protein, gelsolin, by its binding to phosphatydilinositol-4, 5-bisphosphate (PIP 2 ) and its phosphorylation on tyrosine-438 by Src. Activation of gelsolin following its release from PIP 2 is known to cause F-actin breakdown and inhibition of sperm motility, which can be restored by adding PIP 2 to the cells. Reduction of PIP 2 synthesis inhibits actin polymerization and motility, while increasing PIP 2 synthesis enhances these activities. Furthermore, sperm demonstrating low motility contained low levels of PIP 2 and F-actin. During capacitation there was an increase in PIP 2 and F-actin levels in the sperm head and a decrease in the tail. In spermatozoa with high motility, gelsolin was mainly localized to the sperm head before capacitation, whereas in low motility sperm, most of the gelsolin was localized to the tail before capacitation and translocated to the head during capacitation. We also showed that phosphorylation of gelsolin on tyrosine-438 depends upon its binding to PIP 2 . Stimulation of phospholipase C, by Ca 2 + -ionophore or by activating the epidermal-growth-factor-receptor, inhibits tyrosine phosphorylation of gelsolin and enhances enzyme activity. In conclusion, these data indicate that the increase of PIP 2 and/or F-actin in the head during capacitation enhances gelsolin translocation to the head. As a result, the decrease of gelsolin in the tail allows the maintenance of high levels of F-actin in this structure, which is essential for the development of HA motility.

  16. The role and importance of cofilin in human sperm capacitation and the acrosome reaction.

    PubMed

    Megnagi, Bar; Finkelstein, Maya; Shabtay, Ortal; Breitbart, Haim

    2015-12-01

    The spermatozoon is capable of fertilizing an oocyte only after undergoing several biochemical changes in the female reproductive tract, referred to as capacitation. The capacitated spermatozoon interacts with the egg zona pellucida and undergoes the acrosome reaction, which enables its penetration into the egg and fertilization. Actin dynamics play a major role throughout all these processes. Actin polymerization occurs during capacitation, whereas prior to the acrosome reaction, F-actin must undergo depolymerization. In the present study, we describe the presence of the actin-severing protein, cofilin, in human sperm. We examined the function and regulation of cofilin during human sperm capacitation and compared it to gelsolin, an actin-severing protein that was previously investigated by our group. In contrast to gelsolin, we found that cofilin is mainly phosphorylated/inhibited at the beginning of capacitation, and dephosphorylation occurs towards the end of the process. In addition, unlike gelsolin, cofilin phosphorylation is not affected by changing the cellular levels of PIP2. Despite the different regulation of the two proteins, the role of cofilin appears similar to that of gelsolin, and its activation leads to actin depolymerization, inhibition of sperm motility and induction of the acrosome reaction. Moreover, like gelsolin, cofilin translocates from the tail to the head during capacitation. In summary, gelsolin and cofilin play a similar role in F-actin depolymerization prior to the acrosome reaction but their pattern of phosphorylation/inactivation during the capacitation process is different. Thus, for the sperm to achieve high levels of F-actin along the capacitation process, both proteins must be inactivated at different times and, in order to depolymerize F-actin, both must be activated prior to the acrosome reaction.

  17. Regulation of sperm capacitation and the acrosome reaction by PIP2 and actin modulation

    PubMed Central

    Breitbart, Haim; Finkelstein, Maya

    2015-01-01

    Actin polymerization and development of hyperactivated (HA) motility are two processes that take place during sperm capacitation. Actin polymerization occurs during capacitation and prior to the acrosome reaction, fast F-actin breakdown takes place. The increase in F-actin during capacitation depends upon inactivation of the actin severing protein, gelsolin, by its binding to phosphatydilinositol-4, 5-bisphosphate (PIP2) and its phosphorylation on tyrosine-438 by Src. Activation of gelsolin following its release from PIP2 is known to cause F-actin breakdown and inhibition of sperm motility, which can be restored by adding PIP2 to the cells. Reduction of PIP2 synthesis inhibits actin polymerization and motility, while increasing PIP2 synthesis enhances these activities. Furthermore, sperm demonstrating low motility contained low levels of PIP2 and F-actin. During capacitation there was an increase in PIP2 and F-actin levels in the sperm head and a decrease in the tail. In spermatozoa with high motility, gelsolin was mainly localized to the sperm head before capacitation, whereas in low motility sperm, most of the gelsolin was localized to the tail before capacitation and translocated to the head during capacitation. We also showed that phosphorylation of gelsolin on tyrosine-438 depends upon its binding to PIP2. Stimulation of phospholipase C, by Ca2+-ionophore or by activating the epidermal-growth-factor-receptor, inhibits tyrosine phosphorylation of gelsolin and enhances enzyme activity. In conclusion, these data indicate that the increase of PIP2 and/or F-actin in the head during capacitation enhances gelsolin translocation to the head. As a result, the decrease of gelsolin in the tail allows the maintenance of high levels of F-actin in this structure, which is essential for the development of HA motility. PMID:25966627

  18. Parallel double-plate capacitive proximity sensor modelling based on effective theory

    NASA Astrophysics Data System (ADS)

    Li, Nan; Zhu, Haiye; Wang, Wenyu; Gong, Yu

    2014-02-01

    A semi-analytical model for a double-plate capacitive proximity sensor is presented according to the effective theory. Three physical models are established to derive the final equation of the sensor. Measured data are used to determine the coefficients. The final equation is verified by using measured data. The average relative error of the calculated and the measured sensor capacitance is less than 7.5%. The equation can be used to provide guidance to engineering design of the proximity sensors.

  19. Observation of negative differential capacitance (NDC) in Ti Schottky diodes on SiGe islands

    SciTech Connect

    Rangel-Kuoppa, Victor-Tapio; Jantsch, Wolfgang; Tonkikh, Alexander; Zakharov, Nikolay; Werner, Peter

    2013-12-04

    The Negative Differential Capacitance (NDC) effect on Ti Schottky diodes formed on n-type Silicon samples with embedded Germanium Quantum Dots (QDs) is observed and reported. The NDC-effect is detected using capacitance-voltage (CV) method at temperatures below 200 K. It is explained by the capture of electrons in Germanium QDs. Our measurements reveal that each Ge QD captures in average eight electrons.

  20. Capacitance Regression Modelling Analysis on Latex from Selected Rubber Tree Clones

    NASA Astrophysics Data System (ADS)

    Rosli, A. D.; Hashim, H.; Khairuzzaman, N. A.; Mohd Sampian, A. F.; Baharudin, R.; Abdullah, N. E.; Sulaiman, M. S.; Kamaru'zzaman, M.

    2015-11-01

    This paper investigates the capacitance regression modelling performance of latex for various rubber tree clones, namely clone 2002, 2008, 2014 and 3001. Conventionally, the rubber tree clones identification are based on observation towards tree features such as shape of leaf, trunk, branching habit and pattern of seeds texture. The former method requires expert persons and very time-consuming. Currently, there is no sensing device based on electrical properties that can be employed to measure different clones from latex samples. Hence, with a hypothesis that the dielectric constant of each clone varies, this paper discusses the development of a capacitance sensor via Capacitance Comparison Bridge (known as capacitance sensor) to measure an output voltage of different latex samples. The proposed sensor is initially tested with 30ml of latex sample prior to gradually addition of dilution water. The output voltage and capacitance obtained from the test are recorded and analyzed using Simple Linear Regression (SLR) model. This work outcome infers that latex clone of 2002 has produced the highest and reliable linear regression line with determination coefficient of 91.24%. In addition, the study also found that the capacitive elements in latex samples deteriorate if it is diluted with higher volume of water.

  1. Actin Polymerization: An Event Regulated by Tyrosine Phosphorylation During Buffalo Sperm Capacitation.

    PubMed

    Naresh, S; Atreja, S K

    2015-12-01

    In the female reproductive tract, the spermatozoa undergo a series of physiological and biochemical changes, prior to gaining the ability to fertilize, that result to capacitation. However, the actin polymerization and protein tyrosine phosphorylation are the two necessary steps for capacitation. In this study, we have demonstrated the actin polymerization and established the correlation between protein tyrosine phosphorylation and actin reorganization during in vitro capacitation in buffalo (Bubalus bubalis) spermatozoa. Indirect immunofluorescence and Western blot techniques were used to detect actin polymerization and tyrosine phosphorylation. The time-dependent fluorimetric studies revealed that the actin polymerization starts from the tail region and progressed towards the head region of spermatozoa during capacitation. The lysophosphatidyl choline (LPC)-induced acrosome reaction (AR) stimulated quick actin depolymerization. The inhibitor cytochalasin D (CD) blocked the in vitro capacitation by inhibiting the actin polymerization. In addition, we also performed different inhibitor (Genistein, H-89, PD9809 and GF-109) and enhancer (dbcAMP, H(2)O(2) and vanadate) studies on actin tyrosine phosphorylation and actin polymerization. The inhibitors of tyrosine phosphorylation inhibit actin tyrosine phosphorylation and polymerization, whereas enhancers of tyrosine phosphorylation stimulate F-actin formation and tyrosine phosphorylation. These observations suggest that the tyrosine phosphorylation regulates the actin polymerization, and both are coupled processes during capacitation of buffalo spermatozoa.

  2. An Enhanced Sensing Application Based on a Flexible Projected Capacitive-Sensing Mattress

    PubMed Central

    Chang, Wen-Ying; Chen, Chi-Chun; Chang, Chih-Cheng; Yang, Chin-Lung

    2014-01-01

    This paper presents a cost-effective sensor system for mattresses that can classify the sleeping posture of an individual and prevent pressure ulcers. This system applies projected capacitive sensing to the field of health care. The charge time (CT) method was used to sensitively and accurately measure the capacitance of the projected electrodes. The required characteristics of the projected capacitor were identified to develop large-area applications for sensory mattresses. The area of the electrodes, the use of shielding, and the increased length of the transmission line were calibrated to more accurately measure the capacitance of the electrodes in large-size applications. To offer the users comfort in the prone position, a flexible substrate was selected and covered with 16 × 20 electrodes. Compared with the static charge sensitive bed (SCSB), our proposed system-flexible projected capacitive-sensing mattress (FPCSM) comes with more electrodes to increase the resolution of posture identification. As for the body pressure system (BPS), the FPCSM has advantages such as lower cost, higher aging-resistance capability, and the ability to sense the capacitance of the covered regions without physical contact. The proposed guard ring design effectively absorbs the noise and interrupts leakage paths. The projected capacitive electrode is suitable for proximity-sensing applications and succeeds at quickly recognizing the sleeping pattern of the user. PMID:24747734

  3. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array

    NASA Astrophysics Data System (ADS)

    Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong

    2015-06-01

    Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.

  4. Responses of abdominal vascular resistance and capacitance to stimulation of carotid chemoreceptors in anaesthetized dogs.

    PubMed Central

    Hainsworth, R; Karim, F; McGregor, K H; Wood, L M

    1983-01-01

    1. In anaesthetized dogs the regions of the carotid bifurcations were isolated vascularly and perfused at constant non-pulsatile pressures. The abdominal circulation was isolated vascularly, perfused at constant flow and drained through the inferior vena cava at constant pressure. Vascular resistance and capacitance responses were determined from the changes in perfusion pressure and changes in venous outflow. 2. Stimulation of carotid chemoreceptors with venous blood resulted in an increase in arterial perfusion pressure of 38% (S.E. +/- 4.6) and a decrease in vascular capacitance of 24.4 +/- 2.5 ml. (1.05 +/- 0.24 ml. kg-1). 3. When carotid perfusion pressure was higher than 17 kPa, stimulation of chemoreceptors resulted in significantly (P less than 0.05) smaller resistance responses but significantly (P less than 0.05) greater capacitance responses than those obtained at lower carotid pressures. 4. These results show that abdominal resistance and capacitance vessels constrict in response to stimulation of carotid chemoreceptors. We suggest that the larger responses of capacitance and the smaller responses of resistance obtained at higher carotid sinus pressures may be due to different sensitivities of resistance and capacitance vessels to efferent sympathetic nerve activity. PMID:6864562

  5. Effect of reducing system on capacitive behavior of reduced graphene oxide film: Application for supercapacitor

    SciTech Connect

    Akbi, Hamdane; Yu, Lei; Wang, Bin; Liu, Qi; Wang, Jun; Liu, Jingyuan; Song, Dalei; Sun, Yanbo; Liu, Lianhe

    2015-01-15

    To determine the best chemical reduction of graphene oxide film with hydriodic acid that gives maximum energy and power density, we studied the effect of two reducing systems, hydriodic acid/water and hydriodic acid/acetic acid, on the morphology and electrochemical features of reduced graphene oxide film. Using acetic acid as solvent results in high electrical conductivity (5195 S m{sup −1}), excellent specific capacitance (384 F g{sup −1}) and good cyclic stability (about 98% of its initial response after 4000 cycles). Using water as a solvent, results in an ideal capacitive behavior and excellent cyclic stability (about 6% increase of its initial response after 2100 cycles). - Graphical abstract: The choice of reducing system determines the morphology and structure of the chemically reduced graphene film and, as a result, affects largely the capacitive behavior. - Highlights: • The structure of the graphene film has a pronounced effect on capacitive behavior. • The use of water/HI as reducing system results in an ideal capacitive behavior. • The use of acetic acid/HI as reducing system results in a high specific capacitance.

  6. Porous Functionalized Self-Standing Carbon Fiber Paper Electrodes for High-Performance Capacitive Energy Storage.

    PubMed

    Zhu, Yuanyuan; Cheng, Shuang; Zhou, Weijia; Jia, Jin; Yang, Lufeng; Yao, Minghai; Wang, Mengkun; Wu, Peng; Luo, Haowei; Liu, Meilin

    2017-04-06

    A facile and cost-efficient approach to functionalize raw carbon fiber paper (CFP) used for a self-standing capacitive electrode has been proposed here. Benefiting from the improved specific surface area and surface functional groups, the functionalized CFP (F-CFP) showed much enhanced capacitive performance, 3 orders of magnitude higher than that of the raw CFP. It delivered the areal capacitance of 1275 mF cm(-2) at 5 mA cm(-2) with a rather wide voltage window of 1.4 V (-0.4 to 1 V vs Ag/AgCl) in 0.5 M H2SO4. However, in a neutral 1 M Na2SO4 aqueous solution, although the areal capacitance of 1115 mF cm(-2) at 3 mA cm(-2) is slightly smaller, the potential window is much wider (2 V, -1 to 1 V vs Ag/AgCl), indicating a high overpotential of hydrogen evolution. The areal capacitance was still as high as 722 mF cm(-2) at a very fast charge-discharge current density of 50 mA cm(-2), and about 66% of the initial capacitance (at 3 mA cm(-2)) was remained in Na2SO4, indicating considerable rate capability.

  7. Theoretical modification of the negative Miller capacitance during the switching transients of IGBTs

    NASA Astrophysics Data System (ADS)

    Yuan, Teng; Yangjun, Zhu; Zhengsheng, Han; Tianchun, Ye

    2016-07-01

    The insulated gate bipolar transistor (IGBT) has negative Miller capacitance during switching transients. It has conventionally been attributed to the voltage dependency of the Miller capacitance. However this explanation has physical ambiguity, yet, it lacks a discussion of the conditions for the occurrence of negative Miller capacitance as well. We argue that it is the current dependence to the Miller capacitance that results in the negative case. In this paper, we provide a modification to the theoretical analysis of this phenomenon. The occurrence condition for it and the device parameters about it are discussed. It is discovered that the negative Miller capacitance must occur during the turn-off process for any IGBT, while it is relatively difficult during the turn-on process. At the device design level, the current gain of the PNP transistor in the IGBT is an important factor for the negative Miller capacitance. Project supported by the National Major Science and Technology Special Project (No. 2013ZX02305005-002), and the National Natural Science Foundation Major Program (No. 51490681).

  8. Role and regulation of EGFR in actin remodeling in sperm capacitation and the acrosome reaction

    PubMed Central

    Breitbart, Haim; Etkovitz, Nir

    2011-01-01

    To bind and fertilize the egg, the spermatozoon should undergo few biochemical and motility changes in the female reproductive tract collectively called capacitation. The capacitated spermatozoon binds to the egg zona pellucida, and then undergoes the acrosome reaction (AR), which allows its penetration into the egg. The mechanisms regulating sperm capacitation and the AR are not completely understood. In the present review, we summarize some data regarding the role and regulation of the epidermal growth factor receptor (EGFR) in these processes. In the capacitation process, the EGFR is partially activated by protein kinase A (PKA), resulting in phospholipase D (PLD) activation and actin polymerization. Protein kinase C alpha (PKCα), which is already activated at the beginning of the capacitation, also participates in PLD activation. Further activation of the EGFR at the end of the capacitation enhances intracellular Ca2+ concentration leading to F-actin breakdown and allows the AR to take place. Under in vivo conditions, the EGFR can be directly activated by its known ligand epidermal growth factor (EGF), and indirectly by activating PKA or by transactivation mediated by G protein-coupled receptors (GPCRs) activation or by ouabain. Under physiological conditions, sperm PKA is activated mainly by bicarbonate, which activates the soluble adenylyl cyclase to produce cyclic adenosine monophosphate (cAMP), the activator of PKA. The GPCR activators angiotensin II or lysophosphatidic acid, as well as ouabain and EGF are physiological components present in the female reproductive tract. PMID:21200378

  9. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors

    PubMed Central

    Dang, Yong-Qiang; Ren, Shao-Zhao; Liu, Guoyang; Cai, Jiangtao; Zhang, Yating; Qiu, Jieshan

    2016-01-01

    There is much recent interest in graphene-based composite electrode materials because of their excellent mechanical strengths, high electron mobilities, and large specific surface areas. These materials are good candidates for applications in supercapacitors. In this work, a new graphene-based electrode material for supercapacitors was fabricated by anchoring carbon dots (CDs) on reduced graphene oxide (rGO). The capacitive properties of electrodes in aqueous electrolytes were systematically studied by galvanostatic charge-discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. The capacitance of rGO was improved when an appropriate amount of CDs were added to the material. The CD/rGO electrode exhibited a good reversibility, excellent rate capability, fast charge transfer, and high specific capacitance in 1 M H2SO4. Its capacitance was as high as 211.9 F/g at a current density of 0.5 A/g. This capacitance was 74.3% higher than that of a pristine rGO electrode (121.6 F/g), and the capacitance of the CD/rGO electrode retained 92.8% of its original value after 1000 cycles at a CDs-to-rGO ratio of 5:1. PMID:28335339

  10. Conductive polymer foam surface improves the performance of a capacitive EEG electrode.

    PubMed

    Baek, Hyun Jae; Lee, Hong Ji; Lim, Yong Gyu; Park, Kwang Suk

    2012-12-01

    In this paper, a new conductive polymer foam-surfaced electrode was proposed for use as a capacitive EEG electrode for nonintrusive EEG measurements in out-of-hospital environments. The current capacitive electrode has a rigid surface that produces an undefined contact area due to its stiffness, which renders it unable to conform to head curvature and locally isolates hairs between the electrode surface and scalp skin, making EEG measurement through hair difficult. In order to overcome this issue, a conductive polymer foam was applied to the capacitive electrode surface to provide a cushioning effect. This enabled EEG measurement through hair without any conductive contact with bare scalp skin. Experimental results showed that the new electrode provided lower electrode-skin impedance and higher voltage gains, signal-to-noise ratios, signal-to-error ratios, and correlation coefficients between EEGs measured by capacitive and conventional resistive methods compared to a conventional capacitive electrode. In addition, the new electrode could measure EEG signals, while the conventional capacitive electrode could not. We expect that the new electrode presented here can be easily installed in a hat or helmet to create a nonintrusive wearable EEG apparatus that does not make users look strange for real-world EEG applications.

  11. Mechanical strain can switch the sign of quantum capacitance from positive to negative.

    PubMed

    Hanlumyuang, Yuranan; Li, Xiaobao; Sharma, Pradeep

    2014-11-14

    Quantum capacitance is a fundamental quantity that can directly reveal many-body interactions among electrons and is expected to play a critical role in nanoelectronics. One of the many tantalizing recent physical revelations about quantum capacitance is that it can possess a negative value, hence allowing for the possibility of enhancing the overall capacitance in some particular material systems beyond the scaling predicted by classical electrostatics. Using detailed quantum mechanical simulations, we found an intriguing result that mechanical strains can tune both signs and values of quantum capacitance. We used a small coaxially gated carbon nanotube as a paradigmatical capacitor system and showed that, for the range of mechanical strain considered, quantum capacitance can be adjusted from very large positive to very large negative values (in the order of plus/minus hundreds of attofarads), compared to the corresponding classical geometric value (0.31035 aF). This finding opens novel avenues in designing quantum capacitance for applications in nanosensors, energy storage, and nanoelectronics.

  12. Boron nitride-graphene nanocapacitor and the origins of anomalous size-dependent increase of capacitance.

    PubMed

    Shi, Gang; Hanlumyuang, Yuranan; Liu, Zheng; Gong, Yongji; Gao, Weilu; Li, Bo; Kono, Junichiro; Lou, Jun; Vajtai, Robert; Sharma, Pradeep; Ajayan, Pulickel M

    2014-01-01

    Conventional wisdom suggests that decreasing dimensions of dielectric materials (e.g., thickness of a film) should yield increasing capacitance. However, the quantum capacitance and the so-called "dead-layer" effect often conspire to decrease the capacitance of extremely small nanostructures, which is in sharp contrast to what is expected from classical electrostatics. Very recently, first-principles studies have predicted that a nanocapacitor made of graphene and hexagonal boron nitride (h-BN) films can achieve superior capacitor properties. In this work, we fabricate the thinnest possible nanocapacitor system, essentially consisting of only monolayer materials: h-BN with graphene electrodes. We experimentally demonstrate an increase of the h-BN films' permittivity in different stack structures combined with graphene. We find a significant increase in capacitance below a thickness of ∼5 nm, more than 100% of what is predicted by classical electrostatics. Detailed quantum mechanical calculations suggest that this anomalous increase in capacitance is due to the negative quantum capacitance that this particular materials system exhibits.

  13. Effet de la composition des materiaux composites sur la caracterisation et detection par ondes de Lamb

    NASA Astrophysics Data System (ADS)

    Ostiguy, Pierre-Claude

    sensibilité a également été explorée afin de développer une méthode embarquée permettant d'évaluer les propriétés mécaniques d'une structure. La troisième partie porte sur une étude plus rigoureuse des performances de la méthode de caractérisation mécanique embarquée. La précision, la répétabilité et la robustesse de la méthode sont validés à l'aide d'un simulateur par FEM. Les propriétés estimées avec l'approche de caractérisation sont à moins de 1% des propriétés utilisées dans le modèle, ce qui rivalise avec l'incertitude des méthodes ASTM. L'analyse expérimentale s'est avérée précise et répétable pour des fréquences sous les 200 kHz, permettant d'estimer les propriétés mécaniques à moins de 1% des propriétés du fournisseur. La quatrième partie a démontrée la capacité de l'approche de caractérisation à identifier les propriétés mécaniques d'une plaques composite orthotrope. Les résultats estimés expérimentalement sont inclus dans les barres d'incertitude des propriétés estimées à l'aide des tests ASTM. Finalement, une simulation FEM a démontré la précision de l'approche avec des propriétés mécaniques à moins de 4 % des propriétés du modèle simulé. Mots-clés : Inspection non destructive, composites, caractérisation mécanique, ultrasons, imagerie, SHM, ondes guidées.

  14. Contribution a la modelisation et a l'identification des machines synchrones soumises a la saturation magnetique

    NASA Astrophysics Data System (ADS)

    Tahan, Souheil-Antoine

    Le concept de circuits équivalents, utilisé pour décrire le comportement dynamique des machines électriques, semble établir un large consensus auprès des chercheurs et des industriels. Sa flexibilité et sa capacité de simuler, avec une bonne précision, le comportement de la machine, lui assure un champ d'application certain. Pourtant, si le problème de la modélisation et de l'identification d'une machine tenant compte d'une approche linéaire, semble être résolu depuis quelques années, les chercheurs s'accordent sur le fait que pour améliorer la capacité de prédiction du modèle, il est impératif d'y incorporer les effets non linéaires dus à la saturation magnétique. À partir des équations fondamentales de la physique, nous développons un modèle original pour inclure l'influence de la saturation magnétique sur le comportement dynamique des machines. Plus spécifiquement, nos travaux visent l'incorporation des effets engendrés par la saturation dans des modèles de circuits équivalents déjà reconnus pour leur efficience et leur flexibilité dans le cadre des approches linéaires de modélisation. En conformité avec une démarche scientifique classique, nous présentons une analyse théorique détaillée qui prouve l'existence et explique le comportement des flux dits ``croisés''. Par la suite, et en s'accordant avec les conclusions obtenues, nous appliquons la théorie de Park afin d'obtenir le modèle de la machine exprimé par deux circuits électriques. L'ordre optimal de ce système est maintenu arbitraire en modifiant le nombre d'amortisseurs dans chaque axe. Cette démarche procure au système la flexibilité nécessaire pour caractériser le comportement dynamique d'une multitude de machines. L'application d'une transformée originale nous permet d'introduire l'effet de la saturation dans la partie magnétisante des circuits. Il en résulte un nouveau modèle non linéaire de la machine. Concrètement, notre recherche d

  15. Experimental Analysis of Bisbenzocyclobutene Bonded Capacitive Micromachined Ultrasonic Transducers

    PubMed Central

    Manwar, Rayyan; Chowdhury, Sazzadur

    2016-01-01

    Experimental measurement results of a 1.75 mm × 1.75 mm footprint area Capacitive Micromachined Ultrasonic Transducer (CMUT) planar array fabricated using a bisbenzocyclobutene (BCB)-based adhesive wafer bonding technique has been presented. The array consists of 40 × 40 square diaphragm CMUT cells with a cavity thickness of 900 nm and supported by 10 µm wide dielectric spacers patterned on a thin layer of BCB. A 150 µm wide one µm thick gold strip has been used as the contact pad for gold wire bonding. The measured resonant frequency of 19.3 MHz using a Polytec™ laser Doppler vibrometer (Polytec™ MSA-500) is in excellent agreement with the 3-D FEA simulation result using IntelliSuite™. An Agilent ENA5061B vector network analyzer (VNA) has been used for impedance measurement and the resonance and anti-resonance values from the imaginary impedance curve were used to determine the electromechanical coupling co-efficient. The measured coupling coefficient of 0.294 at 20 V DC bias exhibits 40% higher transduction efficiency as compared to a measured value published elsewhere for a silicon nitride based CMUT. A white light interferometry method was used to measure the diaphragm deflection profiles at different DC bias. The diaphragm center velocity was measured for different sub-resonant frequencies using a Polytec™ laser Doppler vibrometer that confirms vibration of the diaphragm at different excitation frequencies and bias voltages. Transmit and receive operations of CMUT cells were characterized using a pitch-catch method and a −6 dB fractional bandwidth of 23% was extracted from the received signal in frequency domain. From the measurement, it appears that BCB-based CMUTs offer superior transduction efficiency as compared to silicon nitride or silicon dioxide insulator-based CMUTs, and provide a very uniform deflection profile thus making them a suitable candidate to fabricate highly energy efficient CMUTs. PMID:27347955

  16. Flexible and conductive MXene films and nanocomposites with high capacitance

    SciTech Connect

    Ling, Zheng; Ren, Chang E.; Zhao, Meng-Qiang; Yang, Jian; Giammarco, James M.; Qiu, Jieshan; Barsoum, Michel W.; Gogotsi, Yury

    2014-11-11

    MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. In this study, Ti3C2Tx MXene was mixed with either a charged polydiallyldimethylammonium chloride (PDDA) or an electrically neutral polyvinyl alcohol (PVA) to produce Ti3C2Tx/polymer composites. The as-fabricated composites are flexible and have electrical conductivities as high as 2.2 × 104 S/m in the case of the Ti3C2Tx/PVA composite film and 2.4 × 105 S/m for pure Ti3C2Tx films. The tensile strength of the Ti3C2Tx/PVA composites was significantly enhanced compared with pure Ti3C2Tx or PVA films. The intercalation and confinement of the polymer between the MXene flakes not only increased flexibility but also enhanced cationic intercalation, offering an impressive volumetric capacitance of ~530 F/cm3 for MXene/PVA-KOH composite film at 2 mV/s. Finally, to our knowledge, this study is a first, but crucial, step in exploring the potential of using MXenes in polymer-based multifunctional nanocomposites for a host of applications, such as structural components, energy storage devices, wearable electronics, electrochemical actuators, and radiofrequency shielding, to name a few.

  17. Flexible and conductive MXene films and nanocomposites with high capacitance

    PubMed Central

    Ling, Zheng; Ren, Chang E.; Zhao, Meng-Qiang; Yang, Jian; Giammarco, James M.; Qiu, Jieshan; Barsoum, Michel W.; Gogotsi, Yury

    2014-01-01

    MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. Herein, Ti3C2Tx MXene was mixed with either a charged polydiallyldimethylammonium chloride (PDDA) or an electrically neutral polyvinyl alcohol (PVA) to produce Ti3C2Tx/polymer composites. The as-fabricated composites are flexible and have electrical conductivities as high as 2.2 × 104 S/m in the case of the Ti3C2Tx/PVA composite film and 2.4 × 105 S/m for pure Ti3C2Tx films. The tensile strength of the Ti3C2Tx/PVA composites was significantly enhanced compared with pure Ti3C2Tx or PVA films. The intercalation and confinement of the polymer between the MXene flakes not only increased flexibility but also enhanced cationic intercalation, offering an impressive volumetric capacitance of ∼530 F/cm3 for MXene/PVA-KOH composite film at 2 mV/s. To our knowledge, this study is a first, but crucial, step in exploring the potential of using MXenes in polymer-based multifunctional nanocomposites for a host of applications, such as structural components, energy storage devices, wearable electronics, electrochemical actuators, and radiofrequency shielding, to name a few. PMID:25389310

  18. MEMS capacitive accelerometer-based middle ear microphone.

    PubMed

    Young, Darrin J; Zurcher, Mark A; Semaan, Maroun; Megerian, Cliff A; Ko, Wen H

    2012-12-01

    The design, implementation, and characterization of a microelectromechanical systems (MEMS) capacitive accelerometer-based middle ear microphone are presented in this paper. The microphone is intended for middle ear hearing aids as well as future fully implantable cochlear prosthesis. Human temporal bones acoustic response characterization results are used to derive the accelerometer design requirements. The prototype accelerometer is fabricated in a commercial silicon-on-insulator (SOI) MEMS process. The sensor occupies a sensing area of 1 mm × 1 mm with a chip area of 2 mm × 2.4 mm and is interfaced with a custom-designed low-noise electronic IC chip over a flexible substrate. The packaged sensor unit occupies an area of 2.5 mm × 6.2 mm with a weight of 25 mg. The sensor unit attached to umbo can detect a sound pressure level (SPL) of 60 dB at 500 Hz, 35 dB at 2 kHz, and 57 dB at 8 kHz. An improved sound detection limit of 34-dB SPL at 150 Hz and 24-dB SPL at 500 Hz can be expected by employing start-of-the-art MEMS fabrication technology, which results in an articulation index of approximately 0.76. Further micro/nanofabrication technology advancement is needed to enhance the microphone sensitivity for improved understanding of normal conversational speech.

  19. Flexible and conductive MXene films and nanocomposites with high capacitance

    DOE PAGES

    Ling, Zheng; Ren, Chang E.; Zhao, Meng-Qiang; ...

    2014-11-11

    MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. In this study, Ti3C2Tx MXene was mixed with either a charged polydiallyldimethylammonium chloride (PDDA) or an electrically neutral polyvinyl alcohol (PVA) to produce Ti3C2Tx/polymer composites. The as-fabricated composites are flexible and have electrical conductivities as high as 2.2 × 104 S/m in the case of the Ti3C2Tx/PVA composite film and 2.4 ×more » 105 S/m for pure Ti3C2Tx films. The tensile strength of the Ti3C2Tx/PVA composites was significantly enhanced compared with pure Ti3C2Tx or PVA films. The intercalation and confinement of the polymer between the MXene flakes not only increased flexibility but also enhanced cationic intercalation, offering an impressive volumetric capacitance of ~530 F/cm3 for MXene/PVA-KOH composite film at 2 mV/s. Finally, to our knowledge, this study is a first, but crucial, step in exploring the potential of using MXenes in polymer-based multifunctional nanocomposites for a host of applications, such as structural components, energy storage devices, wearable electronics, electrochemical actuators, and radiofrequency shielding, to name a few.« less

  20. Frequency Tuning of Collapse-Mode Capacitive Micromachined Ultrasonic Transducer.

    PubMed

    Pekař, Martin; Dittmer, Wendy U; Mihajlović, Nenad; van Soest, Gijs; de Jong, Nico

    2017-02-01

    The information in an ultrasound image depends on the frequency that is used. In a clinical examination it may therefore be beneficial to generate ultrasound images acquired at multiple frequencies, which is difficult to achieve with conventional transducers. Capacitive micromachined ultrasonic transducers (CMUTs) offer a frequency response that is tunable by the bias voltage. In this study we investigate this frequency tunability for ultrasonic imaging. We characterized a CMUT array operated at bias voltages up to three times higher than the collapse-voltage. All elements of the array were connected to a single transmit and receive channel through a bias circuit. We quantified the transmit-receive and transmit sensitivity as a function of frequency for a range of bias voltages. Impulse response measurements show that the center frequency is modifiable between 8.7MHz and 15.3MHz with an applied bias voltage of -50V to -170V. The maximum transmit sensitivity is 52kPa/V at a center frequency of 9.0MHz with an applied bias voltage of -105V. The -3dB transmit range in center frequency accessible with the variable bias voltage is 6.7-15.5MHz. This study shows that a collapse-mode CMUT can operate efficiently at multiple center frequencies when the driving pulse and the bias voltage are optimized. We demonstrate the usefulness of frequency tuning by comparing images at different optimal combinations of driving frequency and bias voltage, acquired by linearly moving the transducer across a tissue mimicking phantom.