Science.gov

Sample records for capacitors crada final

  1. Microwave processing of Tantalum capacitors. CRADA final report

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Vierow, W.F.

    1998-03-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc. (LMES) and AVX Tantalum Corporation (AVX) of Biddeford, Maine, was initiated in October 1991. [Lockheed Martin Energy Research Corp. (LMER) has replaced LMES]. The completion date for the Agreement was March 1996. The purpose of this work is to explore the feasibility of an advanced microwave processing concept to develop higher capacitance tantalum anodes. Tantalum capacitors are used where high reliability is needed (e.g., pacemakers, hearing aids, and military devices). Two types of tantalum powder are used: sodium-reduced powder and electron beam-refined powder. Sodium-reduced powder has higher surface area, but lower purity; electron beam-refined powder has higher purity for working voltages, but somewhat lower surface area. The powder is pressed into pellets using traditional methods and then placed in the microwave furnace for processing. It is of interest to determine if variable-frequency microwave sintering can increase quality while decreasing processing time and decreasing or eliminating surface contamination; these issues must be addressed while retaining the maximum surface area of the anode. Meeting each of these needs will result in a higher quality anodic film, which will thereby increase the dielectric strength. Additionally, microwave sintering might enable the authors to develop a strong sintered anode without excessive grain growth. The variable-frequency microwave furnace (VFMF), located at the Y-12 Plant, allows the authors to study the effects of sintering over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT), originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies.

  2. Engine Benchmarking - Final CRADA Report

    SciTech Connect

    Wallner, Thomas

    2016-01-01

    Detailed benchmarking of the powertrains of three light-duty vehicles was performed. Results were presented and provided to CRADA partners. The vehicles included a MY2011 Audi A4, a MY2012 Mini Cooper and a MY2014 Nissan Versa.

  3. Rapid response manufacturing (RRM). Final CRADA report

    SciTech Connect

    Cain, W.D.; Waddell, W.L.

    1998-02-10

    US industry is fighting to maintain its competitive edge in the global market place. Markets fluctuate rapidly. Companies have to be able to respond quickly with improved, high quality, cost efficient products. Because companies and their suppliers are geographically distributed, rapid product realization is dependent on the development of a secure integrated concurrent engineering environment operating across multiple business entities. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies implemented in a secure environment. This documents the work done under this CRADA to develop capabilities, which permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process. Lockheed Martin Energy Systems (LMES), through a CRADA with the National Center for Manufacturing Sciences (NCMS), worked within a consortium of major industrial firms--Ford, General Motors, Texas Instruments, United Technologies, and Eastman Kodak--and several small suppliers of advanced manufacturing technology--MacNeal-Schwendler Corp., Teknowledge Corp., Cimplex Corp., Concentra, Spatial Technology, and Structural Dynamics Research Corp. (SDRC)--to create infrastructure to support the development and implementation of secure engineering environments for Rapid Response Manufacturing. The major accomplishment achieved under this CRADA was the demonstration of a prototypical implementation of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined parts in a secure NWC compliant environment. Specifically, methods needed to permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process were developed and demonstrated. An important aspect of this demonstration was

  4. Geophysical tomography imaging system. Final CRADA report

    SciTech Connect

    Norton, S.J.; Won, I.J.

    1998-05-20

    The Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc., and Geophex, Ltd., was established to investigate high-resolution, shallow acoustic imaging of the subsurface. The primary objectives of the CRADA were accomplished, including the evaluation of a new tomographic imaging algorithm and the testing and comparison of two different acoustic sources, the hammer/plate source and an electromagnetic vibratory source. The imaging system was composed essentially of a linear array of geophones, a digital seismograph, and imaging software installed on a personal computer. Imaging was most successful using the hammer source, which was found to be less susceptible to ground roll (surface wave) interference. It is conjectured that the vibratory source will perform better for deeper targets for which ground roll is less troublesome. Potential applications of shallow acoustic imaging are numerous, including the detection and characterization of buried solid waste, unexploded ordnance, and clandestine man-made underground structures associated with treaty verification (e.g., tunnels, underground storage facilities, hidden bunkers).

  5. Machining and inspection of structural ceramic components. CRADA final report for CRADA number Y-1292-0078

    SciTech Connect

    Counts, R.W.; Albright, S.; Ritland, M.

    1996-09-30

    This document is the final report of the Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc. (Energy Systems) and the Coors Ceramics Company (Coors). The purpose of this CRADA was to develop advanced technology and manufacturing practices for machining and inspecting ceramic components. Specific CRADA objectives were accomplished through the completion of six projects at four separate Coors facilities. The projects included the development of an analytical model to simulate the mechanics of a powder rolling process, development and testing of a microwave-based system for measuring the density of conveyed ceramic material, and the development and testing of four machine vision inspection systems. This CRADA benefited the U.S. Department of Energy (DOE) activities associated with advanced heat engines, enhanced critical manufacturing skills within the DOE complex for fabricating precision, high quality workpieces from difficult-to-machine materials, and enabled U.S. industry to maintain a position of leadership in the structural ceramics field.

  6. Proximity sensor system development. CRADA final report

    SciTech Connect

    Haley, D.C.; Pigoski, T.M.

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  7. Composite material fabrication techniques. CRADA final report

    SciTech Connect

    Frame, B J; Paulauskas, F L; Miller, J; Parzych, W

    1996-09-30

    This report describes a low cost method of fabricating components for mockups and training simulators used in the transportation industry. This technology was developed jointly by the Oak Ridge National Laboratory (ORNL) and Metters Industries, Incorporated (MI) as part of a Cooperative Research and Development Agreement (CRADA) ORNL94-0288 sponsored by the Department of Energy (DOE) Office of Economic Impace and Diversity Minority Business Technology Transfer Consortium. The technology involves fabricating component replicas from fiberglass/epoxy composites using a resin transfer molding (RTM) process. The original components are used as masters to fabricate the molds. The molding process yields parts that duplicate the significant dimensional requirements of the original component while still parts that duplicate the significant dimensional requirements of the original component while still providing adequate strength and stiffness for use in training simulators. This technology permits MI to overcome an acute shortage in surplus military hardware available to them for use in manufacturing training simulators. In addition, the cost of the molded fiberglass components is expected to be less than that of procuring the original components from the military.

  8. [Technical assistance to North Carolina industries]. Final CRADA report for CRADA Number Y-1293-0231

    SciTech Connect

    Barnes, A.A.

    1997-03-14

    The purpose of this CRADA was to provide a mechanism whereby private sector companies within the State of North Carolina could access the vast technological resources available at the Lockheed Martin Energy Systems, Inc., facilities in Oak Ridge, Tennessee. This assistance was focused on assisting companies within the State to become more globally competitive. The North Carolina State University Industrial Extension Service and Lockheed Martin Energy Systems, Inc., (LMES), provided companies within the state of North Carolina up to four days of technical assistance at no charge. As a result of those interactions, there has been an economic impact of $4.2 million dollars reported over the life of the CRADA. This report contains a review of the objectives of this CRADA, and the status of each objectives. It also contains information on how the work performed under this CRADA benefited the sponsor in pursuing its mission. Details of private sector impact and how it was measured and collected are discussed.

  9. [Technical assistance to Georgia industries]. Final CRADA report for CRADA Number Y-1293-0230

    SciTech Connect

    Barnes, A.A.

    1997-03-14

    The purpose of this CRADA was to provide a mechanism whereby private sector companies within the State of Georgia could access the vast technological resources available at the Lockheed Martin Energy Systems, Inc., facilities in oak Ridge, Tennessee. This assistance was focused on assisting companies within the State to become more globally competitive. The Georgia Tech Research Corporation and Lockheed Martin Energy Systems, Inc., (LMES), provided companies within the state of Georgia up to four days of technical assistance at no charge. As a result of those interactions, there has been an economic impact of $5.1 million dollars reported over the life of the CRADA. This report contains a review of the objectives of this CRADA, and the status of each objective. It also contains information on how the work performed under this CRADA benefited the sponsor in pursuing its mission. Details of private sector impact and how it was measured and collected are discussed.

  10. HIP densification project. Final CRADA report

    SciTech Connect

    Franco-Ferreira, E.A.; Finkelstein, W.

    1997-08-29

    An investigation was conducted to evaluate the use of HIPed aluminum castings as near-net-shape blanks for large electrostatic focusing electrodes in ion lithography machines. The electrodes must have very smooth finishes which are free of pores and other defects. This has heretofore been achieved by rough-machining the blanks out of large forged aluminum billets and final diamond-turning. The use of a near-net-shape casting for the blank was expected to save a significant amount of money and time. The test was conducted on a single cast blank which was supplied by the Partner in the HIPed and stress relieved condition. Rough machining and diamond turning operations conducted by LMES/ER revealed that the casting contained unacceptably large defects. The conclusion was reached that HIPed aluminum castings in the large sizes and of the quality levels required would probably be unobtainable in a cost-effective manner. An alternative approach, using ring forgings assembled by electron beam welding was proposed and investigated by LMES/ER. Although an electrode blank was not obtained, the study indicated that this approach would be successful and cost-effective.

  11. [Technical assistance to Tennessee industries]. Final CRADA report for CRADA Number Y-1294-0294

    SciTech Connect

    Barnes, A.A.

    1997-03-14

    The purpose of this CRADA was to provide a mechanism whereby private sector companies within the State of Tennessee could access the vast technological resources available at the Lockheed Martin Energy Systems, Inc., facilities in Oak Ridge, Tennessee. This assistance was focused on assisting companies within the State to become more globally competitive. The State of Tennessee Department of Economic and Community Development through the University of Tennessee Center for Industrial Services and Lockheed Martin Energy Systems, Inc., (LMES), provided companies within the state of Tennessee up to four days of technical assistance at no charge. As a result of those interactions, there has been an economic impact of $19.2 million dollars reported over the life of the CRADA. This report contains a review of the objectives of this CRADA, and the status of each objective. It also contains information on how the work performed under this CRADA benefited the sponsor in pursuing its mission. Details of private sector impact and how it was measured and collected are discussed.

  12. Development of superconducting transmission cable. CRADA final report

    SciTech Connect

    Hawsey, R.; Stovall, J.P.; Hughey, R.L.; Sinha, U.K.

    1997-10-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Southwire Company is to develop the technology necessary to proceed to commercialization of high-temperature superconducting (HTS) transmission cables. Power transmission cables are a promising near-term electric utility application for high-temperature superconductivity. Present HTS wires match the needs for a three-phase transmission cable: (1) the wires must conduct high currents in self-field, (2) there are no high forces developed, and (3) the cables may operate at relatively low current density. The commercially-available HTS wires, in 100-m lengths, make construction of a full three-phase, alternating current (ac) transmission cable possible. If completed through the pre-commercialization phase, this project will result in a new capability for electric power companies. The superconducting cable will enable delivery with greater efficiency, higher power density, and lower costs than many alternatives now on the market. Job creation in the US is expected as US manufacturers supply transmission cables to the expanding markets in Asia and to the densely populated European cities where pipe-type cable is prevalent. Finally, superconducting cables may enable delivery of the new, diverse and distributed sources of electricity that will constitute the majority of new installed electrical generation in the world during the coming decades.

  13. [A variable frequency microwave furnace]. CRADA final report for CRADA Number ORNL91-0055

    SciTech Connect

    Lauf, R.J.

    1994-12-08

    The goals of this CRADA were to: (1) development and demonstrate a highly frequency-agile microwave furnace; (2) explore applications of the furnace for materials processing; and (3) develop control systems and packaging that are robust, user-friendly, and suitable for sale as a turnkey system. Microwave Laboratories, Inc. (MLI) designed, built, and successfully brought to market a benchtop Variable Frequency Microwave Furnace (VFMF). The concept has demonstrated advantages in polymer curing, waste remediation, and diamond (CVD). Through experimentation and modeling, the VFMF approach has gained credibility within the technical community.

  14. CRADA final report for CRADA number Y-1293-0185: Process modelling and machining operations development

    SciTech Connect

    Arnold, J.B.; Kruse, K.L.; Stone, P.K.

    1996-09-16

    Lockheed Martin Energy Systems, Inc. and Ferro Corporation (formerly W. R. Grace, the original CRADA partner) have collaborated on an effort to develop techniques and processes for the cost-effective machining of ceramic components. The purpose of this effort was to develop a machining model, and grinding equipment machines and techniques for fabricating precision ceramic components. This project was designed to support Department of Energy (DOE) technical needs in manufacturing hard materials as well as enabling U.S. industry to maintain a position of leadership in the production of precision grinding machines and the machining of structural ceramic components.

  15. CRADA Final Report: Process development for hybrid solar cells

    SciTech Connect

    Ager, Joel W

    2011-02-14

    TCF funding of a CRADA between LBNL and RSLE leveraged RSLE's original $1M investment in LBNL research and led to development of a solar cell fabrication process that will bring the high efficiency, high voltage hybrid tandem solar cell closer to commercialization. RSLE has already built a pilot line at its Phoenix, Arizona site.

  16. Surface Inspection Machine Infrared (SIMIR). Final CRADA report

    SciTech Connect

    Powell, G.L.; Neu, J.T.; Beecroft, M.

    1997-02-28

    This Cooperative Research and Development Agreement was a one year effort to make the surface inspection machine based on diffuse reflectance infrared spectroscopy (Surface Inspection Machine-Infrared, SIMIR), being developed by Surface Optics Corporation, perform to its highest potential as a practical, portable surface inspection machine. The design function of the SIMIR is to inspect metal surfaces for cleanliness (stains). The system is also capable of evaluating graphite-resin systems for cure and heat damage, and for measuring the effects of moisture exposure on lithium hydride, corrosion on uranium metal, and the constituents of and contamination on wood, paper, and fabrics. Over the period of the CRADA, extensive experience with the use of the SIMIR for surface cleanliness measurements have been achieved through collaborations with NASA and the Army. The SIMIR was made available to the AMTEX CRADA for Finish on Yarn where it made a very significant contribution. The SIMIR was the foundation of a Forest Products CRADA that was developed over the time interval of this CRADA. Surface Optics Corporation and the SIMIR have been introduced to the chemical spectroscopy on-line analysis market and have made staffing additions and arrangements for international marketing of the SIMIR as an on-line surface inspection device. LMES has been introduced to a wide range of aerospace applications, the research and fabrication skills of Surface Optics Corporation, has gained extensive experience in the areas of surface cleanliness from collaborations with NASA and the Army, and an extensive introduction to the textile and forest products industries. The SIMIR, marketed as the SOC-400, has filled an important new technology need in the DOE-DP Enhanced Surveillance Program with instruments delivered to or on order by LMES, LANL, LLNL, and Pantex, where extensive collaborations are underway to implement and improve this technology.

  17. Final Report for CRADA No. 97-F001

    SciTech Connect

    National Energy Technology Laboratory; The Foster Wheeler Development Corporation

    2000-10-31

    This report documents the results of work conducted under the Cooperative Research And Development (CRADA) No. 97-F001 between the Foster Wheeler Development Corporation, FWDC, and the National Energy Technology Laboratory, NETL. Under this agreement, FWDC and NETL worked together to further investigate the applicability of the MFIX computer code to FWDC engineering problems. MFIX is a transient, finite difference, FORTRAN code that solves the equations of transport for interacting fluid and granular solid phases. It is designed to model fluidized bed reactors. Under the CRADA, work was divided into three tasks. The first task involved the continued validation of the hydrodynamic and chemistry capabilities of the MFIX code. The second task involved a parametric evaluation of the MFIX code's ability to predict bubble shape. Task 3 was to modify MFIX to make it execute faster and more easily on personal computers. Task 1 was accomplished by both FWDC and NETL while Tasks 2 and 3 were completed primarily by NETL. Non technical details of the CRADA can be found in Appendix A.

  18. Brain Implants for Prediction and Mitigation of Epileptic Seizures - Final CRADA Report

    SciTech Connect

    Gopalsami, Nachappa

    2016-09-29

    This is a CRADA final report on C0100901 between Argonne National Laboratory and Flint Hills Scientific, LLC of Lawrence, Kansas. Two brain implantable probes, a surface acoustic wave probe and a miniature cooling probe, were designed, built, and tested with excellent results.

  19. Final Report on CRADA ORNL05-0703

    SciTech Connect

    Christen, D. K.

    2010-04-27

    The work of this CRADA has been focused on the development of Rolling-Assisted Biaxially Textured Substrate (RABiTS)-based high-temperature superconducting (HTS) coated conductor technology that is in the pre-commercial development stage. Metal-Oxide Technologies, Inc. (MetOx) is a Houston-based small business that is developing and manufacturing second-generation (2G) HTS wire using an all-Metallo-Organic Chemical Vapor Deposition (MOCVD) process, including the buffer layers and HTS coating. Advances toward commercialization were enabled by coordinated interactions that facilitated the synthesis, characterization, and iterative optimization of prototype 2G wire segments.

  20. The final technical report of the CRADA, 'Medical Accelerator Technology'

    SciTech Connect

    Chu, W.T.; Rawls, J.M.

    2000-06-12

    Under this CRADA, Berkeley Lab and the industry partner, General Atomics (GA), have cooperatively developed hadron therapy technologies for commercialization. Specifically, Berkeley Lab and GA jointly developed beam transport systems to bring the extracted protons from the accelerator to the treatment rooms, rotating gantries to aim the treatment beams precisely into patients from any angle, and patient positioners to align the patient accurately relative to the treatment beams. We have also jointly developed a patient treatment delivery system that controls the radiation doses in the patient, and hardware to improve the accelerator performances, including a radio-frequency ion source and its low-energy beam transport (LEBT) system. This project facilitated the commercialization of the DOE-developed technologies in hadron therapy by the private sector in order to improve the quality of life of the nation.

  1. Intermediate Temperature Carbon - Carbon Composite Structures. CRADA Final Report

    SciTech Connect

    Lara-Curzio, Edgar

    2007-06-01

    The objective of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Synterials, Inc. (the "Participant") was to demonstrate promising processing methods, which can lead to producing Carbon-Carbon Composites (CCC), with tensile and interlaminar properties comparable to those of organic matrix composites and environmental stability at 1200 F for long periods of time. The participant synthesized carbon-carbon composites with two different fiber coatings and three different matrices. Both parties evaluated the tensile and interlaminar properties of these materials and characterized the microstructure of the matrices and interfaces. It was found that fiber coatings of carbon and boron carbide provided the best environmental protection and resulted in composites with high tensile strength.

  2. CRADA Final Report-Dual Manifold System for Arraying Biomolecules

    SciTech Connect

    Doktycz, M.J.

    2001-05-08

    The objective of this CRADA is to establish a new approach to fluid transfer and array construction. This new approach will involve a high-speed, multiplexed fluid distribution valve and ink jet valves. It will enable the parallel handling of multiple reagents for a system that will have multiple applications in addition to the high-speed construction of microarrays. The primary tasks involve proof of principle experiments aimed at establishing key components of the technology and evaluating various optional configurations. The basic platform for evaluating the technology will be set-up by the Contractor at Oak Ridge National Laboratory (ORNL) and will employ custom valving prepared by Rheodyne. The test platform will consist of a motion controller, 3-axes of motion, software, and pneumatic control; and will be used to evaluate the hybrid valve.

  3. Microwave processing of silicon carbide. CRADA final report

    SciTech Connect

    Kimrey, H.D.; Kiggans, J.O.; Ness, E.A.; Rafaniello, W.

    1998-02-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc. (LMES) and Dow Chemical Company was initiated on May 3, 1993. (Lockheed Martin Energy Research Inc. (LMER) replaced LMES). The completion date for the Agreement was December 1996. The purpose of this project is to develop microwave processing techniques to produce superior silicon carbide. Sintered silicon carbide is an attractive material for use in high-stress, high-temperature, high-wear, or highly corrosive applications. However, use in these applications has been hampered by a lack of consistency in strength, density, and other physical properties. It is proposed that the enhanced sintering that has been achieved using microwaves in oxide and halide systems be applied to the sintering of these materials to produce a more highly controlled density and microstructure. This will, in turn, increase the strength and Weibull modulus of the sintered body. The use of microwave energy to anneal for a moderate temperature (1,400--1,600 C) anneal in a high vacuum (< 10{sup {minus}4} Torr) results in an improvement in the sintered density and density distribution. These changes in turn result in improved properties of the sintered compacts. Further, scale up of the process has resulted in the routine production of 3 kg components in excess of 4 cm in thickness.

  4. Advanced austenitic alloys for fossil power systems. CRADA final report

    SciTech Connect

    Swindeman, R.W.; Cole, N.C.; Canonico, D.A.; Henry, J.F.

    1998-08-01

    In 1993, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory and ABB Combustion Engineering t examine advanced alloys for fossil power systems. Specifically, the use of advanced austenitic stainless steels for superheater/reheater construction in supercritical boilers was examined. The strength of cold-worked austenitic stainless steels was reviewed and compared to the strength and ductility of advanced austenitic stainless steels. The advanced stainless steels were found to retain their strength to very long times at temperatures where cold-worked standard grades of austenitic stainless steels became weak. Further, the steels exhibited better long-time stability than the stabilized 300 series stainless steels in either the annealed or cold worked conditions. Type 304H mill-annealed tubing was provided to ORNL for testing of base metal and butt welds. The tubing was found to fall within range of expected strength for 304H stainless steel. The composite 304/308 stainless steel was found to be stronger than typical for the weldment. Boiler tubing was removed from a commercial boiler for replacement by newer steels, but restraints imposed by the boiler owners did not permit the installation of the advanced steels, so a standard 32 stainless steel was used as a replacement. The T91 removed from the boiler was characterized.

  5. Development of a metal ceramic composite crucible. Final CRADA report for CRADA number Y-1292-0079

    SciTech Connect

    Morrow, M.S.; Holcombe, C.E. Jr.; Kiggans, J.O. Jr.; Rexford, D.; Rausch, J.J.

    1995-09-30

    This Cooperative Research and Development Agreement (CRADA) has been a three-year collaboration among the Y-12 Plant Development Division, Blasch Precision Ceramics, Inc., and Surface Alloys, Inc. The purpose of the CRADA was to evaluate the production of a totally new crucible that would be noncarbon and that could perform like graphite. The effort required materials fabricated into a workable crucible. The goal was to produce a crucible that could be induction heated and allow melting of reactive metals without appreciable carbon contamination. The US Department of Energy programs involving casting uranium and its alloys have long been concerned with reducing deleterious carbon pickup that results from the use of graphite crucibles. Therefore, the results of this CRADA provide an alternative that can eliminate carbon pickup from the graphite crucible.

  6. Growth of large detector crystals. CRADA final report

    SciTech Connect

    Boatner, L.A.; Samuelson, S.

    1997-06-18

    In the course of a collaborative research effort between L.A. Boatner of Oak Ridge National Laboratory and Prof. Alex Lempicki of the Department of Chemistry of Boston University, a new highly efficient and very fast scintillator for the detection of gamma-rays was discovered. This new scintillator consists of a single crystal of lutetium orthophosphate (LuPO{sub 4}) to which a small percentage of trivalent cerium is added as an activator ion. The new lutetium orthophosphate-cerium scintillator was found to be superior in performance to bismuth germanium oxide--a material that is currently widely used as a gamma-ray detector in a variety of medical, scientific, and technical applications. Single crystals of LuPO{sub 4} and related rare-earth orthophosphates had been grown for a number of years in the ORNL Solid State Division prior to the discovery of the efficient gamma-ray-scintillation response of LuPO{sub 4}:Ce. The high-temperature-solvent (flux-growth) method used for the growth of these crystals was capable of producing crystals in sizes that were adequate for research purposes but that were inadequate for commercial-scale production and widespread application. The CRADA between ORNL and Deltronic Crystal Industries of Dover, NJ was undertaken for the purpose of investigating alternate approaches, such as top-seeded-solution growth, to the growth of LuPO{sub 4}:Ce scintillator crystals in sizes significantly larger than those obtainable through the application of standard flux-growth methods and, therefore, suitable for commercial sales and applications.

  7. Accelerated deployment of nanostructured hydrotreating catalysts. Final CRADA Report.

    SciTech Connect

    Libera, J.A.; Snyder, S.W.; Mane, A.; Elam, J.W.; Cronauer, D.C.; Muntean, J.A.; Wu, T.; Miller, J.T.

    2012-08-27

    Nanomanufacturing offers an opportunity to create domestic jobs and facilitate economic growth. In response to this need, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy issued a Research Call to develop nanomanufacturing capabilities at the National Laboratories. High performance catalysts represent a unique opportunity to deploy nanomanufacturing technologies. Re-refining of used lube oil offers an opportunity to create manufacturing jobs and decrease dependence on imported petroleum. Improved catalysts are required to produce a better quality product, decrease environmental impact, extend catalyst life, and improve overall economics of lube oil re-refining. Argonne National Laboratory (Argonne) in cooperation with Universal Lubricants, Inc. (ULI) and Chemical Engineering Partners (CEP) have carried out a Cooperative Research and Development Agreement (CRADA) to prepare nanostructured hydrotreating catalysts using atomic layer deposition (ALD) to exhibit superior performance for the re-refining of used lube oil. We investigated the upgrading of recycled lube oil by hydrogenation using commercial, synthetically-modified commercial catalysts, and synthesized catalysts. A down-flow (trickle bed) catalytic unit was used for the hydrogenation experiments. In addition to carrying out elemental analyses of the various feed and product fractions, characterization was undertaken using H{sup 1} and C{sup 13} NMR. Initially commercial were evaluated. Second these commercial catalysts were promoted with precious metals using atomic layer deposition (ALD). Performance improvements were observed that declined with catalyst aging. An alternate approach was undertaken to deeply upgrade ULI product oils. Using a synthesized catalyst, much lower hydrogenation temperatures were required than commercial catalysts. Other performance improvements were also observed. The resulting lube oil fractions were of high purity even at low reaction severity. The

  8. Metallization technology for tenth-micron range integrated circuits. CRADA final report for CRADA number ORNL92-0104

    SciTech Connect

    Berry, L.A.; Gorbatkin, S.M.; Rossnagel, S.M.; Harper, J.M.E.

    1996-04-11

    A critical step in the fabrication of integrated circuits is the deposition of metal layers which interconnect the various circuit elements that have been formed in earlier process steps. In particular, columns of metal 2-3 times higher than the characteristic dimension of the circuit are needed. At the time of initiation of this CRADA, the state-of-the-art was the production of 1-1.5 micron-high columns for 0.5 micron-wide features with an expected reduction in size by a factor of two or more within five to ten years. Present commercial technologies cannot deposit such features with the process temperature, aspect ratio (ratio of height to diameter), and/or materials capability needed for future devices. This CRADA had the objective of developing a commercial tool capable of depositing metal (either copper or aluminum) at temperatures below 300{degrees}C into features with sizes approaching 0.2 micron on 200-mm wafers. The capability of future modification for deposition of alloys of controllable composition was also an important characteristic. The key technical accomplishments of this CRADA include the development of a system capable of delivering highly ionized metal plasmas, refinement of spectroscopic techniques for in situ monitoring of the ion/neutral ratio, use of these plasmas for filling and lining submicron trenches used for integrated circuit fabrication, and generation of fundamental data on the angular dependent sputtering yield which will prove useful for modeling the time evolution of feature filling and lining.

  9. CRADA Final Report: Mechanisms of Sulfur Poisoning of NOx Adsorber Materials

    SciTech Connect

    Kim, Do Heui; Muntean, George G.; Peden, Charles H. F.; Howden, Ken; Stafford, Randy; Stang, John; Yezerets, Aleksey; Currier, Neal; Chen, H. -Y.; Hess, H.

    2009-03-01

    The control of NOx (NO and NO2) emissions from so-called ‘lean-burn’ vehicle engines remains a challenge. The now commercial NOx adsorber (also known as lean-NOx trap (LNT) and NOx storage reduction (NSR) catalyst) technology is based upon the concept of storing NOx as nitrates over storage components, typically alkali or alkaline-earth species such as barium, during a lean-burn operation cycle and then reducing the stored nitrates to N2 during fuel-rich conditions over a precious metal catalyst. In part via this successful five-year CRADA project between PNNL and Cummins Inc. (CRADA PNNL/213), Cummins and the Johnson/Matthey Company commercialized this technology on the 2007 Dodge Ram pickup truck. In particular, this CRADA has focused on problems arising from either or both thermal and SO2 deactivation which were impeding the ability of the technology to meet durability standards. The results obtained in this CRADA have provided an essential understanding of these deactivation processes thereby leading to materials and process improvements that enabled the commercialization effort. The objective of this project has been to identify a clear pathway to robust NOx after-treatment solutions for light-duty diesel engines. The project focussed on understanding and characterizing the NOx storage, release and conversion of existing NOx adsorber materials. The impact of sulfur on these processes was studied, with special attention given to methods of regenerating the catalyst in the presence of sulfur and the effects of these regeneration treatments on long-term catalyst durability. Model catalysts and more fully formulated catalysts were both studied. The goal of this project has been to identify and understand the deactivation mechanisms of LNT materials in order to provide more robust systems for diesel after-treatment systems that will meet the key emission standards for NOx. Furthermore, the project aimed to provide information critical to

  10. CRADA Final Report: ErbB2 Targeted Cancer Therapeutics

    SciTech Connect

    Lupu, Ruth

    2002-08-27

    The aim of the study was to design novel therapeutic strategies for the treatment of carcinomas which overexpress the erbB-2 oncogene product and/or the activator (HRG). erbB-2 is a tyrosine kinase growth factor receptor, that overexpression of which in invasive breast, prostate, ovarian and lung carcinomas correlates with poor prognosis and poor overall survival. In breast carcinomas, erbB-2 is overexpressed in 25%-30% of the invasive phenotype and in 70% of ductal carcinomas in situ. On the other hand, the erbB-2 activator, heregulin (HRG) is expressed in about 30% of invasive breast carcinomas and it is highly expressed in other carcinoIl1as including, ovarian, lung, and prostate. Interestingly, only 6% of invasive breast carcinomas co-express both HRG and erbB-2. It is known today that tumors that overexpress erbB-2 are a leading cause of death, making erbB-2 and its activator HRG critical targets for therapy. Targeting both the receptors and the activator would be beneficial for a significant number of cancer patients. At the final stages of the project we had obtained significant improvements over the peptide quality but not significant improvements were made towards the generation of humanized monoclonal antibodies.

  11. New Materials for Electric Drive Vehicles - Final CRADA Report

    SciTech Connect

    Carter, J. David

    2016-10-18

    This project was sponsored by the US DOE Global Initiatives for Proliferation Prevention. The object was for Ukrainian and US partners, including Argonne, AETC, and Dontech to develop special carbon materials and factory production equipment with the goal of making better car batteries to achieve DOE's goals for all-electric and plug-in hybrid electric vehicles. Carbon materials are used in designs for lithium-ion batteries and metal-air batteries, both leading contenders for future electric cars. Specifically, the collaborators planned to use the equipment derived from this project to develop a rechargeable battery system that will use the carbon materials produced by the innovative factory process equipment. The final outcome of the project was that the Ukrainian participants consisting of the Kharkov Institute of Physics and Technology (KIPT), the Institute of Gas of National Academy of Sciences of Ukraine and the Materials Research Center, Ltd. designed, built, tested and delivered 14 pieces of processing equipment for pilot scale carbon production lines at the AETC, Arlington Heights facilities. The pilot scale equipment will be used to process materials such as activated carbon, thermally expanded graphite and carbon coated nano-particles. The equipment was shipped from Ukraine to the United States and received by AETC on December 3, 2013. The equipment is on loan from Argonne, control # 6140. Plug-in hybrid electric vehicles (PHEV) and all-electric vehicles have already demostrated success in the U.S. as they begin to share the market with older hybrid electric designs. When the project was conceived, PHEV battery systems provided a ~40 mile driving range (2011 figures). DOE R&D targets increased this to >100 miles at reduced cost less than $250/kWh (2011 figures.) A 2016 Tesla model S has boasted 270 miles. The project object was to develop pilot-production line equipment for advanced hybrid battery system that achieves cycle life of 1000, an energy density

  12. CRADA Final Report for CRADA Number NFE-10-02991 "Development and Commercialization of Alternative Carbon Precursors and Conversion Technologies"

    SciTech Connect

    Norris, Rober; Paulauskas, Felix; Naskar, Amit; Kaufman, Michael; Yarborough, Ken; Derstine, Chris

    2013-10-01

    The overall objective of the collaborative research performed by the Oak Ridge National Laboratory (ORNL) and the Dow Chemical Company under this Cooperative Research And Development Agreement (CRADA NFE-10-02991) was to develop and establish pathways to commercialize new carbon fiber precursor and conversion technology. This technology is to produce alternative polymer fiber precursor formulations as well as scaled energy-efficient advanced conversion technology to enable continuous mode conversion to obtain carbonized fibers that are technically and economically viable in industrial markets such as transportation, wind energy, infrastructure and oil drilling applications. There have been efforts in the past to produce a low cost carbon fiber. These attempts have to be interpreted against the backdrop of the market needs at the time, which were strictly military aircraft and high-end aerospace components. In fact, manufacturing costs have been reduced from those days to current practice, where both process optimization and volume production have enabled carbon fiber to become available at prices below $20/lb. However, the requirements of the lucrative aerospace market limits further price reductions from current practice. This approach is different because specific industrial applications are targeted, most specifically wind turbine blade and light vehicle transportation, where aircraft grade carbon fiber is not required. As a result, researchers are free to adjust both manufacturing process and precursor chemistry to meet the relaxed physical specifications at a lower cost. This report documents the approach and findings of this cooperative research in alternative precursors and advanced conversion for production of cost-effective carbon fiber for energy missions. Due to export control, proprietary restrictions, and CRADA protected data considerations, specific design details and processing parameters are not included in this report.

  13. Capacitors.

    ERIC Educational Resources Information Center

    Trotter, Donald M., Jr.

    1988-01-01

    Presents a historical backdrop for a discussion of capacitor design and function. Discusses the production, importance, and function of two types of miniature capacitors; electrolytic and multilayer ceramic capacitors. Describes the function of these miniature capacitors in comparison to the Leyden jar, a basic demonstration of capacitance. (CW)

  14. Capacitors.

    ERIC Educational Resources Information Center

    Trotter, Donald M., Jr.

    1988-01-01

    Presents a historical backdrop for a discussion of capacitor design and function. Discusses the production, importance, and function of two types of miniature capacitors; electrolytic and multilayer ceramic capacitors. Describes the function of these miniature capacitors in comparison to the Leyden jar, a basic demonstration of capacitance. (CW)

  15. CRADA Final Report for CRADA Number ORNL00-0605: Advanced Engine/Aftertreatment System R&D

    SciTech Connect

    Pihl, Josh A; West, Brian H; Toops, Todd J; Adelman, Brad; Derybowski, Edward

    2011-10-01

    Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT), also known as NOx adsorber catalyst regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy. Under full-load, rated speed conditions, injection of fuel upstream of the DOC reduced the fuel penalty for a given level of NOx reduction by 10-20%. GC-MS showed that fuel compounds were 'cracked' into smaller hydrocarbon species over the DOC, particularly light alkenes. GC-MS analysis of HC species entering and exiting the LNT showed high utilization of light alkenes, followed by mono-aromatics; branched alkanes passed through the LNT largely unreacted. Follow-on experiments at a 'road load' condition were conducted, revealing that the NOx reduction was better without the DOC at lower temperatures. The improved performance was attributed to the large swings in the NOx adsorber core temperature. Split-injection experiments were conducted with ultra-low sulfur diesel fuel and three pure HC compounds: 1-pentene, toluene, and iso-octane. The pure compound experiments

  16. Frito-Lay North America/NREL CRADA: Cooperative Research and Development Final Report, CRADA Number CRD-06-176

    SciTech Connect

    Walker, A.

    2013-06-01

    Frito Lay North America (FLNA) requires technical assistance for the evaluation and implementation of renewable energy and energy efficiency projects in production facilities and distribution centers across North America. Services provided by NREL do not compete with those available in the private sector, but rather provide FLNA with expertise to create opportunities for the private sector renewable/efficiency industries and to inform FLNA decision making regarding cost-effective projects. Services include: identifying the most cost-effective project locations based on renewable energy resource data, utility data, incentives and other parameters affecting projects; assistance with feasibility studies; procurement specifications; design reviews; and other services to support FNLA in improving resource efficiency at facilities. This Cooperative Research and Development Agreement (CRADA) establishes the terms and conditions under which FLNA may access capabilities unique to the laboratory and required by FLNA. Each subsequent task issued under this umbrella agreement would include a scope-of-work, budget, schedule, and provisions for intellectual property specific to that task.

  17. CRADA Final Report for CRADA No. ORNL99-0544, Interfacial Properties of Electron Beam Cured Composites

    SciTech Connect

    Janke, C.J.

    2005-10-17

    Electron beam (EB) curing is a technology that promises, in certain applications, to deliver lower cost and higher performance polymer matrix composite (PMC) structures compared to conventional thermal curing processes. PMCs enhance performance by making products lighter, stronger, more durable, and less energy demanding. They are essential in weight- and performance-dominated applications. Affordable PMCs can enhance US economic prosperity and national security. US industry expects rapid implementation of electron beam cured composites in aircraft and aerospace applications as satisfactory properties are demonstrated, and implementation in lower performance applications will likely follow thereafter. In fact, at this time and partly because of discoveries made in this project, field demonstrations are underway that may result in the first fielded applications of electron beam cured composites. Serious obstacles preventing the widespread use of electron beam cured PMCs in many applications are their relatively poor interfacial properties and resin toughness. The composite shear strength and resin toughness of electron beam cured carbon fiber reinforced epoxy composites were about 25% and 50% lower, respectively, than those of thermally cured composites of similar formulations. The essential purpose of this project was to improve the mechanical properties of electron beam cured, carbon fiber reinforced epoxy composites, with a specific focus on composite shear properties for high performance aerospace applications. Many partners, sponsors, and subcontractors participated in this project. There were four government sponsors from three federal agencies, with the US Department of Energy (DOE) being the principal sponsor. The project was executed by Oak Ridge National Laboratory (ORNL), NASA and Department of Defense (DOD) participants, eleven private CRADA partners, and two subcontractors. A list of key project contacts is provided in Appendix A. In order to properly

  18. An evaluation of optical tool inspection and compensation technologies. CRADA final report for CRADA Number Y-1291-0052

    SciTech Connect

    Babelay, E.F.; Centola, J.; Zorger, W.; Serafin, W.

    1994-05-15

    A Cooperative Research And Development Agreement (CRADA) was established April 1992 between Martin Marietta Energy Systems, Inc. and United Technologies Corporation, Pratt and Whitney Division to evaluate the existing applicability of the Energy Systems optical tool inspection and compensation system (OTICS) for use at Pratt and Whitney`s East Hartford Plant. The OTICS was developed at the Oak Ridge Y-12 Plant and optically measures the shape of a single point cutting tool. The tool shape inspection provides process information relating to tool wear and if desired the tool shape geometry can be used to generate a new numerical control machining program that is compensated for the tool forms errors. The tool wear measurement capability of OTICS was successfully evaluated in the Phase-1 testing. The testing verified that OTICS can easily detect tool wear and the {+-} 0.0001 inch resolution obtained was sufficient for the larger cutter inserts used by Pratt and Whitney (P and W). During the tool wear experiments at P and W, a second potential use identified for OTICS was the accurate on-machine dimensional verification of special ground contour forming tools. The OTICS tool path compensation experiment demonstrated the varied technologies that are integrated in the tool path compensation process. The OTICS system was successful at inspecting the 0.125 in. radius tool and compensating the tool path for tool form errors. The need for automated interfaces between the OTICS computer and controller along with the part program requirements and the overall compensation methodology were highlighted in the demonstration.

  19. Optical Probe for Semiconductor: Cooperative Research and Development Final Report, CRADA Number CRD-06-206

    SciTech Connect

    Sopori, B.

    2011-02-01

    This CRADA involves development of a new semiconductor characterization tool, Optical Probe, which can be commercialized by GT Solar. GT Solar will participate in the design and testing of this instrument that will be developed under an IPP project.

  20. Inverted Metamorphic Cell Development: Cooperative Research and Development Final Report, CRADA Number CRD-05-156

    SciTech Connect

    Wanlass, M.

    2012-05-01

    This CRADA targeted technology transfer of the inverted metamorphic multi-junction (IMM) solar cell innovation from NREL to Emcore Photovoltaics. The technology transfer was successfully completed. Additionally, NREL provided materials characterization of solar cell structures produced at Emcore.

  1. Centralized Cryptographic Key Management and Critical Risk Assessment - CRADA Final Report For CRADA Number NFE-11-03562

    SciTech Connect

    Abercrombie, R. K.; Peters, Scott

    2014-05-28

    The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) Cyber Security for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing Cyber Security for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modified and used as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system

  2. Reduced dust emission industrial vacuum system. Final report/project accomplishments summary, CRADA Number KCP941001

    SciTech Connect

    Yerganian, S.; Wilson, S.

    1997-02-01

    The purpose of this project was to modify the design of a Billy Goat Industries VQ series industrial litter vacuum cleaner currently in production to allow it to be effective in a dusty environment. Other desired results were that the new design be easily and economically manufacturable, safe and easy for the operator to use and maintain, and easily adaptable to the rest of the Billy Goat Industries product line. To meet these objectives, the project plan was divided into four main phases. The first phase consisted of design overview and concept development. The second phase consisted of developing a detailed design based on the lessons learned from the prototype built in the first phase. The third phase consisted of refinement of the detailed design based on testing and marketing review. The fourth phase consisted of final reporting on the activities of the CRADA. The project has been terminated due to technical difficulties and a lack of confidence that practical, marketable solutions to these problems could be found.

  3. Molecular engineering of polymer alloys: A final report of results obtained on CRADA No. 1078

    SciTech Connect

    Curro, J.G.; Schweizer, K.S.; Honeycutt, J.D.

    1995-12-01

    This report summarizes the technical progress made in the past three years on CRADA No. 1078, Molecular Engineering of Polymer Alloys. The thrust of this CRADA was to start with the basic ideas of PRISM theory and develop it to the point where it could be applied to modeling of polymer alloys. In this program, BIOSYM, Sandia and the University of Illinois worked jointly to develop the theoretical techniques and numerical formalisms necessary to implement the theoretical ideas into commercial software aimed at molecular engineering of polymer alloys. This CRADA focused on developing the techniques required to make the transition from theory to practice. These techniques were then used by BIOSYM to incorporate PRISM theory and other new developments into their commercial software.

  4. Regional manufacturing technology development for the small manufacturer. CRADA final report

    SciTech Connect

    Shanks, B.A.; Patz, D.

    1996-09-30

    The purpose of this CRADA was to provide a mechanism whereby private sector companies within the State of Florida could access the vast technological resources available at the Lockheed Martin Energy Systems, Inc. facilities in Oak Ridge, Tennessee and Largo, Florida. This assistance was focused on assisting companies within the region to become more globally competitive. The State of Florida Department of Commerce, Lockheed Martin Energy Systems, Inc. (LMES) Specialty Components and LMES Oak Ridge, provided companies with up to four days of technical assistance at no charge. As a result of those interactions, there has been an economic impact of $13.7 million dollars reported, and 138 jobs retained or created over the life of the CRADA. Although this has not been the most successful of all the technical assistance CRADAs, it has proven, because of the number of assistances, to be very successful.

  5. Integrated Biorefinery Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-390

    SciTech Connect

    Chapeaux, A.; Schell, D.

    2013-06-01

    The Amyris-NREL CRADA is a sub-project of Amyris?s DOE-funded pilot-scale Integrated Biorefinery (IBR). The primary product of the Amyris IBR is Amyris Renewable Diesel. Secondary products will include lubricants, polymers and other petro-chemical substitutes. Amyris and its project partners will execute on a rapid project to integrate and leverage their collective expertise to enable the conversion of high-impact biomass feedstocks to these advanced, infrastructure-compatible products. The scope of the Amyris-NREL CRADA includes the laboratory development and pilot scale-up of bagasse pretreatment and enzymatic saccharification conditions by NREL for subsequent conversion of lignocellulosic sugar streams to Amyris Diesel and chemical products by Amyris. The CRADA scope also includes a techno-economic analysis of the overall production process of Amyris products from high-impact biomass feedstocks.

  6. Hydrothermal Liquefaction of Agricultural and Biorefinery Residues Final Report – CRADA #PNNL/277

    SciTech Connect

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Fjare, K. A.; Dunn, B. C.; McDonald, S. L.; Dassor, G.

    2010-07-28

    This project was performed as a Cooperative Research and Development Agreement (CRADA) with the participants: Archer-Daniels-Midland Company (ADM), ConocoPhillips (COP), and Pacific Northwest National Laboratory (PNNL). Funding from the federal government was provided by the Office of the Biomass Program within the Energy Efficiency and Renewable Energy assistant secretariat as part of the Thermochemical Conversion Platform. The three-year project was initiated in August 2007 with formal signing of the CRADA (#PNNL/277) in March 3, 2008 with subsequent amendments approved in November of 2008 and August of 2009. This report describes the results of the work performed by PNNL and the CRADA partners ADM and COP. It is considered Protected CRADA Information and is not available for public disclosure. The work conducted during this project involved developing process technology at PNNL for hydrothermal liquefaction (HTL) of agricultural and biorefinery residues and catalytic hydrothermal gasification (CHG) of the aqueous byproduct from the liquefaction step. Related work performed by the partners included assessment of aqueous phase byproducts, hydroprocessing of the bio-oil product and process analysis and economic modeling of the technology.

  7. Development of lifetime test procedure for powder evacuated panel insulation. CRADA final report

    SciTech Connect

    Wilkes, K E; Graves, R S; Childs, K W

    1996-03-01

    This CRADA is between Appliance Research Consortium (ARC) of the Association of Home Appliance Manufacturers (AHAM) and the Lockheed Martin Energy Research Corp. A Powder Evacuated Panel (PEP) is a "super" thermal insulation, having a thermal resistivity (R) substantially above that of existing insulation without the environmental problems of some insulations such as Chlorofluorocarbon (CFC) blown foam.

  8. Supply of purified Th228 for Ra224 generators. Final CRADA Report .

    SciTech Connect

    Ehst, D. A.; Nuclear Engineering Division

    2009-10-02

    CRADA was terminated when it was determined that the Russians could not perform the terms of the subcontract. It became apparent that the Russians would not be a reliable source of Th228, as a precursor in the decay chain which leads to Ra224. Their government policies will prohibit the export of Th228 in quantities needed for commercial cancer therapy.

  9. Enhanced control and sensing for the REMOTEC ANDROS Mk VI robot. CRADA final report

    SciTech Connect

    Spelt, P.F.; Harvey, H.W.

    1998-08-01

    This Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc., and REMOTEC, Inc., explored methods of providing operator feedback for various work actions of the ANDROS Mk VI teleoperated robot. In a hazardous environment, an extremely heavy workload seriously degrades the productivity of teleoperated robot operators. This CRADA involved the addition of computer power to the robot along with a variety of sensors and encoders to provide information about the robot`s performance in and relationship to its environment. Software was developed to integrate the sensor and encoder information and provide control input to the robot. ANDROS Mk VI robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as in a variety of other hazardous environments. Further, this platform has potential for use in a number of environmental restoration tasks, such as site survey and detection of hazardous waste materials. The addition of sensors and encoders serves to make the robot easier to manage and permits tasks to be done more safely and inexpensively (due to time saved in the completion of complex remote tasks). Prior research on the automation of mobile platforms with manipulators at Oak Ridge National Laboratory`s Center for Engineering Systems Advanced Research (CESAR, B&R code KC0401030) Laboratory, a BES-supported facility, indicated that this type of enhancement is effective. This CRADA provided such enhancements to a successful working teleoperated robot for the first time. Performance of this CRADA used the CESAR laboratory facilities and expertise developed under BES funding.

  10. Final CRADA Report ORNL-00-0609, Real-Time Control of Diesel Combustion Quality

    SciTech Connect

    Wagner, Robert M

    2010-07-01

    Detroit Diesel Corporation (DDC) and ORNL established this CRADA to improve heavy-duty engine efficiency with reduced emissions at relatively extreme operating regimes such has high EGR, low-load, and cold-start, with an emphasis on the application of advanced control strategies. The approach used in this collaborative effort was to include the application of novel analysis and modeling techniques developed from the application of nonlinear dynamics and chaos theory. More specifically, analytical techniques derived from these theories were to used to detect, characterize, and control the combustion instabilities that are responsible for poor combustion performance and corresponding high emissions. The foundation of this CRADA was established based on ORNL expertise on the fundamentals of advanced combustion operation and experience with nonlinear dynamics and controls in combustion systems. The initial plan was all data generation would be performed at DDC with an agreed upon experimental plan formed by both organizations. While numerous experiments were performed at DDC and the data was exchanged with ORNL researchers, the team decided to transfer an engine to ORNL to allow more flexibility and data generation opportunities. A prototype DDC Series 60 with a common rail fuel system was selected and installed at ORNL. DDC and ORNL maintained a strong collaboration throughout much of this project. Direct funding from DOE ended in 2004 and DDC continued to fund at a reduced amount through 2007. This CRADA has not been funded in more recent years but has been maintained active in anticipation of restored funding. This CRADA has led to additional collaborations between DDC and ORNL. The objectives are to: (1) Explore and establish boundaries of high efficiency clean combustion (HECC) modes on a DDC heavy-duty diesel engine; (2) Improve fundamental understanding of combustion instabilities for use in the development of predictive controls and diagnostics; and (3) Develop

  11. Advanced technology and manufacturing practices for machining and inspecting metal matrix composites. Final CRADA report for CRADA number Y-1292-0092

    SciTech Connect

    Fell, H.A.; Shelton, J.E.; LaMance, G.M.; Kennedy, C.R.

    1995-02-26

    Lockheed Martin Energy Systems, Inc. (Energy Systems) and the Lanxide Corporation (Lanxide) negotiated a Cooperative Research and Development Agreement (CRADA) to develop advanced technology and manufacturing practices for machining and inspecting metal matrix composites (MMC). The objective of this CRADA was to develop machining parameters to allow manufacturing of automotive components from MMCs. These parts exhibit a range of shapes and dimensional tolerances and require a large number of machining operations. The common characteristic of the components is the use of the light weight MMC materials to replace heavier materials. This allows smaller and lighter moving parts and supporting structural components thereby increasing fuel mileage. The CRADA was divided into three areas: basic investigation of cutting parameters, establishment of a mock production line for components, and optimization of parameters in the mock facility. This report covers the manufacturing of MMCs and preliminary Phase I testing for silicon carbide having various loading percentages and extensive Phase I testing of cutting parameters on 30% alumina loaded aluminum. On January 26, 1995, a letter from the vice president, technology at Lanxide was issued terminating the CRADA due to changes in business. 9 refs., 18 figs., 3 tabs.

  12. Machine tool evaluation (development of environmentally conscious machining fluids and systems). CRADA final report

    SciTech Connect

    Buchanan, A.C. III; Sigman, M.E.; Yang, C.L.

    1998-08-01

    The overall purpose of this CRADA is to select or develop as required a group of cutting fluids, for use with metals and/or ceramic materials, which are more environmentally benign and which will reduce or eliminate the environmental problems associated with management and disposal of these cutting fluids. This CRADA was initially funded by DOE/DP, and was expanded to include DOE/ER funding with an added focus on environmental issues related to synthetic cutting fluids. The specific objective of this DOE-ER funded project (one of ten technical tasks within the CRADA) is to determine and demonstrate chemical methods of degrading and/or improving the disposability of synthetic cutting fluids. Photochemical advanced oxidation processes were developed and demonstrated to successfully remove all carbon from new and used cutting fluids, and from surrogate solutions containing up to 15,000 ppm of total organic carbon in the initial solutions. Chemical and energy costs for the process were evaluated. Commercial providers of advanced oxidation process technologies were consulted concerning scale-up, and associated costs in industrial systems were estimated to be well represented by the laboratory bench-scale measured values. Engineering aspects and alternative oxidation methodologies were explored through consultation with an internationally recognized chemical engineer, and it was concluded that no clear alternatives were available for treating aqueous fluids with extremely high initial carbon content (i.e., 15,000 popm total organic carbon).

  13. DEDALOS NREL: Cooperative Research and Development Final Report, CRADA Number CRD-07-237

    SciTech Connect

    Friedman, D.

    2013-06-01

    Currently High Concentration Photovoltaic (HCPV) terrestrial modules are based on the combination of optic elements that concentrate the sunlight into much smaller GaAs space cells to produce electricity. GaAs cell technology has been well developed for space applications during the last two decades, but the use of GaAs cells under concentrated sunlight in terrestrial applications leaves unanswered questions about performance, durability and reliability. The work to be performed under this CRADA will set the basis for the design of high-performance, durable and reliable HCPV terrestrial modules that will bring down electricity production costs in the next five years.

  14. Prevention of iron-sulfide deposition in petroleum processing. Final CRADA report.

    SciTech Connect

    Doctor, R. D.; Panchal, C. B.; Energy Systems

    2010-03-25

    The purpose of this CRADA extension which effectively ended in 2003 was to quantify the effect of iron-sulfide formation on the fouling propensity of crude oil. The specific objectives are focused on fouling of the Crude Distillation Unit (CDU-1) at the Shell Refinery in Mobile, Alabama. The technical approach consists of analyzing the plant data, chemical analysis of crude oil to detect key precursors, performing refinery tests using the Argonne Field Fouling Unit, and verifying the effectiveness of a physical device of tube insert and enhanced tubes to change threshold conditions and thereby reducing fouling.

  15. Rhenium labeled peptides and antibodies for cancer therapy. CRADA final report

    SciTech Connect

    Knapp, Jr., F. F.; Rhodes, B. A.

    1996-08-12

    This CRADA involved development of optimal methods for attachment of rhenium radioisotopes to antibodies and peptides which can be used for cancer treatment. Rhenium-186 and the tungsten-188/rhenium-188 generators were provided from ORNL to RhoMed for peptide labeling studies. The rhenium-186 and carrier-free rhenium-188 were then used to optimize the labeling of various small peptides....A system has been developed at ORNL which provides the rhenium-188 radioisotope, which has excellent therapeutic properties for cancer treatment.

  16. Efficiency Improvement of Nitride-Based Solid State Light Emitting Materials -- CRADA Final Report

    SciTech Connect

    Kisielowski, Christian; Weber, Eicke

    2010-05-13

    The development of In{sub x}Ga{sub 1-x} N/GaN thin film growth by Molecular Beam Epitaxy has opened a new route towards energy efficient solid-state lighting. Blue and green LED's became available that can be used to match the whole color spectrum of visible light with the potential to match the eye response curve. Moreover, the efficiency of such devices largely exceeds that of incandescent light sources (tungsten filaments) and even competes favorably with lighting by fluorescent lamps. It is, however, also seen in Figure 1 that it is essential to improve on the luminous performance of green LED's in order to mimic the eye response curve. This lack of sufficiently efficient green LED's relates to particularities of the In{sub x}Ga{sub 1-x}N materials system. This ternary alloy system is polar and large strain is generated during a lattice mismatched thin film growth because of the significantly different lattice parameters between GaN and InN and common substrates such as sapphire. Moreover, it is challenging to incorporate indium into GaN at typical growth temperatures because a miscibility gap exists that can be modified by strain effects. As a result a large parameter space needs exploration to optimize the growth of In{sub x}Ga{sub 1-x}N and to date it is unclear what the detailed physical processes are that affect device efficiencies. In particular, an inhomogeneous distribution indium in GaN modifies the device performance in an unpredictable manner. As a result technology is pushed forward on a trial and error basis in particular in Asian countries such as Japan and Korea, which dominate the market and it is desirable to strengthen the competitiveness of the US industry. This CRADA was initiated to help Lumileds Lighting/USA boosting the performance of their green LED's. The tasks address the distribution of the indium atoms in the active area of their blue and green LED's and its relation to internal and external quantum efficiencies. Procedures to

  17. Application of powder metallurgy techniques for the development of non-toxic ammunition. Final CRADA report

    SciTech Connect

    Lowden, R.; Kelly, R.

    1997-05-30

    The purpose of the Cooperative Research and Development Agreement (CRADA) between Martin Marietta Energy Systems, Inc., and Delta Frangible Ammunition (DFA), was to identify and evaluate composite materials for the development of small arms ammunition. Currently available small arms ammunition utilizes lead as the major component of the projectile. The introduction of lead into the environment by these projectiles when they are expended is a rapidly increasing environmental problem. At certain levels, lead is a toxic metal to the environment and a continual health and safety concern for firearm users as well as those who must conduct lead recovery operations from the environment. DFA is a leading supplier of high-density mixtures, which will be used to replace lead-based ammunition in specific applications. Current non-lead ammunition has several limitations that prevent it from replacing lead-based ammunition in many applications (such as applications that require ballistics, weapon recoil, and weapon function identical to that of lead-based ammunition). The purpose of the CRADA was to perform the research and development to identify cost-effective materials to be used in small arms ammunition that eventually will be used in commercially viable, environmentally conscious, non-lead, frangible and/or non-frangible, ammunition.

  18. Tire Development for Effective Transportation and Utilization of Used Tires, CRADA 01-N044, Final Report

    SciTech Connect

    Susan M. Maley

    2004-03-31

    Scrap tires represent a significant disposal and recycling challenge for the United States. Over 280 million tires are generated on an annual basis, and several states have large stockpiles or abandoned tire piles that are slated for remediation. While most states have programs to address the accumulation and generation of scrap tires, most of these states struggle with creating and sustaining recycling or beneficial end use markets. One of the major issues with market development has been the costs associated with transporting and processing the tires into material for recycling or disposal. According to a report by the Rubber Manufactures Association tire-derived fuel (TDF) represents the largest market for scrap tires, and approximately 115 million tires were consumed in 2001 as TDF (U.S. Scrap Tire Markets, 2001, December 2002, www.rma.org/scraptires). This market is supported primarily by cement kilns, followed by various industries including companies that operate utility and industrial boilers. However the use of TDF has not increased and the amount of TDF used by boiler operators has declined. The work completed through this cooperative research and development agreement (CRADA) has shown the potential of a mobile tire shredding unit to economically produce TDF and to provide an alterative low cost fuel to suitable coal-fired power systems. This novel system addresses the economic barriers by processing the tires at the retailer, thereby eliminating the costs associated with hauling whole tires. The equipment incorporated into the design allow for small 1-inch chunks of TDF to be produced in a timely fashion. The TDF can then be co-fired with coal in suitable combustion systems, such as a fluidized bed. Proper use of TDF has been shown to boost efficiency and reduce emissions from power generation systems, which is beneficial to coal utilization in existing power plants. Since the original scope of work outlined in the CRADA could not be completed because

  19. Multiphase Flow Modeling - Validation and Application CRADA MC94-019, Final Report

    SciTech Connect

    Madhava Syamlal; Philip A. Nicoletti

    1995-08-31

    For the development and validation of multiphase flow modeling capability, a cooperative research and development agreement (CRADA) is in effect between Morgantown Energy Technology Center (METC) and Fluent Inc. To validate the Fluent multiphase model, several simulations were conducted at METC and the results were compared with the results of MFIX, a multiphase flow code developed at METC, and with experimental data. The results of these validation studies will be presented. In addition, the application of multiphase flow modeling will be illustrated by presenting the results of simulations of a filter back- flushing and a fluidized bed coal gasifier. These simulations were conducted only with MFIX, since certain features needed in these simulations will be available only in the next release of Fluent.

  20. Manufacture of die casting dies by hot isostatic pressing. CRADA final report

    SciTech Connect

    Viswanathan, S.; Ren, W.; Luk, K.; Brucher, H.G.

    1998-09-01

    The reason for this Cooperative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory (ORNL) and Doehler-Jarvis was to investigate the manufacture die-casting dies with internal water-cooling lines by hot-isostatic pressing (HIPing) of H13 tool steel powder. The use of HIPing will allow the near-net-shape manufacture of dies and the strategic placement of water-cooling lines during manufacture. The production of near-net-shape dies by HIPing involves the generation of HIPing diagrams, the design of the can that can be used for HIPing a die with complex details, strategic placement of water-cooling lines in the die, computer modeling to predict movement of the water lines during HIPing, and the development of strategies for placing water lines in the appropriate locations. The results presented include a literature review, particle analysis and characterization of H13 tool steel powder, and modeling of the HIPing process.

  1. Hydrous ethanol injection system. Final report/project accomplishments summary, CRADA Number 95-KCP-1017

    SciTech Connect

    Carr, M.E.

    1997-03-01

    This CRADA effort applies AlliedSignal Federal Manufacturing and Technologies (FM and T) expertise and facilities together with FMD`s knowledge of diesel emissions control as a design team to create a practical Hydrous Ethanol Injection and Fuel Management System which will significantly reduce particulate and NOx emissions and improve fuel economy. FM and T`s knowledge of high reliability electronic design and packaging gained from traditional business was used to assist in this design process. The combination of these capabilities with the experience in bringing a product from initial concept through development and into full production complemented FMD design and product experience. This collaborative design team effort between FM and T and FMD has resulted in the development of a practical Hydrous Ethanol Injection and Fuel Management System.

  2. Recycling end-of-life vehicles of the future. Final CRADA report.

    SciTech Connect

    Jody, B. J.; Pomykala, J. A.; Spangenberger, J. S.; Daniels, E.; Energy Systems

    2010-01-14

    Argonne National Laboratory (the Contractor) entered into a Cooperative Research and Development Agreement (CRADA) with the following Participants: Vehicle Recycling Partnership, LLC (VRP, which consists of General Motors [GM], Ford, and Chrysler), and the American Chemistry Council - Plastics Division (ACC-PD). The purpose of this CRADA is to provide for the effective recycling of automotive materials. The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles. The issues, technical requirements, and cost and institutional considerations in achieving that goal are complex and will require a concerted, focused, and systematic analysis, together with a technology development program. The scope and tasks of this program are derived from 'A Roadmap for Recycling End-of-Life Vehicles of the Future,' prepared in May 2001 for the DOE Office of Energy, Efficiency, and Renewable Energy (EERE)-Vehicle Technologies Program. The objective of this research program is to enable the maximum recycling of automotive materials and obsolete vehicles through the development and commercialization of technologies for the separation and recovery of materials from end-of-life vehicles (ELVs). The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of

  3. Pulse Capacitors for Next Generation Linear Colliders. Final Report

    SciTech Connect

    Hooker, M.W.

    2000-03-03

    During this Phase I SBIR research program, Nanomaterials Research Corporation (NRC) successfully demonstrated high-voltage multilayer capacitors produced from sub-100 nm ceramic powders. The devices produced by NRC exhibited properties that make them particularly useful for pulse power applications. These properties include (1) high capacitance (2) low loss (3) high breakdown voltage (4) high insulation resistance and (5) rapid discharge characteristics. Furthermore, the properties of the nanostructured capacitors were consistently found to exceed those of components that represent the state of the art within the industry. Encouraged by these results, NRC is planning to submit a Phase II proposal with the objective of securing seed capital to continue this development effort.

  4. Science and Technology Development for Renewable Energy Applications: Cooperative Research and Development Final Report, CRADA Number CRD-03-00122

    SciTech Connect

    Musial, W.

    2010-07-01

    This CRADA PTS is a vital element of a larger GE effort to design and build higher-power next-generation wind turbine generators with a cost of energy production competitive or less than conventional fuel-based generation.

  5. Development of YBCO Superconductor for Electric Systems: Cooperative Research and Development Final Report, CRADA Number CRD-04-150

    SciTech Connect

    Bhattacharya, R.

    2013-03-01

    The proposed project will be collaborative in exploration of high temperature superconductor oxide films between SuperPower, Inc. and the National Renewable Energy Laboratory. This CRADA will attempt to develop YBCO based high temperature oxide technology.

  6. Micro-toughened titanium-based intermetallics for high-temperature service. CRADA final report

    SciTech Connect

    Sikka, V.K.; Liu, C.T.; Blue, C.A.

    1997-11-01

    This Cooperative Research and Development Agreement (CRADA) report deals with the composition development, processing parameter development, microstructural evaluation, and mechanical properties development of the {beta} TiAl alloys. Two series of alloy compositions were identified. The first series consisted of four alloys, and the second series consisted of three alloys. The powders were packed in titanium cans, evacuated, and sealed. The titanium cans were hot extruded at 1150, 1250, and 1400{degrees}C to an area reduction ratio of 16:1. The extruded bars were heat treated between 800 and 1320{degrees}C, and their microstructure characterized in the extended and heat-treated condition by optical, scanning, and transmission electron microscopy (TEM). The microstructural features such as colony size, width of colony boundary {beta} layer, interlamellar spacing, {alpha}{sub 2}-{alpha}{sub 2} spacing, {beta}lamellar width, and {alpha}{sub 2}-{beta} layer ratio were quantified. Tensile bars were prepared from the extruded bars by electrodischarge machining followed by grinding. Tensile tests were conducted from room temperature to 1000{degrees}C. Three-point-bend tests were used to measure the fracture toughness at both room temperature and 800{degrees}C. The effect of long-term annealing at 800 and 1000{degrees}C on one of the alloys was measured at room temperature. Tensile properties of the alloys of this study were compared with the data reported in literature.

  7. Telemedicine. Final report/project accomplishments summary CRADA number 95-KCP-1014

    SciTech Connect

    VanDeusen, A.L.

    1997-04-01

    This project was initiated to fill existing voids in the telemedicine equipment market. Currently, when a medical facility adds telemedicine capability to their video conference system, they must purchase expensive and bulky encoders and decoders in order to send information over the available data channel. Even with this expensive equipment, only one data type (stethoscope or ECG) can be sent at a time. In addition, since existing encoders and decoders are not designed specifically for telemedicine, special cables must be built to connect with this equipment. This project resulted in the design and construction of an encoder/decoder system that resolved these issues. The unit (referred to as the Telecoder) is designed specifically for the telemedicine market. The Telecoder is compact, handles two types of data (stethoscope and ECG) simultaneously, integrates with existing medical equipment, and is less expensive. In addition to the Telecoder module, a prototype was built that adds all the necessary logic and interfaces necessary to integrate the basic encoder design into additional Cardionics products. Although a complete integration into other Cardionics products was not in the scope of this CRADA, all the basic design work has been done to allow Cardionics to complete the work.

  8. Atrial Model Development and Prototype Simulations: CRADA Final Report on Tasks 3 and 4

    SciTech Connect

    O'Hara, T.; Zhang, X.; Villongco, C.; Lightstone, F.; Richards, D.

    2016-10-28

    The goal of this CRADA was to develop essential tools needed to simulate human atrial electrophysiology in 3-dimensions using an anatomical image-based anatomy and physiologically detailed human cellular model. The atria were modeled as anisotropic, representing the preferentially longitudinal electrical coupling between myocytes. Across the entire anatomy, cellular electrophysiology was heterogeneous, with left and right atrial myocytes defined differently. Left and right cell types for the “control” case of sinus rhythm (SR) was compared with remodeled electrophysiology and calcium cycling characteristics of chronic atrial fibrillation (cAF). The effects of Isoproterenol (ISO), a beta-adrenergic agonist that represents the functional consequences of PKA phosphorylation of various ion channels and transporters, was also simulated in SR and cAF to represent atrial activity under physical or emotional stress. Results and findings from Tasks 3 & 4 are described. Tasks 3 and 4 are, respectively: Input parameters prepared for a Cardioid simulation; Report including recommendations for additional scenario development and post-processing analytic strategy.

  9. Advanced compact laser scanning system enhancements for gear and thread measurements. Final CRADA report

    SciTech Connect

    McKeethan, W.M.; Maxey, L.C.; Bernacki, B.E.; Castore, G.

    1997-04-04

    The measurement, or metrology, of physical objects is a fundamental requirement for industrial progress. Dimensional measurement capability lies at the heart of ones ability to produce objects within the required technical specifications. Dimensional metrology systems are presently dominated by touch-probe technologies, which are mature and reliable. Due to the intricate geometries required in certain fields of manufacturing, these contract probes cannot be physically brought in proximity to the measurement surface, or lack sufficient lateral resolution to satisfactorily determine the surface profile, which can occur in the measurement of gears, splines and thread. Optical probes are viable candidates to supplement the contact probes, since light can be focused to less than one micron (40 microinches), no contact occurs that can mar highly finished surfaces, and no probes must be replaced due to wear. However, optical probes typically excel only on one type of surface: mirror-like or diffuse, and the optical stylus itself is oftentimes not as compact as its contact probe counterpart. Apeiron, Inc. has pioneered the use of optical non-contact sensors to measure machined parts, especially threads, gears and splines. The Oak Ridge Metrology Center at Oak Ridge Y-12 Plant are world-class experts in dimensional metrology. The goal of this CRADA is to tap the expertise in Oak Ridge to evaluate Apeiron`s platform, and to suggest new or novel methods of optical surface sensing, if appropriate.

  10. Numerical modeling of giant magnetoresistance effect for application to magnetic data storage. CRADA final report for CRADA number Y-1293-0175

    SciTech Connect

    Butler, W.H.; Gurney, B.A.

    1996-09-16

    The giant magnetoresistance (GMR) effect is a change in the electrical resistance of a magnetically inhomogeneous material that occurs when an applied magnetic field aligns the magnetic moments in different regions of the material. GMR allows the development of very small and sensitive devices for detecting and measuring magnetic fields. Such devices have many applications including the sensing of data on magnetic disk drives and in magnetic random access memory cells. This Cooperative Research and Development Agreement between Lockheed Martin Energy Systems and IBM Almaden Research Center was a joint experimental and theoretical program to obtain a better understanding of the giant magnetoresistance effect with the goal of optimizing the effect for application to magnetic data storage devices. The CRADA was successful in developing a detailed microscopic understanding of GMR and in pointing out strategies for increasing the GMR effect.

  11. Drying and reconstitution of subbituminous coal - CRADA 90-004. Final report

    SciTech Connect

    Wen, W. W.; Nowak, M. A.; Killmeyer, R. P.

    1991-10-30

    AMAX Coal Company (AMAX) has built a 200 tph, demonstration scale fluidized-bed drying process at their Belle Ayr Mine in Wyoming to dry the subbituminous coal of Wyodak seam from an average moisture content of 25-30 wt% to about 10 wt%. Currently, the dryer generates too many fines for proper transportation and handling. Though the raw coal is about 2-inch top size, about 80 wt% of the dryer product ends up finer than 28 mesh, and about 10 wt% of the dried coal is collected in the dryer bag house (minus 200 mesh). Paul Woessner, Director of Research and Development of AMAX, met with personnel from PETC Coal Preparation Division and expressed an interest in an investigation of the feasibility of applying the PETC`s humic acid binder to reconstitute the bag house fines from the dryer. This was an area in which PETC had been doing some research and had some expertise. As a result, AMAX and the U.S. Department of Energy`s Pittsburgh Energy Technology Center (PETC) signed a Cooperative Research and Development Agreement (CRADA, see appendix A) in June 1990 to produce, from fine subbituminous coal, economic low moisture reconstituted solid fuel forms that have suitable storage, handling, transportation, and combustion properties. PETC`s task in this agreement was to conduct broad, baseline studies in three areas: (1) to develop a humic acid binder from AMAX subbituminous coal using the PETC-developed Humic Acid Binder Process, (2) to reconstitute AMAX`s dried subbituminous coal fines from the bag house and the fluidized bed dryer product with humic acid binder, and (3) to produce low moisture, water-resistant pellets from raw subbituminous coal by the PETC-developed Lignipel Process. AMAX, on the other hand, agreed to produce 1-2 tons of reconstituted solid fuel for handleability and combustion tests and partially funded PETC`s efforts.

  12. Performance improvement of silicon nitride ball bearings by ion implantation. CRADA final report

    SciTech Connect

    Williams, J.M.; Miner, J.

    1998-03-01

    The present report summarizes technical results of CRADA No. ORNL 92-128 with the Pratt and Whitney Division of United Technologies Corporation. The stated purpose of the program was to assess the 3effect of ion implantation on the rolling contact performance of engineering silicon nitride bearings, to determine by post-test analyses of the bearings the reasons for improved or reduced performance and the mechanisms of failure, if applicable, and to relate the overall results to basic property changes including but not limited to swelling, hardness, modulus, micromechanical properties, and surface morphology. Forty-two control samples were tested to an intended runout period of 60 h. It was possible to supply only six balls for ion implantation, but an extended test period goal of 150 h was used. The balls were implanted with C-ions at 150 keV to a fluence of 1.1 {times} 10{sup 17}/cm{sup 2}. The collection of samples had pre-existing defects called C-cracks in the surfaces. As a result, seven of the control samples had severe spalls before reaching the goal of 60 h for an unacceptable failure rate of 0.003/sample-h. None of the ion-implanted samples experienced engineering failure in 150 h of testing. Analytical techniques have been used to characterize ion implantation results, to characterize wear tracks, and to characterize microstructure and impurity content. In possible relation to C-cracks. It is encouraging that ion implantation can mitigate the C-crack failure mode. However, the practical implications are compromised by the fact that bearings with C-cracks would, in no case, be acceptable in engineering practice, as this type of defect was not anticipated when the program was designed. The most important reason for the use of ceramic bearings is energy efficiency.

  13. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    SciTech Connect

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.; Ally, Moonis Raza; Shen, Bo

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  14. Cost effective machining and inspection of structural ceramic components for advanced high temperature application. Final CRADA report for CRADA number Y-1292-0151

    SciTech Connect

    Abbatiello, L.A.; Haselkorn, M.

    1996-11-29

    This Cooperative Research and Development Agreement (CRADA) was a mutual research and development (R and D) effort among the participants to investigate a range of advanced manufacturing technologies for two silicon nitride (Si{sub 3}N{sub 4}) ceramic materials. The general objective was to identify the most cost-effective part manufacturing processes for the ceramic materials of interest. The focus was determining the relationship between material removal rates, surface quality, and the structural characteristics of each ceramic resulting from three innovative processes. These innovated machining processes were studied using silicon nitride advanced materials. The particular (Si{sub 3}N{sub 4}) materials of interest were sintered GS-44 from the Norton Company, and reaction-bonded Ceraloy 147-3. The processes studied included the following activities: (1) direct laser machining; (2) rotary ultrasonic machining; and (3) diamond abrasive grinding, including both resinoid and vitreous-bonded grinding wheels. Both friable and non-friable diamond types were included within the abrasive grinding study. The task also conducted a comprehensive survey of European experience in use of ceramic materials, principally aluminum oxide. Originally, the effort of this task was to extend through a prototype manufacturing demonstration of selected engine components. During the execution of this program, however changes were made to the scope of the project, altering the goals. The Program goal became only the development of assessment of their impacts on product strength and surface condition.

  15. Metallization for Self Aligned Technology: Cooperative Research and Development Final Report, CRADA Number CRD-08-295

    SciTech Connect

    Ginley, D.

    2012-04-01

    In this CRADA NREL will modify/develop metallization inks that are compatible with 1366 Technologies technology. Various methods of deposition will be used to apply the inks to the textured silicon substrates. The goal of the project is to minimize the contact resistance while maximizing the cell efficiency.

  16. High Performance Photovoltaic Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-05-169

    SciTech Connect

    Steiner, M.

    2012-07-01

    NREL will provide certified measurements of the conversion efficiency at high concentration for several multijunction solar cells that were fabricated by Cyrium Technologies. In an earlier phase of the CRADA, Cyrium provided epitaxially-grown material and NREL processed the samples into devices and measured the performance.

  17. Electrical Characterization of Printed Nanocrystalline Silicon Films, Cooperative Research and Development Final Report, CRADA Number CRD-07-00241

    SciTech Connect

    Young, D.

    2011-05-01

    This CRADA helped Innovalight characterize and quantify their ink-based selective emitter technology. Controlled localized doping of selective emitter structures via Innovalight Silicon Ink technology was demonstrated. Both secondary ion mass spectrometry and scanning capacitance microscopy revealed; abrupt lateral dopant profiles at ink-printed boundaries. Uniform doping of iso- and pyramidal surfaces was also verified using scanning electron microscopy dopant contrast imaging.

  18. Advanced Borobond™ Shields for Nuclear Materials Containment and Borobond™ Immobilization of Volatile Fission Products - Final CRADA Report

    SciTech Connect

    Wagh, Arun S.

    2016-05-19

    Borobond is a company-proprietary material developed by the CRADA partner in collaboration with Argonne, and is based on Argonne's Ceramicrete technology. It is being used by DOE for nuclear materials safe storage, and Boron Products, LLC is the manufacturer and supplier of Borobond.

  19. Ink Jet Printing for Silicon Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-04-00139

    SciTech Connect

    Ginley, D. S.

    2010-08-01

    The purpose of this CRADA was to combine the strengths of NREL and Evergreen Solar in the area of ink jet printing to develop a new manufacturing technology necessary to produce Si solar cells based on ribbon technology comparable to or exceeding current technologies.

  20. 10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312

    SciTech Connect

    Musial, W.

    2011-05-01

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

  1. Mobile Ocean Test Berth Support: Cooperative Research and Development Final Report, CRADA Number CRD-10-413

    SciTech Connect

    LiVecchi, Albert

    2015-12-01

    The Northwest National Marine Renewable Energy Center (NNMREC), headquartered at the Oregon State University, is establishing the capabilities to test prototype wave energy conversion devices in the ocean. This CRADA will leverage the technical expertise and resources at NREL in the wind industry and in ocean engineering to support and enhance the development of the NNMREC Mobile Ocean Test Berth (MOTB). This CRADA will provide direct support to NNMREC by providing design evaluation and review of the MOTB, developing effective protocols for testing of the MOTB and wave energy conversion devices in the ocean, assisting in the specification of appropriate instrumentation and data acquisition packages, and providing guidance on obtaining and maintaining A2LA (American Association for Laboratory Accreditation) accreditation.

  2. Cooperation on Lidar for Improved Wind Turbine Performance. Cooperative Research and Development Final Report, CRADA Number CRD-13-521

    SciTech Connect

    Fleming, Paul

    2015-05-12

    Research into the use of lidar for improved wind turbine performance is an area of considerable interest. Lidars have been proposed to analyze and improve wind turbine pitch control performance, yaw alignment and control performance, as well as to improve power curve assessments. In this CRADA, NREL, NRG Systems, Inc. (“NRG”) and Avent Lidar Technology SAS (“Avent”) will collaborate on testing these concepts.

  3. Solar Technology Acceleration Center (SolarTAC): Cooperative Research and Development Final Report, CRADA Number CRD-07-259

    SciTech Connect

    Kramer, W.

    2011-10-01

    This agreement allowed NREL to serve as an advisor on SolarTAC - a collaborative effort between Xcel Energy, NREL, and the University of Colorado at Boulder. The collaboration was formed to accelerate pre-commercial and early commercial solar energy technologies to the marketplace. Through this CRADA, NREL participated in the deployment of solar energy generation technologies and related solar equipment for research, testing, validation, and demonstration purposes.

  4. Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335

    SciTech Connect

    Netter, J.

    2013-08-01

    The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

  5. Boulder Wind Power Advanced Gearless Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-12-00463

    SciTech Connect

    Cotrell, J.

    2013-04-01

    The Boulder Wind Power (BWP) Advanced Gearless Drivetrain Project explored the application of BWP's innovative, axial-gap, air-core, permanent-magnet direct-drive generator in offshore wind turbines. The objective of this CRADA is to assess the benefits that result from reduced towerhead mass of BWP's technology when used in 6 MW offshore turbines installed on a monopile or a floating spar foundation.

  6. Inverter Load Rejection Over-Voltage Testing: SolarCity CRADA Task 1a Final Report

    SciTech Connect

    Nelson, A.; Hoke, A.; Chakraborty, S.; Chebahtah, J.; Wang, T.; Zimmerly, B.

    2015-02-01

    Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of electric power systems. One of the urgent areas for additional research - as identified by inverter manufacturers, installers, and utilities - is the potential for transient over-voltage from PV inverters. In one stage of a cooperative tests were repeated a total of seven times. The maximum over-voltage measured in any test did not exceed 200% of nominal, and typical over-voltage levels were significantly lower. The total voltage duration and the maximum continuous time above each threshold are presented here, as well as the time to disconnect for each test. Finally, we present a brief investigation into the effect of DC input voltage as well as a series of no-load tests. This report describes testing conducted at NREL to determine the duration and magnitude of transient over-voltages created by several commercial PV inverters during load-rejection conditions. For this work, a test plan that is currently under development by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Through a cooperative research and development agreement, NREL is working with SolarCity to address two specific types of transient overvoltage: load rejection overvoltage (LRO) and ground fault overvoltage (GFO). Additional partners in this effort include the Hawaiian Electric Companies, Northern Plains Power Technologies, and the Electric Power Research Institute.

  7. Post-Injection Geophysical Evaluation of the Winding Ridge Site CRADA 98-F012, Final Report

    SciTech Connect

    Connie Lyons; Richard Current; Terry Ackman

    1998-09-16

    Acid mine drainage (AMD) from underground mines is a major environmental problem. The disposal of coal combustion by-products (CCB) is also a major national problem due to the large volumes produced annually and the economics associated with transportation and environmentally safe disposal. The concept of returning large volumes of the CCB to their point of origin, underground mines, and using the typically alkaline and pozzolanic attributes of the waste material for the remediation of AMD has been researched rather diligently during the past few years by various federal and state agencies and universities. As the result, the State of Maryland initiated a full-scale demonstration of this concept in a small, 5-acre, unmapped underground mine located near Friendsville, MD. Through a cooperative agreement between the State of Maryland and the U.S. Department of Energy, several geophysical techniques were evaluated as potential tools for the post-injection evaluation of the underground mine site. Three non-intrusive geophysical surveys, two electromagnetic (EM) techniques and magnetometry, were conducted over the Frazee Mine, which is located on Winding Ridge near Friendsville, MD. The EM surveys were conducted to locate ground water in both mine void and overburden. The presence of magnetite, which is naturally inherent to CCB'S due to the combustion process and essentially transparent in sedimentary rock, provided the reason for using magnetometry to locate the final resting place of the CCB grout.

  8. Dynamometer Testing of a NW2200 Drivetrain: Cooperative Research and Development Final Report, CRADA Number CRD-10-394

    SciTech Connect

    Wallen, R.

    2012-04-01

    Northern Power Systems specializes in direct drive wind turbine designs. CRADA CRD-10-394 involved testing the NW2200 wind turbine power train. Power train testing is important because it allows validation of the generator design and some control algorithms prior to installation on a tower, where this data would be more difficult and time consuming to collect. In an effort to keep the commercial product schedule on time, Northern Power requested testing support from the National Renewable Energy Laboratory for this testing. The test program was performed using NREL's 2.5 MW dynamometer test bed at the National Wind Technology Center near Boulder, CO.

  9. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology”

    SciTech Connect

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications

  10. The use of predictive lithostratigraphy to significantly improve the ability to forecast reservoir and source rocks? Final CRADA report.

    SciTech Connect

    Doctor, R. D.; Moore, T. L.; Energy Systems

    2010-06-29

    The purpose of this CRADA, which ended in 2003, was to make reservoir and source rock distribution significantly more predictable by quantifying the fundamental controls on stratigraphic heterogeneity. To do this, the relationships among insolation, climate, sediment supply, glacioeustasy, and reservoir and source rock occurrence were investigated in detail. Work current at the inception of the CRADA had uncovered previously unrecognized associations among these processes and properties that produce a phenomenon that, when properly analyzed, will make lithostratigraphic variability (including texture, porosity, and permeability) substantially more understandable. Computer climate simulations of selected time periods, compared with the global distribution of paleoclimatic indicators, documented spatial and temporal climate changes as a function of insolation and provided quantitative changes in runoff, lake level, and glacioeustasy. The effect of elevation and climate on sediment yield was assessed numerically by analyzing digital terrain and climate data. The phase relationships of climate, yield, and glacioeustatic cycles from the Gulf of Mexico and/or other sedimentary basins were assessed by using lacunarity, a statistical technique.

  11. Advanced Load Identification and Management for Buildings: Cooperative Research and Development Final Report, CRADA Number: CRD-11-422

    SciTech Connect

    Gentile-Polese, L.

    2014-05-01

    The goal of this CRADA work is to support Eaton Innovation Center (Eaton) efforts to develop advanced load identification, management technologies, and solutions to reduce building energy consumption by providing fine granular visibility of energy usage information and safety protection of miscellaneous electric loads (MELs) in commercial and residential buildings. MELs load identification and prediction technology will be employed in a novel 'Smart eOutlet*' to provide critical intelligence and information to improve the capability and functionality of building load analysis and design tools and building power management systems. The work scoped in this CRADA involves the following activities: development and validation of business value proposition for the proposed technologies through voice of customer investigation, market analysis, and third-party objective assessment; development and validation of energy saving impact as well as assessment of environmental and economic benefits; 'smart eOutlet' concept design, prototyping, and validation; field validation of the developed technologies in real building environments. (*Another name denoted as 'Smart Power Strip (SPS)' will be used as an alternative of the name 'Smart eOutlet' for a clearer definition of the product market position in future work.)

  12. [TDA`s hot gas desulfurization sorbent]. TDA Inc./FETC CRADA No. 97-F003, final report

    SciTech Connect

    Berry, D A

    1997-11-14

    This report describes the results of a Cooperative Research and Development Agreement (CRADA) between TDA Incorporated and the Federal Energy Technology Center (FETC) in Morgantown, West Virginia. The objective of this CRADA was to evaluate the performance of TDA`s hot gas desulfurization (HGD) sorbent for use in fossil fuel gasification processes. This particular sorbent, TNT-MB was developed for use in moving-bed HGD reactors in an integrated gasification combined cycle (IGCC) power plant. Two separate tests were conducted; a 10-cycle test, and a low-temperature scoping test. All 10 cycles absorbed H{sub 2}S for the prescribed 125 minutes without breakthrough. The H{sub 2}S concentration remained below 50 ppmv throughout the 125 minute test period. The sorbent showed an increase in attrition resistance from 1.8% (fresh) to 0.87% (reactor inlet) and 0.64% (reactor outlet) after 10 cycles. The results of an additional attrition test are also contained in this report.

  13. SWAY/NREL Collaboration on Offshore Wind System Testing and Analysis: Cooperative Research and Development Final Report, CRADA Number CRD-11-459

    SciTech Connect

    Robertson, Amy

    2015-02-01

    This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory and SWAY. Under the terms and conditions described in this CRADA agreement, NREL and SWAY will collaborate on the SWAY 1/5th-scale floating wind turbine demonstration project in Norway. NREL and SWAY will work together to obtain measurement data from the demonstration system to perform model validation.

  14. CRADA Final Report for CRADA Number ORNL98-0521 : Development of an Electric Bus Inverter Based on ORNL Auxiliary Resonant Tank (ART) Soft-Switching Technology

    SciTech Connect

    Ayers, C.W.

    2001-05-08

    The Power Electronics and Electric Machinery Research Center (PEEMRC) of Oak Ridge National Laboratory (ORNL) has for many years been developing technologies for power converters for motor drives and many other applications. Some of the research goals are to improve efficiency and reduce audible and electromagnetic interference noise generation for inverters and the driven loads. The converters are being required to produce more power with reduced weight and volume, which requires improvements in heat removal from the electronics, as well as improved circuit designs that have fewer electrical losses. PEEMRC has recently developed and patented a soft-switching inverter topology called an Auxiliary Resonant Tank (ART), and this design has been tested and proven at ORNL using a 10-kW laboratory prototype. The objective of this project was to develop, test, and install the ART inverter technology in an electric transit bus with the final goal of evaluating performance of the ORNL inverter under field conditions in a vehicle. A scaled-up inverter with the capacity to drive a 22-e bus was built based on the 10-kW ORNL laboratory prototype ART soft-switching inverter. Most (if not all) commercially available inverters for traction drive and other applications use hard-switching inverters. A Cooperative Research and Development Agreement was established with the Chattanooga Area Regional Transit Authority (CARTA), the Electric Transit Vehicle Institute (ETVI), and Advanced Vehicle Systems (AVS), all of Chattanooga, along with ORNL. CARTA, which maintains and operates the public transit system in Chattanooga, provided an area for testing the vehicle alongside other similar vehicles in the normal operating environment. ETVI offers capabilities in standardized testing and reporting and also provides exposure in the electric transit vehicle arena for ORNL's technologies. The third Chattanooga partner, (AVS) manufactures all-electric and hybrid electric transit buses using

  15. Acciona Solar Technology Performance Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-10-384

    SciTech Connect

    Mehos, M. S.

    2014-01-01

    Under this agreement, NREL will work with Acciona to conduct joint testing, evaluation, and data collection related to Acciona's solar technologies and systems. This work includes, but is not limited to, testing and evaluation of solar component and system technologies, data collection and monitoring, performance evaluation, reliability testing, and analysis. This work will be conducted at Acciona's Nevada Solar One (NSO) power plant and NREL test facilities. Specific projects will be developed on a task order basis. Each task order will identify the name of the project and deliverables to be produced under the task order. Each task order will delineate an estimated completion date based on a project's schedule. Any reports developed under this CRADA must be reviewed by both NREL and Acciona and approved by each organization prior to publication of results or documents.

  16. AIST-NREL Concentrator Photovoltaic (CPV) Demonstration. Cooperative Research and Development Final Report, CRADA Number CRD-10-402

    SciTech Connect

    Kurtz, Sarah

    2015-05-11

    The purpose of the project is to demonstrate and quantitatively compare performance of CPV systems installed in Japan and in the United States. The deployment conditions (e.g. spectrum and temperature) are site dependent and the optimal design of the system may vary with location. The CPV systems will use multi-junction concentrator cells for the conversion of sunlight into electricity. The optimal design of the cell may depend on the location at which a CPV system is installed. Thus, the systems in Japan and in the U.S. will all use a combination of concentrator cells obtained from three different vendors. This CRADA pertains only to the equipment that will be installed in the U.S. This effort is a collaborative project between AIST and NREL.

  17. Organic Based Nanocomposite Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-04-145

    SciTech Connect

    Olson, D.

    2013-01-01

    This CRADA will focus on the development of organic-based solar cells. Key interfacial issues in these cells will be investigated. In this rapidly emerging technology, it is increasingly clear that cell architecture will need to be at the nanoscale and the interfacial issues between organic elements (small molecule and polymer), transparent conducting oxides, and contact metallizations are critical. Thus this work will focus on the development of high surface area and nanostructured nanocarpets of inorganic oxides, the development of appropriate surface binding/acceptor molecules for the inorganic/organic interface, and the development of next-generation organic materials. Work will be performed in all three areas jointly at NREL and Konarka (with their partner in the third area of the University of Delaware). Results should be more rapid progress toward cheap large-area photovoltaic cells.

  18. Catalytic Conditioning and Conversion of Bio-Syngas: Cooperative Research and Development Final Report, CRADA Number CRD-10-418

    SciTech Connect

    Magrini, Kim

    2016-08-01

    There is a critical need to increase the carbon yield of the gasification process. To this end, it has been suggested that tars and chars formed as by-products of gasification be re-injected into the gasifier. In this CRADA work facile and inexpensive methods of modifying chars and tars received from Enerkem are studied with the aim of increasing their gasification rate upon re-injection into the gasifier. Adding iron to the char, both in nitrate form and in clay form, speeds the CO2 gasification of the char (CO2 + C --> 2CO). It has been more difficult to speed the gasification of tar mixed with char, likely due to clogging of pores, resulting in a reduced accessible surface area.

  19. Blade Testing Equipment Development and Commercialization: Cooperative Research and Development Final Report, CRADA Number CRD-09-346

    SciTech Connect

    Snowberg, D.; Hughes, S.

    2013-04-01

    Blade testing is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and financial risk of deploying mass-produced wind turbine models. NREL?s National Wind Technology Center (NWTC) in Colorado is the only blade test facility in the U.S. capable of performing full-scale static and fatigue testing of multi-megawatt-scale wind turbine blades. Rapid growth in wind turbine size over the past two decades has outstripped the size capacity of the NWTC blade test facility leaving the U.S. wind industry without a suitable means of testing blades for large land-based and offshore turbines. This CRADA will develop and commercialize testing technologies and test equipment, including scaling up, value engineering, and testing of equipment to be used at blade testing facilities in the U.S. and around the world.

  20. WindFloat Feasibility Study Support. Cooperative Research and Development Final Report, CRADA Number CRD-11-419

    SciTech Connect

    Sirnivas, Senu

    2015-05-07

    This shared resource CRADA defines research collaborations between the National Renewable Energy Laboratory and Principle Power, Inc. and its subsidiaries (“Principle Power”). Under the terms and conditions described in this CRADA agreement, NREL and Principle Power will collaborate on the DEMOWFLOAT project, a full-scale 2-MW demonstration project of a novel floating support structure for large offshore wind turbines, called WindFloat. The purpose of the project is to demonstrate the longterm field performance of the WindFloat design, thus enabling the future commercialized deployment of floating deepwater offshore wind power plants. NREL is the leading U.S. Department of Energy (DOE) laboratory for the development and advancement of renewable energy and has a strong interest in offshore wind and the development of deepwater offshore wind systems. NREL will provide expertise and resources to the DEMOWFLOAT project in assessing the environmental impacts, independent technical performance validation, and engineering analysis. Principle Power is a Seattle, Washington-based renewable energy company that owns all the intellectual property associated with the WindFloat. In return for NREL’s support of the DEMOWFLOAT project, Principle Power will provide NREL with valuable test data from the project that will be used to validate the numerical tools developed by NREL for analyzing offshore wind turbines. In addition, NREL will gain experience and knowledge in offshore wind designs and testing methods through this collaboration. 2 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. NREL and Principle Power will work together to advance floating offshore wind technology, and demonstrate its viability for supplying the world with a new clean energy source.

  1. New N-Type Polymers for Organic Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-06-177

    SciTech Connect

    Olson, D.

    2014-08-01

    This CRADA will develop improved thin film organic solar cells using a new n-type semiconducting polymer. High efficiency photovoltaics (PVs) based on inorganic semiconductors have good efficiencies (up to 30%) but are extremely expensive to manufacture. Organic PV technology has the potential to overcome this problem through the use of high-throughput production methods like reel-to-reel printing on flexible substrates. Unfortunately, today's best organic PVs have only a few percent efficiency, a number that is insufficient for virtually all commercial applications. The limited choice of stable n-type (acceptor) organic semiconductor materials is one of the key factors that prevent the further improvement of organic PVs. TDA Research, Inc. (TDA) previously developed a new class of electron-deficient (n-type) conjugated polymers for use in organic light emitting diodes (OLEDs). During this project TDA in collaboration with the National Renewable Energy Laboratory (NREL) will incorporate these electron-deficient polymers into organic photovoltaics and investigate their performance. TDA Research, Inc. (TDA) is developing new materials and polymers to improve the performance of organic solar cells. Materials being developed at TDA include spin coated transparent conductors, charge injection layers, fullerene derivatives, electron-deficient polymers, and three-phase (fullerene/polythiophene/dye) active layer inks.

  2. National Security Science and Technology Initiative: Air Cargo Screening, Final Report for CRADA Number NFE-07-01081

    SciTech Connect

    Bingham, Philip; Bush, John; Bowerman, Biays; Cespedes, Ernesto; White, Timothy

    2004-12-01

    The non-intrusive inspection (NII) of consolidated air cargo carried on commercial passenger aircraft continues to be a technically challenging, high-priority requirement of the Department of Homeland Security’s Science and Technology Directorate (DHS S&T), the Transportation Security Agency and the Federal Aviation Administration. The goal of deploying a screening system that can reliably and cost-effectively detect explosive threats in consolidated cargo without adversely affecting the flow of commerce will require significant technical advances that will take years to develop. To address this critical National Security need, the Battelle Memorial Institute (Battelle), under a Cooperative Research and Development Agreement (CRADA) with four of its associated US Department of Energy (DOE) National Laboratories (Oak Ridge, Pacific Northwest, Idaho, and Brookhaven), conducted a research and development initiative focused on identifying, evaluating, and integrating technologies for screening consolidated air cargo for the presence of explosive threats. Battelle invested $8.5M of internal research and development funds during fiscal years 2007 through 2009.

  3. FFP/NREL Collaboration on Hydrokinetic River Turbine Testing: Cooperative Research and Development Final Report, CRADA Number CRD-12-00473

    SciTech Connect

    Driscoll, F.

    2013-04-01

    This shared resources CRADA defines collaborations between the National Renewable Energy Laboratory (NREL) and Free Flow Power (FFP) set forth in the following Joint Work Statement. Under the terms and conditions described in this CRADA, NREL and FFP will collaborate on the testing of FFP's hydrokinetic river turbine project on the Mississippi River (baseline location near Baton Rouge, LA; alternate location near Greenville, MS). NREL and FFP will work together to develop testing plans, instrumentation, and data acquisition systems; and perform field measurements.

  4. Plug-and -Play Model Architecture and Development Environment for Powertrain/Propulsion System - Final CRADA Report

    SciTech Connect

    Rousseau, Aymeric

    2013-02-01

    Several tools already exist to develop detailed plant model, including GT-Power, AMESim, CarSim, and SimScape. The objective of Autonomie is not to provide a language to develop detailed models; rather, Autonomie supports the assembly and use of models from design to simulation to analysis with complete plug-and-play capabilities. Autonomie provides a plug-and-play architecture to support this ideal use of modeling and simulation for math-based automotive control system design. Models in the standard format create building blocks, which are assembled at runtime into a simulation model of a vehicle, system, subsystem, or component to simulate. All parts of the graphical user interface (GUI) are designed to be flexible to support architectures, systems, components, and processes not yet envisioned. This allows the software to be molded to individual uses, so it can grow as requirements and technical knowledge expands. This flexibility also allows for implementation of legacy code, including models, controller code, processes, drive cycles, and post-processing equations. A library of useful and tested models and processes is included as part of the software package to support a full range of simulation and analysis tasks, immediately. Autonomie also includes a configuration and database management front end to facilitate the storage, versioning, and maintenance of all required files, such as the models themselves, the model’s supporting files, test data, and reports. During the duration of the CRADA, Argonne has worked closely with GM to implement and demonstrate each one of their requirements. A use case was developed by GM for every requirement and demonstrated by Argonne. Each of the new features were verified by GM experts through a series of Gate. Once all the requirements were validated they were presented to the directors as part of GM Gate process.

  5. CRADA No. BNL-C-97-10 between BNL and Cotton, Inc. Final abstract and final report [Final Report of Research carried out under DOE CRADA No. BNL-C-97-10 - "Prediction of Yield in Cotton"

    SciTech Connect

    None, None

    2000-01-03

    The objectives of this work were to determine if the numbér of fiber cell initials varied genetically and to compare the number of initials with that of mature fibers obtained at harvest time. The method used to count the number of fiber cell initials is direct, simple, quick and done while the plant is growing. In contrast, the currently used commercial process is indirect and needs large amount mature fibers gathered at harvest time. However, all current work on cotton yield is based on fiber numbers obtained by the indirect commercial process. Consequently, it was necessary to compare results obtained from the two methods using the same plants as the source of material. The results show that the number of fiber initials per ovule differed significantly (P>0.05) for seven cultivars in 1995 and 1996. AIso, a 1997 study shows the number of fiber initials varied by 15% over boll positions and environments, with rankings among cultivars generally consistent across boll positions and sampling times. Finally, although there were differences among cultivars for initial fiber cell number, all cultivars had nearly the same number of mature lint fibers per seed. This last finding is significant. It indicates that the rate of fiber cell initiation varies among cultivars; the lower the rate, the greater the difference between the number of initials and the number of mature fiber cells. If the rate of fiber initiation is relatively high, the number of initials and mature fibers differs by about 11%; if it is low, the difference is as high as 31%. Cotton breeders may be able to use genetic differences for the number of fiber initials and/or the rate of fiber cell initiation in crop improvement programs.

  6. cCRADA | FNLCR

    Cancer.gov

    A contractor Cooperative Research and Development Agreement(cCRADA) is a partnering mechanism that expands the opportunities for FNLCR’s researchers to work with external parties to conduct collaborative research activities and explore develo

  7. Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326

    SciTech Connect

    Hughes, S.

    2012-05-01

    This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

  8. NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354

    SciTech Connect

    Hughes, S.

    2012-05-01

    This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

  9. Development of Advanced CdTe Solar Cells Based on High Temperature Corning Glass Substrates: Cooperative Research and Development Final Report, CRADA Number CRD-10-373

    SciTech Connect

    Barnes, T.

    2013-08-01

    NREL has developed advanced processes for CdTe solar cells, but because of the temperature limitations of conventional soda lime glass, many of these processes have not been transferred to manufacturing. Corning is developing high temperature substrate glasses that are believed to be manufacturable and will lead to lower $/watt modules costs. The purpose of this CRADA is to evaluate these glasses in the advanced NREL processes. In addition, the CRADA seeks to develop manufacturable processes for transparent conductive oxide layers based on cadmium stannate.

  10. THE DESIGN OF AN RF ANTENNA FOR A LARGE-BORE, HIGH POWER, STEADY STATE PLASMA PROCESSING CHAMBER FOR MATERIAL SEPARATION - CRADA FINAL REPORT for CRADA Number ORNL00-0585

    SciTech Connect

    Rasmussen, D. A.; Freeman, R. L.

    2001-11-07

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC, (Contractor), and Archimedes Technology Group, (Participant) is to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure. The project objectives are to evaluate the design of an RF antenna for a large-bore, high power, steady state plasma processing chamber for material separation. Criteria for optimization will be to maximize the power deposition in the plasma while operating at acceptable voltages and currents in the antenna structure.

  11. Commercialization Plan Support for Development of Low Cost Vacuum Insulating Glazing: Cooperative Research and Development Final Report, CRADA Number CRD-11-449

    SciTech Connect

    Dameron, Arrelaine

    2015-07-09

    During the duration of this CRADA, V-Glass and NREL will partner in testing, analysis, performance forecasting, costing, and evaluation of V-Glass’s GRIPWELD™ process technology for creating a low cost hermetic seal for conventional and vacuum glazing. Upon successful evaluation of hermeticity, V-Glass’s GRIPWELD™ will be evaluated for its potential use in highly insulating window glazing.

  12. Preliminary Structural Design Conceptualization for Composite Rotor for Verdant Power Water Current: Cooperative Research and Development Final Report, CRADA Number CRD-08-296

    SciTech Connect

    Hughes, S.

    2011-02-01

    The primary thrust of the CRADA will be to develop a new rotor design that will allow higher current flows (>4m/s), greater swept area (6-11m), and in the process, will maximize performance and energy capture.

  13. Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499

    SciTech Connect

    Smith, K.

    2013-10-01

    Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

  14. Development and Demonstration of Energy Savings Perform Contracting Methodologies for Hydroelectric Facilities: Cooperative Research and Development Final Report, CRADA Number CRD-08-309

    SciTech Connect

    Anderson, K.

    2012-04-01

    This CRADA explores the opportunities and challenges of funding federal hydro dam refurbishment projects through ESPCs. It assesses legal authorities for rehabilitating dams through ESPCs; roles and responsibilities of each party including the dam owner, Power Marketing Administration (PMA), ESCO, and preference customers; potential contract structure and flow of money; measurement and verification processes; risk and responsibility allocation; and financial viability of projects.

  15. Development of Abrasion-Resistant Coating for Solar Reflective Films. Cooperative Research and Development Final Report, CRADA Number CRD-07-247

    SciTech Connect

    Gray, Matthew

    2015-10-01

    The purpose of this CRADA is to develop an abrasion-resistant coating, suitable for use on polymeric-based reflective films (e.g., the ReflecTech reflective film), that allows for improved scratch resistance and enables the use of aggressive cleaning techniques (e.g., direct contact methods like brushing) without damaging the specular reflectance properties of the reflective film.

  16. Inks for Ink Jet Printed Contacts for High Performance Silicon Solar Cells: Cooperative Research and Development Final Report, CRADA No. CRD-06-199

    SciTech Connect

    Ginley, D.

    2013-01-01

    The work under the proposed CRADA will be a joint effort by BP Solar and NREL to develop new types of high performance inks for high quality contacts to silicon solar cells. NREL will develop inks that have electronic properties that will allow the formation of high quality ohmic contacts to n- and p-type crystalline silicon, and BP Solar will evaluate these contacts in test contact structures.

  17. METC/3M Cooperative Agreement CRADA 94-024 high temperature high pressure filter materials exposure test program. Volume 1, Final report

    SciTech Connect

    1995-06-01

    In conjunction with shakedown, operation, and desulfurization testing at the Morgantown Energy Technology Center (METC) 10 in. Fluid Bed Gasification and Cleanup facility, a series of tests was completed in cooperation with the Minnesota Mining and Manufacturing Company (3M). This cooperative research and development agreement (CRADA) between METC and 3M was to evaluate exposure of 3M SICONEX{trademark} fiber-reinforced ceramic and NEXTEL{trademark} 312 and 550 ceramic fabric materials to a gasifying environment at high temperatures (1000--1100{degree}F) and high pressure (300 psia). Minnesota Mining and Manufacturing Company (3M) provided two 60 mm I.D. {times} 0.5 m SICONEX{trademark} spools and one each of the NEXTEL{trademark} 312 and 550 ceramic fabrics for exposure to coal gas from the METC gasifier. METC installed the materials in a vessel existing in the METC Cleanup Facility and provided process data in exchange for ceramic filter and ash/char characterization. Details of the CRADA are found in CRADA 94-024. This report contains METC`s contribution to CRADA 94-024. Four gasifier runs were conducted over a five month period to accumulate 483 hours of operation. During this time, 2 LayCer{trademark} 70/3 filters were used for filtering the coal gas while the SICONEX{trademark} and NEXTEL{trademark} were exposed along side of the filters. During one 89 hour test, one Laycer{trademark} 70/3 candle was installed with a 3M ceramic composite filter. The face velocity through the candles was maintained nominally at 2.5 ft/min throughout the testing.

  18. METC/Shell Cooperative Agreement CRADA 93-011 high temperature high pressure filtration and sorbent test program. Volume 1, Final report

    SciTech Connect

    1995-06-01

    In conjunction with shakedown, operation, and desulfurization testing at the Morgantown Energy Technology Center (METC) 10 in. Fluid Bed Gasification and Cleanup facility, a series of tests was completed in cooperatation with Shell Synthetic Fuels, Incorporated to obtain data relevent to the design and operation of dry particulate solids filters, and Nahcolite as a chloride removal sorbent. Shell Synthetic Fuels Incorporated provided 60 mm O.D. {times} 40 mm I.D. {times} O.5 m long silicon carbide, LayCer{trademark} 70/3 candle filters for use in filtering coal gas from the METC gasifier. METC installed the filters in a vessel existing in the METC Cleanup Facility and provided process data in exchange for ceramic filter and ash/char characterization. Details of the cooperative research and development agreement (CRADA) are found in CRADA 93-011. This report contains METC`s contribution to CRADA 93-011. Seven gasifier runs were conducted over an eighteen month period to accumulate 868 hours of operation. During this time, 3 filters were used 2 at a time to give individual candle usage of 254 hours, 525 hours, and 868 hours, respectively. During one 89 hour test, one Laycer 70/3 candle was installed with a 3M ceramic composite filter. The face velocity through the candles was maintained nominally at 2.5 ft/min throughout the testing.

  19. In-service testing of Ni{sub 3}Al coupons and trays in carburizing furnaces at Delphi Saginaw. CRADA final report

    SciTech Connect

    Sikka, V.K.; Santella, M.L.; Viswanathan, S.; Swindeman, R.W.; Chatterjee, M.

    1998-08-01

    This Cooperative Research and Development Agreement (CRADA) report deals with the development of nickel aluminide alloy for improved longer life heat-resistant fixture assemblies for batch and continuous pusher carburizing furnaces. The nickel aluminide development was compared in both coupon and component testing with the currently used Fe-Ni-Cr heat-resisting alloy known as HU. The specific goals of the CRADA were: (1) casting process development, (2) characterization and possible modification of the alloy composition to optimize its manufacturing ability and performance under typical furnace operating conditions, and (3) testing and evaluation of specimens and prototype fixtures. In support of the CRADA objectives, coupons of nickel aluminide and the HU alloy were installed in both batch and pusher furnaces. The coupons were taken from two silicon levels and contained welds made with two different filler compositions (IC-221LA and IC-221W). Both nickel-aluminide and HU coupons were removed from the batch and pusher carburizing furnace at time intervals ranging from one month to one year. The exposed coupons were cut and mounted for metallographic, hardness, and microprobe analysis. The results of the microstructural analysis have been transmitted to General Motors Corporation, Saginaw Division (Delphi Saginaw) through reports that were presented at periodic CRADA review meetings. Based on coupon testing and verification of the coupon results with the testing of trays, Delphi Saginaw moved forward with the use of six additional trays in a batch furnace and two assemblies in a pusher furnace. Fifty percent of the trays and fixtures are in the as-cast condition and the remaining trays and fixtures are in the preoxidized condition. The successful operating experience of two assemblies in the pusher furnace for nearly a year formed the basis for a production run of 63 more assemblies. The production run required melting of 94 heats weighing 500 lb. each. Twenty

  20. Equipment Only - Solar Resources Measurements at the University of Texas at Austin, TX: Cooperative Research and Development Final Report, CRADA Number CRD-07-222

    SciTech Connect

    Stoffel, T.

    2013-01-01

    Faculty and staff at the University of Texas at Austin collected solar resource measurements at their campus using equipment on loan from the National Renewable Energy Laboratory. The equipment was used to train students on the operation and maintenance of solar radiometers and was returned to NREL's Solar Radiation Research Laboratory upon completion of the CRADA. The resulting data augment the solar resource climatology information required for solar resource characterizations in the U.S. The cooperative agreement was also consistent with NREL's goal of developing an educated workforce to advance renewable energy technologies.

  1. Low Cost Thin Film Building-Integrated PV Systems: Cooperative Research and Development Final Report, CRADA Number CRD-07-239

    SciTech Connect

    Stradins, P.

    2011-10-01

    In this CRADA, NREL's Silicon group members performed the following research activities: (1) investigation of the role of hydrogen in growth of a mixed-phase nc-Si:H/a-Si:H material; (2) role of hydrogen in light-induced degradation of a-Si:H and development of Staebler-Wronski effect resistive a-Si:H; and (3) performing characterizations of UniSolar's a-Si:H and nc-Si materials, with goal to help optimizing large-area uniformity and quality of the UniSolar's nanocrystalline Si:H.

  2. NREL/University of Delaware Offshore Wind R&D Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-10-393

    SciTech Connect

    Musial, Walt

    2015-11-12

    Specifically, the work under this CRADA includes, but is not limited to, the development of test procedures for an offshore test site in Delaware waters; testing of installed offshore wind turbines; performance monitoring of those turbines; and a program of research and development on offshore wind turbine blades, components, coatings, foundations, installation and construction of bottom-fixed structures, environmental impacts, policies, and more generally on means to enhance the reliability, facilitate permitting, and reduce costs for offshore wind turbines. This work will be conducted both at NREL's National Wind Technology Center and participant facilities, as well as the established offshore wind test sites.

  3. CENER/NREL Collaboration in Testing Facility and Code Development: Cooperative Research and Development Final Report, CRADA Number CRD-06-207

    SciTech Connect

    Moriarty, P.

    2014-11-01

    Under the funds-in CRADA agreement, NREL and CENER will collaborate in the areas of blade and drivetrain testing facility development and code development. The project shall include NREL assisting in the review and instruction necessary to assist in commissioning the new CENER blade test and drivetrain test facilities. In addition, training will be provided by allowing CENER testing staff to observe testing and operating procedures at the NREL blade test and drivetrain test facilities. CENER and NREL will exchange blade and drivetrain facility and equipment design and performance information. The project shall also include exchanging expertise in code development and data to validate numerous computational codes.

  4. Conversion of Indigenous Agricultural Waste Feedstocks to Fuel Ethanol. Cooperative Research and Development Final Report, CRADA Number CRD-13-504

    SciTech Connect

    Elander, Richard

    2016-03-27

    This Cooperative Research and Development Agreement (CRADA) is between the National Renewable Energy Laboratory (NREL), a world leader in biomass conversion research and Ecopetrol American Inc., Ecopetrol S.A.'s U.S. subsidiary. The research and development efforts described in the Joint Work Statement (JWS) will take advantage of the strengths of both parties. NREL will use its Integrated Biorefinery Facility and vast experience in the conversion of lignocellulosic feedstocks to fuel ethanol to develop processes for the conversion of Ecopetrol's feedstocks. Ecopetrol will establish the infrastructure in Columbia to commercialize the conversion process.

  5. Development of a laser Doppler displacement encoder system with ultra-low-noise-level for linear displacement measurement with subnanometer resolution - Final CRADA Report

    SciTech Connect

    Shu, Deming

    2016-01-01

    An U.S. DOE Cooperative Research and Development Agreement (CRADA) between ANL and Optodyne, Inc. has been established to develop a prototype laser Doppler displacement encoder system with ultra-low noise level for linear measurements to sub-nanometer resolution for synchrotron radiation applications. We have improved the heterodyne efficiency and reduced the detector shot noises by proper shielding and adding a low-pass filter. The laser Doppler displacement encoder system prototype demonstrated a ~ 1 nm system output noise floor with single reflection optics. With multiple-pass optical arrangement, 0.1 nm scale closed-loop feedback control is achieved.

  6. NaREC Offshore and Drivetrain Test Facility Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-04-140

    SciTech Connect

    Musial, W.

    2014-08-01

    The National Renewable Energy Laboratory (NREL) and the National Renewable Energy Centre (NaREC) in the United Kingdom (UK) have a mutual interest in collaborating in the development of full-scale offshore wind energy and drivetrain testing facilities. NREL and NaREC will work together to share resources and experiences in the development of future wind energy test facilities. This Cooperative Research and Development Agreement (CRADA) includes sharing of test protocols, infrastructure cost data, test plans, pro forma contracting instruments, and safe operating strategies. Furthermore, NREL and NaREC will exchange staff for training and development purposes.

  7. Final Report of a CRADA Between Pacific Northwest National Laboratory and Cummins, Incorporated (CRADA No.PNNL/283): “Enhanced High and Low Temperature Performance of NOx Reduction Catalyst Materials”

    SciTech Connect

    Gao, Feng; Szanyi, Janos; Wang, Yilin; Wang, Yong; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, J.; Stafford, R. J.; Yezerets, Aleksey; Luo, J.; Chen, H. Y.

    2016-09-01

    of the most daunting challenges in R&D on new catalyst materials and processes that can effectively eliminate emissions at these quite low exhaust temperatures. This project has two clear focuses: (1) development of potassium-based high-temperature NSR materials, and studying their key causes of deactivation and methods of regeneration. By comparing results obtained on ‘Simple Model’ Pt-K/Al2O3 with ‘Enhanced Model’ Pt-K/ MgAlOx and Pt-K/TiO2 materials, we have developed an understanding of the role of various additives on the deactivation and regeneration processes. Studies have also been performed on the real commercial samples being used in a Dodge Ram truck with a Cummins diesel emission control system. However, the results about these ‘commercial samples’ will not be covered in this report. Following a brief description of our experimental approach, we will present a few highlights from some of the work performed in this CRADA with more details about these results provided in publications/reports/presentations lists presented at the end of the report. (2) for the Cu and Fe/Chabazite SCR catalysts, since these are so newly developed and references from open literature and industry are nearly absent, our work started from zeolite synthesis and catalyst synthesis methodology development, before research on their low- and high-temperature performance, deactivation, regeneration, etc. was conducted. Again, most work reported here is based on our “model” catalysts synthesized in-house. Work done on the ‘commercial samples’ will not be covered in this report.

  8. Development of ZnTe:Cu Contacts for CdTe Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-320

    SciTech Connect

    Dhere, R.

    2012-04-01

    The main focus of the work at NREL was on the development of Cu-doped ZnTe contacts to CdTe solar cells in the substrate configuration. The work performed under the CRADA utilized the substrate device structure used at NREL previously. All fabrication was performed at NREL. We worked on the development of Cu-doped ZnTe as well as variety of other contacts such as Sb-doped ZnTe, CuxTe, and MoSe2. We were able to optimize the contacts to improve device parameters. The improvement was obtained primarily through increasing the open-circuit voltage, to values as high as 760 mV, leading to device efficiencies of 7%.

  9. Development of Thin Film Silicon Solar Cell Using Inkjet Printed Silicon and Other Inkjet Processes: Cooperative Research and Development Final Report, CRADA Number CRD-07-260

    SciTech Connect

    Sopori, B.

    2012-04-01

    The cost of silicon photovoltaics (Si-PV) can be greatly lowered by developing thin-film crystalline Si solar cells on glass or an equally lower cost substrate. Typically, Si film is deposited by thermal evaporation, plasma enhanced chemical vapor deposition, and sputtering. NREL and Silexos have worked under a CRADA to develop technology to make very low cost solar cells using liquid organic precursors. Typically, cyclopentasilane (CPS) is deposited on a glass substrate and then converted into an a-Si film by UV polymerization followed by low-temperature optical process that crystallizes the amorphous layer. This technique promises to be a very low cost approach for making a Si film.

  10. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  11. Particulate Emissions Control using Advanced Filter Systems: Final Report for Argonne National Laboratory, Corning Inc. and Hyundai Motor Company CRADA Project

    SciTech Connect

    Seong, Hee Je; Choi, Seungmok

    2015-10-09

    This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWC functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.

  12. Improving Translation Models for Predicting the Energy Yield of Photovoltaic Power Systems. Cooperative Research and Development Final Report, CRADA Number CRD-13-526

    SciTech Connect

    Emery, Keith

    2015-08-04

    The project under this CRADA will analyze field data of various flat-plate and concentrator module technologies and cell measurements at the laboratory level. The field data will consist of current versus voltage data collected over many years on a latitude tilt test bed for Si, CdTe, amorphous silicon, and CIGS technologies. The concentrator data will be for mirror- and lens-based module designs using multijunction cells. The laboratory data will come from new measurements of cell performance with systematic variation of irradiance, temperature and spectral composition. These measurements will be labor-intensive and the aim will be to cover the widest possible parameter space for as many different PV samples as possible. The data analysis will require software tools to be developed. These tools will be customized for use with the specific NREL datasets and will be unsuitable for commercial release. The tools will be used to evaluate different translation equations against NREL outdoor datasets.

  13. Laboratory Testing of the Boundary Layer Momentum Transfer Rotational Filter Systems, NETL-Innovatech, Inc., CRADA 98-F026, Final Report

    SciTech Connect

    National Energy Technology Laboratory

    2000-08-22

    A patented dynamic mechanical filter developed by InnovaTech was previously shown to remove fine particulate matter from industrial process gas streams at ambient temperatures and pressures. An all-metal, high-temperature version of this novel media-less filter was fabricated under this Cooperative Research and Development Agreement (CRADA) with DOE/NETL-Morgantown for hot gas testing of the device. The technology is entirely different in both concept and design from conventional vortex separators, cyclones, or porous media filters. This new filtration concept is capable of separating heavy loading of fine particles without blinding, fouling or bridging, and would require minimal operational costs over its anticipated multi-year service life. The all-metal filter design eliminates thermal stress cracking and premature failure prevalent in conventional porous ceramic filters. In contrast, conventional porous media filters (i.e., ceramic cross-flow or candles) easily foul, require periodic cleaning (typically backpulsing), frequent replacement and subsequent disposal.

  14. Cooperation Reliability Testing of the Clipper Windpower Liberty 2.5 MW Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-07-210

    SciTech Connect

    Hughes, S.

    2012-05-01

    Clipper Windpower (CWP) has developed the Liberty 2.5 MW wind turbine. The development, manufacturing, and certification process depends heavily on being able to validate the full-scale system design and performance under load in both an accredited structural test facility and through accredited field testing. CWP requested that DOE/ NREL upgrade blade test capabilities to perform a scope of work including structural testing of the C-96 blade used on the CWP Liberty turbine. This funds-in CRADA was developed to upgrade NREL blade test capability, while enabling certification testing of the C-96 blade through the facility and equipment upgrades. NREL shared resource funds were used to develop hardware necessary to structurally attach a large wind turbine to the test stand at the NWTC. Participant funds-in monies were used for developing the test program.

  15. CRADA Final Report: Application of Dual-Mode Invertor Control to Commercially Available Radial-Gap Permanent Magnet Motors - Vol. 1

    SciTech Connect

    Lawler, J.S.; McKeever, J.W.; Downing, M.E.; Stahlhut, R.D; Bremmer, R.; Shoemaker, J.M.; Seksarian, A.K.; Poore, B.; Lutz, J.

    2006-05-01

    John Deere and Company (Deere), their partner, UQM Technologies, Inc. (UQM), and the Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center (PEEMRC) recently completed work on the cooperative research and development agreement (CRADA) Number ORNL 04-0691 outlined in this report. CRADA 04-0691 addresses two topical issues of interest to Deere: (1) Improved characterization of hydrogen storage and heat-transfer management; and (2) Potential benefits from advanced electric motor traction-drive technologies. This report presents the findings of the collaborative examination of potential operational and cost benefits from using ORNL/PEEMRC dual-mode inverter control (DMIC) to drive permanent magnet (PM) motors in applications of interest to Deere. DMIC was initially developed and patented by ORNL to enable PM motors to be driven to speeds far above base speed where the back-electromotive force (emf) equals the source voltage where it is increasingly difficult to inject current into the motor. DMIC is a modification of conventional phase advance (CPA). DMIC's dual-speed modes are below base speed, where traditional pulse-width modulation (PWM) achieves maximum torque per ampere (amp), and above base speed, where six-step operation achieves maximum power per amp. The modification that enables DMIC adds two anti-parallel thyristors in each of the three motor phases, which consequently adds the cost of six thyristors. Two features evaluated in this collaboration with potential to justify the additional thyristor cost were a possible reduction in motor cost and savings during operation because of higher efficiency, both permitted because of lower current. The collaborative analysis showed that the reduction of motor cost and base cost of the inverter was small, while the cost of adding six thyristors was greater than anticipated. Modeling the DMIC control displayed inverter efficiency gains due to reduced current, especially under

  16. Development of New Absorber Materials to Achieve Organic Photovoltaic Commercial Modules with 15% Efficiency and 20 Years Lifetime: Cooperative Research and Development Final Report, CRADA Number CRD-12-498

    SciTech Connect

    Olson, D.

    2014-08-01

    Under this CRADA the parties will develop intermediates or materials that can be employed as the active layer in dye sensitized solar cells printed polymer systems, or small molecule organic photovoltaics.

  17. METC/Shell Cooperative Agreement CRADA 93-011 high temperature high pressure filtration and sorbent test program. Volume 2, Final report

    SciTech Connect

    1995-06-01

    This report is a summary of the results of activities of the particulate monitoring group in support of the METC/Shell CRADA 93-011. Online particulate monitoring began in August 1993 and ended in October 1994. The particulate monitoring group participated in six MGCR runs (No. 5 through No. 10). The instrument used in measuring the particle loadings (particle counts and size distribution) is the Particle Measuring Systems Classical Scattering Aerosol Spectrometer Probe High Temperature and High Pressure (PMS Model CSASP-100-HTHP). This PMS unit is rated to operate at temperatures up to 540{degree}C and gage pressures up to 2.07 MPa. Gas stream conditions, temperature at 540{degree}C, gage pressure at 2.93 MPa, and gas flowrate at 0.0157 SCM per second, precluded the direct measurement of particulate loadings in the gas stream with the PMS unit. A side stream was extracted from the gas stream after it came over to the MGCR, (Modular Gas Cleanup Rig), from the FBG, pressurized fluidized-bed gasifier, but before it entered the filter testing vessel. A sampling probe of 0.635 cm O.D. thin wall stainless steel tubing was used for extracting the sample gas isokinetically based on the expected flowrate. The sample gas stream was further split into two streams; one was directed to the PMS unit and the other to the alkali monitor unit.

  18. Equipment Loan for Concentrated PV Cavity Converter (PVCC) Research: Cooperative Research and Development Final Report, CRADA Number CRD-08-285

    SciTech Connect

    Netter, Judy

    2015-07-28

    Interest in High Concentration Photovoltaics (HCPV) for terrestrial applications has significantly grown in recent years. A major driver behind this growth trend is the availability of high efficiency multi-junction (MJ) cells that promise reliable operation under high concentrations (500 to 1000 suns). The primary impact of HCPV on the solar electricity cost is the dramatic reduction in cell cost. For terrestrial HCPV systems, operating at concentrations ≥ 500 suns, the expensive MJ cells are marginally affordable. Most recently, triple-junction test cells have achieved a conversion efficiency of over 40% under concentrated sunlight. Photovoltaic Cavity Converter (PVCC) is a multi-bandgap, high concentration PV device developed by United Innovations, Inc., under subcontract to NREL. The lateral- (2- dimensional) structure of PVCC, as opposed to vertical multi-junction (MJ) structure, helps to circumvent most of the developmental challenges MJ technology has yet to overcome. This CRADA will allow the continued development of this technology by United Innovations. This project was funded by the California Energy Commission and is the second phase of a twopart demonstration program. The key advantage of the design was the use of a PVCC as the receiver. PVCCs efficiently process highly concentrated solar radiation into electricity by recycling photons that are reflected from the surface of the cells. Conventional flat, twodimensional receivers cannot recycle photons and the reflected photons are lost to the conversion process.

  19. NREL and DONG Energy Collaboration for Grid Simulator Controls and Testing: Cooperative Research and Development Final Report, CRADA Number CRD-13-527

    SciTech Connect

    Gevorgian, Vahan

    2016-05-01

    The National Renewable Energy Laboratory (NREL) and DONG Energy are interested in collaborating for the development of control algorithms, modeling, and grid simulator testing of wind turbine generator systems involving NWTC's advanced Controllable Grid Interface (CGI). NREL and DONG Energy will work together to develop control algorithms, models, test methods, and protocols involving NREL's CGI, as well as appropriate data acquisition systems for grid simulation testing. The CRADA also includes work on joint publication of results achieved from modeling and testing efforts. Further, DONG Energy will send staff to NREL on a long-term basis for collaborative work including modeling and testing. NREL will send staff to DONG Energy on a short-term basis to visit wind power sites and participate in meetings relevant to this collaborative effort. DOE has provided NREL with over 10 years of support in developing custom facilities and capabilities to enable testing of full-scale integrated wind turbine drivetrain systems in accordance with the needs of the US wind industry. NREL currently operates a 2.5MW dynamometer and is in the processes of commissioning a 5MW dynamometer and a grid simulator (referred to as a 'Controllable Grid Interface' or CGI). DONG Energy is the market leader in offshore wind power development, with currently over 1 GW of on- and offshore wind power in operation, and 1.3 GW under construction. DONG Energy has on-going R&D projects involving high voltage DC (HVDC) transmission.

  20. METC/3M Cooperative Agreement CRADA 94-024 high temperature high pressure filter materials exposure test program. Volume 2, Final report

    SciTech Connect

    1995-06-01

    This report is a summary of the results of activities of the particulate monitoring group in support of the METC/3M CRADA 94024. Online particulate monitoring began in June 1994 and ended in October, 1994. The particulate monitoring group participated in four MGCR runs (No. 7 through No. 10). The instrument used in measuring the particle loadings (particle counts and size distribution) is the Particle Measuring Systems Classical Scattering Aerosol Spectrometer Probe High Temperature and High Pressure (PMS Model CSASP-100-HTHP). This PMS unit is rated to operate at temperatures up to 540{degree}C and gage pressures up to 2.0 MPa. Gas stream conditions, temperature at 540{degree}C, gage pressure at 2.93 MPa, and gas flowrate at 0.0157 SCM per second, precluded the direct measurement of particulate loadings in the gas stream with the PMS unit. A side stream was extracted from the gas stream after it came over to the MGCR, Modular Gas Cleanup Rig, from the FBG, pressurized Fluidized-Bed Gasifier, but before it entered the filter testing vessel. A sampling probe of 0.635 cm O.D. thin wall stainless steel tubing was used for extracting the sample gas isokinetically based on the expected flowrate. The sample gas stream was further split into two streams; one was directed to the PMS unit and the other to the alkali monitor unit. The alkali monitor unit was not used during runs No. 7 through No. 10.

  1. Final Report of a CRADA Between Pacific Northwest National Laboratory and the Ford Motor Company (CRADA No. PNNL/265): “Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials, and Development of Zeolite-Based Hydrocarbon Adsorber Materials”

    SciTech Connect

    Gao, Feng; Kwak, Ja Hun; Lee, Jong H.; Tran, Diana N.; Peden, Charles HF; Howden, Ken; Cheng, Yisun; Lupescu, Jason; Cavattaio, Giovanni; Lambert, Christine; McCabe, Robert W.

    2013-02-14

    the engine exhaust. For these reasons, automakers and engine manufacturers have difficulty improving their catalytic converters for meeting the stringent HC emission standards. In this collaborative program, scientists and engineers in the Institute for Integrated Catalysis at Pacific Northwest National Laboratory and at Ford Motor Company have investigated laboratory- and engine-aged SCR catalysts, containing mainly base metal zeolites. These studies are leading to a better understanding of various aging factors that impact the long-term performance of SCR catalysts and improve the correlation between laboratory and engine aging, saving experimental time and cost. We have also studied materials effective for the temporary storage of HC species during the cold-start period. In particular, we have examined the adsorption and desorption of various HC species produced during the combustion with different fuels (e.g., gasoline, E85, diesel) over potential HC adsorber materials, and measured the kinetic parameters to update Ford’s HC adsorption model. Since this CRADA has now been completed, in this final report we will provide brief summaries of most of the work carried out on this CRADA over the last several years.

  2. CRADA Final Report: Application of Dual-Mode Inverter Control to Commercially Available Radial-Gap Mermanent Magnet Motors - Vol. I

    SciTech Connect

    McKeever, John W; Lawler, Jack; Downing, Mark; Stahlhut, Ronnie D; Bremmer, R.; Shoemaker, J. M.; Seksarian, A. K.; Poore, B.; Lutz, Jon F

    2006-05-01

    John Deere and Company (Deere), their partner, UQM Technologies, Inc. (UQM), and the Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center (PEEMRC) recently completed work on the cooperative research and development agreement (CRADA) Number ORNL 04-0691 outlined in this report. CRADA 04-0691 addresses two topical issues of interest to Deere: (1) Improved characterization of hydrogen storage and heat-transfer management; and (2) Potential benefits from advanced electric motor traction-drive technologies. This report presents the findings of the collaborative examination of potential operational and cost benefits from using ORNL/PEEMRC dual-mode inverter control (DMIC) to drive permanent magnet (PM) motors in applications of interest to Deere. DMIC was initially developed and patented by ORNL to enable PM motors to be driven to speeds far above base speed where the back-electromotive force (emf) equals the source voltage where it is increasingly difficult to inject current into the motor. DMIC is a modification of conventional phase advance (CPA). DMIC's dual-speed modes are below base speed, where traditional pulse-width modulation (PWM) achieves maximum torque per ampere (amp), and above base speed, where six-step operation achieves maximum power per amp. The modification that enables DMIC adds two anti-parallel thyristors in each of the three motor phases, which consequently adds the cost of six thyristors. Two features evaluated in this collaboration with potential to justify the additional thyristor cost were a possible reduction in motor cost and savings during operation because of higher efficiency, both permitted because of lower current. The collaborative analysis showed that the reduction of motor cost and base cost of the inverter was small, while the cost of adding six thyristors was greater than anticipated. Modeling the DMIC control displayed inverter efficiency gains due to reduced current, especially under

  3. Final report for contract research on electrochemical capacitors based on conducting polymers, January 15--August 31, 1992

    SciTech Connect

    Ferraris, J.P.

    1992-10-22

    Conducting polymers (CPs) have attracted attention as potentially useful materials for electrochemical capacitors due to their high energy storage capacity and their comparatively low cost. During the course of this research the authors explored a number of poly(heteroaromatic) systems, in conjunction with several nonaqueous electrolytes, that could be used as active materials in electrochemical capacitors. They identified a new configuration for such capacitors based on p- and n-dopable polymers and prepared a number4r of such materials. A new electrolyte, TMATFMS, which facilitates n-doping in these polymers was also synthesized and tested. A patent disclosure on these discoveries has been filed with Mr. Ray Wilson of LANL.

  4. Development of Capacitors for Power Electronics in Hybrid Vehicles

    SciTech Connect

    Balachandran, U.

    2016-02-16

    The purpose of this CRADA is to develop a fabrication process to reduce the manufacturing cost for a very compact, high temperature, film-on-foil high energy-density PLZT (Pb-La-Zr- Ti-O) capacitor. Motivation for this CRADA is derived from the DOE’s Office of Vehicle Technologies (OVT) program, which seeks to advance technologies to improve vehicle fuel efficiency in the mid-term and facilitate the transition to electric drive vehicles over the longterm. The objective of Argonne’s work is to develop and characterize high-performance capacitors on base-metal foils. The PLZT film-on-foil prepared using a spin-coating technique

  5. Vented Capacitor

    DOEpatents

    Brubaker, Michael Allen; Hosking, Terry Alan

    2006-04-11

    A technique of increasing the corona inception voltage (CIV), and thereby increasing the operating voltage, of film/foil capacitors is described. Intentional venting of the capacitor encapsulation improves the corona inception voltage by allowing internal voids to equilibrate with the ambient environment.

  6. Collaborative Research and Development by EpiSolar and NREL of Processes and Materials for Flexible CdS/CdTe Superstrate Devices: Cooperative Research and Development Final Report, CRADA Number CRD-14-550

    SciTech Connect

    Barnes, Teresa

    2016-05-01

    The objective of this work is to collaborate with EpiSolar to develop and test processes that are consistent with the goals and milestones of an NREL FPace1 (Foundational Program to Advance Cell Efficiency) project entitled 'High-Temperature, Roll-to-Roll (RTR) CdTe Superstrate Devices Using Flexible Glass.' The primary milestone for this CRADA relates to demonstration of a 15% efficient laboratory device.

  7. Electrochemical capacitor

    DOEpatents

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  8. Alzeta porous radiant burner. CRADA final report

    SciTech Connect

    1995-12-01

    An Alzeta Pyrocore porous radiant burner was tested for the first time at elevated pressures and mass flows. Mapping of the burner`s stability limits (flashback, blowoff, and lean extinction limits) in an outward fired configuration and hot wall environment was carried out at pressures up to 18 atm, firing rates up to 180 kW, and excess air rates up to 100%. A central composite experimental design for parametric testing within the stability limits produced statistically sound correlations of dimensionless burner temperature and NO{sub x} emissions as functions of equivalence ratio, dimensionless firing rate, and reciprocal Reynolds number. The NO{sub x} emissions were below 4 ppmvd at 15% O{sub 2} for all conditions tested, and the CO and unburned hydrocarbon levels were simultaneously low. As a direct result of this cooperative research effort between METC and Alzeta, Solar Turbines has already expressed a strong interest in this novel technology.

  9. Advanced aircraft ignition CRADA final report

    SciTech Connect

    Early, J.W.

    1997-03-01

    Conventional commercial and military turbo-jet aircraft engines use capacitive discharge ignition systems to initiate fuel combustion. The fuel-rich conditions required to ensure engine re-ignition during flight yield less than optimal engine performance, which in turn reduces fuel economy and generates considerable pollution in the exhaust. Los Alamos investigated two approaches to advanced ignition: laser based and microwave based. The laser based approach is fuel ignition via laser-spark breakdown and via photo-dissociation of fuel hydrocarbons and oxygen. The microwave approach involves modeling, and if necessary redesigning, a combustor shape to form a low-Q microwave cavity, which will ensure microwave breakdown of the air/fuel mixture just ahead of the nozzle with or without a catalyst coating. This approach will also conduct radio-frequency (RF) heating of ceramic elements that have large loss tangents. Replacing conventional systems with either of these two new systems should yield combustion in leaner jet fuel/air mixtures. As a result, the aircraft would operate with (1) considerable less exhaust pollution, (2) lower engine maintenance, and (3) significantly higher fuel economy.

  10. Membranes for corrosive oxidations. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-01

    The objective of this project is to develop porous hydrophilic membranes that are highly resistant to oxidative and corrosive conditions and to deploy them for recovery and purification of high tonnage chemicals such as hydrogen peroxide and other oxychemicals. The research team patented a process for membrane-based separation of hydrogen peroxide (US Patent No. 5,662,878). The process is based on using a hydrophilic membrane to separate hydrogen peroxide from the organic working solution. To enable this process, a new method for producing hydrophilic membrane materials (Patent No.6,464,880) was reported. We investigated methods of producing these hydrophilic materials and evaluated separations performance in comparison to membrane stability. It was determined that at the required membrane flux, membrane stability was not sufficient to design a commercial process. This work was published (Hestekin et al., J. Membrane Science 2006). To meet the performance needs of the process, we developed a membrane contactor method to extract the hydrogen peroxide, then we surveyed several commercial and pre-commercial membrane materials. We identified pre-commercial hydrophilic membranes with the required selectivity, flux, and stability to meet the needs of the process. In addition, we invented a novel reaction/separations format that greatly increases the performance of the process. To test the performance of the membranes and the new formats we procured and integrated reactor/membrane separations unit that enables controlled mixing, flow, temperature control, pressure control, and sampling. The results were used to file a US non-provisional patent application (ANL-INV 03-12). Hydrogen peroxide is widely used in pulp and paper applications, environmental treatment, and other industries. Virtually all hydrogen peroxide production is now based on a process featuring catalytic hydrogenation followed by auto-oxidation of suitable organic carrier molecules. This process has several drawbacks, particularly in the extraction phase. One general disadvantage of this technology is that hydrogen peroxide must be produced at large centralized plants where it is concentrated to 70% by distillation and transported to the users plant sites where it is diluted before use. Advanced membranes have the potential to enable more efficient, economic, and safe manufacture of hydrogen peroxide. Advanced membrane technology would allow filtration-based separation to replace the difficult liquid-liquid extraction based separation step of the hydrogen peroxide process. This would make it possible for hydrogen peroxide to be produced on-site in mini-plants at 30% concentration and used at the same plant location without distillation and transportation. As a result, production could become more cost-effective, safe and energy efficient.

  11. Rapid Response Manufacturing (RRM). Final CRADA report

    SciTech Connect

    Cain, W.D.; Waddell, W.L.

    1997-08-28

    A major accomplishment of the Rapid Response Manufacturing (RRM) project was the development of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined part products. Key components of the framework are a manufacturing model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering working environment, knowledge-based software systems for design, process planning, and manufacturing and new production technologies for making products directly from design application software.

  12. Bioremediation of PCBs. CRADA final report

    SciTech Connect

    Klasson, K.T.; Abramowicz, D.A.

    1996-06-01

    The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL`s effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site.

  13. Robust Technique for Measuring and Simulating Silicon Wafer Quality Characteristics that Enable the Prediction of Solar Cell Electrical Performance of MEMC Silicon Wafer. Cooperative Research and Development Final Report, CRADA Number CRD-11-438

    SciTech Connect

    Sopori, Bhushan

    2015-12-01

    NREL and MEMC Electronic Materials are interested in developing a robust technique for monitoring material quality of mc-Si and mono-Si wafers -- a technique that can provide relevant data to accurately predict the performance of solar cells fabricated on them. Previous work, performed under two TSAs between NREL and MEMC, has established that dislocation clusters are the dominant performance-limiting factor in MEMC mc-Si solar cells. The work under this CRADA will go further in verifying these results on a larger data set, evaluate possibilities of faster method(s) for mapping dislocations in wafers/ingots, understanding dislocation generation during ingot casting, and helping MEMC to have an internal capability for basic characterization that will provide feedback needed for more accurate crystallization simulations. NREL has already developed dislocation mapping technique and developed a basic electronic model (called Network Model) that uses spatial distribution of dislocations to predict the cell performance. In this CRADA work, we will use these techniques to: (i) establish dislocation, grain size, and grain orientation distributions of the entire ingots (through appropriate DOE) and compare these with theoretical models developed by MEMC, (ii) determine concentrations of some relevant impurities in selected wafers, (iii) evaluate potential of using photoluminescence for dislocation mapping and identification of recombination centers, (iv) evaluate use of diode array analysis as a detailed characterization tool, and (v) establish dislocation mapping as a wafer-quality monitoring tool for commercial mc-Si production.

  14. Development of Novel RTP-like Processing for Solar Cell Fabrication using UV-Rich Light Sources: Cooperative Research and Development Final Report, CRADA No. CRD-11-442

    SciTech Connect

    Sopori, B.

    2013-01-01

    NREL and Mattson Technology are interested in developing new processing techniques for fabrication of solar cells using UV-rich optical processing. UV light has a very high absorption coefficient in most semiconductors, allowing the semiconductor surface to be heated locally and, in some cases, without a significant increase in the substrate temperature. NREL has several projects related to cell processing that currently use an optical furnace (having a spectrum rich in visible and infrared light). Mattson Technology has developed a UV rich light source that can be used in either pulse or continuous modes. The objective of this CRADA is to explore applications in solar cell processing where absorption characteristics of UV light can lead to lower cell cost and/or higher efficiencies.

  15. CRADA opportunities in pressurized combustion research

    SciTech Connect

    Maloney, D J; Norton, T S; Casleton, K H

    1995-06-01

    The Morgantown Energy Technology Center recently began operation of a Low Emissions Combustor Test and Research (LECTR) Facility. This facility was built to support the development of Advanced Gas Turbine Systems (ATS) by providing test facilities and engineering support to METC customers through the ATS University-Industry Consortium and through CRADA participation with industrial partners.

  16. Mechanical capacitor

    NASA Technical Reports Server (NTRS)

    Kirk, J. A.; Studer, P. A.; Evans, H. E.

    1976-01-01

    A new energy storage system (the mechanical capacitor), using a spokeless magnetically levitated composite ring rotor, is described and design formulas for sizing the components are presented. This new system is configured around a permanent magnet (flux biased) suspension which has active servo control in the radial direction and passive control in the axial direction. The storage ring is used as a moving rotor and electronic commutation of the stationary armature coils is proposed. There is no mechanical contact with the rotating spokeless ring; therefore, long life and near zero rundown losses are projected. A 7-kW h system is sized to demonstrate feasibility. A literature review of flywheel energy storage systems is also presented and general formulas are developed for comparing rotor geometries.

  17. High frequency model of stacked film capacitors

    NASA Astrophysics Data System (ADS)

    Talbert, T.; Joubert, C.; Daude, N.; Glaize, C.

    2001-11-01

    Polypropylene metallized capacitors are of general use in power electronics because of their reliability, their self-healing capabilities, and their low price. Though the behavior of metallized coiled capacitors has been discussed, no work has been carried out on stacked and flattened metallized capacitors. The purpose of this article is to suggest an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors. We first solve the equation of propagation of the magnetic potential vector (A) in the dielectric of an homogeneous material. Then, we suggest an original method of resolution, like the one used for resonant cavities, in order to present an analytical solution of the problem. Finally, we give some experimental results proving that the physical knowledge of the parameters of the capacitor (dimension of the component, and material constants), enables us to calculate an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors.

  18. University of Washington/ Northwest National Marine Renewable Energy Center Tidal Current Technology Test Protocol, Instrumentation, Design Code, and Oceanographic Modeling Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-11-452

    SciTech Connect

    Driscoll, Frederick R.

    2016-11-01

    The University of Washington (UW) - Northwest National Marine Renewable Energy Center (UW-NNMREC) and the National Renewable Energy Laboratory (NREL) will collaborate to advance research and development (R&D) of Marine Hydrokinetic (MHK) renewable energy technology, specifically renewable energy captured from ocean tidal currents. UW-NNMREC is endeavoring to establish infrastructure, capabilities and tools to support in-water testing of marine energy technology. NREL is leveraging its experience and capabilities in field testing of wind systems to develop protocols and instrumentation to advance field testing of MHK systems. Under this work, UW-NNMREC and NREL will work together to develop a common instrumentation system and testing methodologies, standards and protocols. UW-NNMREC is also establishing simulation capabilities for MHK turbine and turbine arrays. NREL has extensive experience in wind turbine array modeling and is developing several computer based numerical simulation capabilities for MHK systems. Under this CRADA, UW-NNMREC and NREL will work together to augment single device and array modeling codes. As part of this effort UW NNMREC will also work with NREL to run simulations on NREL's high performance computer system.

  19. Investigation of battery-charged-capacitor pulsed-power systems for electromagnetic-launcher experiments. Final report, Jan 90-Apr 91

    SciTech Connect

    Cornette, J.B.

    1992-02-01

    Candidate pulsed power systems for electromagnetic launchers constitute two broad categories: rotating machinery and non-rotating devices. Rotating machinery for this purpose is under development at several industrial and educational institutions around the world. Non-rotating hardware includes capacitors, batteries, and inductors. These, too, are the subject of research programs, but as yet, are much larger than rotating supplies of equal power and energy capability. In 1988, system studies identified several attractive pulsed power systems for electromagnetic launchers. Battery charged capacitor pulsed power systems were among those identified as promising for electromagnetic launcher systems. The basic equations governing the battery charging capacitor sequence, and the capacitor discharge into an electromagnetic launcher are the subject of this report. A battery charged capacitor system powering an electromagnetic launcher has also been built and tested. This experiment not only validates the system concept with presently available hardware, but can be used to establish a baseline for evaluation of future systems when technology in capacitor and battery power and energy densities improve.

  20. Final Report for CRADA Agreement , AL-C-2006-01 with Microsens Biotechnologies: Detection of the Abnormal Prion Protein in Blood by Improving the Extraction of this Protein

    SciTech Connect

    Schmerr, Mary Jo

    2009-03-31

    Several conditions were examined to optimize the extraction protocol using Seprion beads for the abnormal prion protein. Different combinations of water, hexafluro-2-propanol and formic acid were used. The results of these extraction protocols showed that the magnetic beads coated with Seprion reagents were subject to degradation, themselves, when the extraction conditions that would solubilize the abnormal prion protein were used. These compounds caused interference in the immunoassay for the abnormal prion protein and rendered these protocols incompatible with the assay systems. In an attempt to overcome this problem, another approach was then used. The coated beads were used as an integral part of the assay platform. After washing away denaturing agents, the beads with the 'captured' abnormal prion were incubated directly in the immunoassay, followed by analysis by the capillary electrophoresis. When a capillary electrophoresis electro-kinetic separation was attempted, the beads disturbed the analysis making it impossible to interpret. A pressure separation method was then developed for capillary electrophoresis analysis. When 20 samples, 5 of which were positive were analyzed, the assay identified 4 of the 5 positives and had no false positives. When a larger number of samples were analyzed the results were not as good - there were false positives and false negatives. It was then observed that the amount of beads that were loaded was dependent upon how long the beads were allowed to settle before loading them into the capillary. This resulted in unacceptable variations in the results and explained that when large numbers of samples were evaluated the results were not consistent. Because the technical difficulties with using the Seprion beads could not be overcome at this time, another approach is underway that is outside of the scope of this CRADA. No further agreements have been developed. Because the results were not favorable, no manuscripts were written nor

  1. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    PubMed Central

    Choi, Hojin; Yoon, Hyeonseok

    2015-01-01

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013). Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead. PMID:28347044

  2. Practical Active Capacitor Filter

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr. (Inventor)

    2005-01-01

    A method and apparatus is described that filters an electrical signal. The filtering uses a capacitor multiplier circuit where the capacitor multiplier circuit uses at least one amplifier circuit and at least one capacitor. A filtered electrical signal results from a direct connection from an output of the at least one amplifier circuit.

  3. Data summary report for M.W. Kellog zinc titanite test series: ZTSC-01, ZTSC-02, ZTSC-03, ZTSC-04, ZTSC-05, ZTSC-06, ZTSC-07, ZTSC-08, ZTMC-01, ZTMC-02, ZTMC-03, ZTMC-05. CRADA 92-008 Final report

    SciTech Connect

    Everett, C E; Monaco, S J

    1994-05-01

    A series of tests were undertaken from August 6, 1992 through July 6, 1993 at METC`s High Pressure Bench-Scale Hot Gas Desulfurization Unit to support a Cooperative Research and Development Agreement (CRADA) between METC`s Sorbent Development Cluster and M.W. Kellogg. The M.W. Kellogg Company is currently developing a commercial offering of a hot gas clean-up system to be used in Integrated Gasification Combined Cycle (IGCC) systems. The intent of the CRADA agreement was to identify a suitable zinc-based desulfurization sorbent for the Sierra Pacific Power Company Clean Coal Technology Project, to identify optimum operating conditions for the sorbent, and to estimate potential sorbent loss per year. Task 1 of the CRADA agreement was to conduct fixed-bed zinc titanate sorbent testing. The results of Task 1 testing are presented in this report.

  4. High Energy Density Capacitors

    SciTech Connect

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  5. CRADAs: They're Not Just for NCI Anymore | Poster

    Cancer.gov

    By Karen Surabian, Thomas Stackhouse, and Jeffrey Thomas, Contributing Writers, and Bruce Crise, Guest Writer Advancing scientific discovery is increasingly dependent on diverse and innovative partnerships, and the Cooperative Research and Development Agreement (CRADA) is an essential tool for establishing partnerships. CRADAs allow a federal laboratory to enter into collaborative research and development (R&D) projects with outside parties (commercial or nonprofit).

  6. CRADAs: They're Not Just for NCI Anymore | Poster

    Cancer.gov

    By Karen Surabian, Thomas Stackhouse, and Jeffrey Thomas, Contributing Writers, and Bruce Crise, Guest Writer Advancing scientific discovery is increasingly dependent on diverse and innovative partnerships, and the Cooperative Research and Development Agreement (CRADA) is an essential tool for establishing partnerships. CRADAs allow a federal laboratory to enter into collaborative research and development (R&D) projects with outside parties (commercial or nonprofit).

  7. Disposal of polychlorinated biphenyls (PCBs) and PCB-contaminated materials. Volume 4. Test incineration of electrical capacitors containing PCBs. Final report

    SciTech Connect

    Flynn, N.W.; Wolbach, C.D.

    1980-09-01

    This report presents the results of a trial burn conducted at the Energy Systems Company (ENSCO) located in El Dorado, Arkansas in order to determine whether liquid PCBs and shredded electronic capacitors could be incinerated in accordance with the recent EPA rules and regulations published in the Federal Register (40 CFR Part 761, Vol. 44, No. 106, pp. 31513-31568, May 31, 1979). Based on the results of this trial burn, PCBs were not detected in the stack effluent, the scrubber liquor effluent, or the recycled scrubber liquor from the sludge lagoon. PCBs were detected in the ash effluent from the rotary kiln and were less than 550 ppM, the lower limit at which PCBs are regulated by the EPA. A discussion is given of problems associated with the EPA perchlorination procedure for analyzing PCBs.

  8. CRADA final report for CRADA number Y1294-0296: Optical particulate emission monitor

    SciTech Connect

    Miller, A.C. Jr.; Bernacki, E.; Nuspliger, R.J.

    1995-10-15

    The Oak Ridge Centers for Manufacturing Technology (ORCMT) and Environmental Systems Corporation (ESC) have collaborated on an effort to develop the optical system for an enhanced particulate emission monitor. The purpose of this effort was to assist a small East Tennessee company in perfecting an instrument that would meet or exceed the performance of competing foreign instruments and provide measurement capabilities necessary to assure compliance of Department of Energy facilities and other industrial facilities with expected EPA regulations. The two parties collaborated on design, assembly, and bench testing of the prototype instrument. The prototype system was targeted to have the capability for measuring micron size particles in concentrations as low as 10 micrograms per cubic meter and to have the added benefit of improving sampling statistics (i.e. measurements will be made over larger regions of the stack) over current instruments. Project deliverables were a prototype optical system and characterization data.

  9. Analysis of production line motor failure. CRADA final report for CRADA number Y-1293-0215

    SciTech Connect

    Kueck, J.; Talbott, C.

    1995-02-10

    The Oak Ridge National Laboratory (ORNL) was approached by a Food Products Manufacturer (FPM) to investigate the rapid failure of motors in a manufacturing facility. It was reported that some motors or their bearings were being replaced after as little as four months of service. The deciding symptom for replacement was always high motor vibration. To protect against unscheduled downtime in the middle of a process run, the FPM`s maintenance team removes a motor from service when its vibration level reaches a conservative threshold of approximately 0.4 inches per second. In their experience, motors left in service after reaching this vibration threshold can fail at any time within the time span of the next process run causing significant losses of raw material and production capacity. A peculiar finding of vibration level trend analysis was that at least one motor exhibited cyclic variations with 24-hour periodicity. The vibration level reached a maximum at about 4:00 a.m., ramped down during the day, and then rose again during the night. Another peculiarity was that most of the vibration energy in the affected motors was at the 120 Hz frequency. Since this is twice the 60 Hz line frequency the FPM suspected the vibration was electrically induced. The electric loads at the FPMs plant remain constant during the five days of a continuous production run. Thus, the periodicity of the vibration observed, with its daily peaking at about four am, suggested the possibility of being driven by changes in the electrical power grid external to the plant.

  10. Rapid scanning mass spectrometer. Final CRADA report for CRADA Number Y-1295-0394

    SciTech Connect

    Leckey, J.H.; Boeckmann, M.D.

    1997-02-24

    This Cooperative Research and Development Agreement was used to modify Vacuum Technology`s AERO VAC computer/mass spectrometer interface and electronics to allow the mass spectrometer to acquire rapid scans. The computer interface sends signals from the PC to the mass spectrometer, controlling its filament, giving scan instructions, and selecting the proper electrometer range, and detector. It then receives the detector output in the form of amplified digital signals from the electrometer. This project performed the following three upgrades on the computer interface and electronics. (1) A new electrometer was designed and built to process the signal from the detector. This new electrometer is more sensitive, over 10 times faster, and over 100 times more stable than the electrometer it will have replaced. (2) The controller EPROM was reprogrammed with new firmware. This firmware acts as an operating system for the interface and is used to shuttle communications between the PC and the AERO VAC mass spectrometer. The new firmware allows digital signals to be transmitted considerably faster to and from the mass spectrometer than the old firmware. The voltage regulator which causes the ion selector voltage to ramp to allow ions of selected mass to be sequentially detected was redesigned and prototyped. The redesign allowed obsolete electronics in the regulator circuitry to be replaced with more efficient circuitry. The redesigned voltage regulator can be ramped up or down more than 100 times faster than the existing regulator. Figure 4 shows a picture of the prototype voltage regulator circuit. These changes were incorporated into a prototype unit and preliminary performance testing conducted. Results indicated that scanning speed was significantly increased over the unmodified version.

  11. CRADA Final Report CRADA No. LB05-001820"Ion Beam Drift Compression Technology for NDCX"

    SciTech Connect

    First point Scientific, Inc.; E.O. Lawrence Berkeley National Laboratory; Waldron, William L.

    2009-10-05

    Summary of the specific research and project accomplishments: Through this collaboration, LBNL and FPSI determined the specific energy manipulations that apply to the Neutralized Drift Compression Experiment (NDCX) ion beam and developed the preliminary design of a Fast Induction Energy Corrector (FIEC). This effort was successfully completed, firmly establishing the technical feasibility of the proposed approach for regulating the longitudinal energy distribution of the NDCX ion beam. This is a critical step in achieving the NDCX goal of axial compression of the beam by a factor of 100 during neutralized drift.

  12. CRADA Final Report for CRADA Number NFE-08-01671 Materials for Advanced Turbocharger Designs

    SciTech Connect

    Maziasz, P. J.; Wilson, M.

    2014-11-28

    Results were obtained on residual stresses in the weld of the steel shaft to the Ni-based superalloy turbine wheel for turbochargers. Neutron diffraction studies at the HFIR Residual Stress Facility showed asymmetric tensile stresses after electron-beam welding of the wheel and shaft. A post-weld heat-treatment was found to relieve and reduce the residual stresses. Results were also obtained on cast CF8C-Plus steel as an upgrade alternative to cast irons (SiMo, Ni-resist) for higher temperature capability and performance for the turbocharger housing. CF8C-Plus steel has demonstrated creep-rupture resistance at 600-950oC, and is more creep-resistant than HK30Nb, but lacks oxidation-resistance at 800oC and above in 10% water vapor. New modified CF8C-Plus Cu/W steels with Cr and Ni additions show better oxidation resistance at 800oC in 10% water vapor, and have capability to higher temperatures. For automotive gasoline engine turbocharger applications, higher temperatures are required, so at the end of this project, testing began at 1000oC and above.

  13. High power density capacitor and method of fabrication

    DOEpatents

    Tuncer, Enis

    2012-11-20

    A ductile preform for making a drawn capacitor includes a plurality of electrically insulating, ductile insulator plates and a plurality of electrically conductive, ductile capacitor plates. Each insulator plate is stacked vertically on a respective capacitor plate and each capacitor plate is stacked on a corresponding insulator plate in alignment with only one edge so that other edges are not in alignment and so that each insulator plate extends beyond the other edges. One or more electrically insulating, ductile spacers are disposed in horizontal alignment with each capacitor plate along the other edges and the pattern is repeated so that alternating capacitor plates are stacked on alternating opposite edges of the insulator plates. A final insulator plate is positioned at an extremity of the preform. The preform may then be drawn to fuse the components and decrease the dimensions of the preform that are perpendicular to the direction of the draw.

  14. Development of a high-density energy-storage capacitor for Nova

    SciTech Connect

    Haskell, D.K.; Cooper, R.A.; Sevigny, J.A.; Merritt, B.T.; Carder, B.M.; Whitham, K.

    1981-10-22

    This paper covers Maxwell's approach to developing energy storage capacitors. Based on previous capacitor designs of 3 KJ, 5 KJ and 10 KJ, the final Nova 12.5 KJ capacitor evolved. At the outset of the Nova capacitor development program, a relatively new dielectric system, polypropylene-paper-DOP, seemed to show superiority in volumetric efficiency, life, and more importantly cost. However, as a result of studies performed at Maxwell, a high-density, energy-storage capacitor was developed utilizing new high-quality, high-density paper and caster oil as the dielectric. Test data have demonstrated that the Maxwell 12.5 KJ capacitor exceeds all LLNL's qualification requirements.

  15. Capacitors in Series: A Laboratory Activity to Promote Critical Thinking.

    ERIC Educational Resources Information Center

    Noll, Ellis D.; Kowalski, Ludwik

    1996-01-01

    Describes experiments designed to explore the distribution of potential difference between two uncharged capacitors when they are suddenly connected to a source of constant voltage. Enables students to explore the evolution of a system in which initial voltage distribution depends on capacitor values, and the final voltage distribution depends on…

  16. Capacitors in Series: A Laboratory Activity to Promote Critical Thinking.

    ERIC Educational Resources Information Center

    Noll, Ellis D.; Kowalski, Ludwik

    1996-01-01

    Describes experiments designed to explore the distribution of potential difference between two uncharged capacitors when they are suddenly connected to a source of constant voltage. Enables students to explore the evolution of a system in which initial voltage distribution depends on capacitor values, and the final voltage distribution depends on…

  17. High Temperature Capacitor Development

    SciTech Connect

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  18. Electrochemical flow capacitors

    DOEpatents

    Gogotsi, Yury; Presser, Volker; Kumbur, Emin Caglan

    2015-10-27

    The present invention generally relates to devices for energy storage technologies, and more particularly to electrochemical flow capacitor systems and applications. In some aspects, these flow capacitors have at least one electrode comprising a non-stationary solid or semi-solid composition comprising supercapacitive particles and an electrolytic solvent in electrical communication with at least one current collector, and energy is stored and/or released by charging and/or discharging the electrode(s).

  19. Materials for electrochemical capacitors.

    PubMed

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  20. Cost Effective Bioethanol via Acid Pretreatment of Corn Stover, Saccharification, and Conversion via a Novel Fermentation Organism: Cooperative Research and Development Final Report, CRADA Number: CRD-12-485

    SciTech Connect

    Dowe, N.

    2014-05-01

    This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scale the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.

  1. Capacitors, Water Bottles, and Kirchoff's Loop Rule.

    ERIC Educational Resources Information Center

    Newburgh, R. G.

    1993-01-01

    Presents an analogy between electrical potential and potential energy per unit mass. The analogy is used to solve the problem of calculating the final charges of two capacitors after they are connected and to help students understand the concept of electrical potential. (MDH)

  2. Capacitors, Water Bottles, and Kirchoff's Loop Rule.

    ERIC Educational Resources Information Center

    Newburgh, R. G.

    1993-01-01

    Presents an analogy between electrical potential and potential energy per unit mass. The analogy is used to solve the problem of calculating the final charges of two capacitors after they are connected and to help students understand the concept of electrical potential. (MDH)

  3. Phase I ResonantSonic CRADA report

    SciTech Connect

    Richterich, L.R.; Amos, L.O.; Fancher, J.D.; McLellan, G.W.; Setzer, W.V.; Tuttle, B.G.; Hockey, R.L.; Ferris, R.H.; Riechers, D.M.; Pitman, S.G.

    1994-03-28

    This test report describes the Phase 1 testing and results of the ResonantSonic drilling method. This effort was conducted as part of a Cooperative Research and Development Agreement (CRADA) between the US Department of Energy, Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The purpose of this demonstration was to evaluate the Water Development Corporation`s ResonantSonic drilling system, modify components as necessary and determine compatible drilling applications for the ResonantSonic drilling method for use at facilities in the DOE complex and private industry. Initially, the ResonantSonic drill was used to drill several test holes at the Drilling Technology Test Site to assess the feasibility of drilling vertical and angle holes. After this initial phase, a 45 degree angle vapor extraction well was drilled to a depth of 168 feet at the 200 West Carbon Tetrachloride Site. This well was drilled and completed in nine days. Extensive geologic and vapor sampling were conducted while drilling this well. In addition, testing was also conducted at the test site to evaluated drilling with larger diameter casing (8 5/8 inch). Evaluation of the Resonant Sonic drilling method will be continued during the Phase 2 portion of testing to determine if improvements to the ResonantSonic system will make it a more viable method for drilling and sampling.

  4. Capacitor discharge pulse analysis.

    SciTech Connect

    Baker, Michael Sean; Griffiths, Stewart K.; Tanner, Danelle Mary

    2013-08-01

    Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.

  5. Capacitor Technologies, Applications and Reliability

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Various aspects of capacitor technologies and applications are discussed. Major emphasis is placed on: the causes of failures; accelerated testing; screening tests; destructive physical analysis; applications techniques; and improvements in capacitor capabilities.

  6. Engineering electrochemical capacitor applications

    NASA Astrophysics Data System (ADS)

    Miller, John R.

    2016-09-01

    Electrochemical capacitor (EC) applications have broadened tremendously since EC energy storage devices were introduced in 1978. Then typical applications operated below 10 V at power levels below 1 W. Today many EC applications operate at voltages approaching 1000 V at power levels above 100 kW. This paper briefly reviews EC energy storage technology, shows representative applications using EC storage, and describes engineering approaches to design EC storage systems. Comparisons are made among storage systems designed to meet the same application power requirement but using different commercial electrochemical capacitor products.

  7. Promethium-147 capacitor.

    PubMed

    Kavetskiy, A; Yakubova, G; Lin, Q; Chan, D; Yousaf, S M; Bower, K; Robertson, J D; Garnov, A; Meier, D

    2009-06-01

    Beta particle surface fluxes for tritium, Ni-63, Pm-147, and Sr-90 sources were calculated in this work. High current density was experimentally achieved from Pm-147 oxide in silica-titana glass. A 96 GBq (2.6 Ci) Pm-147 4pi-source with flux efficiency greater than 50% was used for constructing a direct charge capacitor with a polyimide coated collector and vacuum as electrical insulation. The capacitor connected to high resistance (TOmega) loads produced up to 35 kV. Overall conversion efficiency was over 10% (on optimal load).

  8. Low emission advanced power cycle. Final CRADA report.

    SciTech Connect

    Tentner, A.; Nuclear Engineering Division

    2010-07-13

    Today's gas turbines are based on the Brayton Cycle in which heat is added to the working fluid at constant pressure. An alternate approach, the Humphrey cycle, provides a higher theoretical thermal efficiency by adding heat at constant, or near constant volume. A few practical examples of such engines appeared in the mid 1900's, but they were largely superseded by the Brayton engine. Although the conventional gas turbine has been developed to a high level of efficiency and reliability, significant improvements in performance are becoming increasingly costly to obtain. Efficiencies of compressors, turbines and combustors are approaching theoretical limits. Cooling and materials technologies continue to improve but higher cycle temperatures may be limited by NOx emissions. While heat exchangers, intercoolers and other features improve cycle efficiency they add significantly to the cost, weight and volume of the basic engine and for flight applications may always be impractical. For these reasons there has been renewed interest in recent years in the constant volume Humphrey cycle focusing mainly on pulsing systems in which heat is added by a rapid series of detonations. Variations on this basic scheme are being evaluated for aircraft propulsions systems. General Electric has established a joint program with several Russian organizations to explore devices based on pressure rise combustion cycle and to make fundamental measurements of detonation properties of mixtures of hydrocarbon fuels and air.

  9. Electron Beam Curing of Polymer Matrix Composites - CRADA Final Report

    SciTech Connect

    Janke, C. J.; Howell, Dave; Norris, Robert E.

    1997-05-01

    The major cost driver in manufacturing polymer matrix composite (PMC) parts and structures, and one of the elements having the greatest effect on their quality and performance, is the standard thermal cure process. Thermal curing of PMCs requires long cure times and high energy consumption, creates residual thermal stresses in the part, produces volatile toxic by-products, and requires expensive tooling that is tolerant of the high cure temperatures.

  10. Li-FSI Impurity Impact Study: Final CRADA Report

    SciTech Connect

    Pupek, Krzysztof; Dzwiniel, Trevor; Krumdick, Gregory

    2017-01-01

    There is growing interest in lithium bis(fluorosulfonyl)imide (LiFSI ) as an alternative to LiPF6 and as an additive to electrolytes used in lithium-ion cells. LiFSI has attracted attention because it is reported to have higher ionic conductivity, better high temperature stability, and enhanced stability toward hydrolysis, Also, LiFSI additive to electrolytes can bring benefits of improved storage properties and reduced gas evolution in the cells. Different levels of different electrochemically active impurities could affect the performance of LiFSI as an electrolyte salt for Li-ion batteries, generating inconsistent and conflicting interpretations of the experimental data.

  11. Ground penetrating radar mini-CRADA final report

    SciTech Connect

    Swanson, R.; Stump, G.; Weil, G.

    1996-09-01

    The purpose of this project was to determine the feasibility of using ground penetrating radar (GPR) to assess the ease of excavability prior to and during trenching operations. The project partners were EnTech Engineering Inc., Vermeer Manufacturing Co., and AlliedSignal Federal Manufacturing & Technology (FM&T)/Kansas City Plant (KCP). Commercial GPRs were field tested as well as a system developed at AlliedSignal FM&T. The AlliedSignal GPR was centered around a HP8753 Network Analyzer instrument. Commercial GPR antennas were connected to the analyzer and data was collected under control of software written for a notebook PC. Images of sub-surface features were generated for varied system parameters including: frequency, bandwidth, FFT windowing, gain, antenna orientation, and surface roughness conditions. Depths to 10 feet were of primary interest in this project. Although further development is required, this project has demonstrated that GPR can be used to identify transitions between different sub-surface conditions, as in going from one rock type to another. Additionally, the average relative dielectric constant of the material can be estimated which can be used to help identify the material. This information can be used to characterize an excavation site for use in budgeting a job. A real-time GPR would provide the operator with sub-surface images that could help with setting the optimum feed and speed rates of the trenching machine.

  12. High Resolution Characterization of Biological Matrices: Final CRADA Report

    SciTech Connect

    Schabacker, Daniel S.

    2016-10-27

    In the three-year period of performance, we used our methodology to analyze biological threat agents supplied by the National Biodefense Analysis and Countermeasures Center (NBACC), University of Chicago, Northwestern University and Loyola University. Using our methodology and newly developed software at Argonne we were able to discern the institution where the material was cultured along with the growth conditions.

  13. Novel CO{sub 2} capture. Final CRADA Report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2009-11-30

    The goal of this work was to use electrochemically driven pH control to develop a second generation, enzyme-based contained liquid membrane (CLM) permeator to extract CO{sub 2} from a variety of coal-based flue gas streams more efficiently than does the CLM current design, while achieving performance coincident with DOE targets of less than 45% Cost of electricity (COE) in 2007 and less than 20% COE in 2012. Central to this goal the CLM would be alkaline (>pH 8) at the feed gas side and acid (

  14. CRADA Final Report: Mucin Mimic and Glycopeptide Synthesis

    SciTech Connect

    Bertozzi, Carolyn R.

    2002-10-22

    Mucus has several constituents but the most important are the mucins, heavily O-glycosylated proteins characterized by long stretches of tandem repeat sequences rich in glycosylated serine and threonine residues, with N- and C-terminal domains that have determined to a large extent by the viscous and viscoelastic properties of mucin glycoproteins. Indeed, these properties are evident in reconstituted purified mucin glycoproteins. Oligomeric mucin can be deconstructed into its monomeric components and then further into the domains that comprise each mucin molecule. There are two major domain types. "Glycodomains" are defined by stretches of the tandemly repeated Thr/Ser-rich segments that bear the characteristic O-linked glycans of the mucin molecule. The goal of this project is to synthesize polymeric materials that mimic mucin glycodomains. In order to mimic the central features of mucin, these materials should have dense clusters of glycans that bear a similar structure to those found in native mucins, and a fairly rigid polymer backbone. Four different polymers bearing ketone groups for the attachment of sugars were synthesized. GalNAc{alpha}-ONH{sub 2} and Sia{alpha}2,6GaINAc{alpha}·ONH{sub 2} both of which could be ligated to the polymer scaffolds were synthesized. Mucin glycodomain mimics were successfully synthesized by ligation of glycans to polymers.

  15. CRADA Final Report, 2011S003, Faraday Technologies

    SciTech Connect

    Faraday Technologies

    2012-12-12

    This Phase I SBIR program addressed the need for an improved manufacturing process for electropolishing niobium RF superconducting cavities for the International Linear Collider (ILC). The ILC is a proposed particle accelerator that will be used to gain a deeper understanding of the forces of energy and matter by colliding beams of electrons and positrons at nearly the speed of light. The energy required for this to happen will be achieved through the use of advanced superconducting technology, specifically ~16,000 RF superconducting cavities operating at near absolute zero. The RF superconductor cavities will be fabricated from highly pure Nb, which has an extremely low surface resistance at 2 Kelvin when compared to other materials. To take full advantage of the superconducting properties of the Nb cavities, the inner surface must be a) polished to a microscale roughness < 0.1 µm with removal of at least 100 µm of material, and b) cleaned to be free of impurities that would degrade performance of the ILC. State-of-the-art polishing uses either chemical polishing or electropolishing, both of which require hydrofluoric acid to achieve breakdown of the strong passive film on the surface. In this Phase I program, Faraday worked with its collaborators at the Thomas Jefferson National Accelerator Facility (JLab) to demonstrate the feasibility of an electropolishing process for pure niobium, utilizing an environmentally benign alternative to chemical or electrochemical polishing electrolytes containing hydrofluoric acid. Faraday utilized a 31 wt% aqueous sulfuric acid solution (devoid of hydrofluoric acid) in conjunction with the FARADAYICSM Process, which uses pulse/pulse reverse fields for electropolishing, to demonstrate the ability to electropolish niobium to the desired surface finish. The anticipated benefits of the FARADAYICSM Electropolishing process will be a simpler, safer, and less expensive method capable of surface finishing high purity niobium cavities. Another potential benefit would be for the medical industry that uses hydrofluoric acid to electropolish niobium-alloy materials. The FARADAYICSM Electropolishing process will eliminate the environmental hazards posed by the use of hydrofluoric acid employed by chemical polishing and conventional electropolishing. Further, improved performance benefits may be possible. The overall objective of the Phase I program was to demonstrate that FARADAYIC Electropolishing of niobium cavities in electrolytes free of hydrofluoric acid can meet the RF superconducting performance criteria of those cavities. The FARADAYIC Electropolishing Process developed in the Phase I program was used to polish 50 mm Nb disks to a surface roughness (RA) of < 1 nm over a small area through process and post-processing optimization. An excellent level of surface cleanliness was achieved. While the desired 2K RF performance has not yet been achieved, Faraday believes that surface oxide state can be controlled through manipulation of the process parameters, to meet the 2K RF standard. Faraday is establishing apparatus and facilities infrastructure for single-cell SRF cavity electropolishing, through a synergistic effort with the Fermi National Accelerator Facility (Fermilab) to scale-up electropolishing of superconducting RF cavities. Faraday proposes to commercialize the subject technology via an IP based strategic relationship with a partner with established market channels within two primary commercialization avenues: 1) the superconducting particle accelerator community, 2) the medical device and implant market. Faraday will initially maintain Low Rate Initial Production capabilities for an application, but latterly seek a strategic partner who is solely dedicated to high rate production.

  16. Intermetallic blades for fabric cutting. CRADA final report

    SciTech Connect

    Sikka, V.K.; Blue, C.A.; Sklad, S.; Shih, H.R.; Off, J.W.A.

    1998-08-01

    This report describes the evaluation of nickel- and iron-aluminide blades for cutting fabric as opposed to conventional steel blades. The aluminides were selected as blade material because of their extremely high work-hardening rate and the possibility of forming aluminum oxide on the surface to further enhance the wear resistance. Unlike steel blades, they do not require heat treating to become strong. A testing facility using an Eastman cutter was designed and built at the Oak Ridge National Laboratory (ORNL) for testing of blades. Denim fabric supplied by Levi Strauss was used. For lack of sufficient fabric, heavy paper was also used. Extensive testing revealed that there were several issues in getting the true comparison between various blades. The most important issue was the consistent sharpening of the blade edge. With all of the effort and precautions, identical edges could not be put on the blades of all the different materials. The second issue was the limited availability of fabric to evaluate the end-of-life limit for the blade edges. Two nickel- and three iron-aluminide compositions were evaluated. Under test conditions, the iron-aluminide alloy (PM-60), based on FeAl, was found to outperform other aluminides and the steel blade. Based on the data presented in this report, the authors recommend that additional testing be carried out on both the steel and aluminide blades to determine the number of times each blade can be sharpened prior to its replacement. However, the recommended testing needs to be conducted on blades for which the identical cutting edges and sharpening are incorporated. They further recommend that if the iron-aluminide blade is truly superior, a cost analysis be performed to determine its commercial feasibility. The best aluminide blades should be tested by commercial textile companies.

  17. Advanced membrane separation technology for biosolvents. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Argonne and Vertec Biosolvents investigated the stability and perfonnance for a number of membrane systems to drive the 'direct process' for pervaporation-assisted esterification to produce lactate esters. As outlined in Figure 1, the target is to produce ammonium lactate by fennentation. After purification and concentration, ammonium lactate is reacted with ethanol to produce the ester. Esterification is a reversible reaction so to drive the reaction forward, the produced ammonia and water must be rapidly separated from the product. The project focused on selecting pervaporation membranes with (1) acid functionality to facilitate ammonia separation and (2) temperature stability to be able to perform that reaction at as high a temperature as possible (Figure 2). Several classes of commercial membrane materials and functionalized membrane materials were surveyed. The most promising materials were evaluated for scale-up to a pre-commercial application. Over 4 million metric tons per year of solvents are consumed in the U.S. for a wide variety of applications. Worldwide the usage exceeds 10 million metric tons per year. Many of these, such as the chlorinated solvents, are environmentally unfriendly; others, such as the ethylene glycol ethers and N Methyl Pyrrolidone (NMP), are toxic or teratogenic, and many other petroleum-derived solvents are coming under increasing regulatory restrictions. High performance, environmentally friendly solvents derived from renewable biological resources have the potential to replace many of the chlorinated and petrochemical derived solvents. Some of these solvents, such as ethyl lactate; d-limonene, soy methyl esters, and blends ofthese, can give excellent price/perfonnance in addition to the environmental and regulatory compliance benefits. Advancement of membrane technologies, particularly those based on pervaporation and electrodialysis, will lead to very efficient, non-waste producing, and economical manufacturing technologies for production of ethyl lactate and other esters.

  18. Asymmetrical Capacitors for Propulsion

    NASA Technical Reports Server (NTRS)

    Canning, Francis X.; Melcher, Cory; Winet, Edwin

    2004-01-01

    Asymmetrical Capacitor Thrusters have been proposed as a source of propulsion. For over eighty years, it has been known that a thrust results when a high voltage is placed across an asymmetrical capacitor, when that voltage causes a leakage current to flow. However, there is surprisingly little experimental or theoretical data explaining this effect. This paper reports on the results of tests of several Asymmetrical Capacitor Thrusters (ACTs). The thrust they produce has been measured for various voltages, polarities, and ground configurations and their radiation in the VHF range has been recorded. These tests were performed at atmospheric pressure and at various reduced pressures. A simple model for the thrust was developed. The model assumed the thrust was due to electrostatic forces on the leakage current flowing across the capacitor. It was further assumed that this current involves charged ions which undergo multiple collisions with air. These collisions transfer momentum. All of the measured data was consistent with this model. Many configurations were tested, and the results suggest general design principles for ACTs to be used for a variety of purposes.

  19. Advanced double layer capacitors

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Lessner, P.; Forchione, J.; Griffith, A.; Laconti, A. B.

    1989-01-01

    Work was conducted that could lead to a high energy density electrochemical capacitor, completely free of liquid electrolyte. A three-dimensional RuO sub x-ionomer composite structure has been successfully formed and appears to provide an ionomer ionic linkage throughout the composite structure. Capacitance values of approximately 0.6 F/sq cm were obtained compared with 1 F/sq cm when a liquid electrolyte is used with the same configuration.

  20. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  1. Advanced Capacitor Development.

    DTIC Science & Technology

    1987-01-01

    Aerospace Power Division Aero Propulsion Laboratory Aero Propulsion Laboratory WILLIAM A. SEWARD, Major, USAF Ndor USAFt ,,cro Pr.plusion LabxrdLury "If...Segundo, California facility. Ernest R. Haberland designed the capacitors, including the fabricating equipment. William C. Kainsinger assisted Mr...reported upon in detail*. Large detailed thermal analyses such as those are readily performed with gen- eralized thermal analyzer programs such as CINDA and

  2. EPA`s CRADA agreements: Sharing expertise with industry

    SciTech Connect

    Preuss, P.W.

    1994-12-31

    In the past, legal and institutional barriers have hindered government/industry partnerships from developing and marketing technologies for preventing, controlling, or cleaning up pollution. Many companies, struggling to translate their ideas into innovative technologies, have been held back by lack of access to scientific experts in a particular field or to highly specialized equipment. In 1986, Congress passed the Federal Technology Transfer Act (FTTA), which removed many of the barriers to the public-private partnerships needed to develop and commercialize innovative environmental technologies. The Act makes possible Cooperative Research and Development Agreements (CRADAs) between federal laboratories, industry, and academic institutions. CRADAs set forth the terms of government-industry collaboration and allow the free flow of ideas, expertise, and material essential to the development of commercially competitive technologies.

  3. Suspended graphene variable capacitor

    NASA Astrophysics Data System (ADS)

    AbdelGhany, M.; Mahvash, F.; Mukhopadhyay, M.; Favron, A.; Martel, R.; Siaj, M.; Szkopek, T.

    2016-12-01

    Electromechanical variable capacitors, or varactors, find a wide range of applications including sensing applications and the tuning of electrical circuit resonance. We demonstrate a nano-electromechanical graphene varactor, a variable capacitor wherein the capacitance is tuned by voltage controlled deflection of a dense array of suspended graphene membranes. The low flexural rigidity of graphene monolayers is exploited to achieve low actuation voltage and high tunable capacitance density in an ultra-thin structure. Large arrays comprising thousands of suspensions were fabricated to give a tunable capacitance of over 10 pF mm-2. This capacitance density suggests that graphene offers a potential solution to the challenge of reducing the size of micro-electromechanical systems (MEMS). A capacitance tuning of 55% was achieved with a 10 V actuating voltage, exceeding the 50% tuning limit of Hookean parallel plate pull-in without the use of complex mechanical schemes that occupy substrate area. Capacitor behavior was investigated experimentally, and described by a simple theoretical model. Mechanical properties of the graphene membranes were measured independently using atomic force microscopy. We present a comparison of state-of-the-art MEMS and graphene varactors. The quality factor of graphene varactors is limited by graphene sheet resistance, pull-in voltage can be improved with more aggressive scaling, while the power handling and cycling stability of graphene varactors remains unknown.

  4. The moving plate capacitor paradox

    NASA Astrophysics Data System (ADS)

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2000-03-01

    For the first time we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. A demon restores the plates of the capacitor to their original position, only when the voltage across the capacitor is small—hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the question is how? We explore the concept of a moving plate capacitor, driven by noise, a step further by examining the case where the restoring force on the capacitor plates is provided by a simple spring, rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other.

  5. Electrochemical capacitors: mechanism, materials, systems, characterization and applications.

    PubMed

    Wang, Yonggang; Song, Yanfang; Xia, Yongyao

    2016-10-24

    Electrochemical capacitors (i.e. supercapacitors) include electrochemical double-layer capacitors that depend on the charge storage of ion adsorption and pseudo-capacitors that are based on charge storage involving fast surface redox reactions. The energy storage capacities of supercapacitors are several orders of magnitude higher than those of conventional dielectric capacitors, but are much lower than those of secondary batteries. They typically have high power density, long cyclic stability and high safety, and thus can be considered as an alternative or complement to rechargeable batteries in applications that require high power delivery or fast energy harvesting. This article reviews the latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications. In particular, the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour, which bridges the gap between battery behaviour and conventional pseudocapacitive behaviour, is also clarified for comparison. Finally, the prospects and challenges associated with supercapacitors in practical applications are also discussed.

  6. Electrochemical fabrication of capacitors

    DOEpatents

    Mansour, Azzam N.; Melendres, Carlos A.

    1999-01-01

    A film of nickel oxide is anodically deposited on a graphite sheet held in osition on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.

  7. Investigation of New Isotactic Polypropylene and Syndiotactic Polystyrene Materials for High Pulsed Power Capacitors

    DTIC Science & Technology

    2008-08-08

    polypropylene (LCBPP) and PVDF copolymers, toward the Navy capacitor goal with energy density >30 J/cc and low energy loss. The approach in LCBPPs is to...SUBJECT TERMS high energy density capacitor , high pulsed power capacitor , polypropylene , LCBPP, PVDF. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18...08/08/2008 Final Report 01/01/2005 - 02/28/2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Investigation of new Isotactic Polypropylene and Syndiotactic

  8. Proceedings of the International Seminar on Capacitors

    NASA Astrophysics Data System (ADS)

    1982-12-01

    Technology developments in materials; design, manufacturing aspects and quality assurance, capacitor applications and users' problems; and electronic and other capacitors are discussed in 21 technical papers.

  9. A Simple, Successful Capacitor Lab

    ERIC Educational Resources Information Center

    Ennis, William

    2011-01-01

    Capacitors are a fundamental component of modern electronics. They appear in myriad devices and in an enormous range of sizes. Although our students are taught the function and analysis of capacitors, few have the opportunity to use them in our labs.

  10. A Simple, Successful Capacitor Lab

    ERIC Educational Resources Information Center

    Ennis, William

    2011-01-01

    Capacitors are a fundamental component of modern electronics. They appear in myriad devices and in an enormous range of sizes. Although our students are taught the function and analysis of capacitors, few have the opportunity to use them in our labs.

  11. Towards Prognostics of Electrolytic Capacitors

    NASA Technical Reports Server (NTRS)

    Celaya, Jose R.; Kulkarni, Chetan; Biswas, Gautam; Goegel, Kai

    2011-01-01

    A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management research. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. In particular, experimental results of an accelerated aging test under electrical stresses are presented. The capacitors used in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors.

  12. Modeling of GE Appliances: Final Presentation

    SciTech Connect

    Fuller, Jason C.; Vyakaranam, Bharat; Leistritz, Sean M.; Parker, Graham B.

    2013-01-31

    This report is the final in a series of three reports funded by U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) in collaboration with GE Appliances’ through a Cooperative Research and Development Agreement (CRADA) to describe the potential of GE Appliances’ DR-enabled appliances to provide benefits to the utility grid.

  13. Moisture in multilayer ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Donahoe, Daniel Noel

    When both precious metal electrode and base metal electrode (BME) capacitors were subjected to autoclave (120°C/100% RH) testing, it was found that the precious metal capacitors aged according to a well known aging mechanism (less than 3% from their starting values), but the BME capacitors degraded to below the -30% criterion at 500 hours of exposure. The reasons for this new failure mechanism are complex, and there were two theories that were hypothesized. The first was that there could be oxidation or corrosion of the nickel plates. The other hypothesis was that the loss of capacitance was due to molecular changes in the barium titanate. This thesis presents the evaluation of these hypotheses and the physics of the degradation mechanism. It is concluded by proof by elimination that there are molecular changes in the barium titanate. Furthermore, the continuous reduction in capacitor size makes the newer base metal electrode capacitors more vulnerable to moisture degradation than the older generation precious metal capacitors. In addition, standard humidity life testing, such as JESD-22 THB and HAST, will likely not uncover this problem. Therefore, poor reliability due to degradation of base metal electrode multilayer ceramic capacitors may catch manufacturers and consumers by surprise.

  14. 49 CFR 173.176 - Capacitors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Capacitors. 173.176 Section 173.176 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.176 Capacitors. (a) Capacitors, including capacitors containing an electrolyte that does not meet the definition of any...

  15. 49 CFR 173.176 - Capacitors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Capacitors. 173.176 Section 173.176 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.176 Capacitors. (a) Capacitors, including capacitors containing an electrolyte that does not meet the definition of any...

  16. Failure Modes in Capacitors When Tested Under a Time-Varying Stress

    NASA Technical Reports Server (NTRS)

    Liu, David (Donhang)

    2011-01-01

    Power-on failure has been the prevalent failure mechanism for solid tantalum capacitors in decoupling applications. A surge step stress test (SSST) has been previously applied to identify the critical stress level of a capacitor batch to give some predictability to the power-on failure mechanism [1]. But SSST can also be viewed as an electrically destructive test under a time-varying stress (voltage). It consists of rapidly charging the capacitor with incremental voltage increases, through a low resistance in series, until the capacitor under test is electrically shorted. When the reliability of capacitors is evaluated, a highly accelerated life test (HALT) is usually adopted since it is a time-efficient method of determining the failure mechanism; however, a destructive test under a time-varying stress such as SSST is even more time efficient. It usually takes days or weeks to complete a HALT test, but it only takes minutes for a time-varying stress test to produce failures. The advantage of incorporating a specific time-varying stress profile into a statistical model is significant in providing an alternative life test method for quickly revealing the failure mechanism in capacitors. In this paper, a time-varying stress that mimics a typical SSST has been incorporated into the Weibull model to characterize the failure mechanism in different types of capacitors. The SSST circuit and transient conditions for correctly surge testing capacitors are discussed. Finally, the SSST was applied for testing Ta capacitors, polymer aluminum capacitors (PA capacitors), and multi-layer ceramic (MLC) capacitors with both precious metal electrodes (PME) and base metal electrodes (BME). The test results are found to be directly associated with the dielectric layer breakdown in Ta and PA capacitors and are independent of the capacitor values, the way the capacitors were built, and the capacitors manufacturers. The test results also show that MLC capacitors exhibit surge breakdown

  17. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  18. Process for manufacturing tantalum capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  19. Testing of High Energy Density Capacitors

    DTIC Science & Technology

    2007-06-01

    extended amount of time. Secondly high potting a new capacitor allows the capacitor to go through self healing prior to high current being switched...believed that this was due to a self healing process taking place in the early shots of the capacitor. From the peak Q value, till the one hundredth...and manufacturer B’s capacitors are polypropylene metallized film capacitors. While energy density is a major concern for our tests; attributes

  20. Ferroelectric capacitor with reduced imprint

    DOEpatents

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  1. Improved wet-slug capacitor

    NASA Technical Reports Server (NTRS)

    Ward, C. M.

    1976-01-01

    Capacitor uses all-tantalum seals and straight, ungelled, 30-percent sulphuric acid electrolyte to reduce leakage from order of milliamperes to low-microampere region. Design offers better reliability in severe environments encountered in military and industrial electronics systems.

  2. Improved wet-slug capacitor

    NASA Technical Reports Server (NTRS)

    Ward, C. M.

    1976-01-01

    Capacitor uses all-tantalum seals and straight, ungelled, 30-percent sulphuric acid electrolyte to reduce leakage from order of milliamperes to low-microampere region. Design offers better reliability in severe environments encountered in military and industrial electronics systems.

  3. PLZT capacitor on glass substrate

    DOEpatents

    Fairchild, Manuel Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine Wk; Ma, Beihai; Balachandran, Uthamalingam

    2016-03-29

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  4. PLZT capacitor on glass substrate

    DOEpatents

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  5. Technology of Pulse Power Capacitors

    NASA Astrophysics Data System (ADS)

    Qin, Shanshan

    Polymer film of pulse discharge capacitors operated at high repetition rate dissipates substantial power. The thermal conductivity of biaxially oriented polypropylene (BOPP) is measured as a function of metallization resistivity. The thermal conductivity in the plane of the film is about twice that of bulk polypropylene. Thermal design is optimized based on the measurement for large capacitors with multiple windings in a container. High discharge speed results in high current density at the wire arc sprayed end connections which tend to deteriorate gradually, resulting in capacitor failure during operation. To assure the end connection quality before assembly, a test procedure and apparatus for end connection integrity was developed based on monitoring the partial discharge pattern from end connection during discharge. The mechanism of clearing is analyzed which shows arc extinguishes due to the increased arc length and reduced energy so that capacitor can function normally after breakdown. In the case of a clearing discharge, the power dissipation appears to increase with time, although this is not a feature of previous models. Submicrosecond discharge requires minimizing inductance which can be achieved by optimizing the winding structure so that submicrosecond discharge becomes practical. An analysis of the inductance of multisection, very high voltage capacitors is carried out, which identifies low inductance structures for this type of capacitor.

  6. In-House Capacitor Technology Program.

    DTIC Science & Technology

    1988-02-01

    34IU II’, 1111- •.. ...... fW af p..’’, ’ PS JAY.L £;IC 7ILJ I . @ .. AFAL-TR-88-002 AD: Final Report In- House Capacitor Technology for the period July...Center Space Division, Air Force Systems Command Edwards Air Force Base, California 93523-5000 8 : O36"- ’ " ,?l II NOTICE When U.S. Government ...drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby

  7. BioCapacitor: A novel principle for biosensors.

    PubMed

    Sode, Koji; Yamazaki, Tomohiko; Lee, Inyoung; Hanashi, Takuya; Tsugawa, Wakako

    2016-02-15

    Studies regarding biofuel cells utilizing biocatalysts such as enzymes and microorganisms as electrocatalysts have been vigorously conducted over the last two decades. Because of their environmental safety and sustainability, biofuel cells are expected to be used as clean power generators. Among several principles of biofuel cells, enzyme fuel cells have attracted significant attention for their use as alternative energy sources for future implantable devices, such as implantable insulin pumps and glucose sensors in artificial pancreas and pacemakers. However, the inherent issue of the biofuel cell principle is the low power of a single biofuel cell. The theoretical voltage of biofuel cells is limited by the redox potential of cofactors and/or mediators employed in the anode and cathode, which are inadequate for operating any devices used for biomedical application. These limitations inspired us to develop a novel biodevice based on an enzyme fuel cell that generates sufficient stable power to operate electric devices, designated "BioCapacitor." To increase voltage, the enzyme fuel cell is connected to a charge pump. To obtain a sufficient power and voltage to operate an electric device, a capacitor is used to store the potential generated by the charge pump. Using the combination of a charge pump and capacitor with an enzyme fuel cell, high voltages with sufficient temporary currents to operate an electric device were generated without changing the design and construction of the enzyme fuel cell. In this review, the BioCapacitor principle is described. The three different representative categories of biodevices employing the BioCapacitor principle are introduced. Further, the recent challenges in the developments of self-powered stand-alone biodevices employing enzyme fuel cells combined with charge pumps and capacitors are introduced. Finally, the future prospects of biodevices employing the BioCapacitor principle are addressed.

  8. High-Energy-Density Capacitors

    NASA Technical Reports Server (NTRS)

    Slenes, Kirk

    2003-01-01

    Capacitors capable of storing energy at high densities are being developed for use in pulse-power circuits in such diverse systems as defibrillators, particle- beam accelerators, microwave sources, and weapons. Like typical previously developed energy-storage capacitors, these capacitors are made from pairs of metal/solid-dielectric laminated sheets that are wound and pressed into compact shapes to fit into cans, which are then filled with dielectric fluids. Indeed, these capacitors can be fabricated largely by conventional fabrication techniques. The main features that distinguish these capacitors from previously developed ones are improvements in (1) the selection of laminate materials, (2) the fabrication of the laminated sheets from these materials, and (3) the selection of dielectric fluids. In simplest terms, a high-performance laminated sheet of the type used in these capacitors is made by casting a dielectric polymer onto a sheet of aluminized kraft paper. The dielectric polymer is a siloxane polymer that has been modified with polar pendant groups to increase its permittivity and dielectric strength. Potentially, this polymer is capable of withstanding an energy density of 7.5 J/cm3, which is four times that of the previous state-of-the-art-capacitor dielectric film material. However, the full potential of this polymer cannot be realized at present because (1) at thicknesses needed for optimum performance (.8.0 m), the mechanical strength of a film of this polymer is insufficient for incorporation into a wound capacitor and (2) at greater thickness, the achievable energy density decreases because of a logarithmic decrease in dielectric strength with increasing thickness. The aluminized kraft paper provides the mechanical strength needed for processing of the laminate and fabrication of the capacitor, and the aluminum film serves as an electrode layer. Because part of the thickness of the dielectric is not occupied by the modified siloxane polymer, the

  9. Ultra high energy density and fast discharge nanocomposite capacitors

    NASA Astrophysics Data System (ADS)

    Tang, Haixiong; Sodano, Henry A.

    2013-04-01

    Nanocomposites containing high dielectric permittivity ceramics embedded in high breakdown strength polymers are currently of considerable interest as a solution for the development of high energy density capacitors. However, the improvement of dielectric permittivity comes at expense of the breakdown strength leading to limit the final energy density. Here, an ultra-high energy density nanocomposite was fabricated based on high aspect ratio barium strontium titanate nanowires. The pyroelectric phase Ba0.2Sr0.8TiO3 was chosen for the nanowires combined with quenched PVDF to fabricate high energy density nanocomposite. The energy density with 7.5% Ba0.2Sr0.8TiO3 nanowires reached 14.86 J/cc at 450 MV/m, which represented a 42.9% increase in comparison to the PVDF with an energy density of 10.4 J/cc at the same electric field. The capacitors have 1138% greater than higher energy density than commercial biaxial oriented polypropylene capacitors (1.2 J/cc at 640). These results demonstrate that the high aspect ratio nanowires can be used to produce nanocomposite capacitors with greater performance than the neat polymers thus providing a novel process for the development of future pulsed-power capacitors.

  10. Electromechanical capacitor for energy transfer

    SciTech Connect

    Carroll, T.A.; Chowdhuri, P.; Marshall, J.

    1983-01-01

    Inductive energy transfer between two magnets can be achieved with almost 100% efficiency with a transfer capacitor. However, the bulk and cost will be high, and reliability low if conventional capacitors are used. A homopolar machine, used as a capacitor, will be compact and economical. A homopolar machine was designed with counter-rotating copper disks completely immersed in a liquid metal (NaK-78) to work as a pulse capacitor. Absence of solid-brush collectors minimized wear and frictional losses. Wetting of the copper disks throughout the periphery by the liquid metal minimized the resistive losses at the collector interface. A liquid-metal collector would, however, introduce hydrodynamic and magnetohydrodynamic losses. The selected liquid metal, e.g., NaK-78 will produce the lowest of such losses among the available liquid metals. An electromechanical capacitor of this design was tested at various dc magnetic fields. Its measured capacitance was about 100 farads at a dc magnetic field of 1.15 tesla.

  11. Shapeable short circuit resistant capacitor

    SciTech Connect

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2015-10-06

    A ceramic short circuit resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The capacitor that exhibits a benign failure mode in which a multitude of discrete failure events result in a gradual loss of capacitance. Each event is a localized event in which localized heating causes an adjacent portion of one or both of the electrodes to vaporize, physically cleaning away electrode material from the failure site. A first metal electrode, a second metal electrode, and a ceramic dielectric layer between the electrodes are thin enough to be formed in a serpentine-arrangement with gaps between the first electrode and the second electrode that allow venting of vaporized electrode material in the event of a benign failure.

  12. Feasibility Study to Evaluate Candidate Materials of Nanofilled Block Copolymers for Use in Ultra High Density Pulsed Power Capacitors

    DTIC Science & Technology

    2015-10-26

    power capacitors Dharmaraj Raghavan HOWARD UNIV WASHINGTON DC Final Report 10/26/2015 DISTRIBUTION A: Distribution approved for public release. AF Office...materials of nanofilled block copolymers for use in ultra high density pulsed power capacitors 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-12-1-0306...permittivity of inorganic fillers with the high breakdoen strength (Ebd) of polymer matrix to obtain high energy density capacitors . Our strategy of

  13. Super Capacitor Development At NASA MSFC

    NASA Technical Reports Server (NTRS)

    Hall, David K.

    2000-01-01

    A viewgraph presentation outlines super capacitor development at NASA Marshall Space Flight Center. The concept, proof of concept testing and the test set-ups are described. An overview of super capacitor classification is shown and several types of capacitors are detailed: Ni-C chemical double layer (CDL), Ru-Oxide pseudo-cap, and a Ru-Oxide 2 F 30 V capacitor.

  14. Capacitor-Chain Successive-Approximation ADC

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas

    2003-01-01

    A proposed successive-approximation analog-to-digital converter (ADC) would contain a capacitively terminated chain of identical capacitor cells. Like a conventional successive-approximation ADC containing a bank of binary-scaled capacitors, the proposed ADC would store an input voltage on a sample-and-hold capacitor and would digitize the stored input voltage by finding the closest match between this voltage and a capacitively generated sum of binary fractions of a reference voltage (Vref). However, the proposed capacitor-chain ADC would offer two major advantages over a conventional binary-scaled-capacitor ADC: (1) In a conventional ADC that digitizes to n bits, the largest capacitor (representing the most significant bit) must have 2(exp n-1) times as much capacitance, and hence, approximately 2(exp n-1) times as much area as does the smallest capacitor (representing the least significant bit), so that the total capacitor area must be 2(exp n) times that of the smallest capacitor. In the proposed capacitor-chain ADC, there would be three capacitors per cell, each approximately equal to the smallest capacitor in the conventional ADC, and there would be one cell per bit. Therefore, the total capacitor area would be only about 3(exp n) times that of the smallest capacitor. The net result would be that the proposed ADC could be considerably smaller than the conventional ADC. (2) Because of edge effects, parasitic capacitances, and manufacturing tolerances, it is difficult to make capacitor banks in which the values of capacitance are scaled by powers of 2 to the required precision. In contrast, because all the capacitors in the proposed ADC would be identical, the problem of precise binary scaling would not arise.

  15. Architecture Analysis of High Performance Capacitors (POSTPRINT)

    DTIC Science & Technology

    2009-07-01

    includes the measurement of heat dissipated from a recently developed fluorenyl polyester (FPE) capacitor under an AC excitation. II. Capacitor ...AFRL-RZ-WP-TP-2010-2100 ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) Hiroyuki Kosai and Tyler Bixel UES, Inc...2009 4. TITLE AND SUBTITLE ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c

  16. High Energy Density Film Capacitors (PREPRINT)

    DTIC Science & Technology

    2009-06-01

    capacitor film, and the test of our first generation prototype capacitors . II. HIGH-K POLYMER DIELECTRIC MATERIALS Commercial polypropylene (PP...metallized polypropylene energy storage capacitors ”, IEEE Trans. Plasma Sci., 30(5): 1939 (2002). [2] W. Clelland, et al., Paktron Division of...AFRL-RZ-WP-TP-2010-2127 HIGH ENERGY DENSITY FILM CAPACITORS (PREPRINT) Shihai Zhang, Brian Zellers, Jim Henrish, Shawn Rockey, and Dean

  17. High Dielectric Constant Polymer Film Capacitors (PREPRINT)

    DTIC Science & Technology

    2010-02-01

    film, and the test of our first generation prototype capacitors . High-K Polymeric Dielectrics Commercial polypropylene (PP) capacitor film has a...1994). 2. Maurizio Rabuffi and Guido Picci, “Status Quo and Future Prospects for Metallized Polypropylene Energy Storage Capacitors ”, IEEE Trans...AFRL-RZ-WP-TP-2010-2126 HIGH DIELECTRIC CONSTANT POLYMER FILM CAPACITORS (PREPRINT) Shihai Zhang, Brian Zellers, Dean Anderson, Paul

  18. Ferroelectric thin-film capacitors and piezoelectric switches for mobile communication applications.

    PubMed

    Klee, Mareike; van Esch, Harry; Keur, Wilco; Kumar, Biju; van Leuken-Peters, Linda; Liu, Jin; Mauczok, Rüdiger; Neumann, Kai; Reimann, Klaus; Renders, Christel; Roest, Aarnoud L; Tiggelman, Mark P J; de Wild, Marco; Wunnicke, Olaf; Zhao, Jing

    2009-08-01

    Thin-film ferroelectric capacitors have been integrated with resistors and active functions such as ESD protection into small, miniaturized modules, which enable a board space saving of up to 80%. With the optimum materials and processes, integrated capacitors with capacitance densities of up to 100 nF/mm2 for stacked capacitors combined with breakdown voltages of 90 V have been achieved. The integration of these high-density capacitors with extremely high breakdown voltage is a major accomplishment in the world of passive components and has not yet been reported for any other passive integration technology. Furthermore, thin-film tunable capacitors based on barium strontium titanate with high tuning range and high quality factor at 1 GHz have been demonstrated. Finally, piezoelectric thin films for piezoelectric switches with high switching speed have been realized.

  19. Tunable circuit for tunable capacitor devices

    DOEpatents

    Rivkina, Tatiana; Ginley, David S.

    2006-09-19

    A tunable circuit (10) for a capacitively tunable capacitor device (12) is provided. The tunable circuit (10) comprises a tunable circuit element (14) and a non-tunable dielectric element (16) coupled to the tunable circuit element (16). A tunable capacitor device (12) and a method for increasing the figure of merit in a tunable capacitor device (12) are also provided.

  20. Final Project Report Project 10749-4.2.2.1 2007-2009

    SciTech Connect

    Zacher, Alan H.; Holladay, Johnathan E.; Frye, J. G.; Brown, Heather M.; Santosa, Daniel M.; Oberg, Aaron A.

    2009-05-11

    This is the final report for the DOE Project 10749-4.2.2.1 for the FY2007 - FY2009 period. This report is non-proprietary, and will be submitted to DOE as a final project report. The report covers activities under the DOE Project inside CRADA 269 (Project 53231) as well as project activites outside of that CRADA (Project 56662). This is the final report that is summarized from the non-proprietary quarterlies submitted to DOE over the past 2.5 years, which in turn are summaries from the proprietary technical reporting to UOP.

  1. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  2. Improved Dielectric Films For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lewis, Carol R.; Cygan, Peter J.; Jow, T. Richard

    1994-01-01

    Dielectric films made from blends of some commercially available high-dielectric-constant cyanoresins with each other and with cellulose triacetate (CTA) have both high dielectric constants and high breakdown strengths. Dielectric constants as high as 16.2. Films used to produce high-energy-density capacitors.

  3. All-tantalum electrolytic capacitor

    NASA Technical Reports Server (NTRS)

    Green, G. E., Jr.

    1977-01-01

    Device uses single-compression tantalum-to-tantalum seal. Single-compression seal allows better utilization of volume within device. As result of all-tantalum case and lengthened cathode, electrical parameters, particularly equivalent series resistance and capacitance stability, improved over silver-cased capacitor.

  4. Method of making tantalum capacitors

    DOEpatents

    McMillan, April D.; Clausing, Robert E.; Vierow, William F.

    1998-01-01

    A method for manufacturing tantalum capacitors includes preparing a tantalum compact by cold pressing tantalum powder, placing the compact, along with loose refractory metal powder, in a microwave-transparent casket to form an assembly, and heating the assembly for a time sufficient to effect at least partial sintering of the compact and the product made by the method.

  5. All-tantalum electrolytic capacitor

    NASA Technical Reports Server (NTRS)

    Green, G. E., Jr.

    1977-01-01

    Device uses single-compression tantalum-to-tantalum seal. Single-compression seal allows better utilization of volume within device. As result of all-tantalum case and lengthened cathode, electrical parameters, particularly equivalent series resistance and capacitance stability, improved over silver-cased capacitor.

  6. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  7. Field grading in capacitor margins

    NASA Astrophysics Data System (ADS)

    Springer, T. E.; Sarjeant, W. J.; Nunnally, W. C.

    1981-06-01

    Some of the results of modeling electric fields in the margin of a bogey plastic film liquid impregnant capacitor are presented where effects of foil edge shape, different impregnants, and grading wires are examined. It is concluded that placement tolerance and connection problems make grading wires impractical and that folded foil edges are still the best solution to field grading.

  8. Heat generation in double layer capacitors

    NASA Astrophysics Data System (ADS)

    Schiffer, Julia; Linzen, Dirk; Sauer, Dirk Uwe

    Thermal management is a key issue concerning lifetime and performance of double layer capacitors and battery technologies. Double layer capacitor modules for hybrid vehicles are subject to heavy duty cycling conditions and therefore significant heat generation occurs. High temperature causes accelerated aging of the double layer capacitors and hence reduced lifetime. To investigate the thermal behavior of double layer capacitors, thermal measurements during charge/discharge cycles were performed. These measurements show that heat generation in double layer capacitors is the superposition of an irreversible Joule heat generation and a reversible heat generation caused by a change in entropy. A mathematical representation of both parts is provided.

  9. Research on high energy density capacitor materials

    NASA Technical Reports Server (NTRS)

    Somoano, Robert

    1988-01-01

    The Pulsed Plasma thruster is the simplest of all electric propulsion devices. It is a pulsed device which stores energy in capacitors for each pulse. The lifetimes and energy densities of these capacitors are critical parameters to the continued use of these thrusters. This report presents the result of a research effort conducted by JPL into the materials used in capacitors and the modes of failure. The dominant failure mechanism was determined to be material breakdown precipitated by heat build-up within the capacitors. The presence of unwanted gas was identified as the source of the heat. An aging phenomena was discovered in polycarbonate based capacitors. CO build-up was noted to increase with the number of times the capacitor had been discharged. Improved quality control was cited as being essential for the improvement of capacitor lifetimes.

  10. Development of an 1100 deg F capacitor

    NASA Technical Reports Server (NTRS)

    Stapleton, R. E.

    1981-01-01

    The feasibility of developing a high temperature capacitor for 1100 F operation which is as small and light as conventional capacitors for normal operating temperatures is discussed. Pyrolyic boron nitride (PBN) was selected for the dielectric. The PBN capacitors were made by slicing and lapping material from thick blocks and then sputtering thin film electrodes. These capacitors had breakdown strengths of 7,000 volts per mil and a dissipation factor of less than 0.001 at 1100 F. Additional processing improvements were made after testing a multi-layer or stacked PBN capacitor for 1,000 hours at 1100 F. Sputter etching the wafers before depositing electrodes resulted in a reduction in dissipation factor. A sputtered boron nitride film applied to the outer electrode surfaces produced a more stable capacitor. A design for a 0.1 mu F capacitor and a summary of PBN wafer fabrication costs are given.

  11. Research on high energy density capacitor materials

    NASA Technical Reports Server (NTRS)

    Somoano, Robert

    1988-01-01

    The Pulsed Plasma thruster is the simplest of all electric propulsion devices. It is a pulsed device which stores energy in capacitors for each pulse. The lifetimes and energy densities of these capacitors are critical parameters to the continued use of these thrusters. This report presents the result of a research effort conducted by JPL into the materials used in capacitors and the modes of failure. The dominant failure mechanism was determined to be material breakdown precipitated by heat build-up within the capacitors. The presence of unwanted gas was identified as the source of the heat. An aging phenomena was discovered in polycarbonate based capacitors. CO build-up was noted to increase with the number of times the capacitor had been discharged. Improved quality control was cited as being essential for the improvement of capacitor lifetimes.

  12. Carbon Film Electrodes For Super Capacitor Applications

    DOEpatents

    Tan, Ming X.

    1999-07-20

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  13. Capacitor charging FET switcher with controller to adjust pulse width

    DOEpatents

    Mihalka, Alex M.

    1986-01-01

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  14. Capacitor charging FET switcher with controller to adjust pulse width

    NASA Astrophysics Data System (ADS)

    Mihalka, A. M.

    1986-04-01

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20 to 50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the dc input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  15. Interdigital Schottky barrier capacitor apparatus

    NASA Astrophysics Data System (ADS)

    Bierig

    1985-05-01

    The present invention relates broadly to Schottky barrier capacitors, and in particular to an interdigital Schottky barrier capacitor apparatus. In the prior art, the Schottky barrier diode is rather well known. In general, a Schottky barrier device comprises a semiconductor substrate layer that is formed by a first layer of heavily doped materials and a second layer of lightly doped materials upon which a layer of barrier metal is deposited thereon. The maximum reverse bias voltage which can be appplied to the Schottky barrier device is determined by the thickness of the lightly doped layer of semiconductive material which is deposited upon the substrate layer. This is only one of the factors that determined the reverse bias voltage, When a guardring is diffused into the lightly doped layer of semiconductive substrate material, the thickness of the layer is reduced, and therefore, the reverse bias voltage that can be applied to the Schottky device is reduced.

  16. Electrically Variable or Programmable Nonvolatile Capacitors

    NASA Technical Reports Server (NTRS)

    Shangqing, Liu; NaiJuan, Wu; Ignatieu, Alex; Jianren, Li

    2009-01-01

    Electrically variable or programmable capacitors based on the unique properties of thin perovskite films are undergoing development. These capacitors show promise of overcoming two important deficiencies of prior electrically programmable capacitors: Unlike in the case of varactors, it is not necessary to supply power continuously to make these capacitors retain their capacitance values. Hence, these capacitors may prove useful as components of nonvolatile analog and digital electronic memories. Unlike in the case of ferroelectric capacitors, it is possible to measure the capacitance values of these capacitors without changing the values. In other words, whereas readout of ferroelectric capacitors is destructive, readout of these capacitors can be nondestructive. A capacitor of this type is a simple two terminal device. It includes a thin film of a suitable perovskite as the dielectric layer, sandwiched between two metal or metal oxide electrodes (for example, see Figure 1). The utility of this device as a variable capacitor is based on a phenomenon, known as electrical-pulse-induced capacitance (EPIC), that is observed in thin perovskite films and especially in those thin perovskite films that exhibit the colossal magnetoresistive (CMR) effect. In EPIC, the application of one or more electrical pulses that exceed a threshold magnitude (typically somewhat less than 1 V) gives rise to a nonvolatile change in capacitance. The change in capacitance depends on the magnitude duration, polarity, and number of pulses. It is not necessary to apply a magnetic field or to cool the device below (or heat it above) room temperature to obtain EPIC. Examples of suitable CMR perovskites include Pr(1-x)Ca(x)MnO3, La(1-x)S-r(x)MnO3,and Nb(1-x)Ca(x)MnO3. Figure 2 is a block diagram showing an EPIC capacitor connected to a circuit that can vary the capacitance, measure the capacitance, and/or measure the resistance of the capacitor.

  17. Switched-Capacitor Voltage Multiplier

    NASA Technical Reports Server (NTRS)

    Sridharan, Govind

    1991-01-01

    Dc-to-dc power converter multiplies input supply potential by factor of nearly 40. Design does not make use of transformers or inductors but effects voltage boost-up by capacitive energy transfer. Circuit primarily made up of banks of capacitors, connected by network of integrated-circuit relays. Converter functionally linear voltage amplifier with fixed gain figure. Bipolar in operation. Output fully floating, and excellent dc isolation between input and output terminals.

  18. Characterization of Tantalum Polymer Capacitors

    NASA Technical Reports Server (NTRS)

    Spence, Penelope

    2012-01-01

    Overview Reviewed data Caution must be taken when accelerating test conditions Data not useful to establish an acceleration model Introduction of new failure mechanism skewing results Evidence of Anti-Wear-Out De-doping of polymer Decreased capacitance Increased ESR Not dielectric breakdown Needs further investigation Further investigation into tantalum polymer capacitor technology Promising acceleration model for Manufacturer A Possibility for use in high-reliability space applications with suitable voltage derating.

  19. Switched-Capacitor Voltage Multiplier

    NASA Technical Reports Server (NTRS)

    Sridharan, Govind

    1991-01-01

    Dc-to-dc power converter multiplies input supply potential by factor of nearly 40. Design does not make use of transformers or inductors but effects voltage boost-up by capacitive energy transfer. Circuit primarily made up of banks of capacitors, connected by network of integrated-circuit relays. Converter functionally linear voltage amplifier with fixed gain figure. Bipolar in operation. Output fully floating, and excellent dc isolation between input and output terminals.

  20. Characterization of Tantalum Polymer Capacitors

    NASA Technical Reports Server (NTRS)

    Spence, Penelope

    2012-01-01

    Overview Reviewed data Caution must be taken when accelerating test conditions Data not useful to establish an acceleration model Introduction of new failure mechanism skewing results Evidence of Anti-Wear-Out De-doping of polymer Decreased capacitance Increased ESR Not dielectric breakdown Needs further investigation Further investigation into tantalum polymer capacitor technology Promising acceleration model for Manufacturer A Possibility for use in high-reliability space applications with suitable voltage derating.

  1. GaAs series connected photovoltaic converters for high voltage capacitor charging applications

    SciTech Connect

    Rose, B.H.

    1997-09-01

    This report describes the design features of series connected photovoltaic arrays which will be required to charge capacitors to relatively high (400V) voltages in time periods on the order of 1 microsecond. The factors which determine the array voltage and the capacitor charge time are given. Individual element junction designs, along with an interconnect scheme, and a semiconductor process to realize them are presented. Finally, the input laser optical required to meet the requirements is determined.

  2. Capacitor-type micrometeoroid detectors

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Griffis, D. P.; Bryan, S. R.; Kinard, W.

    1986-01-01

    The metal oxide semiconductor (MOS) capacitor micrometeroid detector consists of a thin dielectric capacitor fabricated on a silicon wafer. In operation, the device is charged to a voltage level sufficiently near breakdown that micrometeoroid impacts will cause dielectric deformation or heating and subsequent arc-over at the point of impact. Each detector is capable of recording multiple impacts because of the self-healing characteristics of the device. Support instrumentation requirements consist of a voltage source and pulse counters that monitor the pulse of recharging current following every impact. An investigation has been conducted in which 0.5 to 5 micron diameter carbonized iron spheres traveling at velocities of 4 to 10 Km/sec were impacted on to detectors with either a dielectric thickness of 0.4 or 1.0 micron. This study demonstrated that an ion microprobe tuned to sufficiently high resolution can detect Fe remaining on the detector after the impact. Furthermore, it is also possible to resolve Fe ion images free of mass interferences from Si, for example, giving its spatial distribution after impact. Specifically this technique has shown that significant amounts of impacting particles remain in the crater and near it which can be analyzed for isotopic content. Further testing and calibration could lead to quantitive analysis. This study has shown that the capacitor type micrometeroid detector is capable of not only time and flux measurements but can also be used for isotopic analysis.

  3. Carbon-based electrochemical capacitors.

    PubMed

    Ghosh, Arunabha; Lee, Young Hee

    2012-03-12

    Supercapacitors are one of the key devices for energy-storage applications. They have energy densities much higher than those of conventional capacitors and possess much better power delivery capabilities than batteries. This makes them unique devices that can outperform both batteries and conventional capacitors under special circumstances. Nanocarbons are the main electrode materials for supercapacitors. Abundant sources of nanocarbons and facile processes of modification have led to the fabrication of cheap electrodes. In this review, we focus on the capacitance performance of highly porous activated carbons and attempt to determine the role of different pores. Elaborate discussions are presented on individual contributions from micro- and mesopores and their mutual dependence. This article also presents a comparative performance report for both random and ordered porous nanocarbons. Novel carbon materials, such as carbon nanotubes and graphene, and their contributions in this context are discussed. We summarize key techniques for the functionalization of nanocarbons and their pseudocapacitive charge-storage mechanisms. Nanocarbon composites with redox-active transition-metal oxides and conducting polymers are highlighted along with their impact as electrode materials. Ideal composite structures are highlighted and an attempt is made to determine an ideal future electrode structure for capacitors with high energy and power density.

  4. Charging/Safety-Interlock Connection For Capacitor Bank

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1990-01-01

    Electrically controlled mechanical interlock apparatus prevents connection of bank of capacitors to battery or other dc power supply until capacitors precharged to nearly full supply voltage. Precharge eliminates excessive inrush current, which damages capacitors, wires, or connectors. Circuit in apparatus also discharges capacitors after power turned off or capacitors disconnected from power supply.

  5. Capacitors with low equivalent series resistance

    NASA Technical Reports Server (NTRS)

    Fleig, Patrick Franz (Inventor); Lakeman, Charles D. E. (Inventor); Fuge, Mark (Inventor)

    2011-01-01

    An electric double layer capacitor (EDLC) in a coin or button cell configuration having low equivalent series resistance (ESR). The capacitor comprises mesh or other porous metal that is attached via conducting adhesive to one or both the current collectors. The mesh is embedded into the surface of the adjacent electrode, thereby reducing the interfacial resistance between the electrode and the current collector, thus reducing the ESR of the capacitor.

  6. High Energy Density Polymer Film Capacitors

    DTIC Science & Technology

    2006-10-01

    self - healing (failure safe), high current carrying capacitors, Sigma designed an oil printing system to produce segmented ectrode capacitor film...DESIGN AND FABRICATION 4.1 HEAVY EDGE-THIN ELECTRODE DESIGN Self - healing properties of metallized capacitors are enhanced significantly by increasing...are limited to low loss dielectrics such as polypropylene . Lower rep rate applications can beserved with higher loss dielectrics that include

  7. The tantalum-cased tantalum capacitor

    NASA Technical Reports Server (NTRS)

    Moynihan, J. D.

    1977-01-01

    Tantalum-cased tantalum capacitors were tested with regard to temperature stability, capacitance ratio, surge current capabilities, shock, vibration, and thermal shock. They were found to be superior to the conventional wet slug tantalum capacitor cased in silver, since they are more resistant to sulfuric acid. The tantalum-cased tantalum capacitors are widely accepted for use in critical electronic equipment because of their excellent performance and reliability.

  8. MB C220 Centering System Capacitor Fire

    NASA Technical Reports Server (NTRS)

    Worth, Daniel B.

    2003-01-01

    A detailed analysis of the MB C220 Centering System Capacitor Fire is presented. The topics include: 1) Description of Incident/Mishap; 2) System Block Diagram; 3) Fault Tree Analysis; 4) Inspection and Repair of Cabinet; 5) Discussions with GSFC Experts; 6) Electrical Measurements of Capacitors; 7) Other Research; 8) Discussions with Capacitor Manufacturers; 9) Findings/Root Cause; and 10) Recommendations. This paper is in viewgraph form.

  9. Evaluation of Fluorene Polyester Film Capacitors (PREPRINT)

    DTIC Science & Technology

    2010-02-01

    AFRL-RZ-WP-TP-2010-2098 EVALUATION OF FLUORENE POLYESTER FILM CAPACITORS (PREPRINT) Jeffery Stricker, James Scofield, Navjot Brar, and...February 2010 4. TITLE AND SUBTITLE EVALUATION OF FLUORENE POLYESTER FILM CAPACITORS (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER...to include cycling from ambient to 200 °C. 15. SUBJECT TERMS Fluorene polyester , Capacitor , Packaging, High Temperature, DC/DC converter 16

  10. Evaluation of Polymer Hermetically Sealed Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2014-01-01

    Polymer cathode tantalum capacitors have lower ESR (equivalent series resistance) compared to other types of tantalum capacitors and for this reason have gained popularity in the electronics design community. Their use allows improved performance of power supply systems along with substantial reduction of size and weight of the components used. However, these parts have poor thermal stability and can degrade in humid environments. Polymer hermetically sealed (PHS) capacitors avoid problems related to environmental degradation of molded case parts and can potentially replace current wet and solid hermetically sealed capacitors. In this work, PHS capacitors manufactured per DLA LAM DWG#13030 are evaluated for space applications. Several lots of capacitors manufactured over period from 2010 to 2014 were tested for the consistency of performance, electrical and thermal characteristics, highly accelerated life testing, and robustness under reverse bias and random vibration conditions. Special attention was given to analysis of leakage currents and the effect of long-term high temperature storage on capacitors in as is condition and after hermeticity loss. The results show that PHS capacitors might be especially effective for low-temperature applications or for system requiring a cold start-up. Additional screening and qualification testing have been recommended to assure the necessary quality of capacitors for space projects.

  11. 77 FR 48165 - Cooperative Research and Development Agreement (CRADA) Opportunity With the Department of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... thorough decontamination of all material exiting the bio containment area within the facility. Rising... electronics, other material within the bio containment area, sealed portions of the facility, biological... filtration systems. The role of the collaborator(s) in this CRADA will be to provide PIADC with the materials...

  12. Performance analysis of lithium-ion battery/electrochemical capacitor hybrid systems

    NASA Astrophysics Data System (ADS)

    Sikha, Godfrey

    Electrochemical double layer capacitors are the most suitable power sources for high powered applications such as electric vehicles, power distribution systems, uninterrupted power supply, hybrid vehicles and other electronic devices due to their high power densities. However, their energy densities are considerably lower than those of high energy battery systems such as Lithium-ion. Although advanced battery systems and double layer electrochemical capacitors contrast with regard to energy-power relationship, in combination they can be utilized as an effective power source for various applications. So a systematic study of the performance of the combination of these energy sources (hybrid system) is indispensable. In this thesis, a hybrid system consisting of a lithium-ion battery coupled with a network of electrochemical capacitors was constructed and investigated in detail under pulse type of discharge. The impact of various operating parameters such as duty ratio, frequency, pulse current amplitude, number of capacitors in the capacitor network on the performance of the hybrid system was studied. To further understand and optimize the hybrid system a mathematical model for a lithium-ion/electrochemical capacitor network hybrid was developed from first principles. The prominent features of the model were its capability to predict the current shared by the battery and the capacitor network during discharge and its versatility to include any number of identical capacitors/batteries in series/parallel configuration. Specific energy and power relationships were simulated to identify the regime where the performance of the hybrids was better than the battery on a mass basis. The validity of the model was also tested against experimental data obtained from a Sony US 18650 lithium-ion battery/Maxwell PC100F electrochemical capacitor hybrid system. Finally a case study on the performance of the battery-alone system against a hybrid system was done for two different high

  13. Rep-rated long-life capacitor development

    NASA Astrophysics Data System (ADS)

    Galperin, I.

    1983-03-01

    The characterization of polypropylene and polyolefin resins for capacitor film usage was studied. One polypropylene resin was selected for capacitor POP film fabrication. A polyolefin resin was upgraded for POP film fabrication. Two new capacitor films were developed - a post orientation processed, two layer, polypropylene film and a polyolefin resin film. New criteria for judging film quality are developed and instituted. A capacitor film test plan has been formulated. Test capacitor designs and a capacitor test plan have been devised.

  14. Compositionally Graded Multilayer Ceramic Capacitors.

    PubMed

    Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (<2.5%) over the required temperature ranges specified in the standard industrial classifications. The compositional grading resulted in generation of internal bias field which enhanced the tunability due to increased nonlinearity. The electric field tunability of MLCCs provides an important avenue for design of miniature filters and power converters.

  15. Capacitor film surface assessment studies

    NASA Astrophysics Data System (ADS)

    Galperin, I.; White, W.

    1985-02-01

    In the present investigation of the optical surface of the three widely used, biaxially oriented capacitor films, polypropylene, polyvinylidene fluoride, and polyester, with attention to film surface defects and thickness variation, the defects and their rate of occurrence proved traceable in terms of polymer structure, chemical grouping, and fabrication processing. Film thickness variation was small, yet differed for each film type. Film breakdown voltages have been determined, and alternative causes for the voltage values obtained are proposed. A reciprocal relation is noted between the film breakdown voltage and the dielectric constant.

  16. Pyrrole-Based Conductive Polymers For Capacitors

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Di Stefano, Salvador

    1994-01-01

    Polypyrrole films containing various dopant anions exhibit superior capacitance characteristics. Used with nonaqueous electrolytes. Candidate for use in advanced electrochemical double-layer capacitors capable of storing electrical energy at high densities. Capacitors made of these films used in automobiles and pulsed power supplies.

  17. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  18. Semiautomated switched capacitor filter design system

    NASA Technical Reports Server (NTRS)

    Thelen, D.

    1990-01-01

    A software system is described which reduces the time required to design monolithic switched capacitor filters. The system combines several software tools into an integrated flow. Switched capacitor technology and alternative technologies are discussed. Design time using the software system is compared to typical design time without the system.

  19. Cellulose Triacetate Dielectric Films For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  20. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  1. Pyrrole-Based Conductive Polymers For Capacitors

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Di Stefano, Salvador

    1994-01-01

    Polypyrrole films containing various dopant anions exhibit superior capacitance characteristics. Used with nonaqueous electrolytes. Candidate for use in advanced electrochemical double-layer capacitors capable of storing electrical energy at high densities. Capacitors made of these films used in automobiles and pulsed power supplies.

  2. Electrical Properties Of Capacitors At High Temperatures

    NASA Technical Reports Server (NTRS)

    Baumann, E. D.; Myers, I. T.; Overton, E.; Hammoud, A. N.

    1994-01-01

    Brief report describes results of experiments in which capacitance and dielectric loss of glass, metallized-polytetrafluoroethylene, and solid-tantalum capacitor measured at temperatures from 20 degrees C to 200 degrees C. Conclusions drawn concerning suitability of capacitors for use at high temperatures; such as in nuclear powerplants, aircraft, equipment for extracting geothermal energy, switching power supplies, and automotive integrated engine electronics.

  3. Porous nickel oxide films for electrochemical capacitors

    SciTech Connect

    Liu, K.C.; Anderson, M.A.

    1995-12-31

    NiO/Ni composite thin films consisting of nano-sized particles have been found to perform as good electrodes in electrochemical capacitor applications. These films can provide a specific capacitance of 25--40 F/g. The low cost of raw materials and easy manufacturing process of this system should allow one to produce low-cost electrochemical capacitors.

  4. Simple Ways to Make Real Capacitors

    ERIC Educational Resources Information Center

    Herman, Rhett

    2014-01-01

    Many of us have grabbed two pieces of aluminum foil and a paper towel, quickly sandwiched them together, and exclaimed in lecture, "Look! It's easy to make a capacitor!" Then we move on from there, calculating things such as capacitances with various dielectrics or plate sizes, the capacitance of capacitor networks, RC circuits,…

  5. Are the Textbook Writers Wrong about Capacitors?

    ERIC Educational Resources Information Center

    French, A. P.

    1993-01-01

    Refutes a recent article which stated that the standard textbook treatment of two capacitors in series is wrong. States that the calculated capacitance is correct if measured immediately after a dc voltage is applied and that perhaps the effect is due to the choice of materials making up the capacitor. (MVL)

  6. Cellulose Triacetate Dielectric Films For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  7. Are the Textbook Writers Wrong about Capacitors?

    ERIC Educational Resources Information Center

    French, A. P.

    1993-01-01

    Refutes a recent article which stated that the standard textbook treatment of two capacitors in series is wrong. States that the calculated capacitance is correct if measured immediately after a dc voltage is applied and that perhaps the effect is due to the choice of materials making up the capacitor. (MVL)

  8. Simple Ways to Make Real Capacitors

    ERIC Educational Resources Information Center

    Herman, Rhett

    2014-01-01

    Many of us have grabbed two pieces of aluminum foil and a paper towel, quickly sandwiched them together, and exclaimed in lecture, "Look! It's easy to make a capacitor!" Then we move on from there, calculating things such as capacitances with various dielectrics or plate sizes, the capacitance of capacitor networks, RC circuits,…

  9. Ultra-thin multilayer capacitors.

    SciTech Connect

    Renk, Timothy Jerome; Monson, Todd C.

    2009-06-01

    The fabrication of ultra-thin lanthanum-doped lead zirconium titanate (PLZT) multilayer ceramic capacitors (MLCCs) using a high-power pulsed ion beam was studied. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The goal of this work was to increase the energy density of ceramic capacitors through the formation of a multilayer device with excellent materials properties, dielectric constant, and standoff voltage. For successful device construction, there are a number of challenging requirements including achieving correct stoichiometric and crystallographic composition of the deposited PLZT, as well as the creation of a defect free homogenous film. This report details some success in satisfying these requirements, although 900 C temperatures were necessary for PLZT perovskite phase formation. These temperatures were applied to a previously deposited multi-layer film which was then post-annealed to this temperature. The film exhibited mechanical distress attributable to differences in the coefficient of thermal expansion (CTE) of the various layers. This caused significant defects in the deposited films that led to shorts across devices. A follow-on single layer deposition without post-anneal produced smooth layers with good interface behavior, but without the perovskite phase formation. These issues will need to be addressed in order for ion beam deposited MLCCs to become a viable technology. It is possible that future in-situ heating during deposition may address both the CTE issue, and result in lowered processing temperatures, which in turn could raise the probability of successful MLCC formation.

  10. Switched-capacitor isolated LED driver

    SciTech Connect

    Sanders, Seth R.; Kline, Mitchell

    2016-03-22

    A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage V.sub.DC. A regulator section, operating on V.sub.DC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.

  11. NASA's Evolutionary Xenon Thruster (NEXT) Power Processing Unit (PPU) Capacitor Failure Root Cause Analysis

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Scheidegger, Robert J.; Pinero, Luis R.; Birchenough, Arthur J.; Dunning, John W.

    2012-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) project is developing an advanced ion propulsion system for future NASA missions for solar system exploration. A critical element of the propulsion system is the Power Processing Unit (PPU) which supplies regulated power to the key components of the thruster. The PPU contains six different power supplies including the beam, discharge, discharge heater, neutralizer, neutralizer heater, and accelerator supplies. The beam supply is the largest and processes up to 93+% of the power. The NEXT PPU had been operated for approximately 200+ hr and has experienced a series of three capacitor failures in the beam supply. The capacitors are in the same, nominally non-critical location-the input filter capacitor to a full wave switching inverter. The three failures occurred after about 20, 30, and 135 hr of operation. This paper provides background on the NEXT PPU and the capacitor failures. It discusses the failure investigation approach, the beam supply power switching topology and its operating modes, capacitor characteristics and circuit testing. Finally, it identifies root cause of the failures to be the unusual confluence of circuit switching frequency, the physical layout of the power circuits, and the characteristics of the capacitor.

  12. NASA's Evolutionary Xenon Thruster (NEXT) Power Processing Unit (PPU) Capacitor Failure Root Cause Analysis

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Pinero, Luis; Schneidegger, Robert; Dunning, John; Birchenough, Art

    2012-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) project is developing an advanced ion propulsion system for future NASA missions for solar system exploration. A critical element of the propulsion system is the Power Processing Unit (PPU) which supplies regulated power to the key components of the thruster. The PPU contains six different power supplies including the beam, discharge, discharge heater, neutralizer, neutralizer heater, and accelerator supplies. The beam supply is the largest and processes up to 93+% of the power. The NEXT PPU had been operated for approximately 200+ hours and has experienced a series of three capacitor failures in the beam supply. The capacitors are in the same, nominally non-critical location the input filter capacitor to a full wave switching inverter. The three failures occurred after about 20, 30, and 135 hours of operation. This paper provides background on the NEXT PPU and the capacitor failures. It discusses the failure investigation approach, the beam supply power switching topology and its operating modes, capacitor characteristics and circuit testing. Finally, it identifies root cause of the failures to be the unusual confluence of circuit switching frequency, the physical layout of the power circuits, and the characteristics of the capacitor.

  13. Development and integration of applique decoupling capacitors

    SciTech Connect

    Garino, T.J.; Dimos, D.; Lockwood, S.J.

    1996-10-01

    For high-speed integrated circuit applications, it is important to interconnect decoupling capacitors and integrated circuits (ICs) as intimately as possible, to minimize parasitic impedances. This can be achieved by mounting free-standing, thin film capacitors directly onto ICs as part of a chip-scale packaging approach. These applique capacitors utilize a chemically-prepared PLZT dielectric, which is nominally 1 {micro}m thick. The small size and weight of applique capacitors can be used to improve packaging efficiency. Applique capacitors, which are initially fabricated on silicon wafers, have high permittivity ({var_epsilon} {approx_equal} 1,000), low loss (tan{delta} {approx_equal} 0.01) and high breakdown strength (E{sub b} {approx_equal} 1 MV/cm) and leakage resistance ({rho} > 10{sup 14} {Omega}-cm {at} 125 C). Various processes being developed to remove the capacitors from the silicon substrate and reattach them to ICs is described. In addition, a concept for interconnecting the capacitors using a repatterning process is discussed.

  14. Charge fluctuations in nanoscale capacitors.

    PubMed

    Limmer, David T; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A; van Roij, René; Rotenberg, Benjamin

    2013-09-06

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  15. Charge Fluctuations in Nanoscale Capacitors

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A.; van Roij, René; Rotenberg, Benjamin

    2013-09-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  16. Gas evolution in aluminum electrolytic capacitors

    SciTech Connect

    Gomez-Aleixandre, C.; Albella, J.M.; Martinez-Duart, J.M.

    1984-03-01

    Gas evolution in aluminum electrolytic capacitors constitutes one of their main drawbacks in comparison to other types of capacitors lacking a liquid electrolyte. In this respect, one of the most common causes of failure shown by liquid electrolyte capacitors is electrolyte leakage through the seal or even explosions produced by internal pressure buildup. In order to prevent these hazards, some substances, known as depolarizers, are usually added to the capacitor electrolyte with the purpose of absorbing the hydrogen evolved at the cathode (1, 2). Although the gas evolution problem in electrolytic capacitors has been known for a long time, there is a lack of literature on both direct measurements of the gas evolved and assessments of the amount of depolarizer active for the hydrogen absorption process. Aluminum electrolytic capacitors of 100..mu..F and 40V nominal voltage, miniature type (diam 8 mm, height 18.5 mm), were manufactured under standard specifications. The capacitors were filled with about 0.5 ml of an electrolyte consisting essentially of a solution of boric, adipic, and phosphoric acids in ethylene glycol. Picric acid and p-benzoquinone in molar concentrations of 0.01M and 0.05M, respectively, were added as depolarizers, yielding an electrolyte with a resistivity of about 80 ..cap omega..-cm and a pH of 5.1. The pressure inside the capacitors was monitored by a conventional Ushaped manometer made from a capillary glass tube filled with distilled water. The number of mols of gas generated in the capacitor (/eta/ /SUB g/ ) was calculated from the measured pressure (sensitivity 0.1 mm Hg) and the value of the internal volume of the manometercapacitor system.

  17. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer

    Cieslewski, Grzegorz

    2014-09-28

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  18. 2014 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2014-01-01

    Presentation describes recent development in research on MnO2, wet, and polymer tantalum capacitors. Low-voltage failures in multilayer ceramic capacitors and techniques to reveal precious metal electrode (PME) and base metal electrode (BME) capacitors with cracks are discussed. A voltage breakdown technique is suggested to select high quality low-voltage BME ceramic capacitors.

  19. Aluminum electrolytic capacitors for tablet PC

    NASA Astrophysics Data System (ADS)

    Liu, Longchun; Dong, Liangwei; Li, Qinglong; Xu, Xiangyang

    2017-07-01

    Based on the operating conditions of tablet PC, this paper presents the design of a long load life aluminum electrolytic capacitor. Due to the key technology breakthrough of electrolyte with low resistance and excellent temperature stability, the capacitor boasts low leakage current, low impedance, high frequency, high ripple resistance and high temperature resistance. In the meantime, it can pass 5000 h of durability test with load at 105∘C. The aluminum electrolytic capacitor can be used in tablet PC with long load life.

  20. Alkaline Capacitors Based on Nitride Nanoparticles

    NASA Technical Reports Server (NTRS)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  1. A review of molecular modelling of electric double layer capacitors.

    PubMed

    Burt, Ryan; Birkett, Greg; Zhao, X S

    2014-04-14

    Electric double-layer capacitors are a family of electrochemical energy storage devices that offer a number of advantages, such as high power density and long cyclability. In recent years, research and development of electric double-layer capacitor technology has been growing rapidly, in response to the increasing demand for energy storage devices from emerging industries, such as hybrid and electric vehicles, renewable energy, and smart grid management. The past few years have witnessed a number of significant research breakthroughs in terms of novel electrodes, new electrolytes, and fabrication of devices, thanks to the discovery of innovative materials (e.g. graphene, carbide-derived carbon, and templated carbon) and the availability of advanced experimental and computational tools. However, some experimental observations could not be clearly understood and interpreted due to limitations of traditional theories, some of which were developed more than one hundred years ago. This has led to significant research efforts in computational simulation and modelling, aimed at developing new theories, or improving the existing ones to help interpret experimental results. This review article provides a summary of research progress in molecular modelling of the physical phenomena taking place in electric double-layer capacitors. An introduction to electric double-layer capacitors and their applications, alongside a brief description of electric double layer theories, is presented first. Second, molecular modelling of ion behaviours of various electrolytes interacting with electrodes under different conditions is reviewed. Finally, key conclusions and outlooks are given. Simulations on comparing electric double-layer structure at planar and porous electrode surfaces under equilibrium conditions have revealed significant structural differences between the two electrode types, and porous electrodes have been shown to store charge more efficiently. Accurate electrolyte and

  2. CRADA 2009S001: Investigation of the Supercondcuting RF Properties of Large Grain Ingot Niobium

    SciTech Connect

    Grimm, Terry; Hollister, Jerry L.; Kolka, Ahren; Myneni, Ganapati Rao

    2012-12-18

    This CRADA intended to explore the properties of large grain ingot niobium by fabricating four single cell TESLA shaped accelerating cavities. Once the cavities were fabricated, SRF performance would be measured. Niowave received four discs of large grain ingot niobium from JLAB in February 2009. Niowave cut samples from each disc and tested the RRR. After the RRR was measured with disappointing results, the project lost interest. A no cost extension was signed in July 2009 to allow progress until June 2010, but ultimately no further work was accomplished by either party. No firm conclusions were drawn, as further investigations were not made. Large grain ingot niobium has shown real potential for high accelerating gradient superconducting cavities. However, this particular CRADA did not gather enough data to reach any conclusions in this regard.

  3. Fabrication of anodized tantalum oxide integrated capacitors on singulated chips with active devices

    NASA Astrophysics Data System (ADS)

    Wasef, Mohammed Aziz

    The purpose of this project was to determine the feasibility and processability of fabricating anodized tantalum oxide integrated capacitors on singulated chips. Using high-resolution transparencies to pattern the metals during the photolithographic process, capacitors as large as 0.25 cm2 were fabricated successfully with the yield being higher for capacitors smaller than 0.1 cm2. Several capacitor designed were attempted and final designed was selected on the basis of ease of alignment and prevention of shorts. The next step in the project involved utilizing this design to fabricate capacitors on 2.2 mm by 2.2 mm silicon dummy chips. In order to accomplish this task, a support wafer technique was used. A silicon wafer with holes etched all the way through was attached to a non-etched silicon wafer to provide a base for the dummy chips that were placed in the holes of the support wafer, thus making the top of the chips co-planar with a wafer that could be put through standard wafer processing equipment. The chips were glued to the wafer using a thermoplastic as an adhesive. The design specified for this project called for five 100 pF capacitors and a single 50 pF capacitor. Since the chips had to be individually placed in the holes, all the masks used in the project had to be individually designed for reach run. The capacitors had a bottom plate thickness of 2500 A of tantalum which was anodized at 120 V and 0.5 mA/cm2 to an oxide thickness of 1920 A. The top plate was 2 mum of aluminum and the insulating ring around the bottom plate was made of 5 mum of benzocyclobutene. After fabrication, testing of the capacitors provided a yield of 97% for the 100 pF capacitors with average capacitance of 98.3 pF +/- 3.6 pF and 75% for the 50 pF capacitors with an average capacitance of 50 pF +/- 1.65 pF. The inductance of the capacitors was less than 20 pH and resistance was about 110 O. The resistance was brought down to 1 O when a 2 mum sublayer of aluminum was deposited

  4. Agreement Execution Process Study: CRADAs and NF-WFO Agreements and the Speed of Business

    SciTech Connect

    Harrer, Bruce J.; Cejka, Cheryl L.; Macklin, Richard; Miksovic, Ann

    2011-02-01

    This report summarizes the findings of a study on the execution of Cooperative Research and Development Agreements (CRADAs) and Non-Federal Work for Others (NF-WFO) agreements across the U.S. Department of Energy (DOE) laboratory complex. The study provides quantitiative estimates of times required to negotiate and execute these agreements across the DOE complex. It identifies factors impacting on cycle times and describes best practicies used at various laboratories and site offices that reduce cycle times.

  5. Physical and Electrical Characterization of Polymer Aluminum Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, David; Sampson, Michael J.

    2010-01-01

    Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.

  6. Physical and Electrical Characterization of Aluminum Polymer Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, David; Sampson, Michael J.

    2010-01-01

    Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.

  7. Automated Test Stand for HEV Capacitor Testing

    SciTech Connect

    Seiber, Larry Eugene; Armstrong, Gary

    2007-01-01

    As capacitor manufacturers race to meet the needs of the hybrid-electric vehicle (HEV) of the future, many trade-offs at the system level as well as the component level must be considered. Even though the ultra-capacitor has the spot light for recent research and development (R&D) for HEVs, the electrostatic capacitor is also the subject of R&D (for HEVs as well as wireless communications). The Department of Energy has funded the Oak Ridge National Laboratory's Power Electronic and Electric Machinery Research Center to develop an automated test to aid in the independent testing of prototype electrostatic capacitors. This paper describes the design and development of such a stand.

  8. Fabrication and Testing of Polyvinylidene Fluoride Capacitors

    NASA Technical Reports Server (NTRS)

    Buritz, R. S.

    1980-01-01

    High energy density capacitors made from metallized polyvinylidene fluoride film were built and tested. Terminations of aluminum-babbitt, tin-babbitt, and all-babbitt were evaluated. All-babbit terminations appeared to be better. The 0.1 microfarad and 2 microfarad capacitors were made of 6 micrometer material. Capacitance, dissipation factor, and insulation resistance measurements were made over the ranges -55 C to 125 C and 10 Hz to 100 kHz. Twelve of forty-one 0.1 microfarad capacitors survived a 5000 hour dc plus ac life test. Under the same conditions, the 2 microfarad capacitors exhibited overheating because of excessive power loss. Some failures occurred after low temperature exposures for 48 hours. No failures were caused by vibration or temperature cycling.

  9. Fabrication and testing of polyvinylidene fluoride capacitors

    NASA Astrophysics Data System (ADS)

    Buritz, R. S.

    1980-06-01

    High energy density capacitors made from metallized polyvinylidene fluoride film were built and tested. Terminations of aluminum-babbitt, tin-babbitt, and all-babbitt were evaluated. All-babbit terminations appeared to be better. The 0.1 microfarad and 2 microfarad capacitors were made of 6 micrometer material. Capacitance, dissipation factor, and insulation resistance measurements were made over the ranges -55 C to 125 C and 10 Hz to 100 kHz. Twelve of forty-one 0.1 microfarad capacitors survived a 5000 hour dc plus ac life test. Under the same conditions, the 2 microfarad capacitors exhibited overheating because of excessive power loss. Some failures occurred after low temperature exposures for 48 hours. No failures were caused by vibration or temperature cycling.

  10. Effects of severe stressing on tantalum capacitors

    NASA Technical Reports Server (NTRS)

    Shakar, J. F.; Fairfield, E. H.

    1981-01-01

    The ultimate capabilities of an all tantalum capacitor were determined and evaluated. The evaluation included: 175 C life; 100 cycle thermal shock; 70 g random vibration; 3000 g shock; and 90 C ase ripple current.

  11. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1993-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  12. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  13. Capacitor blocks for linear transformer driver stages.

    PubMed

    Kovalchuk, B M; Kharlov, A V; Kumpyak, E V; Smorudov, G V; Zherlitsyn, A A

    2014-01-01

    In the Linear Transformer Driver (LTD) technology, the low inductance energy storage components and switches are directly incorporated into the individual cavities (named stages) to generate a fast output voltage pulse, which is added along a vacuum coaxial line like in an inductive voltage adder. LTD stages with air insulation were recently developed, where air is used both as insulation in a primary side of the stages and as working gas in the LTD spark gap switches. A custom designed unit, referred to as a capacitor block, was developed for use as a main structural element of the transformer stages. The capacitor block incorporates two capacitors GA 35426 (40 nF, 100 kV) and multichannel multigap gas switch. Several modifications of the capacitor blocks were developed and tested on the life time and self breakdown probability. Blocks were tested both as separate units and in an assembly of capacitive module, consisting of five capacitor blocks. This paper presents detailed design of capacitor blocks, description of operation regimes, numerical simulation of electric field in the switches, and test results.

  14. Capacitor blocks for linear transformer driver stages

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Kumpyak, E. V.; Smorudov, G. V.; Zherlitsyn, A. A.

    2014-01-01

    In the Linear Transformer Driver (LTD) technology, the low inductance energy storage components and switches are directly incorporated into the individual cavities (named stages) to generate a fast output voltage pulse, which is added along a vacuum coaxial line like in an inductive voltage adder. LTD stages with air insulation were recently developed, where air is used both as insulation in a primary side of the stages and as working gas in the LTD spark gap switches. A custom designed unit, referred to as a capacitor block, was developed for use as a main structural element of the transformer stages. The capacitor block incorporates two capacitors GA 35426 (40 nF, 100 kV) and multichannel multigap gas switch. Several modifications of the capacitor blocks were developed and tested on the life time and self breakdown probability. Blocks were tested both as separate units and in an assembly of capacitive module, consisting of five capacitor blocks. This paper presents detailed design of capacitor blocks, description of operation regimes, numerical simulation of electric field in the switches, and test results.

  15. Titanium-Alloy Power Capacitor: High-Power Titanate Capacitor for Power Electronics

    SciTech Connect

    2010-09-01

    ADEPT Project: There is a constant demand for better performing, more compact, lighter weight, and lower cost electronic devices. Unfortunately, the materials traditionally used to make components for electronic devices have reached their limits. Case Western is developing capacitors made of new materials that could be used to produce the next generation of compact and efficient high-powered consumer electronics and electronic vehicles. A capacitor is an important component of an electronic device. It stores an electric charge and then discharges it into an electrical circuit in the device. Case Western is creating its capacitors from titanium, an abundant material extracted from ore which can be found in the U.S. Case Western's capacitors store electric charges on the surfaces of films, which are grown on a titanium alloy electrode that is formed as a spinal column with attached branches. The new material and spine design make the capacitor smaller and lighter than traditional capacitors, and they enable the component to store 300% more energy than capacitors of the same weight made of tantalum, the current industry standard. Case Western's titanium-alloy capacitors also spontaneously self-repair, which prolongs their life.

  16. Design, Development, manufacture and qualification of wet-slug all-tantalum capacitors

    NASA Technical Reports Server (NTRS)

    Maher, R. H.

    1977-01-01

    Specifications and qualification tests data are presented for over eleven hundred T3 case all-tantalum capacitors encompassing four ratings. The finalized product has all the advantages of the silver cased wet and is capable of withstanding some reverse potential ac ripple current.

  17. CRADA with Northwest Instrumentation Systems, Inc. and Pacific Northwest National Laboratory (PNL-070): Dual Quartz Crystal Microbalance Commercialization

    SciTech Connect

    Dunham, G. C.

    1998-04-01

    This CRADA continued the commercialization of the dual quartz crystal microbalance (DQCM) begun in 1994 as a Staff Exchange (CRADA PNL-070). The completion of PNL-070 resulted in NISI possessing the technology for the DQCM chemical sensor precursor, that is, the device that will sensitively detect mass changes and which becomes a chemical sensor with the addition of a chemically sensitive film. NISI also owned prototype DQCM probes and accompanying data measuring organics in water to show DOE/Westinghouse/Bechtel. The follow-on CRADA supported the instrumentation and manufacturing development at a low level but primarily provided funds for developing the active films. As a result of this research, NISI received PNNL specifications for particular polymer films, and characterizations of the chemical response of DQCM probes prepared with these films. Construction and performance of a dual quartz crystal microbalance is described.

  18. Electrochemical capacitor materials based on carbon and luminophors doped with lanthanide ions

    NASA Astrophysics Data System (ADS)

    Kubasiewicz, Konrad; Slesinski, Adam; Gastol, Dominika; Lis, Stefan; Frackowiak, Elzbieta

    2017-10-01

    The described research is focused on the hybrid, bi-functional composite materials dedicated to the electrochemical capacitor electrodes. The novel material exhibits both luminescent and capacitive properties. The fabrication process of semi-products and the final composite is described. The structure and homogeneity of luminophors are confirmed with the XRD analysis. The morphology of materials is also determined by TEM and SEM images. The detailed spectroscopic characterization includes excitation and emission spectra, luminescence decay curves, emission lifetimes, CIE chromaticity indexes. The electrochemical studies of composite electrodes carried out by cyclic voltammetry and impedance spectroscopy exhibit good charge propagation. For the first time, inorganic luminophors containing doped LaF3 and GdVO4 have been successfully used for electrochemical capacitor. It is the primary stage to design a new generation of light emitting capacitors utilizing more stable inorganic luminophors than organic-based ones.

  19. Integrated decoupling capacitors using Pb(Zr,Ti)O{sub 3} thin films

    SciTech Connect

    Dimos, D.; Lockwood, S.J.; Garino, T.J.; Al-Shareef, H.N.; Schwartz, R.W.

    1996-07-01

    Thin-film decoupling capacitors based on ferroelectric PLZT (PbLaZrTiO{sub 3}) films are being developed for advanced packaging. The increased integration that can be achieved by replacing surface- mount capacitors should lead to decreased package volume and improved high-speed performance. For this application, chemical solution deposition is an appropriate fabrication technique since it is a low- cost, high-throughput process. Relatively thick Pt electrodes (1{mu}m) are used to minimize series resistance and inductance in fabricating these devices. Also, important electrical properties are discussed, with emphasis on lifetime measurements, which suggest that resistance degradation will not be a severe limitation on device performance. Finally, some of the work being done to develop methods of integrating these thin-film capacitors with integrated circuits and multichip modules is presented.

  20. Energy Efficient Graphene Based High Performance Capacitors.

    PubMed

    Bae, Joonwon; Lee, Chang-Soo; Kwon, Oh Seok

    2016-10-27

    Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study.

  1. High-Temperature Capacitor Polymer Films

    NASA Astrophysics Data System (ADS)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  2. Biochemical basis of drought tolerance in hybrid Populus grown under field production conditions. CRADA final report

    SciTech Connect

    Tschaplinski, T.J.; Tuskan, G.A.; Wierman, C.

    1997-04-01

    The purpose of this cooperative effort was to assess the use of osmotically active compounds as molecular selection criteria for drought tolerance in Populus in a large-scale field trial. It is known that some plant species, and individuals within a plant species, can tolerate increasing stress associated with reduced moisture availability by accumulating solutes. The biochemical matrix of such metabolites varies among species and among individuals. The ability of Populus clones to tolerate drought has equal value to other fiber producers, i.e., the wood products industry, where irrigation is used in combination with other cultural treatments to obtain high dry weight yields. The research initially involved an assessment of drought stress under field conditions and characterization of changes in osmotic constitution among the seven clones across the six moisture levels. The near-term goal was to provide a mechanistic basis for clonal differences in productivity under various irrigation treatments over time.

  3. Heart pathology determination from electrocardiogram signals by application of deterministic chaos mathematics. CRADA final report

    SciTech Connect

    Clapp, N.E.; Hively, L.M.; Stickney, R.E.

    1999-03-01

    It is well known that the electrical signals generated by the heart exhibit nonlinear, chaotic dynamics. A number of heart pathologies alter heartbeat dynamics and/or the electrical properties of the heart, which, in turn, alter electrocardiogram signals. Electrocardiogram techniques in common use for diagnosing pathologies have limited sensitivity and specificity. This leads to a relatively high misdiagnosis rate for ventricular fibrillation. It is also known that the linear analysis tools utilized (such as fast Fourier transforms and linear statistics) are limited in their ability to find subtle changes or characteristic signatures in nonlinear chaotic electrocardiogram signals. In contrast, the authors` research indicates that chaotic time-series analysis tools that they have developed allow quantification of the nonlinear nature of dynamic systems in the form of nonlinear statistics, and also enable characteristic signatures to be identified. The goal of this project is to modify these tools to increase and enhance the medically useful information obtained from electrocardiogram signals through the application of chaotic time series analysis tools. In the one year of the project, the tools have been extended to enhance the capabilities for detecting ventricular fibrillation. Chaotic time-series analysis provides a means to increase sensitivity in detecting general heart dynamics. Oak Ridge National Laboratory specialists have worked with Physio-Control and their medical collaborators to extend the capabilities of state-of-the-art electrocardiogram systems and interpretation of results.

  4. Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report

    SciTech Connect

    McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D.

    1997-12-31

    Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

  5. Data Intensive Scientific Workflows on a Federated Cloud: CRADA Final Report

    SciTech Connect

    Garzoglio, Gabriele

    2015-10-31

    The Fermilab Scientific Computing Division and the KISTI Global Science Experimental Data Hub Center have built a prototypical large-scale infrastructure to handle scientific workflows of stakeholders to run on multiple cloud resources. The demonstrations have been in the areas of (a) Data-Intensive Scientific Workflows on Federated Clouds, (b) Interoperability and Federation of Cloud Resources, and (c) Virtual Infrastructure Automation to enable On-Demand Services.

  6. Solar Trough Performance Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-00289

    SciTech Connect

    Gray, A.

    2011-05-01

    New HCEs were installed on the hot sides of the thermal loops at SEGS VIII and IX from mid-2007 to mid-2008. Due to significant increases in plant performance, an interest in a further increase performance by installing new HCEs on the cold portions of the loop developed. Although it was assumed that the plant performance would increase, the exact amount was unknown. The objective of this project was to estimate the performance improvements with new HCEs installed on the cold sides of the loop, with performance being evaluated as potential increases in electrical power production (megawatt-hours). A comparison of performance prior to and post installation of new HCEs on the hot sides of the loops was done. For completeness, an estimate of performance losses - such as the optical efficiency, mirror reflectivity, and optical accuracy - was also included in this analysis. National Renewable Energy Laboratory's (NREL's) HCE Survey System was used to determine if the HCEs were hot or cold.

  7. Design of 3x3 focusing array for heavy ion driver. Final report on CRADA

    SciTech Connect

    Martovetsky, N N

    2005-03-30

    This memo presents a design of a 3 x 3 quadrupole array for HIF. It contains 3 D magnetic field computations of the array build with racetrack coils with and without different shields. It is shown that it is possible to have a low error magnetic field in the cells and shield the stray fields to acceptable levels. The array design seems to be a practical solution to any size array for future multi-beam heavy ion fusion drivers.

  8. Equipment Loan: Cooperative Research and Development Final Report, CRADA Number CRD-07-250

    SciTech Connect

    Stoffel, T.

    2013-08-01

    Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: establish a national 30-year climatological database of measured solar irradiances; provide high quality ground-truth data for satellite remote sensing validation; support development of radiative transfer models for estimating solar irradiance from available meteorological observations; provide solar resource information needed for technology deployment and operations.

  9. Buried Anode Device Development: Cooperative Research and Development Final Report, CRADA Number CRD-11-451

    SciTech Connect

    Tenent, Robert

    2015-03-01

    The possibility of a reflecting electrochromic device is very attractive, and the 'Buried Anode' architecture developed at NREL could yield such a device. The subject of this cooperative agreement will be the development and refinement of a Buried Anode device process. This development will require the active involvement of NREL and US e-Chromic personnel, and will require the use of NREL equipment as much as possible. When this effort is concluded, US e-Chromic will have enough information to construct a pilot production line, where further development can continue.

  10. Optimization of electron-cyclotron-resonance charge-breeder ions : Final CRADA Report.

    SciTech Connect

    Pardo, R.; Physics; Far-Tech, Inc.

    2009-10-09

    Measurements of 1+ beam properties and associated performance of ECR Charge Breeder source determined by total efficiency measurement and charge state distributions from the ECR Charge Breeder. These results were communicated to Far-Tech personnel who used them to benchmark the newly developed programs that model ion capture and charge breeding in the ECR Charge Breeder Source. Providing the basic data described above and in the discussion below to Far-Tech allowed them to improve and refine their calculational tools for ECR ion sources. These new tools will be offered for sale to industry and will also provide important guidance to other research labs developing Charge Breeding ion sources for radioactive beam physics research.

  11. Investigation of the fundamentals of low-energy nanosecond pulse ignition: Final CRADA Report

    SciTech Connect

    Wallner, Thomas; Scarcelli, Riccardo; Zhang, Anqi; Sevik, James; Biruduganti, Munidhar; Bihari, Bipin; Matusik, Katarzyna E.; Duke, Daniel J.; Powell, Christopher F.; Kastengren, Alan L.

    2017-01-01

    A detailed investigation of the fundamentals of low-energy nanosecond pulse ignition was performed with the objective to overcome the barrier presented by limited knowledge and characterization of nonequilibrium plasma ignition for realistic internal combustion engine applications (be it in the automotive or power generation field) and shed light on the mechanisms which improve the performance of the advanced TPS ignition system compared to conventional state-of-the-art hardware. Three main tasks of the research included experimental evaluation on a single-cylinder automotive gasoline engine, experimental evaluation on a single-cylinder stationary natural gas engine and energy quantification using x-ray diagnostics.

  12. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    SciTech Connect

    Krumpelt, M. Gorelov, A. M.

    2004-06-01

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian metallurgical industry) and supplied to the partner for tests in a stack of fuel cells. A feasibility study on the cost of the Russian material for a BSP is to be done on Tasks 1, 2 in case the annual order makes up 400,000 sheets. The goal of Task 3 of the project is to research on possible implementation of cermet compositions on the basis of LiAlO{sub 2}, TiN, B{sub 4}C, ceramics with Ni and Ni-Mo binders. BaCeO{sub 3} conductive ceramics with metal binders of Ni, Ni-Cr etc. were also planned to be studied. As a result of these works, a pilot batch of samples is to be made and passed to FCE for tests. The goal of Task 4 of the Project is development of a new alloy or alloys with a ceramic coating that will have upgraded corrosion stability in operation within a SOFC. A new alloy was to be worked out by the way of modification of compositions of industrial alloys. Ceramic coatings are to be applied onto ferrite steel produced serially by iron and steel industry of Russia as sheet iron.

  13. Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report

    SciTech Connect

    Steinfeld, G; Sanderson, R

    1998-02-01

    The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

  14. Radiometer Evaluation - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-10-00382

    SciTech Connect

    Wilcox, S.

    2013-10-01

    This project will place instrumentation at the NREL Solar Radiation Research Laboratory (SRRL) in cooperation with Yankee Environmental Systems (Participant). One or more Participant instruments will be deployed for the purpose of evaluation under controlled conditions. The scope of the project will be a year-long comparison of the instruments vs. other NREL baseline instruments with awell-characterized history.

  15. Noncomposite Counterelectrode Development: Cooperative Research and Development Final Report, CRADA Number CRD-06-203

    SciTech Connect

    Engtrakul, C.

    2014-06-01

    New counter electrode materials under development at NREL have the potential to positively impact electrochromic window technology. The current generation of nanocomposite materials is designed to provide rapid transport of lithium ions to nanoparticles of anodic coloring materials. They may improve the coloration efficiency of the entire films stack while also improving the speed and depth of coloration. We expect an added benefit of greater film durability. To date, encouraging results have been obtained in the laboratory. Performance and durability tests will be carried out to characterize any improvements obtained as a result of the new counter electrode materials. In addition to process improvement, the project also has the secondary goal of improving the basic understanding of the electrochromic process in Sage?s counter electrode.

  16. University of Pittsburgh and FETC CRADA PC96-004, Final Report

    SciTech Connect

    1999-02-01

    DoE/FETc-99/lo90 Cellular deposition is a dynamic phenomenon that may involve both adhesion and detachment, as in thrombosis and thromboembolism. Current techniques for assessing the blood compatibility of opaque biomaterials are limited to endpoint analysis of cellular deposition. To investigate temporal changes in deposition multiple trials with varying duration are generally required.

  17. Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report

    SciTech Connect

    Castiglioni, Andrew J.; Gelis, Artem V.

    2016-01-01

    This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.

  18. Brandon Research, Inc. Orthopedic Implant Cooperative Research and Development Agreement (CRADA) Final Report

    SciTech Connect

    Freeman, W.R.

    1999-04-22

    The project was a joint research effort between the U. S. Department of Energy's (DOE) Kansas City Plant (KCP) and Brandon Research, Inc. to develop ways to improve implants used for orthopedic surgery for joint replacement. The primary product produced by this study is design information, which may be used to develop implants that will improve long-term fixation and durability in the host bone environment.

  19. Experimental Investigation of Coolant Boiling in a Half-Heated Circular Tube - Final CRADA Report

    SciTech Connect

    Yu, Wenhua; Singh, Dileep; France, David M.

    2016-11-01

    Coolant subcooled boiling in the cylinder head regions of heavy-duty vehicle engines is unavoidable at high thermal loads due to high metal temperatures. However, theoretical, numerical, and experimental studies of coolant subcooled flow boiling under these specific application conditions are generally lacking in the engineering literature. The objective of this project was to provide such much-needed information, including the coolant subcooled flow boiling characteristics and the corresponding heat transfer coefficients, through experimental investigations.

  20. Building-Wide, Adaptive Energy Management Systems for High-Performance Buildings: Final CRADA Report

    SciTech Connect

    Zavala, Victor M.

    2016-10-27

    Development and field demonstration of the minimum ratio policy for occupancy-driven, predictive control of outdoor air ventilation. Technology transfer of Argonne’s methods for occupancy estimation and forecasting and for M&V to BuildingIQ for their deployment. Selection of CO2 sensing as the currently best-available technology for occupancy-driven controls. Accelerated restart capability for the commercial BuildingIQ system using horizon shifting strategies applied to receding horizon optimal control problems. Empirical-based evidence of 30% chilled water energy savings and 22% total HVAC energy savings achievable with the BuildingIQ system operating in the APS Office Building on-site at Argonne.

  1. Ozone/UV treatment to enhance biodegradation of surfactants in industrial wastewater. CRADA final report

    SciTech Connect

    Cline, J.E.; Sullivan, P.F.; Lovejoy, M.A.; Collier, J.; Adams, C.D.

    1996-10-01

    The new owners of a surfactant manufacturing plant wanted to triple production but were limited by the plant`s wastewater treatment capacity. Mass balance calculations indicated that little aerobic biodegradation was occurring in the plant`s wastewater treatment system. Literature reviews and laboratory tests confirmed that as much as 60% of the plant`s products might resist aerobic biodegradation. Overall chemical losses, both solid and aqueous, were estimated at 3.8% of theoretical. Organic loadings to the wastewater treatment system were 170 kg/d of which 50 kg/d reached the biological treatment system. Pollution prevention measures have allowed a > 20% increase in production levels with a > 30% decrease in effluent volume and no increase in discharge of chemical oxygen demand (COD). A new dissolved air flotation (DAF) system removes 70% of the organic loading. Sludge volumes are lower by an order of magnitude than with the clarifier/drum-filter process it replaced.

  2. CRADA Final Report: Tailored Microstructures in Advanced Materials for Information Storage

    SciTech Connect

    Krishnan, Kannan M.

    2002-02-19

    A number of tunnel junctions using aluminum nitride and aluminum oxide as barriers were investigated by cross-sectional TEM using electron energy-loss spectroscopy. Kramer-Kronig analysis resulted in the ability to obtain the complete dielectric spectrum of the 1-2nm thick barrier layer. The goal of the study was to correlate the barrier dielectric properties with the performance of the tunnel junctions. The study was inconclusive.

  3. Algae Biofuels Collaborative Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-371

    SciTech Connect

    French, R. J.

    2012-04-01

    The goal of this project is to advance biofuels research on algal feedstocks and NREL's role in the project is to explore novel liquid extraction methods, gasification and pyrolysis as means to produce fuels from algae. To that end several different extraction methods were evaluated and numerous gasification and pyrolysis conditions were explored. It was found that mild hydrothermal treatment is a promising means to improve the extraction and conversion of lipids from algae over those produced by standard extraction methods. The algae were essentially found to gasify completely at a fairly low temperature of 750 degrees C in the presence of oxygen. Pyrolysis from 300-550 degrees C showed sequential release of phytene hydrocarbons, glycerides, and aromatics as temperature was increased. It appears that this has potential to release the glycerides from the non-fatty acid groups present in the polar lipids to produce a cleaner lipid. Further research is needed to quantify the pyrolysis and gasification yields, analyze the liquids produced and to test strategies for removing organic-nitrogen byproducts produced because of the high protein content of the feed. Possible strategies include use of high-lipid/low-protein algae or the use of catalytic pyrolysis.

  4. CRADA Final Report: Genetic Testing for Evaluation of Heart Disease Risk

    SciTech Connect

    Krauss, Ronald M.

    2002-01-21

    We have examined relationships of common genotypes in candidate genes to variations in plasma lipids, lipoproteins, lipoprotein subfractions, and other parameters related to cardiovascular disease risk in two study cohorts. The first cohort consisted of 395 healthy individuals studied on their usual diets, and again after consumption of high fat (40-46%) and low fat (20-24%) diets. The second cohort consisted of 369 subjects selected for leanness (body mass index < 25 kg/m{sup 2}). For both cohorts, 30 genotypes in 14 genes were examined by PCR using reagents from Roche Molecular Systems. In the diet study cohort, significant associations with various lipoprotein measurements were observed for variants in 9 genes related to lipoprotein metabolism. Some of these associations were significant for the high fat or low fat diet only, andlor for diet-induced lipoprotein changes. In addition some associations were significant in the cohort oflean subjects only. Collectively these preliminary analyses suggest that analysis of these genotypes, together with others that will be added on the basis of new gene discovery, can be of value in delineating gene-diet interactions of importance for cardiovascular disease risk.

  5. Development of a technology strategy for the State of Tennessee. CRADA final report

    SciTech Connect

    Eads, B.G.; Neel, A.W.

    1998-08-01

    The Department of Energy supports and continues to lead in cultivating new initiatives in federal-state partnerships. The resources and capabilities of the DOE facilities should be used to enhance the economic growth of the US and the states have demonstrated expertise and commitment to economic development. DOE seeks to assure that the principal economic benefits of its collaboration with the private sector flow to the US taxpayer. Specifically, under US Code, Title 15, Chapter 53, federal laboratories should provide means of access to scientific and technological developments (Section 3701) and provide technical assistance to state and local government officials (Section 3710). The Department of Economic and Community Development (ECD) has the responsibility in Tennessee to provide the technological vision and leadership required for long-term growth and prosperity for the state in the global marketplace. Through the sponsorship of new and innovative programs in assisting existing industry, fostering endeavors in research and development, and aggressive pursuit of federally-sponsored development programs, ECD seeks to advance the State`s competitive position, enhance the State`s ability to foster new business growth and meet the economic and security needs of the State`s citizens. ECD has found that collaborations with Lockheed Martin Energy Research Corporation, and the DOE operations located in Oak Ridge, Tennessee, significantly benefits the State. ECD has created a senior executive advisory group for the Commissioner and developed plans to establish a high technology office for the State. Energy Research and ECD believe that their common interests and goals create a unique opportunity to demonstrate the commitment to America`s economic leadership. Increased collaboration will be created for developing a technology strategy for Tennessee, employing technological advantages in the State, and advancing the implementation of technology in the private sector.

  6. Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.

    SciTech Connect

    Ehst, D.; Nuclear Engineering Division

    2010-08-04

    It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable for incorporation of a radionuclides.

  7. Racing Radiators Utilizing ORNL’s Graphite Foam. CRADA Final Report, ORNL-98-0551

    SciTech Connect

    Klett, James

    1998-10-10

    The recent development of light-weight foams has led to novel light-weight, high strength carbon based materials and structures. These materials exhibit very high specific strengths and low thermal conductivities. Likewise, the novel development of very high thermal conductivity graphite foam will lead to novel ''out-of-the-box'' solutions for thermal management problems. With a thermal conductivity equivalent to aluminum 6061 and 1/5th the weight, this material is an enabling technology for thermal management problems ranging from heat sinks to radiators and satellite panels to aircraft heat exchangers. In addition, the open porosity will lead to novel designs that ncorporate porous media heat exchangers and phase change materials. For example, by utilizing the foam as a heat exchanger, heat transfer coefficients over two orders of magnitude greater than current metallic designs have been measured. To further demonstrate this phenomenon, a heat exchanger (radiator) for a passenger automobile has been developed that is significantly smaller in size, and testing has demonstrated feasibility to improve the automobiles aerodynamic efficiency and reduce weight.

  8. Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4) Moderate ammonia flux. The advantages of producing acetic acid by fermentation include its appropriateness for small-scale production, lower cost feedstocks, low energy membrane-based purification, and lower temperature and pressure requirements. Potential energy savings of using fermentation are estimated to be approximately 14 trillion Btu by 2020 from a reduction in natural gas use. Decreased transportation needs with regional plants will eliminate approximately 200 million gallons of diesel consumption, for combined savings of 45 trillion Btu. If the fermentation process captures new acetic acid production, savings could include an additional 5 trillion Btu from production and 7 trillion Btu from transportation energy.

  9. Evaluation of Hydrogen Sensors: Cooperative Research and Development Final Report, CRADA Number CRD-14-547

    SciTech Connect

    Buttner, William

    2015-10-01

    In preparation for the projected 2015 release of commercial hydrogen fuel cell vehicles, KPA has been contracted by Toyota Motors to develop a hydrogen safety system for vehicle repair facilities. Repair facility safety designs will include hydrogen sensors. KPA will identify critical sensor specifications for vehicle repair facilities. In collaboration with NREL, KPA will select and purchase commercial hydrogen sensors that meet or nearly meet requirements for deployment in vehicle repair facility. A two-phase field deployment plan to verify sensor performance has been developed.

  10. Production of Ra225 precursor for Ac225/Bi213 generators. Final CRADA Report.

    SciTech Connect

    Ehst, D. A.; Nuclear Engineering Division

    2009-10-02

    Russian subcontractors shipped two small deliveries of Ra225 to PNNL for evaluation. The activity was close to the requisite amount in the subcontract. The first labeled properly; the second did not. This showed that the Russians could supply Ra225 to the US; however they proved unable to meet future demands for larger amounts of activity. The US DOE attempts to get Ra225 from Russian should be terminated; the Russians, under Rosatom, are not interested in this business.

  11. Tosoh SMD, Inc./Production of High-Quality Tantalum: Final CRADA Report

    SciTech Connect

    Ehst, David A.

    2016-10-26

    The objectives of the proposed program are: (1) to produce Ta ingot with very high purity (> 99.99% overall, with ppm-level allowable for specific impurity elements); and (2) to provide requisite grain structure in the ingot with special metallurgical processing. We believe this research and development has a high potential to keep Tosoh competitive as the future continues to demand better performance from sputtering sources. We encourage further R&D activities and are looking forward to continued interaction.

  12. Advanced hardware and software methods for thread and gear dimensional metrology. CRADA final report

    SciTech Connect

    Miller, A.C. Jr.; Grann, E.B.

    1997-03-05

    The Oak Ridge Centers for Manufacturing Technology (ORCMT) and Apeiron Incorporated have collaborated on an effort to develop a frequency modulated continuous wave (FMCW) fiber lidar system for dimensional metrology of internal threads, gears, and splines. The purpose of this effort was to assist a small company in developing an instrument that would exceed the performance of competing foreign instruments and provide measurement capabilities necessary to assure compliance for NASA facilities and other industrial facilities. The two parties collaborated on design, assembly, and bench testing of the prototype instrument. The prototype system was targeted to have the capability of profiling internally machined gears and threads to an accuracy of less than a micron.

  13. Project Liberty: Cooperative Research and Development Final Report, CRADA Number CRD-07-00245

    SciTech Connect

    Wolfrum, E. J.

    2010-08-01

    NREL hosted two teams of POET Project Liberty analysts for week-long biomass compositional analysis (wet chemical analysis) classes (one in 2008, one in 2009). NREL also performed biomass compositional on over 70 samples of corn stover feedstock and pretreated corn stover provided by POET.

  14. Carbon-carbon composites for orthopedic prosthesis and implants. CRADA final report

    SciTech Connect

    Burchell, T D; Klett, J W; Strizak, J P; Baker, C

    1998-01-21

    The prosthetic implant market is extensive. For example, because of arthritic degeneration of hip and knee cartilage and osteoporotic fractures of the hip, over 200,000 total joint replacements (TJRs) are performed in the United States each year. Current TJR devices are typically metallic (stainless steel, cobalt, or titanium alloy) and are fixed in the bone with polymethylacrylate (PMMA) cement. Carbon-carbon composite materials offer several distinct advantages over metals for TJR prosthesis. Their mechanical properties can be tailored to match more closely the mechanical properties of human bone, and the composite may have up to 25% porosity, the size and distribution of which may be controlled through processing. The porous nature of carbon-carbon composites will allow for the ingrowth of bone, achieving biological fixation, and eliminating the need for PMMA cement fixation.

  15. Pulsed DC deposition of near-frictionless carbon. Final CRADA report.

    SciTech Connect

    Fenske, G.; Energy Systems

    2005-06-30

    Near-Frictionless Carbon (NFC) coatings, CemeCon, Inc. arranged for the loan of a Pinnacle Plus pulsed DC power supply with ancillary support equipment and appropriate sputter targets for the deposition of CemeCon's graded Cr-based bond coat. A process engineer from CemeCon AG also came to Argonne to install and operate the new power supply, and work with ANL scientists on process development. By any measure, these results are extremely encouraging. It has now been established that NFC coatings can be deposited in the CemeCon CC800/9sx unit using pulsed DC to generate the plasma, and further that the DLC3000 bond coat technology can be used with PACVD coatings. In terms of process variables, it should be possible to increase the deposition rate by increasing either or both the deposition pressure and/or the pulsed bias voltage without adversely affecting the coating quality. Other structural characterization may be performed on the coatings, including fluctuation microscopy, ultraviolet Raman spectroscopy, and near-edge x-ray absorption fine structure spectroscopy.

  16. Rapid tooling for functional prototyping of metal mold processes. CRADA final report

    SciTech Connect

    Zacharia, T.; Ludtka, G.M.; Bjerke, M.A.; Gray, W.H.

    1997-12-01

    The overall scope of this endeavor was to develop an integrated computer system, running on a network of heterogeneous computers, that would allow the rapid development of tool designs, and then use process models to determine whether the initial tooling would have characteristics which produce the prototype parts. The major thrust of this program for ORNL was the definition of the requirements for the development of the integrated die design system with the functional purpose to link part design, tool design, and component fabrication through a seamless software environment. The principal product would be a system control program that would coordinate the various application programs and implement the data transfer so that any networked workstation would be useable. The overall system control architecture was to be required to easily facilitate any changes, upgrades, or replacements of the model from either the manufacturing end or the design criteria standpoint. The initial design of such a program is described in the section labeled ``Control Program Design``. A critical aspect of this research was the design of the system flow chart showing the exact system components and the data to be transferred. All of the major system components would have been configured to ensure data file compatibility and transferability across the Internet. The intent was to use commercially available packages to model the various manufacturing processes for creating the die and die inserts in addition to modeling the processes for which these parts were to be used. In order to meet all of these requirements, investigative research was conducted to determine the system flow features and software components within the various organizations contributing to this project. This research is summarized.

  17. University of Arkansas Pine Bluff. Final report/project accomplishments summary, CRADA Number 95-KCPP-004

    SciTech Connect

    Lane, M.A.

    1997-03-01

    The purpose of this project was to help develop and transfer technologies to improve the production of the catfish segment of American aquaculture. This project was organized to leverage two DOE programs, DOE Historical Black Colleges and Universities (HBCU) funds and Defense Program Technology Transfer Initiative. The emphasis was to be directed toward utilizing engineering and manufacturing capabilities to develop solutions to the industry problems through the technology transfer program. The project scope included the following: (1) review the technical needs of the aquaculture industry in the state of Arkansas; (2) match the technical capabilities of FM and T with the needs of the industry; (3) form joint projects between FM and T and UAPB. Four areas of immediate interest were identified: (1) dissolved oxygen sensor system improvements; (2) alternatives to seining; (3) fish inventory and sizing; (4) improved off-flavor detection. In the first project a technical literature search was conducted by UAPB with consultation from FM and T. It was determined that commercial dissolved oxygen sensor equipment is available that could be used to upgrade the monitoring for aquaculture use. Initial results of the Alternatives to Seining project concluded that either acoustic or electric field technology can be used to herd the fish as the traditional seine does. The balance of the project was canceled when project funding at UAPB was canceled.

  18. Liquid Organic Battery Development: Cooperative Research and Development Final Report, CRADA Number CRD-14-540

    SciTech Connect

    Santhanagopalan, Shriram

    2016-08-01

    Battery electric vehicles (BEV) have the potential to significantly reduce consumption of gasoline and emission of greenhouse gases. However, the commercial success of mass-market, long-range BEVs requires battery technology with a challenging combination of technical metrics -- specific energy, safety, fast recharge capability, cycle life, and cost. The NREL team proposes a robust, liquid-phase battery design utilizing a high-energy organic redox couple capable of decoupling these metrics via electrode exchange to provide the necessary combination of performance characteristics. The overall objective of this project is to demonstrate a functioning prototype and determine its ability to meet RANGE performance targets in large-scale production. Three main tasks described below will work towards this goal with the individual objectives of (1) identifying a robust, high-performance redox couple-solvent-additive combination, (2) designing and demonstrating a functional cell, and (3) analyzing the concept's potential performance and cost in future mass-production scenarios.

  19. Fine coal fractionation using a magnetohydrostatic separation process CRADA 91-003. Final report

    SciTech Connect

    Cho, Heechan; Killmeyer, R. P.

    1992-10-31

    The magnetohydrostatic separation (MHS) process uses a magnetic fluid which has the ability to float a submerged particle in a magnetic field. The objective of this project was to develop a technique for laboratory gravity fractionation of coal using MHS.

  20. Fusion welding of advanced borated stainless steels. Final report: CRADA No. CR1042

    SciTech Connect

    Robino, C.V.; Cieslak, M.J.

    1994-02-01

    This work addressed two major areas concerning joining of advanced borated stainless steels. These areas included the development of a understanding of the physical metallurgy of borated stainless steels and the development of welding processes and post-weld heat treatments for these alloys. Differential thermal analysis experiments were conducted on ten heats of borated stainless steel to determine the transformation temperatures and melting behavior of the alloys. On-heating solidus temperatures were measured for all of the alloys and were used to define the temperatures associated with the fusion line during welding. Isothermal heat treatments designed to evaluate the effects of elevated temperature exposures on the toughness of the borated grades were conducted. These tests were used to determine if significant changes in the microstructure or mechanical properties of weld heat-affected zones (HAZ) occur. Specifically, the tests addressed the solid-state region of the HAZ. The test matrix included a variety of alloy compositions and thermal exposures at temperatures near the on-heating solidus (as determined by the DTA experiments). Welding experiments designed to assess the mechanical properties and microstructure of gas-tungsten arc and electron beam welds were conducted.

  1. Nondestructive testing of ceramic engine components. Final progress report for completed CRADAs

    SciTech Connect

    Ellingson, W.A.; Happoldt, G.P.

    1993-07-15

    This report describes a method for the nondestructive testing of ZrO{sub 2} plasma-sprayed layers with intentional disbonds. A theoretical analysis was conducted to determine the surface-temperature difference for each disbond using a given input heat pulse.

  2. West Virginia Diesel Study, CRADA MC96-034, Final Report

    SciTech Connect

    M. Gautam

    1998-08-05

    The global objective of the recently completed Phase 1 of the West Virginia Diesel Study, at West Virginia University, was to evaluate mass emission rates of exhaust emissions from diesel powered equipment specified by the West Virginia Diesel Equipment Commission. The experimental data generated in this study has been utilized by the West Virginia Diesel Equipment Commission to promulgate initial rules, requirements and standards governing the operation of diesel equipment in underground coal mines.

  3. Winnebago Resource Study. Cooperative Research and Development Final Report, CRADA Number CRD-09-329

    SciTech Connect

    Jimenez, A.; Robichaud, R.

    2015-03-01

    Since 2005 the NREL Native American Tall Tower Loan program has assisted Native American tribes to assess their wind resource by lending tall (30m - 50m) anemometer. This program has allowed tribes a lower risk way to gather financeable wind data for potential utility scale wind energy projects. These projects offer Tribes a significant economic development opportunity.

  4. Feasibility of correlating V-Cr-Ti alloy weld strength with weld chemistry. CRADA final report

    SciTech Connect

    Grossbeck, M.L.; Odom, R.W.

    1998-06-01

    The mechanical properties of refractory metals such as vanadium are determined to a large extent by the interstitial impurities in the alloy. In the case of welding, interstitial impurities are introduced in the welding process from the atmosphere and by dissolution of existing precipitates in the alloy itself. Because of the necessity of having an ultra-pure atmosphere, a vacuum chamber or a glove box is necessary. In the V-Cr-Ti system, the titanium serves as a getter to control the concentration of oxygen and nitrogen in solid solution in the alloy. In this project the secondary ion mass spectrometry (SIMS) technique was used to detect, measure, and map the spacial distribution of impurity elements in welds in the alloy V-4Cr-4Ti. An attempt was then made to correlate the concentrations and distributions of the impurities with mechanical properties of the welds. Mechanical integrity of the welds was determined by Charpy V-notch testing. Welds were prepared by the gas-tungsten-arc (GTA) method. Charpy testing established a correlation between weld impurity concentration and the ductile to brittle transition temperature (DBTT). Higher concentrations of oxygen resulted in a higher DBTT. An exception was noted in the case of a low-oxygen weld which had a high hydrogen concentration resulting in a brittle weld. The concentrations and distributions of the impurities determined by SIMS could not be correlated with the mechanical properties of the welds. This research supports efforts to develop fusion reactor first wall and blanket structural materials.

  5. A Study of the Electromedics Autotransfusion System, CRADA PC93-010, Final Report

    SciTech Connect

    Franklin Shaffer; Mehrdad Shahnam

    1995-03-31

    This report describes the work at PETC to evaluate flow dynamics in the Electromedics autotransfusion system. First, a literature survey was conducted for flow studies in centrifuge systems. Although no flow studies were identified for Latham-type bowls, pertinent literature for general centrifugal separation was found and reviewed. Sample measurements were taken with a Laser Doppler Velocimetry (LDV). The data indicates that LDV is a useful tool in flow analysis. Velocity, turbulence intensity, and bowl vibration are all accurately measured with LDV. For optical imaging of particle separation it is necessary to use fluorescent doped particles and color separation. This allows each type of particle to be observed in a mixture. A market survey was completed and sources for fluorescent dyed particles of three different emission wavelengths and corresponding optical bandpass filters were identified.

  6. CRADA Final Report: Identification of New Therapies with Potential for Treatment of Breast Cancer

    SciTech Connect

    Bissell, Mina J.

    2002-10-21

    This project represents a collaboration between two research groups at Lawrence Berkeley National Laboratory (LBNL) and the research facility at the Chiron corporation, in which each group supplied unique and essential contributions. Mina Bissell, at LBNL, provided the resources and expertise of her research group in a physiologically relevant culture system with particular utility for investigating the development of breast cancer. Chiron Corporation, of Emeryville, California, generated high-quality cDNA microarrays, hybridized cDNA prepared from cultures and cell lines developed in the Bissell laboratory, and performed preliminary analysis of the resultant dataset. Saira Mian, at LBNL, used sophisticated statistical and Bayesian techniques for analysis of the enormously complex dataset to reveal key genes involved in signaling pathways responsible for development of breast cancer. These results have indicated separate and distinct groups of genes associated only with the nonmalignant cells, with the malignant cells, and the reverted cells. Currently, the project team is involved in data verification, to be followed by testing selected genes for utility as potential tumor suppressors. However, the results already obtained were so striking that a disclosure has been filed on 367 of the selected genes for potential use in therapy.

  7. BioCapacitor--a novel category of biosensor.

    PubMed

    Hanashi, Takuya; Yamazaki, Tomohiko; Tsugawa, Wakako; Ferri, Stefano; Nakayama, Daisuke; Tomiyama, Masamitsu; Ikebukuro, Kazunori; Sode, Koji

    2009-03-15

    This research reports on the development of an innovative biosensor, known as BioCapacitor, in which biological recognition elements are combined with a capacitor functioning as the transducer. The analytical procedure of the BioCapacitor is based on the following principle: a biocatalyst, acting as a biological recognition element, oxidizes or reduces the analyte to generate electric power, which is then charged into a capacitor via a charge pump circuit (switched capacitor regulator) until the capacitors attains full capacity. Since the charging rate of the capacitor depends on the biocatalytic reaction of the analyte, the analyte concentration can be determined by monitoring the time/frequency required for the charge/discharge cycle of the BioCapacitor via a charge pump circuit. As a representative model, we constructed a BioCapacitor composed of FAD-dependent glucose dehydrogenase (FADGDH) as the anodic catalyst, and attempted a glucose measurement. Charge/discharge frequency of the BioCapacitor increased with the increasing glucose concentration, exhibiting good correlation with glucose concentration. We have also constructed a wireless sensing system using the BioCapacitor combined with an infrared light emitting diode (IRLED), an IR phototransistor system. In the presence of glucose, the IRLED signal was observed due to the discharge of the BioCapacitor and detected by an IR phototransistor in a wireless receiver. Therefore, a BioCapacitor employing FADGDH as its anodic catalyst can be operated as a self-powered enzyme sensor.

  8. Theoretical and experimental investigation of optimal capacitor charging process in RC circuit

    NASA Astrophysics Data System (ADS)

    Xia, Shaojun; Chen, Lingen

    2017-05-01

    The problem of optimal capacitor charging in a RC circuit is investigated using finite-time thermodynamics (FTT). Both the resistor and the capacitor are assumed to be nonlinear, and the optimal time paths of source voltage for the minimum charging time and the minimum Joule heat dissipation are obtained by using optimal control theory, respectively. The optimal time path of source voltage is also compared with the classical strategies of constant source voltage and linear source voltage operations. The results show that the optimal time path of source voltage for the minimum charging time consists of the initial and final instantaneous voltage change and the middle maximum admissable constant-voltage branches, which is independent of the nonlinear characteristics of both the resistor and the capacitor; when the ratio of the time constant of the circuit to the charging time is relatively smaller, the charging strategy of linear electric-source voltage is much closer to the optimal time path of the source voltage of the minimum Joule heat dissipation, while, when the ratio of the time constant of the circuit to the charging time is relatively larger, the charging strategy of constant source voltage is much closer to the optimal time path of source voltage of the minimum Joule heat dissipation; when the resistance is constant, the voltage difference between the source and the capacitor for the minimum Joule heat dissipation of the process is always a constant whether the capacitor is linear or nonlinear, and this conclusion is also valid for the case with the current law of "function of difference". An experiment of capacitor charging processes in the RC circuit is performed finally, and the results show that real voltage profiles of the resistor for different charging strategies are consistent with the corresponding results of theoretical analysis.

  9. Negative capacitance in a ferroelectric capacitor.

    PubMed

    Khan, Asif Islam; Chatterjee, Korok; Wang, Brian; Drapcho, Steven; You, Long; Serrao, Claudy; Bakaul, Saidur Rahman; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2015-02-01

    The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny. Negative capacitance in ferroelectric materials, which stems from the stored energy of a phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive. Here, we report the observation of negative capacitance in a thin, epitaxial ferroelectric film. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time--in exactly the opposite direction to which voltage for a regular capacitor should change. Analysis of this 'inductance'-like behaviour from a capacitor presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material and could pave the way for completely new applications.

  10. Cylindrical Asymmetrical Capacitor Devices for Space Applications

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor)

    2004-01-01

    An asymmetrical capacitor system is provided which creates a thrust force. The system is adapted for use in space applications and includes a capacitor device provided with a first conductive element and a second conductive element axially spaced from the first conductive element and of smaller axial extent. A shroud supplied with gas surrounds the capacitor device. The second conductive element can be a wire ring or mesh mounted on dielectric support posts affixed to a dielectric member which separates the conductive elements or a wire or mesh annulus surrounding a barrel-shaped dielectric member on which the h t element is also mounted. A high voltage source is connected across the conductive elements and applies a high voltage to the conductive elements of sufficient value to create a thrust force on the system inducing movement thereof.

  11. Downhole transmission system comprising a coaxial capacitor

    SciTech Connect

    Hall, David R; Pixton, David S; Johnson, Monte L; Bartholomew, David B; Hall, Jr., H. Tracy; Rawle, Michael

    2011-05-24

    A transmission system in a downhole component comprises a plurality of data transmission elements. A coaxial cable having an inner conductor and an outer conductor is disposed within a passage in the downhole component such that at least one capacitor is disposed in the passage and having a first terminal coupled to the inner conductor and a second terminal coupled to the outer conductor. Preferably the transmission element comprises an electrically conducting coil. Preferably, within the passage a connector is adapted to electrically connect the inner conductor of the coaxial cable and the lead wire. The coaxial capacitor may be disposed between and in electrically communication with the connector and the passage. In another embodiment a connector is adapted to electrical connect a first and a second portion of the inner conductor of the coaxial cable and a coaxial capacitor is in electrical communication with the connector and the passage.

  12. High-current, high-frequency capacitors

    NASA Astrophysics Data System (ADS)

    Renz, D. D.

    1983-06-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  13. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  14. Large capacitor performs as a distributed parameter pulse line

    NASA Technical Reports Server (NTRS)

    Gooding, T. J.

    1966-01-01

    Capacitor of extended foil construction performs as a distributed parameter pulse line in which current, amplitude, and period are readily controlled. The capacitor is used as the energy storage element in a pulsed plasma accelerator.

  15. A Reliability Model for Ni-BaTiO3-Based (BME) Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, Donhang

    2014-01-01

    two identified failure modes follow different acceleration functions. Catastrophic failures follow the traditional power-law relationship to the applied voltage. Slow degradation failures fit well to an exponential law relationship to the applied electrical field. Finally, the impact of capacitor structure on the reliability of BME capacitors is discussed with respect to the number of dielectric layers in an MLCC unit, the number of BaTiO3 grains per dielectric layer, and the chip size of the capacitor device.

  16. High-performance planar nanoscale dielectric capacitors

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Ciraci, S.

    2015-05-01

    We propose a model for planar nanoscale dielectric capacitors consisting of a single layer, insulating hexagonal boron nitride (BN) stripe placed between two metallic graphene stripes, all forming commensurately a single atomic plane. First-principles density functional calculations on these nanoscale capacitors for different levels of charging and different widths of graphene-BN stripes mark high gravimetric capacitance values, which are comparable to those of supercapacitors made from other carbon-based materials. Present nanocapacitor models allow the fabrication of series, parallel, and mixed combinations which offer potential applications in two-dimensional flexible nanoelectronics, energy storage, and heat-pressure sensing systems.

  17. Electron waiting times for the mesoscopic capacitor

    NASA Astrophysics Data System (ADS)

    Hofer, Patrick P.; Dasenbrook, David; Flindt, Christian

    2016-08-01

    We evaluate the distribution of waiting times between electrons emitted by a driven mesoscopic capacitor. Based on a wave packet approach we obtain analytic expressions for the electronic waiting time distribution and the joint distribution of subsequent waiting times. These semi-classical results are compared to a full quantum treatment based on Floquet scattering theory and good agreement is found in the appropriate parameter ranges. Our results provide an intuitive picture of the electronic emissions from the driven mesoscopic capacitor and may be tested in future experiments.

  18. Internal fuse modules for solid tantalum capacitors

    NASA Technical Reports Server (NTRS)

    Dematos, H. V.

    1981-01-01

    Miniature fuse modules were designed for and incorporated into two styles of solid tantalum capacitors. One is an epoxy molded, radial leaded, high frequency decoupling capacitor; the other is an hermetically sealed device with axial lead wires. The fusible element for both devices consists of a fine bimetallic wire which reacts exothermically upon reaching a critical temperature and then disintegrates. The desirability of having fused devices is discussed and design constraints, in particular those which minimize inductance and series resistance while optimizing fuse actuation characteristics, are reviewed. Factors affecting the amount of energy required to actuate the fuse and reliability of acuation are identified.

  19. Electrodynamic thermal breakdown of a capacitor insulator

    NASA Astrophysics Data System (ADS)

    Emel'Yanov, O. A.

    2011-11-01

    A mechanism of the electrical breakdown is proposed for modern metal-field capacitors with the well-known property of self-healing of the breakdown strength. Upon an increase in the working voltage, the self-healing time increases to tens of microseconds, and the heating of adjacent insulator layers becomes significant. The propagating thermally activated conduction wave facilitates the enhancement of the electric field up to breakdown values. Analysis of the dynamics of electric field increase is carried out for capacitors based on polyethylene terephthalate (PET) dielectric.

  20. The Application of Perfluorocarbons as Impregnants for Plastic Film Capacitors

    NASA Technical Reports Server (NTRS)

    Mauldin, G. H.

    1981-01-01

    A liquid impregnated, plastic film (wet) capacitor was developed that is thought to be the most reliable and space efficient capacitor of any type ever produced for high voltage, pulse discharge service. The initial design stores five times the energy of a premium quality dry capacitor of equivalent energy and reliability. The technology, as well as a production capacitor design using this technology are described.

  1. Method of making dielectric capacitors with increased dielectric breakdown strength

    DOEpatents

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    2017-05-09

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  2. Building Diagnostic Market Deployment - Final Report

    SciTech Connect

    Katipamula, S.; Gayeski, N.

    2012-04-30

    provided validation data sets and the WBE software tool to validate the KGS implementation. OAE diagnostician automatically detects and diagnoses problems with outdoor air ventilation and economizer operation for air handling units (AHUs) in commercial buildings using data available from building automation systems (BASs). As part of this CRADA, PNNL developed implementation documentation and provided technical support to KGS to implement the tool into their software suite. PNNL also provided validation data sets and the OAE software tool to validate the KGS implementation. Finally, as part of this CRADA project, PNNL developed new processes to automate parts of the re-tuning process and transfer those process to KGS for integration into their software product. The transfer of DOE-funded technologies will transform the commercial buildings sector by making buildings more energy efficient and also reducing the carbon footprint from the buildings. As part of the CRADA with PNNL, KGS implemented the whole building energy diagnostician, a portion of outdoor air economizer diagnostician and a number of measures that automate the identification of re-tuning measures.

  3. Dynamics of a Liquid Dielectric Attracted by a Cylindrical Capacitor

    ERIC Educational Resources Information Center

    Nardi, Rafael; Lemos, Nivaldo A.

    2007-01-01

    The dynamics of a liquid dielectric attracted by a vertical cylindrical capacitor are studied. Contrary to what might be expected from the standard calculation of the force exerted by the capacitor, the motion of the dielectric is different depending on whether the charge or the voltage of the capacitor is held constant. The problem turns out to…

  4. Iodine encapsulation in CNTs and its application for electrochemical capacitor

    SciTech Connect

    Taniguchi, Y.; Ishii, Y.; Al-zubaidi, A.; Kawasaki, S.; Rashid, M.; Syakirin, A.

    2016-07-06

    We report the experimental results for new type electrochemical capacitor using iodine redox reaction in single-walled carbon nanotubes (SWCNTs). It was found that the energy density of the present redox capacitor using SWCNTs is almost three times larger than that of the normal electric double layer capacitor.

  5. Two Theorems on Dissipative Energy Losses in Capacitor Systems

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2005-01-01

    This article examines energy losses in charge motion in two capacitor systems. In the first charge is transferred from a charged capacitor to an uncharged one through a resistor. In the second a battery charges an originally uncharged capacitor through a resistance. Analysis leads to two surprising general theorems. In the first case the fraction…

  6. Two Theorems on Dissipative Energy Losses in Capacitor Systems

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2005-01-01

    This article examines energy losses in charge motion in two capacitor systems. In the first charge is transferred from a charged capacitor to an uncharged one through a resistor. In the second a battery charges an originally uncharged capacitor through a resistance. Analysis leads to two surprising general theorems. In the first case the fraction…

  7. Dynamics of a Liquid Dielectric Attracted by a Cylindrical Capacitor

    ERIC Educational Resources Information Center

    Nardi, Rafael; Lemos, Nivaldo A.

    2007-01-01

    The dynamics of a liquid dielectric attracted by a vertical cylindrical capacitor are studied. Contrary to what might be expected from the standard calculation of the force exerted by the capacitor, the motion of the dielectric is different depending on whether the charge or the voltage of the capacitor is held constant. The problem turns out to…

  8. Circular plate capacitor with different discs

    NASA Astrophysics Data System (ADS)

    Paffuti, Giampiero; Cataldo, Enrico; Di Lieto, Alberto; Maccarrone, Francesco

    2016-10-01

    In this paper, we write a system of integral equations for a capacitor composed of two discs of different radii, generalizing Love's equation for equal discs. We compute the complete asymptotic form of the capacitance matrix for both large and small distances obtaining a generalization of Kirchhoff's formula for the latter case.

  9. Capacitor discharge process for welding braided cable

    DOEpatents

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  10. Extended foil capacitor with radially spoked electrodes

    DOEpatents

    Foster, James C.

    1990-01-01

    An extended foil capacitor has a conductive disk electrically connected in oncrushing contact to the extended foil. A conductive paste is placed through spaces between radial spokes on the disk to electrically and mechanically connect the extended foil to the disk.

  11. Scintillation Breakdowns in Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Scintillations in solid tantalum capacitors are momentarily local breakdowns terminated by a self-healing or conversion to a high-resistive state of the manganese oxide cathode. This conversion effectively caps the defective area of the tantalum pentoxide dielectric and prevents short-circuit failures. Typically, this type of breakdown has no immediate catastrophic consequences and is often considered as nuisance rather than a failure. Scintillation breakdowns likely do not affect failures of parts under surge current conditions, and so-called "proofing" of tantalum chip capacitors, which is a controllable exposure of the part after soldering to voltages slightly higher than the operating voltage to verify that possible scintillations are self-healed, has been shown to improve the quality of the parts. However, no in-depth studies of the effect of scintillations on reliability of tantalum capacitors have been performed so far. KEMET is using scintillation breakdown testing as a tool for assessing process improvements and to compare quality of different manufacturing lots. Nevertheless, the relationship between failures and scintillation breakdowns is not clear, and this test is not considered as suitable for lot acceptance testing. In this work, scintillation breakdowns in different military-graded and commercial tantalum capacitors were characterized and related to the rated voltages and to life test failures. A model for assessment of times to failure, based on distributions of breakdown voltages, and accelerating factors of life testing are discussed.

  12. Coaxial capacitor used to determine fluid density

    NASA Technical Reports Server (NTRS)

    Atkisson, E. A.

    1965-01-01

    Sensing device measures directly the density of compressible fluid existing simultaneously in both liquid and gaseous phases. The device is comprised of a capacitor connected as one leg of a bridge circuit, a power source, and an indicator calibrated to indicate density as a direct measurement.

  13. Charge and Energy Stored in a Capacitor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    Using a data-acquisition system, the charge and energy stored in a capacitor are measured and displayed during the charging/discharging process. The experiment is usable as a laboratory work and/or a lecture demonstration. (Contains 3 figures.)

  14. Equal Plate Charges on Series Capacitors?

    ERIC Educational Resources Information Center

    Illman, B. L.; Carlson, G. T.

    1994-01-01

    Provides a line of reasoning in support of the contention that the equal charge proposition is at best an approximation. Shows how the assumption of equal plate charge on capacitors in series contradicts the conservative nature of the electric field. (ZWH)

  15. Polarization fatigue of organic ferroelectric capacitors

    PubMed Central

    Zhao, Dong; Katsouras, Ilias; Li, Mengyuan; Asadi, Kamal; Tsurumi, Junto; Glasser, Gunnar; Takeya, Jun; Blom, Paul W. M.; de Leeuw, Dago M.

    2014-01-01

    The polarization of the ferroelectric polymer P(VDF-TrFE) decreases upon prolonged cycling. Understanding of this fatigue behavior is of great technological importance for the implementation of P(VDF-TrFE) in random-access memories. However, the origin of fatigue is still ambiguous. Here we investigate fatigue in thin-film capacitors by systematically varying the frequency and amplitude of the driving waveform. We show that the fatigue is due to delamination of the top electrode. The origin is accumulation of gases, expelled from the capacitor, under the impermeable top electrode. The gases are formed by electron-induced phase decomposition of P(VDF-TrFE), similar as reported for inorganic ferroelectric materials. When the gas barrier is removed and the waveform is adapted, a fatigue-free ferroelectric capacitor based on P(VDF-TrFE) is realized. The capacitor can be cycled for more than 108 times, approaching the programming cycle endurance of its inorganic ferroelectric counterparts. PMID:24861542

  16. High-energy-density cylindrical capacitors

    NASA Technical Reports Server (NTRS)

    Parker, R. D.; Zelik, J. A.

    1979-01-01

    Manufacturing technique produces high quality metalized-film cylindrical capacitors of energy density greater than 0.1 J/g uncased, using either 24-gage polyvinylidene flouride or 14-gage polycarbonate film. Components are wound wrinkle-free on hollow PTFE cores, using winding machine that applies constant dynamically controlled tension to film during winding operation.

  17. Charge and Energy Stored in a Capacitor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    Using a data-acquisition system, the charge and energy stored in a capacitor are measured and displayed during the charging/discharging process. The experiment is usable as a laboratory work and/or a lecture demonstration. (Contains 3 figures.)

  18. Equal Plate Charges on Series Capacitors?

    ERIC Educational Resources Information Center

    Illman, B. L.; Carlson, G. T.

    1994-01-01

    Provides a line of reasoning in support of the contention that the equal charge proposition is at best an approximation. Shows how the assumption of equal plate charge on capacitors in series contradicts the conservative nature of the electric field. (ZWH)

  19. Capacitors and Resistance-Capacitance Networks.

    ERIC Educational Resources Information Center

    Balabanian, Norman; Root, Augustin A.

    This programed textbook was developed under a contract with the United States Office of Education as Number 5 in a series of materials for use in an electrical engineering sequence. It is divided into three parts--(1) capacitors, (2) voltage-current relationships, and (3) simple resistance-capacitance networks. (DH)

  20. Charging a Capacitor with a Photovoltaic Module

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco; Navarro, Luis Barba

    2017-01-01

    Charging a capacitor with a photovoltaic module is an experiment which reveals a lot about the modules characteristics. It is customary to represent these characteristics with an equivalent circuit whose elements represent its physical parameters. The behavior of a photovoltaic module is very similar to that of a single cell but the electric…

  1. Pseudo-capacitor device for aqueous electrolytes

    DOEpatents

    Prakash, Jai; Thackeray, Michael M.; Dees, Dennis W.; Vissers, Donald R.; Myles, Kevin M.

    1998-01-01

    A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A.sub.2 ›B.sub.2-x Pb.sub.x !O.sub.7-y, where A=Pb, Bi, and B=Ru, Ir, and Ocapacitor. The amount of expensive ruthenate and iridium can be substantially reduced in the pseudo-capacitor by increasing the lead content while improving energy storage capacity.

  2. Pseudo-capacitor device for aqueous electrolytes

    DOEpatents

    Prakash, J.; Thackeray, M.M.; Dees, D.W.; Vissers, D.R.; Myles, K.M.

    1998-11-24

    A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A{sub 2}[B{sub 2{minus}x}Pb{sub x}]O{sub 7{minus}y}, where A=Pb, Bi, and B=Ru, Ir, and Ocapacitor. The amount of expensive ruthenate and iridium can be substantially reduced in the pseudo-capacitor by increasing the lead content while improving energy storage capacity. 8 figs.

  3. Solar Resource Measurements in El Paso, Texas (Equipment CRADA Only): Cooperative Research and Development Final Report, CRADA Number CRD-08-273

    SciTech Connect

    Andreas, A.

    2013-11-01

    Site-specific, long-term, continuous, and high-resolution measurements of solar irradiance are important for developing renewable resource data. These data are used for several research and development activities consistent with the NREL mission: establish a national 30-year climatological database of measured solar irradiances; provide high quality ground-truth data for satellite remote sensing validation; support development of radiative transfer models for estimating solar irradiance from available meteorological observations; provide solar resource information needed for technology deployment and operations.

  4. Computational studies of carbon-onions for electrochemical capacitor applications

    NASA Astrophysics Data System (ADS)

    Ganesh, P.; Kent, P. R. C.; Mochalin, V.; Vlcek, Lukas; van Duin, Adri

    2012-02-01

    Supercapacitors bridge the gap between conventional batteries and electrolytic capacitors. Recently, onion-like carbon structures have [1] shown to have capacitances four orders of magnitude higher and energies an order of magnitude higher than conventional capacitors, making them the fastest growing competitors for energy storage. We study the formation of carbon-onions from nanodiamonds using reactive force-fields [2]. Our study suggests that the temperature and mechanical stability as well as the final-equilibrium structure are strongly dependent on the inclusion of long-range forces. We are currently developing reactive-force fields to allow mesoscopic modeling of reactions of carbon nanostructures with aqueous electrolytes. Progress along these lines will also be presented. This material is based upon work supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.[4pt] [1] D. Pech et. al, Nature Nanotechnology 5, 651 (2010)[0pt] [2] Adri C. T. van Duin et.al, J. Phys. Chem. A 105, 9396 (2001)

  5. 2017 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2017-01-01

    This presentation gives an overview of current NEPP tasks on ceramic and tantalum capacitors and plans for the future. It includes tasks on leakage currents, gas generation and case deformation in wet tantalum capacitors; ESR degradation and acceleration factors in MnO2 and polymer cathode capacitors. Preliminary results on the effect of moisture on degradation of reverse currents in MnO2 tantalum capacitors are discussed. Latest results on mechanical characteristics of MLCCs and modeling of degradation of leakage currents in BME capacitors with defects are also presented.

  6. Distribution series capacitor with high-energy varistor protection

    SciTech Connect

    Morgan, L. ); Barcus, J.M. ); Ihara, S. . Power Systems Engineering Dept.)

    1993-07-01

    Several series capacitor banks of a new design have been successfully applied to Duke Power Company's distribution feeders. The capacitive reactance of the series capacitor effectively cancels the system reactance and substantially reduces the voltage flicker caused by starting motors. The series capacitor is protected by a high-energy varistor, which limits the capacitor voltage during a feeder fault. The action of the varistor also limits the magnitude of the feeder fault current. This paper describes the desirable characteristics of the new distribution series capacitor arrangement and operating experiences on the Duke Power system.

  7. Single-poly EEPROM cell with lightly doped MOS capacitors

    DOEpatents

    Riekels, James E.; Lucking, Thomas B.; Larsen, Bradley J.; Gardner, Gary R.

    2008-05-27

    An Electrically Erasable Programmable Read Only Memory (EEPROM) memory cell and a method of operation are disclosed for creating an EEPROM memory cell in a standard CMOS process. A single polysilicon layer is used in combination with lightly doped MOS capacitors. The lightly doped capacitors employed in the EEPROM memory cell can be asymmetrical in design. Asymmetrical capacitors reduce area. Further capacitance variation caused by inversion can also be reduced by using multiple control capacitors. In addition, the use of multiple tunneling capacitors provides the benefit of customized tunneling paths.

  8. Rep rated long life capacitor development: Phase 1 and 2

    NASA Astrophysics Data System (ADS)

    Galperin, I.; White, W.; Haskell, K.; Ennis, J.

    1984-09-01

    Polypropylene and polyolefin resins were characterized and processed into capacitor films. New capacitor films were developed--a post oriented processed, two layer polypropylene film and upgraded polyolefin film. Criteria for judging film quality were developed. Field life data were verified with paper/polypropylene capacitors on the Maxwell rep rate facility. A11 polypropylene film capacitors were developed with lifetimes in excess of 10 to the 7th power discharges at energy densities for the finished capacitor of 18.3 J/lb and projected to more than 20 J/lb.

  9. Licensing and {open_quotes}CRADA`s{close_quotes} in Oak Ridge technology transfer

    SciTech Connect

    Prosser, G.A.

    1993-10-01

    In the belief that effective technology transfer is a ``contact sport,`` Martin Marietta Energy Systems (Energy Systems), the Department of Energy`s (DOE`s) management contractor in Oak Ridge, Tennessee, encourages its research and engineering employees to directly interact with their commercial-sector counterparts. Over the years, relationships which have been initiated through such technical interactions have led to many of the patent licenses ad cooperative research and development agreements (CRADAs) which currently exist among Energy Systems, US companies, universities, and industrial consortia. The responsibility for creating and implementing Energy Systems policies and procedures to accomplish DOE`s technology transfer objectives in Oak Ridge lies with the Office of Technology Transfer (OTT). In addition, licensing executives within OTT are responsible for negotiating the terms and conditions of patent licenses and CRADAs for the commercialization of government-funded technologies and research expertise. Other technology transfer initiatives in Oak Ridge help companies in a wide range of industries overcome manufacturing obstacles, enabling them to retain existing jobs and to create new business opportunities.

  10. Improved fabrication of electrolytic capacitors

    NASA Technical Reports Server (NTRS)

    Gamari, F. J.; Moresi, J. L.

    1975-01-01

    After processing parts for assembly, insulative cup is fitted to bottom of can, then electrolytic solution consisting of white sulfuric acid gel is inserted into can. Pellet is put in can and is fitted tightly into cup. Finally, bead weld is formed between can and header plug.

  11. Humidity Testing of PME and BME Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.; Herzberger, Jaemi

    2014-01-01

    Cracks in ceramic capacitors are one of the major causes of failures during operation of electronic systems. Humidity testing has been successfully used for many years to verify the absence of cracks and assure quality of military grade capacitors. Traditionally, only precious metal electrode (PME) capacitors were used in high reliability applications and the existing requirements for humidity testing were developed for this type of parts. With the advance of base metal electrode (BME) capacitors, there is a need for assessment of the applicability of the existing techniques for the new technology capacitors. In this work, variety of different PME and BME capacitors with introduced cracks were tested in humid environments at different voltages and temperatures. Analysis of the test results indicates differences in the behavior and failure mechanisms for BME and PME capacitors and the need for different testing conditions.

  12. Entropy characterisation of overstressed capacitors for lifetime prediction

    NASA Astrophysics Data System (ADS)

    Cuadras, Angel; Romero, Ramon; Ovejas, Victoria J.

    2016-12-01

    We propose a method to monitor the ageing and damage of capacitors based on their irreversible entropy generation rate. We overstressed several electrolytic capacitors in the range of 33 μF-100 μF and monitored their entropy generation rate S˙ (t). We found a strong relationship between capacitor degradation and S˙ (t). Therefore, we proposed a threshold for S˙ (t) as an indicator of capacitor time-to-failure. This magnitude is related to both capacitor parameters and to a damage indicator such as entropy. Our method goes beyond the typical statistical laws for lifetime prediction provided by manufacturers. We validated the model as a function of capacitance, geometry, and rated voltage. Moreover, we identified different failure modes, such as heating, electrolyte dry-up and gasification from the dependence of S˙ (T) with temperature, T. Our method was implemented in cheap electrolytic capacitors but can be easily applied to any type of capacitor, supercapacitor, battery, or fuel cell.

  13. High energy density capacitors using nano-structure multilayer technology

    SciTech Connect

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1992-08-01

    Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.

  14. Non-ideal effects of MOS capacitor in a switched capacitor waveform recorder ASIC

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Yan; Deng, Zhi; Liu, Yi-Nong

    2016-07-01

    SCAs (Switched Capacitor Arrays) have a wide range of uses, especially in high energy physics, nuclear science and astrophysics experiments. This paper presents a method of using a MOS capacitor as a sampling capacitor to gain larger capacitance with small capacitor area in SCA design. It studies the non-ideal effects of the MOS capacitor and comes up with ways to reduce these adverse effects. A prototype SCA ASIC which uses a MOS capacitor to store the samples has been designed and tested to verify this method. The SCA integrates 32 channels and each has 64 cells and a readout amplifier. The stored voltage is converted to a pair of differential currents (±4 mA max) and multiplexed to the output. All the functionalities have been verified. The power consumption is less than 2 mW/ch. The INL of all the cells in one channel are better than 0.39%. The equivalent input noise of the SCA has been tested to be 2.2 mV with 625 kHz full-scale sine wave as input, sampling at 40 MSPS (Mega-samples per Second) and reading out at 5 MHz. The effective resolution is 8.8 bits considering 1 V dynamic range. The maximum sampling rate reaches up to 50 MSPS and readout rate of 15 MHz to keep noise smaller than 2.5 mV. The test results validate the feasibility of the MOS capacitor. Supported by National Natural Science Foundation of China (11375100), Strategic Pioneer Program on Space Sciences, Chinese Academy of Sciences (XDA04060606-06) and State Key Laboratory of Particle Detection and Electronics

  15. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.

    PubMed

    Yao, Fei; Pham, Duy Tho; Lee, Young Hee

    2015-07-20

    A rapidly developing market for portable electronic devices and hybrid electrical vehicles requires an urgent supply of mature energy-storage systems. As a result, lithium-ion batteries and electrochemical capacitors have lately attracted broad attention. Nevertheless, it is well known that both devices have their own drawbacks. With the fast development of nanoscience and nanotechnology, various structures and materials have been proposed to overcome the deficiencies of both devices to improve their electrochemical performance further. In this Review, electrochemical storage mechanisms based on carbon materials for both lithium-ion batteries and electrochemical capacitors are introduced. Non-faradic processes (electric double-layer capacitance) and faradic reactions (pseudocapacitance and intercalation) are generally explained. Electrochemical performance based on different types of electrolytes is briefly reviewed. Furthermore, impedance behavior based on Nyquist plots is discussed. We demonstrate the influence of cell conductivity, electrode/electrolyte interface, and ion diffusion on impedance performance. We illustrate that relaxation time, which is closely related to ion diffusion, can be extracted from Nyquist plots and compared between lithium-ion batteries and electrochemical capacitors. Finally, recent progress in the design of anodes for lithium-ion batteries, electrochemical capacitors, and their hybrid devices based on carbonaceous materials are reviewed. Challenges and future perspectives are further discussed.

  16. Evaluation and Characterization of Magnets and Capacitors

    SciTech Connect

    Seiber, L.E.; Cunningham, J.P.; Golik, S.S.; Armstrong, G.

    2006-10-15

    Advanced vehicle, fuel cell, hybrid electric vehicle (HEV), and plug in hybrid research and development is conducted by the U.S. Department of Energy (DOE) through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of this program is to develop more energy efficient and environmentally safe highway transportation technologies. Program activities include research, development, testing, technology validation, and technology transfer. These activities are done at the system and component levels. This report will discuss component level testing of prototype capacitors and magnets. As capacitor and magnet technologies mature, it is important to ascertain the limitations of these new technologies by subjecting the components to standardized tests to evaluate their capabilities. Test results will assist in the determination of their ability to provide improvements in power electronics and motor designs to meet the FCVT goals.

  17. High-Energy-Density Electrolytic Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lewis, Carol R.

    1993-01-01

    Reductions in weight and volume make new application possible. Supercapacitors and improved ultracapacitors advanced electrolytic capacitors developed for use as electric-load-leveling devices in such applications as electric vehicle propulsion systems, portable power tools, and low-voltage pulsed power supplies. One primary advantage: offer power densities much higher than storage batteries. Capacitors used in pulse mode, with short charge and discharge times. Derived from commercially available ultracapacitors. Made of lightweight materials; incorporate electrode/electrolyte material systems capable of operation at voltages higher than previous electrode/electrolyte systems. By use of innovative designs and manufacturing processes, made in wide range of rated capacitances and in rated operating potentials ranging from few to several hundred volts.

  18. Modelling series capacitor reinsertion in ac studies

    SciTech Connect

    Ramirez, A.R.; Achilles, R.A.

    1989-04-01

    Varistor fundamental frequency models are introduced for its use in AC Studies of series compensated systems. First, a numerically fast physical model founded on a related generalized EMTP work is proposed to simulate Metal Oxide Varistor (MOV) protected capacitors located remotely from the point of fault application; secondly mathematical iterative model is developed for MOV protected capacitor banks exhibiting higher degree of sensitivity of the rms voltage, current and varistor energy parameters, such as banks subject to close-in faults. Per-case CPU-time reductions of up to 1:300 within a 4 per cent energy comparison agreement with the equivalent time-domain analysis, are attained in a parametric application example where the modeling concepts introduced are incorporated in a regular AC Studies program.

  19. Progress on electrocaloric multilayer ceramic capacitor development

    NASA Astrophysics Data System (ADS)

    Hirose, Sakyo; Usui, Tomoyasu; Crossley, Sam; Nair, Bhasi; Ando, Akira; Moya, Xavier; Mathur, Neil D.

    2016-06-01

    A multilayer capacitor comprising 19 layers of 38 μm-thick 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 has elsewhere been shown to display electrocaloric temperature changes of 2.2 K due to field changes of 24 V μm-1, near ˜100 °C. Here we demonstrate temperature changes of 1.2 K in an equivalent device with 2.6 times the thermal mass, i.e., 49 layers that could tolerate 10.3 V μm-1. Breakdown was compromised by the increased number of layers, and occurred at 10.5 V μm-1 near the edge of a near-surface inner electrode. Further optimization is required to improve the breakdown strength of large electrocaloric multilayer capacitors for cooling applications.

  20. Material for Embedded Capacitors and its Applications

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazunori; Shimada, Yasushi; Shimayama, Yuuichi; Hirata, Yoshitaka; Kumashiro, Yasushi

    We have developed a new resin-coated-foil(RCF) material named MCF-HD-45 to be embedded in PWBs to constitute capacitors. The material is composed of a thermosetting resin and a high dielectric constant(Dk) filler. The filler has a multimodal size distribution to attain high loading; a specific surfactant is also essential to preserve the stability of filler dispersion in varnish. These technologies warrant MCF-HD-45 a high Dk of 45 and excellent reliability. This paper describes the test results of MCF-HD-45 applied to a power amplifier module, a low pass filter of cellular phones, and a decoupling capacitor for noise suppression, as well as the benefit of the database for high frequency circuit simulation.

  1. Digitally Programmable Active Switched Capacitor Filters.

    DTIC Science & Technology

    1987-03-01

    POSTGRADUATE SCHOOL Monterey, California n FILE WRY In THESIS DIGITALLY PROGRAMMABLE ACTIVE SWITCHED CAPACITOR FILTERS by Yalkin, Cengiz March 1987 Thesis ...COVERED 14 DATE OF REPORT (Year. Month. Day) 15 PAGE (OkNTMaster’s Thesis FROM ’O 1987 March 89 𔄀 SLP-ILENIENTARY NOTATION COSArI CODES 18 SUBJECT...Sheri chael, Thesis Advisor Roberto Cristi, Second Reader "harriet Rigas, Clirman, Department of Electrical and Computer En’ ineering Gordon E

  2. Intrinsic mechanisms of multilayer ceramic capacitor failure

    NASA Astrophysics Data System (ADS)

    Burton, L. C.

    1985-04-01

    The possible role of grain boundaries (GB) in MLC capacitors, with respect to insulation resistance and its degradation, is reviewed. Activation energy (E sub A) can be related directly to GB barrier height, Phi sub B. The voltage dependent activation energies for poly-Si, ZnO varistors and PTC devices has been attributed directly to E sub A. Varistor and PTC device degradation is caused GB passivation. A similar voltage dependence is reported here for barrier layer and COG capacitor types where E sub A decreases from 0.91 to 0.44eV and from 1.61 to 0.90eV respectively, with concurrent super-ohmic increases in leakage current. Such a voltage dependent E sub A is not seen for X7R devices, even though the current is super-ohmic. Reasons to account for this are discussed. It is concluded that the GB potential barrier may offer a major source of impedance to leakage current for MLC capacitors, and its decrease may result in failure. It has been ascertained that E sub A decreases for degraded X7R devices, with an increase in the I-V slope. These results are consistent with our earlier reports on degraded devices, and with the space charge limited current model for emission from electrodes. X7R chips with no internal electrodes exhibit both ohmic and super-ohmic characteristics, with activation energies independent of voltage. A near-exponential rate of current increase with time, accompanied by a linear decrease in E sub A, was seen for both X7R and Z5U capacitors.

  3. Intrinsic Mechanisms of Multilayer Ceramic Capacitor Failure.

    DTIC Science & Technology

    1985-04-01

    Si, Zn() varistors and PTC devices has been attributed directly to-J* Varistor and PTC device degraidation is caused GB passivation. A similar voltage...These include [1Inlvlitr [2] [3]poly-Si , ZnO varistors , BaTiO3 based thermistors , grain boundary capacitors [4 and thin film solar cells. [5 Since...often applied are poly-Si, thin films, and varistors . Another source of GB potential barrier is charge Q resulting from p spontaneous polarization

  4. Cryogenic Cermic Multilayer Capacitors for Power Electronics

    SciTech Connect

    Alberta, E. F.; Hackenberger, W. S.

    2006-03-31

    Recent advances in the areas of high temperature superconductors and low temperature MOSFET devices have opened the door to the possibility of developing highly efficient low-temperature power electronics. The most commonly used high-efficiency capacitors are based on high dielectric constant (K {approx} 1000-4000) barium titanate doped to yield and X7R temperature dependence ({+-}15% change in capacitance from -55 deg. C to 125 deg. C); however, below their minimum use temperature the capacitance drops-off quickly leading to a low volumetric efficiency and high temperature coefficient of capacitance (TCC) at cryogenic temperatures.A series of low temperature materials with moderate to high dielectric constants have been specifically developed for low temperature operation (below 80K). The capacitors fall into three main categories: low TCC, high volumetric efficiency, and energy storage. In the low TCC category, co-fired multilayer ceramic capacitors (MLCCs) were fabricated with capacitance values up to 62nF at 30K, TCCs from 0.9 to 2% below 80K, and losses on the order of 0.0001. In the high volumetric efficiency category, dielectrics with permittivities ranging from 1,000 to 30,000 were demonstrated.

  5. Cryogenic Cermic Multilayer Capacitors for Power Electronics

    NASA Astrophysics Data System (ADS)

    Alberta, E. F.; Hackenberger, W. S.

    2006-03-01

    Recent advances in the areas of high temperature superconductors and low temperature MOSFET devices have opened the door to the possibility of developing highly efficient low-temperature power electronics. The most commonly used high-efficiency capacitors are based on high dielectric constant (K ˜ 1000-4000) barium titanate doped to yield and X7R temperature dependence (±15% change in capacitance from -55°C to 125°C); however, below their minimum use temperature the capacitance drops-off quickly leading to a low volumetric efficiency and high temperature coefficient of capacitance (TCC) at cryogenic temperatures. A series of low temperature materials with moderate to high dielectric constants have been specifically developed for low temperature operation (below 80K). The capacitors fall into three main categories: low TCC, high volumetric efficiency, and energy storage. In the low TCC category, co-fired multilayer ceramic capacitors (MLCCs) were fabricated with capacitance values up to 62nF at 30K, TCCs from 0.9 to 2% below 80K, and losses on the order of 0.0001. In the high volumetric efficiency category, dielectrics with permittivities ranging from 1,000 to 30,000 were demonstrated.

  6. In situ characterisation of non linear capacitors

    NASA Astrophysics Data System (ADS)

    Laudebat, L.; Bley, V.; Lebey, T.; Schneider, H.; Tounsi, P.

    2001-05-01

    Multilayers ceramic capacitors (MLCC) presenting non linear behaviours of their C(V) characteristics may have interesting applications in power electronics. Most of them have already been described. Nevertheless, the choice of a particular type instead of another one is all the more so difficult since, on one hand the physical mechanisms able to explain this behaviour is far from being understood. On the other hand, C(V) characteristics are in general obtained for low voltage values different from the ones they are going to be involved in. In this paper, direct in situ characterisations of different BaTiO3 based capacitors commercially available are achieved. The role of the capacitors' type (X7R,Z5U), of the temperature and of the voltage waveform (and more particularly its polarity) is demonstrated. Temperature values up to 200 oC are measured during normal operations in a RCD dissipative snubber without any alterations of the C(V) characteristics. All these results are discussed as regards the main physical properties of the constitutive materials in order to reach an optimisation of their use through an appropriate dimensioning.

  7. Optimization of Thick Negative Photoresist for Fabrication of Interdigitated Capacitor Structures

    DTIC Science & Technology

    2015-04-01

    ARL-TR-7258 ● APR 2015 US Army Research Laboratory Optimization of Thick Negative Photoresist for Fabrication of Interdigitated...TR-7258 ● APR 2015 US Army Research Laboratory Optimization of Thick Negative Photoresist for Fabrication of Interdigitated Capacitor...REPORT DATE (DD-MM-YYYY) April 2015 2. REPORT TYPE Final 3. DATES COVERED (From - To) 1 May–30 November 2014 4. TITLE AND SUBTITLE Optimization

  8. Performance of thin-film ferroelectric capacitors for EMC decoupling.

    PubMed

    Li, Huadong; Subramanyam, Guru

    2008-12-01

    This paper studied the effects of thin-film ferroelectrics as decoupling capacitors for electromagnetic compatibility applications. The impedance and insertion loss of PZT capacitors were measured and compared with the results from commercial off-the-shelf capacitors. An equivalent circuit model was extracted from the experimental results, and a considerable series resistance was found to exist in ferroelectric capacitors. This resistance gives rise to the observed performance difference around series resonance between ferroelectric PZT capacitors and normal capacitors. Measurements on paraelectric (Ba,Sr)TiO(3)-based integrated varactors do not show this significant resistance. Some analyses were made to investigate the mechanisms, and it was found that it can be due to the hysteresis in the ferroelectric thin films.

  9. Method of manufacturing a shapeable short-resistant capacitor

    DOEpatents

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2013-04-02

    A method that employs a novel combination of conventional fabrication techniques provides a ceramic short-resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The method allows thinner and more flexible ceramic capacitors to be made. The method includes forming a first thin metal layer on a substrate; depositing a thin, ceramic dielectric layer over the metal layer; depositing a second thin metal layer over the dielectric layer to form a capacitor exhibiting a benign failure mode; and separating the capacitor from the substrate. The method may also include bending the resulting capacitor into a serpentine arrangement with gaps between the layers that allow venting of evaporated electrode material in the event of a benign failure.

  10. Thermodynamic energy exchange in a moving plate capacitor

    NASA Astrophysics Data System (ADS)

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2001-09-01

    In this paper we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. The plates are attracted together, but a demon restores the plates of the capacitor to their original position when the voltage across the capacitor is small—hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the open question is how? This is unsolved, however we explore the concept of a moving plate capacitor by examining the case where it is still excited by thermal noise, but where the restoring force on the capacitor plates is provided by a simple spring rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other.

  11. Thermodynamic energy exchange in a moving plate capacitor.

    PubMed

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2001-09-01

    In this paper we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. The plates are attracted together, but a demon restores the plates of the capacitor to their original position when the voltage across the capacitor is small-hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the open question is how? This is unsolved, however we explore the concept of a moving plate capacitor by examining the case where it is still excited by thermal noise, but where the restoring force on the capacitor plates is provided by a simple spring rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other. (c) 2001 American Institute of Physics.

  12. Reliability and Characterization of High Voltage Power Capacitors

    DTIC Science & Technology

    2014-03-01

    electrical characteristics, such as stability, wide temperature range, or ability to 7 withstand very high voltages. Polypropylene (PP) film capacitors are...healing [8]. This is an important feature for some applications, and is purely due to the manufacturing process of the thin film capacitor... manufacturing , the band gap magnitude has a value of 1.12 electron volts (eV). For the thin film capacitor, the band gap magnitude of PP is 7.0 (eV) [14

  13. High energy density capacitor testing for the AFWL SHIVA

    NASA Astrophysics Data System (ADS)

    Smith, D. L.; Reinovsky, R. E.

    Lifetime testing and analysis of small samples of high energy density (HED) discharge capacitors at the AFWL were conducted to find a component suitable for upgrading the SHIVA capacitor bank to a 6 MJ facility. Evaluation was performed with discharge conditions of approximately 250 kA per capacitor at 60 to 70% reversal and 2 microsec quarter period. Dielectric systems including Kraft paper with caster oil impregnant and Kraft paper, polypropylene with DiOctyl Phthalate (DOP) impregnant were tested.

  14. Low-inductance pulse-discharge capacitor study

    NASA Astrophysics Data System (ADS)

    Edwards, L. R.

    1992-03-01

    The Capacitors Division at Sandia National Laboratories has for many years been actively involved in developing high reliability, low inductance, energy storage, pulse discharge capacitors. Development has concentrated on two dielectric systems; mica-paper and Mylar (both dry wrap and fill and FC40 liquid impregnation). Continuous design improvements are constantly being sought. For pulse discharge usage lowering the capacitor inductance can improve circuit performance. This paper describes recent efforts to improve the efficiency of low inductance, mica-paper capacitors by reducing the inductance through optimizing the component geometry. The study focused on a 0.2 micro-F, 4000 V mica-paper extended-foil capacitor design. The experimental matrix was a two-level, three factor with center points design, and was replicated four times to give reasonable statistics. The factors were the capacitor width, capacitor length, and electrode width, and with response functions of capacitor inductance and circuit performance. The capacitor inductance was measured by the resonance technique, and the circuit performance was evaluated by peak (discharge) current and rise time. Results show that the inductance can be minimized by choice of geometry with accompanying improvements in circuit performance.

  15. Low-inductance pulse-discharge capacitor study

    SciTech Connect

    Edwards, L.R.

    1992-01-01

    The Capacitors Division at Sandia National Laboratories has for many years been actively involved in developing high reliability, low-inductance, energy-storage, pulse-discharge capacitors. Development has concentrated on two dielectric systems; mica-paper and Mylar (both dry wrap and fill and FC40 liquid impregnation). Continuous design improvements are constantly being sought. For pulse discharge usage lowering the capacitor inductance can improve circuit performance. This paper describes recent efforts to improve the efficiency of low-inductance, mica-paper capacitors by reducing the inductance through optimizing the component geometry. The study focused on a 0.2 {mu}F, 4000 V mica-paper extended-foil capacitor design. The experimental matrix was a two-level, three factor with center points design, and was replicated four times to give reasonable statistics. The factors were the capacitor width, capacitor length, and electrode width, and with response functions of capacitor inductance and circuit performance. The capacitor inductance was measured by the resonance technique, and the circuit performance was evaluated by peak (discharge) current and rise time. Results show that the inductance can be minimized by choice of geometry with accompanying improvements in circuit performance.

  16. Embedded Capacitors in Printed Wiring Board: A Technological Review

    NASA Astrophysics Data System (ADS)

    Alam, Mohammed A.; Azarian, Michael H.; Pecht, Michael G.

    2012-08-01

    This paper reviews the technology of embedded capacitors, which has gained importance with an increase in the operating frequency and a decrease in the supply voltage of electronic circuits. These capacitors have been found to reduce the number of surface-mount capacitors, which can assist in the miniaturization of printed wiring boards. This paper describes various aspects of embedded capacitors, such as electrical performance, available dielectric materials, manufacturing processes, and reliability. Improvement in electrical performance is explained using a cavity model from the theory of microstrip antennas. The advantages and disadvantages of dielectric materials such as polymers, ceramics, polymer-ceramic composites, and polymer-conductive filler composites are discussed. Various manufacturing techniques that can be used for the fabrication of embedded capacitors are also discussed. Embedded capacitors have many advantages, but failure of an embedded capacitor can lead to board failure since these capacitors are not reworkable. The effect of various environmental stress conditions on the reliability of embedded capacitors is reviewed.

  17. Evaluation of Case Size 0603 BME Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2015-01-01

    High volumetric efficiency of commercial base metal electrode (BME) ceramic capacitors allows for a substantial reduction of weight and sizes of the parts compared to currently used military grade precious metal electrode (PME) capacitors. Insertion of BME capacitors in space applications requires a thorough analysis of their performance and reliability. In this work, six types of cases size 0603 BME capacitors from three vendors have been evaluated. Three types of multilayer ceramic capacitors (MLCCs) were designed for automotive industry and three types for general purposes. Leakage currents in the capacitors have been measured in a wide range of voltages and temperatures, and measurements of breakdown voltages (VBR) have been used to assess the proportion and severity of defects in the parts. The effect of soldering-related thermal shock stresses was evaluated by analysis of distributions of VBR for parts in 'as is' condition and after terminal solder dip testing at 350 C. Highly Accelerated Life Testing (HALT) at different temperatures was used to assess the activation energy of degradation of leakage currents and predict behavior of the parts at life test and normal operating conditions. To address issues related to rework and manual soldering, capacitors were soldered onto different substrates at different soldering conditions. The results show that contrary to a common assumption that large-size capacitors are mostly vulnerable to soldering stresses, cracking in small size capacitors does happen unless special measures are taken during assembly processes.

  18. Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors

    PubMed Central

    2017-01-01

    The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest. PMID:28745040

  19. Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors.

    PubMed

    Torabi, Solmaz; Cherry, Megan; Duijnstee, Elisabeth A; Le Corre, Vincent M; Qiu, Li; Hummelen, Jan C; Palasantzas, George; Koster, L Jan Anton

    2017-08-16

    The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.

  20. Nanostructure multilayer materials for capacitor energy storage for EH vehicles

    SciTech Connect

    Barbee, T.W. Jr.; Johnson, C.W.

    1995-02-01

    Acceleration and regenerative breaking for electric and hybrid vehicles require high power capacitors to complement energy sources. Large, flat nanostructure multilayer capacitors (NMCS) can provide load balancing capacitance in EHVs of the future. Additional uses include snubber capacitors for power electronics such as motor drives, energy discharge capacitors for lasers, and numerous industrial and military electronics applications [1]. In the present work, we demonstrate the effectiveness of LLNL`s multilayer materials technology by fabricating NMC test films with high energy and power density.

  1. Discharge rates of porous carbon double layer capacitors

    SciTech Connect

    Eisenmann, E.T.

    1995-10-01

    Double layer capacitors with porous carbon electrodes have very low frequency response limits and correspondingly low charge-discharge rates. Impedance measurements of various commercial double layer capacitors and of carbon electrodes prepared from selected precursor materials were found to yield similar, yet subtly different characteristics. Through modeling with the traditional transmission line equivalent circuit for porous electrodes, a resistive layer can be identified, which forms on carbon films during carbonization and survives the activation procedure. A method for determining the power-to-energy ratio of electrochemical capacitors has been developed. These findings help define new ways for optimizing the properties of double layer capacitors.

  2. Pressure Effects Analysis of National Ignition Facility Capacitor Module Events

    SciTech Connect

    Brereton, S; Ma, C; Newton, M; Pastrnak, J; Price, D; Prokosch, D

    1999-11-22

    Capacitors and power conditioning systems required for the National Ignition Facility (NIF) have experienced several catastrophic failures during prototype demonstration. These events generally resulted in explosion, generating a dramatic fireball and energetic shrapnel, and thus may present a threat to the walls of the capacitor bay that houses the capacitor modules. The purpose of this paper is to evaluate the ability of the capacitor bay walls to withstand the overpressure generated by the aforementioned events. Two calculations are described in this paper. The first one was used to estimate the energy release during a fireball event and the second one was used to estimate the pressure in a capacitor module during a capacitor explosion event. Both results were then used to estimate the subsequent overpressure in the capacitor bay where these events occurred. The analysis showed that the expected capacitor bay overpressure was less than the pressure tolerance of the walls. To understand the risk of the above events in NIF, capacitor module failure probabilities were also calculated. This paper concludes with estimates of the probability of single module failure and multi-module failures based on the number of catastrophic failures in the prototype demonstration facility.

  3. First prototypes of hybrid potassium-ion capacitor (KIC): An innovative, cost-effective energy storage technology for transportation applications

    NASA Astrophysics Data System (ADS)

    Le Comte, Annaïg; Reynier, Yvan; Vincens, Christophe; Leys, Côme; Azaïs, Philippe

    2017-09-01

    Hybrid supercapacitors, combining capacitive carbon-based positive electrode with a Li-ion battery-type negative electrode have been developed in the pursuit of increasing the energy density of conventional supercapacitor without impacting the power density. However, lithium-ion capacitors yet hardly meet the specifications of automotive sector. Herein we report for the first time the development of new hybrid potassium-ion capacitor (KIC) technology. Compared to lithium-ion capacitor (LIC) all strategic materials (lithium and copper) have been replaced. Excellent electrochemical performance have been achieved at a pouch cell scale, with cyclability superior to 55 000 cycles at high charge/discharge regime. For the same cell scale, the energy density is doubled compared to conventional supercapacitor up to high power regime (>1.5 kW kg-1). Finally, the technology was successfully scaled up to 18650 format leading to very promising prospects for transportation applications.

  4. Charging a capacitor with a photovoltaic module

    NASA Astrophysics Data System (ADS)

    Munguía Aguilar, Horacio; Maldonado, Rigoberto Franco; Barba Navarro, Luis

    2017-07-01

    Charging a capacitor with a photovoltaic module is an experiment which reveals a lot about the modules characteristics. It is customary to represent these characteristics with an equivalent circuit whose elements represent its physical parameters. The behavior of a photovoltaic module is very similar to that of a single cell but the electric energy involved is much higher, which represents a major challenge for their characterization. In this work, an experiment is conducted to test out this behavior and in addition to obtain the module I-V characteristic curve. The experiment is simple and only common instrumentation is required.

  5. Soft capacitor fibers for electronic textiles

    NASA Astrophysics Data System (ADS)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-09-01

    A highly flexible, conductive polymer-based fiber with high electric capacitance is reported. The fiber is fabricated using fiber drawing method, where a multimaterial macroscopic preform is drawn into a submillimeter capacitor microstructured fiber. A typical measured capacitance per unit length of our fibers is 60-100 nF/m which is about 3 orders magnitude higher than that of a coaxial cable of a comparable diameter. The fiber has a transverse resistivity of 5 kΩ m. Softness, lightweight, absence of liquid electrolyte, and ease of scalability to large production volumes make the fibers interesting for various smart textile applications.

  6. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    NASA Astrophysics Data System (ADS)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  7. Performance of electric double layer capacitors with polymer gel electrolytes

    SciTech Connect

    Ishikawa, Masashi; Kishino, Takahiro; Katada, Naoji; Morita, Masayuki

    2000-07-01

    Polymer gel electrolytes consisting of poly(vinylidene fluoride) (PVdF), tetraethylammonium tetrafluoroborate (TEABF{sub 4}), and propylene carbonate (PC) as a plasticizer have been investigated for electric double layer capacitors. The PVdF gel electrolytes showed high ionic conductivity (ca. 6 mS/cm at 298 K). To assemble model capacitors with the PVdF gel electrolytes and activated carbon fiber cloth electrodes, a pair of the fixed electrodes was soaked in a precursor solution containing PC, PVdF, and TEABF{sub 4}, followed by evaporation of the PC solvent in a vacuum oven. The resulting gel electrolytes were in good contact with the electrodes. The model capacitors with the PVdF gel electrolytes showed a large value of capacitance and high coulombic efficiency in operation voltage ranges of 1--2 and 1--3 V. It is worth noting that the capacitors with the PVdF electrolytes showed long voltage retention in a self-discharge test. These good characteristics of the gel capacitors were comparable to those of typical double layer capacitors with a liquid organic electrolyte containing PC and TEABF{sub 4}; rather, the voltage retentivity of the PVdF gel capacitors was much superior to that of the capacitors with the organic electrolyte.

  8. Physicochemical assessment criteria for high-voltage pulse capacitors

    SciTech Connect

    Darian, L. A. Lam, L. Kh.

    2016-12-15

    In the paper, the applicability of decomposition products of internal insulation of high-voltage pulse capacitors is considered (aging is the reason for decomposition products of internal insulation). Decomposition products of internal insulation of high-voltage pulse capacitors can be used to evaluate their quality when in operation and in service. There have been three generations of markers of aging of insulation as in the case with power transformers. The area of applicability of markers of aging of insulation for power transformers has been studied and the area can be extended to high-voltage pulse capacitors. The research reveals that there is a correlation between the components and quantities of markers of aging of the first generation (gaseous decomposition products of insulation) dissolved in insulating liquid and the remaining life of high-voltage pulse capacitors. The application of markers of aging to evaluate the remaining service life of high-voltage pulse capacitor is a promising direction of research, because the design of high-voltage pulse capacitors keeps stability of markers of aging of insulation in high-voltage pulse capacitors. It is necessary to continue gathering statistical data concerning development of markers of aging of the first generation. One should also carry out research aimed at estimation of the remaining life of capacitors using markers of the second and the third generation.

  9. High Energy Density Capacitor Testing for the AFWL SHIVA

    DTIC Science & Technology

    1981-06-01

    eliminate units that are subject to premature failure mechanisms. Actual application in the large parallel capacitor barik will be less demanding than...then the 90% confidence interval for the full 576 capacitor SHIVA barik indicates that the first failure will occur at approximately 50 shots whiCh

  10. Dielectric Studies in Materials for High Energy Density Capacitors

    DTIC Science & Technology

    2007-05-04

    of basic interest to the Navy and the United States. Many technologies currently under development will employ capacitors. For example, rail guns ...shown in Figure 1, we find that the electric field between these plates is approximately uniform. Figure 1: Basic Capacitor Gauss ’ Law can be

  11. Two-Capacitor Problem: A More Realistic View.

    ERIC Educational Resources Information Center

    Powell, R. A.

    1979-01-01

    Discusses the two-capacitor problem by considering the self-inductance of the circuit used and by determining how well the usual series RC circuit approximates the two-capacitor problem when realistic values of L, C, and R are chosen. (GA)

  12. Physicochemical assessment criteria for high-voltage pulse capacitors

    NASA Astrophysics Data System (ADS)

    Darian, L. A.; Lam, L. Kh.

    2016-12-01

    In the paper, the applicability of decomposition products of internal insulation of high-voltage pulse capacitors is considered (aging is the reason for decomposition products of internal insulation). Decomposition products of internal insulation of high-voltage pulse capacitors can be used to evaluate their quality when in operation and in service. There have been three generations of markers of aging of insulation as in the case with power transformers. The area of applicability of markers of aging of insulation for power transformers has been studied and the area can be extended to high-voltage pulse capacitors. The research reveals that there is a correlation between the components and quantities of markers of aging of the first generation (gaseous decomposition products of insulation) dissolved in insulating liquid and the remaining life of high-voltage pulse capacitors. The application of markers of aging to evaluate the remaining service life of high-voltage pulse capacitor is a promising direction of research, because the design of high-voltage pulse capacitors keeps stability of markers of aging of insulation in high-voltage pulse capacitors. It is necessary to continue gathering statistical data concerning development of markers of aging of the first generation. One should also carry out research aimed at estimation of the remaining life of capacitors using markers of the second and the third generation.

  13. Two-Capacitor Problem: A More Realistic View.

    ERIC Educational Resources Information Center

    Powell, R. A.

    1979-01-01

    Discusses the two-capacitor problem by considering the self-inductance of the circuit used and by determining how well the usual series RC circuit approximates the two-capacitor problem when realistic values of L, C, and R are chosen. (GA)

  14. Capacitors Would Help Protect Against Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Edwards, David; Hubbs, Whitney; Hovater, Mary

    2007-01-01

    A proposal investigates alternatives to the present bumper method of protecting spacecraft against impacts of meteoroids and orbital debris. The proposed method is based on a British high-voltage-capacitance technique for protecting armored vehicles against shaped-charge warheads. A shield, according to the proposal, would include a bare metal outer layer separated by a gap from an inner metal layer covered with an electrically insulating material. The metal layers would constitute electrodes of a capacitor. A bias potential would be applied between the metal layers. A particle impinging at hypervelocity on the outer metal layer would break apart into a debris cloud that would penetrate the electrical insulation on the inner metal layer. The cloud would form a path along which electric current could flow between the metal layers, thereby causing the capacitor to discharge. With proper design, the discharge current would be large enough to vaporize the particles in the debris cloud to prevent penetration of the spacecraft. The shield design can be mass optimized to be competitive with existing bumper designs. Parametric studies were proposed to determine optimum correction between bias voltage, impacting particle velocity, gap space, and insulating material required to prevent spacecraft penetration.

  15. A Magnesium-Activated Carbon Hybrid Capacitor

    SciTech Connect

    Yoo, HD; Shterenberg, I; Gofer, Y; Doe, RE; Fischer, CC; Ceder, G; Aurbach, D

    2013-12-11

    Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionic complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.

  16. Evaluation of high temperature capacitor dielectrics

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  17. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.

  18. Energy Flow for a Variable-Gap Capacitor

    NASA Astrophysics Data System (ADS)

    Greene, Nathaniel R.

    2005-09-01

    When capacitor plates are separated, the capacitor's electrostatic energy either increases or decreases, depending upon whether the charge or the voltage is held constant. For the constant-voltage case, an interesting puzzle can be posed to students: How is it possible that an external agent does positive work on the capacitor while at the same time the capacitor's stored energy decreases? An energy flow diagram, as suggested by Art Hobson's TPT article, helps to visualize the movements of energy among different parts of the system. What Richard Feynman calls a "surprising factor of one-half" in the expression for the force between capacitor plates confronts students with an additional puzzle to decipher.2

  19. Evaluation of Commercial Automotive-Grade BME Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, Donhang

    2014-01-01

    Three Ni-BaTiO3 ceramic capacitor lots with the same specification (chip size, capacitance, and rated voltage) and the same reliability level, made by three different manufacturers, were degraded using highly accelerated life stress testing (HALST) with the same temperature and applied voltage conditions. The reliability, as characterized by mean time to failure (MTTF), differed by more than one order of magnitude among the capacitor lots. A theoretical model based on the existence of depletion layers at grain boundaries and the entrapment of oxygen vacancies has been proposed to explain the MTTF difference among these BME capacitors. It is the conclusion of this model that reliability will not be improved simply by increasing the insulation resistance of a BME capacitor. Indeed, Ni-BaTiO3 ceramic capacitors with a smaller degradation rate constant K will always give rise to a longer reliability life

  20. Evaluation of Commercial Automotive-Grade BME Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, Donhang

    2014-01-01

    Three Ni-BaTiO3 ceramic capacitor lots with the same specification (chip size, capacitance, and rated voltage) and the same reliability level, made by three different manufacturers, were degraded using highly accelerated life stress testing (HALST) with the same temperature and applied voltage conditions. The reliability, as characterized by mean time to failure (MTTF), differed by more than one order of magnitude among the capacitor lots. A theoretical model based on the existence of depletion layers at grain boundaries and the entrapment of oxygen vacancies has been proposed to explain the MTTF difference among these BME capacitors. It is the conclusion of this model that reliability will not be improved simply by increasing the insulation resistance of a BME capacitor. Indeed, Ni-BaTiO3 ceramic capacitors with a smaller degradation rate constant K will always give rise to a longer reliability life.

  1. Techniques for Reduction of the Parasitic Inductance of Decoupling Capacitors

    NASA Astrophysics Data System (ADS)

    Bernal, J.; Freire, M. J.

    2016-05-01

    The ability for providing effective decoupling of decoupling capacitors is mainly limited by its parasitic inductance. In this work we propose some new techniques for placing surface mount decoupling capacitors on a printed circuit board that make use of mutual inductance effects between currents on adjacent capacitors to provide significant reduction of the impedance seen at high frequencies at the input of the set of decoupling capacitors. This allows to keep the impedance of the power distribution network below the target impedance with a reduced number of decoupling capacitors, thus reducing cost and, more importantly in aerospace applications, saving space on the board. This technique does not require complex previous calculations or experimental adjustments to be implemented and consequently it has no negative impact in the time of design of practical circuits.

  2. Development and current status of electric double-layer capacitors

    SciTech Connect

    Morimoto, Takeshi; Hiratsuka, Kazuya; Sanada, Yasuhiro; Kurihara, Kaname

    1995-12-31

    An electric double layer capacitor (EDLC) based on the charge storage at the interface between a high surface area carbon electrode and an electrolyte solution is widely used as maintenance-free power source for IC memories and microcomputers. New applications for electric double-layer capacitors have been proposed in recent years. The popularity of these devices is derived from their high energy density relative to conventional capacitors and their long cycle life and high power density relative to batteries. In this paper a classification and a characteristics of industrially produced Japanese small EDLCs are reviewed. Structure and performance of power capacitors under development as well as materials and performance of industrially produced small capacitors are discussed.

  3. Investigation of capacitor failures in an automated external defibrillator.

    PubMed

    Tan, K-S; Hinberg, I

    2002-09-01

    Over the past 2 years, the Canadian Medical Devices Bureau has received a number of reports of capacitor failures on the high voltage board of an automated external defibrillator. Twenty-five cases of broken capacitor leads were found during routine preventive maintenance by the biomedical engineering staff of the institutions reporting the incidents. The Bureau has carried out a laboratory investigation to determine the effect of missing capacitors on the energy delivered by the defibrillator and to assess whether these capacitor failures represent a significant risk to patients. Our findings indicate that the automated external defibrillator will not perform acceptably with two broken capacitors. They further suggest that, during preventive maintenance, operators should use a defibrillator analyser to measure the delivered energy output rather than using the internal energy measurement circuit within the automated external defibrillator.

  4. Advanced Wet Tantalum Capacitors: Design, Specifications and Performance

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2017-01-01

    Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  5. Advanced Wet Tantalum Capacitors: Design, Specifications and Performance

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  6. Investigation of performance degradation in metallized film capacitors

    NASA Astrophysics Data System (ADS)

    Godec, M.; Mandrino, Dj.; Gaberšček, M.

    2013-05-01

    Zn-Al metallized film capacitors in two different production stages were investigated to explain the decrease of capacitors performance with time. Unsealed and sealed capacitors with different aluminium content in metallization layer were investigated. Scanning electron microscopy (SEM) was used to image the surface of the metallization layers, energy dispersive X-ray spectroscopy (EDS) was used to determine the chemical composition and Auger electron spectroscopy (AES) was used to determine the chemical composition of the top of the metallization layers as well as to estimate the degree of oxidation. It was found that air humidity degraded the metallization layer of unsealed capacitors, especially at lower Al contents. Sealed capacitors were exposed to high electric fields, typical for standard usage. It was found - rather unexpectedly - that the performance was decreased by increasing Al content. A crystallographic explanation was proposed.

  7. Electrospun carbon nanofibers for electrochemical capacitor electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Tong

    The objective of this work is to electrospin poly(acrylonitrile) (PAN) based nanofibers with controlled diameter and to stabilize and carbonize them for developing meso-porous carbon for application as electrochemical capacitor electrodes. A sacrificial polymer, poly(styrene-co-acrylonitrile) (SAN) has been used to control porosity. Carbon nanotubes (CNT) have been used to increase electrode conductivity and hence power density. The study has been divided into two parts. In part I, electrospinning behavior of PAN and PAN/CNT has been studied. The diameter of electrospun PAN fibers was monitored as a function of polymer molecular weight, solution concentration, solution flow rate, distance between the spinneret and the target, and the applied voltage. Bead free PAN fibers of 60 nm diameter have been electrospun. Various electrospun fibers have been characterized by wide angle X-ray diffraction and by Raman spectroscopy. Electrospinning process has been observed by high speed photography. In part II, the electrospun PAN, PAN/SAN, and PAN/SAN/CNT fiber mats were stabilized, carbonized, and processed into electrochemical capacitor electrodes. The performance of the electrochemical capacitors was tested by the constant current charge/discharge and cyclic voltammetry in 6 molar potassium hydroxide aqueous solution. The surface area and pore size distribution of the electrodes were measured using N2 adsorption and desorption. The effect of surface area and pore size distribution on the capacitance performance has been studied. The capacitance performance of various carbonized electrospun fibers mats have been compared to those of the PAN/SAN/CNT film, carbon nanotube bucky paper, and activated carbon pellet. The capacitance of PAN/SAN/CNT fiber mat over 200 F/g (at a current density of 1 A/g) and the power density approaching 1 kW/kg have been observed. Addition of 1 wt% carbon nanotubes in PAN/SAN, improves the power density by a factor of four. For comparison, the

  8. Irradiation response of radio-frequency sputtered Al/Gd2O3/p-Si MOS capacitors

    NASA Astrophysics Data System (ADS)

    Kahraman, A.; Yilmaz, E.

    2017-10-01

    The usage of the Gadolinium oxide (Gd2O3) as sensitive region in the MOS (Metal-Oxide-Semiconductor)-based dosimeters was investigated in the presented study. The Gd2O3 films grown on p-type Si (100) by RF magnetron sputtering were annealed at 800 °C under N2 ambient. The back and front metal contacts were establishes to produce MOS capacitors. The fabricated Gd2O3 MOS capacitors were irradiated in the dose range 0.5-50 Gy by 60Co gamma source. The performed Capacitance-Voltage (C-V) curves of the Gd2O3 MOS capacitors shifted to right side relative to pre-irradiation one. While continuous increments in the oxide trapped charges with increasing in gamma dose were observed, interface trapped charges fluctuated in the studied dose range. However, the variation of the interface trapped charge densities was found in the order of 1011 cm-2 and no significant variation was observed with applied dose. These results confirm that a significant deterioration does not occur in the capacitance during the irradiation. The higher oxide trapped charges compared to interface trapped charges showed that these traps were more responsible for the shift of the C-V curves. The sensitivity and percentage fading after 105 min of the Gd2O3 MOS capacitor were found as 39.7±1.4 mV/Gy and 14.5%, respectively. The devices sensitivity was found to be higher than that of capacitors composed of Er2O3, Sm2O3, La2O3, Al2O3, and SiO2, but, the high fading values is seen as a major problem for these capacitors. Finally, the barrier height was investigated with gamma exposure and the results showed that its value increased with increasing in radiation dose due to possible presence of the acceptor-like interface states.

  9. Pinhole array capacitor for oxide integrity analysis

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Blaes, B. R.; Pina, C. A.; Griswold, T. W.

    1983-01-01

    The integrity of the metal-poly oxide and the gate oxide was evaluated for several 5-micron CMOS-bulk processes. The pinhole array capacitor consists of diffused and poly fingers that form a network of MOS transistors (elements), which are capped by a deposited oxide and metal layer. The smallest structure used in this study contained about 15,000 elements and the largest structure contained about 68,000 elements. Each structure was divided into several subarrays. The structures are placed a number of times on each wafer. From a yield analysis of the subarrays, the elements per defect were found to be typically in excess of 50,000 elements/defect for the metal-poly oxide and 100,000 elements/defect for the gate oxide. From the switching behavior of the transistors, the gate oxide defects were tentatively identified as gate-to-body shorts rather than gate-to-diffusion shorts.

  10. Pinhole array capacitor for oxide integrity analysis

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Blaes, B. R.; Pina, C. A.; Griswold, T. W.

    1985-01-01

    The integrity of the metal-poly oxide and the gate oxide was evaluated for several 5-micron CMOS-bulk process. The pinhole array capacitor consists of diffused and poly fingers that form a network of MOS transistors (elements), which are capped by a deposited oxide and metal layer. The smallest structure used contained about 15,000 elements and the largest structure contained about 68,000 elements. Each structure was divided into several subarrays. The structures are placed a number of times on each wafer. From a yield analysis of the subarrays, the elements per defect were found to be typically in excess of 50,000 elements/defect for the metal-poly oxide and 100,000 elements/defect for the gate oxide. From the switching behavior of the transistors, the gate oxide defects were tentatively identified as gate-to-body shorts rather than gate-to-diffusion shorts.

  11. Design definition of a mechanical capacitor

    NASA Technical Reports Server (NTRS)

    Michaelis, T. D.; Schlieban, E. W.; Scott, R. D.

    1977-01-01

    A design study and analyses of a 10 kW-hr, 15 kW mechanical capacitor system was studied. It was determined that magnetically supported wheels constructed of advanced composites have the potential for high energy density and high power density. Structural concepts are analyzed that yield the highest energy density of any structural design yet reported. Particular attention was paid to the problem of 'friction' caused by magnetic and I to the second power R losses in the suspension and motor-generator subsystems, and low design friction levels have been achieved. The potentially long shelf life of this system, and the absence of wearing parts, provide superior performance over conventional flywheels supported with mechanical bearings. Costs and economies of energy storage wheels were reviewed briefly.

  12. Capacitor with a composite carbon foam electrode

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  13. Capacitor with a composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  14. Low temperature double-layer capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J. (Inventor); Smart, Marshall C. (Inventor); West, William C. (Inventor)

    2011-01-01

    Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -75.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. An optimized concentration (e.g., 0.10 M to 0.75 M) of salt, such as tetraethylammonium tetrafluoroborate, is dissolved into the electrolyte solution. In some cases (e.g., 1,3-dioxolane cosolvent) additives, such as 2% by volume triethylamine, may be included in the solvent mixture to prevent polymerization of the solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.

  15. Reversible Heating in Electric Double Layer Capacitors

    NASA Astrophysics Data System (ADS)

    Janssen, Mathijs; van Roij, René

    2017-03-01

    A detailed comparison is made between different viewpoints on reversible heating in electric double layer capacitors. We show in the limit of slow charging that a combined Poisson-Nernst-Planck and heat equation, first studied by d'Entremont and Pilon [J. Power Sources 246, 887 (2014), 10.1016/j.jpowsour.2013.08.024], recovers the temperature changes as predicted by the thermodynamic identity of Janssen et al. [Phys. Rev. Lett. 113, 268501 (2014), 10.1103/PhysRevLett.113.268501], and disagrees with the approximative model of Schiffer et al. [J. Power Sources 160, 765 (2006), 10.1016/j.jpowsour.2005.12.070] that predominates the literature. The thermal response to the adiabatic charging of supercapacitors contains information on electric double layer formation that has remained largely unexplored.

  16. Breakdown properties of irradiated MOS capacitors

    SciTech Connect

    Paccagnella, A.; Candelori, A. |; Milani, A.; Formigoni, E.; Ghidini, G.; Drera, D.; Pellizzer, F. |; Fuochi, P.G.; Lavale, M.

    1996-12-01

    The authors have studied the effects of ionizing and non-ionizing radiation on the breakdown properties of different types of MOS capacitors, with thick (200 nm) and thin (down to 8 nm) oxides. In general, no large variations of the average breakdown field, time-to-breakdown at constant voltage, or charge-to-breakdown at constant voltage, or charge-to-breakdown values have been observed after high dose irradiation (20 Mrad(Si) 9 MeV electrons on thin and thick oxides, 17(Si) Mrad Co{sup 60} gamma and 10{sup 14} neutrons/cm{sup 2} only on thick oxides). However, some modifications of the cumulative failure distributions have been observed in few of the oxides tested.

  17. Reversible Heating in Electric Double Layer Capacitors.

    PubMed

    Janssen, Mathijs; van Roij, René

    2017-03-03

    A detailed comparison is made between different viewpoints on reversible heating in electric double layer capacitors. We show in the limit of slow charging that a combined Poisson-Nernst-Planck and heat equation, first studied by d'Entremont and Pilon [J. Power Sources 246, 887 (2014)JPSODZ0378-775310.1016/j.jpowsour.2013.08.024], recovers the temperature changes as predicted by the thermodynamic identity of Janssen et al. [Phys. Rev. Lett. 113, 268501 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.268501], and disagrees with the approximative model of Schiffer et al. [J. Power Sources 160, 765 (2006)JPSODZ0378-775310.1016/j.jpowsour.2005.12.070] that predominates the literature. The thermal response to the adiabatic charging of supercapacitors contains information on electric double layer formation that has remained largely unexplored.

  18. Development of High Temperature Capacitor Technology and Manufacturing Capability

    SciTech Connect

    None, None

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: - Deeper oil exploration in higher temperature and pressure environments - Enabling power electronic and control equipment to operate in higher temperature environments - Enabling reduced cooling requirements of electronics - Increasing reliability and life of capacitors operating below rated temperature - Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: - FPE Film is difficult to handle and wind, resulting in poor yields - Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) - Encapsulation technologies must be improved to enable higher perature operation - Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  19. Investigation of Tantalum Wet Slug Capacitor Failures in the Apollo Telescope Mount Charger Battery Regulator Modules

    NASA Technical Reports Server (NTRS)

    Williams, J. F.; Wiedeman, D. H.

    1973-01-01

    This investigation describes the capacitor failures and to identify the cause of the failure mechanism. Early failures were thought to have happened because of age and/or abuse since the failed capacitors were dated 1967. It is shown that all 1967 capacitors were replaced with 1972 capacitors.

  20. CRADA opportunities with METC`s gasification and hot gas cleanup facility

    SciTech Connect

    Galloway, E N; Rockey, J M; Tucker, M S

    1995-06-01

    Opportunities exist for Cooperative Research and Development Agreements (CRADA) at the Morgantown Energy Technology Center (METC) to support commercialization of IGCC power systems. METC operates an integrated gasifier and hot gas cleanup facility for the development of gasification and hot gas cleanup technologies. The objective of our program is to gather performance data on gasifier operation, particulate removal, desulfurization and regeneration technologies. Additionally, slip streams are provided for developing various technologies such as; alkali monitoring, particulate measuring, chloride removal, and contaminate recovery processes. METC`s 10-inch diameter air blown Fluid Bed Gasifier (FBG) provides 300 lb/hr of coal gas at 1100{degrees}F and 425 psig. The particulate laden gas is transported to METC`s Modular Gas Cleanup Rig (MGCR). The gas pressure is reduced to 285 psig before being fed into a candle filter vessel. The candle filter vessel houses four candle filters and multiple test coupons. The particulate free gas is then desulfurized in a sorbent reactor. Starting in 1996 the MGCR system will be able to regenerate the sorbent in the same vessel.

  1. Material considerations for high frequency, high power capacitors

    NASA Technical Reports Server (NTRS)

    White, W.; Galperin, I.

    1983-01-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  2. Challenges facing lithium batteries and electrical double-layer capacitors.

    PubMed

    Choi, Nam-Soon; Chen, Zonghai; Freunberger, Stefan A; Ji, Xiulei; Sun, Yang-Kook; Amine, Khalil; Yushin, Gleb; Nazar, Linda F; Cho, Jaephil; Bruce, Peter G

    2012-10-01

    Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and "load leveling" of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.

  3. Intrinsic Mechanisms of Multi-Layer Ceramic Capacitor Failure.

    DTIC Science & Technology

    1986-04-01

    measurements is discussed, and shown to be valid for a varistor . This technique will be applied to capacitor ceramic. Measurements were completed on a set of... varistor . This technique will be applied to capacitor ceramic. Measurements were completed on a set of X7R plates polished to thicknesses from 0.22 to...barrier height reduction - %which is the case for the Zn0 varistor ( 11), - or other causes). I hus the current-time relation for an MILC capacitor can be

  4. Coherent Josephson phase qubit with a single crystal silicon capacitor

    NASA Astrophysics Data System (ADS)

    Patel, U.; Gao, Y.; Hover, D.; Ribeill, G. J.; Sendelbach, S.; McDermott, R.

    2013-01-01

    We have incorporated a single crystal silicon shunt capacitor into a Josephson phase qubit. The capacitor is derived from a commercial silicon-on-insulator wafer. Bosch reactive ion etching is used to create a suspended silicon membrane; subsequent metallization on both sides is used to form the capacitor. The superior dielectric loss of the crystalline silicon leads to a significant increase in qubit energy relaxation times. T1 times up to 1.6 μs were measured, more than a factor of two greater than those seen in amorphous phase qubits. The design is readily scalable to larger integrated circuits incorporating multiple qubits and resonators.

  5. Leakage Current and Floating Gate Capacitor Matching Test

    NASA Astrophysics Data System (ADS)

    Tian, Weidong; Trogolo, Joe R.; Todd, Bob

    Capacitor mismatch is an important device parameter for precision analog applications. In the last ten years, the floating gate measurement technique has been widely used for its characterization. In this paper we describe the impact of leakage current on the technique. The leakage can come from, for example, thin gate oxide MOSFETs or high dielectric constant capacitors in advanced technologies. SPICE simulation, bench measurement, analytical model and numerical analyses are presented to illustrate the problem and key contributing factors. Criteria for accurate capacitor systematic and random mismatch characterization are developed, and practical methods of increasing measurement accuracy are discussed.

  6. Material considerations for high frequency, high power capacitors

    NASA Astrophysics Data System (ADS)

    White, W.; Galperin, I.

    1983-10-01

    Dielectric materials chosen for use in this high frequency, high power capacitor must endure hard vacuum conditions, high currents (up to 125 A rms), and frequencies up to 40 kHz. Temperature requirements for this type of capacitor are that capacitor operation must be efficient up to 125 C. A more stringent requirement for the sold dielectric is that the temperature coefficient of dissipation factor should indicate self stabilization well below 125 C. In addition, the dielectric temperature coefficient of capacitance should be negative.

  7. Application of pyrolysis to recycling organics from waste tantalum capacitors.

    PubMed

    Niu, Bo; Chen, Zhenyang; Xu, Zhenming

    2017-08-05

    Tantalum capacitors (TCs) are widely used in electronic appliances. The rapid replacement of electronic products results in generating large amounts of waste TCs (WTCs). WTCs, rich in valuable tantalum, are considered as high quality tantalum resources for recycling. However, environmental pollution will be caused if the organics of WTCs were not properly disposed. Therefore, effectively recycling the organics of WTCs is significant for recovering the valuable parts. This study proposed an argon (Ar) pyrolysis process to recycle the organics from WTCs. The organic decomposition kinetic was first analyzed by thermogravimetry. The results showed that the organics were decomposed in two major steps and the average activation energy was calculated to 234kJ/mol. Then, the suitable pyrolysis parameters were determined as 550°C, 30min and 100ml/min. The organics were effectively decomposed and converted to oils (mainly contained phenol homologs and benzene homologs) and gases (some hydrocarbon). These pyrolysis products could be reutilized as energy sources. Moreover, based on the products and bond energy theory, the pyrolysis mechanisms of the organics were also discussed. Finally, a reasonable technological process for products utilization was presented. This study contributes to the efficient recycling the organics before valuable material recovery from WTCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Three-dimensional carbon architectures for electrochemical capacitors.

    PubMed

    Song, Yu; Liu, Tianyu; Qian, Fang; Zhu, Cheng; Yao, Bin; Duoss, Eric; Spadaccini, Christopher; Worsley, Marcus; Li, Yat

    2017-07-21

    Three-dimensional (3D) carbon-based materials are emerging as promising electrode candidates for energy storage devices. In comparison to the 1D and 2D structures, 3D morphology offers new opportunities in rational design and synthesis of novel architectures tailor-made for promoting electrochemical performance. The capability of building hierarchical porous structures with 3D configuration can significantly advance the performance of energy storage devices by simultaneously enhancing the ion-accessible surface area and ion diffusion. This feature article presents an overview of recent progress in design, synthesis and implementation of 3D carbon-based materials as electrodes for electrochemical capacitors. Synthesis methodologies of four types of 3D carbon-based electrodes: 3D exfoliated carbon structures, 3D graphene scaffolds, 3D hierarchical porous carbon foams, as well as 3D architectures with periodic pores derived from direct ink writing, are thoroughly discussed and highlighted with selected experimental works. Finally, key opportunities and challenges in which different 3D carbons can significantly impact the energy storage and conversion communities will be provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. An overview of carbon materials for flexible electrochemical capacitors.

    PubMed

    He, Yongmin; Chen, Wanjun; Gao, Caitian; Zhou, Jinyuan; Li, Xiaodong; Xie, Erqing

    2013-10-07

    Under the background of the quick development of lightweight, flexible, and wearable electronic devices in our society, a flexible and highly efficient energy management strategy is needed for their counterpart energy-storage systems. Among them, flexible electrochemical capacitors (ECs) have been considered as one of the most promising candidates because of their significant advantages in power and energy densities, and unique properties of being flexible, lightweight, low-cost, and environmentally friendly compared with current energy storage devices. In a common EC, carbon materials play an irreplaceable and principal role in its energy-storage performance. Up till now, most progress towards flexible ECs technologies has mostly benefited from the continuous development of carbon materials. As a result, in view of the dual remarkable highlights of ECs and carbon materials, a summary of recent research progress on carbon-based flexible EC electrode materials is presented in this review, including carbon fiber (CF, consisting of carbon microfiber-CMF and carbon nanofiber-CNF) networks, carbon nanotube (CNT) and graphene coatings, CNT and/or graphene papers (or films), and freestanding three-dimensional (3D) flexible carbon-based macroscopic architectures. Furthermore, some promising carbon materials for great potential applications in flexible ECs are introduced. Finally, the trends and challenges in the development of carbon-based electrode materials for flexible ECs and their smart applications are analyzed.

  10. New design of electric double layer capacitors with aqueous LiOH electrolyte as alternative to capacitor with KOH solution

    NASA Astrophysics Data System (ADS)

    Stepniak, Izabela; Ciszewski, Aleksander

    Activated carbon (AC) fiber cloths and a hydrophobic microporous polypropylene (PP) membrane, both modified with lithiated acetone oligomers, were used as electrodes and a separator in electric double layer capacitors (EDLCs) with aqueous lithium hydroxide (LiOH) as the electrolyte. Electrochemical characteristics of EDLCs were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge cycle tests and impedance spectroscopy (EIS), compared with a case of the capacitor with aqueous potassium hydroxide (KOH) as an electrolyte. As a result, the capacitor with LiOH aqueous solution and a modified separator and electrodes was found to exhibit higher specific capacitance, maximum energy stored and maximum power than that with KOH aqueous solution.

  11. General Atomics Pulsed Power Capacitor Comparison Test Report

    DTIC Science & Technology

    2015-07-01

    Comparison Test Report by Richard L Thomas Sensors and Electron Devices Directorate, ARL Approved for public release...mechanical stresses of these requirements inherently cause capacitance loss during the discharge of the capacitor under test. The US Army Research...

  12. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2014-01-01

    Time dependence of absorption voltages (V(sub abs)) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on V(sub abs)), cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on V(sub abs)), are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks.

  13. Improvement program for polycarbonate capacitors. [hermetically sealed, and ac wound

    NASA Technical Reports Server (NTRS)

    Bailey, R. R.; Waterman, K. D.

    1973-01-01

    Hermetically sealed, wound, AC, polycarbonate capacitors incorporating design improvements recommended in a previous study were designed and built. A 5000 hour, 400 Hz ac life test was conducted using 384 of these capacitors to verify the adequacy of the design improvements. The improvements incorporated in the capacitors designed for this program eliminated the major cause of failure found in the preceding work, termination failure. A failure cause not present in the previous test became significant in this test with capacitors built from one lot of polycarbonate film. The samples from this lot accounted for 25 percent of the total test complement. Analyses of failed samples showed that the film had an excessive solvent content. This solvent problem was found in 37 of the total 46 failures which occurred in this test. The other nine were random failures resulting from causes such as seal leaks, foreign particles, and possibly wrinkles.

  14. Compact 20-kiloampere pulse-forming-network capacitor bank

    NASA Technical Reports Server (NTRS)

    Posta, S. J.; Michels, C. J.

    1973-01-01

    Bank uses commercially available high-energy-density capacitors for energy storage and silicon-controlled rectifiers for switching. Low voltage design employing solid-state switching is utilized in lieu of conventional gas discharge switching.

  15. Shunt capacitor effect on electrical distribution system reliability

    NASA Astrophysics Data System (ADS)

    Sallam, Abdelhay A.; Desouky, Mohamed; Desouky, Hussien

    1994-03-01

    To improve the security & reliability of a distribution system, as much power as feasible must go through a given transmission line. This can be achieved by using shunt capacitors as compensators. These shunt capacitive compensators improve the load carrying capability of the line by controlling the reactive power flow. Consequently, the capacitor existence can not be ignored in evaluating system reliability. The paper applies the state-space method to calculate the reliability indices for compensated & uncompensated systems with different success criteria. The importance of using shunt capacitors to improve the level of distribution system reliability is illustrated in addition to their original function as reactive power controllers. Our procedure, based on a Markov process, is applied to a numerical example, and indicates that system reliability is improved when using shunt capacitors.

  16. Performance comparison: Aluminum electrolytic and solid tantalum capacitor

    NASA Technical Reports Server (NTRS)

    Hawthornthwaite, B. G.; Piper, J.; Holland, H. W.

    1981-01-01

    Several key electrical and environmental parameters of latest technology aluminum electrolytic and solid tantalum capacitors were evaluated in terms of price fluctuations of tantalum metal. Performance differences between solid tantalums and aluminum electrolytics are examined.

  17. Characteristics of Radio-Frequency Circuits Utilizing Ferroelectric Capacitors

    NASA Technical Reports Server (NTRS)

    Eskridge, Michael; Gui, Xiao; MacLeod, Todd; Ho, Fat D.

    2011-01-01

    Ferroelectric capacitors, most commonly used in memory circuits and variable components, were studied in simple analog radio-frequency circuits such as the RLC resonator and Colpitts oscillator. The goal was to characterize the RF circuits in terms of frequency of oscillation, gain, etc, using ferroelectric capacitors. Frequencies of oscillation of both circuits were measured and studied a more accurate resonant frequency can be obtained using the ferroelectric capacitors. Many experiments were conducted and data collected. A model to simulate the experimental results will be developed. Discrepancies in gain and frequency in these RF circuits when conventional capacitors are replaced with ferroelectric ones were studied. These results will enable circuit designers to anticipate the effects of using ferroelectric components in their radio- frequency applications.

  18. Fringe Capacitance of a Parallel-Plate Capacitor.

    ERIC Educational Resources Information Center

    Hale, D. P.

    1978-01-01

    Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)

  19. Barium titanate nanocomposite capacitor FY09 year end report.

    SciTech Connect

    Stevens, Tyler E.; DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William; Fellows, Benjamin D.

    2009-11-01

    This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.

  20. A Composite Capacitor/Inductor Assembly for Resonant Circuits

    NASA Astrophysics Data System (ADS)

    Hull, J. P.; Scholfield, D. W.

    2001-06-01

    Resonant structures are of interest due to their ability to produce oscillatory voltages in circuits. Past resonant structures have typically been designed using a lumped element capacitor for energy storage and a separate inductor. A composite capacitor/inductor assembly has been developed which merges the capacitance utilized for energy storage into the inductor, creating a consolidated electrical component. Composite capacitor/inductor assemblies are of interest due to the ability of these devices to produce resonant responses with one half the number of parts required by more traditional resonant structures. This composite capacitor/inductor could be utilized in applications of frequency band suppression or frequency band pass for frequencies in excess of 100 MHz, or where a resonant circuit is required to reside in an area of minimum space - such as a printed circuit board or an integrated circuit. The device and the mathematical treatment to predict the device's performance are described.