Sample records for capacitive force sensor

  1. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer.

    PubMed

    Asano, Sho; Muroyama, Masanori; Nakayama, Takahiro; Hata, Yoshiyuki; Nonomura, Yutaka; Tanaka, Shuji

    2017-10-25

    This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively.

  2. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer †

    PubMed Central

    Asano, Sho; Nakayama, Takahiro; Hata, Yoshiyuki; Tanaka, Shuji

    2017-01-01

    This paper reports a 3-axis fully integrated differential capacitive tactile sensor surface-mountable on a bus line. The sensor integrates a flip-bonded complementary metal-oxide semiconductor (CMOS) with capacitive sensing circuits on a low temperature cofired ceramic (LTCC) interposer with Au through vias by Au-Au thermo-compression bonding. The CMOS circuit and bonding pads on the sensor backside were electrically connected through Au bumps and the LTCC interposer, and the differential capacitive gap was formed by an Au sealing frame. A diaphragm for sensing 3-axis force was formed in the CMOS substrate. The dimensions of the completed sensor are 2.5 mm in width, 2.5 mm in length, and 0.66 mm in thickness. The fabricated sensor output coded 3-axis capacitive sensing data according to applied 3-axis force by three-dimensional (3D)-printed pins. The measured sensitivity was as high as over 34 Count/mN for normal force and 14 to 15 Count/mN for shear force with small noise, which corresponds to less than 1 mN. The hysteresis and the average cross-sensitivity were also found to be less than 2% full scale and 11%, respectively. PMID:29068429

  3. 3D capacitive tactile sensor using DRIE micromachining

    NASA Astrophysics Data System (ADS)

    Chuang, Chiehtang; Chen, Rongshun

    2005-07-01

    This paper presents a three dimensional micro capacitive tactile sensor that can detect normal and shear forces which is fabricated using deep reactive ion etching (DRIE) bulk silicon micromachining. The tactile sensor consists of a force transmission plate, a symmetric suspension system, and comb electrodes. The sensing character is based on the changes of capacitance between coplanar sense electrodes. High sensitivity is achieved by using the high aspect ratio interdigital electrodes with narrow comb gaps and large overlap areas. The symmetric suspension mechanism of this sensor can easily solve the coupling problem of measurement and increase the stability of the structure. In this paper, the sensor structure is designed, the capacitance variation of the proposed device is theoretically analyzed, and the finite element analysis of mechanical behavior of the structures is performed.

  4. Feasibility of novel four degrees of freedom capacitive force sensor for skin interface force

    PubMed Central

    2012-01-01

    Background The objective of our study was to develop a novel capacitive force sensor that enables simultaneous measurements of yaw torque around the pressure axis and normal force and shear forces at a single point for the purpose of elucidating pressure ulcer pathogenesis and establishing criteria for selection of cushions and mattresses. Methods Two newly developed sensors (approximately 10 mm×10 mm×5 mm (10) and 20 mm×20 mm×5 mm (20)) were constructed from silicone gel and four upper and lower electrodes. The upper and lower electrodes had sixteen combinations that had the function as capacitors of parallel plate type. The full scale (FS) ranges of force/torque were defined as 0–1.5 N, –0.5-0.5 N and −1.5-1.5 N mm (10) and 0–8.7 N, –2.9-2.9 N and −16.8-16.8 N mm (20) in normal force, shear forces and yaw torque, respectively. The capacitances of sixteen capacitors were measured by an LCR meter (AC1V, 100 kHz) when displacements corresponding to four degrees of freedom (DOF) forces within FS ranges were applied to the sensor. The measurement was repeated three times in each displacement condition (10 only). Force/torque were calculated by corrected capacitance and were evaluated by comparison to theoretical values and standard normal force measured by an universal tester. Results In measurements of capacitance, the coefficient of variation was 3.23% (10). The Maximum FS errors of estimated force/torque were less than or equal to 10.1 (10) and 16.4% (20), respectively. The standard normal forces were approximately 1.5 (10) and 9.4 N (20) when pressure displacements were 3 (10) and 2 mm (20), respectively. The estimated normal forces were approximately 1.5 (10) and 8.6 N (10) in the same condition. Conclusions In this study, we developed a new four DOF force sensor for measurement of force/torque that occur between the skin and a mattress. In measurement of capacitance, the repeatability was good and it was confirmed that the sensor had characteristics that enabled the correction by linear approximation for adjustment of gain and offset. In estimation of forces/torque, we considered accuracy to be within an acceptable range. PMID:23186069

  5. Applications of pressure-sensitive dielectric elastomer sensors

    NASA Astrophysics Data System (ADS)

    Böse, Holger; Ocak, Deniz; Ehrlich, Johannes

    2016-04-01

    Dielectric elastomer sensors for the measurement of compression loads with high sensitivity are described. The basic design of the sensors exhibits two profiled surfaces between which an elastomer film is confined. All components of the sensor were prepared with silicone whose stiffness can be varied in a wide range. Depending on details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression and electrode layers on the elastomer profiles and in the elastomer film approach each other. Different designs of the pressure sensor give rise to very different sensor characteristics in terms of the dependence of electric capacitance on compression force. Due to their inherent flexibility, the pressure sensors can be used on compliant substrates such as seats or beds or on the human body. This gives rise to numerous possible applications. The contribution describes also some examples of possible sensor applications. A glove was equipped with various sensors positioned at the finger tips. When grabbing an object with the glove, the sensors can detect the gripping forces of the individual fingers with high sensitivity. In a demonstrator of the glove equipped with seven sensors, the capacitances representing the gripping forces are recorded on a display. In another application example, a lower limb prosthesis was equipped with a pressure sensor to detect the load on the remaining part of the leg and the load is displayed in terms of the measured capacitance. The benefit of such sensors is to detect an eventual overload in order to prevent possible pressure sores. A third example introduces a seat load sensor system based on four extended pressure sensor mats. The sensor system detects the load distribution of a person on the seat. The examples emphasize the high performance of the new pressure sensor technology.

  6. A droplet-based passive force sensor for remote tactile sensing applications

    NASA Astrophysics Data System (ADS)

    Nie, Baoqing; Yao, Ting; Zhang, Yiqiu; Liu, Jian; Chen, Xinjian

    2018-01-01

    A droplet-based flexible wireless force sensor has been developed for remote tactile-sensing applications. By integration of a droplet-based capacitive sensing unit and two circular planar coils, this inductor-capacitor (LC) passive sensor offers a platform for the mechanical force detection in a wireless transmitting mode. Under external loads, the membrane surface of the sensor deforms the underlying elastic droplet uniformly, introducing a capacitance response in tens of picofarads. The LC circuit transduces the applied force into corresponding variations of its resonance frequency, which is detected by an external electromagnetic coupling coil. Specifically, the liquid droplet features a mechanosensitive plasticity, which results in an increased device sensitivity as high as 2.72 MHz N-1. The high dielectric property of the droplet endows our sensor with high tolerance for noise and large capacitance values (20-40 pF), the highest value in the literature for the LC passive devices in comparable dimensions. It achieves excellent reproducibility under periodical loads ranging from 0 to 1.56 N and temperature fluctuations ranging from 10 °C to 55 °C. As an interesting conceptual demonstration, the flexible device has been configured into a fingertip-amounted setting in a highly compact package (of 11 mm × 11 mm × 0.25 mm) for remote contact force sensing in the table tennis game.

  7. Optical sensors based on the NiPc-CoPc composite films deposited by drop casting and under the action of centrifugal force

    NASA Astrophysics Data System (ADS)

    Fatima, Noshin; Ahmed, Muhammad M.; Karimov, Khasan S.; Ahmad, Zubair; Fariq Muhammad, Fahmi

    2017-06-01

    In this study, solution processed composite films of nickel phthalocyanine (NiPc) and cobalt phthalocyanine (CoPc) are deposited by drop casting and under centrifugal force. The films are deposited on surface-type inter-digitated silver electrodes on ceramic alumina substrates. The effects of illumination on the impedance and capacitance of the NiPc-CoPc composite samples are investigated. The samples deposited under centrifugal force show better conductivity than the samples deposited by drop casting technique. In terms of impedance and capacitance sensitivities the samples fabricated under centrifugal force are more sensitive than the drop casting samples. The values of impedance sensitivity ({S}z) are equal to (-1.83) {{M}}{{Ω }}\\cdot {{cm}}2/{mW} and (-5.365){{M}}{{Ω }}\\cdot {{cm}}2/{mW} for the samples fabricated using drop casting and under centrifugal force, respectively. Similarly, the values of capacitance sensitivity ({S}{{c}}) are equal to 0.083 {pF}\\cdot {{cm}}2/{mW} and 0.185 {pF}\\cdot {{cm}}2/{mW} for the samples fabricated by drop casting and under centrifugal force. The films deposited using the different procedures could potentially be viable for different operational modes (i.e., conductive or capacitive) of the optical sensors. Both experimental and simulated results are discussed. Project supported by the Center for Advanced Materials (CAM), Qatar University, Qatar.

  8. Fabrication of a printed capacitive air-gap touch sensor

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Seo, Hwiwon; Lee, Sangyoon

    2018-05-01

    Unlike lithography-based processes, printed electronics does not require etching, which makes it difficult to fabricate electronic devices with an air gap. In this study, we propose a method to fabricate capacitive air-gap touch sensors via printing and coating. First, the bottom electrode was fabricated on a flexible poly(ethylene terephthalate) (PET) substrate using roll-to-roll gravure printing with silver ink. Then poly(dimethylsiloxane) (PDMS) was spin coated to form a sacrificial layer. The top electrode was fabricated on the sacrificial layer by spin coating with a stretchable silver ink. The sensor samples were then put in a tetrabutylammonium (TBAF) bath to generate the air gap by removing the sacrificial layer. The capacitance of the samples was measured for verification, and the results show that the capacitance increases in proportion to the applied force from 0 to 2.5 N.

  9. Sensor system for web inspection

    DOEpatents

    Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.

    2002-01-01

    A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.

  10. Static and cyclic performance evaluation of sensors for human interface pressure measurement.

    PubMed

    Dabling, Jeffrey G; Filatov, Anton; Wheeler, Jason W

    2012-01-01

    Researchers and clinicians often desire to monitor pressure distributions on soft tissues at interfaces to mechanical devices such as prosthetics, orthotics or shoes. The most common type of sensor used for this type of applications is a Force Sensitive Resistor (FSR) as these are convenient to use and inexpensive. Several other types of sensors exist that may have superior sensing performance but are less ubiquitous or more expensive, such as optical or capacitive sensors. We tested five sensors (two FSRs, one optical, one capacitive and one fluid pressure) in a static drift and cyclic loading configuration. The results show that relative to the important performance characteristics for soft tissue pressure monitoring (i.e. hysteresis, drift), many of the sensors tested have significant limitations. The FSRs exhibited hysteresis, drift and loss of sensitivity under cyclic loading. The capacitive sensor had substantial drift. The optical sensor had some hysteresis and temperature-related drift. The fluid pressure sensor performed well in these tests but is not as flat as the other sensors and is not commercially available. Researchers and clinicians should carefully consider the convenience and performance trade-offs when choosing a sensor for soft-tissue pressure monitoring.

  11. Artificial sensory hairs based on the flow sensitive receptor hairs of crickets

    NASA Astrophysics Data System (ADS)

    Dijkstra, M.; van Baar, J. J.; Wiegerink, R. J.; Lammerink, T. S. J.; de Boer, J. H.; Krijnen, G. J. M.

    2005-07-01

    This paper presents the modelling, design, fabrication and characterization of flow sensors based on the wind-receptor hairs of crickets. Cricket sensory hairs are highly sensitive to drag-forces exerted on the hair shaft. Artificial sensory hairs have been realized in SU-8 on suspended SixNy membranes. The movement of the membranes is detected capacitively. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept.

  12. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors.

    PubMed

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor's tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor's performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful.

  13. The Calibration and Use of Capacitance Sensors to Monitor Stem Water Content in Trees.

    PubMed

    Matheny, Ashley M; Garrity, Steven R; Bohrer, Gil

    2017-12-27

    Water transport and storage through the soil-plant-atmosphere continuum is critical to the terrestrial water cycle, and has become a major research focus area. Biomass capacitance plays an integral role in the avoidance of hydraulic impairment to transpiration. However, high temporal resolution measurements of dynamic changes in the hydraulic capacitance of large trees are rare. Here, we present procedures for the calibration and use of capacitance sensors, typically used to monitor soil water content, to measure the volumetric water content in trees in the field. Frequency domain reflectometry-style observations are sensitive to the density of the media being studied. Therefore, it is necessary to perform species-specific calibrations to convert from the sensor-reported values of dielectric permittivity to volumetric water content. Calibration is performed on a harvested branch or stem cut into segments that are dried or re-hydrated to produce a full range of water contents used to generate a best-fit regression with sensor observations. Sensors are inserted into calibration segments or installed in trees after pre-drilling holes to a tolerance fit using a fabricated template to ensure proper drill alignment. Special care is taken to ensure that sensor tines make good contact with the surrounding media, while allowing them to be inserted without excessive force. Volumetric water content dynamics observed via the presented methodology align with sap flow measurements recorded using thermal dissipation techniques and environmental forcing data. Biomass water content data can be used to observe the onset of water stress, drought response and recovery, and has the potential to be applied to the calibration and evaluation of new plant-level hydrodynamics models, as well as to the partitioning of remotely sensed moisture products into above- and belowground components.

  14. A Lorentz force actuated magnetic field sensor with capacitive read-out

    NASA Astrophysics Data System (ADS)

    Stifter, M.; Steiner, H.; Kainz, A.; Keplinger, F.; Hortschitz, W.; Sauter, T.

    2013-05-01

    We present a novel design of a resonant magnetic field sensor with capacitive read-out permitting wafer level production. The device consists of a single-crystal silicon cantilever manufactured from the device layer of an SOI wafer. Cantilevers represent a very simple structure with respect to manufacturing and function. On the top of the structure, a gold lead carries AC currents that generate alternating Lorentz forces in an external magnetic field. The free end oscillation of the actuated cantilever depends on the eigenfrequencies of the structure. Particularly, the specific design of a U-shaped structure provides a larger force-to-stiffness-ratio than standard cantilevers. The electrodes for detecting cantilever deflections are separately fabricated on a Pyrex glass-wafer. They form the counterpart to the lead on the freely vibrating planar structure. Both wafers are mounted on top of each other. A custom SU-8 bonding process on wafer level creates a gap which defines the equilibrium distance between sensing electrodes and the vibrating structure. Additionally to the capacitive read-out, the cantilever oscillation was simultaneously measured with laser Doppler vibrometry through proper windows in the SOI handle wafer. Advantages and disadvantages of the asynchronous capacitive measurement configuration are discussed quantitatively and presented by a comprehensive experimental characterization of the device under test.

  15. Development of an LSI for Tactile Sensor Systems on the Whole-Body of Robots

    NASA Astrophysics Data System (ADS)

    Muroyama, Masanori; Makihata, Mitsutoshi; Nakano, Yoshihiro; Matsuzaki, Sakae; Yamada, Hitoshi; Yamaguchi, Ui; Nakayama, Takahiro; Nonomura, Yutaka; Fujiyoshi, Motohiro; Tanaka, Shuji; Esashi, Masayoshi

    We have developed a network type tactile sensor system, which realizes high-density tactile sensors on the whole-body of nursing and communication robots. The system consists of three kinds of nodes: host, relay and sensor nodes. Roles of the sensor node are to sense forces and, to encode the sensing data and to transmit the encoded data on serial channels by interruption handling. Relay nodes and host deal with a number of the encoded sensing data from the sensor nodes. A sensor node consists of a capacitive MEMS force sensor and a signal processing/transmission LSI. In this paper, details of an LSI for the sensor node are described. We designed experimental sensor node LSI chips by a commercial 0.18µm standard CMOS process. The 0.18µm LSIs were supplied in wafer level for MEMS post-process. The LSI chip area is 2.4mm × 2.4mm, which includes logic, CF converter and memory circuits. The maximum clock frequency of the chip with a large capacitive load is 10MHz. Measured power consumption at 10MHz clock is 2.23mW. Experimental results indicate that size, response time, sensor sensitivity and power consumption are all enough for practical tactile sensor systems.

  16. Multifunctional Woven Structure Operating as Triboelectric Energy Harvester, Capacitive Tactile Sensor Array, and Piezoresistive Strain Sensor Array

    PubMed Central

    Kim, Kihong; Song, Giyoung; Park, Cheolmin; Yun, Kwang-Seok

    2017-01-01

    This paper presents a power-generating sensor array in a flexible and stretchable form. The proposed device is composed of resistive strain sensors, capacitive tactile sensors, and a triboelectric energy harvester in a single platform. The device is implemented in a woven textile structure by using proposed functional threads. A single functional thread is composed of a flexible hollow tube coated with silver nanowires on the outer surface and a conductive silver thread inside the tube. The total size of the device is 60 × 60 mm2 having a 5 × 5 array of sensor cell. The touch force in the vertical direction can be sensed by measuring the capacitance between the warp and weft functional threads. In addition, because silver nanowire layers provide piezoresistivity, the strain applied in the lateral direction can be detected by measuring the resistance of each thread. Last, with regard to the energy harvester, the maximum power and power density were measured as 201 μW and 0.48 W/m2, respectively, when the device was pushed in the vertical direction. PMID:29120363

  17. Investigation of Electrostatic Accelerometer in HUST for Space Science Missions

    NASA Astrophysics Data System (ADS)

    Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing

    2014-05-01

    High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.

  18. On Machine Capacitance Dimensional and Surface Profile Measurement System

    NASA Technical Reports Server (NTRS)

    Resnick, Ralph

    1993-01-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  19. Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors

    PubMed Central

    Hsieh, Chen-Hsuan; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    This study investigates the design and fabrication of magnetic microsensors using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process. The magnetic sensor is composed of springs and interdigitated electrodes, and it is actuated by the Lorentz force. The finite element method (FEM) software CoventorWare is adopted to simulate the displacement and capacitance of the magnetic sensor. A post-CMOS process is utilized to release the suspended structure. The post-process uses an anisotropic dry etching to etch the silicon dioxide layer and an isotropic dry etching to remove the silicon substrate. When a magnetic field is applied to the magnetic sensor, it generates a change in capacitance. A sensing circuit is employed to convert the capacitance variation of the sensor into the output voltage. The experimental results show that the output voltage of the magnetic microsensor varies from 0.05 to 1.94 V in the magnetic field range of 5–200 mT. PMID:24172287

  20. Touch-mode capacitive pressure sensor with graphene-polymer heterostructure membrane

    NASA Astrophysics Data System (ADS)

    Berger, Christian; Phillips, Rory; Pasternak, Iwona; Sobieski, Jan; Strupinski, Wlodek; Vijayaraghavan, Aravind

    2018-01-01

    We describe the fabrication and characterisation of a touch-mode capacitive pressure sensor (TMCPS) with a robust design that comprises a graphene-polymer heterostructure film, laminated onto the silicon dioxide surface of a silicon wafer, incorporating a SU-8 spacer grid structure. The spacer grid structure allows the flexible graphene-polymer film to be partially suspended above the substrate, such that a pressure on the membrane results in a reproducible deflection, even after exposing the membrane to pressures over 10 times the operating range. Sensors show reproducible pressure transduction in water submersion at varying depths under static and dynamic loading. The measured capacitance change in response to pressure is in good agreement with an analytical model of clamped plates in touch mode. The device shows a pressure sensitivity of 27.1 +/- 0.5 fF Pa-1 over a pressure range of 0.5 kPa-8.5 kPa. In addition, we demonstrate the operation of this device as a force-touch sensor in air.

  1. A novel low profile wireless flow sensor to monitor hemodynamic changes in cerebral aneurysm

    NASA Astrophysics Data System (ADS)

    Chen, Yanfei; Jankowitz, Brian T.; Cho, Sung Kwon; Chun, Youngjae

    2015-03-01

    A proof of concept of low-profile flow sensor has been designed, fabricated, and subsequently tested to demonstrate its feasibility for monitoring hemodynamic changes in cerebral aneurysm. The prototype sensor contains three layers, i.e., a thin polyurethane layer was sandwiched between two sputter-deposited thin film nitinol layers (6μm thick). A novel superhydrophilic surface treatment was used to create hemocompatible surface of thin nitinol electrode layers. A finite element model was conducted using ANSYS Workbench 15.0 Static Structural to optimize the dimensions of flow sensor. A computational fluid dynamics calculations were performed using ANSYS Workbench Fluent to assess the flow velocity patterns within the aneurysm sac. We built a test platform with a z-axis translation stage and an S-beam load cell to compare the capacitance changes of the sensors with different parameters during deformation. Both LCR meter and oscilloscope were used to measure the capacitance and the resonant frequency shifts, respectively. The experimental compression tests demonstrated the linear relationship between the capacitance and applied compression force and decreasing the length, width and increasing the thickness improved the sensor sensitivity. The experimentally measured resonant frequency dropped from 12.7MHz to 12.48MHz, indicating a 0.22MHz shift with 200g ( 2N) compression force while the theoretical resonant frequency shifted 0.35MHz with 50g ( 0.5N). Our recent results demonstrated a feasibility of the low-profile flow sensor for monitoring haemodynamics in cerebral aneurysm region, as well as the efficacy of the use of the surface treated thin film nitinol for the low-profile sensor materials.

  2. Development of a film sensor for static and dynamic force measurement

    NASA Astrophysics Data System (ADS)

    Castellini, P.; Montanini, R.; Revel, G. M.

    2002-09-01

    In this work an innovative double-layer film sensor for the measurement of forces is presented. The sensor is a thin film (thickness below 1 mm) based on a "sandwich" structure composed of two sensing elements glued together: one layer is a capacitive film and the other is a piezoelectric film. Both the layers are sensitive to compression loads, but they are suitable for working in different frequency ranges. In fact, while the capacitive element is capable of measuring from dc up to about 400 Hz, on the contrary the piezoelectric film works in the high frequency range. The output signals of both the sensors are acquired and then filtered and processed in order to achieve a single output signal. The piezocapacitive sensor has been developed in order to synthesize, in a small and cheap device, the capability to measure compression forces in a wide range of frequencies. The sensor is very small and has many potential applications, such as in the field of modal analysis. In particular, the very small thickness allows to insert it into a composite material to measure actual loads and excitations, as well as on the surface or between different components of a more complex system in order to obtain a smart structure. This article describes the realization of the sensor and the adopted signal processing strategies. The metrological characterization procedure is discussed and results are shown for both static and dynamic calibration of the film sensor. Finally, a simple application, that highlights the benefits of the sensor, is presented.

  3. Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection.

    PubMed

    Siqueira, José R; Molinnus, Denise; Beging, Stefan; Schöning, Michael J

    2014-06-03

    The ideal combination among biomolecules and nanomaterials is the key for reaching biosensing units with high sensitivity. The challenge, however, is to find out a stable and sensitive film architecture that can be incorporated on the sensor's surface. In this paper, we report on the benefits of incorporating a layer-by-layer (LbL) nanofilm of polyamidoamine (PAMAM) dendrimer and carbon nanotubes (CNTs) on capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors for detecting urea. Three sensor arrangements were studied in order to investigate the adequate film architecture, involving the LbL film with the enzyme urease: (i) urease immobilized directly onto a bare EIS [EIS-urease] sensor; (ii) urease atop the LbL film over the EIS [EIS-(PAMAM/CNT)-urease] sensor; and (iii) urease sandwiched between the LbL film and another CNT layer [EIS-(PAMAM/CNT)-urease-CNT]. The surface morphology of all three urea-based EIS biosensors was investigated by atomic force microscopy (AFM), while the biosensing abilities were studied by means of capacitance-voltage (C/V) and dynamic constant-capacitance (ConCap) measureaments at urea concentrations ranging from 0.1 mM to 100 mM. The EIS-urease and EIS-(PAMAM/CNT)-urease sensors showed similar sensitivity (~18 mV/decade) and a nonregular signal behavior as the urea concentration increased. On the other hand, the EIS-(PAMAM/CNT)-urease-CNT sensor exhibited a superior output signal performance and higher sensitivity of about 33 mV/decade. The presence of the additional CNT layer was decisive to achieve a urea based EIS sensor with enhanced properties. Such sensitive architecture demonstrates that the incorporation of an adequate hybrid enzyme-nanofilm as sensing unit opens new prospects for biosensing applications using the field-effect sensor platform.

  4. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Pengmin; McDonald, Timothy; Fulton, John

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  5. Simultaneous moisture content and mass flow measurements in wood chip flows using coupled dielectric and impact sensors

    DOE PAGES

    Pan, Pengmin; McDonald, Timothy; Fulton, John; ...

    2016-12-23

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Testsmore » were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. As a result, in situations where flows could not be impeded, however, the tomographic approach would likely be more useful.« less

  6. Simultaneous Moisture Content and Mass Flow Measurements in Wood Chip Flows Using Coupled Dielectric and Impact Sensors

    PubMed Central

    Pan, Pengmin; McDonald, Timothy; Fulton, John; Via, Brian; Hung, John

    2016-01-01

    An 8-electrode capacitance tomography (ECT) sensor was built and used to measure moisture content (MC) and mass flow of pine chip flows. The device was capable of directly measuring total water quantity in a sample but was sensitive to both dry matter and moisture, and therefore required a second measurement of mass flow to calculate MC. Two means of calculating the mass flow were used: the first being an impact sensor to measure total mass flow, and the second a volumetric approach based on measuring total area occupied by wood in images generated using the capacitance sensor’s tomographic mode. Tests were made on 109 groups of wood chips ranging in moisture content from 14% to 120% (dry basis) and wet weight of 280 to 1100 g. Sixty groups were randomly selected as a calibration set, and the remaining were used for validation of the sensor’s performance. For the combined capacitance/force transducer system, root mean square errors of prediction (RMSEP) for wet mass flow and moisture content were 13.42% and 16.61%, respectively. RMSEP using the combined volumetric mass flow/capacitance sensor for dry mass flow and moisture content were 22.89% and 24.16%, respectively. Either of the approaches was concluded to be feasible for prediction of moisture content in pine chip flows, but combining the impact and capacitance sensors was easier to implement. In situations where flows could not be impeded, however, the tomographic approach would likely be more useful. PMID:28025536

  7. Near DC force measurement using PVDF sensors

    NASA Astrophysics Data System (ADS)

    Ramanathan, Arun Kumar; Headings, Leon M.; Dapino, Marcelo J.

    2018-03-01

    There is a need for high-performance force sensors capable of operating at frequencies near DC while producing a minimal mass penalty. Example application areas include steering wheel sensors, powertrain torque sensors, robotic arms, and minimally invasive surgery. The beta crystallographic phase polyvinylidene fluoride (PVDF) films are suitable for this purpose owing to their large piezoelectric constant. Unlike conventional capacitive sensors, beta crystallographic phase PVDF films exhibit a broad linear range and can potentially be designed to operate without complex electronics or signal processing. A fundamental challenge that prevents the implementation of PVDF in certain high-performance applications is their inability to measure static signals, which results from their first-order electrical impedance. Charge readout algorithms have been implemented which address this issue only partially, as they often require integration of the output signal to obtain the applied force profile, resulting in signal drift and signal processing complexities. In this paper, we propose a straightforward real time drift compensation strategy that is applicable to high output impedance PVDF films. This strategy makes it possible to utilize long sample times with a minimal loss of accuracy; our measurements show that the static output remains within 5% of the original value during half-hour measurements. The sensitivity and full-scale range are shown to be determined by the feedback capacitance of the charge amplifier. A linear model of the PVDF sensor system is developed and validated against experimental measurements, along with benchmark tests against a commercial load cell.

  8. FDR Soil Moisture Sensor for Environmental Testing and Evaluation

    NASA Astrophysics Data System (ADS)

    Linmao, Ye; longqin, Xue; guangzhou, Zhang; haibo, Chen; likuai, Shi; zhigang, Wu; gouhe, Yu; yanbin, Wang; sujun, Niu; Jin, Ye; Qi, Jin

    To test the affect of environmental stresses on a adaptability of soil moisture capacitance sensor(FDR) a number of stresses were induced including vibrational shock as well as temperature and humidity through the use of a CH-I constant humidity chamber with variable temperature. A Vibrational platform was used to exam the resistance and structural integrity of the sensor after vibrations simulating the process of using, transporting and handling the sensor. A Impactive trial platform was used to test the resistance and structural integrity of the sensor after enduring repeated mechanical shocks. An CH-I constant humidity chamber with high-low temperature was used to test the adaptability of sensor in different environments with high temperature, low temperature and constant humidity. Otherwise, scope of magnetic force line of sensor was also tested in this paper. Test show:the capacitance type soil moisture sensor spread a feeling machine to bear heat, high wet and low temperature, at bear impact and vibration experiment in pass an examination, is a kind of environment to adapt to ability very strong instrument;Spread a feeling machine moreover electric field strength function radius scope 7 cms.

  9. An ultra-precision tool nanoindentation instrument for replication of single point diamond tool cutting edges

    NASA Astrophysics Data System (ADS)

    Cai, Yindi; Chen, Yuan-Liu; Xu, Malu; Shimizu, Yuki; Ito, So; Matsukuma, Hiraku; Gao, Wei

    2018-05-01

    Precision replication of the diamond tool cutting edge is required for non-destructive tool metrology. This paper presents an ultra-precision tool nanoindentation instrument designed and constructed for replication of the cutting edge of a single point diamond tool onto a selected soft metal workpiece by precisely indenting the tool cutting edge into the workpiece surface. The instrument has the ability to control the indentation depth with a nanometric resolution, enabling the replication of tool cutting edges with high precision. The motion of the diamond tool along the indentation direction is controlled by the piezoelectric actuator of a fast tool servo (FTS). An integrated capacitive sensor of the FTS is employed to detect the displacement of the diamond tool. The soft metal workpiece is attached to an aluminum cantilever whose deflection is monitored by another capacitive sensor, referred to as an outside capacitive sensor. The indentation force and depth can be accurately evaluated from the diamond tool displacement, the cantilever deflection and the cantilever spring constant. Experiments were carried out by replicating the cutting edge of a single point diamond tool with a nose radius of 2.0 mm on a copper workpiece surface. The profile of the replicated tool cutting edge was measured using an atomic force microscope (AFM). The effectiveness of the instrument in precision replication of diamond tool cutting edges is well-verified by the experimental results.

  10. Asymmetric disappearance and periodic asymmetric phenomena of rocking dynamics in micro dual-capacitive energy harvester

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxiong; Guo, Xiaoyu; Huang, Run

    2018-06-01

    We study asymmetric disappearance and period asymmetric phenomena starting with a rocking dynamic in micro dual-capacitive energy harvester. The mathematical model includes nonlinear electrostatic forces from the variable dual capacitor, the numerical functioned forces provided by suspending springs, linear damping forces and an external vibration force. The suspending plate and its elastic supports were designed in a symmetric structure in the micro capacitor, however, the reported energy harvester was unavoidable starting with a asymmetric motion in the real vibration environment. We found that the designed dual energy capacitive harvester can harvest ˜6 µW with 10V input voltage, and under 0.8 time's resonant frequency vibration. We also discovered that the rocking dynamics of the suspended plate can be showed with an asymmetric disappearance or periodic asymmetric phenomena starting with an asymmetric motion. The study of these asymmetric disappearance and period asymmetric phenomena were not only important for the design of the stability of the micro capacitor for sensor or the energy harvesting, but also gave a deep understanding of the rocking nonlinear dynamics of the complex micro structures and beams.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbone, Ludovico; Ciani, Giacomo; Dolesi, Rita

    We have measured surface-force noise on a hollow replica of a LISA proof mass surrounded by its capacitive motion sensor. Forces are detected through the torque exerted on the proof mass by means of a torsion pendulum in the 0.1-30 mHz range. The sensor and electronics have the same design as for the flight hardware, including 4 mm gaps around the proof mass. The measured upper limit for forces would allow detection of a number of galactic binaries signals with signal-to-noise ratio up to {approx_equal}40 for 1 yr integration. We also discuss how LISA Pathfinder will substantially improve this limit,more » approaching the LISA performance.« less

  12. Capacitance variation measurement method with a continuously variable measuring range for a micro-capacitance sensor

    NASA Astrophysics Data System (ADS)

    Lü, Xiaozhou; Xie, Kai; Xue, Dongfeng; Zhang, Feng; Qi, Liang; Tao, Yebo; Li, Teng; Bao, Weimin; Wang, Songlin; Li, Xiaoping; Chen, Renjie

    2017-10-01

    Micro-capacitance sensors are widely applied in industrial applications for the measurement of mechanical variations. The measurement accuracy of micro-capacitance sensors is highly dependent on the capacitance measurement circuit. To overcome the inability of commonly used methods to directly measure capacitance variation and deal with the conflict between the measurement range and accuracy, this paper presents a capacitance variation measurement method which is able to measure the output capacitance variation (relative value) of the micro-capacitance sensor with a continuously variable measuring range. We present the principles and analyze the non-ideal factors affecting this method. To implement the method, we developed a capacitance variation measurement circuit and carried out experiments to test the circuit. The result shows that the circuit is able to measure a capacitance variation range of 0-700 pF linearly with a maximum relative accuracy of 0.05% and a capacitance range of 0-2 nF (with a baseline capacitance of 1 nF) with a constant resolution of 0.03%. The circuit is proposed as a new method to measure capacitance and is expected to have applications in micro-capacitance sensors for measuring capacitance variation with a continuously variable measuring range.

  13. Carbon Nanofiber versus Graphene‐Based Stretchable Capacitive Touch Sensors for Artificial Electronic Skin

    PubMed Central

    Dussoni, Simeone; Ceseracciu, Luca; Maggiali, Marco; Natale, Lorenzo; Metta, Giorgio; Athanassiou, Athanassia

    2017-01-01

    Abstract Stretchable capacitive devices are instrumental for new‐generation multifunctional haptic technologies particularly suited for soft robotics and electronic skin applications. A majority of elongating soft electronics still rely on silicone for building devices or sensors by multiple‐step replication. In this study, fabrication of a reliable elongating parallel‐plate capacitive touch sensor, using nitrile rubber gloves as templates, is demonstrated. Spray coating both sides of a rubber piece cut out of a glove with a conductive polymer suspension carrying dispersed carbon nanofibers (CnFs) or graphene nanoplatelets (GnPs) is sufficient for making electrodes with low sheet resistance values (≈10 Ω sq−1). The electrodes based on CnFs maintain their conductivity up to 100% elongation whereas the GnPs‐based ones form cracks before 60% elongation. However, both electrodes are reliable under elongation levels associated with human joints motility (≈20%). Strikingly, structural damages due to repeated elongation/recovery cycles could be healed through annealing. Haptic sensing characteristics of a stretchable capacitive device by wrapping it around the fingertip of a robotic hand (ICub) are demonstrated. Tactile forces as low as 0.03 N and as high as 5 N can be easily sensed by the device under elongation or over curvilinear surfaces. PMID:29619306

  14. Carbon Nanofiber versus Graphene-Based Stretchable Capacitive Touch Sensors for Artificial Electronic Skin.

    PubMed

    Cataldi, Pietro; Dussoni, Simeone; Ceseracciu, Luca; Maggiali, Marco; Natale, Lorenzo; Metta, Giorgio; Athanassiou, Athanassia; Bayer, Ilker S

    2018-02-01

    Stretchable capacitive devices are instrumental for new-generation multifunctional haptic technologies particularly suited for soft robotics and electronic skin applications. A majority of elongating soft electronics still rely on silicone for building devices or sensors by multiple-step replication. In this study, fabrication of a reliable elongating parallel-plate capacitive touch sensor, using nitrile rubber gloves as templates, is demonstrated. Spray coating both sides of a rubber piece cut out of a glove with a conductive polymer suspension carrying dispersed carbon nanofibers (CnFs) or graphene nanoplatelets (GnPs) is sufficient for making electrodes with low sheet resistance values (≈10 Ω sq -1 ). The electrodes based on CnFs maintain their conductivity up to 100% elongation whereas the GnPs-based ones form cracks before 60% elongation. However, both electrodes are reliable under elongation levels associated with human joints motility (≈20%). Strikingly, structural damages due to repeated elongation/recovery cycles could be healed through annealing. Haptic sensing characteristics of a stretchable capacitive device by wrapping it around the fingertip of a robotic hand (ICub) are demonstrated. Tactile forces as low as 0.03 N and as high as 5 N can be easily sensed by the device under elongation or over curvilinear surfaces.

  15. Transparent Flexible Active Faraday Cage Enables In Vivo Capacitance Measurement in Assembled Microsensor.

    PubMed

    Ahmadi, Mahdi; Rajamani, Rajesh; Sezen, Serdar

    2017-10-01

    Capacitive micro-sensors such as accelerometers, gyroscopes and pressure sensors are increasingly used in the modern electronic world. However, the in vivo use of capacitive sensing for measurement of pressure or other variables inside a human body suffers from significant errors due to stray capacitance. This paper proposes a solution consisting of a transparent thin flexible Faraday cage that surrounds the sensor. By supplying the active sensing voltage simultaneously to the deformable electrode of the capacitive sensor and to the Faraday cage, the stray capacitance during in vivo measurements can be largely eliminated. Due to the transparency of the Faraday cage, the top and bottom portions of a capacitive sensor can be accurately aligned and assembled together. Experimental results presented in the paper show that stray capacitance is reduced by a factor of 10 by the Faraday cage, when the sensor is subjected to a full immersion in water.

  16. Humidity and illumination organic semiconductor copper phthalocyanine sensor for environmental monitoring.

    PubMed

    Karimov, K S; Qazi, I; Khan, T A; Draper, P H; Khalid, F A; Mahroof-Tahir, M

    2008-06-01

    In this investigation properties of organic semiconductor copper phthalocyanine (CuPc) capacitive humidity and illumination sensors were studied. Organic thin film was deposited by vacuum evaporation on a glass substrate with silver surface-type electrodes to form the Ag/CuPc/Ag sensor. The capacitance of the samples was evaluated at room temperature in the relative humidity range of 35-92%. It was observed that capacitance of the Ag/CuPc/Ag sensor increases with increase in humidity. The ratio of the relative capacitance to relative humidity was about 200. It is assumed that in general the capacitive response of the sensor is associated with polarization due to absorption of water molecules and transfer of charges (electrons and holes). It was observed that under filament lamp illumination of up to 1,000 lx the capacitance of the Ag/CuPc/Ag photo capacitive detectors increased continuously by 20% as compared to dark condition. It is assumed that photo capacitive response of the sensor is associated with polarization due to transfer of photo-generated electrons and holes. An equivalent circuit of the Ag/CuPc/Ag capacitive humidity and illumination sensor was developed. Humidity and illumination dependent capacitance properties of this sensor make it attractive for use in humidity and illumination multi-meters. The sensor may be used in instruments for environmental monitoring of humidity and illumination.

  17. Active Targets For Capacitive Proximity Sensors

    NASA Technical Reports Server (NTRS)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Lightweight, low-power active targets devised for use with improved capacitive proximity sensors described in "Capacitive Proximity Sensor Has Longer Range" (GSC-13377), and "Capacitive Proximity Sensors With Additional Driven Shields" (GSC-13475). Active targets are short-distance electrostatic beacons; they generate known alternating electro-static fields used for alignment and/or to measure distances.

  18. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window

    PubMed Central

    Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin

    2016-01-01

    A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10−4 pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range. PMID:27187393

  19. Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time

    PubMed Central

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-01-01

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time. PMID:25808770

  20. Development of a capacitive ice sensor to measure ice growth in real time.

    PubMed

    Zhi, Xiang; Cho, Hyo Chang; Wang, Bo; Ahn, Cheol Hee; Moon, Hyeong Soon; Go, Jeung Sang

    2015-03-19

    This paper presents the development of the capacitive sensor to measure the growth of ice on a fuel pipe surface in real time. The ice sensor consists of pairs of electrodes to detect the change in capacitance and a thermocouple temperature sensor to examine the ice formation situation. In addition, an environmental chamber was specially designed to control the humidity and temperature to simulate the ice formation conditions. From the humidity, a water film is formed on the ice sensor, which results in an increase in capacitance. Ice nucleation occurs, followed by the rapid formation of frost ice that decreases the capacitance suddenly. The capacitance is saturated. The developed ice sensor explains the ice growth providing information about the icing temperature in real time.

  1. Novel High Temperature Capacitive Pressure Sensor Utilizing SiC Integrated Circuit Twin Ring Oscillators

    NASA Technical Reports Server (NTRS)

    Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.

    2017-01-01

    This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.

  2. A numerical method for measuring capacitive soft sensors through one channel

    NASA Astrophysics Data System (ADS)

    Tairych, Andreas; Anderson, Iain A.

    2018-03-01

    Soft capacitive stretch sensors are well suited for unobtrusive wearable body motion capture. Conventional sensing methods measure sensor capacitances through separate channels. In sensing garments with many sensors, this results in high wiring complexity, and a large footprint of rigid sensing circuit boards. We have developed a more efficient sensing method that detects multiple sensors through only one channel, and one set of wires. It is based on a R-C transmission line assembled from capacitive conductive fabric stretch sensors, and external resistors. The unknown capacitances are identified by solving a system of nonlinear equations. These equations are established by modelling and continuously measuring transmission line reactances at different frequencies. Solving these equations numerically with a Newton-Raphson solver for the unknown capacitances enables real time reading of all sensors. The method was verified with a prototype comprising three sensors that is capable of detecting both individually and simultaneously stretched sensors. Instead of using three channels and six wires to detect the sensors, the task was achieved with only one channel and two wires.

  3. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer.

    PubMed

    Siqueira, José R; Abouzar, Maryam H; Poghossian, Arshak; Zucolotto, Valtencir; Oliveira, Osvaldo N; Schöning, Michael J

    2009-10-15

    Silicon-based sensors incorporating biomolecules are advantageous for processing and possible biological recognition in a small, reliable and rugged manufactured device. In this study, we report on the functionalization of field-effect (bio-)chemical sensors with layer-by-layer (LbL) films containing single-walled carbon nanotubes (SWNTs) and polyamidoamine (PAMAM) dendrimers. A capacitive electrolyte-insulator-semiconductor (EIS) structure modified with carbon nanotubes (EIS-NT) was built, which could be used as a penicillin biosensor. From atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) images, the LbL films were shown to be highly porous due to interpenetration of SWNTs into the dendrimer layers. Capacitance-voltage (C/V) measurements pointed to a high pH sensitivity of ca. 55 mV/pH for the EIS-NT structures. The biosensing ability towards penicillin of an EIS-NT-penicillinase biosensor was also observed as the flat-band voltage shifted to lower potentials at different penicillin concentrations. A dynamic response of penicillin concentrations, ranging from 5.0 microM to 25 mM, was evaluated for an EIS-NT with the penicillinase enzyme immobilized onto the surfaces, via constant-capacitance (ConCap) measurements, achieving a sensitivity of ca. 116 mV/decade. The presence of the nanostructured PAMAM/SWNT LbL film led to sensors with higher sensitivity and better performance.

  4. Capacitance pressure sensor

    DOEpatents

    Eaton, William P.; Staple, Bevan D.; Smith, James H.

    2000-01-01

    A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

  5. Capacitive chemical sensor

    DOEpatents

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  6. Measurement of Gas-Liquid Two-Phase Flow in Micro-Pipes by a Capacitance Sensor

    PubMed Central

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-01-01

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes. PMID:25587879

  7. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    PubMed

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  8. Evaluation and optimization of quartz resonant-frequency retuned fork force sensors with high Q factors, and the associated electric circuits, for non-contact atomic force microscopy.

    PubMed

    Ooe, Hiroaki; Fujii, Mikihiro; Tomitori, Masahiko; Arai, Toyoko

    2016-02-01

    High-Q factor retuned fork (RTF) force sensors made from quartz tuning forks, and the electric circuits for the sensors, were evaluated and optimized to improve the performance of non-contact atomic force microscopy (nc-AFM) performed under ultrahigh vacuum (UHV) conditions. To exploit the high Q factor of the RTF sensor, the oscillation of the RTF sensor was excited at its resonant frequency, using a stray capacitance compensation circuit to cancel the excitation signal leaked through the stray capacitor of the sensor. To improve the signal-to-noise (S/N) ratio in the detected signal, a small capacitor was inserted before the input of an operational (OP) amplifier placed in an UHV chamber, which reduced the output noise from the amplifier. A low-noise, wideband OP amplifier produced a superior S/N ratio, compared with a precision OP amplifier. The thermal vibrational density spectra of the RTF sensors were evaluated using the circuit. The RTF sensor with an effective spring constant value as low as 1000 N/m provided a lower minimum detection limit for force differentiation. A nc-AFM image of a Si(111)-7 × 7 surface was produced with atomic resolution using the RTF sensor in a constant frequency shift mode; tunneling current and energy dissipation images with atomic resolution were also simultaneously produced. The high-Q factor RTF sensor showed potential for the high sensitivity of energy dissipation as small as 1 meV/cycle and the high-resolution analysis of non-conservative force interactions.

  9. Microfabricated Electrical Connector for Atomic Force Microscopy Probes with Integrated Sensor/Actuator

    NASA Astrophysics Data System (ADS)

    Akiyama, Terunobu; Staufer, Urs; Rooij, Nico F. de

    2002-06-01

    A microfabricated, electrical connector is proposed for facilitating the mounting of atomic force microscopy (AFM) probes, which have an integrated sensor and/or actuator. Only a base chip, which acts as a socket, is permanently fixed onto a printed circuit board and electronically connected by standard wire bonding. The AFM chip, the “plug”, is flipped onto the base chip and pressed from the backside by a spring. Electrical contact with the eventual stress sensors, capacitive or piezoelectric sensor/actuators, is provided by contact bumps. These bumps of about 8 μm height are placed onto the base chip. They touch the pads on the AFM chip that were originally foreseen to be for wire bonding and thus provide the electrical contact. This connector schema was successfully used to register AFM images with piezoresistive cantilevers.

  10. Calibration of force actuators on an adaptive secondary prototype.

    PubMed

    Ricci, Davide; Riccardi, Armando; Zanotti, Daniela

    2008-07-10

    In the context of the Large Binocular Telescope project, we present the results of force actuator calibrations performed on an adaptive secondary prototype called P45, a thin deformable glass with magnets glued onto its back. Electromagnetic actuators, controlled in a closed loop with a system of internal metrology based on capacitive sensors, continuously deform its shape to correct the distortions of the wavefront. Calibrations of the force actuators are needed because of the differences between driven forces and measured forces. We describe the calibration procedures and the results, obtained with errors of less than 1.5%.

  11. Large Capacitance Measurement by Multiple Uses of MBL Charge Sensor

    ERIC Educational Resources Information Center

    Lee, Jung Sook; Chae, Min; Kim, Jung Bog

    2010-01-01

    A recent article by Morse described interesting electrostatics experiments using an MBL charge sensor. In this application, the charge sensor has a large capacitance compared to the charged test object, so nearly all charges can be transferred to the sensor capacitor from the capacitor to be measured. However, the typical capacitance of commercial…

  12. All-Elastomer 3-Axis Contact Resistive Tactile Sensor Arrays and Micromilled Manufacturing Methods Thereof

    NASA Technical Reports Server (NTRS)

    Penskiy, Ivan (Inventor); Charalambides, Alexandros (Inventor); Bergbreiter, Sarah (Inventor)

    2018-01-01

    At least one tactile sensor includes an insulating layer and a conductive layer formed on the surface of the insulating layer. The conductive layer defines at least one group of flexible projections extending orthogonally from the surface of the insulating layer. The flexible projections include a major projection extending a distance orthogonally from the surface and at least one minor projection that is adjacent to and separate from the major projection wherein the major projection extends a distance orthogonally that is greater than the distance that the minor projection extends orthogonally. Upon a compressive force normal to, or a shear force parallel to, the surface, the major projection and the minor projection flex such that an electrical contact resistance is formed between the major projection and the minor projection. A capacitive tactile sensor is also disclosed that responds to the normal and shear forces.

  13. Magnetic-Field-Response Measurement-Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a response inflection. The "transmit-receive-compare" of sequential harmonics is repeated until the inflection is identified. The harmonic producing the amplitude inflection is the sensor resonant frequency. Resonant frequency and response amplitude are stored and then correlated to calibration data.

  14. Development of a slip sensor using separable bilayer with Ecoflex-NBR film

    NASA Astrophysics Data System (ADS)

    Kim, Sung Joon; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Ja Choon

    2017-04-01

    Polymer film-type slip sensor is presented by using novel working principle rather than measuring micro-vibration. The sensor is comprised of bilayer with Ecoflex and NBR(acrylonitrile butadiene rubber) films divided by di-electric. When slip occur on surface, bilayer have relative displacement from each other because friction-induced vibration make a clearance between two layers. This displacement can be obtained by capacitance difference. CNT(carbon nanotube) was employed for electrode because of flexible and stretchable characteristics. Also normal and shear force can be decoupled by the working principle. To verify developed sensor, slip test apparatus was designed and experiments were conducted.

  15. A capacitive CMOS-MEMS sensor designed by multi-physics simulation for integrated CMOS-MEMS technology

    NASA Astrophysics Data System (ADS)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-01-01

    This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.

  16. Sensitivity Comparison of Vapor Trace Detection of Explosives Based on Chemo-Mechanical Sensing with Optical Detection and Capacitive Sensing with Electronic Detection

    PubMed Central

    Strle, Drago; Štefane, Bogdan; Zupanič, Erik; Trifkovič, Mario; Maček, Marijan; Jakša, Gregor; Kvasič, Ivan; Muševič, Igor

    2014-01-01

    The article offers a comparison of the sensitivities for vapour trace detection of Trinitrotoluene (TNT) explosives of two different sensor systems: a chemo-mechanical sensor based on chemically modified Atomic Force Microscope (AFM) cantilevers based on Micro Electro Mechanical System (MEMS) technology with optical detection (CMO), and a miniature system based on capacitive detection of chemically functionalized planar capacitors with interdigitated electrodes with a comb-like structure with electronic detection (CE). In both cases (either CMO or CE), the sensor surfaces are chemically functionalized with a layer of APhS (trimethoxyphenylsilane) molecules, which give the strongest sensor response for TNT. The construction and calibration of a vapour generator is also presented. The measurements of the sensor response to TNT are performed under equal conditions for both systems, and the results show that CE system with ultrasensitive electronics is far superior to optical detection using MEMS. Using CMO system, we can detect 300 molecules of TNT in 10+12 molecules of N2 carrier gas, whereas the CE system can detect three molecules of TNT in 10+12 molecules of carrier N2. PMID:24977388

  17. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    PubMed

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.

  18. Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Araromi, O.; Poulin, A.; Rosset, S.; Favre, M.; Giazzon, M.; Martin-Olmos, C.; Liley, M.; Shea, H.

    2015-04-01

    The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio.

  19. An Annular Mechanical Temperature Compensation Structure for Gas-Sealed Capacitive Pressure Sensor

    PubMed Central

    Hao, Xiuchun; Jiang, Yonggang; Takao, Hidekuni; Maenaka, Kazusuke; Higuchi, Kohei

    2012-01-01

    A novel gas-sealed capacitive pressure sensor with a temperature compensation structure is reported. The pressure sensor is sealed by Au-Au diffusion bonding under a nitrogen ambient with a pressure of 100 kPa and integrated with a platinum resistor-based temperature sensor for human activity monitoring applications. The capacitance-pressure and capacitance-temperature characteristics of the gas-sealed capacitive pressure sensor without temperature compensation structure are calculated. It is found by simulation that a ring-shaped structure on the diaphragm of the pressure sensor can mechanically suppress the thermal expansion effect of the sealed gas in the cavity. Pressure sensors without/with temperature compensation structures are fabricated and measured. Through measured results, it is verified that the calculation model is accurate. Using the compensation structures with a 900 μm inner radius, the measured temperature coefficient is much reduced as compared to that of the pressure sensor without compensation. The sensitivities of the pressure sensor before and after compensation are almost the same in the pressure range from 80 kPa to 100 kPa. PMID:22969385

  20. Evaluation of Pressure Capacitive Sensors for Application in Grasping and Manipulation Analysis.

    PubMed

    Pessia, Paola; Cordella, Francesca; Schena, Emiliano; Davalli, Angelo; Sacchetti, Rinaldo; Zollo, Loredana

    2017-12-08

    The analysis of the human grasping and manipulation capabilities is paramount for investigating human sensory-motor control and developing prosthetic and robotic hands resembling the human ones. A viable solution to perform this analysis is to develop instrumented objects measuring the interaction forces with the hand. In this context, the performance of the sensors embedded in the objects is crucial. This paper focuses on the experimental characterization of a class of capacitive pressure sensors suitable for biomechanical analysis. The analysis was performed in three loading conditions (Distributed load, 9 Tips load, and Wave-shaped load, thanks to three different inter-elements) via a traction/compression testing machine. Sensor assessment was also carried out under human- like grasping condition by placing a silicon material with the same properties of prosthetic cosmetic gloves in between the sensor and the inter-element in order to simulate the human skin. Data show that the input-output relationship of the analyzed, sensor is strongly influenced by both the loading condition (i.e., type of inter-element) and the grasping condition (with or without the silicon material). This needs to be taken into account to avoid significant measurement error. To go over this hurdle, the sensors have to be calibrated under each specific condition in order to apply suitable corrections to the sensor output and significantly improve the measurement accuracy.

  1. Evaluation of Pressure Capacitive Sensors for Application in Grasping and Manipulation Analysis

    PubMed Central

    Pessia, Paola; Cordella, Francesca; Davalli, Angelo; Sacchetti, Rinaldo; Zollo, Loredana

    2017-01-01

    The analysis of the human grasping and manipulation capabilities is paramount for investigating human sensory-motor control and developing prosthetic and robotic hands resembling the human ones. A viable solution to perform this analysis is to develop instrumented objects measuring the interaction forces with the hand. In this context, the performance of the sensors embedded in the objects is crucial. This paper focuses on the experimental characterization of a class of capacitive pressure sensors suitable for biomechanical analysis. The analysis was performed in three loading conditions (Distributed load, 9 Tips load, and Wave-shaped load, thanks to three different inter-elements) via a traction/compression testing machine. Sensor assessment was also carried out under human- like grasping condition by placing a silicon material with the same properties of prosthetic cosmetic gloves in between the sensor and the inter-element in order to simulate the human skin. Data show that the input–output relationship of the analyzed, sensor is strongly influenced by both the loading condition (i.e., type of inter-element) and the grasping condition (with or without the silicon material). This needs to be taken into account to avoid significant measurement error. To go over this hurdle, the sensors have to be calibrated under each specific condition in order to apply suitable corrections to the sensor output and significantly improve the measurement accuracy. PMID:29292717

  2. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris.

    PubMed

    Han, Zhibin; Wang, Yishou; Qing, Xinlin

    2017-12-08

    As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine.

  3. Development of capacitive sensor for automatically measuring tumbler water level with FEA simulation.

    PubMed

    Wei, Qun; Kim, Mi-Jung; Lee, Jong-Ha

    2018-01-01

    Drinking water has several advantages that have already been established, such as improving blood circulation, reducing acid in the stomach, etc. However, due to people not noticing the amount of water they consume every time they drink, most people drink less water than the recommended daily allowance. In this paper, a capacitive sensor for developing an automatic tumbler to measure water level is proposed. Different than in previous studies, the proposed capacitive sensor was separated into two sets: the main sensor for measuring the water level in the tumbler, and the reference sensor for measuring the incremental level unit. In order to confirm the feasibility of the proposed idea, and to optimize the shape of the sensor, a 3D model of the capacitive sensor with the tumbler was designed and subjected to Finite Element Analysis (FEA) simulation. According to the simulation results, the electrodes were made of copper and assembled in a tumbler manufactured by a 3D printer. The tumbler was filled with water and was subjected to experiments in order to assess the sensor's performance. The comparison of experimental results to the simulation results shows that the measured capacitance value of the capacitive sensor changed linearly as the water level varied. This proves that the proposed sensor can accurately measure the water level in the tumbler. Additionally, by use of the curve fitting method, a compensation algorithm was found to match the actual level with the measured level. The experimental results proved that the proposed capacitive sensor is able to measure the actual water level in the tumbler accurately. A digital control part with micro-processor will be designed and fixed on the bottom of the tumbler for developing a smart tumbler.

  4. Capacitive Sensors for Measuring Masses of Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Youngquist, Robert

    2003-01-01

    An effort is under way to develop capacitive sensors for measuring the masses of cryogenic fluids in tanks. These sensors are intended to function in both microgravitational and normal gravitational settings, and should not be confused with level sensors, including capacitive ones. A sensor of this type is conceptually simple in the sense that (1) it includes only one capacitor and (2) if properly designed, its single capacitance reading should be readily convertible to a close approximation of the mass of the cryogenic fluid in the tank. Consider a pair of electrically insulated electrodes used as a simple capacitive sensor. In general, the capacitance is proportional to the permittivity of the dielectric medium (in this case, a cryogenic fluid) between the electrodes. The success of design and operation of a sensor of the present type depends on the accuracy of the assumption that to a close approximation, the permittivity of the cryogenic fluid varies linearly with the density of the fluid. Data on liquid nitrogen, liquid oxygen, and liquid hydrogen, reported by the National Institute of Standards and Technology, indicate that the permittivities and densities of these fluids are, indeed, linearly related to within a few tenths of a percent over the pressure and temperature regions of interest. Hence, ignoring geometric effects for the moment, the capacitance between two electrodes immersed in the fluid should vary linearly with the density, and, hence, with the mass of the fluid. Of course, it is necessary to take account of the tank geometry. Because most cryogenic tanks do not have uniform cross sections, the readings of level sensors, including capacitive ones, are not linearly correlated with the masses of fluids in the tanks. In a sensor of the present type, the capacitor electrodes are shaped so that at a given height, the capacitance per unit height is approximately proportional to the cross-sectional area of the tank in the horizontal plane at that height (see figure).

  5. Laboratory Connections: Gas Monitoring Transducers: Relative Humidity Sensors.

    ERIC Educational Resources Information Center

    Powers, Michael H.; Hull, Stacey E.

    1988-01-01

    Explains the operation of five relative humidity sensors: psychrometer, hair hygrometer, resistance hygrometer, capacitance hygrometer, and resistance-capacitance hygrometer. Outlines the theory behind the electronic sensors and gives computer interfacing information. Lists sensor responses for calibration. (MVL)

  6. Entrainment in an electrochemical forced oscillator as a method of classification of chemical species-a new strategy to develop a chemical sensor

    NASA Astrophysics Data System (ADS)

    Nakata, S.; Yoshikawa, K.; Kawakami, H.

    1992-10-01

    We propose a new sensing method of varios chemical species based on information on the mode of entrainment in an electrochemically forced oscillator. It is demonstrated that the presence of one of the four basic taste compounds (salty, sweet, bitter, and sour) changes the mode of entrainment in a unique way. Thus a characteristics change of the entrainment allows us to obtain information on the properties of the electrochemical system. The response of the mode of entrainment to the taste compounds is related to the nonlinear properties of the studied electrochemical system, i.e., its voltage dependent capacitance and conductance. The experimental results are compared with computer simulations of a model system in which the capacitance is a nonlinear function of the voltage.

  7. Material characteristics and equivalent circuit models of stacked graphene oxide for capacitive humidity sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kook In; Lee, In Gyu; Hwang, Wan Sik, E-mail: mhshin@kau.ac.kr, E-mail: whwang@kau.ac.kr

    The oxidation properties of graphene oxide (GO) are systematically correlated with their chemical sensing properties. Based on an impedance analysis, the equivalent circuit models of the capacitive sensors are established, and it is demonstrated that capacitive operations are related to the degree of oxidation. This is also confirmed by X-ray diffraction and Raman analysis. Finally, highly sensitive stacked GO sensors are shown to detect humidity in capacitive mode, which can be useful in various applications requiring low power consumption.

  8. Design of capacitive sensor for water level measurement

    NASA Astrophysics Data System (ADS)

    Qurthobi, A.; Iskandar, R. F.; Krisnatal, A.; Weldzikarvina

    2016-11-01

    Capacitive sensor for water level detection has been fabricated. It has, typically, high-impedance sensor, particularly at low frequencies, as clear from the impedance (reactance) expression for a capacitor. Also, capacitive sensor is a noncontacting device in the common usage. In this research, water level sensor based on capacitive principal created using two copper plates with height (h), width (b), and distance (l) between two plates, respectively, 0.040 m, 0.015 m, and 0.010 m. 5 V pp 3 kHz AC signal is used as input signal for the system. Dielectric constant between two plates is proportional to water level. Hence, it can be used to determine water level from electrical characteristic as it inversely proportional to sensor impedance. Linearization, inverting amplifier, and rectifier circuits are used as signal conditioning for the system. Based on conducted experiment, the relationship between water level (x), capacitance (C), and output voltage (Vdc ) can be expressed as C(x) = 2.756x + 0.333 nF and Vdc (x) = 15.755 + 0.316 V.

  9. Alternative Dielectric Films for rf MEMS Capacitive Switches Deposited using Atomic Layer Deposited Al2O3/ZnO Alloys

    DTIC Science & Technology

    2006-07-02

    A s c c s r t h s l © K 1 b c A a e t s C t o 0 d Sensors and Actuators A 135 (2007) 262–272 Alternative dielectric films for rf MEMS capacitive...Zn concentrations in the alloy films , which was lower than expected. Atomic force microscopy images evealed an average surface roughness of 0.27 nm...that was independent of deposition temperature and film composition. The dielectric constants of he Al2O3/ZnO ALD alloys films were calculated to be

  10. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris

    PubMed Central

    Han, Zhibin; Wang, Yishou; Qing, Xinlin

    2017-01-01

    As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine. PMID:29292748

  11. Capacitive Micro Pressure Sensor Integrated with a Ring Oscillator Circuit on Chip

    PubMed Central

    Dai, Ching-Liang; Lu, Po-Wei; Chang, Chienliu; Liu, Cheng-Yang

    2009-01-01

    The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0–300 kPa. PMID:22303167

  12. Capacitive micro pressure sensor integrated with a ring oscillator circuit on chip.

    PubMed

    Dai, Ching-Liang; Lu, Po-Wei; Chang, Chienliu; Liu, Cheng-Yang

    2009-01-01

    The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0-300 kPa.

  13. Polyimide-Based Capacitive Humidity Sensor

    PubMed Central

    Steinmaßl, Matthias; Endres, Hanns-Erik; Drost, Andreas; Eisele, Ignaz; Kutter, Christoph; Müller-Buschbaum, Peter

    2018-01-01

    The development of humidity sensors with simple transduction principles attracts considerable interest by both scientific researchers and industrial companies. Capacitive humidity sensors, based on polyimide sensing material with different thickness and surface morphologies, are prepared. The surface morphology of the sensing layer is varied from flat to rough and then to nanostructure called nanograss by using an oxygen plasma etch process. The relative humidity (RH) sensor selectively responds to the presence of water vapor by a capacitance change. The interaction between polyimide and water molecules is studied by FTIR spectroscopy. The complete characterization of the prepared capacitive humidity sensor performance is realized using a gas mixing setup and an evaluation kit. A linear correlation is found between the measured capacitance and the RH level in the range of 5 to 85%. The morphology of the humidity sensing layer is revealed as an important parameter influencing the sensor performance. It is proved that a nanograss-like structure is the most effective for detecting RH, due to its rapid response and recovery times, which are comparable to or even better than the ones of commercial polymer-based sensors. This work demonstrates the readiness of the developed RH sensor technology for industrialization. PMID:29751632

  14. Force Sensitive Handles and Capacitive Touch Sensor for Driving a Flexible Haptic-Based Immersive System

    PubMed Central

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-01-01

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object. Specifically, the user interacts with the FSH to move the virtual object and to appropriately position the haptic interface for retrieving the six degrees of freedom required for both manipulation and modification modalities. The FCTS allows the system to track the movement and position of the user's fingers on the strip, which is used for rendering visual and sound feedback. Two evaluation experiments are described, which involve both the evaluation and the modification of a 3D shape. Results show that the use of the haptic strip for the evaluation of aesthetic shapes is effective and supports product designers in the appreciation of the aesthetic qualities of the shape. PMID:24113680

  15. Force sensitive handles and capacitive touch sensor for driving a flexible haptic-based immersive system.

    PubMed

    Covarrubias, Mario; Bordegoni, Monica; Cugini, Umberto

    2013-10-09

    In this article, we present an approach that uses both two force sensitive handles (FSH) and a flexible capacitive touch sensor (FCTS) to drive a haptic-based immersive system. The immersive system has been developed as part of a multimodal interface for product design. The haptic interface consists of a strip that can be used by product designers to evaluate the quality of a 3D virtual shape by using touch, vision and hearing and, also, to interactively change the shape of the virtual object. Specifically, the user interacts with the FSH to move the virtual object and to appropriately position the haptic interface for retrieving the six degrees of freedom required for both manipulation and modification modalities. The FCTS allows the system to track the movement and position of the user's fingers on the strip, which is used for rendering visual and sound feedback. Two evaluation experiments are described, which involve both the evaluation and the modification of a 3D shape. Results show that the use of the haptic strip for the evaluation of aesthetic shapes is effective and supports product designers in the appreciation of the aesthetic qualities of the shape.

  16. Lateral displacement and rotational displacement sensor

    DOEpatents

    Duden, Thomas

    2014-04-22

    A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.

  17. A Power-Efficient Capacitive Read-Out Circuit With Parasitic-Cancellation for MEMS Cochlea Sensors.

    PubMed

    Wang, Shiwei; Koickal, Thomas Jacob; Hamilton, Alister; Mastropaolo, Enrico; Cheung, Rebecca; Abel, Andrew; Smith, Leslie S; Wang, Lei

    2016-02-01

    This paper proposes a solution for signal read-out in the MEMS cochlea sensors that have very small sensing capacitance and do not have differential sensing structures. The key challenge in such sensors is the significant signal degradation caused by the parasitic capacitance at the MEMS-CMOS interface. Therefore, a novel capacitive read-out circuit with parasitic-cancellation mechanism is developed; the equivalent input capacitance of the circuit is negative and can be adjusted to cancel the parasitic capacitance. Chip results prove that the use of parasitic-cancellation is able to increase the sensor sensitivity by 35 dB without consuming any extra power. In general, the circuit follows a low-degradation low-amplification approach which is more power-efficient than the traditional high-degradation high-amplification approach; it employs parasitic-cancellation to reduce the signal degradation and therefore a lower gain is required in the amplification stage. Besides, the chopper-stabilization technique is employed to effectively reduce the low-frequency circuit noise and DC offsets. As a result of these design considerations, the prototype chip demonstrates the capability of converting a 7.5 fF capacitance change of a 1-Volt-biased 0.5 pF capacitive sensor pair into a 0.745 V signal-conditioned output at the cost of only 165.2 μW power consumption.

  18. Electrical Capacitance Volume Tomography: Design and Applications

    PubMed Central

    Wang, Fei; Marashdeh, Qussai; Fan, Liang-Shih; Warsito, Warsito

    2010-01-01

    This article reports recent advances and progress in the field of electrical capacitance volume tomography (ECVT). ECVT, developed from the two-dimensional electrical capacitance tomography (ECT), is a promising non-intrusive imaging technology that can provide real-time three-dimensional images of the sensing domain. Images are reconstructed from capacitance measurements acquired by electrodes placed on the outside boundary of the testing vessel. In this article, a review of progress on capacitance sensor design and applications to multi-phase flows is presented. The sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of three-dimensional capacitance sensors are illustrated. The article also highlights applications of ECVT sensors on vessels of various sizes from 1 to 60 inches with complex geometries. Case studies are used to show the capability and validity of ECVT. The studies provide qualitative and quantitative real-time three-dimensional information of the measuring domain under study. Advantages of ECVT render it a favorable tool to be utilized for industrial applications and fundamental multi-phase flow research. PMID:22294905

  19. An RFID-based on-lens sensor system for long-term IOP monitoring.

    PubMed

    Hsu, Shun-Hsi; Chiou, Jin-Chern; Liao, Yu-Te; Yang, Tzu-Sen; Kuei, Cheng-Kai; Wu, Tsung-Wei; Huang, Yu-Chieh

    2015-01-01

    In this paper, an RFID-based on-lens sensor system is proposed for noninvasive long-term intraocular pressure monitoring. The proposed sensor IC, fabricated in a 0.18um CMOS process, consists of capacitive sensor readout circuitry, RFID communication circuits, and digital processing units. The sensor IC is integrated with electroplating capacitive sensors and a receiving antenna on the contact lens. The sensor IC can be wirelessly powered, communicate with RFID compatible equipment, and perform IOP measurement using on-lens capacitive sensor continuously from a 2cm distance while the incident power from an RFID reader is 20 dBm. The proposed system is compatible to Gen2 RFID protocol, extending the flexibility and reducing the self-developed firmware efforts.

  20. Improved response time of flexible microelectromechanical sensors employing eco-friendly nanomaterials.

    PubMed

    Fan, Shicheng; Dan, Li; Meng, Lingju; Zheng, Wei; Elias, Anastasia; Wang, Xihua

    2017-11-09

    Flexible force/pressure sensors are of interest for academia and industry and have applications in wearable technologies. Most of such sensors on the market or reported in journal publications are based on the operation mechanism of probing capacitance or resistance changes of the materials under pressure. Recently, we reported the microelectromechanical (MEM) sensors based on a different mechanism: mechanical switches. Multiples of such MEM sensors can be integrated to achieve the same function of regular force/pressure sensors while having the advantages of ease of fabrication and long-term stability in operation. Herein, we report the dramatically improved response time (more than one order of magnitude) of these MEM sensors by employing eco-friendly nanomaterials-cellulose nanocrystals. For instance, the incorporation of polydimethysiloxane filled with cellulose nanocrystals shortened the response time of MEM sensors from sub-seconds to several milliseconds, leading to the detection of both diastolic and systolic pressures in the radial arterial blood pressure measurement. Comprehensive mechanical and electrical characterization of the materials and the devices reveal that greatly enhanced storage modulus and loss modulus play key roles in this improved response time. The demonstrated fast-response flexible sensors enabled continuous monitoring of heart rate and complex cardiovascular signals using pressure sensors for future wearable sensing platforms.

  1. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    NASA Astrophysics Data System (ADS)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-03-01

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  2. Double-driven shield capacitive type proximity sensor

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1993-01-01

    A capacity type proximity sensor comprised of a capacitance type sensor, a capacitance type reference, and two independent and mutually opposing driven shields respectively adjacent to the sensor and reference and which are coupled in an electrical bridge circuit configuration and driven by a single frequency crystal controlled oscillator is presented. The bridge circuit additionally includes a pair of fixed electrical impedance elements which form adjacent arms of the bridge and which comprise either a pair of precision resistances or capacitors. Detection of bridge unbalance provides an indication of the mutual proximity between an object and the sensor. Drift compensation is also utilized to improve performance and thus increase sensor range and sensitivity.

  3. Perspectives on MEMS in bioengineering: a novel capacitive position microsensor.

    PubMed

    Pedrocchi, A; Hoen, S; Ferrigno, G; Pedotti, A

    2000-01-01

    We describe a novel capacitive position sensor using micromachining to achieve high sensitivity and large range of motion. These sensors require a new theoretical framework to describe and optimize their performance. Employing a complete description of the electrical fields, the sensor should deviate from the standard geometries used for capacitive sensors. By this optimization, the sensor gains a twofold increase in sensitivity. Results on a PC board 10x model imply that the micromachined sensor should achieve a sensitivity of less than 10 nm over 500-micron range of travel. Some bioengineering applications are addressed, including positioning of micromirrors for laser surgery and dose control for implantable drug delivery systems.

  4. Piezoresistive cantilever force-clamp system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L.

    2011-04-15

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to amore » sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.« less

  5. Piezoresistive cantilever force-clamp system

    PubMed Central

    Park, Sung-Jin; Petzold, Bryan C.; Goodman, Miriam B.; Pruitt, Beth L.

    2011-01-01

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or “clamps” the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode. PMID:21529009

  6. Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene and Porous Nylon Networks.

    PubMed

    He, Zhongfu; Chen, Wenjun; Liang, Binghao; Liu, Changyong; Yang, Leilei; Lu, Dongwei; Mo, Zichao; Zhu, Hai; Tang, Zikang; Gui, Xuchun

    2018-04-18

    Flexible pressure sensors are of great importance to be applied in artificial intelligence and wearable electronics. However, assembling a simple structure, high-performance capacitive pressure sensor, especially for monitoring the flow of liquids, is still a big challenge. Here, on the basis of a sandwich-like structure, we propose a facile capacitive pressure sensor optimized by a flexible, low-cost nylon netting, showing many merits including a high response sensitivity (0.33 kPa -1 ) in a low-pressure regime (<1 kPa), an ultralow detection limit as 3.3 Pa, excellent working stability after more than 1000 cycles, and synchronous monitoring for human pulses and clicks. More important, this sensor exhibits an ultrafast response speed (<20 ms), which enables its detection for the fast variations of a small applied pressure from the morphological changing processes of a droplet falling onto the sensor. Furthermore, a capacitive pressure sensor array is fabricated for demonstrating the ability to spatial pressure distribution. Our developed pressure sensors show great prospects in practical applications such as health monitoring, flexible tactile devices, and motion detection.

  7. Aptamer-functionalized capacitance sensors for real-time monitoring of bacterial growth and antibiotic susceptibility.

    PubMed

    Jo, Namgyeong; Kim, Bongjun; Lee, Sun-Mi; Oh, Jeseung; Park, In Ho; Jin Lim, Kook; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2018-04-15

    To prevent spread of infection and antibiotic resistance, fast and accurate diagnosis of bacterial infection and subsequent administration of antimicrobial agents are important. However, conventional methods for bacterial detection and antibiotic susceptibility testing (AST) require more than two days, leading to delays that have contributed to an increase in antibiotic-resistant bacteria. Here, we report an aptamer-functionalized capacitance sensor array that can monitor bacterial growth and antibiotic susceptibility in real-time. While E. coli and S. aureus were cultured, the capacitance increased over time, and apparent bacterial growth curves were observed even when 10 CFU/mL bacteria was inoculated. Furthermore, because of the selectivity of aptamers, bacteria could be identified within 1h using the capacitance sensor array functionalized with aptamers. In addition to bacterial growth, antibiotic susceptibility could be monitored in real-time. When bacteria were treated with antibiotics above the minimum inhibitory concentration (MIC), the capacitance decreased because the bacterial growth was inhibited. These results demonstrate that the aptamer-functionalized capacitance sensor array might be applied for rapid ASTs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cell-based capacitance sensor for analysis of EGFR expression on cell membrane

    NASA Astrophysics Data System (ADS)

    Shin, Dong-Myeong; Shin, Yong-Cheol; Ha, Ji Hye; Lee, Jong-Ho; Han, Dong-Wook; Kim, Jong-Man; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2013-02-01

    Cancer cells have many kinds of cancer biomarkers. Among them, the epidermal growth factor (EGF) receptors can show a possibility for a cancer marker because the over-expression of EGF receptor is related with fibrous, colorectal, cervical and gastric tumorigenesis. We fabricated the capacitance sensor with a gap area of 50 μm × 200 μm by using photolithography and lift-off method. Using the capacitance sensor, we investigated the time dependent capacitance changes of different kinds of fibrous cells, such as HT1080 fibrosarcoma, L-929 fibroblast cell line and nHDF dermal fibroblast primary cell. We found that when we put the EGF, the capacitance decreased due to the immobilization of EGF to EGF receptor on the cell membrane. The quantitative determination of EGF receptor level for various fibrous cells was carried out and the results showed good correlation with conventional method. Based on our results, we suggest that the capacitance sensor can measure the expression level of the EGF receptor on cell membrane and be a good candidate as a cancer diagnosis.

  9. A Wearable Capacitive Sensor for Monitoring Human Respiratory Rate

    NASA Astrophysics Data System (ADS)

    Kundu, Subrata Kumar; Kumagai, Shinya; Sasaki, Minoru

    2013-04-01

    Realizing an untethered, low-cost, and comfortably wearable respiratory rate sensor for long-term breathing monitoring application still remains a challenge. In this paper, a conductive-textile-based wearable respiratory rate sensing technique based on the capacitive sensing approach is proposed. The sensing unit consists of two conductive textile electrodes that can be easily fabricated, laminated, and integrated in garments. Respiration cycle is detected by measuring the capacitance of two electrodes placed on the inner anterior and posterior sides of a T-shirt at either the abdomen or chest position. A convenient wearable respiratory sensor setup with a capacitance-to-voltage converter has been devised. Respiratory rate as well as breathing mode can be accurately identified using the designed sensor. The sensor output provides significant information on respiratory flow. The effectiveness of the proposed system for different breathing patterns has been evaluated by experiments.

  10. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications †

    PubMed Central

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori

    2017-01-01

    Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954

  11. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications.

    PubMed

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori

    2017-08-28

    Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.

  12. Evaluation of excitation strategy with multi-plane electrical capacitance tomography sensor

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Zhang, Jiaolong; Yang, Wuqiang

    2016-11-01

    Electrical capacitance tomography (ECT) is an imaging technique for measuring the permittivity change of materials. Using a multi-plane ECT sensor, three-dimensional (3D) distribution of permittivity may be represented. In this paper, three excitation strategies, including single-electrode excitation, dual-electrode excitation in the same plane, and dual-electrode excitation in different planes are investigated by numerical simulation and experiment for two three-plane ECT sensors with 12 electrodes in total. In one sensor, the electrodes on the middle plane are in line with the others. In the other sensor, they are rotated 45° with reference to the other two planes. A linear back projection algorithm is used to reconstruct the images and a correlation coefficient is used to evaluate the image quality. The capacitance data and sensitivity distribution with each measurement strategy and sensor model are analyzed. Based on simulation and experimental results using noise-free and noisy capacitance data, the performance of the three strategies is evaluated.

  13. Integration of piezo-capacitive and piezo-electric nanoweb based pressure sensors for imaging of static and dynamic pressure distribution.

    PubMed

    Jeong, Y J; Oh, T I; Woo, E J; Kim, K J

    2017-07-01

    Recently, highly flexible and soft pressure distribution imaging sensor is in great demand for tactile sensing, gait analysis, ubiquitous life-care based on activity recognition, and therapeutics. In this study, we integrate the piezo-capacitive and piezo-electric nanowebs with the conductive fabric sheets for detecting static and dynamic pressure distributions on a large sensing area. Electrical impedance tomography (EIT) and electric source imaging are applied for reconstructing pressure distribution images from measured current-voltage data on the boundary of the hybrid fabric sensor. We evaluated the piezo-capacitive nanoweb sensor, piezo-electric nanoweb sensor, and hybrid fabric sensor. The results show the feasibility of static and dynamic pressure distribution imaging from the boundary measurements of the fabric sensors.

  14. Development of Electrical Capacitance Sensors for Accident Tolerant Fuel (ATF) Testing at the Transient Reactor Test (TREAT) Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Maolong; Ryals, Matthew; Ali, Amir

    2016-08-01

    A variety of instruments are being developed and qualified to support the Accident Tolerant Fuels (ATF) program and future transient irradiations at the Transient Reactor Test (TREAT) facility at Idaho National Laboratory (INL). The University of New Mexico (UNM) is working with INL to develop capacitance-based void sensors for determining the timing of critical boiling phenomena in static capsule fuel testing and the volume-averaged void fraction in flow-boiling in-pile water loop fuel testing. The static capsule sensor developed at INL is a plate-type configuration, while UNM is utilizing a ring-type capacitance sensor. Each sensor design has been theoretically and experimentallymore » investigated at INL and UNM. Experiments are being performed at INL in an autoclave to investigate the performance of these sensors under representative Pressurized Water Reactor (PWR) conditions in a static capsule. Experiments have been performed at UNM using air-water two-phase flow to determine the sensitivity and time response of the capacitance sensor under a flow boiling configuration. Initial measurements from the capacitance sensor have demonstrated the validity of the concept to enable real-time measurement of void fraction. The next steps include designing the cabling interface with the flow loop at UNM for Reactivity Initiated Accident (RIA) ATF testing at TREAT and further characterization of the measurement response for each sensor under varying conditions by experiments and modeling.« less

  15. Structure and Fabrication of a Microscale Flow-Rate/Skin Friction Sensor

    NASA Technical Reports Server (NTRS)

    Chandrasekharan, Vijay (Inventor); Sells, Jeremy (Inventor); Sheplak, Mark (Inventor); Arnold, David P. (Inventor)

    2014-01-01

    A floating element shear sensor and method for fabricating the same are provided. According to an embodiment, a microelectromechanical systems (MEMS)-based capacitive floating element shear stress sensor is provided that can achieve time-resolved turbulence measurement. In one embodiment, a differential capacitive transduction scheme is used for shear stress measurement. The floating element structure for the differential capacitive transduction scheme incorporates inter digitated comb fingers forming differential capacitors, which provide electrical output proportional to the floating element deflection.

  16. Modeling methodology for a CMOS-MEMS electrostatic comb

    NASA Astrophysics Data System (ADS)

    Iyer, Sitaraman V.; Lakdawala, Hasnain; Mukherjee, Tamal; Fedder, Gary K.

    2002-04-01

    A methodology for combined modeling of capacitance and force 9in a multi-layer electrostatic comb is demonstrated in this paper. Conformal mapping-based analytical methods are limited to 2D symmetric cross-sections and cannot account for charge concentration effects at corners. Vertex capacitance can be more than 30% of the total capacitance in a single-layer 2 micrometers thick comb with 10 micrometers overlap. Furthermore, analytical equations are strictly valid only for perfectly symmetrical finger positions. Fringing and corner effects are likely to be more significant in a multi- layered CMOS-MEMS comb because of the presence of more edges and vertices. Vertical curling of CMOS-MEMS comb fingers may also lead to reduced capacitance and vertical forces. Gyroscopes are particularly sensitive to such undesirable forces, which therefore, need to be well-quantified. In order to address the above issues, a hybrid approach of superposing linear regression models over a set of core analytical models is implemented. Design of experiments is used to obtain data for capacitance and force using a commercial 3D boundary-element solver. Since accurate force values require significantly higher mesh refinement than accurate capacitance, we use numerical derivatives of capacitance values to compute the forces. The model is formulated such that the capacitance and force models use the same regression coefficients. The comb model thus obtained, fits the numerical capacitance data to within +/- 3% and force to within +/- 10%. The model is experimentally verified by measuring capacitance change in a specially designed test structure. The capacitance model matches measurements to within 10%. The comb model is implemented in an Analog Hardware Description Language (ADHL) for use in behavioral simulation of manufacturing variations in a CMOS-MEMS gyroscope.

  17. Capacitance Based Moisture Sensing for Microgravity Plant Modules: Sensor Design and Considerations

    NASA Technical Reports Server (NTRS)

    Schaber, Chad L.; Nurge, Mark; Monje, Oscar

    2011-01-01

    Life support systems for growing plants in microgravity should strive for providing optimal growing conditions and increased automation. Accurately tracking soil moisture content can forward both of these aims, so an attempt was made to instrument a microgravity growth module currently in development, the VEGGIE rooting pillow, in order to monitor moisture levels. Two electrode systems for a capacitance-based moisture sensor were tested. Trials with both types of electrodes showed a linear correlation between observed capacitance and water content over certain ranges of moisture within the pillows. Overall, both types of the electrodes and the capacitance-based moisture sensor are promising candidates for tracking water levels for microgravity plant growth systems.

  18. Capacitively-coupled inductive sensor

    DOEpatents

    Ekdahl, Carl A.

    1984-01-01

    A capacitively coupled inductive shunt current sensor which utilizes capacitive coupling between flanges having an annular inductive channel formed therein. A voltage dividing capacitor is connected between the coupling capacitor and ground to provide immediate capacitive division of the output signal so as to provide a high frequency response of the current pulse to be detected. The present invention can be used in any desired outer conductor such as the outer conductor of a coaxial transmission line, the outer conductor of an electron beam transmission line, etc.

  19. Carbon Nanotube Tape Vibrating Gyroscope

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis Stephen (Inventor)

    2016-01-01

    A vibrating gyroscope includes a piezoelectric strip having length and width dimensions. The piezoelectric strip includes a piezoelectric material and carbon nanotubes (CNTs) substantially aligned and polled along the strip's length dimension. A spindle having an axis of rotation is coupled to the piezoelectric strip. The axis of rotation is parallel to the strip's width dimension. A first capacitance sensor is mechanically coupled to the spindle for rotation therewith. The first capacitance sensor is positioned at one of the strip's opposing ends and is spaced apart from one of the strip's opposing faces. A second capacitance sensor is mechanically coupled to the spindle for rotation therewith. The second capacitance sensor is positioned at another of the strip's opposing ends and is spaced apart from another of the strip's opposing faces. A voltage source applies an AC voltage to the piezoelectric strip.

  20. Capacitance-digital and impedance converter as electrical tomography measurement system for biological tissue

    NASA Astrophysics Data System (ADS)

    Ikhsanti, Mila Izzatul; Bouzida, Rana; Wijaya, Sastra Kusuma; Rohmadi, Muttakin, Imamul; Taruno, Warsito P.

    2017-02-01

    This research aims to explore the feasibility of capacitance-digital converter and impedance converter for measurement module in electrical capacitance tomography (ECT) system. ECT sensor used was a cylindrical sensor having 8 electrodes. Absolute capacitance measurement system based on Sigma Delta Capacitance-to-Digital-Converter AD7746 has been shown to produce measurement with high resolution. Whereas, capacitance measurement with wide range of frequency is possible using Impedance Converter AD5933. Comparison of measurement accuracy by both AD7746 and AD5933 with reference of LCR meter was evaluated. Biological matters represented in water and oil were treated as object reconstructed into image using linear back projection (LBP) algorithm.

  1. 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing

    NASA Astrophysics Data System (ADS)

    Li, Kai; Wei, Hong; Liu, Wenguang; Meng, Hong; Zhang, Peixin; Yan, Chaoyi

    2018-05-01

    Developments of innovative strategies for the fabrication of stretchable sensors are of crucial importance for their applications in wearable electronic systems. In this work, we report the successful fabrication of stretchable capacitive sensors using a novel 3D printing method for highly sensitive tactile and electrochemical sensing applications. Unlike conventional lithographic or templated methods, the programmable 3D printing technique can fabricate complex device structures in a cost-effective and facile manner. We designed and fabricated stretchable capacitive sensors with interdigital and double-vortex designs and demonstrated their successful applications as tactile and electrochemical sensors. Especially, our stretchable sensors exhibited a detection limit as low as 1 × 10-6 M for NaCl aqueous solution, which could have significant potential applications when integrated in electronics skins.

  2. 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing.

    PubMed

    Li, Kai; Wei, Hong; Liu, Wenguang; Meng, Hong; Zhang, Peixin; Yan, Chaoyi

    2018-05-04

    Developments of innovative strategies for the fabrication of stretchable sensors are of crucial importance for their applications in wearable electronic systems. In this work, we report the successful fabrication of stretchable capacitive sensors using a novel 3D printing method for highly sensitive tactile and electrochemical sensing applications. Unlike conventional lithographic or templated methods, the programmable 3D printing technique can fabricate complex device structures in a cost-effective and facile manner. We designed and fabricated stretchable capacitive sensors with interdigital and double-vortex designs and demonstrated their successful applications as tactile and electrochemical sensors. Especially, our stretchable sensors exhibited a detection limit as low as 1 × 10 -6 M for NaCl aqueous solution, which could have significant potential applications when integrated in electronics skins.

  3. Nature inspired capacitive sensor with unique and unclonable characteristic

    NASA Astrophysics Data System (ADS)

    Karuthedath, C. B.; Schwesinger, N.

    2018-02-01

    Background of this paper is the development of sensors showing a nature like characteristic. The sensor is able to detect excitations on inertia bases and operates capacitive. It consists of a miniaturized interdigitated electrode structure on a printed circuit board, a flexible and conductive membrane of PDMS located in a certain distance above and a certain number of steel balls fixed on top of the membrane. The steel ball distribution is random and the conductivity of the membrane is not homogeneous across the membrane. Due to this double random distribution, no sensor equals the other, although the external geometry is equal. The overall size of the sensor is 4.7mm x 4.7mm x 1.7mm. Tilt, acceleration or magnetic fields are capable of causing forces on the steel balls and therefore relative movements between the membrane and the electrode structures. Due to this movement, capacity changes of the arrangement are measurable. This paper describes besides the fabrication of conductive membranes the preparation of regarding sensors. Process technology makes cloning of the sensors impossible. Although all process steps are suited for mass production, no sensor equals the other. Measurements with these sensors prove that each sensor reacts differently to the same excitation. Calculations of the Intra-Concordance-Coefficient show the similarity of the sensors for equal excitations. On the other hand, the maximum Inter-Concordance-Coefficient reveals the differences of such sensors very clearly. Such a characteristic, i.e. equal reaction to equal excitation and an output of significantly different signals allows considering each sensor as a unique device. The sensors obviously behave like receptors in natural organisms. These unusual properties of uniqueness and impossibility to clone make the sensors very interesting for highly secure identification demands. In combination with a very simple measurement procedure, the sensors are an attractive hardware base for technical security solutions.

  4. Design and modeling of magnetically driven electric-field sensor for non-contact DC voltage measurement in electric power systems.

    PubMed

    Wang, Decai; Li, Ping; Wen, Yumei

    2016-10-01

    In this paper, the design and modeling of a magnetically driven electric-field sensor for non-contact DC voltage measurement are presented. The magnetic drive structure of the sensor is composed of a small solenoid and a cantilever beam with a cylindrical magnet mounted on it. The interaction of the magnet and the solenoid provides the magnetic driving force for the sensor. Employing magnetic drive structure brings the benefits of low driving voltage and large vibrating displacement, which consequently results in less interference from the drive signal. In the theoretical analyses, the capacitance calculation model between the wire and the sensing electrode is built. The expression of the magnetic driving force is derived by the method of linear fitting. The dynamical model of the magnetic-driven cantilever beam actuator is built by using Euler-Bernoulli theory and distributed parameter method. Taking advantage of the theoretical model, the output voltage of proposed sensor can be predicted. The experimental results are in good agreement with the theoretical results. The proposed sensor shows a favorable linear response characteristic. The proposed sensor has a measuring sensitivity of 9.87 μV/(V/m) at an excitation current of 37.5 mA. The electric field intensity resolution can reach 10.13 V/m.

  5. The influence of hard-baking temperature applied for SU8 sensor layer on the sensitivity of capacitive chemical sensor

    NASA Astrophysics Data System (ADS)

    Klanjšek Gunde, Marta; Hauptman, Nina; Maček, Marijan; Kunaver, Matjaž

    2009-06-01

    SU8, the near-UV photosensitive epoxy-based polymer was used as a sensor layer in the capacitive chemical sensor, ready for integration with a generic double-metal CMOS technology. It was observed that the response of the sensor slowly increases with the temperature applied in hard-baking process as long as it remains below 300°C. At this temperature the response of the sensor abruptly increases and becomes almost threefold. It was shown that fully crosslinked structure of the sensor layer becomes opened and disordered when the sensor is hard-baked at temperatures between 300°C and 320°C, that is, still well below the degradation temperature of the polymer. These changes in chemical structure were analyzed by Fourier-transform infrared spectroscopy. The temperature-dependent changes of the sensor layer structure enable one to prepare a combination of capacitive chemical sensors with good discrimination between some volatile organic compounds.

  6. Design of interdigital spiral and concentric capacitive sensors for materials evaluation

    NASA Astrophysics Data System (ADS)

    Chen, Tianming; Bowler, Nicola

    2013-01-01

    This paper describes the design of two circular coplanar interdigital sensors with i) a spiral interdigital configuration and ii) a concentric interdigital configuration for the nondestructive evaluation of multilayered dielectric structures. A numerical model accounting for sensor geometry, test-piece geometry and real permittivity, and metal electrode thickness has been developed to calculate the capacitance of the sensors when in contact with a planar test-piece comprising up to four layers. Compared with a disk-and-ring coplanar capacitive sensor developed previously, the interdigital configurations are predicted to have higher signal-to-noise ratio and better accuracy in materials characterization. The disk-and-ring configuration, on the other hand, possesses advantages such as deeper penetration depth and better immunity to lift-off variations.

  7. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Kremastiotis, I.

    2017-12-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128×128 square pixels with 25μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (~20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ~20 ns for a power consumption of 5μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (~20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using future assemblies with the readout chip.

  8. Capacitively-coupled inductive sensors for measurements of pulsed currents and pulsed magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, C.A.

    In experiments involving pulsed high magnetic fields the appearance of the full induced voltage at the output terminals of large-area inductive sensors such as diamagnetic loops and Rogowski belts imposes severe requirements on the insulation near the output. Capacitive detection of the inductive-sensor output voltage provides an ideal geometry for high-voltage insulation, and also accomplishes the necessary voltage division. An inductive-shunt current monitor was designed to utilize the capacitive-detection principle. The contruction of this device and its performance are described in this paper.

  9. Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca,Mg,Fe,Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption

    PubMed Central

    Tripathy, Ashis; Pramanik, Sumit; Manna, Ayan; Bhuyan, Satyanarayan; Azrin Shah, Nabila Farhana; Radzi, Zamri; Abu Osman, Noor Azuan

    2016-01-01

    Despite the many attractive potential uses of ceramic materials as humidity sensors, some unavoidable drawbacks, including toxicity, poor biocompatibility, long response and recovery times, low sensitivity and high hysteresis have stymied the use of these materials in advanced applications. Therefore, in present investigation, we developed a capacitive humidity sensor using lead-free Ca,Mg,Fe,Ti-Oxide (CMFTO)-based electro-ceramics with perovskite structures synthesized by solid-state step-sintering. This technique helps maintain the submicron size porous morphology of the developed lead-free CMFTO electro-ceramics while providing enhanced water physisorption behaviour. In comparison with conventional capacitive humidity sensors, the presented CMFTO-based humidity sensor shows a high sensitivity of up to 3000% compared to other materials, even at lower signal frequency. The best also shows a rapid response (14.5 s) and recovery (34.27 s), and very low hysteresis (3.2%) in a 33%–95% relative humidity range which are much lower values than those of existing conventional sensors. Therefore, CMFTO nano-electro-ceramics appear to be very promising materials for fabricating high-performance capacitive humidity sensors. PMID:27455263

  10. Capacitance Variation Induced by Microfluidic Two-Phase Flow across Insulated Interdigital Electrodes in Lab-On-Chip Devices

    PubMed Central

    Dong, Tao; Barbosa, Cátia

    2015-01-01

    Microfluidic two-phase flow detection has attracted plenty of interest in various areas of biology, medicine and chemistry. This work presents a capacitive sensor using insulated interdigital electrodes (IDEs) to detect the presence of droplets in a microchannel. This droplet sensor is composed of a glass substrate, patterned gold electrodes and an insulation layer. A polydimethylsiloxane (PDMS) cover bonded to the multilayered structure forms a microchannel. Capacitance variation induced by the droplet passage was thoroughly investigated with both simulation and experimental work. Olive oil and deionized water were employed as the working fluids in the experiments to demonstrate the droplet sensor. The results show a good sensitivity of the droplet with the appropriate measurement connection. This capacitive droplet sensor is promising to be integrated into a lab-on-chip device for in situ monitoring/counting of droplets or bubbles. PMID:25629705

  11. Multi-Channel Capacitive Sensor Arrays

    PubMed Central

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-01

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023

  12. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    DOEpatents

    Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.

    2010-11-23

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  13. Design and Application of a Collocated Capacitance Sensor for Magnetic Bearing Spindle

    NASA Technical Reports Server (NTRS)

    Shin, Dongwon; Liu, Seon-Jung; Kim, Jongwon

    1996-01-01

    This paper presents a collocated capacitance sensor for magnetic bearings. The main feature of the sensor is that it is made of a specific compact printed circuit board (PCB). The signal processing unit has been also developed. The results of the experimental performance evaluation on the sensitivity, resolution and frequency response of the sensor are presented. Finally, an application example of the sensor to the active control of a magnetic bearing is described.

  14. Development of a dual-axis hybrid-type tactile sensor using PET film

    NASA Astrophysics Data System (ADS)

    Seonggi, Kim; Koo, Ja Choon; Choi, Hyouk Ryeol; Moon, Hyungpil

    2013-04-01

    In previous work, a dual-axis hybrid-type tactile sensor using PDMS (Polydimethylsiloxane) with a pair of metal electrodes, (which were deposited directly on the PDMS surface), was proposed. The hybrid sensor can measure the normal force and the shear force from the measurement of the change of capacitance and resistance values from the one pair of electrodes. However, the metal is hard to be deposited on the surface of the PDMS because the PDMS is hydrophobic. The hydrophobic surface can be changed to hydrophilic using O2 Plasma treatment or UV treatment. When O2 plasma treatment or UV treatment is used, there is the problem that the processing of the metal deposition and the wiring completed in a very short period of limited time. Also, the deposited metal on the surface of the PDMS is easy to break because the deposited metal is exposed in the air. In this paper, we propose a dual-axis hybrid-type tactile sensor where the PET (polyethylene terephthalate) film is inserted between the PDMS films. The deposited metal is not removed easily from the PET film because the adhesion is strong. Also, the PDMS surrounding the PET film plays the roles of dielectric elastomer and shielding the deposited metal from the external environment at same time. Experimental results verify the effectiveness of the fabricated dual-axis hybrid-type force sensor.

  15. Detailed studies of full-size ATLAS12 sensors

    NASA Astrophysics Data System (ADS)

    Hommels, L. B. A.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia, M.; Klein, C. T.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The "ATLAS ITk Strip Sensor Collaboration" R&D group has developed a second iteration of single-sided n+-in-p type micro-strip sensors for use in the tracker upgrade of the ATLAS experiment at the High-Luminosity (HL) LHC. The full size sensors measure approximately 97 × 97mm2 and are designed for tolerance against the 1.1 ×1015neq /cm2 fluence expected at the HL-LHC. Each sensor has 4 columns of 1280 individual 23.9 mm long channels, arranged at 74.5 μm pitch. Four batches comprising 120 sensors produced by Hamamatsu Photonics were evaluated for their mechanical, and electrical bulk and strip characteristics. Optical microscopy measurements were performed to obtain the sensor surface profile. Leakage current and bulk capacitance properties were measured for each individual sensor. For sample strips across the sensor batches, the inter-strip capacitance and resistance as well as properties of the punch-through protection structure were measured. A multi-channel probecard was used to measure leakage current, coupling capacitance and bias resistance for each individual channel of 100 sensors in three batches. The compiled results for 120 unirradiated sensors are presented in this paper, including summary results for almost 500,000 strips probed. Results on the reverse bias voltage dependence of various parameters and frequency dependence of tested capacitances are included for validation of the experimental methods used. Comparing results with specified values, almost all sensors fall well within specification.

  16. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    NASA Astrophysics Data System (ADS)

    Arefin, Md Shamsul; Bulut Coskun, M.; Alan, Tuncay; Redoute, Jean-Michel; Neild, Adrian; Rasit Yuce, Mehmet

    2014-06-01

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0-5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  17. Transparent Fingerprint Sensor System for Large Flat Panel Display.

    PubMed

    Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk; Lee, Myunghee

    2018-01-19

    In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger's ridges and valleys through the fingerprint sensor array.

  18. A High Temperature Capacitive Pressure Sensor Based on Alumina Ceramic for in Situ Measurement at 600 °C

    PubMed Central

    Tan, Qiulin; Li, Chen; Xiong, Jijun; Jia, Pinggang; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Hong, Yingping; Ren, Zhong; Luo, Tao

    2014-01-01

    In response to the growing demand for in situ measurement of pressure in high-temperature environments, a high temperature capacitive pressure sensor is presented in this paper. A high-temperature ceramic material-alumina is used for the fabrication of the sensor, and the prototype sensor consists of an inductance, a variable capacitance, and a sealed cavity integrated in the alumina ceramic substrate using a thick-film integrated technology. The experimental results show that the proposed sensor has stability at 850 °C for more than 20 min. The characterization in high-temperature and pressure environments successfully demonstrated sensing capabilities for pressure from 1 to 5 bar up to 600 °C, limited by the sensor test setup. At 600 °C, the sensor achieves a linear characteristic response, and the repeatability error, hysteresis error and zero-point drift of the sensor are 8.3%, 5.05% and 1%, respectively. PMID:24487624

  19. Transparent Fingerprint Sensor System for Large Flat Panel Display

    PubMed Central

    Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk

    2018-01-01

    In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger’s ridges and valleys through the fingerprint sensor array. PMID:29351218

  20. Polypyrrole Porous Micro Humidity Sensor Integrated with a Ring Oscillator Circuit on Chip

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Lu, De-Hao

    2010-01-01

    This study presents the design and fabrication of a capacitive micro humidity sensor integrated with a five-stage ring oscillator circuit on chip using the complimentary metal oxide semiconductor (CMOS) process. The area of the humidity sensor chip is about 1 mm2. The humidity sensor consists of a sensing capacitor and a sensing film. The sensing capacitor is constructed from spiral interdigital electrodes that can enhance the sensitivity of the sensor. The sensing film of the sensor is polypyrrole, which is prepared by the chemical polymerization method, and the film has a porous structure. The sensor needs a post-CMOS process to coat the sensing film. The post-CMOS process uses a wet etching to etch the sacrificial layers, and then the polypyrrole is coated on the sensing capacitor. The sensor generates a change in capacitance when the sensing film absorbs or desorbs vapor. The ring oscillator circuit converts the capacitance variation of the sensor into the oscillation frequency output. Experimental results show that the sensitivity of the humidity sensor is about 99 kHz/%RH at 25 °C. PMID:22163459

  1. Polypyrrole porous micro humidity sensor integrated with a ring oscillator circuit on chip.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Lu, De-Hao

    2010-01-01

    This study presents the design and fabrication of a capacitive micro humidity sensor integrated with a five-stage ring oscillator circuit on chip using the complimentary metal oxide semiconductor (CMOS) process. The area of the humidity sensor chip is about 1 mm(2). The humidity sensor consists of a sensing capacitor and a sensing film. The sensing capacitor is constructed from spiral interdigital electrodes that can enhance the sensitivity of the sensor. The sensing film of the sensor is polypyrrole, which is prepared by the chemical polymerization method, and the film has a porous structure. The sensor needs a post-CMOS process to coat the sensing film. The post-CMOS process uses a wet etching to etch the sacrificial layers, and then the polypyrrole is coated on the sensing capacitor. The sensor generates a change in capacitance when the sensing film absorbs or desorbs vapor. The ring oscillator circuit converts the capacitance variation of the sensor into the oscillation frequency output. Experimental results show that the sensitivity of the humidity sensor is about 99 kHz/%RH at 25 °C.

  2. Optimization of the coplanar interdigital capacitive sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yunzhi; Zhan, Zheng; Bowler, Nicola

    2017-02-01

    Interdigital capacitive sensors are applied in nondestructive testing and material property characterization of low-conductivity materials. The sensor performance is typically described based on the penetration depth of the electric field into the sample material, the sensor signal strength and its sensitivity. These factors all depend on the geometry and material properties of the sensor and sample. In this paper, a detailed analysis is provided, through finite element simulations, of the ways in which the sensor's geometrical parameters affect its performance. The geometrical parameters include the number of digits forming the interdigital electrodes and the ratio of digit width to their separation. In addition, the influence of the presence or absence of a metal backplane on the sample is analyzed. Further, the effects of sensor substrate thickness and material on signal strength are studied. The results of the analysis show that it is necessary to take into account a trade-off between the desired sensitivity and penetration depth when designing the sensor. Parametric equations are presented to assist the sensor designer or nondestructive evaluation specialist in optimizing the design of a capacitive sensor.

  3. High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator

    NASA Technical Reports Server (NTRS)

    Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.

    2011-01-01

    In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.

  4. Microfabricated Tactile Sensors for Biomedical Applications: A Review

    PubMed Central

    Saccomandi, Paola; Schena, Emiliano; Oddo, Calogero Maria; Zollo, Loredana; Silvestri, Sergio; Guglielmelli, Eugenio

    2014-01-01

    During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described. PMID:25587432

  5. Microfabricated tactile sensors for biomedical applications: a review.

    PubMed

    Saccomandi, Paola; Schena, Emiliano; Oddo, Calogero Maria; Zollo, Loredana; Silvestri, Sergio; Guglielmelli, Eugenio

    2014-12-01

    During the last decades, tactile sensors based on different sensing principles have been developed due to the growing interest in robotics and, mainly, in medical applications. Several technological solutions have been employed to design tactile sensors; in particular, solutions based on microfabrication present several attractive features. Microfabrication technologies allow for developing miniaturized sensors with good performance in terms of metrological properties (e.g., accuracy, sensitivity, low power consumption, and frequency response). Small size and good metrological properties heighten the potential role of tactile sensors in medicine, making them especially attractive to be integrated in smart interfaces and microsurgical tools. This paper provides an overview of microfabricated tactile sensors, focusing on the mean principles of sensing, i.e., piezoresistive, piezoelectric and capacitive sensors. These sensors are employed for measuring contact properties, in particular force and pressure, in three main medical fields, i.e., prosthetics and artificial skin, minimal access surgery and smart interfaces for biomechanical analysis. The working principles and the metrological properties of the most promising tactile, microfabricated sensors are analyzed, together with their application in medicine. Finally, the new emerging technologies in these fields are briefly described.

  6. Simple fabricating PCB-based inter digital capacitor for glucose biosensor

    NASA Astrophysics Data System (ADS)

    Jamaluddin, Anif; Taufik, Usman; Iriani, Yofentina; Budiawanti, Sri; Suyitno

    2017-01-01

    This paper presents the simple fabrication of interdigital capacitor (IDC) using print circuit board (PCB) for glucose biosensor. PCB type FR04 laminated with Cu as electrode was used as sensor base. The IDC pattern of sensor was designed by computer aided design program and printed with a laser printer on plastic polymers. Then, the IDC pattern was transferred into PCB by a laminating machine. The etching process of PCB was done by immersing in ferric chloride liquid to form Cu pattern. There were five patterns of sensors including 5, 10, 15, 20 and 25 patterns. The capacitance value of PCB was measured with RCL meter when IDC biosensor was put in air, aquades, and glucose liquid with various moles of glucose (0.02, 0.04, 0.06, 0.08, 0.1M). In air medium, the increase of pattern number of IDC sensor (from 5 to 25) caused the sensor capacitance rose from 22 pf to 46 pf. In addition, the capacitance of sensor was dramatically increased until 0.36 µf while IDC sensor with 25 patterns was put in aquades medium. In liquid glucose medium, the capacitance of IDC biosensor with 25 patterns increased until 0.58 µf on 0.1 M glucose liquid.

  7. Dual Segment Glocal Model Based Capacitive Level Sensor (CLS) for Adhesive Material and Level Detection

    NASA Astrophysics Data System (ADS)

    Khan, F. A.; Yousaf, A.; Reindl, L. M.

    2018-04-01

    This paper presents a multi segment capacitive level monitoring sensor based on distributed E-fields approach Glocal. This approach has an advantage to analyze build-up problem by the local E-fields as well the fluid level monitoring by the global E-fields. The multi segment capacitive approach presented within this work addresses the main problem of unwanted parasitic capacitance generated from Copper (Cu) strips by applying active shielding concept. Polyvinyl chloride (PVC) is used for isolation and parafilm is used for creating artificial build-up on a CLS.

  8. Direct Printing of Stretchable Elastomers for Highly Sensitive Capillary Pressure Sensors.

    PubMed

    Liu, Wenguang; Yan, Chaoyi

    2018-03-28

    We demonstrate the successful fabrication of highly sensitive capillary pressure sensors using an innovative 3D printing method. Unlike conventional capacitive pressure sensors where the capacitance changes were due to the pressure-induced interspace variations between the parallel plate electrodes, in our capillary sensors the capacitance was determined by the extrusion and extraction of liquid medium and consequent changes of dielectric constants. Significant pressure sensitivity advances up to 547.9 KPa -1 were achieved. Moreover, we suggest that our innovative capillary pressure sensors can adopt a wide range of liquid mediums, such as ethanol, deionized water, and their mixtures. The devices also showed stable performances upon repeated pressing cycles. The direct and versatile printing method combined with the significant performance advances are expected to find important applications in future stretchable and wearable electronics.

  9. A new torsion pendulum for gravitational reference sensor technology development.

    PubMed

    Ciani, Giacomo; Chilton, Andrew; Apple, Stephen; Olatunde, Taiwo; Aitken, Michael; Mueller, Guido; Conklin, John W

    2017-06-01

    We report on the design and sensitivity of a new torsion pendulum for measuring the performance of ultra-precise inertial sensors and for the development of associated technologies for space-based gravitational wave observatories and geodesy missions. The apparatus comprises a 1 m-long, 50 μm-diameter tungsten fiber that supports an inertial member inside a vacuum system. The inertial member is an aluminum crossbar with four hollow cubic test masses at each end. This structure converts the rotation of the torsion pendulum into translation of the test masses. Two test masses are enclosed in capacitive sensors which provide readout and actuation. These test masses are electrically insulated from the rest of the crossbar and their electrical charge is controlled by photoemission using fiber-coupled ultraviolet light emitting diodes. The capacitive readout measures the test mass displacement with a broadband sensitivity of 30 nm∕Hz and is complemented by a laser interferometer with a sensitivity of about 0.5 nm∕Hz. The performance of the pendulum, as determined by the measured residual torque noise and expressed in terms of equivalent force acting on a single test mass, is roughly 200 fN∕Hz around 2 mHz, which is about a factor of 20 above the thermal noise limit of the fiber.

  10. Design, analysis, and fabrication of a piezoelectric force plate

    NASA Astrophysics Data System (ADS)

    Hoummadi, Elias; Safaei, Mohsen; Anton, Steven R.

    2017-04-01

    Force plates are used to detect static and dynamic reaction forces due to presence of stationary or moving objects as well as the location of applied forces. The application of force plates in various biomechanical fields, such as gait analysis, has been widely suggested and investigated in the past. Several sensor technologies like piezoelectrics, capacitance gauges, and piezoresistive sensors are utilized to develop force plates with special characteristics. Among the technologies employed in force plate designs, piezoelectrics present the ability of providing a self-powered sensory system. Recently, it has been suggested to implement piezoelectric transducers as sensors in the tibial bearing of total knee replacement (TKR) implants in order to transform the knee bearing into a force plate with the ability to detect force and contact point location for in vivo knee load analysis. Considering this application, a simplified design of a force plate instrumented with six piezoelectric transducers is presented in this study. The force plate is modeled using a finite element (FE) model to investigate the sensing performance of the system. In order to validate the simulation, a prototype force plate is fabricated and tested under the same loading condition applied on the FE model. The results are presented in terms of measured location and amplitude of applied force measured by the piezoelectric transducers. For the FE simulation, the deviation of the measured location of the applied force from the actual location is obtained as 0.62 mm in the x-direction and 0.13 mm in the y-direction, and the error in the amplitude of the measured force is 0.03% of the applied force. On the other hand, the deviation in the measured location of the force from the experimental test is 0.53 mm in the x-direction and 0.1 mm in the y-direction, while the error in force is 3.6% of the applied force. The small quantities of error in both sensed location and amplitude of applied force obtained from the FE simulation and experimental test results demonstrates the potential of the proposed design to be utilized as the sensor in the knee bearing of TKR implants.

  11. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  12. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application

    PubMed Central

    Takahata, Kenichi; Gianchandani, Yogesh B.

    2008-01-01

    This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane room-temperature-vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μm-diameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated. PMID:27879824

  13. A capacitive sensor for 2,4-D determination in water based on 2,4-D imprinted polypyrrole coated pencil electrode

    NASA Astrophysics Data System (ADS)

    Prusty, Arun Kumar; Bhand, Sunil

    2017-03-01

    A capacitive sensor for 2,4-dichloro phenoxy acetic acid(2,4-D) determination in drinking water has been developed using molecularly imprinted polypyrrole on pencil graphite electrode (PGE). Molecular imprinted polymer (MIP) coated PGE was prepared by electropolymerization of pyrrole via chronopotentiometry in the presence of 2,4-D as the template molecule. The prepared electrodes were characterized by field emission gun-scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The capacitance change of MIP electrode was measured in the presence of 2,4-D using EIS. The developed capacitive sensor exhibited a linear range 0.06-1.25 µg l-1 2,4-D with limit of detection of 0.02 µg l-1 and good selectivity towards 2,4-D in water with recovery from 92 to 110%. The results suggest the viable applicability of the MIP/PGE based sensor for the determination of the 2,4-D in water samples.

  14. Comparison of measurement methods for capacitive tactile sensors and their implementation

    NASA Astrophysics Data System (ADS)

    Tarapata, Grzegorz; Sienkiewicz, Rafał

    2015-09-01

    This paper presents a review of ideas and implementations of measurement methods utilized for capacity measurements in tactile sensors. The paper describes technical method, charge amplification method, generation and as well integration method. Three selected methods were implemented in dedicated measurement system and utilised for capacitance measurements of ourselves made tactile sensors. The tactile sensors tested in this work were fully fabricated with the inkjet printing technology. The tests result were presented and summarised. The charge amplification method (CDC) was selected as the best method for the measurement of the tactile sensors.

  15. Improved Capacitive Liquid Sensor

    NASA Technical Reports Server (NTRS)

    Waldman, Francis A.

    1992-01-01

    Improved capacitive sensor used to detect presence and/or measure thickness of layer of liquid. Electrical impedance or admittance of sensor measured at prescribed frequency, and thickness of liquid inferred from predetermined theoretical or experimental relationship between impedance and thickness. Sensor is basically a three-terminal device. Features interdigitated driving and sensing electrodes and peripheral coplanar ground electrode that reduces parasitic effects. Patent-pending because first to utilize ground plane as "shunting" electrode. System less expensive than infrared, microwave, or refractive-index systems. Sensor successfully evaluated in commercial production plants to characterize emulsions, slurries, and solutions.

  16. Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors.

    PubMed

    Chen, Yan-Sheng; Hsieh, Gen-Wen; Chen, Shih-Ping; Tseng, Pin-Yen; Wang, Cheng-Wei

    2015-01-14

    Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications.

  17. The capacitive proximity sensor based on transients in RC-circuits

    NASA Astrophysics Data System (ADS)

    Yakunin, A. G.

    2018-05-01

    The principle of operation of the capacitive proximity sensor is described. It can be used in various robotic complexes, automation systems and alarm devices to inform the control device of the approach to the sensor sensitive surface of an object. At the heart of the device is the measurement of the change in the current of the transient accompanying the charge of the reference capacitor because of the parallel connection to it the capacitance formed by the sensitive sensor surface and the external object. At the heart of the device is the measurement of the change in the current of the transient accompanying the charge of the reference capacitor caused by the parallel connection to it the capacitance formed by the sensitive sensor surface and the external object. As shown by theoretical and experimental studies, the value of this capacity, depending on the purpose of the device, can vary within very wide limits. In this case, the sensitive surface can be both a piece of ordinary wire several centimeters long, and a metall plate or grid, the area of which can reach units and even tens of square meters. The main advantage of the proposed solution is a significant reduction in the effect of spurious leakage currents arising at the capacitance of the measuring electrode under the influence of pollution and humidity of the environment.

  18. A Novel Method for Proximity Detection of Moving Targets Using a Large-Scale Planar Capacitive Sensor System

    PubMed Central

    Ye, Yong; Deng, Jiahao; Shen, Sanmin; Hou, Zhuo; Liu, Yuting

    2016-01-01

    A novel method for proximity detection of moving targets (with high dielectric constants) using a large-scale (the size of each sensor is 31 cm × 19 cm) planar capacitive sensor system (PCSS) is proposed. The capacitive variation with distance is derived, and a pair of electrodes in a planar capacitive sensor unit (PCSU) with a spiral shape is found to have better performance on sensitivity distribution homogeneity and dynamic range than three other shapes (comb shape, rectangular shape, and circular shape). A driving excitation circuit with a Clapp oscillator is proposed, and a capacitance measuring circuit with sensitivity of 0.21 Vp−p/pF is designed. The results of static experiments and dynamic experiments demonstrate that the voltage curves of static experiments are similar to those of dynamic experiments; therefore, the static data can be used to simulate the dynamic curves. The dynamic range of proximity detection for three projectiles is up to 60 cm, and the results of the following static experiments show that the PCSU with four neighboring units has the highest sensitivity (the sensitivities of other units are at least 4% lower); when the attack angle decreases, the intensity of sensor signal increases. This proposed method leads to the design of a feasible moving target detector with simple structure and low cost, which can be applied in the interception system. PMID:27196905

  19. Smart measurement system for resistive (bridge) or capacitive sensors

    NASA Astrophysics Data System (ADS)

    Wang, Guijie; Meijer, Gerard C. M.

    1998-07-01

    A low-cost smart measurement system for resistive (bridge) and capacitive sensors is presented and demonstrated. The measurement system consists of three main parts: the sensor element, a universal transducer interface (UTI) and a microcontroller. The UTI is a sensor-signal-to-time converter, based on a period-modulated oscillator, which is equipped with front-ends for many types of resistive (bridge) and capacitive sensors, and which generates a microcontroller-compatible output signal. The microcontroller performs data acquisition of the output signals from the interface UTI, controls the working status of the UTI for a specified application and communicates with a personal computer. Continuous auto-calibration of the offset and the gain of the complete system is applied to eliminate many nonidealities. Experimental results show that the accuracy and resolution are 14 bits and 16 bits, respectively, for a measurement time of about 100 ms.

  20. MEMS capacitive pressure sensor monolithically integrated with CMOS readout circuit by using post CMOS processes

    NASA Astrophysics Data System (ADS)

    Jang, Munseon; Yun, Kwang-Seok

    2017-12-01

    In this paper, we presents a MEMS pressure sensor integrated with a readout circuit on a chip for an on-chip signal processing. The capacitive pressure sensor is formed on a CMOS chip by using a post-CMOS MEMS processes. The proposed device consists of a sensing capacitor that is square in shape, a reference capacitor and a readout circuitry based on a switched-capacitor scheme to detect capacitance change at various environmental pressures. The readout circuit was implemented by using a commercial 0.35 μm CMOS process with 2 polysilicon and 4 metal layers. Then, the pressure sensor was formed by wet etching of metal 2 layer through via hole structures. Experimental results show that the MEMS pressure sensor has a sensitivity of 11 mV/100 kPa at the pressure range of 100-400 kPa.

  1. Radial displacement sensor for non-contact bearings

    NASA Technical Reports Server (NTRS)

    McCormick, John A. (Inventor); Sixsmith, Herbert (Inventor)

    1998-01-01

    A radial position sensor includes four capacitive electrodes oriented about a shaft, arranged in two diametrically opposite pairs. Sensor circuitry generates an output signal in proportion to the capacitance between the electrodes and the shaft; the capacitance between an electrode and the shaft increases as the shaft approaches the electrode and decreases as the shaft recedes from the electrode. The sensor circuitry applies an alternating voltage to one electrode of a pair and a 180 degree out of phase alternating voltage to the other electrode of the pair. The electrical responses of the two electrodes to their respective input signals are summed to form a radial deviation signal which is relatively free from the alternating voltage and accurately represents the position of the shaft relative to the electrodes of the pair.

  2. Inductive-capacitive resonant circuit sensors for structural health and environmental monitoring

    NASA Astrophysics Data System (ADS)

    DeRouin, Andrew J.

    Inductive-capacitive (LC) sensors are low-cost, wireless, durable, simple to fabricate and battery-less. Consequently, they are well suited to sensing applications in harsh environments or where large numbers of sensors are needed. Due to their many advantages, LC sensors have been used for sensing a variety of parameters including humidity, temperature, chemical concentrations, pH, stress/pressure, strain, food quality and even biological growth. However, current versions of the LC sensor technology are limited to sensing only one parameter. This work focuses on the development and characterization of two new sensor designs that address this limitation in addition to significantly reducing the overall sensor footprint and thus the sensor unit cost.

  3. AC-conductance and capacitance measurements for ethanol vapor detection using carbon nanotube-polyvinyl alcohol composite based devices.

    PubMed

    Greenshields, Márcia W C C; Meruvia, Michelle S; Hümmelgen, Ivo A; Coville, Neil J; Mhlanga, Sabelo D; Ceragioli, Helder J; Quispe, Jose C Rojas; Baranauskas, Vitor

    2011-03-01

    We report the preparation of inexpensive ethanol sensor devices using multiwalled carbon nanotube-polyvinyl alcohol composite films deposited onto interdigitated electrodes patterned on phenolite substrates. We investigate the frequency dependent response of the device conductance and capacitance showing that higher sensitivity is obtained at higher frequency if the conductance is used as sensing parameter. In the case of capacitance measurements, higher sensitivity is obtained at low frequency. Ethanol detection at a concentration of 300 ppm in air is demonstrated. More than 80% of the sensor conductance and capacitance variation response occurs in less than 20 s.

  4. Pick-and-place process for sensitivity improvement of the capacitive type CMOS MEMS 2-axis tilt sensor

    NASA Astrophysics Data System (ADS)

    Chang, Chun-I.; Tsai, Ming-Han; Liu, Yu-Chia; Sun, Chih-Ming; Fang, Weileun

    2013-09-01

    This study exploits the foundry available complimentary metal-oxide-semiconductor (CMOS) process and the packaging house available pick-and-place technology to implement a capacitive type micromachined 2-axis tilt sensor. The suspended micro mechanical structures such as the spring, stage and sensing electrodes are fabricated using the CMOS microelectromechanical systems (MEMS) processes. A bulk block is assembled onto the suspended stage by pick-and-place technology to increase the proof-mass of the tilt sensor. The low temperature UV-glue dispensing and curing processes are employed to bond the block onto the stage. Thus, the sensitivity of the CMOS MEMS capacitive type 2-axis tilt sensor is significantly improved. In application, this study successfully demonstrates the bonding of a bulk solder ball of 100 µm in diameter with a 2-axis tilt sensor fabricated using the standard TSMC 0.35 µm 2P4M CMOS process. Measurements show the sensitivities of the 2-axis tilt sensor are increased for 2.06-fold (x-axis) and 1.78-fold (y-axis) after adding the solder ball. Note that the sensitivity can be further improved by reducing the parasitic capacitance and the mismatch of sensing electrodes caused by the solder ball.

  5. Wireless Capacitive Pressure Sensor Operating up to 400 Celcius from 0 to 100 psi Utilizing Power Scavenging

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Harsh, Kevin; Mackey, Jonathan A.; Meredith, Roger D.; Zorman, Christian A.; Beheim, Glenn M.; Dynys, Frederick W.; Hunter, Gary W.

    2014-01-01

    In this paper, a wireless capacitive pressure sensor developed for the health monitoring of aircraft engines has been demonstrated. The sensing system is composed of a Clapp-type oscillator that operates at 131 MHz. The Clapp oscillator is fabricated on a alumina substrate and consists of a Cree SiC (silicon carbide) MESFET (Metal Semiconductor Field Effect Transistors), this film inductor, Compex chip capacitors and Sporian Microsystem capacitive pressure sensor. The resonant tank circuit within the oscillator is made up of the pressure sensor and a spiral thin film inductor, which is used to magnetically couple the wireless pressure sensor signal to a coil antenna placed over 1 meter away. 75% of the power used to bias the sensing system is generated from thermoelectric power modules. The wireless pressure sensor is operational at room temperature through 400 C from 0 to 100 psi and exhibits a frequency shift of over 600 kHz.

  6. A two-ply polymer-based flexible tactile sensor sheet using electric capacitance.

    PubMed

    Guo, Shijie; Shiraoka, Takahisa; Inada, Seisho; Mukai, Toshiharu

    2014-01-29

    Traditional capacitive tactile sensor sheets usually have a three-layered structure, with a dielectric layer sandwiched by two electrode layers. Each electrode layer has a number of parallel ribbon-like electrodes. The electrodes on the two electrode layers are oriented orthogonally and each crossing point of the two perpendicular electrode arrays makes up a capacitive sensor cell on the sheet. It is well known that compatibility between measuring precision and resolution is difficult, since decreasing the width of the electrodes is required to obtain a high resolution, however, this may lead to reduction of the area of the sensor cells, and as a result, lead to a low Signal/Noise (S/N) ratio. To overcome this problem, a new multilayered structure and related calculation procedure are proposed. This new structure stacks two or more sensor sheets with shifts in position. Both a high precision and a high resolution can be obtained by combining the signals of the stacked sensor sheets. Trial production was made and the effect was confirmed.

  7. Resonant Magnetic Field Sensors Based On MEMS Technology.

    PubMed

    Herrera-May, Agustín L; Aguilera-Cortés, Luz A; García-Ramírez, Pedro J; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  8. Resonant Magnetic Field Sensors Based On MEMS Technology

    PubMed Central

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  9. Phase discriminating capacitive array sensor system

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor); Rahim, Wadi (Inventor)

    1993-01-01

    A phase discriminating capacitive sensor array system which provides multiple sensor elements which are maintained at a phase and amplitude based on a frequency reference provided by a single frequency stabilized oscillator. Sensor signals provided by the multiple sensor elements are controlled by multiple phase control units, which correspond to the multiple sensor elements, to adjust the sensor signals from the multiple sensor elements based on the frequency reference. The adjustment made to the sensor signals is indicated by output signals which indicate the proximity of the object. The output signals may also indicate the closing speed of the object based on the rate of change of the adjustment made, and the edges of the object based on a sudden decrease in the adjustment made.

  10. Capacitive touch sensing : signal and image processing algorithms

    NASA Astrophysics Data System (ADS)

    Baharav, Zachi; Kakarala, Ramakrishna

    2011-03-01

    Capacitive touch sensors have been in use for many years, and recently gained center stage with the ubiquitous use in smart-phones. In this work we will analyze the most common method of projected capacitive sensing, that of absolute capacitive sensing, together with the most common sensing pattern, that of diamond-shaped sensors. After a brief introduction to the problem, and the reasons behind its popularity, we will formulate the problem as a reconstruction from projections. We derive analytic solutions for two simple cases: circular finger on a wire grid, and square finger on a square grid. The solutions give insight into the ambiguities of finding finger location from sensor readings. The main contribution of our paper is the discussion of interpolation algorithms including simple linear interpolation , curve fitting (parabolic and Gaussian), filtering, general look-up-table, and combinations thereof. We conclude with observations on the limits of the present algorithmic methods, and point to possible future research.

  11. Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.

    2017-09-01

    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.

  12. Capacitively coupled RF voltage probe having optimized flux linkage

    DOEpatents

    Moore, James A.; Sparks, Dennis O.

    1999-02-02

    An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.

  13. Integrated control and health monitoring capacitive displacement sensor development task. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Collamore, Frank N.

    1989-01-01

    The development of a miniature multifunction turbomachinery shaft displacement sensor using state-of-the-art non-contract capacitive sensing technology is described. Axial displacement, radial displacement, and speed are sensed using a single probe within the envelope normally required for a single function. A survey of displacement sensing technology is summarized including inductive, capacitive, optical and ultrasonic techniques. The design and operation of an experimental triple function sensor is described. Test results are included showing calibration tests and simultaneous dynamic testing of multiple functions. Recommendations for design changes are made to improve low temperature performance, reliability, and for design of a flight type signal conditioning unit.

  14. A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications.

    PubMed

    Pérez Sanjurjo, Javier; Prefasi, Enrique; Buffa, Cesare; Gaggl, Richard

    2017-06-07

    The use of MEMS sensors has been increasing in recent years. To cover all the applications, many different readout circuits are needed. To reduce the cost and time to market, a generic capacitance-to-digital converter (CDC) seems to be the logical next step. This work presents a configurable CDC designed for capacitive MEMS sensors. The sensor is built with a bridge of MEMS, where some of them function with pressure. Then, the capacitive to digital conversion is realized using two steps. First, a switched-capacitor (SC) preamplifier is used to make the capacitive to voltage (C-V) conversion. Second, a self-oscillated noise-shaping integrating dual-slope (DS) converter is used to digitize this magnitude. The proposed converter uses time instead of amplitude resolution to generate a multibit digital output stream. In addition it performs noise shaping of the quantization error to reduce measurement time. This article shows the effectiveness of this method by measurements performed on a prototype, designed and fabricated using standard 0.13 µm CMOS technology. Experimental measurements show that the CDC achieves a resolution of 17 bits, with an effective area of 0.317 mm², which means a pressure resolution of 1 Pa, while consuming 146 µA from a 1.5 V power supply.

  15. A Capacitance-To-Digital Converter for MEMS Sensors for Smart Applications

    PubMed Central

    Pérez Sanjurjo, Javier; Prefasi, Enrique; Buffa, Cesare; Gaggl, Richard

    2017-01-01

    The use of MEMS sensors has been increasing in recent years. To cover all the applications, many different readout circuits are needed. To reduce the cost and time to market, a generic capacitance-to-digital converter (CDC) seems to be the logical next step. This work presents a configurable CDC designed for capacitive MEMS sensors. The sensor is built with a bridge of MEMS, where some of them function with pressure. Then, the capacitive to digital conversion is realized using two steps. First, a switched-capacitor (SC) preamplifier is used to make the capacitive to voltage (C-V) conversion. Second, a self-oscillated noise-shaping integrating dual-slope (DS) converter is used to digitize this magnitude. The proposed converter uses time instead of amplitude resolution to generate a multibit digital output stream. In addition it performs noise shaping of the quantization error to reduce measurement time. This article shows the effectiveness of this method by measurements performed on a prototype, designed and fabricated using standard 0.13 µm CMOS technology. Experimental measurements show that the CDC achieves a resolution of 17 bits, with an effective area of 0.317 mm2, which means a pressure resolution of 1 Pa, while consuming 146 µA from a 1.5 V power supply. PMID:28590425

  16. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Flatscher, R.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Killow, C. J.; Korsakova, N.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D. I.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C.; Sumner, T. J.; Texier, D.; Thorpe, J. I.; Trenkel, C.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.; LISA Pathfinder Collaboration

    2017-04-01

    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0 fm s-2 Hz-1 /2 across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

  17. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder.

    PubMed

    Armano, M; Audley, H; Auger, G; Baird, J T; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Cruise, M; Danzmann, K; de Deus Silva, M; Diepholz, I; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fitzsimons, E D; Flatscher, R; Freschi, M; Gallegos, J; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Grimani, C; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hueller, M; Huesler, J; Inchauspé, H; Jennrich, O; Jetzer, P; Johlander, B; Karnesis, N; Kaune, B; Killow, C J; Korsakova, N; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Madden, S; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Moroni, A; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Ramos-Castro, J; Reiche, J; Romera Perez, J A; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sarra, P; Schleicher, A; Slutsky, J; Sopuerta, C; Sumner, T J; Texier, D; Thorpe, J I; Trenkel, C; Vetrugno, D; Vitale, S; Wanner, G; Ward, H; Wass, P J; Wealthy, D; Weber, W J; Wittchen, A; Zanoni, C; Ziegler, T; Zweifel, P

    2017-04-28

    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0  fm s^{-2} Hz^{-1/2} across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

  18. Developing a polymeric sensor to monitor intracellular conditions

    NASA Astrophysics Data System (ADS)

    Mudarri, Timothy C.; Leo, Donald J.; Wood, Brett C.; Shires, Peter K.

    2004-07-01

    Ionic electroactive polymers have been developed as mechanical sensors or actuators, taking advantage of the electromechanical coupling of the materials. This research attempts to take advantage of the chemomechanical and chemoelectrical coupling by characterizing the transient response as the polymer undergoes an ion exchange, thus using the polymer for ionic sensing. Nafion is a biocompatible material, and an implantable polymeric ion sensor which has applications in the biomedical field for bone healing research. An ion sensor and a strain gauge could determine the effects of motion allowed at the fracture site, thus improving rehabilitation procedures for bone fractures. The charge sensitivity of the material and the capacitance of the material were analyzed to determine the transient response. Both measures indicate a change when immersed in ionic salt solutions. It is demonstrated that measuring the capacitance is the best indicator of an ion exchange. Relative to a flat response in deionized water (+/-2%), the capacitance of the polymer exhibits an exponential decay of ~25% of its peak when placed in a salt solution. A linear correlation between the time constant of the decay and the ionic size of the exchanging ion was developed that could reasonably predict a diffusing ion. Tests using an energy dispersive spectrometer (EDS) indicate that 90% of the exchange occurs in the first 20 minutes, shown by both capacitance decay and an atomic level scan. The diffusion rate time constant was found to within 0.3% of the capacitance time constant, confirming the ability of capacitance to measure ion exchange.

  19. Phase-Discriminating Capacitive Sensor System

    NASA Technical Reports Server (NTRS)

    Vranish, John M.; Rahim, Wadi

    1993-01-01

    Crosstalk eliminated by maintaining voltages on all electrodes at same amplitude, phase, and frequency. Each output feedback-derived control voltage, change of which indicates proximity-induced change in capacitance of associated sensing electrode. Sensors placed close together, enabling imaging of sort. Images and/or output voltages used to guide robots in proximity to various objects.

  20. Evaluation of electrical capacitance tomography sensor based on the coupling of fluid field and electrostatic field

    NASA Astrophysics Data System (ADS)

    Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-07-01

    Electrical capacitance tomography (ECT) is based on capacitance measurements from electrode pairs mounted outside of a pipe or vessel. The structure of ECT sensors is vital to image quality. In this paper, issues with the number of electrodes and the electrode covering ratio for complex liquid-solids flows in a rotating device are investigated based on a new coupling simulation model. The number of electrodes is increased from 4 to 32 while the electrode covering ratio is changed from 0.1 to 0.9. Using the coupling simulation method, real permittivity distributions and the corresponding capacitance data at 0, 0.5, 1, 2, 3, 5, and 8 s with a rotation speed of 96 rotations per minute (rpm) are collected. Linear back projection (LBP) and Landweber iteration algorithms are used for image reconstruction. The quality of reconstructed images is evaluated by correlation coefficient compared with the real permittivity distributions obtained from the coupling simulation. The sensitivity for each sensor is analyzed and compared with the correlation coefficient. The capacitance data with a range of signal-to-noise ratios (SNRs) of 45, 50, 55 and 60 dB are generated to evaluate the effect of data noise on the performance of ECT sensors. Furthermore, the SNRs of experimental data are analyzed for a stationary pipe with permittivity distribution. Based on the coupling simulation, 16-electrode ECT sensors are recommended to achieve good image quality.

  1. Effect of nonlinear electrostatic forces on the dynamic behaviour of a capacitive ring-based Coriolis Vibrating Gyroscope under severe shock

    NASA Astrophysics Data System (ADS)

    Chouvion, B.; McWilliam, S.; Popov, A. A.

    2018-06-01

    This paper investigates the dynamic behaviour of capacitive ring-based Coriolis Vibrating Gyroscopes (CVGs) under severe shock conditions. A general analytical model is developed for a multi-supported ring resonator by describing the in-plane ring response as a finite sum of modes of a perfect ring and the electrostatic force as a Taylor series expansion. It is shown that the supports can induce mode coupling and that mode coupling occurs when the shock is severe and the electrostatic forces are nonlinear. The influence of electrostatic nonlinearity is investigated by numerically simulating the governing equations of motion. For the severe shock cases investigated, when the electrode gap reduces by ∼ 60 % , it is found that three ring modes of vibration (1 θ, 2 θ and 3 θ) and a 9th order force expansion are needed to obtain converged results for the global shock behaviour. Numerical results when the 2 θ mode is driven at resonance indicate that electrostatic nonlinearity introduces mode coupling which has potential to reduce sensor performance under operating conditions. Under some circumstances it is also found that severe shocks can cause the vibrating response to jump to another stable state with much lower vibration amplitude. This behaviour is mainly a function of shock amplitude and rigid-body motion damping.

  2. Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor: The effect of air flow rate and solid percentage

    NASA Astrophysics Data System (ADS)

    Haryono, Didied; Harjanto, Sri; Wijaya, Rifky; Oediyani, Soesaptri; Nugraha, Harisma; Huda, Mahfudz Al; Taruno, Warsito Purwo

    2018-04-01

    Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor is presented in this paper. The effect of air flow rate and solid percentage on column flotation process has been experimentally investigated. The purpose of this paper is to understand the capacitance signal characteristic affected by the air flow rate and the solid percentage which can be used to determine the metallurgical performance. Experiments were performed using a laboratory column flotation cell which has a diameter of 5 cm and the total height of 140 cm. The sintered ceramic sparger and wash water were installed at the bottom and above of the column. Two-electrode concave type capacitance sensor was also installed at a distance of 50 cm from the sparger. The sensor was attached to the outer wall of the column, connected to data acquisition system, manufactured by CTECH Labs Edwar Technology and personal computer for further data processing. Feed consisting ZnS and SiO2 with the ratio of 3:2 was mixed with some reagents to make 1 litre of slurry. The slurry was fed into the aerated column at 100 cm above the sparger with a constant rate and the capacitance signals were captured during the process. In this paper, 7.5 and 10% of solid and 2-4 L/min of air flow rate with 0.5 L/min intervals were used as independent variables. The results show that the capacitance signal characteristics between the 7.5 and 10% of solid are different at any given air flow rate in which the 10% solid produced signals higher than those of 7.5%. Metallurgical performance and capacitance signal exhibit a good correlation.

  3. Operation tools with dielectric elastomer pressure sensors

    NASA Astrophysics Data System (ADS)

    Böse, Holger; Müller, Dominik; Ehrlich, Johannes

    2017-04-01

    New sensors based on dielectric elastomers have recently been shown to exhibit high sensitivity for compression loads. The basic design of these sensors exhibits two profiled surfaces coated with electrode layers between which an elastomer film with the counter-electrode is confined. All components of the sensor are prepared with silicone whose stiffness can be varied in a wide range. Depending on the details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression, the elastomer profiles are deformed and the electrode layers on the elastomer profiles and in the elastomer film approach each other. Beside the detection of pressure, such sensors can also be used for operation tools in human-machine interfaces. To demonstrate this potential, a touch pad with six pressure-sensitive fields is presented. The corresponding sensors integrated in the touch fields detect the exerted forces of the finger, show them on a display and control the brightness of some LEDs. As a second example, the integration of sensor-based control fields on an automotive steering wheel is shown. Finally, the sensors can also be used in fabrics to control arbitrary functions of wearable electronic devices.

  4. Carbon Nanotubes Arranged As Smart Interfaces in Lipid Langmuir-Blodgett Films Enhancing the Enzymatic Properties of Penicillinase for Biosensing Applications.

    PubMed

    Scholl, Fabio A; Morais, Paulo V; Gabriel, Rayla C; Schöning, Michael J; Siqueira, José R; Caseli, Luciano

    2017-09-13

    In this paper, carbon nanotubes (CNTs) were incorporated in penicillinase-phospholipid Langmuir and Langmuir-Blodgett (LB) films to enhance the enzyme catalytic properties. Adsorption of the penicillinase and CNTs at dimyristoylphosphatidic acid (DMPA) monolayers at the air-water interface was investigated by surface pressure-area isotherms, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to solid supports through the LB technique, forming mixed DMPA-CNTs-PEN films, which were investigated by quartz crystal microbalance, vibrational spectroscopy, and atomic force microscopy. Enzyme activity was studied with UV-vis spectroscopy and the feasibility of the supramolecular device nanostructured as ultrathin films were essayed in a capacitive electrolyte-insulator-semiconductor (EIS) sensor device. The presence of CNTs in the enzyme-lipid LB film not only tuned the catalytic activity of penicillinase but also helped conserve its enzyme activity after weeks, showing increased values of activity. Viability as penicillin sensor was demonstrated with capacitance/voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results may be related not only to the nanostructured system provided by the film, but also to the synergism between the compounds on the active layer, leading to a surface morphology that allowed a fast analyte diffusion because of an adequate molecular accommodation, which also preserved the penicillinase activity. This work therefore demonstrates the feasibility of employing LB films composed of lipids, CNTs, and enzymes as EIS devices for biosensing applications.

  5. Design of Moisture Content Detection System

    NASA Astrophysics Data System (ADS)

    Wang, W. C.; Wang, L.

    In this paper, a method for measuring the moisture content of grain was presented based on single chip microcomputer and capacitive sensor. The working principle of measuring moisture content is introduced and a concentric cylinder type of capacitive sensor is designed, the signal processing circuits of system are described in details. System is tested in practice and discussions are made on the various factors affecting the capacitive measuring of grain moisture based on the practical experiments, experiment results showed that the system has high measuring accuracy and good controlling capacity.

  6. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.

    PubMed

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J

    2015-01-21

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.

  7. Wirelessly Interrogated Position or Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2007-01-01

    Two simple position or displacement sensors based on inductance-capacitance resonant circuits have been conceived. These sensors are both powered and interrogated without use of wires and without making contact with other objects. Instead, excitation and interrogation are accomplished by means of a magnetic-field-response recorder. Both of the present position or displacement sensors consist essentially of variable rectangular parallel-plate capacitors electrically connected in series with fixed inductors. Simple inductance-capacitance circuits of the type used in these sensors are inherently robust; their basic mode of operation does not depend on maintenance of specific environmental conditions. Hence, these sensors can be used under such harsh conditions as cryogenic temperatures, high pressures, and radioactivity.

  8. A Self-Powered and Autonomous Fringing Field Capacitive Sensor Integrated into a Micro Sprinkler Spinner to Measure Soil Water Content.

    PubMed

    da Costa, Eduardo Ferreira; de Oliveira, Nestor E; Morais, Flávio J O; Carvalhaes-Dias, Pedro; Duarte, Luis Fernando C; Cabot, Andreu; Siqueira Dias, J A

    2017-03-12

    We present here the design and fabrication of a self-powered and autonomous fringing field capacitive sensor to measure soil water content. The sensor is manufactured using a conventional printed circuit board and includes a porous ceramic. To read the sensor, we use a circuit that includes a 10 kHz triangle wave generator, an AC amplifier, a precision rectifier and a microcontroller. In terms of performance, the sensor's capacitance (measured in a laboratory prototype) increases up to 5% when the volumetric water content of the porous ceramic changed from 3% to 36%, resulting in a sensitivity of S = 15.5 pF per unity change. Repeatability tests for capacitance measurement showed that the θ v sensor's root mean square error is 0.13%. The average current consumption of the system (sensor and signal conditioning circuit) is less than 1.5 μ A, which demonstrates its suitability for being powered by energy harvesting systems. We developed a complete irrigation control system that integrates the sensor, an energy harvesting module composed of a microgenerator installed on the top of a micro sprinkler spinner, and a DC/DC converter circuit that charges a 1 F supercapacitor. The energy harvesting module operates only when the micro sprinkler spinner is irrigating the soil, and the supercapacitor is fully charged to 5 V in about 3 h during the first irrigation. After the first irrigation, with the supercap fully charged, the system can operate powered only by the supercapacitor for approximately 23 days, without any energy being harvested.

  9. Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment

    PubMed Central

    Pavlin, Marko; Belavic, Darko; Novak, Franc

    2012-01-01

    This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing. PMID:22368471

  10. Rough-Surface-Enabled Capacitive Pressure Sensors with 3D Touch Capability.

    PubMed

    Lee, Kilsoo; Lee, Jaehong; Kim, Gwangmook; Kim, Youngjae; Kang, Subin; Cho, Sungjun; Kim, SeulGee; Kim, Jae-Kang; Lee, Wooyoung; Kim, Dae-Eun; Kang, Shinill; Kim, DaeEun; Lee, Taeyoon; Shim, Wooyoung

    2017-11-01

    Fabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes. This study utilizes a writing activity with a pencil and paper, which enables the construction of a fundamental capacitor that can be used as a flexible capacitive pressure sensor with high pressure sensitivity and short response time and that it can be inexpensively fabricated over large areas. Furthermore, the paper-based pressure sensors are integrated into a fully functional 3D touch-pad device, which is a step toward the realization of omnipresent electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates

    PubMed Central

    Xu, Lizhong

    2018-01-01

    In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively. PMID:29373546

  12. A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates.

    PubMed

    Fu, Xiaorui; Xu, Lizhong

    2018-01-26

    In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively.

  13. Ultrahigh Temperature Capacitive Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  14. Investigation of gas-solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas-solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s-1 to 3.0 m s-1 with a step of 0.2 m s-1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas-solids bubbling flows.

  15. A magneto-sensitive skin for robots in space

    NASA Technical Reports Server (NTRS)

    Chauhan, D. S.; Dehoff, P. H.

    1991-01-01

    The development of a robot arm proximity sensing skin that can sense intruding objects is described. The purpose of the sensor would be to prevent the robot from colliding with objects in space including human beings. Eventually a tri-mode system in envisioned including proximity, tactile, and thermal. To date the primary emphasis was on the proximity sensor which evolved from one based on magneto-inductive principles to the current design which is based on a capacitive-reflector system. The capacitive sensing element, backed by a reflector driven at the same voltage and in phase with the sensor, is used to reflect field lines away from the grounded robot toward the intruding object. This results in an increased sensing range of up to 12 in. with the reflector on compared with only 1 in. with it off. It is believed that this design advances the state-of-the-art in capacitive sensor performance.

  16. An Electromagnetic/Capacitive Composite Sensor for Testing of Thermal Barrier Coatings

    PubMed Central

    Ren, Yuan; Pan, Mengchun; Chen, Dixiang; Tian, Wugang

    2018-01-01

    Thermal barrier coatings (TBCs) can significantly reduce the operating temperature of the aeroengine turbine blade substrate, and their testing technology is very urgently demanded. Due to their complex multi-layer structure, it is hard to evaluate TBCs with a single function sensor. In this paper, an electromagnetic/capacitive composite sensor is proposed for the testing of thermal barrier coatings. The dielectric material is tested with planar capacitor, and the metallic material is tested with electromagnetic coils. Then, the comprehensive test and evaluation of thermal barrier coating system can be realized. The sensor is optimized by means of theoretical and simulation analysis, and the interaction between the planar capacitor and the electromagnetic coil is studied. The experimental system is built based on an impedance analyser and multiplex unit to evaluate the performance of the composite sensor. The transimpedances and capacitances are measured under different coating parameters, such as thickness and permittivity of top coating as well as bond layer conductivity. The experimental results agree with the simulation analysis, and the feasibility of the sensor is proved. PMID:29783746

  17. A Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-μm CMOS Technology for Cancer Biomarker Detection.

    PubMed

    Alhoshany, Abdulaziz; Sivashankar, Shilpa; Mashraei, Yousof; Omran, Hesham; Salama, Khaled N

    2017-08-23

    This paper presents a biosensor-CMOS platform for measuring the capacitive coupling of biorecognition elements. The biosensor is designed, fabricated, and tested for the detection and quantification of a protein that reveals the presence of early-stage cancer. For the first time, the spermidine/spermine N1 acetyltransferase (SSAT) enzyme has been screened and quantified on the surface of a capacitive sensor. The sensor surface is treated to immobilize antibodies, and the baseline capacitance of the biosensor is reduced by connecting an array of capacitors in series for fixed exposure area to the analyte. A large sensing area with small baseline capacitance is implemented to achieve a high sensitivity to SSAT enzyme concentrations. The sensed capacitance value is digitized by using a 12-bit highly digital successive-approximation capacitance-to-digital converter that is implemented in a 0.18 μm CMOS technology. The readout circuit operates in the near-subthreshold regime and provides power and area efficient operation. The capacitance range is 16.137 pF with a 4.5 fF absolute resolution, which adequately covers the concentrations of 10 mg/L, 5 mg/L, 2.5 mg/L, and 1.25 mg/L of the SSAT enzyme. The concentrations were selected as a pilot study, and the platform was shown to demonstrate high sensitivity for SSAT enzymes on the surface of the capacitive sensor. The tested prototype demonstrated 42.5 μS of measurement time and a total power consumption of 2.1 μW.

  18. A Biosensor-CMOS Platform and Integrated Readout Circuit in 0.18-μm CMOS Technology for Cancer Biomarker Detection

    PubMed Central

    Alhoshany, Abdulaziz; Sivashankar, Shilpa; Mashraei, Yousof; Omran, Hesham; Salama, Khaled N.

    2017-01-01

    This paper presents a biosensor-CMOS platform for measuring the capacitive coupling of biorecognition elements. The biosensor is designed, fabricated, and tested for the detection and quantification of a protein that reveals the presence of early-stage cancer. For the first time, the spermidine/spermine N1 acetyltransferase (SSAT) enzyme has been screened and quantified on the surface of a capacitive sensor. The sensor surface is treated to immobilize antibodies, and the baseline capacitance of the biosensor is reduced by connecting an array of capacitors in series for fixed exposure area to the analyte. A large sensing area with small baseline capacitance is implemented to achieve a high sensitivity to SSAT enzyme concentrations. The sensed capacitance value is digitized by using a 12-bit highly digital successive-approximation capacitance-to-digital converter that is implemented in a 0.18 μm CMOS technology. The readout circuit operates in the near-subthreshold regime and provides power and area efficient operation. The capacitance range is 16.137 pF with a 4.5 fF absolute resolution, which adequately covers the concentrations of 10 mg/L, 5 mg/L, 2.5 mg/L, and 1.25 mg/L of the SSAT enzyme. The concentrations were selected as a pilot study, and the platform was shown to demonstrate high sensitivity for SSAT enzymes on the surface of the capacitive sensor. The tested prototype demonstrated 42.5 μS of measurement time and a total power consumption of 2.1 μW. PMID:28832523

  19. Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications

    NASA Astrophysics Data System (ADS)

    Jang, Jaesung; Wereley, Steven T.

    2007-02-01

    The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 µm wide, 4.64 µm deep and 5680 µm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10-10 kg s-1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f sdot Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.

  20. Calibration of micro-capacitance measurement system for thermal barrier coating testing

    NASA Astrophysics Data System (ADS)

    Ren, Yuan; Chen, Dixiang; Wan, Chengbiao; Tian, Wugang; Pan, Mengchun

    2018-06-01

    In order to comprehensively evaluate the thermal barrier coating system of an engine blade, an integrated planar sensor combining electromagnetic coils with planar capacitors is designed, in which the capacitance measurement accuracy of the planar capacitor is a key factor. The micro-capacitance measurement system is built based on an impedance analyzer. Because of the influence of non-ideal factors on the measuring system, there is an obvious difference between the measured value and the actual value. It is necessary to calibrate the measured results and eliminate the difference. In this paper, the measurement model of a planar capacitive sensor is established, and the relationship between the measured value and the actual value of capacitance is deduced. The model parameters are estimated with the least square method, and the calibration accuracy is evaluated with experiments under different dielectric conditions. The capacitance measurement error is reduced from 29% ˜ 46.5% to around 1% after calibration, which verifies the feasibility of the calibration method.

  1. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution

    NASA Astrophysics Data System (ADS)

    Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng

    2018-05-01

    The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.

  2. Three dimensional stress vector sensor array and method therefor

    DOEpatents

    Pfeifer, Kent Bryant; Rudnick, Thomas Jeffery

    2005-07-05

    A sensor array is configured based upon capacitive sensor techniques to measure stresses at various positions in a sheet simultaneously and allow a stress map to be obtained in near real-time. The device consists of single capacitive elements applied in a one or two dimensional array to measure the distribution of stresses across a mat surface in real-time as a function of position for manufacturing and test applications. In-plane and normal stresses in rolling bodies such as tires may thus be monitored.

  3. Ultrasensitive and label-free detection of pathogenic avian influenza DNA by using CMOS impedimetric sensors.

    PubMed

    Lai, Wei-An; Lin, Chih-Heng; Yang, Yuh-Shyong; Lu, Michael S-C

    2012-05-15

    This work presents miniaturized CMOS (complementary metal oxide semiconductor) sensors for non-faradic impedimetric detection of AIV (avian influenza virus) oligonucleotides. The signal-to-noise ratio is significantly improved by monolithic sensor integration to reduce the effect of parasitic capacitances. The use of sub-μm interdigitated microelectrodes is also beneficial for promoting the signal coupling efficiency. Capacitance changes associated with surface modification, functionalization, and DNA hybridization were extracted from the measured frequency responses based on an equivalent-circuit model. Hybridization of the AIV H5 capture and target DNA probes produced a capacitance reduction of -13.2 ± 2.1% for target DNA concentrations from 1 fM to 10 fM, while a capacitance increase was observed when H5 target DNA was replaced with non-complementary H7 target DNA. With the demonstrated superior sensing capabilities, this miniaturized CMOS sensing platform shows great potential for label-free point-of-care biosensing applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Wu, Pei-Ming; Shutter, Lori A.; Narayan, Raj K.

    2010-02-01

    The dual-mode operation of a polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) piezoelectric polymer diaphragm, in a capacitive or resonant mode, is reported as a flexible intracranial pressure (ICP) sensor. The pressure sensor using a capacitive mode exhibits a higher linearity and less power consumption than resonant mode operated pressure sensor. In contrast, the latter provides better sensitivity and easier adaption for wireless application. The metrological properties of the dual-mode ICP sensor being described are satisfactory in vitro. We propose that the piezoelectric polymer diaphragm has a promising future in intracranial pressure monitoring.

  5. Humidity effect on organic semiconductor NiPc films deposited at different gravity conditions

    NASA Astrophysics Data System (ADS)

    Fatima, N.; Ahmed, M. M.; Karimov, Kh. S.; Ahmedov, Kh.

    2016-08-01

    In this study, thin films of Nickel Phthalocyanine (NiPc) were deposited by centrifugation at high gravity (70g), and also at normal gravity (1g) conditions to fabricate humidity sensors. Ceramic alumina sheet, coated with silver electrodes, having interelectrode distance of 0.2l mm were used to assess the electrical properties of the sensors. Room temperature capacitance and impedance variations were measured as a function of relative humidity ranging from 25% ∼⃒ 95% at 1 kHz frequency. It was observed that sensors fabricated at 70g were more sensitive compared to sensors fabricated at 1g. Sensors fabricated at 70g exhibited 1.8 times decrease in their impedance and1.5 times increase in their capacitance at peak ambient humidity. SEM images showed more roughness for the films deposited at 70g compared to films deposited at 1g. It was assumed that surface irregularities might have increased active surface area of 70g sensors hence changed the electrical response. Impedance-humidity and capacitance-humidity relationships were modeled and a good agreement was observed between experimental and modeled data. Experimental data showed that NiPc films could be useful for instrumentation industry to fabricate organic humidity sensors.

  6. A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry

    PubMed Central

    Chiou, Jin-Chern; Hsu, Shun-Hsi; Huang, Yu-Chieh; Yeh, Guan-Ting; Liou, Wei-Ting; Kuei, Cheng-Kai

    2017-01-01

    This study presented a wireless smart contact lens system that was composed of a reconfigurable capacitive sensor interface circuitry and wirelessly powered radio-frequency identification (RFID) addressable system for sensor control and data communication. In order to improve compliance and reduce user discomfort, a capacitive sensor was embedded on a soft contact lens of 200 μm thickness using commercially available bio-compatible lens material and a standard manufacturing process. The results indicated that the reconfigurable sensor interface achieved sensitivity and baseline tuning up to 120 pF while consuming only 110 μW power. The range and sensitivity tuning of the readout circuitry ensured a reliable operation with respect to sensor fabrication variations and independent calibration of the sensor baseline for individuals. The on-chip voltage scaling allowed the further extension of the detection range and prevented the implementation of large on-chip elements. The on-lens system enabled the detection of capacitive variation caused by pressure changes in the range of 2.25 to 30 mmHg and hydration level variation from a distance of 1 cm using incident power from an RFID reader at 26.5 dBm. PMID:28067859

  7. Field effect sensors for PCR applications

    NASA Astrophysics Data System (ADS)

    Taing, Meng-Houit; Sweatman, Denis R.

    2004-03-01

    The use of field effect sensors for biological and chemical sensing is widely employed due to its ability to make detections based on charge and surface potential. Because proteins and DNA almost always carry a charge [1], silicon can be used to micro fabricate such a sensor. The EIS structure (Electrolyte on Insulator on Silicon) provides a novel, label-free and simple to fabricate way to make a field effect DNA detection sensor. The sensor responds to fluctuating capacitance caused by a depletion layer thickness change at the surface of the silicon substrate through DNA adsorption onto the dielectric oxide/PLL (Poly-L-Lysine) surface. As DNA molecules diffuse to the sensor surface, they are bound to their complimentary capture probes deposited on the surface. The negative charge exhibited by the DNA forces negative charge carriers in the substrate to move away from the surface. This causes an n-type depletion layer substrate to thicken and a p-type to thin. The depletion layer thickness can be measured by its capacitance using an LCR meter. This experiment is conducted using the ConVolt (constant voltage) approach. Nucleic acids are amplified by an on chip PCR (Polymerase Chain Reaction) system and then fed into the sensor. The low ionic solution strength will ensure that counter-ions do not affect the sensor measurements. The sensor surface contains capture probes that bind to the pathogen. The types of pathogens we"ll be detecting include salmonella, campylobacter and E.Coli DNA. They are held onto the sensor surface by the positively charged Poly-L-Lysine layer. The electrolyte is biased through a pseudo-reference electrode. Pseudo reference electrodes are usually made from metals such as Platinum or Silver. The problem associated with "floating" biasing electrodes is they cannot provide stable biasing potentials [2]. They drift due to surface charging effects and trapped charges on the surface. To eliminate this, a differential system consisting of 2 sensors that share a common pseudo-reference electrode is used to cancel out this effect. This paper will look at a differential system for multi-arrayed biosensors fabricated on silicon.

  8. Silicon micromachined accelerometer/seismometer and method of making the same

    NASA Technical Reports Server (NTRS)

    Martin, Richard D. (Inventor); Pike, W. Thomas (Inventor)

    2001-01-01

    A silicon-based microaccelerometer for seismic application is provided using a low-resonant frequency (10 Hz), large proof mass (1 gram), and high Q suspension to achieve high sensitivity of less than 1 ng with a bandwidth a 0.05 to 50 Hz. The proof mass is cut away from a planar substrate in the form of a disk using abrasive cutting, which disk closely fits but does not touch a surrounding angular frame. The spring of the microaccelerometer between the angular frame and the proof mass is provided from two continuous, 3 microns thick membranes. The fixed capacitive electrodes are provided on separate, subsequently bonded substrates, and movable capacitive plates are provided on the membranes. By fabricating capacitive plates on the separate substrates, the gap between the fixed and movable capacitive plates in the differential capacitive sensor is closely controlled. The use of continuous membranes for the spring produces a shock resistant, robust sensor.

  9. Mapping Capacitive Coupling Among Pixels in a Sensor Array

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh; Cole, David M.; Smith, Roger M.

    2010-01-01

    An improved method of mapping the capacitive contribution to cross-talk among pixels in an imaging array of sensors (typically, an imaging photodetector array) has been devised for use in calibrating and/or characterizing such an array. The method involves a sequence of resets of subarrays of pixels to specified voltages and measurement of the voltage responses of neighboring non-reset pixels.

  10. Capacitive pressure-sensitive composites using nickel-silicone rubber: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Fan, Yuqin; Liao, Changrong; Liao, Ganliang; Tan, Renbing; Xie, Lei

    2017-07-01

    Capacitive pressure (i.e., piezo-capacitive) sensors have manifested their superiority as a potential electronic skin. The mechanism of the traditional piezo-capacitive sensors is mainly to change the relative permittivity of the flexible composites by compressing the specially fabricated microstructures in the polymer matrix under pressure. Instead, we study the piezo-capacitive effect for a newly reported isotropic flexible composite consisting of silicone rubber (SR) and uniformly dispersed micron-sized conductive nickel particles experimentally and theoretically. The Young’s modulus of the nickel-SR composites (NSRCs) is designed to meet that of human skin. Experimental results show that the NSRCs exhibit remarkable particle concentration dependent capacitance response under uniaxial pressure, and the NSRCs present a good repeatability. We propose a mathematical model at particle level to provide deep insights into the piezo-capacitive mechanism, by considering the adjacent particles in the axial direction as micro capacitors connected in series and in parallel on the horizontal plane. The piezo-capacitive effect is determined by the relative permittivity induced by the particles rearrangement, longitudinal interparticle gap, and deflection angle of micro particle capacitors under pressure. Specifically, the relative capacitance of NSRC capacitor is deduced to be product of two factors: the degree of particle rearrangement, and the relative capacitance of a micro capacitor with the average longitudinal gap. The proposed model well matches and interprets the experimental results.

  11. The 2 Degrees of Freedom facility in Firenze for the study of weak forces

    NASA Astrophysics Data System (ADS)

    Marconi, L.; Stanga, R.; Lorenzini, M.; Grimani, C.; Bassan, M.; Pucacco, G.; Di Fiore, L.; De Rosa, R.; Garufi, F.; Milano, L.

    2010-05-01

    The LISA test-mass (TM) is sensitive to weak forces along all 6 Degrees of Freedom (DoFs). Extensi ve ground test ing is required in order to evaluate the influence of cross-talks of read-outs and actuators operating on different DoFs. To best represent the flight conditions, we developed in Firenze a facility with 2 soft DoFs. Using this facility we measure the forces and stiffnesses acting simultaneously along the 2 soft DoFs, and, more specifically, we will be able to de b ug residual couplings between the TM and the capacitive position sensor that reads the TM position, and to measure actuation cross talks with closed feedback loop. The facility is now ready, and here we report on the co mmi ssioning test s, and on the first measurements.

  12. Note: Wide band amplifier for quartz tuning fork sensors with digitally controlled stray capacitance compensation.

    PubMed

    Peng, Ping; Hao, Lifeng; Ding, Ning; Jiao, Weicheng; Wang, Qi; Zhang, Jian; Wang, Rongguo

    2015-11-01

    We presented a preamplifier design for quartz tuning fork (QTF) sensors in which the stray capacitance is digitally compensated. In this design, the manually controlled variable capacitor is replaced by a pair of varicap diodes, whose capacitance could be accurately tuned by a bias voltage. A tuning circuit including a single side low power operational amplifier, a digital-to-analog converter, and a microprocessor is also described, and the tuning process can be conveniently carried out on a personal computer. For the design, the noise level was investigated experimentally.

  13. Novel designs for application specific MEMS pressure sensors.

    PubMed

    Fragiacomo, Giulio; Reck, Kasper; Lorenzen, Lasse; Thomsen, Erik V

    2010-01-01

    In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar), low temperature dependence and high capacitive output signal (more than 100 pF) is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0-350 bar) and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed.

  14. Characterization of pixel sensor designed in 180 nm SOI CMOS technology

    NASA Astrophysics Data System (ADS)

    Benka, T.; Havranek, M.; Hejtmanek, M.; Jakovenko, J.; Janoska, Z.; Marcisovska, M.; Marcisovsky, M.; Neue, G.; Tomasek, L.; Vrba, V.

    2018-01-01

    A new type of X-ray imaging Monolithic Active Pixel Sensor (MAPS), X-CHIP-02, was developed using a 180 nm deep submicron Silicon On Insulator (SOI) CMOS commercial technology. Two pixel matrices were integrated into the prototype chip, which differ by the pixel pitch of 50 μm and 100 μm. The X-CHIP-02 contains several test structures, which are useful for characterization of individual blocks. The sensitive part of the pixel integrated in the handle wafer is one of the key structures designed for testing. The purpose of this structure is to determine the capacitance of the sensitive part (diode in the MAPS pixel). The measured capacitance is 2.9 fF for 50 μm pixel pitch and 4.8 fF for 100 μm pixel pitch at -100 V (default operational voltage). This structure was used to measure the IV characteristics of the sensitive diode. In this work, we report on a circuit designed for precise determination of sensor capacitance and IV characteristics of both pixel types with respect to X-ray irradiation. The motivation for measurement of the sensor capacitance was its importance for the design of front-end amplifier circuits. The design of pixel elements, as well as circuit simulation and laboratory measurement techniques are described. The experimental results are of great importance for further development of MAPS sensors in this technology.

  15. MOFs for the Sensitive Detection of Ammonia: Deployment of fcu-MOF Thin Films as Effective Chemical Capacitive Sensors.

    PubMed

    Assen, Ayalew H; Yassine, Omar; Shekhah, Osama; Eddaoudi, Mohamed; Salama, Khaled N

    2017-09-22

    This work reports on the fabrication and deployment of a select metal-organic framework (MOF) thin film as an advanced chemical capacitive sensor for the sensing/detection of ammonia (NH 3 ) at room temperature. Namely, the MOF thin film sensing layer consists of a rare-earth (RE) MOF (RE-fcu-MOF) deposited on a capacitive interdigitated electrode (IDE). Purposely, the chemically stable naphthalene-based RE-fcu-MOF (NDC-Y-fcu-MOF) was elected and prepared/arranged as a thin film on a prefunctionalized capacitive IDE via the solvothermal growth method. Unlike earlier realizations, the fabricated MOF-based sensor showed a notable detection sensitivity for NH 3 at concentrations down to 1 ppm, with a detection limit appraised to be around 100 ppb (at room temperature) even in the presence of humidity and/or CO 2 . Distinctly, the NDC-Y-fcu-MOF based sensor exhibited the required stability to NH 3 , in contrast to other reported MOFs, and a remarkable detection selectivity toward NH 3 vs CH 4 , NO 2 , H 2 , and C 7 H 8 . The NDC-Y-fcu-MOF based sensor exhibited excellent performance for sensing ammonia for simulated breathing system in the presence of the mixture of carbon dioxide and/or humidity (water vapor), with no major alteration in the detection signal.

  16. A novel source-drain follower for monolithic active pixel sensors

    NASA Astrophysics Data System (ADS)

    Gao, C.; Aglieri, G.; Hillemanns, H.; Huang, G.; Junique, A.; Keil, M.; Kim, D.; Kofarago, M.; Kugathasan, T.; Mager, M.; Marin Tobon, C. A.; Martinengo, P.; Mugnier, H.; Musa, L.; Lee, S.; Reidt, F.; Riedler, P.; Rousset, J.; Sielewicz, K. M.; Snoeys, W.; Sun, X.; Van Hoorne, J. W.; Yang, P.

    2016-09-01

    Monolithic active pixel sensors (MAPS) receive interest in tracking applications in high energy physics as they integrate sensor and readout electronics in one silicon die with potential for lower material budget and cost, and better performance. Source followers (SFs) are widely used for MAPS readout: they increase charge conversion gain 1/Ceff or decrease the effective sensing node capacitance Ceff because the follower action compensates part of the input capacitance. Charge conversion gain is critical for analog power consumption and therefore for material budget in tracking applications, and also has direct system impact. This paper presents a novel source-drain follower (SDF), where both source and drain follow the gate potential improving charge conversion gain. For the inner tracking system (ITS) upgrade of the ALICE experiment at CERN, low material budget is a primary requirement. The SDF circuit was studied as part of the effort to optimize the effective capacitance of the sensing node. The collection electrode, input transistor and routing metal all contribute to Ceff. Reverse sensor bias reduces the collection electrode capacitance. The novel SDF circuit eliminates the contribution of the input transistor to Ceff, reduces the routing contribution if additional shielding is introduced, provides a way to estimate the capacitance of the sensor itself, and has a voltage gain closer to unity than the standard SF. The SDF circuit has a somewhat larger area with a somewhat smaller bandwidth, but this is acceptable in most cases. A test chip, manufactured in a 180 nm CMOS image sensor process, implements small prototype pixel matrices in different flavors to compare the standard SF to the novel SF and to the novel SF with additional shielding. The effective sensing node capacitance was measured using a 55Fe source. Increasing reverse substrate bias from -1 V to -6 V reduces Ceff by 38% and the equivalent noise charge (ENC) by 22% for the standard SF. The SDF provides a further 9% improvement for Ceff and 25% for ENC. The SDF circuit with additional shielding provides 18% improvement for Ceff, and combined with -6 V reverse bias yields almost a factor 2.

  17. CMOS-MEMS Chemiresistive and Chemicapacitive Chemical Sensor System

    NASA Astrophysics Data System (ADS)

    Lazarus, Nathan S.

    Integrating chemical sensors with testing electronics is a powerful technique with the potential to lower power and cost and allow for lower system limits of detection. This thesis explores the possibility of creating an integrated sensor system intended to be embedded within respirator cartridges to notify the user that hazardous chemicals will soon leak into the face mask. For a chemical sensor designer, this application is particularly challenging due to the need for a very sensitive and cheap sensor that will be exposed to widely varying environmental conditions during use. An octanethiol-coated gold nanoparticle chemiresistor to detect industrial solvents is developed, focusing on characterizing the environmental stability and limits of detection of the sensor. Since the chemiresistor was found to be highly sensitive to water vapor, a series of highly sensitive humidity sensor topologies were developed, with sensitivities several times previous integrated capacitive humidity sensors achieved. Circuit techniques were then explored to reduce the humidity sensor limits of detection, including the analysis of noise, charge injection, jitter and clock feedthrough in a charge-based capacitance measurement (CBCM) circuit and the design of a low noise Colpitts LC oscillator. The characterization of high resistance gold nanoclusters for capacitive chemical sensing was also performed. In the final section, a preconcentrator, a heater element intended to release a brief concentrated pulse of analate, was developed and tested for the purposes of lowering the system limit of detection.

  18. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach

    PubMed Central

    Lim, Lam Ghai; Pao, William K. S.; Hamid, Nor Hisham; Tang, Tong Boon

    2016-01-01

    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design. PMID:27384567

  19. RF current sensor

    DOEpatents

    Moore, James A.; Sparks, Dennis O.

    1998-11-10

    An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.

  20. Spectral response analysis of PVDF capacitive sensors

    NASA Astrophysics Data System (ADS)

    Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.

    2013-06-01

    We investigate the spectral response to ultrasound waves in water of low-noise capacitive sensors based on PVDF polymer piezoelectric films. First, we analyze theoretically the mechanical-to-electrical transduction as a function of the frequency of ultrasonic signals and derive an analytic expression of the sensor's transfer function. Then we present experimental results of the frequency response of a home-made PDVF in water to test signals from 1 to 20 MHz induced by a commercial hydrophone powered by a signal generator and compare with our theoretical model.

  1. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array

    NASA Astrophysics Data System (ADS)

    Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong

    2015-06-01

    Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.

  2. Redundancy Analysis of Capacitance Data of a Coplanar Electrode Array for Fast and Stable Imaging Processing

    PubMed Central

    Wen, Yintang; Zhang, Zhenda; Zhang, Yuyan; Sun, Dongtao

    2017-01-01

    A coplanar electrode array sensor is established for the imaging of composite-material adhesive-layer defect detection. The sensor is based on the capacitive edge effect, which leads to capacitance data being considerably weak and susceptible to environmental noise. The inverse problem of coplanar array electrical capacitance tomography (C-ECT) is ill-conditioning, in which a small error of capacitance data can seriously affect the quality of reconstructed images. In order to achieve a stable image reconstruction process, a redundancy analysis method for capacitance data is proposed. The proposed method is based on contribution rate and anti-interference capability. According to the redundancy analysis, the capacitance data are divided into valid and invalid data. When the image is reconstructed by valid data, the sensitivity matrix needs to be changed accordingly. In order to evaluate the effectiveness of the sensitivity map, singular value decomposition (SVD) is used. Finally, the two-dimensional (2D) and three-dimensional (3D) images are reconstructed by the Tikhonov regularization method. Through comparison of the reconstructed images of raw capacitance data, the stability of the image reconstruction process can be improved, and the quality of reconstructed images is not degraded. As a result, much invalid data are not collected, and the data acquisition time can also be reduced. PMID:29295537

  3. An oil fraction neural sensor developed using electrical capacitance tomography sensor data.

    PubMed

    Zainal-Mokhtar, Khursiah; Mohamad-Saleh, Junita

    2013-08-26

    This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical Capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes.

  4. An Oil Fraction Neural Sensor Developed Using Electrical capacitance Tomography Sensor Data

    PubMed Central

    Zainal-Mokhtar, Khursiah; Mohamad-Saleh, Junita

    2013-01-01

    This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes. PMID:24064598

  5. High resolution CMOS capacitance-frequency converter for biosensor applications

    NASA Astrophysics Data System (ADS)

    Ghoor, I. S.; Land, K.; Joubert, T.-H.

    2016-02-01

    This paper presents the design of a low-complexity, linear and sub-pF CMOS capacitance-frequency converter for reading out a capacitive bacterial bio/sensors with the endeavour of creating a universal bio/sensor readout module. Therefore the priority design objectives are a high resolution as well as an extensive dynamic range. The circuit is based on a method which outputs a digital frequency signal directly from a differential capacitance by the accumulation of charges produced by repetitive charge integration and charge preservation1. A prototype has been designed for manufacture in the 0.35 μm, 3.3V ams CMOS technology. At a 1MHz clock speed, the most pertinent results obtained for the designed converter are: (i) power consumption of 1.37mW; (ii) a resolution of at least 5 fF for sensitive capacitive transduction; and (iii) an input dynamic range of at least 43.5 dB from a measurable capacitance value range of 5 - 750 fF (iv) and a Pearson's coefficient of linearity of 0.99.

  6. Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring.

    PubMed

    Halonen, Niina; Kilpijärvi, Joni; Sobocinski, Maciej; Datta-Chaudhuri, Timir; Hassinen, Antti; Prakash, Someshekar B; Möller, Peter; Abshire, Pamela; Kellokumpu, Sakari; Lloyd Spetz, Anita

    2016-01-01

    Cell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC) microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status. However, the moist, warm, and corrosive biological environment requires reliable packaging of the sensor chip. In this work, a second generation of low temperature co-fired ceramic (LTCC) technology was combined with flip-chip bonding to provide a durable package compatible with cell culture. The LTCC-packaged sensor chip was integrated with a printed circuit board, data acquisition device, and measurement-controlling software. The packaged sensor chip functioned well in the presence of cell medium and cells, with output voltages depending on the medium above the capacitors. Moreover, the manufacturing of microfluidic channels in the LTCC package was demonstrated.

  7. Non-contact capacitance based image sensing method and system

    DOEpatents

    Novak, James L.; Wiczer, James J.

    1995-01-01

    A system and a method is provided for imaging desired surfaces of a workpiece. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device.

  8. Non-contact capacitance based image sensing method and system

    DOEpatents

    Novak, James L.; Wiczer, James J.

    1994-01-01

    A system and a method for imaging desired surfaces of a workpiece. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device.

  9. Novel Designs for Application Specific MEMS Pressure Sensors

    PubMed Central

    Fragiacomo, Giulio; Reck, Kasper; Lorenzen, Lasse; Thomsen, Erik V.

    2010-01-01

    In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar), low temperature dependence and high capacitive output signal (more than 100 pF) is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0–350 bar) and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed. PMID:22163425

  10. Electrical characterization of γ-Al2O3 thin film parallel plate capacitive sensor for trace moisture detection

    NASA Astrophysics Data System (ADS)

    Kumar, Lokesh; Kumar, Shailesh; Khan, S. A.; Islam, Tariqul

    2012-10-01

    A moisture sensor was fabricated based on porous thin film of γ-Al2O3 formed between the parallel gold electrodes. The sensor works on capacitive technique. The sensing film was fabricated by dipcoating of aluminium hydroxide sol solution obtained from the sol-gel method. The porous structure of the film of γ-Al2O3 phase was obtained by sintering the film at 450 °C for 1 h. The electrical parameters of the sensor have been determined by Agilent 4294A impedance analyzer. The sensor so obtained is found to be sensitive in moisture range 100-600 ppmV. The response time of the sensor in ppmV range moisture is very low ~ 24 s and recovery time is ~ 37 s.

  11. Differential wide temperature range CMOS interface circuit for capacitive MEMS pressure sensors.

    PubMed

    Wang, Yucai; Chodavarapu, Vamsy P

    2015-02-12

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) differential interface circuit for capacitive Micro-Electro-Mechanical Systems (MEMS) pressure sensors that is functional over a wide temperature range between -55 °C and 225 °C. The circuit is implemented using IBM 0.13 μm CMOS technology with 2.5 V power supply. A constant-gm biasing technique is used to mitigate performance degradation at high temperatures. The circuit offers the flexibility to interface with MEMS sensors with a wide range of the steady-state capacitance values from 0.5 pF to 10 pF. Simulation results show that the circuitry has excellent linearity and stability over the wide temperature range. Experimental results confirm that the temperature effects on the circuitry are small, with an overall linearity error around 2%.

  12. Differential Wide Temperature Range CMOS Interface Circuit for Capacitive MEMS Pressure Sensors

    PubMed Central

    Wang, Yucai; Chodavarapu, Vamsy P.

    2015-01-01

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) differential interface circuit for capacitive Micro-Electro-Mechanical Systems (MEMS) pressure sensors that is functional over a wide temperature range between −55 °C and 225 °C. The circuit is implemented using IBM 0.13 μm CMOS technology with 2.5 V power supply. A constant-gm biasing technique is used to mitigate performance degradation at high temperatures. The circuit offers the flexibility to interface with MEMS sensors with a wide range of the steady-state capacitance values from 0.5 pF to 10 pF. Simulation results show that the circuitry has excellent linearity and stability over the wide temperature range. Experimental results confirm that the temperature effects on the circuitry are small, with an overall linearity error around 2%. PMID:25686312

  13. The Realization and Analysis of Capacitance Self Tracing (CST) Method for Wide Band Response Measurement of Carrier Type Dynamic Strain Amplifier

    NASA Astrophysics Data System (ADS)

    Kubodera, Shinji; Tanzawa, Tsutomu; Morisawa, Masayuki; Kiyohiro, Noriaki

    Carrier type dynamic strain amplifiers are frequently used for stress measurement with strain gages. That is because the carrier type dynamic strain amplifier can conduct high precision measurement since it is highly resistant against hum noise from the power supply frequency in principle and is free from the thermoelectomotive force even if a metal contact is used in wiring to a Wheatstone bridge for measuring. A problem of the carrier type dynamic strain amplifier is generation of Capacitive component (hereinafter referred to as the C component) in an input cable connecting from the amplifier to the input sensor (Wheatstone bridge for measuring). The C component varies with cable length, cable materials, or ambient temperature change. The aforementioned changing adversely affects the stability of the amplifier. In this paper, we realize and analyze the method that increases the stability of amplifier by detecting, eliminating and self tracking the above C component constantly. Used carrier frequency at 12kHz and 28kHz. We made amplifiers with noise resistant and wide band frequency of measurement range and verified the theory of the Capacitance Self Tracing with the above amplifiers.

  14. Sol-gel zinc oxide humidity sensors integrated with a ring oscillator circuit on-a-chip.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2014-10-28

    The study develops an integrated humidity microsensor fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated humidity sensor consists of a humidity sensor and a ring oscillator circuit on-a-chip. The humidity sensor is composed of a sensitive film and branch interdigitated electrodes. The sensitive film is zinc oxide prepared by sol-gel method. After completion of the CMOS process, the sensor requires a post-process to remove the sacrificial oxide layer and to coat the zinc oxide film on the interdigitated electrodes. The capacitance of the sensor changes when the sensitive film adsorbs water vapor. The circuit is used to convert the capacitance of the humidity sensor into the oscillation frequency output. Experimental results show that the output frequency of the sensor changes from 84.3 to 73.4 MHz at 30 °C as the humidity increases 40 to 90%RH.

  15. In-Line Capacitance Sensor for Real-Time Water Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Perusich, Stephen A.

    2010-01-01

    A capacitance/dielectric sensor was designed, constructed, and used to measure in real time the in-situ water concentration in a desiccant water bed. Measurements were carried out with two experimental setups: (1) passing nitrogen through a humidity generator and allowing the gas stream to become saturated at a measured temperature and pressure, and (2) injecting water via a syringe pump into a nitrogen stream. Both water vapor generating devices were attached to a downstream vertically-mounted water capture bed filled with 19.5 g of Moisture Gone desiccant. The sensor consisted of two electrodes: (1) a 1/8" dia stainless steel rod placed in the middle of the bed and (2) the outer shell of the stainless steel bed concentric with the rod. All phases of the water capture process (background, heating, absorption, desorption, and cooling) were monitored with capacitance. The measured capacitance was found to vary linearly with the water content in the bed at frequencies above 100 kHz indicating dipolar motion dominated the signal; below this frequency, ionic motion caused nonlinearities in the water concentration/capacitance relationship. The desiccant exhibited a dielectric relaxation whose activation energy was lowered upon addition of water indicating either a less hindered rotational motion or crystal reorientation.

  16. A New Multifunctional Sensor for Measuring Oil/Water Two-phase State in Pipelines

    NASA Astrophysics Data System (ADS)

    Sun, Jinwei; Shida, Katsunori

    2001-03-01

    This paper presents a non-contact U form multi-functional sensor for the oil pipeline flow measurement. Totally four thin and narrow copper plates are twined on both sides of the sensor, from which two variables (capacitance, self inductance) are to be examined as the two functional outputs of the sensor. Thus, the liquid concentration (oil and water), temperature are finally evaluated. The flow velocity inside the pipeline could also be estimated by computing the cross correlation of the capacitance-pair. To restrain the effects of parasitic parameters and improve the dynamic response of the sensor, a proper shielding strategy is considered. A suitable algorithm for data reconstruction is also presented in the system design.

  17. A T-Type Capacitive Sensor Capable of Measuring 5-DOF Error Motions of Precision Spindles

    PubMed Central

    Xiang, Kui; Qiu, Rongbo; Mei, Deqing; Chen, Zichen

    2017-01-01

    The precision spindle is a core component of high-precision machine tools, and the accurate measurement of its error motions is important for improving its rotation accuracy as well as the work performance of the machine. This paper presents a T-type capacitive sensor (T-type CS) with an integrated structure. The proposed sensor can measure the 5-degree-of-freedom (5-DOF) error motions of a spindle in-situ and simultaneously by integrating electrode groups in the cylindrical bore of the stator and the outer end face of its flange, respectively. Simulation analysis and experimental results show that the sensing electrode groups with differential measurement configuration have near-linear output for the different types of rotor displacements. What’s more, the additional capacitance generated by fringe effects has been reduced about 90% with the sensing electrode groups fabricated based on flexible printed circuit board (FPCB) and related processing technologies. The improved signal processing circuit has also been increased one times in the measuring performance and makes the measured differential output capacitance up to 93% of the theoretical values. PMID:28846631

  18. Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors.

    PubMed

    Wu, Ting; Alharbi, Abdullah; You, Kai-Dyi; Kisslinger, Kim; Stach, Eric A; Shahrjerdi, Davood

    2017-07-25

    Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). Here, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increases proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. These findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.

  19. Demonstration of a Packaged Capacitive Pressure Sensor System Suitable for Jet Turbofan Engine Health Monitoring

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Jordan, Jennifer L.; Meredith, Roger D.; Harsh, Kevin; Pilant, Evan; Usrey, Michael W.; Beheim, Glenn M.; Hunter, Gary W.; Zorman, Christian A.

    2016-01-01

    In this paper, the development and characterization of a packaged pressure sensor system suitable for jet engine health monitoring is demonstrated. The sensing system operates from 97 to 117 MHz over a pressure range from 0 to 350 psi and a temperature range from 25 to 500 deg. The sensing system consists of a Clapp-type oscillator that is fabricated on an alumina substrate and is comprised of a Cree SiC MESFET, MIM capacitors, a wire-wound inductor, chip resistors and a SiCN capacitive pressure sensor. The pressure sensor is located in the LC tank circuit of the oscillator so that a change in pressure causes a change in capacitance, thus changing the resonant frequency of the sensing system. The chip resistors, wire-wound inductors and MIM capacitors have all been characterized at temperature and operational frequency, and perform with less than 5% variance in electrical performance. The measured capacitive pressure sensing system agrees very well with simulated results. The packaged pressure sensing system is specifically designed to measure the pressure on a jet turbofan engine. The packaged system can be installed by way of borescope plug adaptor fitted to a borescope port exposed to the gas path of a turbofan engine.

  20. Total contact cast wall load in patients with a plantar forefoot ulcer and diabetes.

    PubMed

    Begg, Lindy; McLaughlin, Patrick; Vicaretti, Mauro; Fletcher, John; Burns, Joshua

    2016-01-01

    The total contact cast (TCC) is an effective intervention to reduce plantar pressure in patients with diabetes and a plantar forefoot ulcer. The walls of the TCC have been indirectly shown to bear approximately 30 % of the plantar load. A new direct method to measure inside the TCC walls with capacitance sensors has shown that the anterodistal and posterolateral-distal regions of the lower leg bear the highest load. The objective of this study was to directly measure these two regions in patients with Diabetes and a plantar forefoot ulcer to further understand the mechanism of pressure reduction in the TCC. A TCC was applied to 17 patients with Diabetes and a plantar forefoot ulcer. TCC wall load (contact area, peak pressure and max force) at the anterodistal and posterolateral-distal regions of the lower leg were evaluated with two capacitance sensor strips measuring 90 cm(2) (pliance®, novel GmbH, Germany). Plantar load (contact area, peak pressure and max force) was measured with a capacitance sensor insole (pedar®, novel GmbH, Germany) placed inside the TCC. Both pedar® and pliance® collected data simultaneously at a sampling rate of 50Hz synchronised to heel strike. The magnitude of TCC wall load as a proportion of plantar load was calculated. The TCC walls were then removed to determine the differences in plantar loading between the TCC and the cut down shoe-cast for the whole foot, rearfoot, midfoot and forefoot (region of interest). TCC wall load was substantial. The anterodistal lower leg recorded 48 % and the posterolateral-distal lower leg recorded 34 % of plantar contact area. The anterodistal lower leg recorded 28 % and the posterolateral-distal lower leg recorded 12 % of plantar peak pressure. The anterodistal lower leg recorded 12 % and the posterolateral-distal lower leg recorded 4 % of plantar max force. There were significant differences in plantar load between the TCC and the cut down shoe-cast for the whole foot, rearfoot, midfoot and forefoot (region of ulcer). Contact area significantly increased by 5 % beneath the whole foot, 8 % at the midfoot and 6 % at the forefoot in the shoe-cast (p < 0.05). Peak pressure significantly increased by 8 % beneath the midfoot and 13 % at the forefoot in the shoe-cast (p < 0.05). Max force significantly increased 6 % beneath the midfoot in the (shoe-cast p < 0.05). In patients with diabetes and a plantar forefoot ulcer, the walls of the TCC bear considerable load. Reduced plantar contact area in the TCC compared to the shoe-cast suggests that the foot is suspended by the considerable load bearing capacity of the walls of the TCC which contributes mechanically to the pressure reduction and redistribution properties of the TCC.

  1. A Self-Powered and Autonomous Fringing Field Capacitive Sensor Integrated into a Micro Sprinkler Spinner to Measure Soil Water Content

    PubMed Central

    da Costa, Eduardo Ferreira; de Oliveira, Nestor E.; Morais, Flávio J. O.; Carvalhaes-Dias, Pedro; Duarte, Luis Fernando C.; Cabot, Andreu; Siqueira Dias, J. A.

    2017-01-01

    We present here the design and fabrication of a self-powered and autonomous fringing field capacitive sensor to measure soil water content. The sensor is manufactured using a conventional printed circuit board and includes a porous ceramic. To read the sensor, we use a circuit that includes a 10 kHz triangle wave generator, an AC amplifier, a precision rectifier and a microcontroller. In terms of performance, the sensor’s capacitance (measured in a laboratory prototype) increases up to 5% when the volumetric water content of the porous ceramic changed from 3% to 36%, resulting in a sensitivity of S=15.5 pF per unity change. Repeatability tests for capacitance measurement showed that the θv sensor’s root mean square error is 0.13%. The average current consumption of the system (sensor and signal conditioning circuit) is less than 1.5 μA, which demonstrates its suitability for being powered by energy harvesting systems. We developed a complete irrigation control system that integrates the sensor, an energy harvesting module composed of a microgenerator installed on the top of a micro sprinkler spinner, and a DC/DC converter circuit that charges a 1 F supercapacitor. The energy harvesting module operates only when the micro sprinkler spinner is irrigating the soil, and the supercapacitor is fully charged to 5 V in about 3 h during the first irrigation. After the first irrigation, with the supercap fully charged, the system can operate powered only by the supercapacitor for approximately 23 days, without any energy being harvested. PMID:28287495

  2. Programmable differential capacitance-to-voltage converter for MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.

    2017-05-01

    Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.

  3. A novel capacitance sensor for fireside corrosion measurement.

    PubMed

    Ban, Heng; Li, Zuoping

    2009-11-01

    Fireside corrosion in coal-fired power plants is a leading mechanism for boiler tube failures. Online monitoring of fireside corrosion can provide timely data to plant operators for mitigation implementation. This paper presents a novel sensor concept for measuring metal loss based on electrical capacitance. Laboratory-scale experiments demonstrated the feasibility of design, fabrication, and operation of the sensor. The fabrication of the prototype sensor involved sputtering deposition of a thin metal coating with varying thickness on a ceramic substrate. Corrosion metal loss resulted in a proportional decrease in electrical capacitance of the sensor. Laboratory experiments using a muffle furnace with an oxidation environment demonstrated that low carbon steel coatings on ceramic substrate survived cyclic temperatures over 500 degrees C. Measured corrosion rates of sputtered coating in air had an Arrhenius exponential dependence on temperature, with metal thickness loss ranging from 2.0 nm/h at 200 degrees C to 2.0 microm/h at 400 degrees C. Uncertainty analysis indicated that the overall measurement uncertainty was within 4%. The experimental system showed high signal-to-noise ratio, and the sensor could measure submicrometer metal thickness changes. The laboratory experiments demonstrated that the sensor concept and measurement system are capable of short term, online monitoring of metal loss, indicating the potential for the sensor to be used for fireside corrosion monitoring and other metal loss measurement.

  4. A novel capacitance sensor for fireside corrosion measurement

    NASA Astrophysics Data System (ADS)

    Ban, Heng; Li, Zuoping

    2009-11-01

    Fireside corrosion in coal-fired power plants is a leading mechanism for boiler tube failures. Online monitoring of fireside corrosion can provide timely data to plant operators for mitigation implementation. This paper presents a novel sensor concept for measuring metal loss based on electrical capacitance. Laboratory-scale experiments demonstrated the feasibility of design, fabrication, and operation of the sensor. The fabrication of the prototype sensor involved sputtering deposition of a thin metal coating with varying thickness on a ceramic substrate. Corrosion metal loss resulted in a proportional decrease in electrical capacitance of the sensor. Laboratory experiments using a muffle furnace with an oxidation environment demonstrated that low carbon steel coatings on ceramic substrate survived cyclic temperatures over 500 °C. Measured corrosion rates of sputtered coating in air had an Arrhenius exponential dependence on temperature, with metal thickness loss ranging from 2.0 nm/h at 200 °C to 2.0 μm/h at 400 °C. Uncertainty analysis indicated that the overall measurement uncertainty was within 4%. The experimental system showed high signal-to-noise ratio, and the sensor could measure submicrometer metal thickness changes. The laboratory experiments demonstrated that the sensor concept and measurement system are capable of short term, online monitoring of metal loss, indicating the potential for the sensor to be used for fireside corrosion monitoring and other metal loss measurement.

  5. Graphene-Based Three-Dimensional Capacitive Touch Sensor for Wearable Electronics.

    PubMed

    Kang, Minpyo; Kim, Jejung; Jang, Bongkyun; Chae, Youngcheol; Kim, Jae-Hyun; Ahn, Jong-Hyun

    2017-08-22

    The development of input device technology in a conformal and stretchable format is important for the advancement of various wearable electronics. Herein, we report a capacitive touch sensor with good sensing capabilities in both contact and noncontact modes, enabled by the use of graphene and a thin device geometry. This device can be integrated with highly deformable areas of the human body, such as the forearms and palms. This touch sensor detects multiple touch signals in acute recordings and recognizes the distance and shape of the approaching objects before direct contact is made. This technology offers a convenient and immersive human-machine interface and additional potential utility as a multifunctional sensor for emerging wearable electronics and robotics.

  6. Influence of the internal wall thickness of electrical capacitance tomography sensors on image quality

    NASA Astrophysics Data System (ADS)

    Liang, Shiguo; Ye, Jiamin; Wang, Haigang; Wu, Meng; Yang, Wuqiang

    2018-03-01

    In the design of electrical capacitance tomography (ECT) sensors, the internal wall thickness can vary with specific applications, and it is a key factor that influences the sensitivity distribution and image quality. This paper will discuss the effect of the wall thickness of ECT sensors on image quality. Three flow patterns are simulated for wall thicknesses of 2.5 mm to 15 mm on eight-electrode ECT sensors. The sensitivity distributions and potential distributions are compared for different wall thicknesses. Linear back-projection and Landweber iteration algorithms are used for image reconstruction. Relative image error and correlation coefficients are used for image evaluation using both simulation and experimental data.

  7. Paper as Active Layer in Inkjet-Printed Capacitive Humidity Sensors

    PubMed Central

    Gaspar, Cristina; Olkkonen, Juuso; Passoja, Soile; Smolander, Maria

    2017-01-01

    An inkjet-printed relative humidity sensor based on capacitive changes which responds to different humidity levels in the environment is presented in this work. The inkjet-printed silver interdigitated electrodes configuration on the paper substrate allowed for the fabrication of a functional proof-of-concept of the relative humidity sensor, by using the paper itself as a sensing material. The sensor sensitivity in terms of relative humidity changes was calculated to be around 2 pF/RH %. The response time against different temperature steps from 3 to 85 °C was fairly constant (about 4–5 min), and it was considered fast for the aimed application, a smart label. PMID:28640182

  8. A Magnetic Field Response Recorder: A New Tool for Measurement Acquisition

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2006-01-01

    A magnetic field response recorder was developed to facilitate a measurement acquisition method that uses magnetic fields to power and to interrogate all sensors. Sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic field responses when electrically activated by oscillating magnetic fields. When electrically activated, the sensor's magnetic field response attributes (frequency, amplitude and bandwidth) correspond to the one or more physical states that each sensor measures. The response recorder makes it possible to simultaneously measure two unrelated physical properties using this class of sensors. The recorder is programmable allowing it to analyze one or more response attributes simultaneously. A single sensor design will be used to demonstrate that the acquisition method and the sensor example can be used to for all phases of a component's life from manufacturing to damage that can destroy it.

  9. Capacitive Extensometer Particularly Suited for Measuring in Vivo Bone Strain

    NASA Technical Reports Server (NTRS)

    Perusek, Gail P. (Inventor)

    2000-01-01

    The present invention provides for in vivo measurements of the principal strain magnitudes and directions, and maximum shear strain that occurs in a material, such as human bone, when it is loaded (or subjected to a load). In one embodiment the invention includes a capacitive delta extensometer arranged with six sensors in a three piece configuration, with each sensor of each pair spaced apart from each other by 120 degrees.

  10. Study on silver doped and undoped ZnO thin films working as capacitive sensor

    NASA Astrophysics Data System (ADS)

    Kiran, S.; Kumar, N. Santhosh; Kumar, S. K. Naveen

    2013-06-01

    Nanomaterials have been found to exhibit interesting properties like good conductivity, piezoelectricity, high band gap etc. among those metal oxide family, Zinc Oxide has become a material of interest among scientific community. In this paper, we present a method of fabricating capacitive sensors, in which Silver doped ZnO and pure ZnO nanoparticles act as active layer. For the synthesis of the nanoparticle, we followed biosynthesis method and wet chemical method for Ag and Ag doped ZnO nanoparticles respectively. Characterization has been done for both the particles. The XRD pattern taken for the Ag Doped ZnO nanoparticles confirmed the average size of the particles to be 15nm. AFM image of the sample is taken by doping on Silicon wafer. Also we have presented the results of CV characteristics and IV characteristics of the capacitive sensor.

  11. Charge pumping with finger capacitance for body sensor energy harvesting.

    PubMed

    Zhou, Alyssa Y; Maharbiz, Michel M

    2017-07-01

    Sensors are becoming ubiquitous and increasingly integrated with and on the human body; powering such "body network" devices remains an outstanding problem. In this paper, we demonstrate a touch interrogation powered energy harvesting system. This system transforms the kinetic energy of a human finger to electric energy, with each tap producing approximately 1 nJ of energy at a storage capacitor. As is well known for touch display devices, the proximity of a finger can alter the effective value of small capacitances; we demonstrate that these capacitance changes can drive a current which is rectified to charge a capacitor. As a demonstration, an untethered circuit charged this way can deliver enough instantaneous power to light a red LED every ~ 10 seconds. This technology illustrates the ability to communicate with and operate low-power sensors with motions already used for interfacing to devices.

  12. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors.

    PubMed

    Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin

    2017-11-19

    This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG.

  13. Development of AC-coupled, poly-silicon biased, p-on-n silicon strip detectors in India for HEP experiments

    NASA Astrophysics Data System (ADS)

    Jain, Geetika; Dalal, Ranjeet; Bhardwaj, Ashutosh; Ranjan, Kirti; Dierlamm, Alexander; Hartmann, Frank; Eber, Robert; Demarteau, Marcel

    2018-02-01

    P-on-n silicon strip sensors having multiple guard-ring structures have been developed for High Energy Physics applications. The study constitutes the optimization of the sensor design, and fabrication of AC-coupled, poly-silicon biased sensors of strip width of 30 μm and strip pitch of 55 μm. The silicon wafers used for the fabrication are of 4 inch n-type, having an average resistivity of 2-5 k Ω cm, with a thickness of 300 μm. The electrical characterization of these detectors comprises of: (a) global measurements of total leakage current, and backplane capacitance; (b) strip and voltage scans of strip leakage current, poly-silicon resistance, interstrip capacitance, interstrip resistance, coupling capacitance, and dielectric current; and (c) charge collection measurements using ALiBaVa setup. The results of the same are reported here.

  14. Two-Dimensional Micro-/Nanoradian Angle Generator with High Resolution and Repeatability Based on Piezo-Driven Double-Axis Flexure Hinge and Three Capacitive Sensors

    PubMed Central

    Tan, Xinran; Zhu, Fan; Wang, Chao; Yu, Yang; Shi, Jian; Qi, Xue; Yuan, Feng; Tan, Jiubin

    2017-01-01

    This study presents a two-dimensional micro-/nanoradian angle generator (2D-MNAG) that achieves high angular displacement resolution and repeatability using a piezo-driven flexure hinge for two-dimensional deflections and three capacitive sensors for output angle monitoring and feedback control. The principal error of the capacitive sensor for precision microangle measurement is analyzed and compensated for; so as to achieve a high angle output resolution of 10 nrad (0.002 arcsec) and positioning repeatability of 120 nrad (0.024 arcsec) over a large angular range of ±4363 μrad (±900 arcsec) for the 2D-MNAG. The impact of each error component, together with the synthetic error of the 2D-MNAG after principal error compensation are determined using Monte Carlo simulation for further improvement of the 2D-MNAG. PMID:29156595

  15. High-Sensitivity Encoder-Like Micro Area-Changed Capacitive Transducer for a Nano-g Micro Accelerometer

    PubMed Central

    Zheng, Panpan; Liu, Jinquan; Li, Zhu; Liu, Huafeng

    2017-01-01

    Encoder-like micro area-changed capacitive transducers are advantageous in terms of their better linearity and larger dynamic range compared to gap-changed capacitive transducers. Such transducers have been widely applied in rectilinear and rotational position sensors, lab-on-a-chip applications and bio-sensors. However, a complete model accounting for both the parasitic capacitance and fringe effect in area-changed capacitive transducers has not yet been developed. This paper presents a complete model for this type of transducer applied to a high-resolution micro accelerometer that was verified by both simulations and experiments. A novel optimization method involving the insertion of photosensitive polyimide was used to reduce the parasitic capacitance, and the capacitor spacing was decreased to overcome the fringe effect. The sensitivity of the optimized transducer was approximately 46 pF/mm, which was nearly 40 times higher than that of our previous transducer. The displacement detection resolution was measured as 50 pm/√Hz at 0.1 Hz using a precise capacitance detection circuit. Then, the transducer was applied to a sandwich in-plane micro accelerometer, and the measured level of the accelerometer was approximately 30 ng/√Hz at 1Hz. The earthquake that occurred in Taiwan was also detected during a continuous gravity measurement. PMID:28930176

  16. A Wireless, Passive Sensor for Quantifying Packaged Food Quality.

    PubMed

    Tan, Ee Lim; Ng, Wen Ni; Shao, Ranyuan; Pereles, Brandon D; Ong, Keat Ghee

    2007-09-05

    This paper describes the fabrication of a wireless, passive sensor based on aninductive-capacitive resonant circuit, and its application for in situ monitoring of thequality of dry, packaged food such as cereals, and fried and baked snacks. The sensor ismade of a planar inductor and capacitor printed on a paper substrate. To monitor foodquality, the sensor is embedded inside the food package by adhering it to the package'sinner wall; its response is remotely detected through a coil connected to a sensor reader. Asfood quality degrades due to increasing humidity inside the package, the paper substrateabsorbs water vapor, changing the capacitor's capacitance and the sensor's resonantfrequency. Therefore, the taste quality of the packaged food can be indirectly determined bymeasuring the change in the sensor's resonant frequency. The novelty of this sensortechnology is its wireless and passive nature, which allows in situ determination of foodquality. In addition, the simple fabrication process and inexpensive sensor material ensure alow sensor cost, thus making this technology economically viable.

  17. Superconducting rebalance acceleration and rate sensor

    NASA Technical Reports Server (NTRS)

    Torti, R.; Gerver, M.; Gondhalekar, V.; Maxwell, B.

    1994-01-01

    The goal of this program is the development of a high precision multisensor based on a high T(sub c) superconducting proof mass. The design of a prototype is currently underway. Key technical issues appear resolvable. High temperature superconductors have complicated, hysteretic flux dynamics but the forces on them can be linearly controlled for small displacements. Current data suggests that the forces on the superconductors decay over a short time frame and then stabilize, though very long term data is not available. The hysteretic force characteristics are substantial for large scale excursions, but do not appear to be an issue for the very small displacements required in this device. Sufficient forces can be exerted for non-contact suspension of a centimeter sized proof mass in a vacuum sealed nitrogen jacket cryostat. High frequency capacitive sensing using stripline technology will yield adequate position resolution for 0.1 micro-g measurements at 100 Hz. Overall, a reasonable cost, but very high accuracy, system is feasible with this technology.

  18. Superconducting rebalance acceleration and rate sensor

    NASA Astrophysics Data System (ADS)

    Torti, R.; Gerver, M.; Gondhalekar, V.; Maxwell, B.

    1994-05-01

    The goal of this program is the development of a high precision multisensor based on a high T(sub c) superconducting proof mass. The design of a prototype is currently underway. Key technical issues appear resolvable. High temperature superconductors have complicated, hysteretic flux dynamics but the forces on them can be linearly controlled for small displacements. Current data suggests that the forces on the superconductors decay over a short time frame and then stabilize, though very long term data is not available. The hysteretic force characteristics are substantial for large scale excursions, but do not appear to be an issue for the very small displacements required in this device. Sufficient forces can be exerted for non-contact suspension of a centimeter sized proof mass in a vacuum sealed nitrogen jacket cryostat. High frequency capacitive sensing using stripline technology will yield adequate position resolution for 0.1 micro-g measurements at 100 Hz. Overall, a reasonable cost, but very high accuracy, system is feasible with this technology.

  19. Mobile patient monitoring based on impedance-loaded SAW-sensors.

    PubMed

    Karilainen, Anna; Finnberg, Thomas; Uelzen, Thorsten; Dembowski, Klaus; Müller, Jörg

    2004-11-01

    A remotely requestable, passive, short-range sensor network for measuring small voltages is presented. The sensor system is able to simultaneously monitor six small voltages in millivolt-range, and it can be used for Holter-electrocardiogram (ECG) and other biopotential monitoring, or in industrial applications. The sensors are based on a surface acoustic wave (SAW) delay line with voltage-dependent, impedance loading on a reflector interdigital transducer (IDT). The load circuit impedance is varied by the capacitance of the voltage-controlled varactor. High resolution is achieved by developing a MOS-capacitor with a thin oxide, low flat-band voltage, and zero-voltage capacitance in the space-charge region, as well as a high-Q-microcoil by thick metal electroplating. Simultaneous monitoring of multiple potentials is realized by time-division-multiplexing of different sensor signals.

  20. A physicochemical mechanism of chemical gas sensors using an AC analysis.

    PubMed

    Moon, Jaehyun; Park, Jin-Ah; Lee, Su-Jae; Lee, Jeong-Ik; Zyung, Taehyong; Shin, Eui-Chol; Lee, Jong-Sook

    2013-06-21

    Electrical modeling of the chemical gas sensors was successfully applied to TiO2 nanofiber gas sensors by developing an equivalent circuit model where the junction capacitance as well as the resistance can be separated from the comparable stray capacitance. The Schottky junction impedance exhibited a characteristic skewed arc described by a Cole-Davidson function, and the variation of the fit and derived parameters with temperature, bias, and NO2 gas concentration indicated definitely a physicochemical sensing mechanism based on the Pt|TiO2 Schottky junctions against the conventional supposition of the enhanced sensitivity in nanostructured gas sensors with high grain boundary/surface area. Analysis on a model Pt|TiO2|Pt structure also confirmed the characteristic impedance response of TiO2 nanofiber sensors.

  1. High-Sensitivity and Low-Hysteresis Porous MIM-Type Capacitive Humidity Sensor Using Functional Polymer Mixed with TiO2 Microparticles

    PubMed Central

    Liu, Ming-Qing; Wang, Cong; Kim, Nam-Young

    2017-01-01

    In this study, a high-sensitivity and low-hysteresis porous metal–insulator–metal-type capacitive humidity sensor is investigated using a functional polymer mixed with TiO2 microparticles. The humidity sensor consists of an optimally designed porous top electrode, a functional polymer humidity sensitive layer, a bottom electrode, and a glass substrate. The porous top electrode is designed to increase the contact area between the sensing layer and water vapor, leading to high sensitivity and quick response time. The functional polymer mixed with TiO2 microparticles shows excellent hysteresis under a wide humidity-sensing range with good long-term stability. The results show that as the relative humidity ranges from 10% RH to 90% RH, the proposed humidity sensor achieves a high sensitivity of 0.85 pF/% RH and a fast response time of less than 35 s. Furthermore, the sensor shows an ultra-low hysteresis of 0.95% RH at 60% RH, a good temperature dependence, and a stable capacitance value with a maximum of 0.17% RH drift during 120 h of continuous test. PMID:28157167

  2. Moisture content measurement in paddy

    NASA Astrophysics Data System (ADS)

    Klomklao, P.; Kuntinugunetanon, S.; Wongkokua, W.

    2017-09-01

    Moisture content is an important quantity for agriculture product, especially in paddy. In principle, the moisture content can be measured by a gravimetric method which is a direct method. However, the gravimetric method is time-consuming. There are indirect methods such as resistance and capacitance methods. In this work, we developed an indirect method based on a 555 integrated circuit timer. The moisture content sensor was capacitive parallel plates using the dielectric constant property of the moisture. The instrument generated the output frequency that depended on the capacitance of the sensor. We fitted a linear relation between periods and moisture contents. The measurement results have a standard uncertainty of 1.23 % of the moisture content in the range of 14 % to 20 %.

  3. Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand

    NASA Astrophysics Data System (ADS)

    Rocha, Rui Pedro; Alhais Lopes, Pedro; de Almeida, Anibal T.; Tavakoli, Mahmoud; Majidi, Carmel

    2018-03-01

    We demonstrate fabrication, characterization, and implementation of ‘soft-matter’ pressure and bending sensors for a soft robotic hand. The elastomer-based sensors are embedded in a robot finger composed of a 3D printed endoskeleton and covered by an elastomeric skin. Two types of sensors are evaluated, resistive pressure sensors and capacitive pressure sensors. The sensor is fabricated entirely out of insulating and conductive rubber, the latter composed of polydimethylsiloxane (PDMS) elastomer embedded with a percolating network of structured carbon black (CB). The sensor-integrated fingers have a simple materials architecture, can be fabricated with standard rapid prototyping methods, and are inexpensive to produce. When incorporated into a robotic hand, the CB-PDMS sensors and PDMS carrier medium function as an ‘artificial skin’ for touch and bend detection. Results show improved response with a capacitive sensor architecture, which, unlike a resistive sensor, is robust to electromechanical hysteresis, creep, and drift in the CB-PDMS composite. The sensorized fingers are integrated in an anthropomorphic hand and results for a variety of grasping tasks are presented.

  4. Development of a highly enantioselective capacitive immunosensor for the detection of alpha-amino acids.

    PubMed

    Zhang, Song; Ding, Jingjing; Liu, Ying; Kong, Jilie; Hofstetter, Oliver

    2006-11-01

    This work describes a highly enantioselective and sensitive immunosensor for the detection of chiral amino acids based on capacitive measurement. The sensor was prepared by first binding mercaptoacetic acid to the surface of a gold electrode, followed by modification with tyramine utilizing carbodiimide activation. The hapten 4-amino-D-phenylalanine was then covalently immobilized onto the electrode by diazotization. Stereoselective binding of an anti-D-amino acid antibody to the hapten-modified sensor surface resulted in capacitance changes that were detected with high sensitivity by a potentiostatic step method. Using capacitance measurement, detection limits of 5 pg of antibody/mL were attained. The exquisite stereoselectivity of the antibody was also utilized in a competitive setup to quantitatively determine the concentration of the analyte d-phenylalanine in nonracemic samples containing both enantiomers of this amino acid. Trace impurities of d-phenylalanine as low as 0.001% could be detected.

  5. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity.

    PubMed

    Guo, Jiahao; Hu, Pengcheng; Tan, Jiubin

    2016-01-21

    An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center) realizes a high sensitivity: 0.129 pF/° with a non-linearity of <0.4% FS (full scale of ± 40°). This finding offers plenty of opportunities for various measurement requirements in addition to achieving an optimized structure in practical design.

  6. CMOS capacitive biosensors for highly sensitive biosensing applications.

    PubMed

    Chang, An-Yu; Lu, Michael S-C

    2013-01-01

    Magnetic microbeads are widely used in biotechnology and biomedical research for manipulation and detection of cells and biomolecules. Most lab-on-chip systems capable of performing manipulation and detection require external instruments to perform one of the functions, leading to increased size and cost. This work aims at developing an integrated platform to perform these two functions by implementing electromagnetic microcoils and capacitive biosensors on a CMOS (complementary metal oxide semiconductor) chip. Compared to most magnetic-type sensors, our detection method requires no externally applied magnetic fields and the associated fabrication is less complicated. In our experiment, microbeads coated with streptavidin were driven to the sensors located in the center of microcoils with functionalized anti-streptavidin antibody. Detection of a single microbead was successfully demonstrated using a capacitance-to-frequency readout. The average capacitance changes for the experimental and control groups were -5.3 fF and -0.2 fF, respectively.

  7. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film

    NASA Astrophysics Data System (ADS)

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-01

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  8. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film.

    PubMed

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-14

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  9. Specific methodology for capacitance imaging by atomic force microscopy: A breakthrough towards an elimination of parasitic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevez, Ivan; Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis; Chrétien, Pascal

    2014-02-24

    On the basis of a home-made nanoscale impedance measurement device associated with a commercial atomic force microscope, a specific operating process is proposed in order to improve absolute (in sense of “nonrelative”) capacitance imaging by drastically reducing the parasitic effects due to stray capacitance, surface topography, and sample tilt. The method, combining a two-pass image acquisition with the exploitation of approach curves, has been validated on sets of calibration samples consisting in square parallel plate capacitors for which theoretical capacitance values were numerically calculated.

  10. Humidity Sensors Printed on Recycled Paper and Cardboard

    PubMed Central

    Mraović, Matija; Muck, Tadeja; Pivar, Matej; Trontelj, Janez; Pleteršek, Anton

    2014-01-01

    Research, design, fabrication and results of various screen printed capacitive humidity sensors is presented in this paper. Two types of capacitive humidity sensors have been designed and fabricated via screen printing on recycled paper and cardboard, obtained from the regional paper and cardboard industry. As printing ink, commercially available silver nanoparticle-based conductive ink was used. A considerable amount of work has been devoted to the humidity measurement methods using paper as a dielectric material. Performances of different structures have been tested in a humidity chamber. Relative humidity in the chamber was varied in the range of 35%–80% relative humidity (RH) at a constant temperature of 23 °C. Parameters of interest were capacitance and conductance of each sensor material, as well as long term behaviour. Process reversibility has also been considered. The results obtained show a mainly logarithmic response of the paper sensors, with the only exception being cardboard-based sensors. Recycled paper-based sensors exhibit a change in value of three orders of magnitude, whereas cardboard-based sensors have a change in value of few 10s over the entire scope of relative humidity range (RH 35%–90%). Two different types of capacitor sensors have been investigated: lateral (comb) type sensors and modified, perforated flat plate type sensors. The objective of the present work was to identify the most important factors affecting the material performances with humidity, and to contribute to the development of a sensor system supported with a Radio Frequency Identification (RFID) chip directly on the material, for use in smart packaging applications. Therefore, the authors built a passive and a battery-supported wireless module based on SL900A smart sensory tag's IC to achieve UHF-RFID functionality with data logging capability. PMID:25072347

  11. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    NASA Astrophysics Data System (ADS)

    Yi, Zhenxiang; Liao, Xiaoping

    2013-03-01

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8-12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed-fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than -25 dB and an insertion loss of around 0.1 dB at 8-12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW-1 at 8, 10 and 12 GHz, respectively.

  12. "Virtual Feel" Capaciflectors

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    2006-01-01

    The term "virtual feel" denotes a type of capaciflector (an advanced capacitive proximity sensor) and a methodology for designing and using a sensor of this type to guide a robot in manipulating a tool (e.g., a wrench socket) into alignment with a mating fastener (e.g., a bolt head) or other electrically conductive object. A capaciflector includes at least one sensing electrode, excited with an alternating voltage, that puts out a signal indicative of the capacitance between that electrode and a proximal object.

  13. Perfume Fragrance Discrimination Using Resistance And Capacitance Responses Of Polymer Sensors

    NASA Astrophysics Data System (ADS)

    Lima, John Paul Hempel; Vandendriessche, Thomas; Fonseca, Fernando J.; Lammertyn, Jeroen; Nicolai, Bart M.; de Andrade, Adnei Melges

    2009-05-01

    This work shows a comparison between electrical resistance and capacitance responses of ethanol and five different fragrances using an electronic nose based on conducting polymers. Gas chromatography—mass spectrometry (GC-MS) measurements were performed to evaluate the main differences between the analytes. It is shown that although the fragrances are quite similar in their compositions the sensors are able to discriminate them through PCA (Principal Component Analysis) and ANNs (Artificial Neural Network) analysis.

  14. Non-contact capacitance based image sensing method and system

    DOEpatents

    Novak, J.L.; Wiczer, J.J.

    1994-01-25

    A system and a method for imaging desired surfaces of a workpiece is described. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device. 18 figures.

  15. Non-contact capacitance based image sensing method and system

    DOEpatents

    Novak, J.L.; Wiczer, J.J.

    1995-01-03

    A system and a method is provided for imaging desired surfaces of a workpiece. A sensor having first and second sensing electrodes which are electrically isolated from the workpiece is positioned above and in proximity to the desired surfaces of the workpiece. An electric field is developed between the first and second sensing electrodes of the sensor in response to input signals being applied thereto and capacitance signals are developed which are indicative of any disturbances in the electric field as a result of the workpiece. An image signal of the workpiece may be developed by processing the capacitance signals. The image signals may provide necessary control information to a machining device for machining the desired surfaces of the workpiece in processes such as deburring or chamfering. Also, the method and system may be used to image dimensions of weld pools on a workpiece and surfaces of glass vials. The sensor may include first and second preview sensors used to determine the feed rate of a workpiece with respect to the machining device. 18 figures.

  16. The detection of organic solvent vapor by using polymer coated chemocapacitor sensor

    NASA Astrophysics Data System (ADS)

    Rusdiarna Indrapraja, Apik; Rivai, Muhammad; Arifin, Achmad; Purwanto, Djoko

    2017-05-01

    A chemocapacitor consists of planar interdigital electrodes (IDE) made by two comb electrodes on a substrate. A dielectric film was applied on the electrodes in which the absorbed vapor will modify its permittivity. This study has fabricated chemocapacitor with the IDE distance of 0.5 mm, while the dielectric film was a sensitive layer consisting of a polymeric material. The deposition of the polymeric film was accomplished by drop casting. A sensor array consisting of four chemocapacitors coated with different polymers namely PEG-1540, PEG-20M, PEG-6000, and PVP was used to obtain the pattern of shift in the capacitance. The integrated circuit AD7746 was used as the capacitance to-digital converter (CDC). The organic solvents of ethanol, benzene, and aceton were used as the vapor samples in this experiment. The results showed that the change in the capacitance value increases proportionally to the concentration of vapour where sensors coated with PEG-1540 and PVP have higher sensitivity, i.e. 0.0028pF/part per thousand and 0.0027pF/part per thousand, respectively. Based on the capacitance to digital conversion capabilities, the system provides there solution of 0.4084ppm. The sensor array could produce a different pattern for each of the vapor sample. The Neural Network pattern recognition system could identify the type of vapor automatically with the root mean square error of 10-5

  17. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...

  18. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...

  19. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...

  20. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...

  1. A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in canned foods.

    PubMed

    Mirzajani, Hadi; Cheng, Cheng; Wu, Jayne; Chen, Jiangang; Eda, Shigotoshi; Najafi Aghdam, Esmaeil; Badri Ghavifekr, Habib

    2017-03-15

    A rapid, highly sensitive, specific and low-cost capacitive affinity biosensor is presented here for label-free and single step detection of Bisphenol A (BPA). The sensor design allows rapid prototyping at low-cost using printed circuit board material by benchtop equipment. High sensitivity detection is achieved through the use of a BPA-specific aptamer as probe molecule and large electrodes to enhance AC-electroelectrothermal effect for long-range transport of BPA molecules toward electrode surface. Capacitive sensing technique is used to determine the bounded BPA level by measuring the sample/electrode interfacial capacitance of the sensor. The developed biosensor can detect BPA level in 20s and exhibits a large linear range from 1 fM to 10 pM, with a limit of detection (LOD) of 152.93 aM. This biosensor was applied to test BPA in canned food samples and could successfully recover the levels of spiked BPA. This sensor technology is demonstrated to be highly promising and reliable for rapid, sensitive and on-site monitoring of BPA in food samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors

    DOE PAGES

    Wu, Ting; Alharbi, Abdullah; You, Kai-Dyi; ...

    2017-06-21

    Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). In this paper, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increasesmore » proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. Finally, these findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.« less

  3. Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ting; Alharbi, Abdullah; You, Kai-Dyi

    Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). In this paper, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increasesmore » proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. Finally, these findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.« less

  4. A new capacitive long-range displacement nanometer sensor with differential sensing structure based on time-grating

    NASA Astrophysics Data System (ADS)

    Yu, Zhicheng; Peng, Kai; Liu, Xiaokang; Pu, Hongji; Chen, Ziran

    2018-05-01

    High-precision displacement sensors, which can measure large displacements with nanometer resolution, are key components in many ultra-precision fabrication machines. In this paper, a new capacitive nanometer displacement sensor with differential sensing structure is proposed for long-range linear displacement measurements based on an approach denoted time grating. Analytical models established using electric field coupling theory and an area integral method indicate that common-mode interference will result in a first-harmonic error in the measurement results. To reduce the common-mode interference, the proposed sensor design employs a differential sensing structure, which adopts a second group of induction electrodes spatially separated from the first group of induction electrodes by a half-pitch length. Experimental results based on a prototype sensor demonstrate that the measurement accuracy and the stability of the sensor are substantially improved after adopting the differential sensing structure. Finally, a prototype sensor achieves a measurement accuracy of  ±200 nm over the full 200 mm measurement range of the sensor.

  5. Packaging Technologies for 500C SiC Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  6. Sol-Gel Zinc Oxide Humidity Sensors Integrated with a Ring Oscillator Circuit On-a-Chip

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2014-01-01

    The study develops an integrated humidity microsensor fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated humidity sensor consists of a humidity sensor and a ring oscillator circuit on-a-chip. The humidity sensor is composed of a sensitive film and branch interdigitated electrodes. The sensitive film is zinc oxide prepared by sol-gel method. After completion of the CMOS process, the sensor requires a post-process to remove the sacrificial oxide layer and to coat the zinc oxide film on the interdigitated electrodes. The capacitance of the sensor changes when the sensitive film adsorbs water vapor. The circuit is used to convert the capacitance of the humidity sensor into the oscillation frequency output. Experimental results show that the output frequency of the sensor changes from 84.3 to 73.4 MHz at 30 °C as the humidity increases 40 to 90 %RH. PMID:25353984

  7. A High Performance Piezoelectric Sensor for Dynamic Force Monitoring of Landslide.

    PubMed

    Li, Ming; Cheng, Wei; Chen, Jiangpan; Xie, Ruili; Li, Xiongfei

    2017-02-17

    Due to the increasing influence of human engineering activities, it is important to monitor the transient disturbance during the evolution process of landslide. For this purpose, a high-performance piezoelectric sensor is presented in this paper. To adapt the high static and dynamic stress environment in slope engineering, two key techniques, namely, the self-structure pressure distribution method (SSPDM) and the capacitive circuit voltage distribution method (CCVDM) are employed in the design of the sensor. The SSPDM can greatly improve the compressive capacity and the CCVDM can quantitatively decrease the high direct response voltage. Then, the calibration experiments are conducted via the independently invented static and transient mechanism since the conventional testing machines cannot match the calibration requirements. The sensitivity coefficient is obtained and the results reveal that the sensor has the characteristics of high compressive capacity, stable sensitivities under different static preload levels and wide-range dynamic measuring linearity. Finally, to reduce the measuring error caused by charge leakage of the piezoelectric element, a low-frequency correction method is proposed and experimental verified. Therefore, with the satisfactory static and dynamic properties and the improving low-frequency measuring reliability, the sensor can complement dynamic monitoring capability of the existing landslide monitoring and forecasting system.

  8. Fabrication and characterization of 3C-silicon carbide micro sensor for wireless blood pressure measurements

    NASA Astrophysics Data System (ADS)

    Basak, Nupur

    A potentially implantable single crystal 3C-SiC pressure sensor for blood pressure measurement was designed, simulated, fabricated, characterized and optimized. This research uses a single crystal 3C-SiC, for the first time, to demonstrate its application as a blood pressure measurement sensor. The sensor, which uses the epitaxial grown 3C-SiC membrane to measure changes in pressure, is designed to be wireless, biocompatible and linear. The SiC material was chosen for its superior physical, chemical and mechanical properties; the capacitive sensor uses a 3C-SiC membrane as one of the electrodes; and, the sensor system is wireless for comfort and to allow for convenient reading of real-time pressure data (wireless communication is enabled by connecting the sensor parallel to a planar inductor). Together, the variable capacitive sensor and planar inductor create a pressure sensitive resonant circuit. The sensor system described above allows for implantation into a human patient's body, after which the planar inductor can be coupled with an external inductor to receive data for real-time blood pressure measurement. Electroplating, thick photo-resist characterization, RIE etching, oxidation, CVD, chemical mechanical polishing and wafer bonding were optimized during the process of fabricating the sensor system and, in addition to detailing the sensor system simulation and characterization; the optimized processes are detailed in the dissertation. This absolute pressure sensor is designed to function optimally within the human blood pressure range of 50-350mmHg. The layout and modeling of the sensor uses finite element analysis (FEA) software. The simulations for membrane deflection, stress analysis and electro-mechanical analysis are performed for 100 μm2 and 400μm2sensors. The membrane deflection-pressure, capacitance-pressure and resonant frequency-pressure graphs were obtained, and detailed in the dissertation, along with the planar inductor simulation for differently sized inductors. Ultimately, an optimized sensor with a size of 400μm2 was chosen because of its high sensitivity. The sensor, and the planar inductor, which is 3mm 2, is comparable to the presently researched implantable chip size. The measured inductance of the gold electroplated inductor is 0.371μH. The capacitance changes from 0.934 pF to 0.997pF with frequency shift of 248MHz to 256 MHz. The sensitivity of the sensor is found to be 0.21 fF/mmHg or 27.462 kHz/mmHg with an average non-linearity of 0.23216%.

  9. Resonance-induced sensitivity enhancement method for conductivity sensors

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Shih, Chi-yuan (Inventor); Li, Wei (Inventor); Zheng, Siyang (Inventor)

    2009-01-01

    Methods and systems for improving the sensitivity of a variety of conductivity sensing devices, in particular capacitively-coupled contactless conductivity detectors. A parallel inductor is added to the conductivity sensor. The sensor with the parallel inductor is operated at a resonant frequency of the equivalent circuit model. At the resonant frequency, parasitic capacitances that are either in series or in parallel with the conductance (and possibly a series resistance) is substantially removed from the equivalent circuit, leaving a purely resistive impedance. An appreciably higher sensor sensitivity results. Experimental verification shows that sensitivity improvements of the order of 10,000-fold are possible. Examples of detecting particulates with high precision by application of the apparatus and methods of operation are described.

  10. MEMS based hair flow-sensors as model systems for acoustic perception studies

    NASA Astrophysics Data System (ADS)

    Krijnen, Gijs J. M.; Dijkstra, Marcel; van Baar, John J.; Shankar, Siripurapu S.; Kuipers, Winfred J.; de Boer, Rik J. H.; Altpeter, Dominique; Lammerink, Theo S. J.; Wiegerink, Remco

    2006-02-01

    Arrays of MEMS fabricated flow sensors inspired by the acoustic flow-sensitive hairs found on the cerci of crickets have been designed, fabricated and characterized. The hairs consist of up to 1 mm long SU-8 structures mounted on suspended membranes with normal translational and rotational degrees of freedom. Electrodes on the membrane and on the substrate form variable capacitors, allowing for capacitive read-out. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept. The sensors form a model system allowing for investigations on sensory acoustics by their arrayed nature, their adaptivity via electrostatic interaction (frequency tuning and parametric amplification) and their susceptibility to noise (stochastic resonance).

  11. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    PubMed

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  12. Review of Recent Inkjet-Printed Capacitive Tactile Sensors

    PubMed Central

    Salim, Ahmed

    2017-01-01

    Inkjet printing is an advanced printing technology that has been used to develop conducting layers, interconnects and other features on a variety of substrates. It is an additive manufacturing process that offers cost-effective, lightweight designs and simplifies the fabrication process with little effort. There is hardly sufficient research on tactile sensors and inkjet printing. Advancements in materials science and inkjet printing greatly facilitate the realization of sophisticated tactile sensors. Starting from the concept of capacitive sensing, a brief comparison of printing techniques, the essential requirements of inkjet-printing and the attractive features of state-of-the art inkjet-printed tactile sensors developed on diverse substrates (paper, polymer, glass and textile) are presented in this comprehensive review. Recent trends in inkjet-printed wearable/flexible and foldable tactile sensors are evaluated, paving the way for future research. PMID:29125584

  13. Tunable-Sensitivity flexible pressure sensor based on graphene transparent electrode

    NASA Astrophysics Data System (ADS)

    Luo, Shi; Yang, Jun; Song, Xuefen; Zhou, Xi; Yu, Leyong; Sun, Tai; Yu, Chongsheng; Huang, Deping; Du, Chunlei; Wei, Dapeng

    2018-07-01

    Tunable-sensitivity and flexibility are considered as two crucial characteristics for future pressure sensors or electronic skins. By the theoretical calculation model, we simulated the relationship curve between the sensitivity and PDMS pyramids with different spacings, and found that the spacing of pyramids is a main factor to affect the sensitivity of the capacitance pressure sensor. Furthermore, we fabricated the capacitance pressure sensors using graphene electrodes and the PDMS pyramid dielectric layers with different spacings. The measurement data were consistent with the simulation results that the sensitivity increases with the spacing of pyramids. In addition, graphene electrode exhibits prefect flexibility and reliability, while the ITO electrode would be destroyed rapidly after bending. These graphene pressure sensors exhibit the potential in the application in the wearable products for monitoring breath, pulse, and other physiological signals.

  14. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1996-08-13

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  15. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, M.Y.

    1995-10-17

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall. 14 figs.

  16. A Wireless, Passive Sensor for Quantifying Packaged Food Quality

    PubMed Central

    Tan, Ee Lim; Ng, Wen Ni; Shao, Ranyuan; Pereles, Brandon D.; Ong, Keat Ghee

    2007-01-01

    This paper describes the fabrication of a wireless, passive sensor based on an inductive-capacitive resonant circuit, and its application for in situ monitoring of the quality of dry, packaged food such as cereals, and fried and baked snacks. The sensor is made of a planar inductor and capacitor printed on a paper substrate. To monitor food quality, the sensor is embedded inside the food package by adhering it to the package's inner wall; its response is remotely detected through a coil connected to a sensor reader. As food quality degrades due to increasing humidity inside the package, the paper substrate absorbs water vapor, changing the capacitor's capacitance and the sensor's resonant frequency. Therefore, the taste quality of the packaged food can be indirectly determined by measuring the change in the sensor's resonant frequency. The novelty of this sensor technology is its wireless and passive nature, which allows in situ determination of food quality. In addition, the simple fabrication process and inexpensive sensor material ensure a low sensor cost, thus making this technology economically viable. PMID:28903195

  17. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1995-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  18. Guarded capacitance probes for measuring particle concentration and flow

    DOEpatents

    Louge, Michel Y.

    1996-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  19. Radio frequency and capacitive sensors for dielectric characterization of low-conductivity media

    NASA Astrophysics Data System (ADS)

    Sheldon, Robert T.

    Low-conductivity media are found in a vast number of applications, for example as electrical insulation or as the matrix polymer in high strength-to-weight ratio structural composites. In some applications, these materials are subjected to extreme environmental, thermal, and mechanical conditions that can affect the material's desired performance. In a more general sense, a medium may be comprised of one or more layers with unknown material properties that may affect the desired performance of the entire structure. It is often, therefore, of great import to be able to characterize the material properties of these media for the purpose of estimating their future performance in a certain application. Low-conductivity media, or dielectrics, are poor electrical conductors and permit electromagnetic waves and static electric fields to pass through with minimal attenuation. The amount of electrical energy that may be stored (and lost) in these fields depends directly upon the material property, permittivity, which is generally complex, frequency-dependent and has a measurable effect on sensors designed to characterize dielectric media. In this work, two different types of dielectric sensors: radio frequency resonant antennas and lower-frequency (<1 MHz) capacitive sensors, are designed for permittivity characterization in their respective frequency regimes. In the first part of this work, the capability of characterizing multilayer dielectric structures is studied using a patch antenna, a type of antenna that is primarily designed for data communications in the microwave bands but has application in the field of nondestructive evaluation as well. Each configuration of a patch antenna has a single lowest resonant (dominant mode) frequency that is dependent upon the antenna's substrate material and geometry as well as the permittivity and geometry of exterior materials. Here, an extant forward model is validated using well-characterized microwave samples and a new method of resonant frequency and quality factor determination from measured data is presented. Excellent agreement between calculated and measured values of sensor resonant frequency was obtained for the samples studied. Agreement between calculated and measured quality factor was good in some cases but incurred the particular challenge of accurately quantifying multiple contributions to loss from the sensor structure itself, which at times dominates the contribution due to the sample material. Two later chapters describe the development of capacitive sensors to quantify the low-frequency changes in material permittivity due to environmental aging mechanisms. One embodiment involves the application of coplanar concentric interdigital electrode sensors for the purpose of investigating polymer-matrix degradation in glass-fiber composites due to isothermal aging. Samples of bismaleimide-matrix glass-fiber composites were aged at several high temperatures to induce thermal degradation and capacitive sensors were used to measure the sensor capacitance and dissipation factor, parameters that are directly proportional to the real and imaginary components of complex permittivity, respectively. It was shown that real permittivity and dissipation factor decreased with increasing aging temperature, a trend that was common to both interdigital sensor measurements and standard parallel plate electrode measurements. The second piece of work involves the development of cylindrical interdigital electrode sensors to characterize complex permittivity changes in wire insulation due to aging-related degradation. The sensor was proven effective in detecting changes in irradiated nuclear power plant wiring insulation and in aircraft wiring insulation due to liquid chemical immersion. In all three cases, the results indicate a clear correlation of measured capacitance and dissipation factor with increased degradation.

  20. Dual-mode self-validating resistance/Johnson noise thermometer system

    DOEpatents

    Shepard, Robert L.; Blalock, Theron V.; Roberts, Michael J.

    1993-01-01

    A dual-mode Johnson noise and DC resistance thermometer capable of use in control systems where prompt indications of temperature changes and long term accuracy are needed. A resistance-inductance-capacitance (RLC) tuned circuit produces a continuous voltage signal for Johnson noise temperature measurement. The RLC circuit provides a mean-squared noise voltage that depends only on the capacitance used and the temperature of the sensor. The sensor has four leads for simultaneous coupling to a noise signal processor and to a DC resistance signal processor.

  1. Stern potential and Debye length measurements in dilute ionic solutions with electrostatic force microscopy.

    PubMed

    Kumar, Bharat; Crittenden, Scott R

    2013-11-01

    We demonstrate the ability to measure Stern potential and Debye length in dilute ionic solution with atomic force microscopy. We develop an analytic expression for the second harmonic force component of the capacitive force in an ionic solution from the linearized Poisson-Boltzmann equation. This allows us to calibrate the AFM tip potential and, further, obtain the Stern potential of sample surfaces. In addition, the measured capacitive force is independent of van der Waals and double layer forces, thus providing a more accurate measure of Debye length.

  2. Reliable before-fabrication forecasting of normal and touch mode MEMS capacitive pressure sensor: modeling and simulation

    NASA Astrophysics Data System (ADS)

    Jindal, Sumit Kumar; Mahajan, Ankush; Raghuwanshi, Sanjeev Kumar

    2017-10-01

    An analytical model and numerical simulation for the performance of MEMS capacitive pressure sensors in both normal and touch modes is required for expected behavior of the sensor prior to their fabrication. Obtaining such information should be based on a complete analysis of performance parameters such as deflection of diaphragm, change of capacitance when the diaphragm deflects, and sensitivity of the sensor. In the literature, limited work has been carried out on the above-stated issue; moreover, due to approximation factors of polynomials, a tolerance error cannot be overseen. Reliable before-fabrication forecasting requires exact mathematical calculation of the parameters involved. A second-order polynomial equation is calculated mathematically for key performance parameters of both modes. This eliminates the approximation factor, and an exact result can be studied, maintaining high accuracy. The elimination of approximation factors and an approach of exact results are based on a new design parameter (δ) that we propose. The design parameter gives an initial hint to the designers on how the sensor will behave once it is fabricated. The complete work is aided by extensive mathematical detailing of all the parameters involved. Next, we verified our claims using MATLAB® simulation. Since MATLAB® effectively provides the simulation theory for the design approach, more complicated finite element method is not used.

  3. A flexible skin piloerection monitoring sensor

    NASA Astrophysics Data System (ADS)

    Kim, Jaemin; Seo, Dae Geon; Cho, Young-Ho

    2014-06-01

    We have designed, fabricated, and tested a capacitive-type flexible micro sensor for measurement of the human skin piloerection arisen from sudden emotional and environmental change. The present skin piloerection monitoring methods are limited in objective and quantitative measurement by physical disturbance stimulation to the skin due to bulky size and heavy weight of measuring devices. The proposed flexible skin piloerection monitoring sensor is composed of 3 × 3 spiral coplanar capacitor array using conductive polymer for having high capacitive density and thin enough thickness to be attached to human skin. The performance of the skin piloerection monitoring sensor is characterized using the artificial bump, representing human skin goosebump; thus, resulting in the sensitivity of -0.00252%/μm and the nonlinearity of 25.9% for the artificial goosebump deformation in the range of 0-326 μm. We also verified successive human skin piloerection having 3.5 s duration on the subject's dorsal forearms, thus resulting in the capacitance change of -6.2 fF and -9.2 fF for the piloerection intensity of 145 μm and 194 μm, respectively. It is demonstrated experimentally that the proposed sensor is capable to measure the human skin piloerection objectively and quantitatively, thereby suggesting the quantitative evaluation method of the qualitative human emotional status for cognitive human-machine interfaces applications.

  4. Sensors for measurement of moisture diffusion in power cables with oil-impregnated paper

    NASA Astrophysics Data System (ADS)

    Thomas, Z. M.; Zahn, M.; Yang, W.

    2007-07-01

    Some old power cables use oil-impregnated paper as the insulation material, which is enclosed by a layer of lead sheath. As cracks can form on the sheath of aged cables, the oil-impregnated paper can be exposed to the environmental conditions, and ambient moisture can diffuse into the paper through the cracks, causing a reduced breakdown voltage. To understand this diffusion phenomenon, multi-wavelength dielectrometry sensors have been used to measure permittivity and conductivity, aiming to obtain information on the moisture content. Different electrode-grouping strategies have been suggested to obtain more detailed information. Effectively, an electrode-grouping approach forms a type of electrical capacitance tomography sensor. This paper presents different sensor designs together with a capacitance measuring circuit. Some analytical results are also presented.

  5. Evidence of an application of a variable MEMS capacitive sensor for detecting shunt occlusions

    NASA Astrophysics Data System (ADS)

    Apigo, David J.; Bartholomew, Philip L.; Russell, Thomas; Kanwal, Alokik; Farrow, Reginald C.; Thomas, Gordon A.

    2017-04-01

    A sensor was tested subdural and in vitro, simulating a supine infant with a ventricular-peritoneal shunt and controlled occlusions. The variable MEMS capacitive device is able to detect and forecast blockages, similar to early detection procedures in cancer patients. For example, with gradual occlusion development over a year, the method forecasts a danger over one month ahead of blockage. The method also distinguishes between ventricular and peritoneal occlusions. Because the sensor provides quantitative data on the dynamics of the cerebrospinal fluid, it can help test new therapies and work toward understanding hydrocephalus as well as idiopathic normal pressure hydrocephalus. The sensor appears to be a substantial advance in treating brain injuries treated with shunts and has the potential to bring significant impact in a clinical setting.

  6. Feeling the force: how pollen tubes deal with obstacles.

    PubMed

    Burri, Jan T; Vogler, Hannes; Läubli, Nino F; Hu, Chengzhi; Grossniklaus, Ueli; Nelson, Bradley J

    2018-06-15

    Physical forces are involved in the regulation of plant development and morphogenesis by translating mechanical stress into the modification of physiological processes, which, in turn, can affect cellular growth. Pollen tubes respond rapidly to external stimuli and provide an ideal system to study the effect of mechanical cues at the single-cell level. Here, pollen tubes were exposed to mechanical stress while monitoring the reconfiguration of their growth and recording the generated forces in real-time. We combined a lab-on-a-chip device with a microelectromechanical systems (MEMS)-based capacitive force sensor to mimic and quantify the forces that are involved in pollen tube navigation upon confronting mechanical obstacles. Several stages of obstacle avoidance were identified, including force perception, growth adjustment and penetration. We have experimentally determined the perceptive force threshold, which is the force threshold at which the pollen tube reacts to an obstacle, for Lilium longiflorum and Arabidopsis thaliana. In addition, the method we developed provides a way to calculate turgor pressure based on force and optical data. Pollen tubes sense physical barriers and actively adjust their growth behavior to overcome them. Furthermore, our system offers an ideal platform to investigate intracellular activity during force perception and growth adaption in tip growing cells. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  7. Improving Resonance Characteristics of Gas Sensors by Chemical Etching of Quartz Plates

    NASA Astrophysics Data System (ADS)

    Raicheva, Z.; Georgieva, V.; Grechnikov, A.; Gadjanova, V.; Angelov, Ts; Vergov, L.; Lazarov, Y.

    2012-12-01

    The paper presents the results of the influence of the etching process of AT-cut quartz plates on the resonance parameters and the QCM sensors. Quartz wafers (100 μm thick, with a diameter of 8 mm), divided into five groups, have been etched in [NH4]2 F2: H2O = 1:1 solution at temperatures in the range from 70°C to 90°C. The influence of etching temperature on the surface morphology of quartz wafers has been estimated by Atomic Force Microscopy (AFM). A correlation between the etching temperature and the dynamic characteristics is obtained. The optimal etching conditions for removing the surface damages caused by the mechanical treatment of the quartz wafers and for obtaining a clean surface were determined. The typical parameters of fabricated resonators on the quartz plates etched in the temperature range from 70°C to 90°C are as follows: Frequency, Fs 16 MHz ± 100 kHz Motional resistance, Rs less 10 Ω Motional inductance, Lq higher than 3 mH Motional capacitance, Cq less 30 fF Static capacitance, Co around 5 pF Quality factor, Q from 46 000 to 70 000 Sorption properties of QCM - MoO3 are evaluated at NH3 concentrations in the interval from 100 ppm to 500 ppm.

  8. Mathematical calibration procedure of a capacitive sensor-based indexed metrology platform

    NASA Astrophysics Data System (ADS)

    Brau-Avila, A.; Santolaria, J.; Acero, R.; Valenzuela-Galvan, M.; Herrera-Jimenez, V. M.; Aguilar, J. J.

    2017-03-01

    The demand for faster and more reliable measuring tasks for the control and quality assurance of modern production systems has created new challenges for the field of coordinate metrology. Thus, the search for new solutions in coordinate metrology systems and the need for the development of existing ones still persists. One example of such a system is the portable coordinate measuring machine (PCMM), the use of which in industry has considerably increased in recent years, mostly due to its flexibility for accomplishing in-line measuring tasks as well as its reduced cost and operational advantages compared to traditional coordinate measuring machines. Nevertheless, PCMMs have a significant drawback derived from the techniques applied in the verification and optimization procedures of their kinematic parameters. These techniques are based on the capture of data with the measuring instrument from a calibrated gauge object, fixed successively in various positions so that most of the instrument measuring volume is covered, which results in time-consuming, tedious and expensive verification and optimization procedures. In this work the mathematical calibration procedure of a capacitive sensor-based indexed metrology platform (IMP) is presented. This calibration procedure is based on the readings and geometric features of six capacitive sensors and their targets with nanometer resolution. The final goal of the IMP calibration procedure is to optimize the geometric features of the capacitive sensors and their targets in order to use the optimized data in the verification procedures of PCMMs.

  9. Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing.

    PubMed

    Liu, Shanliangzi; Sun, Xiaoda; Hildreth, Owen J; Rykaczewski, Konrad

    2015-03-07

    Room temperature liquid-metal microfluidic devices are attractive systems for hyperelastic strain sensing. These liquid-phase electronics are intrinsically soft and retain their functionality even when stretched to several times their original length. Currently two types of liquid metal-based strain sensors exist for in-plane measurements: single-microchannel resistive and two-microchannel capacitive devices. With a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter. This large footprint of an individual device limits the number of sensors that can be embedded into, for example, electronic fabric or skin. In this work we introduce an alternative capacitor design consisting of two liquid metal electrodes separated by a liquid dielectric material within a single straight channel. Using a liquid insulator instead of a solid elastomer enables us to tailor the system's capacitance by selecting high or low dielectric constant liquids. We quantify the effects of the electrode geometry including the diameter, spacing, and meniscus shape as well as the dielectric constant of the insulating liquid on the overall system's capacitance. We also develop a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel and demonstrate that this device can have about 25 times higher capacitance per sensor's base area when compared to two-channel liquid metal capacitors. Lastly, we characterize the response of this compact device to strain and identify operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces.

  10. Capacitance measuring device

    DOEpatents

    Andrews, W.H. Jr.

    1984-08-01

    A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.

  11. Interdigitated electrodes as impedance and capacitance biosensors: A review

    NASA Astrophysics Data System (ADS)

    Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.

    2017-09-01

    Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.

  12. H2 S Sensors: Fumarate-Based fcu-MOF Thin Film Grown on a Capacitive Interdigitated Electrode.

    PubMed

    Yassine, Omar; Shekhah, Osama; Assen, Ayalew H; Belmabkhout, Youssef; Salama, Khaled N; Eddaoudi, Mohamed

    2016-12-19

    Herein we report the fabrication of an advanced sensor for the detection of hydrogen sulfide (H 2 S) at room temperature, using thin films of rare-earth metal (RE)-based metal-organic framework (MOF) with underlying fcu topology. This unique MOF-based sensor is made via the in situ growth of fumarate-based fcu-MOF (fum-fcu-MOF) thin film on a capacitive interdigitated electrode. The sensor showed a remarkable detection sensitivity for H 2 S at concentrations down to 100 ppb, with the lower detection limit around 5 ppb. The fum-fcu-MOF sensor exhibits a highly desirable detection selectivity towards H 2 S vs. CH 4 , NO 2 , H 2 , and C 7 H 8 as well as an outstanding H 2 S sensing stability as compared to other reported MOFs. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Survey and Experimental Evaluation of Proximity Sensors for Space Robotics

    NASA Technical Reports Server (NTRS)

    Volpe, Richard

    1993-01-01

    This paper provides an overview of our selction process for proximity sensors for manipulator collison avoidance. Five categories of sensors have been considered for this use in space operations: Intensity of reflection, triangulation, time of flight, capacitive, and iductive.

  14. Monitoring pasture variability: optical OptRx(®) crop sensor versus Grassmaster II capacitance probe.

    PubMed

    Serrano, João M; Shahidian, Shakib; Marques da Silva, José Rafael

    2016-02-01

    Estimation of pasture productivity is an important step for the farmer in terms of planning animal stocking, organizing animal lots, and determining supplementary feeding needs throughout the year. The main objective of this work was to evaluate technologies which have potential for monitoring aspects related to spatial and temporal variability of pasture green and dry matter yield (respectively, GM and DM, in kg/ha) and support to decision making for the farmer. Two types of sensors were evaluated: an active optical sensor ("OptRx(®)," which measures the NDVI, "Normalized Difference Vegetation Index") and a capacitance probe ("GrassMaster II" which estimates plant mass). The results showed the potential of NDVI for monitoring the evolution of spatial and temporal patterns of vegetative growth of biodiverse pasture. Higher NDVI values were registered as pasture approached its greatest vegetative vigor, with a significant fall in the measured NDVI at the end of Spring, when the pasture began to dry due to the combination of higher temperatures and lower soil moisture content. This index was also effective for identifying different plant species (grasses/legumes) and variability in pasture yield. Furthermore, it was possible to develop calibration equations between the capacitance and the NDVI (R(2) = 0.757; p < 0.01), between capacitance and GM (R(2) = 0.799; p < 0.01), between capacitance and DM (R(2) =0.630; p < 0.01), between NDVI and GM (R(2) = 0.745; p < 0.01), and between capacitance and DM (R(2) = 0.524; p < 0.01). Finally, a direct relationship was obtained between NDVI and pasture moisture content (PMC, in %) and between capacitance and PMC (respectively, R(2) = 0.615; p < 0.01 and R(2) = 0.561; p < 0.01) in Alentejo dryland farming systems.

  15. An examination of polyvinylidene fluoride capacitive sensors as ultrasound transducer for imaging applications

    NASA Astrophysics Data System (ADS)

    Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.

    2014-05-01

    We investigate theoretically and experimentally the performance of low-noise capacitive sensors based on polyvinylidene fluoride (PVDF) piezoelectric films to sense water-borne ultrasound signals for their use in photoacoustic tomography. We derive a mechanical-to-electrical transfer function of a piezoelectric capacitor sensor of infinite lateral dimensions and arbitrary thickness assuming that an ultrasound wave is normally incident. Then, we analyse the response for obliquely incident ultrasound waves on sensors of large but finite area and derive an expression for the angle dependence of the sensor's response. We also present experimental different measurements with home-made sensors and compare with our theoretical model. We present measurements of the sensors' response to harmonic signals of variable frequency in the range from 0.5 to 50 MHz and of the angular-dependence factor at 6 MHz. Additionally, because of the scope of interest in these kinds of sensors, we also tested the sensors' response for photoacoustic perturbations. These are generated by laser pulses from directly impinging on the sensor and from ultrasound perturbations produced on neoprene by the same kind of laser pulses and then travelling through water to the sensor.

  16. Material approaches to stretchable strain sensors.

    PubMed

    Park, Jaeyoon; You, Insang; Shin, Sangbaie; Jeong, Unyong

    2015-04-27

    With the recent progress made in wearable electronics, devices now require high flexibility and stretchability up to large strain levels (typically larger than 30 % strain). Wearable strain sensors or deformable strain sensors have been gaining increasing research interest because of the rapid development of electronic skins and robotics and because of their biomedical applications. Conventional brittle strain sensors made of metals and piezoresistors are not applicable for such stretchable sensors. This Review summarizes recent advances in stretchable sensors and focuses on material aspects for high stretchability and sensitivity. It begins with a brief introduction to the Wheatstone bridge circuit of conventional resistive strain sensors. Then, studies on the manipulation of materials are reviewed, including waved structural approaches for making metals and semiconductors stretchable, the use of liquid metals, and conductive filler/elastomer composites by using percolation among the fillers. For capacitive strain sensors, the constant conductivity of the electrode is a key factor in obtaining reliable sensors. Possible approaches to developing capacitive strain sensors are presented. This Review concludes with a discussion on the major challenges and perspectives related to stretchable strain sensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Capacitive Sensors for Feedback Control of Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Chen, J. Z.; Darhuber, A. A.; Troian, S. M.; Wagner, S.

    2003-11-01

    Automation of microfluidic devices based on thermocapillary flow [1] requires feedback control and detection techniques for monitoring the location, and ideally also composition and volume of liquid droplets. For this purpose we have developed a co-planar capacitance technique with a sensitivity of 0.07 pF at a frequency of 370 kHz. The variation in capacitance due to the presence of a droplet is monitored by the output frequency of an RC relaxation oscillator consisting of two inverters, one resistor and one capacitor. We discuss the performance of this coplanar sensor as a function of the electrode dimensions and geometry. These geometric variables determine the electric field penetration depth within the liquid, which in our studies ranged from 30 to 450 microns. Numerical solutions for the capacitance corresponding to the exact fabricated geometry agree very well with experimental data. An approximate analytic solution, which ignores fringe field effects, provides a simple but excellent guide for design development. [1] A. A. Darhuber et al., Appl. Phys. Lett. 82, 657 (2003).

  18. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity

    PubMed Central

    Guo, Jiahao; Hu, Pengcheng; Tan, Jiubin

    2016-01-01

    An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center) realizes a high sensitivity: 0.129 pF/° with a non-linearity of <0.4% FS (full scale of ±40°). This finding offers plenty of opportunities for various measurement requirements in addition to achieving an optimized structure in practical design. PMID:26805844

  19. Capacitive wearable tactile sensor based on smart textile substrate with carbon black /silicone rubber composite dielectric

    NASA Astrophysics Data System (ADS)

    Guo, Xiaohui; Huang, Ying; Cai, Xia; Liu, Caixia; Liu, Ping

    2016-04-01

    To achieve the wearable comfort of electronic skin (e-skin), a capacitive sensor printed on a flexible textile substrate with a carbon black (CB)/silicone rubber (SR) composite dielectric was demonstrated in this paper. Organo-silicone conductive silver adhesive serves as a flexible electrodes/shielding layer. The structure design, sensing mechanism and the influence of the conductive filler content and temperature variations on the sensor performance were investigated. The proposed device can effectively enhance the flexibility and comfort of wearing the device asthe sensing element has achieved a sensitivity of 0.02536%/KPa, a hysteresis error of 5.6%, and a dynamic response time of ~89 ms at the range of 0-700 KPa. The drift induced by temperature variations has been calibrated by presenting the temperature compensation model. The research on the time-space distribution of plantar pressure information and the experiment of the manipulator soft-grasping were implemented with the introduced device, and the experimental results indicate that the capacitive flexible textile tactile sensor has good stability and tactile perception capacity. This study provides a good candidate for wearable artificial skin.

  20. Effect of Slice Error of Glass on Zero Offset of Capacitive Accelerometer

    NASA Astrophysics Data System (ADS)

    Hao, R.; Yu, H. J.; Zhou, W.; Peng, B.; Guo, J.

    2018-03-01

    Packaging process had been studied on capacitance accelerometer. The silicon-glass bonding process had been adopted on sensor chip and glass, and sensor chip and glass was adhered on ceramic substrate, the three-layer structure was curved due to the thermal mismatch, the slice error of glass lead to asymmetrical curve of sensor chip. Thus, the sensitive mass of accelerometer deviated along the sensitive direction, which was caused in zero offset drift. It was meaningful to confirm the influence of slice error of glass, the simulation results showed that the zero output drift was 12.3×10-3 m/s2 when the deviation was 40μm.

  1. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors.

    PubMed

    Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying

    2015-12-10

    The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  2. Research and development of novel wireless digital capacitive displacement sensor

    NASA Astrophysics Data System (ADS)

    Cui, Junning; He, Zhangqiang; Sun, Tao; Bian, Xingyuan; Han, Lu

    2015-02-01

    In order to solve the problem of noncontact, wireless and nonmagnetic displacement sensing with nanometer resolution within critical limited space for ultraprecision displacement monitoring in the Joule balance device, a novel wireless digital capacitive displacement sensor (WDCDS) is proposed. The WDCDS is fabricated with brass and other nonmagnetic material and powered with a small battery inside, a small integrated circuit is assembled inside for converting and processing of capacitive signal, and low power Bluetooth is used for wireless signal transmission and communication. Experimental results show that the WDCDS proposed has a resolution of better than 1nm and a nonlinearity of 0.077%, therefore it is a delicate design for ultraprecision noncontact displacement monitoring in the Joule balance device, meeting the demand for properties of wireless, nonmagnetic and miniaturized size.

  3. A new soil water and bulk eletrical conductivity sensor technology for irrigation and salinity management

    USDA-ARS?s Scientific Manuscript database

    Many soil water sensors, especially those based on electromagnetic (EM) properties of soils, have been shown to be unsuitable in salt-affected or clayey soils. Most available soil water content sensors are of this EM type, particularly the so-called capacitance sensors. They often over estimate and ...

  4. Fabrication and Evaluation of a Graphene Oxide-Based Capacitive Humidity Sensor.

    PubMed

    Feng, Jinfeng; Kang, Xiaoxu; Zuo, Qingyun; Yuan, Chao; Wang, Weijun; Zhao, Yuhang; Zhu, Limin; Lu, Hanwei; Chen, Juying

    2016-03-01

    In this study, a CMOS compatible capacitive humidity sensor structure was designed and fabricated on a 200 mm CMOS BEOL Line. A top Al interconnect layer was used as an electrode with a comb/serpent structure, and graphene oxide (GO) was used as sensing material. XRD analysis was done which shows that GO sensing material has a strong and sharp (002) peak at about 10.278°, whereas graphite has (002) peak at about 26°. Device level CV and IV curves were measured in mini-environments at different relative humidity (RH) level, and saturated salt solutions were used to build these mini-environments. To evaluate the potential value of GO material in humidity sensor applications, a prototype humidity sensor was designed and fabricated by integrating the sensor with a dedicated readout ASIC and display/calibration module. Measurements in different mini-environments show that the GO-based humidity sensor has higher sensitivity, faster recovery time and good linearity performance. Compared with a standard humidity sensor, the measured RH data of our prototype humidity sensor can match well that of the standard product.

  5. Use of soil moisture sensors for irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    Various types of soil moisture sensing devices have been developed and are commercially available for water management applications. Each type of soil moisture sensors has its advantages and shortcomings in terms of accuracy, reliability, and cost. Resistive and capacitive based sensors, and time-d...

  6. Study on the Ag Nanowire/PDMS Pressure Sensors with Three-Layer and Back-to-Back Structures

    NASA Astrophysics Data System (ADS)

    Wu, Jianhao; Lan, Qiuming; Yang, Weijia; He, Xin; Yue, Yunting; Jiang, Jiayi; Jiang, Tinghui

    2018-01-01

    Ag nanowire (NW)/polydimethylsiloxane (PDMS) pressure sensors with the three-layer and back-to-back structures were fabricated by a coating-peeling method. The bending and pressing responses of the sensors were comparably investigated. The results reveal that two kinds of pressure sensors show similar response linearity in the bending test with a bending angle of 0-180°. However, the response sensitivity of the three-layer structured pressure sensor is superior to that of the back-to-back structural one, which exhibits that the relationship between the capacitance value (Y) and the bending angle (X) is: Y = 0.01244X + 2.9763. On the contrary, in the pressing test, the response sensitivity of the back-to-back structural sensor is better than that of the three-layer structural one. The relationship between capacitance value (Y) and the number of paper clips (pressure, X2) is Y = 0.09241X2 + 88.03597.

  7. A nondisturbing electric-field sensor using piezoelectric and converse piezoelectric resonances

    NASA Astrophysics Data System (ADS)

    Lee, Yongkwan; Kim, Ilryong; Lee, Soonchil

    1997-12-01

    An electric-field sensor was developed using both piezoelectric and converse piezoelectric resonances. Composed of no metallic parts, this probe minimizes field disturbance. The most distinguishing feature of this probe is that a signal is transmitted neither electrically nor optically, but mechanically. To demonstrate the field sensing capability of this probe, we measured both the capacitive and inductive fields inside empty and plasma-filled solenoidal coils. The result shows that the capacitive field is dominant in an empty solenoid, although it is almost completely shielded by inductively excited plasma.

  8. On the feasibility of borehole-to-surface electromagnetics for monitoring CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Wilson, G. A.; Zhdanov, M. S.; Hibbs, A. D.; Black, N.; Gribenko, A. V.; Cuma, M.; Agundes, A.; Eiskamp, G.

    2012-12-01

    Carbon capture and storage (CCS) projects rely on storing supercritical CO2 in deep saline reservoirs where buoyancy forces drive the injected CO2 upward into the aquifer until a seal is reached. The permanence of the sequestration depends entirely on the long-term geological integrity of the seal. Active geophysical monitoring of the sequestration is critical for informing CO2 monitoring, accounting and verification (MVA) decisions. During injection, there exists a correlation between the changes in CO2 and water saturations in a saline reservoir. Dissolved salts react with the CO2 to precipitate out as carbonates, thereby generally decreasing the electrical resistivity. As a result, there is a correlation between the change in fluid saturation and measured electromagnetic (EM) fields. The challenge is to design an EM survey appropriate for monitoring large, deep reservoirs. Borehole-to-surface electromagnetic (BSEM) surveys consist of borehole-deployed galvanic transmitters and a surface-based array of electric and magnetic field sensors. During a recent field trial, it was demonstrated that BSEM could successfully identify the oil-water contact in the water-injection zone of a carbonate reservoir. We review the BSEM methodology, and perform full-field BSEM modeling. The 3D resistivity models used in this study are based on dynamic reservoir simulations of CO2 injection into a saline reservoir. Although the electric field response at the earth's surface is low, we demonstrate that it can be accurately measured and processed with novel methods of noise cancellation and sufficient stacking over the period of monitoring to increase the signal-to-noise ratio for subsequent seismic- and well-constrained 3D inversion. For long-term or permanent monitoring, we discuss the deployment of novel electric field sensors with chemically inert electrodes that couple to earth in a capacitive manner. This capacitive coupling is a purely EM phenomenon, which, to first order, has no temperature, ionic concentration or corrosion effects and has unprecedented fidelity. This makes the capacitive E-field sensor ideal for CCS applications which require very stable operation over a wide range of ground temperature and moisture level variation, for extended periods of time.

  9. Area-variable capacitive microaccelerometer with force-balancing electrodes

    NASA Astrophysics Data System (ADS)

    Ha, Byeoungju; Lee, Byeungleul; Sung, Sangkyung; Choi, Sangon; Shinn, Meenam; Oh, Yong-Soo; Song, Ci M.

    1997-11-01

    A surface micromachined accelerometer which senses an inertial motion with an area variation and a force balancing electrodes is developed. The grid-type planar mass of a 7 micrometers thick polysilicon is supported by four thin beams and suspended above a silicon substrate with a 1.5 micrometers air gap. The motion sensing electrodes are formed on the substrate. The sensor is designed as an interdigital rib structure that has a differential capacitor arrangement. The moveable electrodes are mounted on the mass and the pairs of the stationary electrodes are patterned on the substrate. In the accelerometer that has comb-type movable electrodes, the mechanical stress and the electrical pulling effects between a moveable electrodes and the fixed electrodes occur. However this grid-type structure can have a large area variation in a small area relatively without stress and pulling, high sensitivity can be achieved. In order to improve the dynamic rang and a linearity, a pair of comb shape force-balancing electrodes are implemented on both sides of the mass. The force-balancing electrodes are made of the same layer as the mass and anchored on a silicon substrate. When acceleration is applied in the lateral direction, the difference of capacitance results from the area variation between the two capacitors and is measured using a charge amplifier. As AC coupled complimentary pick- off signals are applied in paris of stationary electrodes, the undesirable effects due to temperature and electrical noise are reduced effectively. The accelerometer has a sensitivity of 28mV/g and a bandwidth of DC-120Hz. A resolution of 3mg and a non-linearity of 1.3 percent is achieved for a measurement range of +/- 9 g.

  10. Design of a Capacitive Flexible Weighing Sensor for Vehicle WIM System

    PubMed Central

    Cheng, Lu; Zhang, Hongjian; Li, Qing

    2007-01-01

    With the development of the Highway Transportation and Business Trade, vehicle weigh-in-motion (WIM) technology has become a key technology and trend of measuring traffic loads. In this paper, a novel capacitive flexible weighing sensor which is light weight, smaller volume and easy to carry was applied in the vehicle WIM system. The dynamic behavior of the sensor is modeled using the Maxwell-Kelvin model because the materials of the sensor are rubbers which belong to viscoelasticity. A signal processing method based on the model is presented to overcome effects of rubber mechanical properties on the dynamic weight signal. The results showed that the measurement error is less than ±10%. All the theoretic analysis and numerical results demonstrated that appliance of this system to weigh in motion is feasible and convenient for traffic inspection.

  11. Hydrogen gas sensors using a thin Ta2O5 dielectric film

    NASA Astrophysics Data System (ADS)

    Kim, Seongjeen

    2014-12-01

    A capacitive-type hydrogen gas sensor with a MIS (metal-insulator-semiconductor) structure was investigated for high-temperature applications. In this work, a tantalum oxide (Ta2O5) layer of tens of nanometers in thickness formed by oxidizing tantalum film in rapid thermal processing (RTP) was exploited with the purpose of sensitivity improvement. Silicon carbide (SiC), which is good even at high temperatures over 500 °C, was used as the substrate. We fabricated sensors composed of Pd/Ta2O5/SiC, and the dependences of the capacitance response properties and the I-V characteristics on the hydrogen concentration were analyzed from the temperature range of room temperature to 500 °C. As a result, our hydrogen sensor showed promising performance with respect to the sensitivity and the adaptability at high temperature.

  12. Embedded pitch adapters: A high-yield interconnection solution for strip sensors

    NASA Astrophysics Data System (ADS)

    Ullán, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Fleta, C.; Fernandez-Tejero, J.; Quirion, D.; Bloch, I.; Díez, S.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A proposal to fabricate large area strip sensors with integrated, or embedded, pitch adapters is presented for the End-cap part of the Inner Tracker in the ATLAS experiment. To implement the embedded pitch adapters, a second metal layer is used in the sensor fabrication, for signal routing to the ASICs. Sensors with different embedded pitch adapters have been fabricated in order to optimize the design and technology. Inter-strip capacitance, noise, pick-up, cross-talk, signal efficiency, and fabrication yield have been taken into account in their design and fabrication. Inter-strip capacitance tests taking into account all channel neighbors reveal the important differences between the various designs considered. These tests have been correlated with noise figures obtained in full assembled modules, showing that the tests performed on the bare sensors are a valid tool to estimate the final noise in the full module. The full modules have been subjected to test beam experiments in order to evaluate the incidence of cross-talk, pick-up, and signal loss. The detailed analysis shows no indication of cross-talk or pick-up as no additional hits can be observed in any channel not being hit by the beam above 170 mV threshold, and the signal in those channels is always below 1% of the signal recorded in the channel being hit, above 100 mV threshold. First results on irradiated mini-sensors with embedded pitch adapters do not show any change in the interstrip capacitance measurements with only the first neighbors connected.

  13. Amplitude-Stabilized Oscillator for a Capacitance-Probe Electrometer

    NASA Technical Reports Server (NTRS)

    Blaes, Brent R.; Schaefer, Rembrandt T.

    2012-01-01

    A multichannel electrometer voltmeter that employs a mechanical resonator maintained in sustained amplitude-stabilized oscillation has been developed for the space-based measurement of an Internal Electrostatic Discharge Monitor (IESDM) sensor. The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. Creating a stable oscillator from the mechanical resonator was achieved by employing magnetic induction for sensing the resonator s velocity, and forcing a current through a coil embedded in the resonator to produce a Lorentz actuation force that overcomes the resonator s dissipative losses. Control electronics employing an AGC loop provide conditions for stabilized, constant amplitude harmonic oscillation. The prototype resonator was composed of insulating FR4 printed-wireboard (PWB) material containing a flat, embedded, rectangular coil connected through flexure springs to a base PWB, and immersed in a magnetic field having two regions of opposite field direction generated by four neodymium block magnets. In addition to maintaining the mechanical movement needed for the electrometer s capacitor-probe transducer, this oscillator provides a reference signal for synchronous detection of the capacitor probe s output signal current so drift of oscillation frequency due to environmental effects is inconsequential.

  14. Capacitive transducers

    NASA Technical Reports Server (NTRS)

    Lucifredi, A. L.

    1970-01-01

    The theory, applications, and possible structural designs of capacitive transducers are presented. Emphasis is placed on the circuits used in connection with the sensors, such as AM, FM, resonant circuits, mode circuits, direct current circuits, and special circuits. Some criteria for selection of a design or the purchase of a commercial device are given.

  15. High-Resolution Displacement Sensor Using a SQUID Array Amplifier

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Penanen, Konstantin; Barmatz, M.; Paik, Ho Jung

    2004-01-01

    Improvement in the measurement of displacement has profound implications for both exploration technologies and fundamental physics. For planetary exploration, the new SQUID-based capacitive displacement sensor will enable a more sensitive gravity gradiometer for mapping the interior of planets and moons. A new concept of a superfluid clock to be reported by Penanen and Chui at this workshop is also based on a high-resolution displacement sensor. Examples of high-impact physics projects that can benefit from a better displacement sensor are: detection of gravitational waves, test of the equivalence principle, search for the postulated "axion" particle, and test of the inverse square law of gravity. We describe the concept of a new displacement sensor that makes use of a recent development in the Superconducting Quantum Interference Device (SQUID) technology. The SQUID array amplifier, invented by Welty and Martinis (IEEE Trans. Appl. Superconductivity 3, 2605, 1993), has about the same noise as a conventional SQUID; however, it can work at a much higher frequency of up to 5 MHz. We explain how the higher bandwidth can be translated into higher resolution using a bridge-balancing scheme that can simultaneously balance out both the carrier signal at the bridge output and the electrostatic force acting on the test mass.

  16. A High Performance Piezoelectric Sensor for Dynamic Force Monitoring of Landslide

    PubMed Central

    Li, Ming; Cheng, Wei; Chen, Jiangpan; Xie, Ruili; Li, Xiongfei

    2017-01-01

    Due to the increasing influence of human engineering activities, it is important to monitor the transient disturbance during the evolution process of landslide. For this purpose, a high-performance piezoelectric sensor is presented in this paper. To adapt the high static and dynamic stress environment in slope engineering, two key techniques, namely, the self-structure pressure distribution method (SSPDM) and the capacitive circuit voltage distribution method (CCVDM) are employed in the design of the sensor. The SSPDM can greatly improve the compressive capacity and the CCVDM can quantitatively decrease the high direct response voltage. Then, the calibration experiments are conducted via the independently invented static and transient mechanism since the conventional testing machines cannot match the calibration requirements. The sensitivity coefficient is obtained and the results reveal that the sensor has the characteristics of high compressive capacity, stable sensitivities under different static preload levels and wide-range dynamic measuring linearity. Finally, to reduce the measuring error caused by charge leakage of the piezoelectric element, a low-frequency correction method is proposed and experimental verified. Therefore, with the satisfactory static and dynamic properties and the improving low-frequency measuring reliability, the sensor can complement dynamic monitoring capability of the existing landslide monitoring and forecasting system. PMID:28218673

  17. Flexible Bond Wire Capacitive Strain Sensor for Vehicle Tyres.

    PubMed

    Cao, Siyang; Pyatt, Simon; Anthony, Carl J; Kubba, Ammar I; Kubba, Ali E; Olatunbosun, Oluremi

    2016-06-21

    The safety of the driving experience and manoeuvrability of a vehicle can be improved by detecting the strain in tyres. To measure strain accurately in rubber, the strain sensor needs to be flexible so that it does not deform the medium that it is measuring. In this work, a novel flexible bond wire capacitive strain sensor for measuring the strain in tyres is developed, fabricated and calibrated. An array of 25 micron diameter wire bonds in an approximately 8 mm × 8 mm area is built to create an interdigitated structure, which consists of 50 wire loops resulting in 49 capacitor pairs in parallel. Laser machining was used to pattern copper on a flexible printed circuit board PCB to make the bond pads for the wire attachment. The wire array was finally packaged and embedded in polydimethylsiloxane (PDMS), which acts as the structural material that is strained. The capacitance of the device is in a linear like relationship with respect to the strain, which can measure the strain up to at least ±60,000 micro-strain (±6%) with a resolution of ~132 micro-strain (0.013%). In-tyre testing under static loading has shown the ability of the sensor to measure large tyre strains. The technology used for sensor fabrication lends itself to mass production and so the design is considered to be consistent with low cost commercialisable strain sensing technology.

  18. Wireless Capacitive Pressure Sensor With Directional RF Chip Antenna for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.

    2015-01-01

    This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.

  19. Flexible Bond Wire Capacitive Strain Sensor for Vehicle Tyres

    PubMed Central

    Cao, Siyang; Pyatt, Simon; Anthony, Carl J.; Kubba, Ammar I.; Kubba, Ali E.; Olatunbosun, Oluremi

    2016-01-01

    The safety of the driving experience and manoeuvrability of a vehicle can be improved by detecting the strain in tyres. To measure strain accurately in rubber, the strain sensor needs to be flexible so that it does not deform the medium that it is measuring. In this work, a novel flexible bond wire capacitive strain sensor for measuring the strain in tyres is developed, fabricated and calibrated. An array of 25 micron diameter wire bonds in an approximately 8 mm × 8 mm area is built to create an interdigitated structure, which consists of 50 wire loops resulting in 49 capacitor pairs in parallel. Laser machining was used to pattern copper on a flexible printed circuit board PCB to make the bond pads for the wire attachment. The wire array was finally packaged and embedded in polydimethylsiloxane (PDMS), which acts as the structural material that is strained. The capacitance of the device is in a linear like relationship with respect to the strain, which can measure the strain up to at least ±60,000 micro-strain (±6%) with a resolution of ~132 micro-strain (0.013%). In-tyre testing under static loading has shown the ability of the sensor to measure large tyre strains. The technology used for sensor fabrication lends itself to mass production and so the design is considered to be consistent with low cost commercialisable strain sensing technology. PMID:27338402

  20. Archimedean Spiral Pairs with no Electrical Connections as a Passive Wireless Implantable Sensor

    PubMed Central

    Drazan, John F; Gunko, Aleksandra; Dion, Matthew; Abdoun, Omar; Cady, Nathaniel C; Connor, Kenneth A; Ledet, Eric H

    2015-01-01

    We have developed, modeled, fabricated, and tested a passive wireless sensor system that exhibits a linear frequency-displacement relationship. The displacement sensor is comprised of two anti-aligned Archimedean coils separated by an insulating dielectric layer. There are no electrical connections between the two coils and there are no onboard electronics. The two coils are inductively and capacitively coupled due to their close proximity. The sensor system is interrogated wirelessly by monitoring the return loss parameter from a vector network analyzer. The resonant frequency of the sensor is dependent on the displacement between the two coils. Due to changes in the inductive and capacitive coupling between the coils at different distances, the resonant frequency is modulated by coil separation. In a specified range, the frequency shift can be linearized with respect to coil separation. Batch fabrication techniques were used to fabricate copper coils for experimental testing with air as the dielectric. Through testing, we validated the performance of sensors as predicted within acceptable errors. Because of its simplicity, this displacement sensor has potential applications for in vivo sensing. PMID:27430033

  1. 0.5 V and 0.43 pJ/bit Capacitive Sensor Interface for Passive Wireless Sensor Systems

    PubMed Central

    Beriain, Andoni; Gutierrez, Iñigo; Solar, Hector; Berenguer, Roc

    2015-01-01

    This paper presents an ultra low-power and low-voltage pulse-width modulation based ratiometric capacitive sensor interface. The interface was designed and fabricated in a standard 90 nm CMOS 1P9M technology. The measurements show an effective resolution of 10 bits using 0.5 V of supply voltage. The active occupied area is only 0.0045 mm2 and the Figure of Merit (FOM), which takes into account the energy required per conversion bit, is 0.43 pJ/bit. Furthermore, the results show low sensitivity to PVT variations due to the proposed ratiometric architecture. In addition, the sensor interface was connected to a commercial pressure transducer and the measurements of the resulting complete pressure sensor show a FOM of 0.226 pJ/bit with an effective linear resolution of 7.64 bits. The results validate the use of the proposed interface as part of a pressure sensor, and its low-power and low-voltage characteristics make it suitable for wireless sensor networks and low power consumer electronics. PMID:26343681

  2. 0.5 V and 0.43 pJ/bit Capacitive Sensor Interface for Passive Wireless Sensor Systems.

    PubMed

    Beriain, Andoni; Gutierrez, Iñigo; Solar, Hector; Berenguer, Roc

    2015-08-28

    This paper presents an ultra low-power and low-voltage pulse-width modulation based ratiometric capacitive sensor interface. The interface was designed and fabricated in a standard 90 nm CMOS 1P9M technology. The measurements show an effective resolution of 10 bits using 0.5 V of supply voltage. The active occupied area is only 0.0045 mm2 and the Figure of Merit (FOM), which takes into account the energy required per conversion bit, is 0.43 pJ/bit. Furthermore, the results show low sensitivity to PVT variations due to the proposed ratiometric architecture. In addition, the sensor interface was connected to a commercial pressure transducer and the measurements of the resulting complete pressure sensor show a FOM of 0.226 pJ/bit with an effective linear resolution of 7.64 bits. The results validate the use of the proposed interface as part of a pressure sensor, and its low-power and low-voltage characteristics make it suitable for wireless sensor networks and low power consumer electronics.

  3. Capacitive Soil Moisture Sensor for Plant Watering

    NASA Astrophysics Data System (ADS)

    Maier, Thomas; Kamm, Lukas

    2016-04-01

    How can you realize a water saving and demand-driven plant watering device? To achieve this you need a sensor, which precisely detects the soil moisture. Designing such a sensor is the topic of this poster. We approached this subject with comparing several physical properties of water, e.g. the conductivity, permittivity, heat capacity and the soil water potential, which are suitable to detect the soil moisture via an electronic device. For our project we have developed a sensor device, which measures the soil moisture and provides the measured values for a plant watering system via a wireless bluetooth 4.0 network. Different sensor setups have been analyzed and the final sensor is the result of many iterative steps of improvement. In the end we tested the precision of our sensor and compared the results with theoretical values. The sensor is currently being used in the Botanical Garden of the Friedrich-Alexander-University in a long-term test. This will show how good the usability in the real field is. On the basis of these findings a marketable sensor will soon be available. Furthermore a more specific type of this sensor has been designed for the EU:CROPIS Space Project, where tomato plants will grow at different gravitational forces. Due to a very small (15mm x 85mm x 1.5mm) and light (5 gramm) realisation, our sensor has been selected for the space program. Now the scientists can monitor the water content of the substrate of the tomato plants in outer space and water the plants on demand.

  4. A compact perspiration meter system with capacitive humidity sensor for wearable health-care applications

    NASA Astrophysics Data System (ADS)

    Mitani, Yusuke; Miyaji, Kousuke; Kaneko, Satoshi; Uekura, Takaharu; Momose, Hideya; Johguchi, Koh

    2018-04-01

    This paper presents a compact wearable perspiration meter system using a 180-nm CMOS technology. With custom chip and board design, the proposed perspiration meter, which can measure a qualitative sweating rate, is integrated into 15 × 20 mm2. From the experimental results, the capacitances of the humidity sensors with analog-to-digital converter and band-gap reference circuits can operate accurately without hysteresis. In addition, a demonstration with simulated human skin is carried out to investigate the sensor’s performance under real environments. The proposed perspiration meter can output values equivalent to a conventional meter. As a result, it is verified that the proposed system can be used as a human sweat sensor for wearable application.

  5. A 3D Faraday Shield for Interdigitated Dielectrometry Sensors and Its Effect on Capacitance.

    PubMed

    Risos, Alex; Long, Nicholas; Hunze, Arvid; Gouws, Gideon

    2016-12-31

    Interdigitated dielectrometry sensors (IDS) are capacitive sensors investigated to precisely measure the relative permittivity ( ϵ r ) of insulating liquids. Such liquids used in the power industry exhibit a change in ϵ r as they degrade. The IDS ability to measure ϵ r in-situ can potentially reduce maintenance, increase grid stability and improve safety. Noise from external electric field sources is a prominent issue with IDS. This paper investigates the novelty of applying a Faraday cage onto an IDS as a 3D shield to reduce this noise. This alters the spatially distributed electric field of an IDS affecting its sensing properties. Therefore, dependency of the sensor's signal with the distance to a shield above the IDS electrodes has been investigated experimentally and theoretically via a Green's function calculation and FEM. A criteria of the shield's distance s = s 0 has been defined as the distance which gives a capacitance for the IDS equal to 1 - e - 2 = 86.5 % of its unshielded value. Theoretical calculations using a simplified geometry gave a constant value for s 0 / λ = 1.65, where λ is the IDS wavelength. In the experiment, values for s 0 were found to be lower than predicted as from theory and the ratio s 0 / λ variable. This was analyzed in detail and it was found to be resulting from the specific spatial structure of the IDS. A subsequent measurement of a common insulating liquid with a nearby noise source demonstrates a considerable reduction in the standard deviation of the relative permittivity from σ unshielded = ± 9.5% to σ shielded = ± 0.6%. The presented findings enhance our understanding of IDS in respect to the influence of a Faraday shield on the capacitance, parasitic capacitances of the IDS and external noise impact on the measurement of ϵ r .

  6. Characterization of screen-printed electrodes for dielectric elastomer (DE) membranes: influence of screen dimensions and electrode thickness on actuator performance

    NASA Astrophysics Data System (ADS)

    Fasolt, Bettina; Hodgins, Micah; Seelecke, Stefan

    2016-04-01

    Screen printing is used as a method for printing electrodes on silicone thin films for the fabrication of dielectric elastomer transducers (DET). This method can be used to manufacture a multitude of patternable designs for actuator and sensor applications, implementing the same method for prototyping as well as large-scale production. The fabrication of DETs does not only require the development of a flexible, highly conductive electrode material, which adheres to a stretched and unstretched silicone film, but also calls for a thorough understanding of the effects of the different printing parameters. This work studies the influence of screen dimensions (open area, mesh thickness) as well as the influence of multiple-layer- printing on the electrode stiffness, electrical resistance and capacitance as well as actuator performance. The investigation was conducted in a custom-built testing device, which enabled an electro-mechanical characterization of the DET, simultaneously measuring parameters such as strain, voltage, current, force, sheet resistance, capacitance and membrane thickness. Magnified pictures of the electrodes will additionally illustrate the effects of the different printing parameters.

  7. Dynamic Stability and Gravitational Balancing of Multiple Extended Bodies

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco

    2008-01-01

    Feasibility of a non-invasive compensation scheme was analyzed for precise positioning of a massive extended body in free fall using gravitational forces influenced by surrounding source masses in close proximity. The N-body problem of classical mechanics is a paradigm used to gain insight into the physics of the equivalent N-body problem subject to control forces. The analysis addressed how a number of control masses move around the proof mass so that the proof mass position can be accurately and remotely compensated when exogenous disturbances are acting on it, while its sensitivity to gravitational waves remains unaffected. Past methods to correct the dynamics of the proof mass have considered active electrostatic or capacitive methods, but the possibility of stray capacitances on the surfaces of the proof mass have prompted the investigation of other alternatives, such as the method presented in this paper. While more rigorous analyses of the problem should be carried out, the data show that, by means of a combined feedback and feed-forward control approach, the control masses succeeded in driving the proof mass along the specified trajectory, which implies that the proof mass can, in principle, be balanced via gravitational forces only while external perturbations are acting on it. This concept involves the dynamic stability of a group of massive objects interacting gravitationally under active control, and can apply to drag-free control of spacecraft during missions, to successor gravitational wave space borne sensors, or to any application requiring flying objects to be precisely controlled in position and attitude relative to another body via gravitational interactions only.

  8. Analysis of capacitive force acting on a cantilever tip at solid/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Umeda, Ken-ichi; Kobayashi, Kei; Oyabu, Noriaki; Hirata, Yoshiki; Matsushige, Kazumi; Yamada, Hirofumi

    2013-04-01

    Dielectric properties of biomolecules or biomembranes are directly related to their structures and biological activities. Capacitance force microscopy based on the cantilever deflection detection is a useful scanning probe technique that can map local dielectric constant. Here we report measurements and analysis of the capacitive force acting on a cantilever tip at solid/liquid interfaces induced by application of an alternating voltage to explore the feasibility of the measurements of local dielectric constant by the voltage modulation technique in aqueous solutions. The results presented here suggest that the local dielectric constant measurements by the conventional voltage modulation technique are basically possible even in polar liquid media. However, the cantilever deflection is not only induced by the electrostatic force, but also by the surface stress, which does not include the local dielectric information. Moreover, since the voltage applied between the tip and sample are divided by the electric double layer and the bulk polar liquid, the capacitive force acting on the apex of the tip are strongly attenuated. For these reasons, the lateral resolution in the local dielectric constant measurements is expected to be deteriorated in polar liquid media depending on the magnitude of dielectric response. Finally, we present the criteria for local dielectric constant measurements with a high lateral resolution in polar liquid media.

  9. Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2016-01-01

    Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors. PMID:27160654

  10. High frequency measures of OHC nonlinear capacitance (NLC) and their significance: Why measures stray away from predictions

    NASA Astrophysics Data System (ADS)

    Santos-Sacchi, Joseph

    2018-05-01

    Measures of membrane capacitance (Cm) can be used to assess important characteristics of voltage-dependent membrane proteins (e.g., channels and transporters). In particular, a protein's time-dependent voltage-sensor charge movement is equivalently represented as a frequency-dependent component of Cm, telling much about the kinetics of the protein's conformational behavior. Recently, we have explored the frequency dependence of OHC voltage-dependent capacitance (aka nonlinear capacitance, NLC) to query rates of conformational switching within prestin (SLC26a5), the cell's lateral membrane molecular motor 1. Following removal of confounding stray capacitance effects, high frequency Cm measures using wide-band stimuli accurately reveal unexpected low pass behavior in prestin's molecular motions.

  11. Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors

    NASA Astrophysics Data System (ADS)

    Sahatiya, Parikshit; Badhulika, Sushmee

    2017-03-01

    This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions. The eraser serves as a substrate for strain sensing, as well as acting as a dielectric for capacitive pressure sensing, thereby eliminating the dielectric deposition step, which is crucial in capacitive-based pressure sensors. The strain sensing transduction mechanism is attributed to the tunneling effect, caused by the elastic behavior of the MWCNTs and the strong mechanical interlock between MWCNTs and the eraser substrate, which restricts slippage of MWCNTs on the eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to be 2.4, which is comparable to and even better than most of the strain and pressure sensors fabricated with more complex designs and architectures. The sensitivity of the capacitive pressure sensor was found to be 0.135 MPa-1.To demonstrate the applicability of the sensor as artificial electronic skin, the sensor was assembled on various parts of the human body and corresponding movements and touch sensation were monitored. The entire fabrication process is scalable and can be integrated into large areas to map spatial pressure distributions. This low-cost, easily scalable MWCNT pin-rolled eraser-based pressure and strain sensor has huge potential in applications such as artificial e-skin in flexible electronics and medical diagnostics, in particular in surgery as it provides high spatial resolution without a complex nanostructure architecture.

  12. Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors.

    PubMed

    Sahatiya, Parikshit; Badhulika, Sushmee

    2017-03-03

    This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions. The eraser serves as a substrate for strain sensing, as well as acting as a dielectric for capacitive pressure sensing, thereby eliminating the dielectric deposition step, which is crucial in capacitive-based pressure sensors. The strain sensing transduction mechanism is attributed to the tunneling effect, caused by the elastic behavior of the MWCNTs and the strong mechanical interlock between MWCNTs and the eraser substrate, which restricts slippage of MWCNTs on the eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to be 2.4, which is comparable to and even better than most of the strain and pressure sensors fabricated with more complex designs and architectures. The sensitivity of the capacitive pressure sensor was found to be 0.135 MPa -1 .To demonstrate the applicability of the sensor as artificial electronic skin, the sensor was assembled on various parts of the human body and corresponding movements and touch sensation were monitored. The entire fabrication process is scalable and can be integrated into large areas to map spatial pressure distributions. This low-cost, easily scalable MWCNT pin-rolled eraser-based pressure and strain sensor has huge potential in applications such as artificial e-skin in flexible electronics and medical diagnostics, in particular in surgery as it provides high spatial resolution without a complex nanostructure architecture.

  13. Wireless Fluid Level Measuring System

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)

    2007-01-01

    A level-sensing probe positioned in a tank is divided into sections with each section including (i) a fluid-level capacitive sensor disposed along the length thereof, (ii) an inductor electrically coupled to the capacitive sensor, (iii) a sensor antenna positioned for inductive coupling to the inductor, and (iv) an electrical conductor coupled to the sensor antenna. An electrically non-conductive housing accessible from a position outside of the tank houses antennas arrayed in a pattern. Each antenna is electrically coupled to the electrical conductor from a corresponding one of the sections. A magnetic field response recorder has a measurement head with transceiving antennas arrayed therein to correspond to the pattern of the housing's antennas. When a measurement is to be taken, the measurement head is mechanically coupled to the housing so that each housing antenna is substantially aligned with a specific one of the transceiving antennas.

  14. Smart skin technology development for measuring ice accretion, stall, and high AOA aircraft performance. Part 1: Capacitive ice detector development

    NASA Technical Reports Server (NTRS)

    Pruzan, Daniel A.; Khatkhate, Ateen A.; Gerardi, Joseph J.; Hickman, Gail A.

    1993-01-01

    A reliable way to detect and measure ice accretion during flight is required to reduce the hazards of icing currently threatening present day aircraft. Many of the sensors used for this purpose are invasive (probe) sensors which must be placed in areas of the airframe where ice does not naturally form. Due to the difference in capture efficiency of the exposed surface, difficulties result in correlating the ice accretion on the probe to what is happening on a number of vastly different airfoil sections. Most flush mounted sensors in use must be integrated into the aircraft surface by cutting or drilling the aircraft surface. An alternate type of ice detector which is based on a NASA patent is currently being investigated at Innovative Dynamics, Inc. (IDI). Results of the investigation into the performance of different capacitive type sensor designs, both rigid as well as elastic, are presented.

  15. Ethanol Microsensors with a Readout Circuit Manufactured Using the CMOS-MEMS Technique

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang

    2015-01-01

    The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro-mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm. PMID:25594598

  16. Ethanol microsensors with a readout circuit manufactured using the CMOS-MEMS technique.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang

    2015-01-14

    The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro -mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm.

  17. An acetone microsensor with a ring oscillator circuit fabricated using the commercial 0.18 μm CMOS process.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-07-17

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm.

  18. An Acetone Microsensor with a Ring Oscillator Circuit Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-01-01

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm. PMID:25036331

  19. Identification of wheat varieties with a parallel-plate capacitance sensor using fisher linear discriminant analysis

    USDA-ARS?s Scientific Manuscript database

    Fisher’s linear discriminant (FLD) models for wheat variety classification were developed and validated. The inputs to the FLD models were the capacitance (C), impedance (Z), and phase angle ('), measured at two frequencies. Classification of wheat varieties was obtained as output of the FLD mod...

  20. CMOS based capacitance to digital converter circuit for MEMS sensor

    NASA Astrophysics Data System (ADS)

    Rotake, D. R.; Darji, A. D.

    2018-02-01

    Most of the MEMS cantilever based system required costly instruments for characterization, processing and also has large experimental setups which led to non-portable device. So there is a need of low cost, highly sensitive, high speed and portable digital system. The proposed Capacitance to Digital Converter (CDC) interfacing circuit converts capacitance to digital domain which can be easily processed. Recent demand microcantilever deflection is part per trillion ranges which change the capacitance in 1-10 femto farad (fF) range. The entire CDC circuit is designed using CMOS 250nm technology. Design of CDC circuit consists of a D-latch and two oscillators, namely Sensor controlled oscillator (SCO) and digitally controlled oscillator (DCO). The D-latch is designed using transmission gate based MUX for power optimization. A CDC design of 7-stage, 9-stage and 11-stage tested for 1-18 fF and simulated using mentor graphics Eldo tool with parasitic. Since the proposed design does not use resistance component, the total power dissipation is reduced to 2.3621 mW for CDC designed using 9-stage SCO and DCO.

  1. Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Zorman, Christian A.

    2016-01-01

    This paper describes the development of a packaged silicon carbide (SiC) based MEMS pressure sensor system designed specifically for a conventional turbofan engine. The electronic circuit is based on a Clapp-type oscillator that incorporates a 6H-SiC MESFET, a SiCN MEMS capacitive pressure sensor, titanate MIM capacitors, wirewound inductors, and thick film resistors. The pressure sensor serves as the capacitor in the LC tank circuit, thereby linking pressure to the resonant frequency of the oscillator. The oscillator and DC bias circuitry were fabricated on an alumina substrate and secured inside a metal housing. The packaged sensing system reliably operates at 0 to 350 psi and 25 to 540C. The system has a pressure sensitivity of 6.8 x 10E-2 MHzpsi. The packaged system shows negligible difference in frequency response between 25 and 400C. The fully packaged sensor passed standard benchtop acceptance tests and was evaluated on a flight-worthy engine.

  2. Concentric Coplanar Capacitive Sensor System with Quantitative Model

    NASA Technical Reports Server (NTRS)

    Chen, Tianming (Inventor); Bowler, Nicola (Inventor)

    2014-01-01

    A concentric coplanar capacitive sensor includes a charged central disc forming a first electrode, an outer annular ring coplanar with and outer to the charged central disc, the outer annular ring forming a second electrode, and a gap between the charged central disc and the outer annular ring. The first electrode and the second electrode may be attached to an insulative film. A method provides for determining transcapacitance between the first electrode and the second electrode and using the transcapacitance in a model that accounts for a dielectric test piece to determine inversely the properties of the dielectric test piece.

  3. Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Zafar, Qayyum; Azmer, Mohamad Izzat; Al-Sehemi, Abdullah G.; Al-Assiri, Mohammad S.; Kalam, Abul; Sulaiman, Khaulah

    2016-07-01

    In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe2O4 nanoparticles has been estimated to be 6.5 nm. It is assumed that the thin film of organic-ceramic hybrid matrix (TMBHPET:CoFe2O4) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe2O4/Al) has been investigated at three different frequencies of the AC applied voltage ( V rms 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity 560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30-99 % RH), small hysteresis ( 2.3 %), and relatively quicker response and recovery times ( 12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.

  4. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-07-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.

  5. Distributed Capacitive Sensor for Sample Mass Measurement

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; McKinney, Colin; Jackson, Shannon P.; Mojarradi, Mohammad; Manohara, Harish; Trebi-Ollennu, Ashitey

    2011-01-01

    Previous robotic sample return missions lacked in situ sample verification/ quantity measurement instruments. Therefore, the outcome of the mission remained unclear until spacecraft return. In situ sample verification systems such as this Distributed Capacitive (DisC) sensor would enable an unmanned spacecraft system to re-attempt the sample acquisition procedures until the capture of desired sample quantity is positively confirmed, thereby maximizing the prospect for scientific reward. The DisC device contains a 10-cm-diameter pressure-sensitive elastic membrane placed at the bottom of a sample canister. The membrane deforms under the weight of accumulating planetary sample. The membrane is positioned in close proximity to an opposing rigid substrate with a narrow gap. The deformation of the membrane makes the gap narrower, resulting in increased capacitance between the two parallel plates (elastic membrane and rigid substrate). C-V conversion circuits on a nearby PCB (printed circuit board) provide capacitance readout via LVDS (low-voltage differential signaling) interface. The capacitance method was chosen over other potential approaches such as the piezoelectric method because of its inherent temperature stability advantage. A reference capacitor and temperature sensor are embedded in the system to compensate for temperature effects. The pressure-sensitive membranes are aluminum 6061, stainless steel (SUS) 403, and metal-coated polyimide plates. The thicknesses of these membranes range from 250 to 500 m. The rigid substrate is made with a 1- to 2-mm-thick wafer of one of the following materials depending on the application requirements glass, silicon, polyimide, PCB substrate. The glass substrate is fabricated by a microelectromechanical systems (MEMS) fabrication approach. Several concentric electrode patterns are printed on the substrate. The initial gap between the two plates, 100 m, is defined by a silicon spacer ring that is anodically bonded to the glass substrate. The fabricated proof-of-concept devices have successfully demonstrated tens to hundreds of picofarads of capacitance change when a simulated sample (100 g to 500 g) is placed on the membrane.

  6. An Overview of the Canadian Forces’ Second Generation Capability-Based Planning Analytical Process

    DTIC Science & Technology

    2010-09-01

    gestion et intgration des capacités Feuille de route des capacits stratégiques Produits clès Plan d’investissement Plan de capacités de défense...méthodes de recherche opérationnelle objectives et subjectives permet- tant la mise en œuvre du volet « planification, gestion et intégration des ...pacités, la gestion des capacités et l’intégration des capacités. Le processus comprend des intrants, des méthodes

  7. Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors.

    PubMed

    Mazeina, Lena; Perkins, F Keith; Bermudez, Victor M; Arnold, Stephen P; Prokes, S M

    2010-08-17

    We report the first evidence for functionalization of Ga(2)O(3) nanowires (NWs), which have been incorporated as the active material in room temperature capacitance gas-sensing devices. An adsorbed layer of pyruvic acid (PA) was successfully formed on Ga(2)O(3) NWs by simple room temperature vapor transport, which was confirmed by Fourier transform infrared spectroscopy. The effect of the adsorbed PA on the surface properties was demonstrated by the change in the response of the NW gas-sensing devices. Results indicate that the adsorption of PA reduced the sensitivity of the Ga(2)O(3) NW device to common hydrocarbons such as nitromethane and acetone while improving the response to triethylamine by an order of magnitude. Taking into account the simplicity of this functionalization together with the ease of producing these capacitance-based gas-sensing devices, this approach represents a viable technique for sensor development.

  8. Capacitance-based damage detection sensing for aerospace structural composites

    NASA Astrophysics Data System (ADS)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.

  9. Ground Based Investigation of Electrostatic Accelerometer in HUST

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Zhou, Z.

    2013-12-01

    High-precision electrostatic accelerometers with six degrees of freedom (DOF) acceleration measurement were successfully used in CHAMP, GRACE and GOCE missions which to measure the Earth's gravity field. In our group, space inertial sensor based on the capacitance transducer and electrostatic control technique has been investigated for test of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, and satellite Earth's field recovery. The significant techniques of capacitive position sensor with the noise level at 2×10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are carried out and all the six servo loop controls by using a discrete PID algorithm are realized in a FPGA device. For testing on ground, in order to compensate one g earth's gravity, the fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. A short distance and a simple double capsule equipment the valid duration about 0.5 second is set up in our lab for the free fall tests of the engineering model which can directly verify the function of six DOF control. Meanwhile, high voltage suspension method is also realized and preliminary results show that the horizontal axis of acceleration noise is about 10-8m/s2/Hz1/2 level which limited mainly by the seismic noise. Reference: [1] Fen Gao, Ze-Bing Zhou, Jun Luo, Feasibility for Testing the Equivalence Principle with Optical Readout in Space, Chin. Phys. Lett. 28(8) (2011) 080401. [2] Z. Zhu, Z. B. Zhou, L. Cai, Y. Z. Bai, J. Luo, Electrostatic gravity gradiometer design for the advanced GOCE mission, Adv. Sp. Res. 51 (2013) 2269-2276. [3] Z B Zhou, L Liu, H B Tu, Y Z Bai, J Luo, Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance, Class. Quantum Grav. 27 (2010) 175012. [4] H B Tu, Y Z Bai, Z B Zhou, L Liu, L Cai, and J Luo, Performance measurements of an inertial sensor with a two-stage controlled torsion pendulum, Class Quantum. Grav. 27 (2010) 205016.

  10. Noncontact Capacitive Clearance Control System For Laser Cutting Machines

    NASA Astrophysics Data System (ADS)

    Topkaya, Ahmet; Schmall, Karl-Heinz; Majoli, Ralf

    1989-03-01

    For a continuous high quality laser cut, it is necessary among other things to position the focal point of the laser beam correctly. This means that a constant clearance between the cutting head and the workpiece with a tolerance of +/- 0.Imm must he ensured. When cutting corrugated automobile bodysheet for example, a good quality cut can only be achieved with automatic clearance control. In the following, a method of automatic clearance control is described using the assistance of a noncontact capacitive sensor system. The copper nozzle of the laser cutting head acts as the electrode of the clearance sensor. The nozzle electrode and the workpiece build a small variable capacitance depending on the clearance. A change of clearance also changes the capacitance, which in turn influences a high frequency oscillator circuit. This shift in frequency is then converted into an analogue DC signal, which can be used to operate a servo motor control for the positioning of the laser cutting head in a closed loop servo system. Laser cutting heads with clearance sensor nozzles of different shapes, suited fur most applications in the industry, with focal lengths from 2.5" to 5" have been developed. They are capable to cut metal sheet from 0.2 to 12 mm of thickness, using CO2-lasers with output power up to 2.5 kW. For special applications involving difficult workpiece topographies in automobile production applications special "trunk" nozzles have been developed. For 5-axis cutting machines and robots, new laser cutting heads with integrated nozzle sensors in combination with a high dynamic Z-axis motor drive are in a stage of development.

  11. Design and Laboratory Validation of a Capacitive Sensor for Measuring the Recession of Thin-Layered Ablator

    NASA Technical Reports Server (NTRS)

    Noffz, Gregory K.; Bowman, Michael P.

    1996-01-01

    Flight vehicles are typically instrumented with subsurface thermocouples to estimate heat transfer at the surface using inverse analysis procedures. If the vehicle has an ablating heat shield, however, temperature time histories from subsurface thermocouples no longer provide enough information to estimate heat flux at the surface. In this situation, the geometry changes and thermal energy leaves the surface in the form of ablation products. The ablation rate is required to estimate heat transfer to the surface. A new concept for a capacitive sensor has been developed to measure ablator depth using the ablator's dielectric effect on a capacitor's fringe region. Relying on the capacitor's fringe region enables the gage to be flush mounted in the vehicle's permanent structure and not intrude into the ablative heat shield applied over the gage. This sensor's design allows nonintrusive measurement of the thickness of dielectric materials, in particular, the recession rates of low-temperature ablators applied in thin (0.020 to 0.060 in. (0.05 to 0.15 mm)) layers. Twenty capacitive gages with 13 different sensing element geometries were designed, fabricated, and tested. A two-dimensional finite-element analysis was performed on several candidate geometries. Calibration procedures using ablator-simulating shims are described. A one-to-one correspondence between system output and dielectric material thickness was observed out to a thickness of 0.055 in. (1.4 mm) for a material with a permittivity about three times that of air or vacuum. A novel method of monitoring the change in sensor capacitance was developed. This technical memorandum suggests further improvements in gage design and fabrication techniques.

  12. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ya'akobovitz, A.; Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben-Gurion University, Beer-Sheva; Bedewy, M.

    2015-02-02

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we findmore » that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.« less

  13. Studies on the Evaluation Methods for the Food Quality with a Non-contact type Capacitance Sensor.

    NASA Astrophysics Data System (ADS)

    Narumiya, Tadaoki; Hagura, Yoshio

    Changes of capacitance and temperature of ethyl alcohol, hamburger and dough with cheese filling were measured with specially-made measuring devices during the freezing and thawing. The results of measurement of capacitance and temperature suggest a linear correlation for ethyl alcohol as a single constituent substance. The adequate correlation is too estimated from the results of food samples, though the capacitance of food sample varies greatly at the start and end of freezing and thawing process. It has been demonstrated that the quality or physical condition of food sample can be determined easily by the measurement of capacitance using the specially-made devices. Also the quality or physical condition of food can be determined easily by the non-contact and non-destructive measurements of capacitance. A variety application of the present technique is conceivable for the process control of the freezing and thawing foods.

  14. Electrostatic capacitance and Faraday cage behavior of carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Ya'akobovitz, A.; Bedewy, M.; Hart, A. J.

    2015-02-01

    Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

  15. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.

    PubMed

    Chen, Jian Z; Darhuber, Anton A; Troian, Sandra M; Wagner, Sigurd

    2004-10-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles. The capacitive resolution and time response of the current design is approximately 0.03 pF and 10 ms, respectively, which makes possible a number of sensing functions for nanoliter droplets. These include detection of droplet position, size, composition or percentage water uptake for hygroscopic liquids. Its rapid response time allows measurements of the rate of mass loss in evaporating droplets.

  16. Moisture Determination of Nuts and Dry Fruits using a Capacitance Sensor

    USDA-ARS?s Scientific Manuscript database

    Impedance (Z), and phase angle (') of a cylindrical parallel-plate capacitor with in-shell peanuts between the plates was measured earlier, using a CI meter (Chari’s Impedance meter), at 1 and 5 MHz . Capacitance C, was derived from Z and ', and using the C, ', and Z values of a set of peanuts whos...

  17. Non-destructive evaluation of laminated composite plates using dielectrometry sensors

    NASA Astrophysics Data System (ADS)

    Nassr, Amr A.; El-Dakhakhni, Wael W.

    2009-05-01

    The use of composite materials in marine, aerospace and automotive applications is increasing; however, several kinds of damages of composite materials may influence its durability and future applications. In this paper, a methodology was presented for damage detection of laminated composite plates using dielectrometry sensors. The presence of damage in the laminated composite plate leads to changes in its dielectric characteristics, causing variation in the measured capacitance by the sensors. An analytical model was used to analyse the influence of different sensor parameters on the output signals and to optimize sensor design. Two-dimensional finite element (FE) simulations were performed to assess the validity of the analytical results and to evaluate other sensor design-related parameters. To experimentally verify the model, the dielectric permittivity of the composite plate was measured. In addition, a glass fibre reinforced polymer (GFRP) laminated plate containing pre-fabricated slots through its thickness to simulate delamination and water intrusion defects was inspected in a laboratory setting. Excellent agreements were found between the experimental capacitance response signals and those predicated from the FE simulations. This cost-effective technique can be used for rapid damage screening, regular scheduled inspection, or as a permanent sensor network within the composite system.

  18. Embedding piezoresistive pressure sensors to obtain online pressure profiles inside fiber composite laminates.

    PubMed

    Moghaddam, Maryam Kahali; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-03-27

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy's law in porous media to control the resin flow during infusion.

  19. Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing.

    PubMed

    Jin, Hanbyul; Jung, Sungchul; Kim, Junhyung; Heo, Sanghyun; Lim, Jaeik; Park, Wonsang; Chu, Hye Yong; Bien, Franklin; Park, Kibog

    2017-09-07

    We introduce a new type of multi-functional capacitive sensor that can sense several different external stimuli. It is fabricated only with polydimethylsiloxane (PDMS) films and silver nanowire electrodes by using selective oxygen plasma treatment method without photolithography and etching processes. Differently from the conventional single-capacitor multi-functional sensors, our new multi-functional sensor is composed of two vertically-stacked capacitors (dual-capacitor). The unique dual-capacitor structure can detect the type and strength of external stimuli including curvature, pressure, strain, and touch with clear distinction, and it can also detect the surface-normal directionality of curvature, pressure, and touch. Meanwhile, the conventional single-capacitor sensor has ambiguity in distinguishing curvature and pressure and it can detect only the strength of external stimulus. The type, directionality, and strength of external stimulus can be determined based on the relative capacitance changes of the two stacked capacitors. Additionally, the logical flow reflected on a tree structure with its branches reaching the direction and strength of the corresponding external stimulus unambiguously is devised. This logical flow can be readily implemented in the sensor driving circuit if the dual-capacitor sensor is commercialized actually in the future.

  20. Testing of the LISA pathfinder GRS

    NASA Astrophysics Data System (ADS)

    Antonucci, Federica; Cavalleri, Antonella; Ciani, Giacomo; Congedo, Giuseppe; Dolesi, Rita; de Marchi, Fabrizio; Ferraioli, Luigi; Hueller, Mauro; Nicolodi, Daniele; Tombolato, David; Vitale, Stefano; Wass, Peter J.; Weber, William J.

    The ESA/NASA mission,LISA (Laser Interferometric Space Antenna), will measure gravita-tional waves emitted by astronomical sources, galactic and extra-galactic, at frequencies 10-4 to 10-1 Hz. LISA is a 5-million-km arm-length interferometer whose mirrors are test masses which must be nominally free-falling to a level which does not exceed 3 · 10-15 ms-2 Hz -1/2 in acceleration. LISA Pathfinder is a technology demonstration mission which will show that the relative parasitic acceleration between two masses on one spacecraft can be lower than 3 · 10-14 ms-2 Hz -1/2 , at frequencies around 1 mHz -one order of magnitude larger than LISA's goal. At the core of the LISA Pathfinder experiment is the GRS (gravitational reference sensor), a capacitive sensor with mm gaps used to measure the position of the test mass and actuate its position in 6-degrees-of-freedom. Testing the purity of free-fall for LISA Pathfinder on-ground is achieved using a torsion pendulum which allows us to measure force disturbances at a level relevant to LISA Pathfinder. We will present the latest campaign of tests of the LISA Pathfinder GRS using the 4-test-mass torsion pendulum facility aimed at measuring force-noise sources (responsible for the parasitic acceleration) for LISA Pathfinder in its frequency band. Our GRS , is the LISA Pathfinder flight-model replica, and its testing is crucial in verifying the design and performance of the flight instrument and measuring many of the unwanted disturbances which can limit the performance of LISA and LISA pathfinder. The measurements concern the dependence of the force on the test mass position in the sensor and their electrostatic coupling, electrostatic fields due to surface-potential variations and thermal gradients.

  1. Damage Detection/Locating System Providing Thermal Protection

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Jones, Thomas W. (Inventor); Taylor, Bryant D. (Inventor); Qamar, A. Shams (Inventor)

    2010-01-01

    A damage locating system also provides thermal protection. An array of sensors substantially tiles an area of interest. Each sensor is a reflective-surface conductor having operatively coupled inductance and capacitance. A magnetic field response recorder is provided to interrogate each sensor before and after a damage condition. Changes in response are indicative of damage and a corresponding location thereof.

  2. A Probabilistic Mass Estimation Algorithm for a Novel 7- Channel Capacitive Sample Verification Sensor

    NASA Technical Reports Server (NTRS)

    Wolf, Michael

    2012-01-01

    A document describes an algorithm created to estimate the mass placed on a sample verification sensor (SVS) designed for lunar or planetary robotic sample return missions. A novel SVS measures the capacitance between a rigid bottom plate and an elastic top membrane in seven locations. As additional sample material (soil and/or small rocks) is placed on the top membrane, the deformation of the membrane increases the capacitance. The mass estimation algorithm addresses both the calibration of each SVS channel, and also addresses how to combine the capacitances read from each of the seven channels into a single mass estimate. The probabilistic approach combines the channels according to the variance observed during the training phase, and provides not only the mass estimate, but also a value for the certainty of the estimate. SVS capacitance data is collected for known masses under a wide variety of possible loading scenarios, though in all cases, the distribution of sample within the canister is expected to be approximately uniform. A capacitance-vs-mass curve is fitted to this data, and is subsequently used to determine the mass estimate for the single channel s capacitance reading during the measurement phase. This results in seven different mass estimates, one for each SVS channel. Moreover, the variance of the calibration data is used to place a Gaussian probability distribution function (pdf) around this mass estimate. To blend these seven estimates, the seven pdfs are combined into a single Gaussian distribution function, providing the final mean and variance of the estimate. This blending technique essentially takes the final estimate as an average of the estimates of the seven channels, weighted by the inverse of the channel s variance.

  3. Analysis of Fluid Gauge Sensor for Zero or Microgravity Conditions using Finite Element Method

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Doiron, Terence a.

    2007-01-01

    In this paper the Finite Element Method (FEM) is presented for mass/volume gauging of a fluid in a tank subjected to zero or microgravity conditions. In this approach first mutual capacitances between electrodes embedded inside the tank are measured. Assuming the medium properties the mutual capacitances are also estimated using FEM approach. Using proper non-linear optimization the assumed properties are updated by minimizing the mean square error between estimated and measured capacitances values. Numerical results are presented to validate the present approach.

  4. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing.

    PubMed

    Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L

    2018-03-13

    Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.

  5. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    DOEpatents

    Warren, Oden L.; Asif, S. A. Syed; Cyrankowski, Edward; Kounev, Kalin

    2010-09-21

    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.-

  6. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    DOEpatents

    Warren, Oden L; Asif, Syed Amanula Syed; Cyrankowski, Edward; Kounev, Kalin

    2013-06-04

    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.

  7. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers

    PubMed Central

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-01-01

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/Hz at 50 kHz, which corresponds to 100 μg/Hz. PMID:28042830

  8. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.

    PubMed

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-12-30

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  9. Characterisation of capacitive field-effect sensors with a nanocrystalline-diamond film as transducer material for multi-parameter sensing.

    PubMed

    Abouzar, M H; Poghossian, A; Razavi, A; Williams, O A; Bijnens, N; Wagner, P; Schöning, M J

    2009-01-01

    The feasibility of a capacitive field-effect EDIS (electrolyte-diamond-insulator-semiconductor) platform for multi-parameter sensing is demonstrated by realising EDIS sensors with an O-terminated nanocrystalline-diamond (NCD) film as transducer material for the detection of pH and penicillin concentration as well as for the label-free electrical monitoring of adsorption and binding of charged macromolecules, like polyelectrolytes. The NCD films were grown on p-Si-SiO(2) substrates by microwave plasma-enhanced chemical vapour deposition. To obtain O-terminated surfaces, the NCD films were treated in an oxidising medium. The NCD-based field-effect sensors have been characterised by means of constant-capacitance method. The average pH sensitivity of the O-terminated NCD film was 40 mV/pH. A low detection limit of 5 microM and a high penicillin G sensitivity of 65-70 mV/decade has been obtained for an EDIS penicillin biosensor with the adsorptively immobilised enzyme penicillinase. Alternating potential changes, having tendency to decrease with increasing the number of adsorbed polyelectrolyte layers, have been observed after the layer-by-layer deposition of polyelectrolyte multilayers, using positively charged PAH (poly (allylamine hydrochloride)) and a negatively charged PSS (poly (sodium 4-styrene sulfonate)) as a model system. The response mechanism of the developed EDIS sensors is discussed.

  10. Novel Corrosion Sensor for Vision 21 Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng Ban; Bharat Soni

    2007-03-31

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indicationmore » of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall goal of this project is to develop a technology for on-line fireside corrosion monitoring. This objective is achieved by the laboratory development of sensors and instrumentation, testing them in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. This project successfully developed two types of sensors and measurement systems, and successful tested them in a muffle furnace in the laboratory. The capacitance sensor had a high fabrication cost and might be more appropriate in other applications. The low-cost resistance sensor was tested in a power plant burning eastern bituminous coals. The results show that the fireside corrosion measurement system can be used to determine the corrosion rate at waterwall and superheater locations. Electron microscope analysis of the corroded sensor surface provided detailed picture of the corrosion process.« less

  11. Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    NASA Technical Reports Server (NTRS)

    Prinz, F. B.

    1991-01-01

    Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm.

  12. Wireless Sensing System Using Open-circuit, Electrically-conductive Spiral-trace Sensor

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2013-01-01

    A wireless sensing system includes a sensor made from an electrical conductor shaped to form an open-circuit, electrically-conductive spiral trace having inductance and capacitance. In the presence of a time-varying magnetic field, the sensor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to the sensor and wirelessly detects the sensor's response frequency, amplitude and bandwidth.

  13. Fringe Capacitance of a Parallel-Plate Capacitor.

    ERIC Educational Resources Information Center

    Hale, D. P.

    1978-01-01

    Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)

  14. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor.

    PubMed

    Kojima, Yuki; Shigeta, Ryo; Miyamoto, Naoya; Shirahama, Yasutomo; Nishioka, Kazuhiro; Mizoguchi, Masaru; Kawahara, Yoshihiro

    2016-08-15

    Soil moisture is an important property for agriculture, but currently commercialized soil moisture sensors are too expensive for many farmers. The objective of this study is to develop a low-cost soil moisture sensor using capacitors on a film substrate and a capacitive touch integrated circuit. The performance of the sensor was evaluated in two field experiments: a grape field and a mizuna greenhouse field. The developed sensor captured dynamic changes in soil moisture at 10, 20, and 30 cm depth, with a period of 10-14 days required after sensor installation for the contact between capacitors and soil to settle down. The measured soil moisture showed the influence of individual sensor differences, and the influence masked minor differences of less than 0.05 m³·m(-3) in the soil moisture at different locations. However, the developed sensor could detect large differences of more than 0.05 m³·m(-3), as well as the different magnitude of changes, in soil moisture. The price of the developed sensor was reduced to 300 U.S. dollars and can be reduced even more by further improvements suggested in this study and by mass production. Therefore, the developed sensor will be made more affordable to farmers as it requires low financial investment, and it can be utilized for decision-making in irrigation.

  15. Low-Cost Soil Moisture Profile Probe Using Thin-Film Capacitors and a Capacitive Touch Sensor

    PubMed Central

    Kojima, Yuki; Shigeta, Ryo; Miyamoto, Naoya; Shirahama, Yasutomo; Nishioka, Kazuhiro; Mizoguchi, Masaru; Kawahara, Yoshihiro

    2016-01-01

    Soil moisture is an important property for agriculture, but currently commercialized soil moisture sensors are too expensive for many farmers. The objective of this study is to develop a low-cost soil moisture sensor using capacitors on a film substrate and a capacitive touch integrated circuit. The performance of the sensor was evaluated in two field experiments: a grape field and a mizuna greenhouse field. The developed sensor captured dynamic changes in soil moisture at 10, 20, and 30 cm depth, with a period of 10–14 days required after sensor installation for the contact between capacitors and soil to settle down. The measured soil moisture showed the influence of individual sensor differences, and the influence masked minor differences of less than 0.05 m3·m−3 in the soil moisture at different locations. However, the developed sensor could detect large differences of more than 0.05 m3·m−3, as well as the different magnitude of changes, in soil moisture. The price of the developed sensor was reduced to 300 U.S. dollars and can be reduced even more by further improvements suggested in this study and by mass production. Therefore, the developed sensor will be made more affordable to farmers as it requires low financial investment, and it can be utilized for decision-making in irrigation. PMID:27537881

  16. Time varying voltage combustion control and diagnostics sensor

    DOEpatents

    Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy D [Morgantown, WV; Huckaby, E David [Morgantown, WV; Fincham, William [Fairmont, WV

    2011-04-19

    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  17. Frequency scanning capaciflector for capacitively determining the material properties

    NASA Technical Reports Server (NTRS)

    Campbell, Charles E. (Inventor)

    1996-01-01

    A capaciflector sensor system scanned in frequency is used to detect the permittivity of the material of an object being sensed. A capaciflector sensor element, coupled to current-measuring voltage follower circuitry, is driven by a frequency swept oscillator and generates an output which corresponds to capacity as a function of the input frequency. This swept frequency information is fed into apparatus e.g. a digital computer for comparing the shape of the capacitance vs. frequency curve against characteristic capacitor vs. frequency curves for a variety of different materials which are stored, for example, in a digital memory of the computer or a database. Using a technique of pattern matching, a determination is made as to the identification of the material. Also, when desirable, the distance between the sensor and the object can be determined.

  18. Integration of Low-Power ASIC and MEMS Sensors for Monitoring Gastrointestinal Tract Using a Wireless Capsule System.

    PubMed

    Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2018-01-01

    This paper presents a wireless capsule microsystem to detect and monitor the pH, pressure, and temperature of the gastrointestinal tract in real time. This research contributes to the integration of sensors (microfabricated capacitive pH, capacitive pressure, and resistive temperature sensors), frequency modulation and pulse width modulation based interface IC circuits, microcontroller, and transceiver with meandered conformal antenna for the development of a capsule system. The challenges associated with the system miniaturization, higher sensitivity and resolution of sensors, and lower power consumption of interface circuits are addressed. The layout, PCB design, and packaging of a miniaturized wireless capsule, having diameter of 13 mm and length of 28 mm, have successfully been implemented. A data receiver and recorder system is also designed to receive physiological data from the wireless capsule and to send it to a computer for real-time display and recording. Experiments are performed in vitro using a stomach model and minced pork as tissue simulating material. The real-time measurements also validate the suitability of sensors, interface circuits, and meandered antenna for wireless capsule applications.

  19. Commercial Capaciflector

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

  20. A CMOS micromachined capacitive tactile sensor with integrated readout circuits and compensation of process variations.

    PubMed

    Tsai, Tsung-Heng; Tsai, Hao-Cheng; Wu, Tien-Keng

    2014-10-01

    This paper presents a capacitive tactile sensor fabricated in a standard CMOS process. Both of the sensor and readout circuits are integrated on a single chip by a TSMC 0.35 μm CMOS MEMS technology. In order to improve the sensitivity, a T-shaped protrusion is proposed and implemented. This sensor comprises the metal layer and the dielectric layer without extra thin film deposition, and can be completed with few post-processing steps. By a nano-indenter, the measured spring constant of the T-shaped structure is 2.19 kNewton/m. Fully differential correlated double sampling capacitor-to-voltage converter (CDS-CVC) and reference capacitor correction are utilized to compensate process variations and improve the accuracy of the readout circuits. The measured displacement-to-voltage transductance is 7.15 mV/nm, and the sensitivity is 3.26 mV/μNewton. The overall power dissipation is 132.8 μW.

  1. Predicting ion specific capacitances of supercapacitors due to quantum ionic interactions.

    PubMed

    Parsons, Drew F

    2014-08-01

    A new theoretical framework is now available to help explain ion specific (Hofmeister) effects. All measurements in physical chemistry show ion specificity, inexplicable by classical electrostatic theories. These ignore ionic dispersion forces that change ionic adsorption. We explored ion specificity in supercapacitors using a modified Poisson-Boltzmann approach that includes ionic dispersion energies. We have applied ab initio quantum chemical methods to determine required ion sizes and ion polarisabilities. Our model represents graphite electrodes through their optical dielectric spectra. The electrolyte was 1.2 M Li salt in propylene carbonate, using the common battery anions, PF6(-), BF4(-) and ClO4(-). We also investigated the perhalate series with BrO4(-) and IO4(-). The capacitance C=dσ/dψ was calculated from the predicted electrode surface charge σ of each electrode with potential ψ between electrodes. Compared to the purely electrostatic calculation, the capacitance of a positively charged graphite electrode was enhanced by more than 15%, with PF6(-) showing >50% increase in capacitance. IO4(-) provided minimal enhancement. The enhancement is due to adsorption of both anions and cations, driven by ionic dispersion forces. The Hofmeister series in the single-electrode capacitance was PF6(-)>BF4(-)>ClO4(-)>BrO4(-)>IO4(-) . When the graphite electrode was negatively charged, the perhalates provided almost no enhancement of capacitance, while PF6(-) and BF4(-) decreased capacitance by about 15%. Due to the asymmetric impact of nonelectrostatic ion interactions, the capacitances of positive and negative electrodes are not equal. The capacitance of a supercapacitor should therefore be reported as two values rather than one, similar to the matrix of mutual capacitances used in multielectrode devices. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Microstrip transmission line for soil moisture measurement

    NASA Astrophysics Data System (ADS)

    Chen, Xuemin; Li, Jing; Liang, Renyue; Sun, Yijie; Liu, C. Richard; Rogers, Richard; Claros, German

    2004-12-01

    Pavement life span is often affected by the amount of voids in the base and subgrade soils, especially moisture content in pavement. Most available moisture sensors are based on the capacitive sensing using planar blades. Since the planar sensor blades are fabricated on the same surface to reduce the overall size of the sensor, such structure cannot provide very high accuracy for moisture content measurement. As a consequence, a typical capacitive moisture sensor has an error in the range of 30%. A more accurate measurement is based on the time domain refelctometer (TDR) measurement. However, typical TDR system is fairly expensive equipment, very large in size, and difficult to operate, the moisture content measurement is limited. In this paper, a novel microstrip transmission line based moisture sensor is presented. This sensor uses the phase shift measurement of RF signal going through a transmission line buried in the soil to be measured. Since the amplitude of the transmission measurement is a strong function of the conductivity (loss of the media) and the imaginary part of dielectric constant, and the phase is mainly a strong function of the real part of the dielectric constant, measuring phase shift in transmission mode can directly obtain the soil moisture information. This sensor was designed and implemented. Sensor networking was devised. Both lab and field data show that this sensor is sensitive and accurate.

  3. Capacitive Sensing of Intercalated H2O Molecules Using Graphene.

    PubMed

    Olson, Eric J; Ma, Rui; Sun, Tao; Ebrish, Mona A; Haratipour, Nazila; Min, Kyoungmin; Aluru, Narayana R; Koester, Steven J

    2015-11-25

    Understanding the interactions of ambient molecules with graphene and adjacent dielectrics is of fundamental importance for a range of graphene-based devices, particularly sensors, where such interactions could influence the operation of the device. It is well-known that water can be trapped underneath graphene and its host substrate; however, the electrical effect of water beneath graphene and the dynamics of how the interfacial water changes with different ambient conditions has not been quantified. Here, using a metal-oxide-graphene variable-capacitor (varactor) structure, we show that graphene can be used to capacitively sense the intercalation of water between graphene and HfO2 and that this process is reversible on a fast time scale. Atomic force microscopy is used to confirm the intercalation and quantify the displacement of graphene as a function of humidity. Density functional theory simulations are used to quantify the displacement of graphene induced by intercalated water and also explain the observed Dirac point shifts as being due to the combined effect of water and oxygen on the carrier concentration in the graphene. Finally, molecular dynamics simulations indicate that a likely mechanism for the intercalation involves adsorption and lateral diffusion of water molecules beneath the graphene.

  4. Embedding Piezoresistive Pressure Sensors to Obtain Online Pressure Profiles Inside Fiber Composite Laminates

    PubMed Central

    Kahali Moghaddam, Maryam; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-01-01

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy’s law in porous media to control the resin flow during infusion. PMID:25825973

  5. Simulation on measurement of five-DOF motion errors of high precision spindle with cylindrical capacitive sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wang, Wen; Xiang, Kui; Lu, Keqing; Fan, Zongwei

    2015-02-01

    This paper describes a novel cylindrical capacitive sensor (CCS) to measure the spindle five degree-of-freedom (DOF) motion errors. The operating principle and mathematical models of the CCS are presented. Using Ansoft Maxwell software to calculate the different capacitances in different configurations, structural parameters of end face electrode are then investigated. Radial, axial and tilt motions are also simulated by making comparisons with the given displacements and the simulation values respectively. It could be found that the proposed CCS has a high accuracy for measuring radial motion error when the average eccentricity is about 15 μm. Besides, the maximum relative error of axial displacement is 1.3% when the axial motion is within [0.7, 1.3] mm, and the maximum relative error of the tilt displacement is 1.6% as rotor tilts around a single axis within [-0.6, 0.6]°. Finally, the feasibility of the CCS for measuring five DOF motion errors is verified through simulation and analysis.

  6. Electrical capacitance volume tomography with high contrast dielectrics using a cuboid sensor geometry

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.

    2007-05-01

    An electrical capacitance volume tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 × 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This paper presents a method of reconstructing images of high contrast dielectric materials using only the self-capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminium structure inserted at different positions within the sensing region. Comparisons with standard two-dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.

  7. Nanothorn electrodes for ionic polymer-metal composite artificial muscles

    PubMed Central

    Palmre, Viljar; Pugal, David; Kim, Kwang J.; Leang, Kam K.; Asaka, Kinji; Aabloo, Alvo

    2014-01-01

    Ionic polymer-metal composites (IPMCs) have recently received tremendous interest as soft biomimetic actuators and sensors in various bioengineering and human affinity applications, such as artificial muscles and actuators, aquatic propulsors, robotic end-effectors, and active catheters. Main challenges in developing biomimetic actuators are the attainment of high strain and actuation force at low operating voltage. Here we first report a nanostructured electrode surface design for IPMC comprising platinum nanothorn assemblies with multiple sharp tips. The newly developed actuator with the nanostructured electrodes shows a new way to achieve highly enhanced electromechanical performance over existing flat-surfaced electrodes. We demonstrate that the formation and growth of the nanothorn assemblies at the electrode interface lead to a dramatic improvement (3- to 5-fold increase) in both actuation range and blocking force at low driving voltage (1–3 V). These advances are related to the highly capacitive properties of nanothorn assemblies, increasing significantly the charge transport during the actuation process. PMID:25146561

  8. A clamp fixture with interdigital capacitive sensor for in situ evaluation of wire insulation

    NASA Astrophysics Data System (ADS)

    Sheldon, Robert T.; Bowler, Nicola

    2014-02-01

    An interdigital capacitive sensor has been designed and optimized for testing aircraft wires by applying a quasinumerical model developed and reported previously. The sensor consists of two patches of interdigitated electrodes, connected by a long signal bus strip, that are intended to conform to two sides of an insulated wire. The electrodes are deposited using photolithography upon a 25.4-μm-thick Kapton® polyimide film. The two electrode patches are attached to the two jaws of a plastic spring-loaded clamp, with each jaw having a milled groove designed such that the electrodes conform to the curved surface of the insulated wire. An SMA connector and cable connect between the electrodes on the clamp and an LCR meter. Segments of pristine M5086/2 aircraft wire, each 10 cm long, were immersed in fluids commonly found in aircraft environments, to cause accelerated chemical degradation. The effects of Jet A fuel, deicing fluid, hydraulic fluid, aircraft cleaner, isopropyl alcohol and distilled water were studied. The frequency-dependent capacitance and dissipation factor of one pristine wire segment and of those degraded in the six fluid environments were measured within the frequency range 100 Hz to 1 MHz. Significant changes in capacitance and dissipation factor were observed for all degraded wires, compared with results for the pristine sample, suggesting the feasibility of detecting insulation degradation in the field. The results were also consistent with those of a similar experiment performed on sheets of Nylon 6, the material that comprises the outermost layer of M5086/2 wire.

  9. A contact-free respiration monitor for smart bed and ambulatory monitoring applications.

    PubMed

    Hart, Adam; Tallevi, Kevin; Wickland, David; Kearney, Robert E; Cafazzo, Joseph A

    2010-01-01

    The development of a contact-free respiration monitor has a broad range of clinical applications in the home and hospital setting. Current approaches suffer from a variety of problems including unreliability, low sensitivity, and high cost. This work describes a novel approach to contact-free respiration monitoring that addresses these shortcomings by employing a highly sensitive capacitance sensor to detect variations in capacitive coupling caused by breathing. A prototype system consisting of a synthetic-metallic pad, sensor electronics, and iPhone interface was built and its performance compared experimentally to the gold standard technique (Respiratory Inductance Plethysmography) on both a healthy volunteer and SimMan robotic mannequin. The prototype sensor effectively captured respiratory movements over breathing rates of 5-55 bpm; achieving an average spectral correlation of 0.88 (CI: 0.86-0.90) and 0.95 (CI: 0.95-0.96) to the gold standard using the SimMan and healthy volunteer respectively.

  10. Robust design of an inkjet-printed capacitive sensor for position tracking of a MOEMS-mirror in a Michelson interferometer setup

    NASA Astrophysics Data System (ADS)

    Faller, Lisa-Marie; Zangl, Hubert

    2017-05-01

    To guarantee high performance of Micro Optical Electro Mechanical Systems (MOEMS), precise position feedback is crucial. To overcome drawbacks of widely used optical feedback, we propose an inkjet-printed capacitive position sensor as smart packaging solution. Printing processes suffer from tolerances in excess of those from standard processes. Thus, FEM simulations covering assumed tolerances of the system are adopted. These simulations are structured following a Design Of Computer Experiments (DOCE) and are then employed to determine a optimal sensor design. Based on the simulation results, statistical models are adopted for the dynamic system. These models are to be used together with specifically designed hardware, considered to cope with challenging requirements of ≍50nm position accuracy at 10MS/s with 1000μm measurement range. Noise analysis is performed considering the influence of uncertainties to assess resolution and bandwidth capabilities.

  11. A High Resolution Capacitive Sensing System for the Measurement of Water Content in Crude Oil

    PubMed Central

    Aslam, Muhammad Zubair; Tang, Tong Boon

    2014-01-01

    This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ±50 ppm of water content in crude oil was achieved by the proposed design. PMID:24967606

  12. Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors.

    PubMed

    Zhang, Yao; Ma, Rui; Zhen, Xue V; Kudva, Yogish C; Bühlmann, Philippe; Koester, Steven J

    2017-11-08

    A novel graphene-based variable capacitor (varactor) that senses glucose based on the quantum capacitance effect was successfully developed. The sensor utilizes a metal-oxide-graphene varactor device structure that is inherently compatible with passive wireless sensing, a key advantage for in vivo glucose sensing. The graphene varactors were functionalized with pyrene-1-boronic acid (PBA) by self-assembly driven by π-π interactions. Successful surface functionalization was confirmed by both Raman spectroscopy and capacitance-voltage characterization of the devices. Through glucose binding to the PBA, the glucose concentration in the buffer solutions modulates the level of electrostatic doping of the graphene surface to different degrees, which leads to capacitance changes and Dirac voltage shifts. These responses to the glucose concentration were shown to be reproducible and reversible over multiple measurement cycles, suggesting promise for eventual use in wireless glucose monitoring.

  13. A high resolution capacitive sensing system for the measurement of water content in crude oil.

    PubMed

    Zubair, Muhammad; Tang, Tong Boon

    2014-06-25

    This paper presents the design of a non-intrusive system to measure ultra-low water content in crude oil. The system is based on a capacitance to phase angle conversion method. Water content is measured with a capacitance sensor comprising two semi-cylindrical electrodes mounted on the outer side of a glass tube. The presence of water induces a capacitance change that in turn converts into a phase angle, with respect to a main oscillator. A differential sensing technique is adopted not only to ensure high immunity against temperature variation and background noise, but also to eliminate phase jitter and amplitude variation of the main oscillator that could destabilize the output. The complete capacitive sensing system was implemented in hardware and experiment results using crude oil samples demonstrated that a resolution of ± 50 ppm of water content in crude oil was achieved by the proposed design.

  14. Self-calibrated humidity sensor in CMOS without post-processing.

    PubMed

    Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke

    2012-01-01

    A 1.1 μW power dissipation, voltage-output humidity sensor with 10% relative humidity accuracy was developed in the LFoundry 0.15 μm CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a humidity-sensitive layer of Intervia Photodielectric 8023D-10, a CMOS capacitance to voltage converter, and the self-calibration circuitry.

  15. Soil water sensors for irrigation management-What works, what doesn't, and why

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling can be greatly improved if accurate soil water content data are available. There are a plethora of available soil water sensing systems, but those that are practical for irrigation scheduling are divided into two major types: the frequency domain (capacitance) sensors and the t...

  16. Sensitive Capacitive-type Hydrogen Sensor Based on Ni Thin Film in Different Hydrogen Concentrations.

    PubMed

    Pour, Ghobad Behzadi; Aval, Leila Fekri; Eslami, Shahnaz

    2018-04-01

    Hydrogen sensors are micro/nano-structure that are used to locate hydrogen leaks. They are considered to have fast response/recovery time and long lifetime as compared to conventional gas sensors. In this paper, fabrication of sensitive capacitive-type hydrogen gas sensor based on Ni thin film has been investigated. The C-V curves of the sensor in different hydrogen concentrations have been reported. Dry oxidation was done in thermal chemical vapor deposition furnace (TCVD). For oxidation time of 5 min, the oxide thickness was 15 nm and for oxidation time 10 min, it was 20 nm. The Ni thin film as a catalytic metal was deposited on the oxide film using electron gun deposition. Two MOS sensors were compared with different oxide film thickness and different hydrogen concentrations. The highest response of the two MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 87.5% and 65.4% respectively. The fast response times for MOS sensors with 15 nm and 20 nm oxide film thickness in 4% hydrogen concentration was 8 s and 21 s, respectively. By increasing the hydrogen concentration from 1% to 4%, the response time for MOS sensor (20nm oxide thickness), was decreased from 28s to 21s. The recovery time was inversely increased from 237s to 360s. The experimental results showed that the MOS sensor based on Ni thin film had a quick response and a high sensitivity.

  17. Wirelessly Interrogated Wear or Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2010-01-01

    Sensors for monitoring surface wear and/or temperature without need for wire connections have been developed. Excitation and interrogation of these sensors are accomplished by means of a magnetic-field-response recorder. In a sensor of the present type as in the previously reported ones, the capacitance and, thus, the resonance frequency, varies as a known function of the quantity of interest that one seeks to determine. Hence, the resonance frequency is measured and used to calculate the quantity of interest.

  18. A 3D Faraday Shield for Interdigitated Dielectrometry Sensors and Its Effect on Capacitance

    PubMed Central

    Risos, Alex; Long, Nicholas; Hunze, Arvid; Gouws, Gideon

    2016-01-01

    Interdigitated dielectrometry sensors (IDS) are capacitive sensors investigated to precisely measure the relative permittivity (ϵr) of insulating liquids. Such liquids used in the power industry exhibit a change in ϵr as they degrade. The IDS ability to measure ϵr in-situ can potentially reduce maintenance, increase grid stability and improve safety. Noise from external electric field sources is a prominent issue with IDS. This paper investigates the novelty of applying a Faraday cage onto an IDS as a 3D shield to reduce this noise. This alters the spatially distributed electric field of an IDS affecting its sensing properties. Therefore, dependency of the sensor’s signal with the distance to a shield above the IDS electrodes has been investigated experimentally and theoretically via a Green’s function calculation and FEM. A criteria of the shield’s distance s = s0 has been defined as the distance which gives a capacitance for the IDS equal to 1 − e−2=86.5% of its unshielded value. Theoretical calculations using a simplified geometry gave a constant value for s0/λ = 1.65, where λ is the IDS wavelength. In the experiment, values for s0 were found to be lower than predicted as from theory and the ratio s0/λ variable. This was analyzed in detail and it was found to be resulting from the specific spatial structure of the IDS. A subsequent measurement of a common insulating liquid with a nearby noise source demonstrates a considerable reduction in the standard deviation of the relative permittivity from σunshielded=±9.5% to σshielded=±0.6%. The presented findings enhance our understanding of IDS in respect to the influence of a Faraday shield on the capacitance, parasitic capacitances of the IDS and external noise impact on the measurement of ϵr. PMID:28042868

  19. Self-bridging of vertical silicon nanowires and a universal capacitive force model for spontaneous attraction in nanostructures.

    PubMed

    Sun, Zhelin; Wang, Deli; Xiang, Jie

    2014-11-25

    Spontaneous attractions between free-standing nanostructures have often caused adhesion or stiction that affects a wide range of nanoscale devices, particularly nano/microelectromechanical systems. Previous understandings of the attraction mechanisms have included capillary force, van der Waals/Casimir forces, and surface polar charges. However, none of these mechanisms universally applies to simple semiconductor structures such as silicon nanowire arrays that often exhibit bunching or adhesions. Here we propose a simple capacitive force model to quantitatively study the universal spontaneous attraction that often causes stiction among semiconductor or metallic nanostructures such as vertical nanowire arrays with inevitably nonuniform size variations due to fabrication. When nanostructures are uniform in size, they share the same substrate potential. The presence of slight size differences will break the symmetry in the capacitive network formed between the nanowires, substrate, and their environment, giving rise to electrostatic attraction forces due to the relative potential difference between neighboring wires. Our model is experimentally verified using arrays of vertical silicon nanowire pairs with varied spacing, diameter, and size differences. Threshold nanowire spacing, diameter, or size difference between the nearest neighbors has been identified beyond which the nanowires start to exhibit spontaneous attraction that leads to bridging when electrostatic forces overcome elastic restoration forces. This work illustrates a universal understanding of spontaneous attraction that will impact the design, fabrication, and reliable operation of nanoscale devices and systems.

  20. Integration of a Capacitive EIS Sensor into a FIA System for pH and Penicillin Determination

    PubMed Central

    Rolka, David; Poghossian, Arshak; Schöning, Michael J.

    2004-01-01

    A field-effect based capacitive EIS (electrolyte-insulator-semiconductor) sensor with a p-Si-SiO2-Ta2O5 structure has been successfully integrated into a commercial FIA (flow-injection analysis) system and system performances have been proven and optimised for pH and penicillin detection. A flow-through cell was designed taking into account the requirement of a variable internal volume (from 12 μl up to 48 μl) as well as an easy replacement of the EIS sensor. FIA parameters (sample volume, flow rate, distance between the injection valve and the EIS sensor) have been optimised in terms of high sensitivity and reproducibility as well as a minimum dispersion of the injected sample zone. An acceptable compromise between different FIA parameters has been found. For the cell design used in this study, best results have been achieved with a flow rate of 1.4 ml/min, distance between the injection valve and the EIS sensor of 6.5 cm, probe volume of 0.75 ml, cell internal volume of 12 μl. A sample throughput of at least 15 samples/h was typically obtained.

  1. Modeling and design of a capacitive microwave power sensor for X-band applications based on GaAs technology

    NASA Astrophysics Data System (ADS)

    Cui, Yan; Liao, Xiaoping

    2012-05-01

    In the work, modeling and design of a capacitive microwave power sensor employing the MEMS plate with clamped-clamped and free-free edges are presented. A novel analytical model of the sensor is established in detail. Through the function of mode shapes presented, the natural frequency can be solved by the Rayleigh-Ritz method. And based on the generalized coordinate introduced, the displacement of the plate with the irradiation of microwave power can be solved. Furthermore, the sensitivity for the power is also derived. Then the detailed consideration of the design and simulation of the microwave characteristic of the sensor are also presented. The linearly graded ground planar in the coplanar waveguide is employed to avoid step discontinuity. The fabrication process is compatible with GaAs MMIC technology completely, also described in detail. The measurement of the proposed sensor indicates a sensitivity of 7.2 fF W-1 and superior return and insertion losses (S11 and S21), less than -22.16 dB and -0.25 dB, respectively, up to 12 GHz, suggesting that it can be available for microwave power detecting in the X-band frequency range.

  2. Numerical study on response time of a parallel plate capacitive polyimide humidity sensor based on microhole upper electrode

    NASA Astrophysics Data System (ADS)

    Zhou, Wenhe; He, Xuan; Wu, Jianyun; Wang, Liangbi; Wang, Liangcheng

    2017-07-01

    The parallel plate capacitive humidity sensor based on the grid upper electrode is considered to be a promising one in some fields which require a humidity sensor with better dynamic characteristics. To strengthen the structure and balance the electric charge of the grid upper electrode, a strip is needed. However, it is the strip that keeps the dynamic characteristics of the sensor from being further improved. The numerical method is time- and cost-saving, but the numerical study on the response time of the sensor is just of bits and pieces. The numerical models presented by these studies did not consider the porosity effect of the polymer film on the dynamic characteristics. To overcome the defect of the grid upper electrode, a new structure of the upper electrode is provided by this paper first, and then a model considering the porosity effects of the polymer film on the dynamic characteristics is presented and validated. Finally, with the help of software FLUENT, parameter effects on the response time of the humidity sensor based on the microhole upper electrode are studied by the numerical method. The numerical results show that the response time of the microhole upper electrode sensor is 86% better than that of the grid upper electrode sensor, the response time of humidity sensor can be improved by reducing the hole spacing, increasing the aperture, reducing film thickness, and reasonably enlarging the porosity of the film.

  3. On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems.

    PubMed

    Tomassini, R; Rossi, G; Brouckaert, J-F

    2016-10-01

    A simultaneous blade tip timing (BTT) and blade tip clearance (BTC) measurement system enables the determination of turbomachinery blade vibrations and ensures the monitoring of the existing running gaps between the blade tip and the casing. This contactless instrumentation presents several advantages compared to the well-known telemetry system with strain gauges, at the cost of a more complex data processing procedure. The probes used can be optical, capacitive, eddy current as well as microwaves, everyone with its dedicated electronics and many existing different signal processing algorithms. Every company working in this field has developed its own processing method and sensor technology. Hence, repeating the same test with different instrumentations, the answer is often different. Moreover, rarely it is possible to achieve reliability for in-service measurements. Developments are focused on innovative instrumentations and a common standard. This paper focuses on the results achieved using a novel magnetoresistive sensor for simultaneous tip timing and tip clearance measurements. The sensor measurement principle is described. The sensitivity to gap variation is investigated. In terms of measurement of vibrations, experimental investigations were performed at the Air Force Institute of Technology (ITWL, Warsaw, Poland) in a real aeroengine and in the von Karman Institute (VKI) R2 compressor rig. The advantages and limitations of the magnetoresistive probe for turbomachinery testing are highlighted.

  4. On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems

    NASA Astrophysics Data System (ADS)

    Tomassini, R.; Rossi, G.; Brouckaert, J.-F.

    2016-10-01

    A simultaneous blade tip timing (BTT) and blade tip clearance (BTC) measurement system enables the determination of turbomachinery blade vibrations and ensures the monitoring of the existing running gaps between the blade tip and the casing. This contactless instrumentation presents several advantages compared to the well-known telemetry system with strain gauges, at the cost of a more complex data processing procedure. The probes used can be optical, capacitive, eddy current as well as microwaves, everyone with its dedicated electronics and many existing different signal processing algorithms. Every company working in this field has developed its own processing method and sensor technology. Hence, repeating the same test with different instrumentations, the answer is often different. Moreover, rarely it is possible to achieve reliability for in-service measurements. Developments are focused on innovative instrumentations and a common standard. This paper focuses on the results achieved using a novel magnetoresistive sensor for simultaneous tip timing and tip clearance measurements. The sensor measurement principle is described. The sensitivity to gap variation is investigated. In terms of measurement of vibrations, experimental investigations were performed at the Air Force Institute of Technology (ITWL, Warsaw, Poland) in a real aeroengine and in the von Karman Institute (VKI) R2 compressor rig. The advantages and limitations of the magnetoresistive probe for turbomachinery testing are highlighted.

  5. Adaptive electric potential sensors for smart signal acquisition and processing

    NASA Astrophysics Data System (ADS)

    Prance, R. J.; Beardsmore-Rust, S.; Prance, H.; Harland, C. J.; Stiffell, P. B.

    2007-07-01

    Current applications of the Electric Potential Sensor operate in a strongly (capacitively) coupled limit, with the sensor physically close to or touching the source. This mode of operation screens the sensor effectively from the majority of external noise. To date however the full capability of these sensors operating in a remote mode has not been realised outside of a screened environment (Faraday cage). This paper describes the results of preliminary work in tailoring the response of the sensors to particular signals and so reject background noise, thereby enhancing both the dynamic range and signal to noise ratio significantly.

  6. A simple sensing mechanism for wireless, passive pressure sensors.

    PubMed

    Drazan, John F; Wassick, Michael T; Dahle, Reena; Beardslee, Luke A; Cady, Nathaniel C; Ledet, Eric H

    2016-08-01

    We have developed a simple wireless pressure sensor that consists of only three electrically isolated components. Two conductive spirals are separated by a closed cell foam that deforms when exposed to changing pressures. This deformation changes the capacitance and thus the resonant frequency of the sensors. Prototype sensors were submerged and wirelessly interrogated while being exposed to physiologically relevant pressures from 10 to 130 mmHg. Sensors consistently exhibited a sensitivity of 4.35 kHz/mmHg which is sufficient for resolving physiologically relevant pressure changes in vivo. These simple sensors have the potential for in vivo pressure sensing.

  7. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, James W.

    1991-01-01

    A method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources.

  8. Mutual capacitance of liquid conductors in deformable tactile sensing arrays

    NASA Astrophysics Data System (ADS)

    Li, Bin; Fontecchio, Adam K.; Visell, Yon

    2016-01-01

    Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arrays of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.

  9. A humidity sensing organic-inorganic composite for environmental monitoring.

    PubMed

    Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S

    2013-03-14

    In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.

  10. A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring

    PubMed Central

    Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S.

    2013-01-01

    In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ∼200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ∼31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved. PMID:23493124

  11. Mutual capacitance of liquid conductors in deformable tactile sensing arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin; Fontecchio, Adam K.; Visell, Yon

    2016-01-04

    Advances in highly deformable electronics are needed in order to enable emerging categories of soft computing devices ranging from wearable electronics, to medical devices, and soft robotic components. The combination of highly elastic substrates with intrinsically stretchable conductors holds the promise of enabling electronic sensors that can conform to curved objects, reconfigurable displays, or soft biological tissues, including the skin. Here, we contribute sensing principles for tactile (mechanical image) sensors based on very low modulus polymer substrates with embedded liquid metal microfluidic arrays. The sensors are fabricated using a single-step casting method that utilizes fine nylon filaments to produce arraysmore » of cylindrical channels on two layers. The liquid metal (gallium indium alloy) conductors that fill these channels readily adopt the shape of the embedding membrane, yielding levels of deformability greater than 400%, due to the use of soft polymer substrates. We modeled the sensor performance using electrostatic theory and continuum mechanics, yielding excellent agreement with experiments. Using a matrix-addressed capacitance measurement technique, we are able to resolve strain distributions with millimeter resolution over areas of several square centimeters.« less

  12. Wheel-Based Ice Sensors for Road Vehicles

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey; Fink, Patrick W.; Ngo, Phong H.; Carl, James R.

    2011-01-01

    Wheel-based sensors for detection of ice on roads and approximate measurement of the thickness of the ice are under development. These sensors could be used to alert drivers to hazardous local icing conditions in real time. In addition, local ice-thickness measurements by these sensors could serve as guidance for the minimum amount of sand and salt required to be dispensed locally onto road surfaces to ensure safety, thereby helping road crews to utilize their total supplies of sand and salt more efficiently. Like some aircraft wing-surface ice sensors described in a number of previous NASA Tech Briefs articles, the wheelbased ice sensors are based, variously, on measurements of changes in capacitance and/or in radio-frequency impedance as affected by ice on surfaces. In the case of ice on road surfaces, the measurable changes in capacitance and/or impedance are attributable to differences among the electric permittivities of air, ice, water, concrete, and soil. In addition, a related phenomenon that can be useful for distinguishing between ice and water is a specific transition in the permittivity of ice at a temperature- dependent frequency. This feature also provides a continuous calibration of the sensor to allow for changing road conditions. Several configurations of wheel-based ice sensors are under consideration. For example, in a simple two-electrode capacitor configuration, one of the electrodes would be a circumferential electrode within a tire, and the ground would be used as the second electrode. Optionally, the steel belts that are already standard parts of many tires could be used as the circumferential electrodes. In another example (see figure), multiple electrodes would be embedded in rubber between the steel belt and the outer tire surface. These electrodes would be excited in alternating polarities at one or more suitable audio or radio frequencies to provide nearly continuous monitoring of the road surface under the tire. In still another example, one or more microwave stripline(s) or coplanar waveguide(s) would be embedded in a tire near its outer surface; in comparison with lower-frequency capacitive devices, a device of this type could be more sensitive.

  13. Modeling of electrical capacitance tomography with the use of complete electrode model

    NASA Astrophysics Data System (ADS)

    Fang, Weifu

    2016-10-01

    We introduce the complete electrode model in the modeling of electrical capacitance tomography (ECT), which extends the model with the commonly used model for electrodes. We show that the solution of the complete electrode model approaches the solution of the corresponding common electrode model as the impedance effect on the electrodes vanishes. We also derive the nonlinear relation between capacitance and permitivity and the sensitivity maps with respect to both the permittivity and the impedance constants, and present a finite difference scheme in polar coordinates for the case of circular ECT sensors that retains the continuity of displacement current with piecewise-constant permitivities.

  14. CAN RUNNERS PERCEIVE CHANGES IN HEEL CUSHIONING AS THE SHOE AGES WITH INCREASED MILEAGE?

    PubMed

    Cornwall, Mark W; McPoil, Thomas G

    2017-08-01

    For those runners who utilize footwear and have a rearfoot strike pattern, the durability of the midsole heel region has been shown to deteriorate as shoe mileage increases. The purpose of this study was threefold: 1) to determine if the runner can self-report changes in heel cushioning properties of the midsole after an extended period of distance running, 2) to determine if force and plantar pressures measured in the heel region of the midsole using a capacitance sensor insole change after running 640 km, and 3) to determine if a durometer could be used clinically to objectively measure changes in the hardness of the material in the heel region of the midsole. Cross-sectional Study. Fifteen recreational runners voluntarily consented to participate and were provided with a new pair of running shoes. Each participant's running style was observed and classified as having a rearfoot strike pattern. Inclusion criteria included running at least 24 km per week, experience running on a treadmill, no history of lower extremity congenital or traumatic deformity, or acute injury six months prior to the start of the study. The ability of each participant to self-perceive changes in shoe cushioning, comfort and fit was assessed using the Footwear Comfort Assessment Tool (FCAT). In-shoe plantar pressures and vertical forces were assessed using a capacitance sensor insole while runners ran over a 42-meter indoor runway. A Shore A durometer was used to measure the hardness of the midsole in the heel region. All measures were completed at baseline (zero km) and after running 160, 320, 480, and 640 km. In addition to descriptive statistics, a repeated measures analysis of variance was used to determine if the FCAT, pressures, forces, or midsole hardness changed because of increased running mileage. While plantar pressures and vertical forces were significantly reduced in the midsole heel region, none of the runners self-reported a significant reduction in heel cushioning based on FCAT scores after running 640 km. The use of a durometer provided an objective measure of the changes in the heel region of the midsole that closely matched the reductions observed in pressure and force values. The results indicated that runners who have a rearfoot strike pattern will have a 16% to 33% reduction in the amount of cushioning in the heel region of the midsole after running 480 km. Although there were significant reductions in heel cushioning, the experienced recreational runners in this study were not able to self-perceive these changes after running 640 km. In addition, the use of a durometer provides a quick and accurate way to assess changes in the hardness of the heel region of the midsole as running mileage increases. 3, Controlled laboratory study.

  15. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-07-09

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  16. A Soft Parallel Kinematic Mechanism.

    PubMed

    White, Edward L; Case, Jennifer C; Kramer-Bottiglio, Rebecca

    2018-02-01

    In this article, we describe a novel holonomic soft robotic structure based on a parallel kinematic mechanism. The design is based on the Stewart platform, which uses six sensors and actuators to achieve full six-degree-of-freedom motion. Our design is much less complex than a traditional platform, since it replaces the 12 spherical and universal joints found in a traditional Stewart platform with a single highly deformable elastomer body and flexible actuators. This reduces the total number of parts in the system and simplifies the assembly process. Actuation is achieved through coiled-shape memory alloy actuators. State observation and feedback is accomplished through the use of capacitive elastomer strain gauges. The main structural element is an elastomer joint that provides antagonistic force. We report the response of the actuators and sensors individually, then report the response of the complete assembly. We show that the completed robotic system is able to achieve full position control, and we discuss the limitations associated with using responsive material actuators. We believe that control demonstrated on a single body in this work could be extended to chains of such bodies to create complex soft robots.

  17. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M. (Inventor); Hancock, Bruce R. (Inventor)

    2017-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  18. Silicon base plate with low parasitic electrical interference for sensors

    NASA Technical Reports Server (NTRS)

    Tang, Tony K. (Inventor); Gutierrez, Roman C. (Inventor)

    2002-01-01

    A microgyroscope has a baseplate made of the same material as the rest of the microgyroscope. The baseplate is a silicon baseplate having a heavily p-doped epilayer covered by a thick dielectric film and metal electrodes. The metal electrodes are isolated from the ground plane by the dielectric. This provides very low parasitic capacitive coupling between the electrodes. The thick dielectric reduces the capacitance between the electrodes and the ground plane.

  19. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Smith, Roger M (Inventor); Hancock, Bruce R. (Inventor); Cole, David (Inventor); Seshadri, Suresh (Inventor)

    2013-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  20. Parametric Phase-Sensitive Detector Using Two-cell SQUID

    DTIC Science & Technology

    2010-08-01

    an attenuator of -20 dB. The microwave was fed into the coplanar resonator by a coplanar capacitance of 9 fF, and corresponding response was coupled...transmission line between the two coupled coplanar capacitances . With a network analyzer, the resonant frequency was confirmed to be 8.985 GHz and the...microwave directional sensors based on two-cell SQUIDs. Two SQUID circuits with different values of McCumber parameter βc have been tested. Observed

  1. Effect of boundary conditions on magnetocapacitance effect in a ring-type magnetoelectric structure

    NASA Astrophysics Data System (ADS)

    Zhang, Juanjuan

    2017-12-01

    By considering the nonlinear magneto-elastic coupling relationships of magnetostrictive materials, an analytical model is proposed. The resonance frequencies can be accurately predicted by this theoretical model, and they are in good agreement with experimental data. Subsequently, the magnetocapacitance effect in a ring-type magnetoelectric (ME) structure with different boundary conditions is investigated, and it is found that various mechanical boundaries, the frequency, the magnetic field, the geometric size, and the interface bonding significantly affect the capacitance of the ME structure. Further, additional resonance frequencies can be predicted by considering appropriate imperfect interface bonding. Finally, the influence of an external force on the capacitance is studied. The result shows that an external force on the boundary changes the capacitance, but has only a weak influence on the resonance frequency.

  2. Non-verbal communication through sensor fusion

    NASA Astrophysics Data System (ADS)

    Tairych, Andreas; Xu, Daniel; O'Brien, Benjamin M.; Anderson, Iain A.

    2016-04-01

    When we communicate face to face, we subconsciously engage our whole body to convey our message. In telecommunication, e.g. during phone calls, this powerful information channel cannot be used. Capturing nonverbal information from body motion and transmitting it to the receiver parallel to speech would make these conversations feel much more natural. This requires a sensing device that is capable of capturing different types of movements, such as the flexion and extension of joints, and the rotation of limbs. In a first embodiment, we developed a sensing glove that is used to control a computer game. Capacitive dielectric elastomer (DE) sensors measure finger positions, and an inertial measurement unit (IMU) detects hand roll. These two sensor technologies complement each other, with the IMU allowing the player to move an avatar through a three-dimensional maze, and the DE sensors detecting finger flexion to fire weapons or open doors. After demonstrating the potential of sensor fusion in human-computer interaction, we take this concept to the next level and apply it in nonverbal communication between humans. The current fingerspelling glove prototype uses capacitive DE sensors to detect finger gestures performed by the sending person. These gestures are mapped to corresponding messages and transmitted wirelessly to another person. A concept for integrating an IMU into this system is presented. The fusion of the DE sensor and the IMU combines the strengths of both sensor types, and therefore enables very comprehensive body motion sensing, which makes a large repertoire of gestures available to nonverbal communication over distances.

  3. A flexible dual-mode proximity sensor based on cooperative sensing for robot skin applications

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Cai, Xia; Kan, Wenqing; Qiu, Shihua; Guo, Xiaohui; Liu, Caixia; Liu, Ping

    2017-08-01

    A flexible dual-mode proximity sensor has been designed and implemented, which is capable of combining capacitive-resistive detection in this paper. The capacitive type proximity sensor detecting is defined as mode-C, and the resistive type proximity sensor detecting is defined as mode-R. The characteristics of the proximity sensor are as follows: (1) the theoretical mode is developed which indicates that this proximity sensor can reflect proximity information accurately; (2) both sensing modes are vertically integrated into a sandwich-like chip with an 8 mm × 12 mm unit area. The thickness of a mode-R sensing material (graphene nanoplatelets) and mode-C dielectric (the mixture of carbon black and silicone rubber) is 1 mm and 2.5 mm, respectively; (3) for mode-R, the linearity of temperature-resistance curve can achieve 0.998 in the temperature range from 25°C to 65°C. And for mode-C, various materials can be successfully detected with fast response and high reversibility. Meanwhile, the study compensated the influence of object temperature to ensure mode-C properly works. A cooperative sensing test shows that R-C dual modes sense effectively which can enlarge the sensing distance compared with the single mode proximity sensor. The fabrication of this sensor is convenient, and the integrity of a flexible sandwich-like structure based on dual modes is beneficial to form arrays, which is suitable to be used in skin-like sensing applications.

  4. L-C Measurement Acquisition Method for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, B. Douglas; Shams, Qamar A.; Fox, Robert L.

    2003-01-01

    This paper describes a measurement acquisition method for aerospace systems that eliminates the need for sensors to have physical connection to a power source (i.e., no lead wires) or to data acquisition equipment. Furthermore, the method does not require the sensors to be in proximity to any form of acquisition hardware. Multiple sensors can be interrogated using this method. The sensors consist of a capacitor, C(p), whose capacitance changes with changes to a physical property, p, electrically connected to an inductor, L. The method uses an antenna to broadcast electromagnetic energy that electrically excites one or more inductive-capacitive sensors via Faraday induction. This method facilitates measurements that were not previously possible because there was no practical means of providing power and data acquisition electrical connections to a sensor. Unlike traditional sensors, which measure only a single physical property, the manner in which the sensing element is interrogated simultaneously allows measurement of at least two unrelated physical properties (e.g., displacement rate and fluid level) by using each constituent of the L-C element. The key to using the method for aerospace applications is to increase the distance between the L-C elements and interrogating antenna; develop all key components to be non-obtrusive and to develop sensing elements that can easily be implemented. Techniques that have resulted in increased distance between antenna and sensor will be presented. Fluid-level measurements and pressure measurements using the acquisition method are demonstrated in the paper.

  5. Twistable and Stretchable Sandwich Structured Fiber for Wearable Sensors and Supercapacitors.

    PubMed

    Choi, Changsoon; Lee, Jae Myeong; Kim, Shi Hyeong; Kim, Seon Jeong; Di, Jiangtao; Baughman, Ray H

    2016-12-14

    Twistable and stretchable fiber-based electrochemical devices having high performance are needed for future applications, including emerging wearable electronics. Weavable fiber redox supercapacitors and strain sensors are here introduced, which comprise a dielectric layer sandwiched between functionalized buckled carbon nanotube electrodes. On the macroscopic scale, the sandwiched core rubber of the fiber acts as a dielectric layer for capacitive strain sensing and as an elastomeric substrate that prevents electrical shorting and irreversible structural changes during severe mechanical deformations. On the microscopic scale, the buckled CNT electrodes effectively absorb tensile or shear stresses, providing an essentially constant electrical conductance. Consequently, the sandwich fibers provide the dual functions of (1) strain sensing, by generating approximately 115.7% and 26% capacitance changes during stretching (200%) and giant twist (1700 rad·m -1 or 270 turns·m -1 ), respectively, and (2) electrochemical energy storage, providing high linear and areal capacitances (2.38 mF·cm -1 and 11.88 mF·cm -2 ) and retention of more than 95% of initial energy storage capability under large mechanical deformations.

  6. Towards Phosphate Detection in Hydroponics Using Molecularly Imprinted Polymer Sensors.

    PubMed

    Storer, Christopher S; Coldrick, Zachary; Tate, Daniel J; Donoghue, Jack Marsden; Grieve, Bruce

    2018-02-10

    An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N -allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate, and trimethyl phosphate. A cross-interference study between phosphate, nitrate, and sulfate was carried out for the MIP materials using an inductance, capacitance, and resistance (LCR) meter. Capacitance measurements were taken by applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP.

  7. Towards Phosphate Detection in Hydroponics Using Molecularly Imprinted Polymer Sensors

    PubMed Central

    Storer, Christopher S.; Coldrick, Zachary; Donoghue, Jack Marsden

    2018-01-01

    An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N-allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate, and trimethyl phosphate. A cross-interference study between phosphate, nitrate, and sulfate was carried out for the MIP materials using an inductance, capacitance, and resistance (LCR) meter. Capacitance measurements were taken by applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP. PMID:29439386

  8. Flower-like Copper Cobaltite Nanosheets on Graphite Paper as High-Performance Supercapacitor Electrodes and Enzymeless Glucose Sensors.

    PubMed

    Liu, Shude; Hui, K S; Hui, K N

    2016-02-10

    Flower-like copper cobaltite (CuCo2O4) nanosheets anchored on graphite paper have been synthesized using a facile hydrothermal method followed by a postannealing treatment. Supercapacitor electrodes employing CuCo2O4 nanosheets exhibit an enhanced capacitance of 1131 F g(-1) at a current density of 1 A g(-1) compared with previously reported supercapacitor electrodes. The CuCo2O4 electrode delivers a specific capacitance of up to 409 F g(-1) at a current density of as high as 50 A g(-1), and a good long-term cycling stability, with 79.7% of its specific capacitance retained after 5000 cycles at 10 A g(-1). Furthermore, the as-prepared CuCo2O4 nanosheets on graphite paper can be fabricated as electrodes and used as enzymeless glucose sensors, which exhibit good sensitivity (3.625 μA μM(-1) cm(-2)) and an extraordinary linear response ranging up to 320 μM with a low detection limit (5 μM).

  9. Passive wireless strain monitoring of tyres using capacitance and tuning frequency changes

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ryosuke; Todoroki, Akira

    2005-08-01

    In-service strain monitoring of tyres of automobiles is quite effective for improving the reliability of tyres and anti-lock braking systems (ABS). Conventional strain gauges have high stiffness and require lead wires. Therefore, they are cumbersome for tyre strain measurements. In a previous study, the authors proposed a new wireless strain monitoring method that adopts the tyre itself as a sensor, with an oscillating circuit. This method is very simple and useful, but it requires a battery to activate the oscillating circuit. In the present study, the previous method for wireless tyre monitoring is improved to produce a passive wireless sensor. A specimen made from a commercially available tyre is connected to a tuning circuit comprising an inductance and a capacitance as a condenser. The capacitance change of the tyre alters the tuning frequency. This change of the tuned radio wave facilitates wireless measurement of the applied strain of the specimen without any power supply. This passive wireless method is applied to a specimen and the static applied strain is measured. Experiments demonstrate that the method is effective for passive wireless strain monitoring of tyres.

  10. Measurement strategy for rectangular electrical capacitance tomography sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Jiamin; Ge, Ruihuan; Qiu, Guizhi

    2014-04-11

    To investigate the influence of the measurement strategy for the rectangular electrical capacitance tomography (ECT) sensor, a Finite Element Method (FEM) is utilized to create the model for simulation. The simulation was carried out using COMSOL Multiphysics(trade mark, serif) and Matlab(trade mark, serif). The length-width ratio of the rectangular sensing area is 5. Twelve electrodes are evenly arranged surrounding the pipe. The covering ratio of the electrodes is 90%. The capacitances between different electrode pairs are calculated for a bar distribution. The air of the relative permittivity 1.0 and the material of the permittivity 3.0 are used for the calibration.more » The relative permittivity of the second phase is 3.0. The noise free and noise data are used for the image reconstruction using the Linear Back Projection (LBP). The measurement strategies with 1-, 2- and 4- electrode excitation are compared using the correlation coefficient. Preliminary results show that the measurement strategy with 2-electrode excitation outperforms other measurement strategies with 1- or 4-electrode excitation.« less

  11. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat.

    PubMed

    Huang, Xian; Liu, Yuhao; Chen, Kaile; Shin, Woo-Jung; Lu, Ching-Jui; Kong, Gil-Woo; Patnaik, Dwipayan; Lee, Sang-Heon; Cortes, Jonathan Fajardo; Rogers, John A

    2014-08-13

    This paper introduces materials and architectures for ultrathin, stretchable wireless sensors that mount on functional elastomeric substrates for epidermal analysis of biofluids. Measurement of the volume and chemical properties of sweat via dielectric detection and colorimetry demonstrates some capabilities. Here, inductively coupled sensors consisting of LC resonators with capacitive electrodes show systematic responses to sweat collected in microporous substrates. Interrogation occurs through external coils placed in physical proximity to the devices. The substrates allow spontaneous sweat collection through capillary forces, without the need for complex microfluidic handling systems. Furthermore, colorimetric measurement modes are possible in the same system by introducing indicator compounds into the depths of the substrates, for sensing specific components (OH(-) , H(+) , Cu(+) , and Fe(2+) ) in the sweat. The complete devices offer Young's moduli that are similar to skin, thus allowing highly effective and reliable skin integration without external fixtures. Experimental results demonstrate volumetric measurement of sweat with an accuracy of 0.06 μL/mm(2) with good stability and low drift. Colorimetric responses to pH and concentrations of various ions provide capabilities relevant to analysis of sweat. Similar materials and device designs can be used in monitoring other body fluids. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications.

    PubMed

    Nunes, Jivago Serrado; Castro, Nelson; Gonçalves, Sergio; Pereira, Nélson; Correia, Vitor; Lanceros-Mendez, Senentxu

    2017-12-01

    The market for interactive platforms is rapidly growing, and touchscreens have been incorporated in an increasing number of devices. Thus, the area of smart objects and devices is strongly increasing by adding interactive touch and multimedia content, leading to new uses and capabilities. In this work, a flexible screen printed sensor matrix is fabricated based on silver ink in a polyethylene terephthalate (PET) substrate. Diamond shaped capacitive electrodes coupled with conventional capacitive reading electronics enables fabrication of a highly functional capacitive touchpad, and also allows for the identification of marked objects. For the latter, the capacitive signatures are identified by intersecting points and distances between them. Thus, this work demonstrates the applicability of a low cost method using royalty-free geometries and technologies for the development of flexible multitouch touchpads for the implementation of interactive and object recognition applications.

  13. Marked Object Recognition Multitouch Screen Printed Touchpad for Interactive Applications

    PubMed Central

    Nunes, Jivago Serrado; Castro, Nelson; Pereira, Nélson; Correia, Vitor; Lanceros-Mendez, Senentxu

    2017-01-01

    The market for interactive platforms is rapidly growing, and touchscreens have been incorporated in an increasing number of devices. Thus, the area of smart objects and devices is strongly increasing by adding interactive touch and multimedia content, leading to new uses and capabilities. In this work, a flexible screen printed sensor matrix is fabricated based on silver ink in a polyethylene terephthalate (PET) substrate. Diamond shaped capacitive electrodes coupled with conventional capacitive reading electronics enables fabrication of a highly functional capacitive touchpad, and also allows for the identification of marked objects. For the latter, the capacitive signatures are identified by intersecting points and distances between them. Thus, this work demonstrates the applicability of a low cost method using royalty-free geometries and technologies for the development of flexible multitouch touchpads for the implementation of interactive and object recognition applications. PMID:29194414

  14. In vivo skin imaging for hydration and micro relief-measurement.

    PubMed

    Kardosova, Z; Hegyi, V

    2013-01-01

    We present the results of our work with device used for measurement of skin capacitance before and after application of moisturizing creams and results of experiment performed on cellulose filter papers soaked with different solvents. The measurements were performed by a device built on capacitance sensor, which provides an investigator with a capacitance image of the skin. The capacitance values are coded in a range of 256 gray levels then the skin hydration can be characterized using parameters derived from gray level histogram by specific software. The images obtained by device allow a highly precise observation of skin topography. Measuring of skin capacitance brings new, objective, reliable information about topographical, physical and chemical parameters of the skin. The study shows that there is a good correlation between the average grayscale values and skin hydration. In future works we need to complete more comparison studies, interpret the average grayscale values to skin hydration levels and use it for follow-up of dynamics of skin micro-relief and hydration changes (Fig. 6, Ref. 15).

  15. Field Evaluation of Polymer Capacitive Humidity Sensors for Bowen Ratio Energy Balance Flux Measurements

    PubMed Central

    Savage, Michael J.

    2010-01-01

    The possibility of reliable, reasonably accurate and relatively inexpensive estimates of sensible heat and latent energy fluxes was investigated using a commercial combination thin-film polymer capacitive relative humidity and adjacent temperature sensor instrument. Long-term and unattended water vapour pressure profile difference measurements using low-power combination instruments were compared with those from a cooled dewpoint mirror hygrometer, the latter often used with Bowen ratio energy balance (BREB) systems. An error analysis, based on instrument relative humidity and temperature errors, was applied for various capacitive humidity instrument models. The main disadvantage of a combination capacitive humidity instrument is that two measurements, relative humidity and temperature, are required for estimation of water vapour pressure as opposed to one for a dewpoint hygrometer. In a laboratory experiment using an automated procedure, water vapour pressure differences generated using a reference dewpoint generator were measured using a commercial model (Dew-10) dewpoint hygrometer and a combination capacitive humidity instrument. The laboratory measurement comparisons showed that, potentially, an inexpensive model combination capacitive humidity instrument (CS500 or HMP50), or for improved results a slightly more expensive model (HMP35C or HMP45C), could substitute for the more expensive dewpoint hygrometer. In a field study, in a mesic grassland, the water vapour pressure measurement noise for the combination capacitive humidity instruments was greater than that for the dewpoint hygrometer. The average water vapour pressure profile difference measured using a HMP45C was highly correlated with that from a dewpoint hygrometer with a slope less than unity. Water vapour pressure measurements using the capacitive humidity instruments were not as accurate, compared to those obtained using a dewpoint hygrometer, but the resolution magnitudes for the profile difference measurements were less than the minimum of 0.01 kPa required for BREB measurements when averaged over 20 min. Furthermore, the longer-term capacitive humidity measurements are more reliable and not dependent on a sensor bias adjustment as is the case for the dewpoint hygrometer. A field comparison of CS500 and HMP45C profile water vapour pressure differences yielded a slope of close to unity. However, the CS500 exhibited more variable water vapour pressure measurements mainly due to its increased variation in temperature measurements compared to the HMP45C. Comparisons between 20-min BREB sensible heat fluxes obtained using a HMP45C and a dewpoint hygrometer yielded a slope of almost unity. BREB sensible heat fluxes measured using a HMP45C were reasonably well correlated with those obtained using a surface-layer scintillometer and eddy covariance (slope of 0.9629 and 0.9198 respectively). This reasonable agreement showed that a combination capacitive humidity instrument, with similar relative humidity (RH) and temperature error magnitudes of at most 2% RH and 0.3 °C respectively, and similar measurement time response, would be an adequate and less expensive substitute for a dewpoint hygrometer. Furthermore, a combination capacitive humidity instrument requires no servicing compared to a dewpoint hygrometer which requires a bias adjustment and mirror cleaning each week. These findings make unattended BREB measurements of sensible heat flux and evaporation cheaper and more reliable with the system easier to assemble and service and with reduced instrument power. PMID:22163625

  16. Continuous-Reading Cryogen Level Sensor

    NASA Technical Reports Server (NTRS)

    Barone, F. E.; Fox, E.; Macumber, S.

    1984-01-01

    Two pressure transducers used in system for measuring amount of cryogenic liquid in tank. System provides continuous measurements accurate within 0.03 percent. Sensors determine pressure in liquid and vapor in tank. Microprocessor uses pressure difference to compute mass of cryogenic liquid in tank. New system allows continuous sensing; unaffected by localized variations in composition and density as are capacitance-sensing schemes.

  17. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.

    2016-07-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  18. Experimental Comparison of two Active Vibration Control Approaches: Velocity Feedback and Negative Capacitance Shunt Damping

    NASA Technical Reports Server (NTRS)

    Beck, Benjamin; Schiller, Noah

    2013-01-01

    This paper outlines a direct, experimental comparison between two established active vibration control techniques. Active vibration control methods, many of which rely upon piezoelectric patches as actuators and/or sensors, have been widely studied, showing many advantages over passive techniques. However, few direct comparisons between different active vibration control methods have been made to determine the performance benefit of one method over another. For the comparison here, the first control method, velocity feedback, is implemented using four accelerometers that act as sensors along with an analog control circuit which drives a piezoelectric actuator. The second method, negative capacitance shunt damping, consists of a basic analog circuit which utilizes a single piezoelectric patch as both a sensor and actuator. Both of these control methods are implemented individually using the same piezoelectric actuator attached to a clamped Plexiglas window. To assess the performance of each control method, the spatially averaged velocity of the window is compared to an uncontrolled response.

  19. Well logging interpretation of production profile in horizontal oil-water two phase flow pipes

    NASA Astrophysics Data System (ADS)

    Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke

    2012-03-01

    Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.

  20. Thermal Hysteresis of MEMS Packaged Capacitive Pressure Sensor (CPS) Based 3C-SiC

    NASA Astrophysics Data System (ADS)

    Marsi, N.; Majlis, B. Y.; Mohd-Yasin, F.; Hamzah, A. A.; Mohd Rus, A. Z.

    2016-11-01

    Presented herein are the effects of thermal hysteresis analyses of the MEMS packaged capacitive pressure sensor (CPS). The MEMS CPS was employed on Si-on-3C-SiC wafer that was performed using the hot wall low-pressure chemical vapour deposition (LPCVD) reactors at the Queensland Micro and Nanotechnology Center (QMNC), Griffith University and fabricated using the bulk-micromachining process. The MEMS CPS was operated at an extreme temperature up to 500°C and high external pressure at 5.0 MPa. The thermal hysteresis phenomenon that causes the deflection, strain and stress on the 3C-SiC diaphragm spontaneously influence the MEMS CPS performances. The differences of temperature, hysteresis, and repeatability test were presented to demonstrate the functionality of the MEMS packaged CPS. As expected, the output hysteresis has a low hysteresis (less than 0.05%) which has the hardness greater than the traditional silicon. By utilizing this low hysteresis, it was revealed that the MEMS packaged CPS has high repeatability and stability of the sensor.

  1. Automotive sensors: past, present and future

    NASA Astrophysics Data System (ADS)

    Prosser, S. J.

    2007-07-01

    This paper will provide a review of past, present and future automotive sensors. Today's vehicles have become highly complex sophisticated electronic control systems and the majority of innovations have been solely achieved through electronics and the use of advanced sensors. A range of technologies have been used over the past twenty years including silicon microengineering, thick film, capacitive, variable reluctance, optical and radar. The automotive sensor market continues to grow with respect to vehicle production level in recognition of the transition to electronically controlled electrically actuated systems. The environment for these sensors continues to be increasingly challenging with respect to robustness, reliability, quality and cost.

  2. Use of Nanocomposites for Flexible Pressure Sensors =

    NASA Astrophysics Data System (ADS)

    Sepulveda, Alexandra Conceicao Teixeira

    Polymer nanocomposites (PNCs) are defined as polymers bonded with nanoparticles to create materiais with improved properties. The development of this type of material is rapidly emerging as a multidisciplinary research activity, since their final properties can benefit many different fields of application, namely in the development of electrical devices as studied herein. A fabrication technique to produce conductive PNCs was developed in this work and used to fabricate flexible capacitive pressure sensors. The process is based on vertically aligned-carbon nanotubes (A-CNTs) embedded in a flexible and biocompatible matrix of polydimethylsiloxane (PDMS). Thin A-CNTs/PDMS nanocomposite films ( 400 mum) were produced using wetting of as-grown A-CNTs with uncured PDMS and the resulting nanocomposites were used to fabricate flexible pressure sensors. The sensing capability of this A-CNTs/PDMS nanocomposite is attributed to the distinctive combination of mechanical flexibility and electrical properties. The fabricated nanocomposites were characterized and mechanical and electrical properties evaluated. The PDMS is significantly modified by the reinforcing A-CNT fibers, demonstrating non-isotropic (as opposed to the isotropic neat PDMS) elastic properties ali different than the PDMS (Young's modulus of 0.8 MPa), including an anisotropy ratio of 4.8 and increases in the modulus of A-CNTs/PDMS nanocomposites over PDMS by more than 900 % and 100 %, in the CNTs longitudinal and transverse directions, respectively. Regarding the electrical measurements, A-CNTs/PDMS nanocomposites presented an electrical conductivity of 0.35 Sim. The rather low conductivity does not compromise the developed capacitive sensor, but since passive telemetry is required to measure and power the sensor, solutions to overcome this problem were also studied. The configuration of the developed flexible sensor is similar to typical silicon-based capacitive pressure sensors. It is composed of three thin films, where two of them are A-CNTs/PDMS nanocomposites (defining the diaphragm type electrodes) separated by a film made of neat PDMS (defining the dielectric) and its operating principie is based on the change of the deflection of the nanocomposite layers due to the change of an external pressure. The developed flexible pressure sensors tested for pressures between 0 kPa and 100 kPa (operation required to measure the blood pressure in the aneurysm sac) showed good linearity, mainly in the region near to the atmospheric pressure (pressure inside of dielectric ). To demonstrate feasibility for practical applications, the flexible sensor technology was used in a biomedical application, more specifically in the context of abdominal aortic aneurysms. The proposed implantable flexible pressure sensing system (capacitive sensor plus inductor) consists of a mixed technology that uses A-CNTs/nanocomposites to build the capacitar electrodes and flexible printed circuit board (PCB) technology to build an inductor. The complete system was assessed by applying pressures varying from 0 kPa to 100 kPa. The results showed that the flexible sensors responded to pressure variations with a well-defined characteristic curve and oscillation frequencies centered around 5.3 MHz (the sensor receives energy and reflects back its oscillation frequency by means of inductive coupling). Finally, the developed technology to fabricate flexible pressure sensors based on A-CNTs/PDMS nanocomposites proved successful in sensing applications and due to its biocompatibility and versatility, can be used in other fields of application such as portable medical devices and e-textiles (to monitor the vital signs of an individual, such as heart rate and temperature, by using textile substrates with integrated electronics). (Abstract shortened by ProQuest.).

  3. Monolithic pixel development in TowerJazz 180 nm CMOS for the outer pixel layers in the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Berdalovic, I.; Bates, R.; Buttar, C.; Cardella, R.; Egidos Plaja, N.; Hemperek, T.; Hiti, B.; van Hoorne, J. W.; Kugathasan, T.; Mandic, I.; Maneuski, D.; Marin Tobon, C. A.; Moustakas, K.; Musa, L.; Pernegger, H.; Riedler, P.; Riegel, C.; Schaefer, D.; Schioppa, E. J.; Sharma, A.; Snoeys, W.; Solans Sanchez, C.; Wang, T.; Wermes, N.

    2018-01-01

    The upgrade of the ATLAS tracking detector (ITk) for the High-Luminosity Large Hadron Collider at CERN requires the development of novel radiation hard silicon sensor technologies. Latest developments in CMOS sensor processing offer the possibility of combining high-resistivity substrates with on-chip high-voltage biasing to achieve a large depleted active sensor volume. We have characterised depleted monolithic active pixel sensors (DMAPS), which were produced in a novel modified imaging process implemented in the TowerJazz 180 nm CMOS process in the framework of the monolithic sensor development for the ALICE experiment. Sensors fabricated in this modified process feature full depletion of the sensitive layer, a sensor capacitance of only a few fF and radiation tolerance up to 1015 neq/cm2. This paper summarises the measurements of charge collection properties in beam tests and in the laboratory using radioactive sources and edge TCT. The results of these measurements show significantly improved radiation hardness obtained for sensors manufactured using the modified process. This has opened the way to the design of two large scale demonstrators for the ATLAS ITk. To achieve a design compatible with the requirements of the outer pixel layers of the tracker, a charge sensitive front-end taking 500 nA from a 1.8 V supply is combined with a fast digital readout architecture. The low-power front-end with a 25 ns time resolution exploits the low sensor capacitance to reduce noise and analogue power, while the implemented readout architectures minimise power by reducing the digital activity.

  4. RTM Production Monitoring of the A380 Hinge Arm Droop Nose Mechanism: A Multi-Sensor Approach.

    PubMed

    Chiesura, Gabriele; Lamberti, Alfredo; Yang, Yang; Luyckx, Geert; Van Paepegem, Wim; Vanlanduit, Steve; Vanfleteren, Jan; Degrieck, Joris

    2016-06-14

    This research presents a case study of production monitoring on an aerospace composite component: the hinge arm of the droop nose mechanism on the Airbus A380 wing leading edge. A sensor network composed of Fibre Bragg Gratings, capacitive sensors for cure monitoring and thermocouples was embedded in its fibre reinforced lay-up and measurements were acquired throughout its Resin Transfer Moulding production process. Two main challenges had to be overcome: first, the integration of the sensor lines in the existing Resin Transfer Moulding mould without modifying it; second, the demoulding of the component without damaging the sensor lines. The proposed embedding solution has proved successful. The wavelength shifts of the Fibre Bragg Gratings were observed from the initial production stages, over the resin injection, the complete curing of the resin and the cooling-down prior to demoulding. The sensors proved to be sensitive to detecting the resin flow front, vacuum and pressure increase into the mould and the temperature increase caused by the resin curing. Measurements were also acquired during the post-curing cycle. Residual strains during all steps of the process were derived from the sensors' wavelength shift, showing values up to 0.2% in compression. Moreover, the capacitive sensors were able to follow-up the curing degree during the production process. The sensors proved able to detect the resin flow front, whereas thermocouples could not measure an appreciable increase of temperature due to the fact that the resin had the same temperature as the mould.

  5. Effectiveness, active energy produced by molecular motors, and nonlinear capacitance of the cochlear outer hair cell.

    PubMed

    Spector, Alexander A

    2005-06-01

    Cochlear outer hair cells are crucial for active hearing. These cells have a unique form of motility, named electromotility, whose main features are the cell's length changes, active force production, and nonlinear capacitance. The molecular motor, prestin, that drives outer hair cell electromotility has recently been identified. We reveal relationships between the active energy produced by the outer hair cell molecular motors, motor effectiveness, and the capacitive properties of the cell membrane. We quantitatively characterize these relationships by introducing three characteristics: effective capacitance, zero-strain capacitance, and zero-resultant capacitance. We show that zero-strain capacitance is smaller than zero-resultant capacitance, and that the effective capacitance is between the two. It was also found that the differences between the introduced capacitive characteristics can be expressed in terms of the active energy produced by the cell's molecular motors. The effectiveness of the cell and its molecular motors is introduced as the ratio of the motors'active energy to the energy of the externally applied electric field. It is shown that the effectiveness is proportional to the difference between zero-strain and zero-resultant capacitance. We analyze the cell and motor's effectiveness within a broad range of cellular parameters and estimate it to be within a range of 12%-30%.

  6. In-line rotating capacitive torque sensor

    DOEpatents

    Kronberg, J.W.

    1991-09-10

    Disclosed are a method and apparatus for measuring torques developed along a rotating mechanical assembly comprising a rotating inner portion and a stationary outer portion. The rotating portion has an electrically-conductive flexing section fitted between two coaxial shafts in a configuration which varies radially in accordance with applied torque. The stationary portion comprises a plurality of conductive plates forming a surface concentric with and having a diameter slightly larger than the diameter of the rotating portion. The capacitance between the outer, nonrotating and inner, rotating portion varies with changes in the radial configuration of the rotating portion. Signal output varies approximately linearly with torque for small torques, nonlinearly for larger torques. The sensor is preferably surrounded by a conductive shell to minimize electrical interference from external sources. 18 figures.

  7. Method of recording bioelectrical signals using a capacitive coupling

    NASA Astrophysics Data System (ADS)

    Simon, V. A.; Gerasimov, V. A.; Kostrin, D. K.; Selivanov, L. M.; Uhov, A. A.

    2017-11-01

    In this article a technique for the bioelectrical signals acquisition by means of the capacitive sensors is described. A feedback loop for the ultra-high impedance biasing of the input instrumentation amplifier, which provides receiving of the electrical cardiac signal (ECS) through a capacitive coupling, is proposed. The mains 50/60 Hz noise is suppressed by a narrow-band stop filter with an independent notch frequency and quality factor tuning. Filter output is attached to a ΣΔ analog-to-digital converter (ADC), which acquires the filtered signal with a 24-bit resolution. Signal processing board is connected through universal serial bus interface to a personal computer, where ECS in a digital form is recorded and processed.

  8. Study of the Properties of Plessey's Electrocardiographic Capacitive Electrodes for Portable Systems

    NASA Astrophysics Data System (ADS)

    Uvarov, A. A.; Lezhnina, I. A.; Overchuk, K. V.; Starchak, A. S.; Akhmedov, Sh D.; Larioshina, I. A.

    2016-01-01

    Cardiac diseases are still most widely spread in all regions of the world. And more and more devices are invented to satisfy increasing requirements of the patients. One of the perspective technologies in cardiac diagnostics is capacitive sensing ECG electrodes. This article describes a study of the properties of electrocardiographic capacitive electrodes PS25255 from Plessey Semiconductors for portable systems as well as some undocumented parameters of these sensors. We developed special cardiograph using Plessey's electrodes and applied to the number of patients with ischemic heart disease. We paid our attention mostly to the correct transition of the ST segment as it has critical impact on the diagnostics of ischemic heart disease.

  9. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOEpatents

    Britton, Jr., Charles L.; Ericson, M. Nance

    1999-01-01

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature.

  10. A Simple Sensor Model for THUNDER Actuators

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Bryant, Robert G.

    2009-01-01

    A quasi-static (low frequency) model is developed for THUNDER actuators configured as displacement sensors based on a simple Raleigh-Ritz technique. This model is used to calculate charge as a function of displacement. Using this and the calculated capacitance, voltage vs. displacement and voltage vs. electrical load curves are generated and compared with measurements. It is shown this model gives acceptable results and is useful for determining rough estimates of sensor output for various loads, laminate configurations and thicknesses.

  11. Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors

    DTIC Science & Technology

    2006-07-01

    Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors Joshua A . Robinson, Eric S. Snow,* Ştefan C. Bǎdescu, Thomas L. Reinecke, and F...of chemical vapors. We find adsorption at defect sites produces a large electronic response that dominates the SWNT capacitance and conductance...introduction of oxidation defects can be used to enhance sensitivity of a SWNT network sensor to a variety of chemical vapors. The use of single-walled

  12. An integrated signal conditioner for high-frequency inductive position sensors

    NASA Astrophysics Data System (ADS)

    Rahal, Mohamad; Demosthenous, Andreas

    2010-01-01

    This paper describes the design, implementation and evaluation of a signal conditioner application-specific integrated circuit (ASIC) for high-frequency inductive non-contact position sensors. These sensors employ a radio frequency technology based on an antenna planar arrangement and a resonant target, have a high inherent resolution (0.1% of antenna length) and can measure target position over a wide distance range (<0.1 mm to >10 m). However, due to the relatively high-frequency excitation (1 MHz typically) and to the specific layouts of these sensors, there is unwanted capacitive coupling between the transmitter and receiver coils; this type of distortion reduces linearity and resolution. The ASIC, which is the first generation of its kind for this type of sensor, employs a differential mixer topology which suppresses the capacitive coupling offsets. The system architecture and circuit details are presented. The ASIC was fabricated in a 0.6 µm high-voltage CMOS technology occupying an area of 8 mm2. It dissipates about 30 mA from a 24 V power supply. The ASIC was tested with a high-frequency inductive position sensor (with an antenna length of 10.8 cm). The measured input-referred offset due to transmitter crosstalk is on average about 22 µV over a wide phase difference variation (-99° to +117°) between the transmitter and demodulating signals.

  13. A simple capacitive method to evaluate ethanol fuel samples

    NASA Astrophysics Data System (ADS)

    Vello, Tatiana P.; de Oliveira, Rafael F.; Silva, Gustavo O.; de Camargo, Davi H. S.; Bufon, Carlos C. B.

    2017-02-01

    Ethanol is a biofuel used worldwide. However, the presence of excessive water either during the distillation process or by fraudulent adulteration is a major concern in the use of ethanol fuel. High water levels may cause engine malfunction, in addition to being considered illegal. Here, we describe the development of a simple, fast and accurate platform based on nanostructured sensors to evaluate ethanol samples. The device fabrication is facile, based on standard microfabrication and thin-film deposition methods. The sensor operation relies on capacitance measurements employing a parallel plate capacitor containing a conformational aluminum oxide (Al2O3) thin layer (15 nm). The sensor operates over the full range water concentration, i.e., from approximately 0% to 100% vol. of water in ethanol, with water traces being detectable down to 0.5% vol. These characteristics make the proposed device unique with respect to other platforms. Finally, the good agreement between the sensor response and analyses performed by gas chromatography of ethanol biofuel endorses the accuracy of the proposed method. Due to the full operation range, the reported sensor has the technological potential for use as a point-of-care analytical tool at gas stations or in the chemical, pharmaceutical, and beverage industries, to mention a few.

  14. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    NASA Astrophysics Data System (ADS)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.

  15. Chemical vapor detection using a capacitive micromachined ultrasonic transducer.

    PubMed

    Lee, Hyunjoo J; Park, Kwan Kyu; Kupnik, Mario; Oralkan, O; Khuri-Yakub, Butrus T

    2011-12-15

    Distributed sensing of gas-phase chemicals using highly sensitive and inexpensive sensors is of great interest for many defense and consumer applications. In this paper we present ppb-level detection of dimethyl methylphosphonate (DMMP), a common simulant for sarin gas, with a ppt-level resolution using an improved capacitive micromachined ultrasonic transducer (CMUT) as a resonant chemical sensor. The improved CMUT operates at a higher resonant frequency of 47.7 MHz and offers an improved mass sensitivity of 48.8 zg/Hz/μm(2) by a factor of 2.7 compared to the previous CMUT sensors developed. A low-noise oscillator using the CMUT resonant sensor as the frequency-selective device was developed for real-time sensing, which exhibits an Allan deviation of 1.65 Hz (3σ) in the presence of a gas flow; this translates into a mass resolution of 80.5 zg/μm(2). The CMUT resonant sensor is functionalized with a 50-nm thick DKAP polymer developed at Sandia National Laboratory for dimethyl methylphosphonate (DMMP) detection. To demonstrate ppb-level detection of the improved chemical sensor system, the sensor performance was tested at a certified lab (MIT Lincoln Laboratory), which is equipped with an experimental chemical setup that reliably and accurately delivers a wide range of low concentrations down to 10 ppb. We report a high volume sensitivity of 34.5 ± 0.79 pptv/Hz to DMMP and a good selectivity of the polymer to DMMP with respect to dodecane and 1-octanol.

  16. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array

    PubMed Central

    Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K. M.; Mirabbasi, Shahriar; Madden, John David Wyndham

    2017-01-01

    The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface. PMID:28345045

  17. An inverse-modelling approach for frequency response correction of capacitive humidity sensors in ABL research with small remotely piloted aircraft (RPA)

    NASA Astrophysics Data System (ADS)

    Wildmann, N.; Kaufmann, F.; Bange, J.

    2014-09-01

    The measurement of water vapour concentration in the atmosphere is an ongoing challenge in environmental research. Satisfactory solutions exist for ground-based meteorological stations and measurements of mean values. However, carrying out advanced research of thermodynamic processes aloft as well, above the surface layer and especially in the atmospheric boundary layer (ABL), requires the resolution of small-scale turbulence. Sophisticated optical instruments are used in airborne meteorology with manned aircraft to achieve the necessary fast-response measurements of the order of 10 Hz (e.g. LiCor 7500). Since these instruments are too large and heavy for the application on small remotely piloted aircraft (RPA), a method is presented in this study that enhances small capacitive humidity sensors to be able to resolve turbulent eddies of the order of 10 m. The sensor examined here is a polymer-based sensor of the type P14-Rapid, by the Swiss company Innovative Sensor Technologies (IST) AG, with a surface area of less than 10 mm2 and a negligible weight. A physical and dynamical model of this sensor is described and then inverted in order to restore original water vapour fluctuations from sensor measurements. Examples of flight measurements show how the method can be used to correct vertical profiles and resolve turbulence spectra up to about 3 Hz. At an airspeed of 25 m s-1 this corresponds to a spatial resolution of less than 10 m.

  18. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array.

    PubMed

    Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K M; Mirabbasi, Shahriar; Madden, John David Wyndham

    2017-03-01

    The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface.

  19. Universal sensor interface module (USIM)

    NASA Astrophysics Data System (ADS)

    King, Don; Torres, A.; Wynn, John

    1999-01-01

    A universal sensor interface model (USIM) is being developed by the Raytheon-TI Systems Company for use with fields of unattended distributed sensors. In its production configuration, the USIM will be a multichip module consisting of a set of common modules. The common module USIM set consists of (1) a sensor adapter interface (SAI) module, (2) digital signal processor (DSP) and associated memory module, and (3) a RF transceiver model. The multispectral sensor interface is designed around a low-power A/D converted, whose input/output interface consists of: -8 buffered, sampled inputs from various devices including environmental, acoustic seismic and magnetic sensors. The eight sensor inputs are each high-impedance, low- capacitance, differential amplifiers. The inputs are ideally suited for interface with discrete or MEMS sensors, since the differential input will allow direct connection with high-impedance bridge sensors and capacitance voltage sources. Each amplifier is connected to a 22-bit (Delta) (Sigma) A/D converter to enable simultaneous samples. The low power (Delta) (Sigma) converter provides 22-bit resolution at sample frequencies up to 142 hertz (used for magnetic sensors) and 16-bit resolution at frequencies up to 1168 hertz (used for acoustic and seismic sensors). The video interface module is based around the TMS320C5410 DSP. It can provide sensor array addressing, video data input, data calibration and correction. The processor module is based upon a MPC555. It will be used for mode control, synchronization of complex sensors, sensor signal processing, array processing, target classification and tracking. Many functions of the A/D, DSP and transceiver can be powered down by using variable clock speeds under software command or chip power switches. They can be returned to intermediate or full operation by DSP command. Power management may be based on the USIM's internal timer, command from the USIM transceiver, or by sleep mode processing management. The low power detection mode is implemented by monitoring any of the sensor analog outputs at lower sample rates for detection over a software controllable threshold.

  20. Rapid detection of microbial cell abundance in aquatic systems

    DOE PAGES

    Rocha, Andrea M.; Yuan, Quan; Close, Dan M.; ...

    2016-06-01

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less

  1. Rapid detection of microbial cell abundance in aquatic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Andrea M.; Yuan, Quan; Close, Dan M.

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less

  2. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.

  3. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films.

    PubMed

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011

  4. Exploring Capabilities of Electrical Capacitance Tomography Sensor and Velocity Analysis of Two-Phase R-134A Flow Through a Sudden Expansion

    DTIC Science & Technology

    2017-05-01

    SUDDEN EXPANSION 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62203F 6. AUTHOR(S) Joseph Michael Cronin 5d. PROJECT ...heat transfer in order to manage the ever-increasing airframe and engine heat loads. Two-phase liquid-vapor refrigerant systems are one solution for...were compared with pressure drop correlations. 15. SUBJECT TERMS thermal management , two-phase flow, flow visualization, electric capacitance

  5. Effect of noncovalent basal plane functionalization on the quantum capacitance in graphene.

    PubMed

    Ebrish, Mona A; Olson, Eric J; Koester, Steven J

    2014-07-09

    The concentration-dependent density of states in graphene allows the capacitance in metal-oxide-graphene structures to be tunable with the carrier concentration. This feature allows graphene to act as a variable capacitor (varactor) that can be utilized for wireless sensing applications. Surface functionalization can be used to make graphene sensitive to a particular species. In this manuscript, the effect on the quantum capacitance of noncovalent basal plane functionalization using 1-pyrenebutanoic acid succimidyl ester and glucose oxidase is reported. It is found that functionalized samples tested in air have (1) a Dirac point similar to vacuum conditions, (2) increased maximum capacitance compared to vacuum but similar to air, (3) and quantum capacitance "tuning" that is greater than that in vacuum and ambient atmosphere. These trends are attributed to reduced surface doping and random potential fluctuations as a result of the surface functionalization due to the displacement of H2O on the graphene surface and intercalation of a stable H2O layer beneath graphene that increases the overall device capacitance. The results are important for future application of graphene as a platform for wireless chemical and biological sensors.

  6. RTM Production Monitoring of the A380 Hinge Arm Droop Nose Mechanism: A Multi-Sensor Approach

    PubMed Central

    Chiesura, Gabriele; Lamberti, Alfredo; Yang, Yang; Luyckx, Geert; Van Paepegem, Wim; Vanlanduit, Steve; Vanfleteren, Jan; Degrieck, Joris

    2016-01-01

    This research presents a case study of production monitoring on an aerospace composite component: the hinge arm of the droop nose mechanism on the Airbus A380 wing leading edge. A sensor network composed of Fibre Bragg Gratings, capacitive sensors for cure monitoring and thermocouples was embedded in its fibre reinforced lay-up and measurements were acquired throughout its Resin Transfer Moulding production process. Two main challenges had to be overcome: first, the integration of the sensor lines in the existing Resin Transfer Moulding mould without modifying it; second, the demoulding of the component without damaging the sensor lines. The proposed embedding solution has proved successful. The wavelength shifts of the Fibre Bragg Gratings were observed from the initial production stages, over the resin injection, the complete curing of the resin and the cooling-down prior to demoulding. The sensors proved to be sensitive to detecting the resin flow front, vacuum and pressure increase into the mould and the temperature increase caused by the resin curing. Measurements were also acquired during the post-curing cycle. Residual strains during all steps of the process were derived from the sensors’ wavelength shift, showing values up to 0.2% in compression. Moreover, the capacitive sensors were able to follow-up the curing degree during the production process. The sensors proved able to detect the resin flow front, whereas thermocouples could not measure an appreciable increase of temperature due to the fact that the resin had the same temperature as the mould. PMID:27314347

  7. First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors

    NASA Astrophysics Data System (ADS)

    Pernegger, H.; Bates, R.; Buttar, C.; Dalla, M.; van Hoorne, J. W.; Kugathasan, T.; Maneuski, D.; Musa, L.; Riedler, P.; Riegel, C.; Sbarra, C.; Schaefer, D.; Schioppa, E. J.; Snoeys, W.

    2017-06-01

    The upgrade of the ATLAS [1] tracking detector for the High-Luminosity Large Hadron Collider (LHC) at CERN requires novel radiation hard silicon sensor technologies. Significant effort has been put into the development of monolithic CMOS sensors but it has been a challenge to combine a low capacitance of the sensing node with full depletion of the sensitive layer. Low capacitance brings low analog power. Depletion of the sensitive layer causes the signal charge to be collected by drift sufficiently fast to separate hits from consecutive bunch crossings (25 ns at the LHC) and to avoid losing the charge by trapping. This paper focuses on the characterization of charge collection properties and detection efficiency of prototype sensors originally designed in the framework of the ALICE Inner Tracking System (ITS) upgrade [2]. The prototypes are fabricated both in the standard TowerJazz 180nm CMOS imager process [3] and in an innovative modification of this process developed in collaboration with the foundry, aimed to fully deplete the sensitive epitaxial layer and enhance the tolerance to non-ionizing energy loss. Sensors fabricated in standard and modified process variants were characterized using radioactive sources, focused X-ray beam and test beams before and after irradiation. Contrary to sensors manufactured in the standard process, sensors from the modified process remain fully functional even after a dose of 1015neq/cm2, which is the the expected NIEL radiation fluence for the outer pixel layers in the future ATLAS Inner Tracker (ITk) [4].

  8. Comparison of capacitive and radio frequency resonator sensors for monitoring parallelized droplet microfluidic production.

    PubMed

    Conchouso, David; McKerricher, Garret; Arevalo, Arpys; Castro, David; Shamim, Atif; Foulds, Ian G

    2016-08-16

    Scaled-up production of microfluidic droplets, through the parallelization of hundreds of droplet generators, has received a lot of attention to bring novel multiphase microfluidics research to industrial applications. However, apart from droplet generation, other significant challenges relevant to this goal have never been discussed. Examples include monitoring systems, high-throughput processing of droplets and quality control procedures among others. In this paper, we present and compare capacitive and radio frequency (RF) resonator sensors as two candidates that can measure the dielectric properties of emulsions in microfluidic channels. By placing several of these sensors in a parallelization device, the stability of the droplet generation at different locations can be compared, and potential malfunctions can be detected. This strategy enables for the first time the monitoring of scaled-up microfluidic droplet production. Both sensors were prototyped and characterized using emulsions with droplets of 100-150 μm in diameter, which were generated in parallelization devices at water-in-oil volume fractions (φ) between 11.1% and 33.3%.Using these sensors, we were able to measure accurately increments as small as 2.4% in the water volume fraction of the emulsions. Although both methods rely on the dielectric properties of the emulsions, the main advantage of the RF resonator sensors is the fact that they can be designed to resonate at multiple frequencies of the broadband transmission line. Consequently with careful design, two or more sensors can be parallelized and read out by a single signal. Finally, a comparison between these sensors based on their sensitivity, readout cost and simplicity, and design flexibility is also discussed.

  9. “Capacitive Sensor” to Measure Flow Electrification and Prevent Electrostatic Hazards

    PubMed Central

    Paillat, Thierry; Touchard, Gerard; Bertrand, Yves

    2012-01-01

    At a solid/liquid interface, physico-chemical phenomena occur that lead to the separation of electrical charges, establishing a zone called electrical double layer. The convection of one part of these charges by the liquid flow is the cause of the flow electrification phenomenon which is suspected of being responsible of incidents in the industry. The P' Institute of Poitiers University and CNRS has developed an original sensor called “capacitive sensor” that allows the characterization of the mechanisms involved in the generation, accumulation and transfer of charges. As an example, this sensor included in the design of high power transformers, could easily show the evolution of electrostatic charge generation developed during the operating time of the transformer and, therefore, point out the operations leading to electrostatic hazards and, then, monitor the transformer to prevent such risks. PMID:23202162

  10. Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor.

    PubMed

    Chen, Tao; Wang, Yaqiong; Liu, Huicong; Yang, Zhan; Wang, Pengbo; Sun, Lining

    2017-01-28

    Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 μm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system.

  11. Frequency domain analysis of droplet-based electrostatic transducers

    NASA Astrophysics Data System (ADS)

    Allegretto, Graham; Dobashi, Yuta; Dixon, Katelyn; Wyss, Justin; Yao, Dickson; Madden, John D. W.

    2018-07-01

    Squeezing a water droplet between two electrodes can generate a potential difference by converting some of the mechanical energy in vibrations into electrical energy. By utilizing the high capacitance inherent to electric double layers, and the surface charging at a polymer/water interface, we demonstrate a sensor that generates up to 892 mV peak-to-peak between 1 and 100 Hz, in response to a 250 μm deformation. This frequency response is described and explained using a linearized model in which the interfacial charge acts as the priming voltage, removing the need for external charging normally required in capacitive generators. The model suggests how to design the cell for maximum power output and provides an intuitive understanding of the high pass nature of the sensor. It successfully predicts the point of maximum power transfer.

  12. Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor

    PubMed Central

    Chen, Tao; Wang, Yaqiong; Liu, Huicong; Yang, Zhan; Wang, Pengbo; Sun, Lining

    2017-01-01

    Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 μm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system. PMID:28134854

  13. Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid Langmuir-Blodgett Films.

    PubMed

    Rodrigues, Raul T; Morais, Paulo V; Nordi, Cristina S F; Schöning, Michael J; Siqueira, José R; Caseli, Luciano

    2018-03-06

    Algal polysaccharides (extracellular polysaccharides) and carbon nanotubes (CNTs) were adsorbed on dioctadecyldimethylammonium bromide Langmuir monolayers to serve as a matrix for the incorporation of urease. The physicochemical properties of the supramolecular system as a monolayer at the air-water interface were investigated by surface pressure-area isotherms, surface potential-area isotherms, interfacial shear rheology, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to hydrophilic solid supports, quartz, mica, or capacitive electrolyte-insulator-semiconductor (EIS) devices, through the Langmuir-Blodgett (LB) technique, forming mixed films, which were investigated by quartz crystal microbalance, fluorescence spectroscopy, and field emission gun scanning electron microscopy. The enzyme activity was studied with UV-vis spectroscopy, and the feasibility of the thin film as a urea sensor was essayed in an EIS sensor device. The presence of CNT in the enzyme-lipid LB film not only tuned the catalytic activity of urease but also helped to conserve its enzyme activity. Viability as a urease sensor was demonstrated with capacitance-voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results are related to the synergism between the compounds on the active layer, leading to a surface morphology that allowed fast analyte diffusion owing to an adequate molecular accommodation, which also preserved the urease activity. This work demonstrates the feasibility of employing LB films composed of lipids, CNT, algal polysaccharides, and enzymes as EIS devices for biosensing applications.

  14. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    NASA Astrophysics Data System (ADS)

    Mikestikova, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Ullan, M.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A radiation hard n+-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the "ATLAS ITk Strip Sensor collaboration" and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in "punch-through protection" (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×1016 neq/cm2, by reactor neutron fluence of 1×1015 neq/cm2 and by gamma rays from 60Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07.

  15. Measurement of Moisture in Wood for Application in the Restoration of Old Buildings.

    PubMed

    Moron, Carlos; Garcia-Fuentevilla, Luisa; Garcia, Alfonso; Moron, Alberto

    2016-05-14

    There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moisture content of wood there are two types of meters on the market: on the one hand, capacitance meters which consist of two side ends and where the moisture content is measured locally between two peaks. On the other hand, there are meters based on the variation of electromagnetic transmittance of timber, which depends on the moisture of timber. The second ones are very expensive and difficult to handle. This work presents a new non-intrusive capacitive sensor that measures the global moisture content in a section of the timber frame walls and therefore its accuracy is similar to the accuracy that can be obtained with electromagnetic transmittance meters. Additionally, as it is a capacitive sensor, it is low cost and easy to operate.

  16. Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors.

    PubMed

    Moreno-Hagelsieb, L; Foultier, B; Laurent, G; Pampin, R; Remacle, J; Raskin, J-P; Flandre, D

    2007-04-15

    Based on interdigitated aluminum electrodes covered with Al(2)O(3) and silver precipitation via biotin-antibody coupled gold nano-labels as signal enhancement, three complementary electrical methods were used and compared to detect the hybridization of target DNA for concentrations down to the 50 pM of a PCR product from cytochrome P450 2b2 gene. Human hepatic cytochrome P450 (CYP) enzymes participate in detoxification metabolism of xenobiotics. Therefore, determination of mutational status of P450 gene in a patient could have a significant impact on the choice of a medical treatment. Our three electrical extraction procedures are performed on the same interdigitated capacitive sensor lying on a passivated silicon substrate and consist in the measurement of respectively the low-frequency inter-electrodes capacitance, the high-frequency self-resonance frequency, and the equivalent MOS capacitance between the short-circuited electrodes and the backside metallization of the silicon substrate. This study is the first of its kind as it opens the way for correlation studies and noise reduction techniques based on multiple electrical measurements of the same DNA hybridization event with a single sensor.

  17. Measurement of Moisture in Wood for Application in the Restoration of Old Buildings

    PubMed Central

    Moron, Carlos; Garcia-Fuentevilla, Luisa; Garcia, Alfonso; Moron, Alberto

    2016-01-01

    There are many historic buildings whose construction is based on timber frame walls. Most buildings built during the nineteenth and early twentieth centuries were based on timber frame walls with vertical support elements. These timber frame elements are affected by their moisture content and by the passage of time. If the interaction of the timber frame walls with hygrothermal fluctuations were known, the maintenance of these buildings could be improved significantly. To determine the moisture content of wood there are two types of meters on the market: on the one hand, capacitance meters which consist of two side ends and where the moisture content is measured locally between two peaks. On the other hand, there are meters based on the variation of electromagnetic transmittance of timber, which depends on the moisture of timber. The second ones are very expensive and difficult to handle. This work presents a new non-intrusive capacitive sensor that measures the global moisture content in a section of the timber frame walls and therefore its accuracy is similar to the accuracy that can be obtained with electromagnetic transmittance meters. Additionally, as it is a capacitive sensor, it is low cost and easy to operate. PMID:27187410

  18. Passive wireless strain monitoring of tire using capacitance change

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ryosuke; Todoroki, Akira

    2004-07-01

    In-service strain monitoring of tires of automobile is quite effective for improving the reliability of tires and Anti-lock Braking System (ABS). Since conventional strain gages have high stiffness and require lead wires, the conventional strain gages are cumbersome for the strain measurements of the tires. In a previous study, the authors proposed a new wireless strain monitoring method that adopts the tire itself as a sensor, with an oscillating circuit. This method is very simple and useful, but it requires a battery to activate the oscillating circuit. In the present study, the previous method for wireless tire monitoring is improved to produce a passive wireless sensor. A specimen made from a commercially available tire is connected to a tuning circuit comprising an inductance and a capacitance as a condenser. The capacitance change of tire causes change of the tuning frequency. This change of the tuned radio wave enables us to measure the applied strain of the specimen wirelessly, without any power supply from outside. This new passive wireless method is applied to a specimen and the static applied strain is measured. As a result, the method is experimentally shown to be effective as a passive wireless strain monitoring of tires.

  19. Capacitively readout multi-element sensor array with common-mode cancellation

    DOEpatents

    Britton, Jr., Charles L.; Warmack, Robert J.; Bryan, William L.; Jones, Robert L.; Oden, Patrick Ian; Thundat, Thomas

    2001-01-01

    An improved multi-element apparatus for detecting the presence of at least one chemical, biological or physical component in a monitored area comprising an array or single set of the following elements: a capacitive transducer having at least one cantilever spring element secured thereto, the cantilever element having an area thereof coated with a chemical having an affinity for the component to be detected; a pick-up plate positioned adjacent to the cantilever element at a distance such that a capacitance between the cantilever element and the pick-up plate changes as the distance between the cantilever element and the pick-up plate varies, the change in capacitance being a measurable variation; a detection means for measuring the measurable variation in the capacitance between the cantilever element and the pick-up plate that forms a measurement channel signal; and at least one feedback cantilever spring element positioned apart from the coated cantilever element, the cantilever element substantially unaffected by the component being monitored and providing a reference channel signal to the detection means that achieves a common mode cancellation between the measurement channel signal and reference channel signal.

  20. A novel integrated multifunction micro-sensor for three-dimensional micro-force measurements.

    PubMed

    Wang, Weizhong; Zhao, Yulong; Qin, Yafei

    2012-01-01

    An integrated multifunction micro-sensor for three-dimensional micro-force precision measurement under different pressure and temperature conditions is introduced in this paper. The integrated sensor consists of three kinds of sensors: a three-dimensional micro-force sensor, an absolute pressure sensor and a temperature sensor. The integrated multifunction micro-sensor is fabricated on silicon wafers by micromachining technology. Different doping doses of boron ion, placement and structure of resistors are tested for the force sensor, pressure sensor and temperature sensor to minimize the cross interference and optimize the properties. A glass optical fiber, with a ladder structure and sharp tip etched by buffer oxide etch solution, is glued on the micro-force sensor chip as the tactile probe. Experimental results show that the minimum force that can be detected by the force sensor is 300 nN; the lateral sensitivity of the force sensor is 0.4582 mV/μN; the probe length is linearly proportional to sensitivity of the micro-force sensor in lateral; the sensitivity of the pressure sensor is 0.11 mv/KPa; the sensitivity of the temperature sensor is 5.836 × 10(-3) KΩ/°C. Thus it is a cost-effective method to fabricate integrated multifunction micro-sensors with different measurement ranges that could be used in many fields.

  1. Study of Low-Frequency Earth motions from Earthquakes and a Hurricane using a Modified Standard Seismometer

    NASA Astrophysics Data System (ADS)

    Peters, R. D.

    2004-12-01

    The modification of a WWSSN Sprengnether vertical seismometer has resulted in significantly improved performance at low frequencies. Instead of being used as a velocity detector as originally designed, the Faraday subsystem is made to function as an actuator to provide a type of force feedback. Added to the instrument to detect ground motions is an array form of the author's symmetric differential capacitive (SDC) sensor. The feedback circuit is not conventional, but rather is used to eliminate long-term drift by placing between sensor and actuator an operational amplifier integrator having a time constant of several thousand seconds. Signal to noise ratio at low frequencies is increased, since the modified instrument does not suffer from the 20dB/decade falloff in sensitivity that characterizes conventional force-feedback seismometers. A Hanning-windowed FFT algorithm is employed in the analysis of recorded earthquakes, including that of the very large Indonesia earthquake (M 7.9) of 25 July 2004. The improved low frequency response allows the study of the free oscillations of the Earth that accompany large earthquakes. Data will be provided showing oscillations with spectral components in the vicinity of 1 mHz, that frequently have been observed with this instrument to occur both before as well as after an earthquake. Additionally, microseisms and other interesting data will be shown from records collected by the instrument as Hurricane Charley moved across Florida and up the eastern seaboard.

  2. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOEpatents

    Britton, C.L. Jr.; Ericson, M.N.

    1999-01-19

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature. 5 figs.

  3. Joint angle sensors for closed-loop control

    NASA Astrophysics Data System (ADS)

    Ko, Wen H.; Miao, Chih-Lei

    In order to substitute braces that have built-in goniometers and to provide feedback signals for closed loop control of lower extremity Functional Neuromuscular System in paraplegics, a stretchable capacitive sensor was developed to accurately detect angular movement in joints. Promising clinical evaluations on the knee joints of a paraplegic and a volunteer were done. The evaluations show great promise for the possibility of implantation applications.

  4. MEMS for Practical Applications

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    Silicon MEMS as electrostatically levitated rotational gyroscopes and 2D optical scanners, and wafer level packaged devices as integrated capacitive pressure sensors and MEMS switches are described. MEMS which use non-silicon materials as LTCC with electrical feedthrough, SiC and LiNbO3 for probe cards for wafer-level burn-in test, molds for glass press molding and SAW wireless passive sensors respectively are also described.

  5. CAN RUNNERS PERCEIVE CHANGES IN HEEL CUSHIONING AS THE SHOE AGES WITH INCREASED MILEAGE?

    PubMed Central

    Cornwall, Mark W.

    2017-01-01

    Background For those runners who utilize footwear and have a rearfoot strike pattern, the durability of the midsole heel region has been shown to deteriorate as shoe mileage increases. Purpose The purpose of this study was threefold: 1) to determine if the runner can self-report changes in heel cushioning properties of the midsole after an extended period of distance running, 2) to determine if force and plantar pressures measured in the heel region of the midsole using a capacitance sensor insole change after running 640 km, and 3) to determine if a durometer could be used clinically to objectively measure changes in the hardness of the material in the heel region of the midsole. Study Design Cross-sectional Study Methods Fifteen recreational runners voluntarily consented to participate and were provided with a new pair of running shoes. Each participant's running style was observed and classified as having a rearfoot strike pattern. Inclusion criteria included running at least 24 km per week, experience running on a treadmill, no history of lower extremity congenital or traumatic deformity, or acute injury six months prior to the start of the study. The ability of each participant to self-perceive changes in shoe cushioning, comfort and fit was assessed using the Footwear Comfort Assessment Tool (FCAT). In-shoe plantar pressures and vertical forces were assessed using a capacitance sensor insole while runners ran over a 42-meter indoor runway. A Shore A durometer was used to measure the hardness of the midsole in the heel region. All measures were completed at baseline (zero km) and after running 160, 320, 480, and 640 km. In addition to descriptive statistics, a repeated measures analysis of variance was used to determine if the FCAT, pressures, forces, or midsole hardness changed because of increased running mileage. Result While plantar pressures and vertical forces were significantly reduced in the midsole heel region, none of the runners self-reported a significant reduction in heel cushioning based on FCAT scores after running 640 km. The use of a durometer provided an objective measure of the changes in the heel region of the midsole that closely matched the reductions observed in pressure and force values. Conclusion The results indicated that runners who have a rearfoot strike pattern will have a 16% to 33% reduction in the amount of cushioning in the heel region of the midsole after running 480 km. Although there were significant reductions in heel cushioning, the experienced recreational runners in this study were not able to self-perceive these changes after running 640 km. In addition, the use of a durometer provides a quick and accurate way to assess changes in the hardness of the heel region of the midsole as running mileage increases. Level of Evidence 3, Controlled laboratory study PMID:28900568

  6. Chloride and salicylate influence prestin-dependent specific membrane capacitance: support for the area motor model.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2014-04-11

    The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (δCsa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented δCsa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers δCsa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of δCsa, leading to a better understanding of prestin.

  7. Pulse-Driven Capacitive Lead Ion Detection with Reduced Graphene Oxide Field-Effect Transistor Integrated with an Analyzing Device for Rapid Water Quality Monitoring.

    PubMed

    Maity, Arnab; Sui, Xiaoyu; Tarman, Chad R; Pu, Haihui; Chang, Jingbo; Zhou, Guihua; Ren, Ren; Mao, Shun; Chen, Junhong

    2017-11-22

    Rapid and real-time detection of heavy metals in water with a portable microsystem is a growing demand in the field of environmental monitoring, food safety, and future cyber-physical infrastructure. Here, we report a novel ultrasensitive pulse-driven capacitance-based lead ion sensor using self-assembled graphene oxide (GO) monolayer deposition strategy to recognize the heavy metal ions in water. The overall field-effect transistor (FET) structure consists of a thermally reduced graphene oxide (rGO) channel with a thin layer of Al 2 O 3 passivation as a top gate combined with sputtered gold nanoparticles that link with the glutathione (GSH) probe to attract Pb 2+ ions in water. Using a preprogrammed microcontroller, chemo-capacitance based detection of lead ions has been demonstrated with this FET sensor. With a rapid response (∼1-2 s) and negligible signal drift, a limit of detection (LOD) < 1 ppb and excellent selectivity (with a sensitivity to lead ions 1 order of magnitude higher than that of interfering ions) can be achieved for Pb 2+ measurements. The overall assay time (∼10 s) for background water stabilization followed by lead ion testing and calculation is much shorter than common FET resistance/current measurements (∼minutes) and other conventional methods, such as optical and inductively coupled plasma methods (∼hours). An approximate linear operational range (5-20 ppb) around 15 ppb (the maximum contaminant limit by US Environmental Protection Agency (EPA) for lead in drinking water) makes it especially suitable for drinking water quality monitoring. The validity of the pulse method is confirmed by quantifying Pb 2+ in various real water samples such as tap, lake, and river water with an accuracy ∼75%. This capacitance measurement strategy is promising and can be readily extended to various FET-based sensor devices for other targets.

  8. Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity.

    PubMed

    Cho, Sung Hwan; Lee, Seung Won; Yu, Seunggun; Kim, Hyeohn; Chang, Sooho; Kang, Donyoung; Hwang, Ihn; Kang, Han Sol; Jeong, Beomjin; Kim, Eui Hyuk; Cho, Suk Man; Kim, Kang Lib; Lee, Hyungsuk; Shim, Wooyoung; Park, Cheolmin

    2017-03-22

    The development of pressure sensors that are effective over a broad range of pressures is crucial for the future development of electronic skin applicable to the detection of a wide pressure range from acoustic wave to dynamic human motion. Here, we present flexible capacitive pressure sensors that incorporate micropatterned pyramidal ionic gels to enable ultrasensitive pressure detection. Our devices show superior pressure-sensing performance, with a broad sensing range from a few pascals up to 50 kPa, with fast response times of <20 ms and a low operating voltage of 0.25 V. Since high-dielectric-constant ionic gels were employed as constituent sensing materials, an unprecedented sensitivity of 41 kPa -1 in the low-pressure regime of <400 Pa could be realized in the context of a metal-insulator-metal platform. This broad-range capacitive pressure sensor allows for the efficient detection of pressure from a variety of sources, including sound waves, a lightweight object, jugular venous pulses, radial artery pulses, and human finger touch. This platform offers a simple, robust approach to low-cost, scalable device design, enabling practical applications of electronic skin.

  9. Optical calibration and test of the VLT Deformable Secondary Mirror

    NASA Astrophysics Data System (ADS)

    Briguglio, Runa; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Biasi, Roberto; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves

    2013-12-01

    The Deformable Secondary Mirror (DSM) for the VLT (ESO) represents the state-of-art of the large-format deformable mirror technology with its 1170 voice-coil actuators and its internal metrology based on actuator co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the results of the optical characterization of the mirror unit with the ASSIST facility located at ESO-Garching and executed in a collaborative effort by ESO, INAF-Osservatorio Astrofisico di Arcetri and the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.). The main purposes of the tests are the optical characterization of the shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions. The results are used for the optical acceptance of the DSM and to allow the next test phase coupling the DSM with the wave-front sensor modules of the new Adaptive Optics Facility (AOF) of ESO.

  10. Low-cost and disposable pressure sensor mat for non-invasive sleep and movement monitoring applications.

    PubMed

    Abraham, Jose K; Sullivan, Shawn; Ranganathan, Sridhar

    2011-01-01

    Sleep has profound effects on the physical and mental well-being of an individual. The National Institutes of Health (NIH) Sleep Disorder Research Plan gives particular emphasis to non-invasive sleep monitoring methods. Older adults experience sleep fragmentation due to sleep disorders. Unobtrusive non-contact monitoring can be the only realistic solution for long term home-based sleep monitoring. The demand for a low-cost and non-invasive sleep monitoring system for in-home use is more than before due to an increasingly stressful life style. Cost and complexity of current sensor elements hinder the development of low-cost sleep monitoring devices for in-home use. This paper presents the design, development and implementation of a low-cost and disposable pressure sensor mat that could be useful for in-home sleep and movement monitoring applications. The sensor mat design is based on a compressible foam sandwiched between two orthogonal arrays of cPaper capacitance sensors. A low-cost conducting paper has been developed for use as the capacitance sensor electrode. Typical mat design uses a 3 mm thick foam with 5 mm row/column grid array shows that it has a measurement resolution of 0.1 PSI pressure. The resolution can be controlled by both modifying properties of the conducting paper and the foam. Since this pressure mat design is based on low-cost paper, the sensor electrodes are disposable or semi-durable and hence it is ideal for the use in point-of-care physiological monitoring, pervasive healthcare and consumer electronic devices.

  11. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line

    PubMed Central

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-01-01

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid. PMID:26729119

  12. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    PubMed

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-12-30

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  13. Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems

    NASA Astrophysics Data System (ADS)

    Bertolini, Alessandro; DeSalvo, Riccardo; Fidecaro, Francesco; Francesconi, Mario; Marka, Szabolcs; Sannibale, Virginio; Simonetti, Duccio; Takamori, Akiteru; Tariq, Hareem

    2006-01-01

    The design and mechanics for a new very-low noise low frequency horizontal accelerometer is presented. The sensor has been designed to be integrated in an advanced seismic isolation system for interferometric gravitational wave detectors. The motion of a small monolithic folded-pendulum (FP) is monitored by a high resolution capacitance displacement sensor; a feedback force actuator keeps the mass at the equilibrium position. The feedback signal is proportional to the ground acceleration in the frequency range 0-150 Hz. The very high mechanical quality factor, Q≃3000 at a resonant frequency of 0.5 Hz, reduces the Brownian motion of the proof mass of the accelerometer below the resolution of the displacement sensor. This scheme enables the accelerometer to detect the inertial displacement of a platform with a root-mean-square noise less than 1 nm, integrated over the frequency band from 0.01 to 150 Hz. The FP geometry, combined with the monolithic design, allows the accelerometer to be extremely directional. A vertical-horizontal coupling ranging better than 10-3 has been achieved. A detailed account of the design and construction of the accelerometer is reported here. The instrument is fully ultra-high vacuum compatible and has been tested and approved for integration in seismic attenuation system of japanese TAMA 300 gravitational wave detector. The monolithic design also makes the accelerometer suitable for cryogenic operation.

  14. Electret accelerometers: physics and dynamic characterization.

    PubMed

    Hillenbrand, J; Haberzettl, S; Motz, T; Sessler, G M

    2011-06-01

    Electret microphones are produced in numbers that significantly exceed those for all other microphone types. This is due to the fact that air-borne electret sensors are of simple and low-cost design but have very good acoustical properties. In contrast, most of the discrete structure-borne sound sensors (or accelerometers) are based on the piezoelectric effect. In the present work, capacitive accelerometers utilizing the electret principle were constructed, built, and characterized. These electret accelerometers comprise a metallic seismic mass, covered by an electret film, a ring of a soft cellular polymer supplying the restoring force, and a metallic backplate. These components replace membrane, spacer, and back electrode, respectively, of the electret microphone. An adjustable static pressure to the seismic mass is generated by two metal springs. The dynamic characterization of the accelerometers was carried out by using an electrodynamic shaker and an external charge or voltage amplifier. Sensors with various seismic masses, air gap distances, and electret voltages were investigated. Charge sensitivities from 10 to 40 pC/g, voltage sensitivities from 600 to 2000 mV/g, and resonance frequencies from 3 to 1.5 kHz were measured. A model describing both the charge and the voltage sensitivity is presented. Good agreement of experimental and calculated values is found. The experimental results show that sensitive, lightweight, and inexpensive electret accelerometers can be built. © 2011 Acoustical Society of America

  15. Quantum decrease of capacitance in a nanometer-sized tunnel junction

    NASA Astrophysics Data System (ADS)

    Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.

    2013-03-01

    We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)

  16. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500 C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550 C. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500 C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500 C are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  17. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  18. Distributed pressure sensors for a urethral catheter.

    PubMed

    Ahmadi, Mahdi; Rajamani, Rajesh; Timm, Gerald; Sezen, A S

    2015-01-01

    A flexible strip that incorporates multiple pressure sensors and is capable of being fixed to a urethral catheter is developed. The urethral catheter thus instrumented will be useful for measurement of pressure in a human urethra during urodynamic testing in a clinic. This would help diagnose the causes of urinary incontinence in patients. Capacitive pressure sensors are fabricated on a flexible polyimide-copper substrate using surface micromachining processes and alignment/assembly of the top and bottom portions of the sensor strip. The developed sensor strip is experimentally evaluated in an in vitro test rig using a pressure chamber. The sensor strip is shown to have adequate sensitivity and repeatability. While the calibration factors for the sensors on the strip vary from one sensor to another, even the least sensitive sensor has a resolution better than 0.1 psi.

  19. Reducing the effect of parasitic capacitance on implantable passive resonant sensors.

    PubMed

    Drazan, John F; Abdoun, Omar T; Wassick, Michael T; Marcus, George A; Dahle, Reena; Beardslee, Luke A; Cady, Nathaniel C; Ledet, Eric H

    2016-08-01

    Passive, LC resonators have the potential to serve as small, robust, low cost, implantable sensors to wirelessly monitor implants following orthopedic surgery. One significant barrier to using LC sensors is the influence on the sensor's resonance of the surrounding conductive high permittivity media in vivo. The surrounding media can detune the resonant frequency of the LC sensor resulting in a bias. To mitigate the effects of the surrounding media, we added a "capping layer" to LC sensors to isolate them from the surrounding media. Several capping materials and thicknesses were tested to determine effectiveness at reducing the sensor's interaction with the surrounding media. Results show that a 1 mm glass capping layer on the outer surfaces of the sensor was sufficient to reduce the effects of the media on sensor signal to less than 1%.

  20. A Low-Cost, Reliable, High-Throughput System for Rodent Behavioral Phenotyping in a Home Cage Environment

    PubMed Central

    Parkison, Steven A.; Carlson, Jay D.; Chaudoin, Tammy R.; Hoke, Traci A.; Schenk, A. Katrin; Goulding, Evan H.; Pérez, Lance C.; Bonasera, Stephen J.

    2016-01-01

    Inexpensive, high-throughput, low maintenance systems for precise temporal and spatial measurement of mouse home cage behavior (including movement, feeding, and drinking) are required to evaluate products from large scale pharmaceutical design and genetic lesion programs. These measurements are also required to interpret results from more focused behavioral assays. We describe the design and validation of a highly-scalable, reliable mouse home cage behavioral monitoring system modeled on a previously described, one-of-a-kind system [1]. Mouse position was determined by solving static equilibrium equations describing the force and torques acting on the system strain gauges; feeding events were detected by a photobeam across the food hopper, and drinking events were detected by a capacitive lick sensor. Validation studies show excellent agreement between mouse position and drinking events measured by the system compared with video-based observation – a gold standard in neuroscience. PMID:23366406

Top