Science.gov

Sample records for capillaries critical glycerol

  1. Cryocrystallography in capillaries: critical glycerol concentrations and cooling rates

    PubMed Central

    Warkentin, Matthew; Stanislavskaia, Valentina; Hammes, Katherine; Thorne, Robert E.

    2008-01-01

    Capillary tubes have many advantages over multi-well plates for macromol­ecular crystal growth and handling, including the possibility of in situ structure determination. To obtain complete high-resolution X-ray data sets, cryopreservation protocols must be developed to prevent crystalline ice formation and preserve macromolecular crystal order. The minimum glycerol concentrations required to vitrify aqueous solutions during plunging into liquid nitrogen and liquid propane have been determined for capillary diameters from 3.3 mm to 150 µm. For the smallest diameter, the required glycerol concentrations are 30%(w/v) in nitrogen and 20%(w/v) in propane, corresponding to cooling rates of ∼800 and ∼7000 K s−1, respectively. These concentrations are much larger than are required in current best practice using crystals in loops or on microfabricated mounts. In additon, the relation between the minimum cooling rate for vitrification and glycerol concentration has been estimated; this relation is of fundamental importance in developing rational cryopreservation protocols. PMID:19529833

  2. Critical Velocity in Open Capillary Channel Flows

    NASA Technical Reports Server (NTRS)

    Rosendahl, Uwe; Dreyer, Michael E.; Rath, Hans J.; Motil, Brian; Singh, Bhim S. (Technical Monitor)

    2001-01-01

    We investigate forced liquid flows through open capillary channels with free surfaces experimentally. The experiments were performed under low gravity conditions in the Bremen Drop Tower and on board the sounding rocket TEXUS-37. Open capillary channels (vanes) are used in surface tension tanks to transport the propellant and to provide a flow path for the bubble-free liquid supply to the thrusters. Since the free surfaces can only withstand a certain pressure differential between the liquid and ambient, the flow rate in the channel is limited. The maximum flow rate is achieved when the surfaces collapse and gas is ingested into the outlet. Since experimental and theoretical data of this flow rate limitation is lacking, the safety factors for the application of vanes in surface tension tanks must be unnecessary high. The aim of the investigation is to determine the maximum liquid flow rate and the corresponding critical flow velocity. The characteristic nondimensional parameters, OHNESORGE number, and gap ratio, cover a wide range of usual vanes. For the theoretical approach a one-dimensional momentum balance was set up. The numerical solution yields the maximum volume flux and the position of the free surface in good agreement with the experiments.

  3. Critical Velocities in Open Capillary Flow

    NASA Technical Reports Server (NTRS)

    Dreyer, Michael; Langbein, Dieter; Rath, Hans J.

    1996-01-01

    This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.

  4. Separation and quantitation of milk whey proteins of close isoelectric points by on-line capillary isoelectric focusing--electrospray ionization mass spectrometry in glycerol-water media.

    PubMed

    Lecoeur, Marie; Gareil, Pierre; Varenne, Anne

    2010-11-12

    On-line coupling between CIEF and ESI/MS based on the use of bare fused-silica capillaries and glycerol-water media, recently developed in our laboratory, has been investigated for the separation of milk whey proteins that present close pI values. First, a new rinsing procedure, compatible with MS detection, has been developed to desorb these rather hydrophobic proteins (α-casein (α-CN), bovine serum albumin (BSA), lactoferrin (LF)) from the inner capillary wall and to avoid capillary blockages. Common hydrochloric acid washing solution was replaced by a multi-step sequence based on the use of TFA, ammonia and ethanol. To achieve the separation of major whey proteins (β-lactoglobulin A (β-LG A), β-lactoglobulin B (β-LG B), α-lactalbumin (α-LA) and BSA, which possess close pI values (4.5-5.35), CIEF parameters i.e. carrier ampholyte nature, capillary partial filling length with ampholyte/protein mixture and focusing time, have been optimized with respect to total analysis time, sensitivity and precision on pI determination. After optimization of sheath liquid composition (80:20 (v/v) methanol-water+1% HCOOH), quantitation of β-LG A, β-LG B, α-LA and BSA was performed. The limits of detection obtained from extracted ion current (EIC) and single ion monitoring (SIM) modes were in the 57-136 nM and 11-68 nM range, respectively. Finally, first results obtained from biological samples demonstrated the suitability of CIEF-MS as a potential alternative methodology to 2D-PAGE to diagnose milk protein allergies.

  5. Simultaneous determination of free and total glycerol in biodiesel by capillary electrophoresis using multiple short-end injection.

    PubMed

    Spudeit, Daniel Alfonso; Piovezan, Marcel; Dolzan, Maressa D; Vistuba, Jacqueline Pereira; Azevedo, Mônia Stremel; Vitali, Luciano; Leal Oliveira, Marcone Augusto; Oliveira Costa, Ana Carolina; Micke, Gustavo Amadeu

    2013-12-01

    A rapid method for the simultaneous determination of free glycerol (FG) and total glycerol (TG) in biodiesel by CE using a short-end multiple injection (SE/MI) configuration system is described. The sample preparation for FG involves the extraction of glycerol with water and for TG a saponification reaction is carried out followed by extraction as in the case of FG. The glycerol extracted in both cases is submitted to periodate oxidation and the iodate ions formed are measured on a CE-SE/MI system. The relevance of this study lies in the fact that no analytical procedure has been previously reported for the determination of TG (or of FG and TG simultaneously) by CE. The optimum conditions for the saponification/extraction process were 1.25% KOH and 25°C, with a time of only 5 min, and biodiesel mass in the range of 50.0-200.0 mg can be used. Multiple injections were performed hydrodynamically with negative pressure as follows: 50 mbar/3s (FG sample); 50 mbar/6s (electrolyte spacer); 50 mbar/3s (TG sample). The linear range obtained was 1.55-46.5 mg/L with R(2) > 0.99. The LOD and LOQ were 0.16 mg/L and 0.47 mg/L, respectively for TG. The method provides acceptable throughput for application in quality control and monitoring biodiesel synthesis process. In addition, it offers simple sample preparation (saponification process), it can be applied to a variety biodiesel samples (soybean, castor, and waste cooking oils) and it can be used for the determination of two key parameters related to the biodiesel quality with a fast separation (less than 30 s) using an optimized CE-SE/MI system.

  6. Chemometric experimental design based optimization techniques in capillary electrophoresis: a critical review of modern applications.

    PubMed

    Hanrahan, Grady; Montes, Ruthy; Gomez, Frank A

    2008-01-01

    A critical review of recent developments in the use of chemometric experimental design based optimization techniques in capillary electrophoresis applications is presented. Current advances have led to enhanced separation capabilities of a wide range of analytes in such areas as biological, environmental, food technology, pharmaceutical, and medical analysis. Significant developments in design, detection methodology and applications from the last 5 years (2002-2007) are reported. Furthermore, future perspectives in the use of chemometric methodology in capillary electrophoresis are considered.

  7. Rapid optimized separation of bromide in serum samples with capillary zone electrophoresis by using glycerol as additive to the background electrolyte.

    PubMed

    Pascali, Jennifer P; Liotta, Eloisa; Gottardo, Rossella; Bortolotti, Federica; Tagliaro, Franco

    2009-04-10

    After decades of neglect, bromide has recently been re-introduced in therapy as an effective anti-epileptic drug. The present paper describes the methodological optimization and validation of a method based on capillary zone electrophoresis for the rapid determination of bromide in serum using a high-viscosity buffer and a short capillary (10 cm). The optimized running buffer was composed of 90 mM sodium tetraborate, 10mM sodium chloride, pH 9.24 and 25% glycerol. The separation was carried out at 25 kV at a temperature of 20 degrees C. Detection was by direct UV absorption at 200 nm wavelength. The limit of detection (signal-to-noise ratio=5) in serum was 0.017 mM. The precision of the method was verified in blank serum samples spiked with bromide, obtaining intra-day and day-to-day tests, relative standard deviation values

  8. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol-3-phosphate (G3P) is an important metabolite that contributes to the growth and disease-related physiologies of prokaryotes, plants, animals and humans alike. Here we show that G3P serves as the inducer of an important form of broad-spectrum immunity in plants, termed systemic acquired resi...

  9. Multivariate optimization of capillary electrophoresis methods: a critical review.

    PubMed

    Orlandini, Serena; Gotti, Roberto; Furlanetto, Sandra

    2014-01-01

    In this article a review on the recent applications of multivariate techniques for optimization of electromigration methods, is presented. Papers published in the period from August 2007 to February 2013, have been taken into consideration. Upon a brief description of each of the involved CE operative modes, the characteristics of the chemometric strategies (type of design, factors and responses) applied to face a number of analytical challenges, are presented. Finally, a critical discussion, giving some practical advices and pointing out the most common issues involved in multivariate set-up of CE methods, is provided.

  10. Application of the string method to the study of critical nuclei in capillary condensation.

    PubMed

    Qiu, Chunyin; Qian, Tiezheng; Ren, Weiqing

    2008-10-21

    We adopt a continuum description for liquid-vapor phase transition in the framework of mean-field theory and use the string method to numerically investigate the critical nuclei for capillary condensation in a slit pore. This numerical approach allows us to determine the critical nuclei corresponding to saddle points of the grand potential function in which the chemical potential is given in the beginning. The string method locates the minimal energy path (MEP), which is the most probable transition pathway connecting two metastable/stable states in configuration space. From the MEP, the saddle point is determined and the corresponding energy barrier also obtained (for grand potential). Moreover, the MEP shows how the new phase (liquid) grows out of the old phase (vapor) along the most probable transition pathway, from the birth of a critical nucleus to its consequent expansion. Our calculations run from partial wetting to complete wetting with a variable strength of attractive wall potential. In the latter case, the string method presents a unified way for computing the critical nuclei, from film formation at solid surface to bulk condensation via liquid bridge. The present application of the string method to the numerical study of capillary condensation shows the great power of this method in evaluating the critical nuclei in various liquid-vapor phase transitions.

  11. Critical energy barrier for capillary condensation in mesopores: Hysteresis and reversibility

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Tatsumasa; Tanaka, Hideki; Miyahara, Minoru T.

    2016-04-01

    Capillary condensation in the regime of developing hysteresis occurs at a vapor pressure, Pcond, that is less than that of the vapor-like spinodal. This is because the energy barrier for the vapor-liquid transition from a metastable state at Pcond becomes equal to the energy fluctuation of the system; however, a detailed mechanism of the spontaneous transition has not been acquired even through extensive experimental and simulation studies. We therefore construct accurate atomistic silica mesopore models for MCM-41 and perform molecular simulations (gauge cell Monte Carlo and grand canonical Monte Carlo) for argon adsorption on the models at subcritical temperatures. A careful comparison between the simulation and experiment reveals that the energy barrier for the capillary condensation has a critical dimensionless value, Wc* = 0.175, which corresponds to the thermal fluctuation of the system and depends neither on the mesopore size nor on the temperature. We show that the critical energy barrier Wc* controls the capillary condensation pressure Pcond and also determines a boundary between the reversible condensation/evaporation regime and the developing hysteresis regime.

  12. Critical energy barrier for capillary condensation in mesopores: Hysteresis and reversibility.

    PubMed

    Hiratsuka, Tatsumasa; Tanaka, Hideki; Miyahara, Minoru T

    2016-04-28

    Capillary condensation in the regime of developing hysteresis occurs at a vapor pressure, Pcond, that is less than that of the vapor-like spinodal. This is because the energy barrier for the vapor-liquid transition from a metastable state at Pcond becomes equal to the energy fluctuation of the system; however, a detailed mechanism of the spontaneous transition has not been acquired even through extensive experimental and simulation studies. We therefore construct accurate atomistic silica mesopore models for MCM-41 and perform molecular simulations (gauge cell Monte Carlo and grand canonical Monte Carlo) for argon adsorption on the models at subcritical temperatures. A careful comparison between the simulation and experiment reveals that the energy barrier for the capillary condensation has a critical dimensionless value, Wc (*) = 0.175, which corresponds to the thermal fluctuation of the system and depends neither on the mesopore size nor on the temperature. We show that the critical energy barrier Wc (*) controls the capillary condensation pressure Pcond and also determines a boundary between the reversible condensation/evaporation regime and the developing hysteresis regime.

  13. Collective motion of macroscopic spheres floating on capillary ripples: Dynamic heterogeneity and dynamic criticality

    NASA Astrophysics Data System (ADS)

    Sanlı, Ceyda; Saitoh, Kuniyasu; Luding, Stefan; van der Meer, Devaraj

    2014-09-01

    When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We apply the methods developed to study dynamic heterogeneity and show that the typical time and length scales of the fluctuations due to rearrangements of observed particle groups significantly increase when the system approaches its largest experimentally accessible packing concentration. To connect the system to the dynamic criticality literature, we fit power laws to our results. The resultant critical exponents are consistent with those found in densely packed suspensions of colloids.

  14. Rapid determination of surfactant critical micelle concentrations using pressure-driven flow with capillary electrophoresis instrumentation.

    PubMed

    Stanley, F E; Warner, A M; Schneiderman, E; Stalcup, A M

    2009-11-20

    This work demonstrates a novel, convenient utilization of capillary electrophoresis (CE) instrumentation for the determination of critical micelle concentrations (CMCs). Solution viscosity differences across a range of surfactant concentrations were monitored by hydrodynamically forcing an analyte towards the detector. Upon reaching the surfactant's CMC value, migration times were observed to change drastically. CMC values for four commonly employed anionic surfactants were determined-sodium dodecyl sulfate: 8.1mM; sodium caprylate: 300 mM; sodium decanoate: 86 mM; sodium laurate: 30 mM; and found to be in excellent agreement with values previously reported in the literature. The technique was then applied to the less well-characterized nonionic surfactants poly(oxyethylene) 8 myristyl ether (CMC approximately 9 M), poly(oxyethylene) 8 decyl ether (CMC approximately 0.95 mM) and poly(oxyethylene) 4 lauryl ether.

  15. MR measurement of critical phase transition dynamics and supercritical fluid dynamics in capillary and porous media flow.

    PubMed

    Rassi, Erik M; Codd, Sarah L; Seymour, Joseph D

    2012-01-01

    Supercritical fluids (SCF) are useful solvents in green chemistry and oil recovery and are of great current interest in the context of carbon sequestration. Magnetic resonance techniques were applied to study near critical and supercritical dynamics for pump driven flow through a capillary and a packed bed porous media. Velocity maps and displacement propagators measure the dynamics of C(2)F(6) at pressures below, at, and above the critical pressure and at temperatures below and above the critical temperature. Displacement propagators were measured at various displacement observation times to quantify the time evolution of dynamics. In capillary flow, the critical phase transition fluid C(2)F(6) showed increased compressibility compared to the near critical gas and supercritical fluid. These flows exhibit large variations in buoyancy arising from large changes in density due to very small changes in temperature.

  16. Online Capillary IsoElectric Focusing-ElectroSpray Ionization Mass Spectrometry (CIEF-ESI MS) in Glycerol-Water Media for the Separation and Characterization of Hydrophilic and Hydrophobic Proteins.

    PubMed

    Mokaddem, Meriem; d'Orlyé, Fanny; Varenne, Anne

    2016-01-01

    Capillary isoelectric focusing (CIEF) is a high-resolution technique for the separation of ampholytes, such as proteins, according to their isoelectric point. CIEF coupled online with MS is regarded as a promising alternative to 2-D PAGE for fast proteome analysis with high-resolving capabilities and enhanced structural information without the drawbacks of conventional slab-gel electrophoresis. However, online coupling has been rarely described, as it presents some difficulties. A new methodology for the online coupling of CIEF with electrospray ionization mass spectrometry (ESI-MS) has been developed in glycerol-water media. This new integrated methodology provides a mean for the characterization of a large number of hydrophilic and hydrophobic proteins.

  17. Casimir amplitudes and capillary condensation of near-critical fluids between parallel plates: renormalized local functional theory.

    PubMed

    Okamoto, Ryuichi; Onuki, Akira

    2012-03-21

    We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ(∞). Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point T=T(c) (ca) slightly lower than the bulk critical temperature T(c) for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10-100 times at off-critical compositions near the capillary condensation line.

  18. Critical effect of pore characteristics on capillary infiltration in mesoporous films

    NASA Astrophysics Data System (ADS)

    Ceratti, D. R.; Faustini, M.; Sinturel, C.; Vayer, M.; Dahirel, V.; Jardat, M.; Grosso, D.

    2015-03-01

    Capillary phenomena governing the mass-transport (capillary filling, condensation/evaporation) has been experimentally investigated in around 20 different silica thin films exhibiting various porosities with pores dimension ranging from 2 to 200 nm. Films have been prepared by sol-gel chemistry combined with soft-templating approaches and controlled dip coating process. Environmental ellipsometric porosimetry combined with electronic microscopy were used to assess the porosity characteristics. Investigation of lateral capillary filling was performed by following the natural infiltration of water and ionic liquids at the edge of a sessile drop in open air or underneath a PDMS cover. The Washburn model was applied to the displacement of the liquid front within the films to deduce the kinetic constants. The role of the different capillary phenomena were discussed with respect to the porosity characteristics (porosity vol%, pore dimensions and constrictions). We show that correlation between capillary filling rate and pore dimensions is not straightforward. Generally, with a minimum of constrictions, faster filling is observed for larger pores. In the case of mesopores (<50 nm in diameter), the presence of bottle necks considerably slows down the infiltration rate. At such a small dimension, evaporation/capillary condensation dynamics, taking place at the meniscus inside the porosity, has to be considered to explain the transport mode. This fundamental study is of interest for applications involving liquids at the interface of mesoporous networks such as nanofluidics, purification, separation, water harvesting or heat transfer.

  19. Separation of poly(acrylic acid) salts according to topology using capillary electrophoresis in the critical conditions.

    PubMed

    Maniego, Alison R; Ang, Dale; Guillaneuf, Yohann; Lefay, Catherine; Gigmes, Didier; Aldrich-Wright, Janice R; Gaborieau, Marianne; Castignolles, Patrice

    2013-11-01

    Branching was detected in polyacrylates synthesised through radical polymerization via solution-state NMR, while inconsistencies have been reported for the determination of the molar mass of hydrophilic polyacrylates using aqueous-phase and organic-phase size-exclusion chromatography. In this work, poly(sodium acrylate)s, PNaAs, of various topologies were separated for the first time using free-solution capillary electrophoresis (CE). Free-solution CE does not separate the PNaAs by their molar mass, similarly to separations by liquid chromatography in the critical conditions, rather by different topologies (linear, star branched, and hyperbranched). The electrophoretic mobility of PNaAs increases as the degree of branching decreases. Separation is shown to be not only by the topology but also by the end groups as expected for a separation in the critical conditions: replacing a relatively bulky nitroxide end group with hydrogen atom yielded a higher electrophoretic mobility. This novel method, capillary electrophoresis in the critical conditions enabled, for the first time, the separation of hydrophilic polyacrylates according to their topology (branching) and their chain ends. This will allow meaningful and accurate characterization of their branched topologies as well as molar masses and progress in for advanced applications such as drug delivery or flocculation.

  20. Pore-scale modeling of Capillary Penetration of Wetting Liquid into 3D Fibrous Media: A Critical Examination of Equivalent Capillary Concept

    NASA Astrophysics Data System (ADS)

    Palakurthi, Nikhil Kumar; Ghia, Urmila; Comer, Ken

    2013-11-01

    Capillary penetration of liquid through fibrous porous media is important in many applications such as printing, drug delivery patches, sanitary wipes, and performance fabrics. Historically, capillary transport (with a distinct liquid propagating front) in porous media is modeled using capillary-bundle theory. However, it is not clear if the capillary model (Washburn equation) describes the fluid transport in porous media accurately, as it assumes uniformity of pore sizes in the porous medium. The present work investigates the limitations of the applicability of the capillary model by studying liquid penetration through virtual fibrous media with uniform and non-uniform pore-sizes. For the non-uniform-pore fibrous medium, the effective capillary radius of the fibrous medium was estimated from the pore-size distribution curve. Liquid penetration into the 3D virtual fibrous medium at micro-scale was simulated using OpenFOAM, and the numerical results were compared with the Washburn-equation capillary-model predictions. Preliminary results show that the Washburn equation over-predicts the height rise in the early stages (purely inertial and visco-inertial stages) of capillary transport.

  1. Critical comparison of extraction procedures for the capillary electrophoretic analysis of opiates in hair.

    PubMed

    de Lima, Elizabete C; da Silva, Clóvis L; Gauchée, Magnólia L N; Tavares, Marina F M

    2003-01-01

    This work presents a comparative evaluation of extraction procedures for the capillary analysis of seven opiates (meperidine, morphine, naloxone, tramadol, fentanyl, sufentanyl, and alfentanyl) in human hair. Pieces of hair (50-150 mg) were subjected to acidic hydrolysis (0.25 mmol L(-1) HCl at 45 degrees C, overnight) followed by pH adjustment and either liquid-liquid extraction (LLE) in hexane, petroleum ether, dichloromethane, and ethyl acetate solvents, or solid-phase extraction (SPE) in octadecyl, cyanopropyl, and aminopropyl bonded silica and cation exchange polymeric phases. Excellent recoveries of approximately 70% (naloxone and fentanyl and its analogues), 88% (meperidine), and ca. 100% (morphine and tramadol) were obtained using SPE in a M-fixed-mode cation exchange reversed-phase cartridge (Oasis MCX LP, Waters Corp., Milford, MA, U.S.A.), making this type of procedure eligible for novel clinical and forensic methodologies for hair analysis. The utility of the proposed extraction technique was demonstrated by the analysis of hair extracts from patients using morphine as part of their pain management protocol.

  2. Enzymatic production of glycerol acetate from glycerol.

    PubMed

    Oh, Seokhyeon; Park, Chulhwan

    2015-02-01

    In this study, we report the enzymatic production of glycerol acetate from glycerol and methyl acetate. Lipases are essential for the catalysis of this reaction. To find the optimum conditions for glycerol acetate production, sequential experiments were designed. Type of lipase, lipase concentration, molar ratio of reactants, reaction temperature and solvents were investigated for the optimum conversion of glycerol to glycerol acetate. As the result of lipase screening, Novozym 435 (Immobilized Candida antarctica lipase B) was turned out to be the optimal lipase for the reaction. Under the optimal conditions (2.5 g/L of Novozym 435, 1:40 molar ratio of glycerol to methyl acetate, 40 °C and tert-butanol as the solvent), glycerol acetate production was achieved in 95.00% conversion.

  3. Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins

    SciTech Connect

    Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

    2008-06-30

    Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text

  4. Wettability effects on fluid-fluid displacement in a capillary tube

    NASA Astrophysics Data System (ADS)

    Zhao, Benzhong; Pahlavan, Amir; Cueto-Felgueroso, Luis; Juanes, Ruben

    2016-11-01

    Fluid-fluid displacement in a capillary tube is a classical problem in fluid mechanics, and it serves as a simple, but important analogue to multiphase flow in porous media. Despite many experimental and modeling studies of this problem, several key phenomena remain poorly understood. Here we experimentally study the constant-rate displacement of glycerol by air in a capillary tube. By treating the inside of the capillary, we obtain two distinct wetting conditions. We visualize the dynamics of the fluid-fluid interface in high-resolution for a wide range of capillary numbers (Ca). At small Ca, the air/glycerol interface remains spherical, whose curvature varies continuously as a function of Ca. At large Ca, the invading air forms a finger that advances along the center of the tube, leaving behind the contact-line and a macroscopic film of glycerol on the wall. We find that both the critical Ca at which film formation occurs and the speed of the contact-line is strongly controlled by the wettability of the tube. We demonstrate that these salient features of the experiment can be reproduced by a phase-field model of the system.

  5. Capillary Hemangioma

    MedlinePlus

    ... Why do capillary hemangiomas on the eyelids cause vision problems? Capillary Hemangiomas of the eyelid can cause ... a capillary hemangioma in the eye socket cause vision problems? A capillary hemangioma in the eye socket ( ...

  6. Capillary sample

    MedlinePlus

    ... repeat the test with blood drawn from a vein. Alternative Names Blood sample - capillary; Fingerstick; Heelstick Images Phenylketonuria test Phenylketonuria test Capillary sample References Garza ...

  7. Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy

    USGS Publications Warehouse

    Pan, Z.; Chou, I.-Ming; Burruss, R.C.

    2009-01-01

    The advantages of using fused silica capillary reactor (FSCR) instead of conventional autoclave for studying chemical reactions at elevated pressure and temperature conditions were demonstrated in this study, including the allowance for visual observation under a microscope and in situ Raman spectroscopic characterization of polycarbonate and coexisting phases during hydrolysis in subcritical water. ?? 2009 The Royal Society of Chemistry.

  8. Glycerol combustion and emissions

    EPA Science Inventory

    With the growing capacity in biodiesel production and the resulting glut of the glycerol by-product, there is increasing interest in finding alternative uses for crude glycerol. One option may be to burn it locally for combined process heat and power, replacing fossil fuels and i...

  9. Insoluble and flexible silk films containing glycerol.

    PubMed

    Lu, Shenzhou; Wang, Xiaoqin; Lu, Qiang; Zhang, Xiaohui; Kluge, Jonathan A; Uppal, Neha; Omenetto, Fiorenzo; Kaplan, David L

    2010-01-11

    We directly prepared insoluble silk films by blending with glycerol and avoiding the use of organic solvents. The ability to blend a plasticizer like glycerol with a hydrophobic protein like silk and achieve stable material systems above a critical threshold of glycerol is an important new finding with importance for green chemistry approaches to new and more flexible silk-based biomaterials. The aqueous solubility, biocompatibility, and well-documented use of glycerol as a plasticizer with other biopolymers prompted its inclusion in silk fibroin solutions to assess impact on silk film behavior. Processing was performed in water rather than organic solvents to enhance the potential biocompatibility of these biomaterials. The films exhibited modified morphologies that could be controlled on the basis of the blend composition and also exhibited altered mechanical properties, such as improved elongation at break, when compared with pure silk fibroin films. Mechanistically, glycerol appears to replace water in silk fibroin chain hydration, resulting in the initial stabilization of helical structures in the films, as opposed to random coil or beta-sheet structures. The use of glycerol in combination with silk fibroin in materials processing expands the functional features attainable with this fibrous protein, and in particular, in the formation of more flexible films with potential utility in a range of biomaterial and device applications.

  10. Fermentation of xylose to glycerol by Rhizopus javanicus

    SciTech Connect

    Lu, Z.; Yang, C.W.; Tsao, G.T.

    1995-12-31

    Glycerol production from xylose fermentation using Rhizopus javanicus (ATCC 22581) has been investigated in shake flasks. The medium composition (xylose concentration, nitrogen sources), aeration rate, and temperature have been found to affect the accumulation and yield of glycerol. Some of these effects are explained in terms of the critical parameters, osmotic pressure, and dissolved oxygen levels in the medium. Relatively high glycerol yields and concentrations have been obtained at high sugar concentration with high level of aeration at room temperature. The addition of polyethylene glycol or sulfite can improve the yield and accumulation of glycerol.

  11. Critical aspects of analysis of Micrococcus luteus, Neisseria cinerea, and Pseudomonas fluorescens by means of capillary electrophoresis.

    PubMed

    Hoerr, Verena; Stich, August; Holzgrabe, Ulrike

    2004-10-01

    Within the frame of our study we investigated Microccocus luteus, Neisseria cinerea, and Pseudomonas fluorescens by means of capillary zone electrophoresis (CZE). They form chains and clusters on a different scale, which can be reflected in the electropherograms. A low buffer concentration of Tris-borate and Na2EDTA containing a polymeric matrix of 0.0125% poly(ethylene) oxide (PEO) was used. Key factors were the standardization and optimization of CE conditions, buffer solution, and pretreatment of bacterial samples, which are not transferable to different bacterial strains, in general. The different compositions of the cell wall of on the one hand Gram-positive (M. luteus) and Gram-negative (N. cinerea) cocci and on the other hand Gram-negative, rod-shaped bacteria (P. fluorescens), are probably responsible for the different pretreatment conditions.

  12. The generation of gravity-capillary solitary waves by a pressure source moving at a trans-critical speed

    NASA Astrophysics Data System (ADS)

    Masnadi, Naeem; Duncan, James H.

    2017-01-01

    The unsteady response of a water free surface to a localized pressure source moving at constant speed $U$ in the range $0.95c_\\mathrm{min} \\lesssim U \\leq 1.02 c_\\mathrm{min}$, where $c_\\mathrm{min}$ is the minimum phase speed of linear gravity-capillary waves in deep water, is investigated through experiments and numerical simulations. This unsteady response state, which consists of a V-shaped pattern behind the source and features periodic shedding of pairs of depressions from the tips of the V, was first observed qualitatively by Diorio et al. (Phys. Rev. Let., 103, 214502, 2009) and called state III. In the present investigation, cinematic shadowgraph and refraction-based techniques are utilized to measure the temporal evolution of the free surface deformation pattern downstream of the source as it moves along a towing tank, while numerical simulations of the model equation described by Cho et al. (J. Fluid Mech., 672, 288-306, 2011) are used to extend the experimental results over longer times than are possible in the experiments. From the experiments, it is found that the speed-amplitude characteristics and the shape of the depressions are nearly the same as those of the freely propagating gravity-capillary lumps of inviscid potential theory. The decay rate of the depressions is measured from their height-time characteristics, which are well fitted by an exponential decay law with an order 1 decay constant. It is found that the shedding period of the depression pairs decreases with increasing source strength and speed. As the source speed approaches $c_\\mathrm{min}$, this period tends to about 1~s for all source magnitudes. At the low-speed boundary of state III, a new response with unsteady asymmetric shedding of depressions is found. This response is also predicted by the model equation.

  13. Glycerol-induced hyperhydration

    NASA Technical Reports Server (NTRS)

    Riedesel, Marvin L.; Lyons, Timothy P.; Mcnamara, M. Colleen

    1991-01-01

    Maintenance of euhydration is essential for maximum work performance. Environments which induce hypohydration reduce plasma volume and cardiovascular performance progressively declines as does work capacity. Hyperhydration prior to exposure to dehydrating environments appears to be a potential countermeasure to the debilitating effects of hypohydration. The extravascular fluid space, being the largest fluid compartment in the body, is the most logical space by which significant hyperhydration can be accomplished. Volume and osmotic receptors in the vascular space result in physiological responses which counteract hyperhydration. Our hypothesis is that glycerol-induced hyperhydration (GIH) can accomplish extravascular fluid expansion because of the high solubility of glycerol in lipid and aqueous media. A hypertonic solution of glycerol is rapidly absorbed from the gastrointestinal tract, results in mild increases in plasma osmolality and is distributed to 65 percent of the body mass. A large volume of water ingested within minutes after glycerol intake results in increased total body water because of the osmotic action and distribution of glycerol. The resulting expanded extravascular fluid space can act as a reservoir to maintain plasma volume during exposure to dehydrating environments. The fluid shifts associated with exposure to microgravity result in increased urine production and is another example of an environment which induces hypohydration. Our goal is to demonstrate that GIH will facilitate maintenance of euhydration and cardiovascular performance during space flight and upon return to a 1 g environment.

  14. Dynamical modeling of liver Aquaporin-9 expression and glycerol permeability in hepatic glucose metabolism.

    PubMed

    Gena, Patrizia; Buono, Nicoletta Del; D'Abbicco, Marcello; Mastrodonato, Maria; Berardi, Marco; Svelto, Maria; Lopez, Luciano; Calamita, Giuseppe

    2017-01-01

    Liver is crucial in the homeostasis of glycerol, an important metabolic intermediate. Plasma glycerol is imported by hepatocytes mainly through Aquaporin-9 (AQP9), an aquaglyceroporin channel negatively regulated by insulin in rodents. AQP9 is of critical importance in glycerol metabolism since hepatic glycerol utilization is rate-limited at the hepatocyte membrane permeation step. Glycerol kinase catalyzes the initial step for the conversion of the imported glycerol into glycerol-3-phosphate, a major substrate for de novo synthesis of glucose (gluconeogenesis) and/or triacyglycerols (lipogenesis). A model addressing the glucose-insulin system to describe the hepatic glycerol import and metabolism and the correlation with the glucose homeostasis is lacking so far. Here we consider a system of first-order ordinary differential equations delineating the relevance of hepatocyte AQP9 in liver glycerol permeability. Assuming the hepatic glycerol permeability as depending on the protein levels of AQP9, a mathematical function is designed describing the time course of the involvement of AQP9 in mouse hepatic glycerol metabolism in different nutritional states. The resulting theoretical relationship is derived fitting experimental data obtained with murine models at the fed, fasted or re-fed condition. While providing useful insights into the dynamics of liver AQP9 involvement in male rodent glycerol homeostasis our model may be adapted to the human liver serving as an important module of a whole body-model of the glucose metabolism both in health and metabolic diseases.

  15. Capillary electrophoresis.

    PubMed

    Compton, S W; Brownlee, R G

    1988-05-01

    While capillary electrophoresis, or historically related techniques, have been used for over a century, and recognition of the value of this separation methodology has certainly grown rapidly in the past few years, the technique has generally been used by analytical chemists, particularly in Europe and Japan, and small groups of researchers in the United States. Many of the basic instrumentation problems have been solved only relatively recently, and researchers using capillary electrophoresis are now turning their attention to studying specific applications which demonstrate the potential versatility of this electrophoretic technique. The appearance of standardized commercial instrumentation is imminent. With the availability of such technology, capillary electrophoresis will no longer be an academic curiosity, but rather a tool with the potential for routine separations of diverse samples of interest to analyst, researcher, and clinician.

  16. Capillary ratchet: Hydrodynamics of capillary feeding in shorebirds

    NASA Astrophysics Data System (ADS)

    Prakash, Manu; Quere, David; Bush, John

    2008-03-01

    Bill morphologies are highly specialized to particular foraging strategies in birds, as is apparent from the large diversity of beak shapes observed in nature. Here we present an experimental and analytical study of capillary feeding in shorebirds. We highlight the critical role of contact angle hysteresis in capillary feeding. Our study provides a simple physical rationalization for the observation of multiple mandibular spreading cycles in feeding, necessary to overcome contact line resistance. We also find a unique geometrical optima in beak opening and closing angles for the most efficient drop transport. This capillary ratchet mechanism may also find applications in micro scale fluid transport, such as valveless pumping of fluid drops.

  17. Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde.

    PubMed Central

    Slininger, P J; Bothast, R J

    1985-01-01

    When cells of Klebsiella pneumoniae NRRL B-199 (ATCC 8724) were grown aerobically on a rich glycerol medium and then suspended in buffer supplemented with semicarbazide and glycerol, aerobic conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA) ensued. Depending on conditions, 0.38 to 0.67 g of 3-HPA were formed per gram of glycerol consumed. This means that up to 83.8% of the carbon invested as glycerol could potentially be recovered as the target product, 3-HPA. Production of 3-HPA was sensitive to the age of cells harvested for resuspension and was nonexistent if cells were cultivated on glucose instead of glycerol as the sole carbon source. Compared with 24- and 72-h cells, 48-h cells produced 3-HPA at the highest rate and with the greatest yield. The cell biomass concentration present during the fermentation was never particularly critical to the 3-HPA yield, but initial fermentation rates and 3-HPA accumulation displayed a linear dependence on biomass concentration that faded when biomass exceeded 3 g/liter. Fermentation performance was a function of temperature, and an optimum initial specific 3-HPA productivity occurred at 32 degrees C, although the overall 3-HPA yield increased continuously within the 25 to 37 degrees C range studied. The pH optimum based on fermentation rate was different from that based on overall yield; 8 versus 7, respectively. Initial glycerol concentrations in the 20 to 50 g/liter range optimized initial 3-HPA productivity and yield. PMID:3911907

  18. Optimizing aerobic conversion of glycerol to 3-hydroxypropionaldehyde

    SciTech Connect

    Slininger, P.J.; Bothast, R.J.

    1985-12-01

    Chemical oxidation of 3-hydroxypropionaldehyde (3-HPA) leads to acrylic acid, an industrially important polymerizable monomer currently derived from petroleum. As the availability of petroleum declines, 3-HPA may become attractive as a product to be obtained through fermentation of glycerol, a renewable resource. When cells of Klebsiella pneumoniae NRRL B-199 (ATCC 8724) were grown aerobically on a rich glycerol medium and then suspended in buffer supplemented with semicarbazide and glycerol, aerobic conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA) ensued. Depending on conditions, 0.38 to 0.67 g of 3-HPA were formed per gram of glycerol consumed. This means that up to 83.8% of the carbon invested as glycerol could potentially be recovered as the target product, 3-HPA. Production of 3-HPA was sensitive to the age of cells harvested for resuspension and was nonexistent if cells were cultivated on glucose instead of glycerol as the sole carbon source. Compared with 24- and 72-h cells, 48-h cells produced 3-HPA at the highest rate and with the greatest yield. The cell biomass concentration present during the fermentation was never particularly critical to the 3-HPA yield, but initial fermentation rates and 3-HPA accumulation displayed a linear dependence on biomass concentration that faded when biomass exceeded 3 g/liter. Fermentation performance was a function of temperature, and an optimum initial specific 3-HPA productivity occurred at 32/sup 0/C, although the overall 3-HPA yield increased continuously within the 25 to 37/sup 0/C range studied. The pH optimum based on fermentation rate was different from that based on overall yield; 8 versus 7, respectively. Initial glycerol concentrations in the 20 to 50 g/liter range optimized initial 3-HPA productivity and yield.

  19. Flavor impacts of glycerol in the processing of yeast fermented beverages: a review.

    PubMed

    Zhao, Xiangdong; Procopio, Susanne; Becker, Thomas

    2015-12-01

    Glycerol contributes to the beverage body and fullness. Moreover, it also influences the flavor intensity. As a major byproduct, glycerol not only serves critical roles in yeast osmoregulation and redox balancing, but also acts as the carbon competitor against ethanol in alcoholic fermentation. Therefore, increasing glycerol yield benefits both the flavor and ethanol reduction for the fermented beverages. Glycerol yield has been elevated either by fermentation optimization or by yeast genetic modification. The fermentation optimizations reached maximum 14 g/L glycerol through screening yeast strains and optimizing fermentation parameters. Meanwhile the yeast overexpressing GPD1 (encoding glycerol-3-phosphate dehydrogenase) produced up to 6 folds more glycerol for beer and wine. Except for glycerol improvement, the genetically modified yeasts accumulated dramatically undesirable compounds such as acetaldehyde, acetate and acetoin which are detrimental for beverage flavor. In comparison, the natural high glycerol producers showed strain-specific manner on the yeast-derived aroma compounds like volatile acids, fusel alcohols, esters, and aldehydes. Temperature, sugar concentration, nitrogen composition, oxygen and pH-value, which influence glycerol biosynthesis, also obtained various effects on the production of aromatic compounds. In the current review, we firstly deliberate the organoleptic contributions of glycerol for fermented beverages. Furthermore, glycerol optimization strategies are discussed regarding to the yield improvement, the genes expressions, the overall flavor impacts and the feasibilities in beverage applications. Lastly, for improving beverage flavor by glycerol optimization, a high-throughput platform is proposed to increase the screening capacity of yeast strains and parameters in the processing of fermented beverages.

  20. Capillaroscopy and the measurement of capillary pressure

    PubMed Central

    Shore, Angela C

    2000-01-01

    Capillaries play a critical role in cardiovascular function as the point of exchange of nutrients and waste products between the tissues and circulation. Studies of capillary function in man are limited by access to the vascular bed. However, skin capillaries can readily be studied by the technique of capillaroscopy which enables the investigator to assess morphology, density and blood flow velocity. It is also possible to estimate capillary pressure by direct cannulation using glass micropipettes. This review will describe the techniques used to make these assessments and will outline some of the changes that are seen in health and disease. PMID:11136289

  1. On the response of a water surface to a surface pressure source moving at trans-critical gravity-capillary wave speeds

    NASA Astrophysics Data System (ADS)

    Masnadi, Naeem; Cho, Yeunwoo; Duncan, James H.; Akylas, Triantaphyllos

    2015-11-01

    The non-linear response of a water free surface to a pressure source moving at speeds near the minimum speed of linear gravity-capillary waves (Cmin ~ 23 cm/s) is investigated with experiments and theory. In the experiments, waves are generated by a vertically oriented air-jet that moves at a constant speed over the water surface in a long tank. The 3-D surface shape behind the air-jet is measured using a cinematic refraction-based technique combined with an LIF technique. At towing speeds just below Cmin, an unsteady pattern is formed where localized depressions periodically appear in pairs and move away from the source along the arms of a downstream V-shaped pattern. This behavior is analogous to the periodic shedding of solitary waves upstream of a source moving at the maximum wave speed in shallow water. The gravity-capillary depressions are rapidly damped by viscosity and their speed-amplitude characteristics closely match those from inviscid calculations of gravity-capillary lumps. The shedding frequency of the lumps in the present experiments increases with both increasing towing speed and air-flow rate. Predictions of this behavior using a model equation that incorporates damping and a quadratic nonlinearity are in good agreement with the experiments. The partial support of the National Science Foundation under grant OCE0751853 is gratefully acknowledged.

  2. Characterization of crude glycerol from biodiesel plants.

    PubMed

    Hu, Shengjun; Luo, Xiaolan; Wan, Caixia; Li, Yebo

    2012-06-13

    Characterization of crude glycerol is very important to its value-added conversion. In this study, the physical and chemical properties of five biodiesel-derived crude glycerol samples were determined. Three methods, including iodometric-periodic acid method, high performance liquid chromatography (HPLC), and gas chromatography (GC), were shown to be suitable for the determination of glycerol content in crude glycerol. The compositional analysis of crude glycerol was successfully achieved by crude glycerol fractionation and characterization of the obtained fractions (aqueous and organic) using titrimetric, HPLC, and GC analyses. The aqueous fraction consisted mainly of glycerol, methanol, and water, while the organic fraction contained fatty acid methyl esters (FAMEs), free fatty acids (FFAs), and glycerides. Despite the wide variations in the proportion of their components, all raw crude glycerol samples were shown to contain glycerol, soap, methanol, FAMEs, water, glycerides, FFAs, and ash.

  3. Glycerol production of various strains of saccharomyces

    SciTech Connect

    Radler, F.; Schuetz, H.

    1982-01-01

    The quantity of glycerol as principal by-product of the alcoholic fermentation depends to a large extent on the yeast strain. Different strains of Saccharomyces cerevisiae were found to form amounts of glycerol varying between 4.2 to 10.4 g/L. The formation of glycerol is regarded as a result of the competition between alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase that compete for the reduced coenzyme NADH/sub 2/. High and low glycerol forming yeast strains showed large differences in the activity of glycerol-3-phosphate dehydrogenase and only small variation in the activity of alcohol dehydrogenase. The total amount of glycerol formed was also influenced by amino acids. In thiamine deficient media a decrease in glycerol formation was observed. Experiments indicate a correlation between the formation of acetaldehyde and glycerol and the production of cell mass that may be of practical interest. (Refs. 12).

  4. Capillary wave measurements on helically-supported capillary channels

    NASA Astrophysics Data System (ADS)

    Chandurwala, Fahim; Thiessen, David

    2010-10-01

    NASA is considering power generation by the Rankine cycle to save weight on long-duration manned missions to the moon or Mars. Phase separation technology is critical to this process in microgravity. Arrays of capillary channels might be useful for filtering liquid drops from a flowing vapor. The efficiency of droplet capture by a helically-supported capillary channel is being studied. A droplet impinging on the channel launches capillary waves that propagate down the channel helping to dissipate some of the drop's kinetic energy. High-speed video of the channel combined with image processing allows for measurement of the amplitude and speed of the wave packets. Increasing the pitch of the support structure decreases the wave speed. An understanding of the dynamic response of the channel to drop impact is a first step in predicting drop-capture efficiency.

  5. Glycerol inhibition of ruminal lipolysis in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supplemental glycerol inhibits rumen lipolysis, a prerequisite for rumen biohydrogenation, which is responsible for the saturation of dietary fatty acids consumed by ruminant animals. Feeding excess glycerol, however, adversely affects dry matter digestibility. To more clearly define the effect of...

  6. Production of glycerol by Hansenula anomala

    SciTech Connect

    Parekh, S.R.; Pandey, N.K.

    1985-07-01

    Production of glycerol by Hansenula anomala in molasses-corn steep liquor based media was studied. The accumulation and yield of glycerol was dependent on the medium composition and aeration rate; pH control did not affect the yield. Intermittent addition of sugar during fermentation resulted in significant increase in production of glycerol. 13 references.

  7. Determination of dihydroxyacetone and glycerol in fermentation process by GC after n-methylimidazole catalyzed acetylation.

    PubMed

    Wu, Jian; Li, Ming-Hua; Lin, Jin-Ping; Wei, Dong-Zhi

    2011-05-01

    A gas chromatographic method that accurately measures glycerol and dihydroxyacetone from a fermentation broth is described in this paper. The method incorporates a sample derivatization reaction using n-methylimidazole as catalyst in the presence of acetic anhydride. Resulting derivatives are separated on a DB-5 capillary column and flame ionization detector. Results show that 10 μL n-methylimidazole and 75 μL acetic anhydride are sufficient to complete the acetylation for glycerol and dihydroxyacetone at room temperature for 5 min. The present method exhibits good linearity at a concentration range of 1-100 g/L with excellent regression (R(2) > 0.9997). The limits of detection are 0.025 and 0.013 g/L for dihydroxyacetone and glycerol, respectively. The method has been successfully applied to the monitoring and control of the fermentation process, and recoveries are in the range of 95.5-98.8% with relative standard deviations below 1%.

  8. Experimental investigation of charged liquid jet efflux from a capillary

    NASA Astrophysics Data System (ADS)

    Zhakin, A. I.; Belov, P. A.; Kuz'ko, A. E.

    2013-03-01

    The shapes and electrical characteristics of charged liquid (water, ethanol, glycerol, castor oil) jets emitted from a metal capillary have been experimentally studied depending on the applied high voltage. A map of efflux regimes in the flow velocity-applied voltage coordinates is constructed for water. The effects of medium viscosity, surface tension, and charge relaxation time on the laws of jet efflux are analyzed.

  9. Mathematical modeling of glycerol biotransformation

    NASA Astrophysics Data System (ADS)

    Popova-Krumova, Petya; Yankova, Sofia; Ilieva, Biliana

    2013-12-01

    A method for mathematical modeling of glycerol biotransformation by Klebsiella oxytoca is presented. Glycerol is a renewable resource for it is formed as a by-product during biodiesel production. Because of its large volume production, it seems to be a good idea to develop a technology that converts this waste into products of high value (1, 3-Propanediol; 2, 3-Butanediol). The kinetic model of this process consists of many equations and parameters. The minimization of the least square function will be used for model parameters identification. In cases of parameters identification in multiparameter models the minimization of the least square function is very difficult because it is multiextremal. This is the main problem in the multiextremal function minimization which will be solved on the base a hierarchical approach, using a polynomial approximation of the experimental data.

  10. Bacterial motion in narrow capillaries

    PubMed Central

    Ping, Liyan; Wasnik, Vaibhav; Emberly, Eldon

    2014-01-01

    Motile bacteria often have to pass through small tortuous pores in soil or tissue of higher organisms. However, their motion in this prevalent type of niche is not fully understood. Here, we modeled it with narrow glass capillaries and identified a critical radius (Rc) for bacterial motion. Near the surface of capillaries narrower than that, the swimming trajectories are helices. In larger capillaries, they swim in distorted circles. Under non-slip condition, the peritrichous Escherichia coli swam in left-handed helices with an Rc of ∼10 μm near glass surface. However, slipping could occur in the fast monotrichous Pseudomonas fluorescens, when a speed threshold was exceeded, and thus both left-handed and right-handed helices were executed in glass capillaries. In the natural non-cylindrical pores, the near-surface trajectories would be spirals and twisted loops. Engaging in such motions reduces the bacterial migration rate. With a given pore size, the run length and the tumbling angle of the bacterium determine the probability and duration of their near-surface motion. Shear flow and chemotaxis potentially enhance it. Based on this observation, the puzzling previous observations on bacterial migration in porous environments can be interpreted. PMID:25764548

  11. Effect of water polyamorphism on the molecular vibrations of glycerol in its glassy aqueous solutions.

    PubMed

    Suzuki, Yoshiharu; Mishima, Osamu

    2016-07-14

    A glassy dilute glycerol-water solution undergoes a mutual polyamorphic transition relating to the transition between high- and low-density amorphous ices of solvent water. The polyamorphic transition behavior depends on the glycerol concentration, indicating that the glycerol affects the water polyamorphism. Here, we used the glassy dilute glycerol-water solution of the solute molar fraction of 0.07 and examined the effect of the polyamorphic change in solvent water on the molecular vibrations of glycerol via Raman spectroscopy. It is found that the molecular vibration of glycerol in high-density liquid like solvent water is different from that in the low-density liquid like solvent water and that the change in the molecular vibration of glycerol is synchronized with the polyamorphic transition of solvent water. The dynamical change of the solute molecule relates to the polyamorphic state of solvent water. This result suggests that the polyamorphic fluctuation of water structure emanated from the presumed liquid-liquid critical point plays an important role for the function of aqueous solution under an ambient condition such as the conformational stability of solute, the functional expression of solute, and so on.

  12. Effect of water polyamorphism on the molecular vibrations of glycerol in its glassy aqueous solutions

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshiharu; Mishima, Osamu

    2016-07-01

    A glassy dilute glycerol-water solution undergoes a mutual polyamorphic transition relating to the transition between high- and low-density amorphous ices of solvent water. The polyamorphic transition behavior depends on the glycerol concentration, indicating that the glycerol affects the water polyamorphism. Here, we used the glassy dilute glycerol-water solution of the solute molar fraction of 0.07 and examined the effect of the polyamorphic change in solvent water on the molecular vibrations of glycerol via Raman spectroscopy. It is found that the molecular vibration of glycerol in high-density liquid like solvent water is different from that in the low-density liquid like solvent water and that the change in the molecular vibration of glycerol is synchronized with the polyamorphic transition of solvent water. The dynamical change of the solute molecule relates to the polyamorphic state of solvent water. This result suggests that the polyamorphic fluctuation of water structure emanated from the presumed liquid-liquid critical point plays an important role for the function of aqueous solution under an ambient condition such as the conformational stability of solute, the functional expression of solute, and so on.

  13. Glycerol-3-phosphatase of Corynebacterium glutamicum.

    PubMed

    Lindner, Steffen N; Meiswinkel, Tobias M; Panhorst, Maren; Youn, Jung-Won; Wiefel, Lars; Wendisch, Volker F

    2012-06-15

    Formation of glycerol as by-product of amino acid production by Corynebacterium glutamicum has been observed under certain conditions, but the enzyme(s) involved in its synthesis from glycerol-3-phosphate were not known. It was shown here that cg1700 encodes an enzyme active as a glycerol-3-phosphatase (GPP) hydrolyzing glycerol-3-phosphate to inorganic phosphate and glycerol. GPP was found to be active as a homodimer. The enzyme preferred conditions of neutral pH and requires Mg²⁺ or Mn²⁺ for its activity. GPP dephosphorylated both L- and D-glycerol-3-phosphate with a preference for the D-enantiomer. The maximal activity of GPP was estimated to be 31.1 and 1.7 U mg⁻¹ with K(M) values of 3.8 and 2.9 mM for DL- and L-glycerol-3-phosphate, respectively. For physiological analysis a gpp deletion mutant was constructed and shown to lack the ability to produce detectable glycerol concentrations. Vice versa, gpp overexpression increased glycerol accumulation during growth in fructose minimal medium. It has been demonstrated previously that intracellular accumulation of glycerol-3-phosphate is growth inhibitory as shown for a recombinant C. glutamicum strain overproducing glycerokinase and glycerol facilitator genes from E. coli in media containing glycerol. In this strain, overexpression of gpp restored growth in the presence of glycerol as intracellular glycerol-3-phosphate concentrations were reduced to wild-type levels. In C. glutamicum wild type, GPP was shown to be involved in utilization of DL-glycerol-3-phosphate as source of phosphorus, since growth with DL-glycerol-3-phosphate as sole phosphorus source was reduced in the gpp deletion strain whereas it was accelerated upon gpp overexpression. As GPP homologues were found to be encoded in the genomes of many other bacteria, the gpp homologues of Escherichia coli (b2293) and Bacillus subtilis (BSU09240, BSU34970) as well as gpp1 from the plant Arabidosis thaliana were overexpressed in E. coli MG1655 and

  14. Enhancing biological phosphorus removal with glycerol.

    PubMed

    Yuan, Q; Sparling, R; Lagasse, P; Lee, Y M; Taniguchi, D; Oleszkiewicz, J A

    2010-01-01

    An enhanced biological phosphorus removal process (EBPR) was successfully operated in presence of acetate. When glycerol was substituted for acetate in the feed the EBPR process failed. Subsequently waste activated sludge (WAS) from the reactor was removed to an off-line fermenter. The same amount of glycerol was added to the WAS fermenter which led to significant volatile fatty acids (VFA) production. By supplying the system with the VFA-enriched supernatant of the fermentate, biological phosphorus removal was enhanced. It was concluded that, if glycerol was to be used as an external carbon source in EBPR, the effective approach was to ferment glycerol with waste activated sludge.

  15. Calibrating the glycerol dialkyl glycerol tetraether temperature signal in speleothems

    NASA Astrophysics Data System (ADS)

    Blyth, Alison J.; Schouten, Stefan

    2013-05-01

    Palaeotemperature proxies based on glycerol dialkyl glycerol tetraethers (GDGTs) lipids have been established for marine and lacustrine environments, but there has been relatively little study of their application in speleothems. In this study we analyse the GDGT content of 33 speleothem samples from 16 different sites around the globe, and test whether proxies based on isoprenoid tetraethers (TEX86) or branched tetraethers (MBT/CBT) are correlated with measured surface and cave mean annual air temperature (MAT). The results show that the TEX86 has a strong relationship with measured temperature (r2 = 0.78, standard error of the estimate 2.3 °C, when calibrated with surface MAT). Furthermore, the MBT/CBT also showed a significant relationship with temperature (r2 = 0.73, standard error of the estimate 2.7 °C, when calibrated with surface MAT). Some issues remain requiring future work, in particular the development of a larger calibration sample set with measured cave temperature data, and the investigation of controls other than temperature on GDGT distribution, but overall the results indicate that GDGT based proxies derived from speleothems may be highly viable new methods for reconstructing continental palaeotemperatures.

  16. Multiple capillary biochemical analyzer

    DOEpatents

    Dovichi, Norman J.; Zhang, Jian Z.

    1995-01-01

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibres to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands.

  17. Multiple capillary biochemical analyzer

    DOEpatents

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  18. Esters of oligo-(glycerol carbonate-glycerol): New biobased oligomeric surfactants.

    PubMed

    Holmiere, Sébastien; Valentin, Romain; Maréchal, Philippe; Mouloungui, Zéphirin

    2017-02-01

    Glycerol carbonate is one of the most potentially multifunction glycerol-derived compounds. Glycerol is an important by-product of the oleochemical industry. The oligomerization of glycerol carbonate, assisted by the glycerol, results in the production of polyhydroxylated oligomers rich in linear carbonate groups. The polar moieties of these oligomers (Mw<1000Da) were supplied by glycerol and glycerol carbonate rather than ethylene oxide as in most commercial surfactants. The insertion of linear carbonate groups into the glycerol-based skeleton rendered the oligomers amphiphilic, resulting in a decrease in air/water surface tension to 57mN/m. We improved the physical and chemical properties of the oligomers, by altering the type of acylation reaction and the nature of the acyl donor. The polar head is constituted of homo-oligomers and hetero-oligomers. Homo-oligomers are oligoglycerol and/or oligocarbonate, hetero-oligomers are oligo(glycerol-glycerol carbonate). Coprah oligoesters had the best surfactant properties (CMC<1mg/mL, πcmc<30mN/m), outperforming molecules of fossil origin, such as ethylene glycol monododecyl ether, glycol ethers and fatty acid esters of sorbitan polyethoxylates. The self-assembling properties of oligocarbonate esters were highlighted by their ability to stabilize inverse and multiple emulsions. The oligo-(glycerol carbonate-glycerol ether) with relatively low molecular weights showed properties of relatively high-molecular weight molecules, and constitute a viable "green" alternative to ethoxylated surfactants.

  19. Characterising Microstructured Materials Using a Capillary Rheometer

    NASA Astrophysics Data System (ADS)

    Hicks, Christopher I.; See, Howard; Arabo, Emad Y. M.

    2008-07-01

    A parallel plate and capillary rheometer have been used to rheologically characterize an Australian hard wheat flour-water dough over an extensive range of shear rates (10-3-104 s-1). Torsional measurements showed that the shear viscosity of dough increased with strain to a maximum value then decreased, suggesting a breakdown of the dough structure. This was consistent with other published data on doughs. Capillary experiments revealed the shear thinning behavior of dough, which was described by a power-law model. The wall slip behavior of dough was examined, revealing a critical shear stress at which slip occurs for a 1 mm diameter capillary. The capillary data was best linked to the torsional data at low strain values (˜0.1) as expected given the nature of sampling in the two rheometers.

  20. Intranasal lobular capillary haemangioma

    PubMed Central

    Nayak, Dipak Ranjan; Bhandarkar, Ajay M; Shivamurthy, Archana; Joy, Jasmi

    2014-01-01

    Lobular capillary haemangioma (LCH) is a benign proliferation of capillaries with a characteristic lobular architecture on microscopy; it has an affinity for mucous membrane and skin of the head and neck. It is extremely rare in the nasal cavity. We present the case of a 45-year-old man who presented with epistaxis without any predisposing factors, which was diagnosed as lobular capillary haemangioma. PMID:25304675

  1. Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol.

    PubMed

    Chen, Zhen; Liu, Dehua

    2016-01-01

    As an inevitable by-product of the biofuel industry, glycerol is becoming an attractive feedstock for biorefinery due to its abundance, low price and high degree of reduction. Converting crude glycerol into value-added products is important to increase the economic viability of the biofuel industry. Metabolic engineering of industrial strains to improve its performance and to enlarge the product spectrum of glycerol biotransformation process is highly important toward glycerol biorefinery. This review focuses on recent metabolic engineering efforts as well as challenges involved in the utilization of glycerol as feedstock for the production of fuels and chemicals, especially for the production of diols, organic acids and biofuels.

  2. Glycerol citrate polyesters produced through microwave heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of various heating methods without catalysis to prepare copolyesters from citric acid:glycerol blends were studied. In the presence of short term microwave treatments, i.e., 60 sec at 1200 W, blends of glycerol and citric acid invariably formed solid amorphous copolyesters. Fourier tra...

  3. Thermal and physical characterization of glycerol polyesters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol polyesters were prepared by the condensation of glycerol and adipic acid, azelaic acid, sebacic acid, or suberic acids. After 48 hours at 125 deg C the polymers were clear and flexible. Samples of the reaction mixtures were analyzed by modulated differential scanning calorimetry to identi...

  4. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  5. Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent.

    PubMed

    Lee, Kyung Hwa; Park, Chang-Ho; Lee, Eun Yeol

    2010-11-01

    Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.

  6. Long-Chain Glycerol Diether and Polyol Dialkyl Glycerol Triether Lipids of Sulfolobus acidocaldarius

    PubMed Central

    Langworthy, Thomas A.; Mayberry, William R.; Smith, Paul F.

    1974-01-01

    Cells of Sulfolobus acidocaldarius contain about 2.5% total lipid on a dry-weight basis. Total lipid was found to contain 10.5% neutral lipid, 67.6% glycolipid, and 21.7% polar lipid. The lipids contained C40H80 isopranol glycerol diethers. Almost no fatty acids were present. The glycolipids were composed of about equal amounts of the glycerol diether analogue of glucosyl galactosyl diglyceride and a glucosyl polyol glycerol diether. The latter compound contained an unidentified polyol attached by an ether bond to the glycerol diether. The polar lipids contained a small amount of sulfolipid, which appeared to be the monosulfate derivative of glucosyl polyol glycerol diether. About 40% of the lipid phosphorus was found in the diether analogue of phosphatidyl inositol. The remaining lipid phosphorus was accounted for by approximately equal amounts of two inositol monophosphate-containing phosphoglycolipids, inositolphosphoryl glucosyl galactosyl glycerol diether and inositolphosphoryl glucosyl polyol glycerol diether. Images PMID:4407015

  7. Long-chain glycerol diether and polyol dialkyl glycerol triether lipids of Sulfolobus acidocaldarius.

    PubMed

    Langworthy, T A; Mayberry, W R; Smith, P F

    1974-07-01

    Cells of Sulfolobus acidocaldarius contain about 2.5% total lipid on a dry-weight basis. Total lipid was found to contain 10.5% neutral lipid, 67.6% glycolipid, and 21.7% polar lipid. The lipids contained C(40)H(80) isopranol glycerol diethers. Almost no fatty acids were present. The glycolipids were composed of about equal amounts of the glycerol diether analogue of glucosyl galactosyl diglyceride and a glucosyl polyol glycerol diether. The latter compound contained an unidentified polyol attached by an ether bond to the glycerol diether. The polar lipids contained a small amount of sulfolipid, which appeared to be the monosulfate derivative of glucosyl polyol glycerol diether. About 40% of the lipid phosphorus was found in the diether analogue of phosphatidyl inositol. The remaining lipid phosphorus was accounted for by approximately equal amounts of two inositol monophosphate-containing phosphoglycolipids, inositolphosphoryl glucosyl galactosyl glycerol diether and inositolphosphoryl glucosyl polyol glycerol diether.

  8. Microbial recycling of glycerol to biodiesel.

    PubMed

    Yang, Liu; Zhu, Zhi; Wang, Weihua; Lu, Xuefeng

    2013-12-01

    The sustainable supply of lipids is the bottleneck for current biodiesel production. Here microbial recycling of glycerol, byproduct of biodiesel production to biodiesel in engineered Escherichia coli strains was reported. The KC3 strain with capability of producing fatty acid ethyl esters (FAEEs) from glucose was used as a starting strain to optimize fermentation conditions when using glycerol as sole carbon source. The YL15 strain overexpressing double copies of atfA gene displayed 1.7-fold increase of FAEE productivity compared to the KC3 strain. The titer of FAEE in YL15 strain reached to 813 mg L(-1) in minimum medium using glycerol as sole carbon source under optimized fermentation conditions. The titer of glycerol-based FAEE production can be significantly increased by both genetic modifications and fermentation optimization. Microbial recycling of glycerol to biodiesel expands carbon sources for biodiesel production.

  9. Glycerol esters as fuel economy additives

    SciTech Connect

    Brewster, P.W.; Smith, C.R.; Gowland, F.W.

    1987-07-28

    A lubricating oil composition formulated is described for use as a crankcase lubricating oil composition for gasoline or diesel engines consisting essentially of a major amount of a mineral oil of a lubricating viscosity which has incorporated about 0.20 weight percent of a glycerol partial ester. The partial ester is a mixture of glycerol monooleate and glycerol dioleate. The mixture has a weight ratio of 3 parts of glycerol monooleate to 2 parts of glycerol dioleate the ester providing a fuel economy improvement of about 1 to 3 percent when the lubricating oil composition is employed in the crankcase of the engine. An ashless dispersant, a metal detergent additive, a zinc dihdyrocarbyl dithiophosphate anti-wear additive and an antioxidant. The dispersant, detergent, anti-wear additive and antioxidant are present in conventional amounts to provide their normal attendant functions.

  10. Capillary rheometry for thermosets

    NASA Technical Reports Server (NTRS)

    Malguarnera, S. C.; Carroll, D. R.

    1982-01-01

    Capillary rheometry is effectively used with thermosets. Most important is providing a uniform temperature in the barrel. This was successfully accomplished by using a circulating hot oil system. Standard capillary rheometry methods provide the dependence of thermoset apparent viscosity on shear rate, temperature and time. Such information is very useful in evaluating resin processability and in setting preliminary fabrication conditions.

  11. Ecotoxicology of Glycerol Monolaurate nanocapsules.

    PubMed

    Lopes, Leonardo Q S; Santos, Cayane G; de Almeida Vaucher, Rodrigo; Raffin, Renata P; da Silva, Aleksandro S; Baretta, Dilmar; Maccari, Ana Paula; Giombelli, Laura Caroline D D; Volpato, Andreia; Arruda, Jessyka; de Ávila Scheeren, Cecília; Baldisserotto, Bernardo; Santos, Roberto C V

    2017-05-01

    Glycerol Monolaurate (GML) is a compound with known antimicrobial potential, however it is not much used due to its low solubility in water and high melting point. The nanoencapsulation of some drugs offers several advantages such as improved stability and solubility in water. The present study aimed to produce, characterize, and evaluate the ecotoxicity of GML nanocapsules. The nanocapsules were produced and presented a mean diameter of 210nm, polydispersity index of 0.044, and zeta potential of -23.4mV. The electron microscopy images showed the nanometric size and spherical shape. The assay in soil showed that GML has a high toxicity while the GML nanocapsules showed decreased toxic effects. Nanostructuration also protected the Rhamdia quelen against the toxic effects of GML. Concluding, the formulation shows positive results and is useful to predict the success of development besides not damaging the soil.

  12. Effect of fermentation parameters on bio-alcohols production from glycerol using immobilized Clostridium pasteurianum: an optimization study.

    PubMed

    Khanna, Swati; Goyal, Arun; Moholkar, Vijayanand S

    2013-01-01

    This article addresses the issue of effect of fermentation parameters for conversion of glycerol (in both pure and crude form) into three value-added products, namely, ethanol, butanol, and 1,3-propanediol (1,3-PDO), by immobilized Clostridium pasteurianum and thereby addresses the statistical optimization of this process. The analysis of effect of different process parameters such as agitation rate, fermentation temperature, medium pH, and initial glycerol concentration indicated that medium pH was the most critical factor for total alcohols production in case of pure glycerol as fermentation substrate. On the other hand, initial glycerol concentration was the most significant factor for fermentation with crude glycerol. An interesting observation was that the optimized set of fermentation parameters was found to be independent of the type of glycerol (either pure or crude) used. At optimum conditions of agitation rate (200 rpm), initial glycerol concentration (25 g/L), fermentation temperature (30°C), and medium pH (7.0), the total alcohols production was almost equal in anaerobic shake flasks and 2-L bioreactor. This essentially means that at optimum process parameters, the scale of operation does not affect the output of the process. The immobilized cells could be reused for multiple cycles for both pure and crude glycerol fermentation.

  13. Two potential fish glycerol-3-phosphate phosphatases.

    PubMed

    Raymond, James A

    2015-06-01

    Winter-acclimated rainbow smelt (Osmerus mordax Mitchill) produce high levels of glycerol as an antifreeze. A common pathway to glycerol involves the enzyme glycerol-3-phosphate phosphatase (GPP), but no GPP has yet been identified in fish or any other animal. Here, two phosphatases assembled from existing EST libraries (from winter-acclimated smelt and cold-acclimated smelt hepatocytes) were found to resemble a glycerol-associated phosphatase from a glycerol-producing alga, Dunaliella salina, and a recently discovered GPP from a bacterium, Mycobacterium tuberculosis. Recombinant proteins were generated and were found to have GPP activity on the order of a few μMol Pi/mg enzyme/min. The two enzymes have acidic pH optima (~5.5) similar to that previously determined for GPP activity in liver tissue, with about 1/3 of their peak activities at neutral pH. The two enzymes appear to account for the GPP activity of smelt liver, but due to their reduced activities at neutral pH, their contributions to glycerol production in vivo remain unclear. Similar enzymes may be active in a glycerol-producing insect, Dendroctonus ponderosae.

  14. Glycerol in micellar confinement with tunable rigidity

    NASA Astrophysics Data System (ADS)

    Lannert, Michael; Müller, Allyn; Gouirand, Emmanuel; Talluto, Vincenzo; Rosenstihl, Markus; Walther, Thomas; Stühn, Bernd; Blochowicz, Thomas; Vogel, Michael

    2016-12-01

    We investigate the glassy dynamics of glycerol in the confinement of a microemulsion system, which is stable on cooling down to the glass transition of its components. By changing the composition, we vary the viscosity of the matrix, while keeping the confining geometry intact, as is demonstrated by small angle X-ray scattering. By means of 2H NMR, differential scanning calorimetry, and triplet solvation dynamics we, thus, probe the dynamics of glycerol in confinements of varying rigidity. 2H NMR results show that, at higher temperatures, the dynamics of confined glycerol is unchanged compared to bulk behavior, while the reorientation of glycerol molecules becomes significantly faster than in the bulk in the deeply supercooled regime. However, comparison of different 2H NMR findings with data from calorimetry and solvation dynamics reveals that this acceleration is not due to the changed structural relaxation of glycerol, but rather due to the rotational motion of essentially rigid glycerol droplets or of aggregates of such droplets in a more fluid matrix. Thus, independent of the matrix mobility, the glycerol dynamics remains unchanged except for the smallest droplets, where an increase of Tg and, thus, a slowdown of the structural relaxation is observed even in a fluid matrix.

  15. Production of biohydrogen from crude glycerol in an upflow column bioreactor.

    PubMed

    Dounavis, Athanasios S; Ntaikou, Ioanna; Lyberatos, Gerasimos

    2015-12-01

    A continuous attached growth process for the production of biohydrogen from crude glycerol was developed. The process consisted of an anaerobic up-flow column bioreactor (UFCB), packed with cylindrical ceramic beads, which constituted the support matrix for the attachment of bacterial cells. The effect of crude glycerol concentration, pH and hydraulic retention time on glycerol conversion, hydrogen yield and metabolite distribution was investigated. It was shown that the most critical parameter for the efficient bioconversion was the pH of the influent, whereas the hydrogen yield increased with an increase in feed glycerol concentration and a decrease in the hydraulic retention time. The main soluble metabolite detected was 1,3-propanediol in all cases, followed by butyric and hexanoic acids. The latter is reported to be produced from glycerol for the first time. Acidification of the waste reached 38.5%, and the maximum H2 productivity was 107.3 ± 0.7 L/kg waste glycerol at optimal conditions.

  16. Fracture phenomena in an isotonic salt solution during freezing and their elimination using glycerol.

    PubMed

    Gao, D Y; Lin, S; Watson, P F; Critser, J K

    1995-06-01

    Thermal stress and consequent fracture in frozen organs or cell suspensions have been proposed to be two causes of cell cryoinjury. A specific device was developed to study the thermal stress and the fracture phenomena during a slow cooling process of isotonic NaCl solutions with different concentrations of glycerol (cryoprotectant) in a cylindrical tube. It was shown from the experimental results that glycerol significantly influenced the solidification process of the ternary solutions and reduced the thermal stress. The higher the initial glycerol concentration, the lower the thermal stress in the frozen solutions. Glycerol concentrations over 0.3 M were sufficient to eliminate the fracture of the frozen solutions under the present experimental conditions. To explain the action of glycerol in reducing the thermal stress and preventing the ice fracture, a further study on ice crystal formation and growth of ice in these solutions was undertaken using cryomicroscopy. It is known from previous studies that an increase of initial glycerol concentration reduced frozen fraction of water in the solution at any given low temperature due to colligative properties of solution, which reduced the total ice volume expansion during water solidification. The present cryomicroscopic investigation showed that under a fixed cooling condition the different initial glycerol concentrations induced the different microstructures of the frozen solutions at not only a given low temperature but also a given frozen fraction of water. It has been known that ice volume expansion during solidification is a major factor causing the thermal stress and the interior microstructure is critical for the mechanical strength of a solid. Therefore, functions of glycerol in reducing the total ice volume expansion during water solidification and in influencing interior microstructure of the ice may contribute to reduce the thermal stress and prevent the fracture in the frozen solutions.

  17. Ethanolysis of rapeseed oil - distribution of ethyl esters, glycerides and glycerol between ester and glycerol phases.

    PubMed

    Cernoch, Michal; Hájek, Martin; Skopal, Frantisek

    2010-04-01

    The distribution of ethyl esters, triglycerides, diglycerides, monoglycerides, and glycerol between the ester and glycerol phase was investigated after the ethanolysis of rapeseed oil at various reaction conditions. The determination of these substances in the ester and glycerol phases was carried out by the GC method. The amount of ethyl esters in the glycerol phase was unexpectedly high and therefore the possibility of the reduction of this amount was investigated. The distribution coefficients and the weight distributions of each investigated substance were calculated and compared mutually. The distribution coefficients between the ester and glycerol phase increase in this sequence: glycerol, monoglycerides, diglycerides, ethyl esters, and triglycerides. Soaps and monoglycerides in the reaction mixture cause a worse separation of ethyl esters from the reaction mixture. The existence of a non-separable reaction mixture was observed also, and its composition was determined.

  18. (NH4)2SO4 heterogeneous nucleation and glycerol evaporation of (NH4)2SO4-glycerol system in its dynamic efflorescence process

    NASA Astrophysics Data System (ADS)

    Cai, Chen; Luan, Ye-mei; Shi, Xiao-min; Zhang, Yun-hong

    2017-02-01

    Using the FTIR-ATR technique, we investigated the heterogeneous nucleation process of aqueous (NH4)2SO4 binary droplets and (NH4)2SO4/glycerol ternary droplets. From the red shift of δ-NH4+ with a linearly declining relative humidity (RH), the ERHs of pure (NH4)2SO4 droplets and mixed (NH4)2SO4/glycerol droplets with different organic-inorganic ratio (OIR) of 1:4, 1:2 and 1:1 ranges from ∼51.9 to ∼34.9%, ∼49.8 to ∼33.0%, ∼48.0 to ∼30.6% and ∼43.7 to ∼25.2%, respectively. From the changing absorbance of δ-NH4+ band, we determined the heterogeneous nucleation rates of crystalline (NH4)2SO4 in the pure and mixed droplets. The interfacial tension between an (NH4)2SO4 critical nucleus and surrounding (NH4)2SO4 solution was determined using classical nucleation theory and experimental data to be 0.031 ± 0.002 J m-2. Evaporation of glycerol in (NH4)2SO4/glycerol ternary droplets are also studied to be restrained by participation of (NH4)2SO4. Determined vapour pressure of glycerol is on the same magnitude with results from previous studies.

  19. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Li, Q.; Lu, X.

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  20. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  1. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Li, Qingbo; Lu, Xiandan

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  2. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  3. Synthesis of prebiotic glycerol in interstellar ices.

    PubMed

    Kaiser, Ralf I; Maity, Surajit; Jones, Brant M

    2015-01-02

    Contemporary mechanisms for the spontaneous formation of glycerol have not been able to explain its existence on early Earth. The exogenous origin and delivery of organic molecules to early Earth presents an alternative route to their terrestrial in situ formation since biorelevant molecules like amino acids, carboxylic acids, and alkylphosphonic acids have been recovered from carbonaceous chondrites. Reported herein is the first in situ identification of glycerol, the key building block of all cellular membranes, formed by exposure of methanol-based - interstellar model ices to ionizing radiation in the form of energetic electrons. These results provide compelling evidence that the radiation-induced formation of glycerol in low-temperature interstellar model ices is facile. Synthesized on interstellar grains and eventually incorporated into the "building material" of solar systems, biorelevant molecules such as glycerol could have been dispensed to habitable planets such as early Earth by comets and meteorites.

  4. Efficient green methanol synthesis from glycerol

    NASA Astrophysics Data System (ADS)

    Haider, Muhammad H.; Dummer, Nicholas F.; Knight, David W.; Jenkins, Robert L.; Howard, Mark; Moulijn, Jacob; Taylor, Stuart H.; Hutchings, Graham J.

    2015-12-01

    The production of biodiesel from the transesterification of plant-derived triglycerides with methanol has been commercialized extensively. Impure glycerol is obtained as a by-product at roughly one-tenth the mass of the biodiesel. Utilization of this crude glycerol is important in improving the viability of the overall process. Here we show that crude glycerol can be reacted with water over very simple basic or redox oxide catalysts to produce methanol in high yields, together with other useful chemicals, in a one-step low-pressure process. Our discovery opens up the possibility of recycling the crude glycerol produced during biodiesel manufacture. Furthermore, we show that molecules containing at least two hydroxyl groups can be converted into methanol, which demonstrates some aspects of the generality of this new chemistry.

  5. Capillary nail refill test

    MedlinePlus

    ... may indicate: Dehydration Shock Peripheral vascular disease (PVD) Hypothermia Alternative Names Nail blanch test; Capillary refill time ... Elsevier Saunders; 2016:chap 79. Read More Dehydration Hypothermia Peripheral artery disease - legs Shock Review Date 4/ ...

  6. Displaced capillary dies

    DOEpatents

    Kalejs, Juris P.; Chalmers, Bruce; Surek, Thomas

    1984-01-01

    An asymmetrical shaped capillary die made exclusively of graphite is used to grow silicon ribbon which is capable of being made into solar cells that are more efficient than cells produced from ribbon made using a symmetrically shaped die.

  7. Displaced capillary dies

    DOEpatents

    Kalejs, Juris P.; Chalmers, Bruce; Surek, Thomas

    1982-01-01

    An asymmetrical shaped capillary die made exclusively of graphite is used to grow silicon ribbon which is capable of being made into solar cells that are more efficient than cells produced from ribbon made using a symmetrically shaped die.

  8. Capillary rise of superspreaders.

    PubMed

    Radulovic, Jovana; Sefiane, Khellil; Shanahan, Martin E R

    2011-09-15

    Trisiloxane surfactants, known as 'superspreaders', are commonly employed in numerous applications where enhanced wetting is of the utmost importance. The underlying mechanisms of superspreader wetting have been a focus of scientific interest for ca. 2 decades, and a number of mechanisms have been proposed to explain the unique trisiloxane dynamics. We have studied trisiloxane behaviour in thin capillaries to get further insight into their interfacial activity. Additionally, our knowledge of the capillary rise of superspreaders is surprisingly limited, and the effect of this extraordinary group of surfactants on capillary phenomena has been largely overlooked. Diffusion was confirmed to be the limiting factor of trisiloxane behaviour. A tentative theoretical explanation for the phenomenon studied and an appropriate mathematical model are presented. It is concluded that the enhancement of wetting due to surfactant addition is also a function of geometry: the effect is clear for a sessile drop, but more complex and less beneficial in a capillary.

  9. Capillary discharge source

    DOEpatents

    Bender, III, Howard Albert

    2003-11-25

    Debris generation from an EUV electric discharge plasma source device can be significantly reduced or essentially eliminated by encasing the electrodes with dielectric or electrically insulating material so that the electrodes are shielded from the plasma, and additionally by providing a path for the radiation to exit wherein the electrodes are not exposed to the area where the radiation is collected. The device includes: (a) a body, which is made of an electrically insulating material, that defines a capillary bore that has a proximal end and a distal end and that defines at least one radiation exit; (b) a first electrode that defines a first channel that has a first inlet end that is connected to a source of gas and a first outlet end that is in communication with the capillary bore, wherein the first electrode is positioned at the distal end of the capillary bore; (c) a second electrode that defines a second channel that has a second inlet end that is in communication with the capillary bore and an outlet end, wherein the second electrode is positioned at the proximal end of the capillary bore; and (d) a source of electric potential that is connected across the first and second electrodes, wherein radiation generated within the capillary bore is emitted through the at least one radiation exit and wherein the first electrode and second electrode are shielded from the emitted radiation.

  10. Capillary saturation and desaturation.

    PubMed

    Hilfer, R; Armstrong, R T; Berg, S; Georgiadis, A; Ott, H

    2015-12-01

    Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes intermediate between pore size and system size. Experimental evidence for interactions between these mesoscale clusters during desaturation is analyzed and discussed within the established microscopic and macroscopic laws of Newton, Young-Laplace, and Darcy. A theoretical expression for capillary number correlations is introduced that seems to have remained unnoticed. It expresses capillary desaturation curves in terms of stationary capillary pressures and relative permeabilities. The theoretical expression shows that the plateau saturation in capillary desaturation curves may in general differ from the residual nonwetting saturation defined through the saturation limit of the main hysteresis loop. Hysteresis effects as well as the difference between wetting and nonwetting fluids are introduced into the analysis of capillary desaturation experiments. The article examines experiments with different desaturation protocols and discusses the existence of a mesoscopic length scale intermediate between pore scale and sample scale. The theoretical expression is derived entirely within the existing traditional theory of two-phase flow in porous media and compared to a recent experiment.

  11. Capillary saturation and desaturation

    NASA Astrophysics Data System (ADS)

    Hilfer, R.; Armstrong, R. T.; Berg, S.; Georgiadis, A.; Ott, H.

    2015-12-01

    Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes intermediate between pore size and system size. Experimental evidence for interactions between these mesoscale clusters during desaturation is analyzed and discussed within the established microscopic and macroscopic laws of Newton, Young-Laplace, and Darcy. A theoretical expression for capillary number correlations is introduced that seems to have remained unnoticed. It expresses capillary desaturation curves in terms of stationary capillary pressures and relative permeabilities. The theoretical expression shows that the plateau saturation in capillary desaturation curves may in general differ from the residual nonwetting saturation defined through the saturation limit of the main hysteresis loop. Hysteresis effects as well as the difference between wetting and nonwetting fluids are introduced into the analysis of capillary desaturation experiments. The article examines experiments with different desaturation protocols and discusses the existence of a mesoscopic length scale intermediate between pore scale and sample scale. The theoretical expression is derived entirely within the existing traditional theory of two-phase flow in porous media and compared to a recent experiment.

  12. Joule heating in packed capillaries used in capillary electrochromatography.

    PubMed

    Rathore, Anurag S; Reynolds, Kimberly J; Colón, Luis A

    2002-09-01

    Effective heat dissipation is critical for reproducible and efficient separations in electrically driven separation systems. Flow rate, retention kinetics, and analyte diffusion rates are some of the characteristics that are affected by variation in the temperature of the mobile phase inside the column. In this study, we examine the issue of Joule heating in packed capillary columns used in capillary electrochromatography (CEC). As almost all commonly used CEC packings are poor thermal conductors, it is assumed that the packing particles do not conduct heat and heat transfer is solely through the mobile phase flowing through the system. The electrical conductivity of various mobile phases was measured at different temperatures by a conductivity meter and the temperature coefficient for each mobile phase was calculated. This was followed by measurement of the electrical current at several applied voltages to calculate the conductivity of the solution within the column as a function of the applied voltage. An overall increase in the conductivity is attributed to Joule heating within the column, while a constant conductivity means good heat dissipation. A plot of conductivity versus applied voltage was used as the indicator of poor heat dissipation. Using theories that have been proposed earlier for modeling of Joule heating effects in capillary electrophoresis (CE), we estimated the temperature within CEC columns. Under mobile and stationary phase conditions typically used in CEC, heat dissipation was found to be not always efficient. Elevated temperatures within the columns in excess of 23 degrees C above ambient temperature were calculated for packed columns, and about 35 degrees C for an open column, under a given set of conditions. The results agree with recently published experimental findings with nuclear magnetic resonance (NMR) thermometry, and Raman spectroscopic measurements.

  13. Glycerol monooleate-blood interactions.

    PubMed

    Ericsson, Emma M; Faxälv, Lars; Weissenrieder, Anna; Askendal, Agneta; Lindahl, Tomas L; Tengvall, Pentti

    2009-01-01

    In the present study the initial blood compatibility of glycerol monooleate (GMO)-coated surfaces was evaluated after deposition to surfaces and in bulk. The model surface was silica onto which multiple layers of fibrinogen or human serum albumin (HSA) was immobilized. The protein-coated surfaces were subsequently dip-coated in GMO in ethanol and used for blood plasma and whole blood experiments. The characterization methods included null ellipsometry, scanning electron microscopy, imaging of coagulation, hemolysis test and whole blood coagulation time by free oscillation rheometry. The results showed a GMO film thickness of approximately 350 A (approximately 4 microg/cm(2)) upon dip-coating in ethanolic solution. A major part of the deposited layer detached in aqueous solutions, especially during shear conditions. The coagulation time on GMO was significantly prolonged compared to that on HSA coated silica. Whole blood tests showed that GMO is a very weak hemolytic agent. Deposited GMO detached easily from surfaces upon rinsing or shearing, although a stable layer with undefined phase structure and a thickness of 50-70 A remained on HSA and fibrinogen precoated surfaces. This indicates that GMO has stronger adhesive forces to its substrate compared to the cohesive forces acting within the bulk GMO. The ability of GMO to detach from itself and tentatively form micelles or lipid bilayers when subjected to flowing blood may be of use in extravascular applications. It is concluded that GMO results in weak blood activation, and the material may in spite of this be suitable in selected biomaterial applications, especially as a biosealant and in colloidal dispersions.

  14. Synthesis of Glycerol Carbonate by Transesterification of Glycerol with Urea Over Zn/Al Mixed Oxide.

    PubMed

    Ryu, Young Bok; Baek, Jae Ho; Kim, Yangdo; Lee, Man Sig

    2015-01-01

    Reactions of glycerol carbonate using glycerol and urea have been carried out previously using ZnSO4 and ZnO catalysts, and high yields have been reported using ZnSO4 as catalyst. However, this salt is soluble in glycerol, and recycling of catalyst is difficult after the reaction. In this study, we prepared a mixed metal oxide catalyst using Zn and Al, and this catalyst consisted of a mixture of ZnO and ZnAl2O4. We confirmed the conversion of glycerol and the yield of glycerol carbonate of the amount of Al. As a result, we obtained a yield of 82.3% and a conversion of 82.7%. In addition we obtained high yield in recycling of catalyst. The yield of the glycerol carbonate increases with an increase of acid and base site of catalysts and the highest catalytic activity was obtained when acid/base ratio was approx. 1. From this result, we may conclude that the acid and base site density and ratio of catalysts were very important parameters in the synthesis of glycerol carbonate from urea and glycerol.

  15. Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium.

    PubMed

    Zhulin, I B; Rowsell, E H; Johnson, M S; Taylor, B L

    1997-05-01

    Escherichia coli and Salmonella typhimurium show positive chemotaxis to glycerol, a chemical previously reported to be a repellent for E. coli. The threshold of the attractant response in both species was 10(-6) M glycerol. Glycerol chemotaxis was energy dependent and coincident with an increase in membrane potential. Metabolism of glycerol was required for chemotaxis, and when lactate was present to maintain energy production in the absence of glycerol, the increases in membrane potential and chemotactic response upon addition of glycerol were abolished. Methylation of a chemotaxis receptor was not required for positive glycerol chemotaxis in E. coli or S. typhimurium but is involved in the negative chemotaxis of E. coli to high concentrations of glycerol. We propose that positive chemotaxis to glycerol in E. coli and S. typhimurium is an example of energy taxis mediated via a signal transduction pathway that responds to changes in the cellular energy level.

  16. Some considerations on the transport properties of water-glycerol suspensions

    NASA Astrophysics Data System (ADS)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene

    2016-01-01

    We study the self-diffusion coefficient and viscosity of a water-glycerol mixture for several glycerol molar fractions as a function of temperature well inside the metastable supercooled regime. We perform NMR experiments and verify that the system has at different concentration a fragile-to-strong crossover accompanied by the violation of the Stokes-Einstein relation. We observe that the crossover temperature depends on the water amount. Studying the fractional representation of the Stokes-Einstein relation, we find that in these systems dynamical arrest does not exhibit criticality and the transport parameters have a universal behavior.

  17. DNA Sequencing Using capillary Electrophoresis

    SciTech Connect

    Dr. Barry Karger

    2011-05-09

    application papers of sequencing up to this level were also published in the mid 1990's. A major interest of the sequencing community has always been read length. The longer the sequence read per run the more efficient the process as well as the ability to read repeat sequences. We therefore devoted a great deal of time to studying the factors influencing read length in capillary electrophoresis, including polymer type and molecule weight, capillary column temperature, applied electric field, etc. In our initial optimization, we were able to demonstrate, for the first time, the sequencing of over 1000 bases with 90% accuracy. The run required 80 minutes for separation. Sequencing of 1000 bases per column was next demonstrated on a multiple capillary instrument. Our studies revealed that linear polyacrylamide produced the longest read lengths because the hydrophilic single strand DNA had minimal interaction with the very hydrophilic linear polyacrylamide. Any interaction of the DNA with the polymer would lead to broader peaks and lower read length. Another important parameter was the molecular weight of the linear chains. High molecular weight (> 1 MDA) was important to allow the long single strand DNA to reptate through the entangled polymer matrix. In an important paper, we showed an inverse emulsion method to prepare reproducibility linear polyacrylamide polymer with an average MWT of 9MDa. This approach was used in the polymer for sequencing the human genome. Another critical factor in the successful use of capillary electrophoresis for sequencing was the sample preparation method. In the Sanger sequencing reaction, high concentration of salts and dideoxynucleotide remained. Since the sample was introduced to the capillary column by electrokinetic injection, these salt ions would be favorably injected into the column over the sequencing fragments, thus reducing the signal for longer fragments and hence reading read length. In two papers, we examined the role of individual

  18. Catalytic glycerol steam reforming for hydrogen production

    SciTech Connect

    Dan, Monica Mihet, Maria Lazar, Mihaela D.

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  19. Catalytic glycerol steam reforming for hydrogen production

    NASA Astrophysics Data System (ADS)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-12-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H2. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al2O3. The catalyst was prepared by wet impregnation method and characterized through different methods: N2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H2, CH4, CO, CO2. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H2O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  20. Gas-Filled Capillary Model

    NASA Astrophysics Data System (ADS)

    Steinhauer, L. C.; Kimura, W. D.

    2006-11-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration — Laser Wakefield (STELLA-LW) experiment.

  1. l-Lactate Production from Biodiesel-Derived Crude Glycerol by Metabolically Engineered Enterococcus faecalis: Cytotoxic Evaluation of Biodiesel Waste and Development of a Glycerol-Inducible Gene Expression System

    PubMed Central

    2015-01-01

    Biodiesel waste is a by-product of the biodiesel production process that contains a large amount of crude glycerol. To reuse the crude glycerol, a novel bioconversion process using Enterococcus faecalis was developed through physiological studies. The E. faecalis strain W11 could use biodiesel waste as a carbon source, although cell growth was significantly inhibited by the oil component in the biodiesel waste, which decreased the cellular NADH/NAD+ ratio and then induced oxidative stress to cells. When W11 was cultured with glycerol, the maximum culture density (optical density at 600 nm [OD600]) under anaerobic conditions was decreased 8-fold by the oil component compared with that under aerobic conditions. Furthermore, W11 cultured with dihydroxyacetone (DHA) could show slight or no growth in the presence of the oil component with or without oxygen. These results indicated that the DHA kinase reaction in the glycerol metabolic pathway was sensitive to the oil component as an oxidant. The lactate dehydrogenase (Ldh) activity of W11 during anaerobic glycerol metabolism was 4.1-fold lower than that during aerobic glycerol metabolism, which was one of the causes of low l-lactate productivity. The E. faecalis pflB gene disruptant (Δpfl mutant) expressing the ldhL1LP gene produced 300 mM l-lactate from glycerol/crude glycerol with a yield of >99% within 48 h and reached a maximum productivity of 18 mM h−1 (1.6 g liter−1 h−1). Thus, our study demonstrates that metabolically engineered E. faecalis can convert crude glycerol to l-lactate at high conversion efficiency and provides critical information on the recycling process for biodiesel waste. PMID:25576618

  2. Effect of surfactant on kinetics of thinning of capillary bridges

    NASA Astrophysics Data System (ADS)

    Nowak, Emilia; Kovalchuk, Nina; Simmons, Mark

    2015-11-01

    Kinetics of thinning of capillary bridges is of great scientific and industrial interest being of vital importance for example in various emulsification and microfluidic processes. It is well known that the rate of bridge thinning is proportional to the interfacial tension. Therefore it is expected that the process should slow down by addition of surfactant. The kinetics of capillary bridges in the presence of surfactant was studied by the dripping of liquid from a capillary tip under conditions of nearly zero flow rate (We << 1). The tested liquids were aqueous solutions of sodium lauryl ether sulphate (SLES), which is broadly used in personal care products. The viscosity, surfactant activity and adsorption kinetics have been controlled by addition of glycerol and sodium chloride. The study has shown that the kinetics of capillary bridges are determined by dynamic surface tension rather than by its equilibrium value. In particular, the kinetics of the bridge thinning for the 0.1 g L-1 aqueous SLES solution is practically the same as that of pure water despite twice lower equilibrium surface tension. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  3. Derivatization in Capillary Electrophoresis.

    PubMed

    Marina, M Luisa; Castro-Puyana, María

    2016-01-01

    Capillary electrophoresis is a well-established separation technique in analytical research laboratories worldwide. Its interesting advantages make CE an efficient and potent alternative to other chromatographic techniques. However, it is also recognized that its main drawback is the relatively poor sensitivity when using optical detection. One way to overcome this limitation is to perform a derivatization reaction which is intended to provide the analyte more suitable analytical characteristics enabling a high sensitive detection. Based on the analytical step where the CE derivatization takes place, it can be classified as precapillary (before separation), in-capillary (during separation), or postcapillary (after separation). This chapter describes the application of four different derivatization protocols (in-capillary and precapillary modes) to carry out the achiral and chiral analysis of different compounds in food and biological samples with three different detection modes (UV, LIF, and MS).

  4. Capillary condenser/evaporator

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A. (Inventor)

    2010-01-01

    A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.

  5. Liquid dynamics in partially crystalline glycerol

    NASA Astrophysics Data System (ADS)

    Sanz, Alejandro; Niss, Kristine

    2017-01-01

    We present a dielectric study on the dynamics of supercooled glycerol during crystallization. We explore the transformation into a solid phase in real time by monitoring the temporal evolution of the amplitude of the dielectric signal. Neither the initial nucleation nor the crystal growth influences the liquid dynamics visibly. For one of the samples studied, a tiny fraction of glycerol remained in the disordered state after the end of the transition. We examined the nature of the α relaxation in this frustrated crystal and find that it is virtually identical to the bulk dynamics. In addition, we have found no evidence that supercooled glycerol transforms into a peculiar phase in which either a new solid amorphous state or nano-crystals dispersed in a liquid matrix are formed.

  6. Swine manure/crude glycerol co-liquefaction: physical properties and chemical analysis of bio-oil product.

    PubMed

    Xiu, Shuangning; Shahbazi, Abolghasem; Shirley, Vestel B; Wang, Lijun

    2011-01-01

    The aim of this work was to investigate the principal structural and physico-chemical changes of bio-oils associated with liquefaction of swine manure with crude glycerol and its key fraction, free fatty acids. Bio-oils have been obtained from liquefaction processes at 340 °C. They were subjected to various physico-chemical characterization methods. FTIR data indicated a reduction in aliphatic structures and an increase in more oxidized and, probably, more polycondensed aromatic components resulting from the addition of crude glycerol to swine manure. GC-MS data indicated that the addition of crude glycerol facilitated the esterification reaction in sub-critical water to convert organic acids contained in bio-oil into various kinds of esters. The dynamic viscosity of bio-oil decreased dramatically by adding crude glycerol into the swine manure.

  7. Bioconversion of glycerol to ethanol by a mutant Enterobacter aerogenes.

    PubMed

    Nwachukwu, Res; Shahbazi, A; Wang, L; Ibrahim, S; Worku, M; Schimmel, K

    2012-03-29

    The main objective of this research is to develop, by adaptive evolution, mutant strains of Enterobacter aerogenes ATCC 13048 that are capable of withstanding high glycerol concentration as well as resisting ethanol-inhibition. The mutant will be used for high ethanol fermentation from glycerol feedstock. Ethanol production from pure (P-) and recovered (R-) glycerol using the stock was evaluated. A six-tube-subculture-generations method was used for developing the mutant. This involved subculturing the organism six consecutive times in tubes containing the same glycerol and ethanol concentrations at the same culture conditions. Then, the glycerol and/or ethanol concentration was increased and the six subculture generations were repeated. A strain capable of growing in 200 g/L glycerol and 30 g/L ethanol was obtained. The ability of this mutant, vis-à-vis the original strain, in utilizing glycerol in a high glycerol containing medium, with the concomitant ethanol yield, was assessed. Tryptic soy broth without dextrose (TSB) was used as the fermentation medium. Fermentation products were analyzed using HPLC.In a 20 g/L glycerol TSB, E. aerogenes ATCC 13048 converted 18.5 g/L P-glycerol and 17.8 g/L R-glycerol into 12 and 12.8 g/L ethanol, respectively. In a 50 g/L P-glycerol TSB, it utilized only 15.6 g/L glycerol; but the new strain used up 39 g/L, yielding 20 g/L ethanol after 120 h, an equivalence of 1.02 mol ethanol/mol-glycerol. This is the highest ethanol yield reported from glycerol bioconversion. The result of this P-glycerol fermentation can be duplicated using the R-glycerol from biodiesel production.

  8. Replacing corn with glycerol in diets for transition dairy cows.

    PubMed

    Carvalho, E R; Schmelz-Roberts, N S; White, H M; Doane, P H; Donkin, S S

    2011-02-01

    Expansion of the biofuels industry has increased the availability of glycerol as an alternative feed for dairy cows. The objective of this study was to determine the effects of glycerol on feed intake, milk production, rumen volatile fatty acids, and metabolic parameters in transition dairy cows. Multiparous Holstein cows were fed diets containing either high-moisture corn (n=11) or glycerol (n=12) from -28 to +56 d relative to calving. Glycerol was included at 11.5 and 10.8% of the ration dry matter for the pre- and postpartum diets, respectively. Prepartum feed intake was not changed by glycerol feeding (14.9 vs. 14.6 kg/d, control vs. glycerol) nor did postpartum feed intake differ (19.8 vs. 20.7 kg/d, control vs. glycerol). Overall milk yield did not differ (35.8 vs. 37 kg/d, control vs. glycerol) and milk composition, milk urea nitrogen, somatic cells, and energy balance were not different with glycerol feeding. Blood glucose content was decreased in cows fed glycerol during the prepartum period (59.1 vs. 53.4 mg/dL), and β-hydroxybutyrate concentration was increased (0.58 vs. 0.82 mmol/L, control vs. glycerol). Concentrations of blood nonesterified fatty acids did not differ between the treatment groups, and no response to glycerol for blood metabolites during the postpartum period was observed. Total rumen volatile fatty acid concentrations (mmol/L) did not differ between treatments, but proportions of rumen propionate and butyrate were greater for cows fed glycerol (22.7 vs. 28.6% of propionate, control vs. glycerol; and 11.5 vs. 15.3% of butyrate, control vs. glycerol) at the expense of acetate (61.4 vs. 51.5%, control vs. glycerol). These data indicate that glycerol is a suitable replacement for corn grain in diets for transition dairy cows.

  9. Biorefinery for Glycerol Rich Biodiesel Industry Waste.

    PubMed

    Kalia, Vipin Chandra; Prakash, Jyotsana; Koul, Shikha

    2016-06-01

    The biodiesel industry has the potential to meet the fuel requirements in the future. A few inherent lacunae of this bioprocess are the effluent, which is 10 % of the actual product, and the fact that it is 85 % glycerol along with a few impurities. Biological treatments of wastes have been known as a dependable and economical direction of overseeing them and bring some value added products as well. A novel eco-biotechnological strategy employs metabolically diverse bacteria, which ensures higher reproducibility and economics. In this article, we have opined, which organisms and what bioproducts should be the focus, while exploiting glycerol as feed.

  10. Effects of intravenous infusion of glycerol on blood parameters and urinary glycerol concentrations.

    PubMed

    Okano, Masato; Nishitani, Yasunori; Dohi, Michiko; Kageyama, Shinji

    2016-05-01

    In sports, the oral intake and intravenous administration of glycerol as a potential masking agent have been prohibited. The effect of glycerol on blood parameters was investigated by comparing the intravenous administration of glycerol (20g/200mL) with that of an electrolyte (8g glucose/200mL) as a comparator (n=7, fixed-dose-rate i.v. infusion, 200mL in 1h). This study was also designed to evaluate whether the urinary concentrations reached the positivity threshold after the intravenous infusion of glycerol. Significant decreases of the haemoglobin (HGB, g/dL), haematocrit (HCT, %) and OFF-h Score (OFF-score) values were observed after the infusion of glycerol (P<0.05 at 1-6h). The differences in the HGB, HCT and OFF-score between pre- and post-administration were -0.49±0.23g/dL (2h), -1.54±0.73% (2h) and -3.89±3.66 (2h), respectively. Glycerol infusion significantly increased the plasma volume by 12.1% (1h), 6.3% (2h) and 5.7% (3h) compared with the initial values. The infusion of the comparator also increased the plasma volume by 9.6% (1h), 5.8% (2h) and 4.9% (3h) compared with the values before infusion. There were no significant differences in the change of the plasma volume between the intravenous infusions of glycerol and the glucose-based electrolyte (as the comparator) (P≥0.05). This finding might indicate that glycerol itself only exhibited limited effects on the expansion of plasma. After administration of glycerol, the urinary glycerol concentrations increased from 0.0013±0.0004mg/mL to 6.86±2.86mg/mL at 1h and 6.45±3.08mg/mL at 2h. The intravenous infusion of glycerol can most likely be detected using the current urine analysis; however, the dependence of the concentration of urinary glycerol on the urine volume should be considered.

  11. Glycerol production by fermentation: a fed-batch approach

    SciTech Connect

    Vijaikishore, P.; Karanth, N.G.

    1987-01-01

    In this investigation the bioconversion of glycerol from glucose was studied in a laboratory fermentor using an alkaline medium with a fed batch mode of carbon source addition yielding 30% glycerol concentration in the final broth. (Refs. 9).

  12. Evidence for direct binding of glycerol to photosystem I.

    PubMed

    Hussels, Martin; Brecht, Marc

    2011-08-04

    The interaction between glycerol and photosystem I (PSI) was investigated using low temperature single-molecule spectroscopy. PSI complexes were dissolved in three different solutions: in buffer solution, in 66% glycerol/buffer solution, and in 66% glycerol/buffer solution that was afterwards diluted by buffer; the final glycerol concentration was <1‰. Mean fluorescence spectra and intercomplex heterogeneity of PSI complexes in 66% glycerol/buffer solution and in the re-diluted solution show high similarity, but differ from complexes in buffer solution indicating that the glycerol concentration is not the determining factor modifying the spectral properties. However, the exposure of PSI to a high glycerol concentration during sample preparation affects PSI and the effect is maintained if glycerol is removed from the solution.

  13. Genetic construction of recombinant Pseudomonas chlororaphis for improved glycerol utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to improve by genetic engineering the glycerol metabolic capability of Pseudomonas chlororaphis which is capable of producing commercially valuable biodegradable poly(hydroxyalkanoate) (PHA) and biosurfactant rhamnolipids (RLs). In the study, glycerol uptake facilitat...

  14. Capillary action liquid chromatography.

    PubMed

    Zhang, Bo; Bergström, Edmund T; Goodall, David M; Myers, Peter

    2009-06-01

    Capillary action LC (caLC) is introduced as a technique using capillary action as the driving force to perform LC in capillary columns packed with HPLC type microparticulate materials. A dry packing method with centrifugal force was developed to prepare capillary columns in parallel (10 columns per 3 min) to support their disposable use in caLC. Using a digital microscope for real-time imaging and recording separations of components in a dye mixture, caLC was found to have flow characteristics similar to TLC. Based on the investigation of microparticulate HPLC silica gels of different size (1.5-10 microm) and a typical TLC grade irregular medium, Merck 60G silica, the van Deemter curves suggested molecular diffusion as the major contribution to band broadening in caLC. With Waters Xbridge 2.6 microm silica, plate heights down to 8.8 microm were obtained, comparable to those achievable in HPLC. Assisted by an image-processing method, the visual caLC separation was converted to a classical chromatogram for further data analysis and such a facility confirmed the observation of highly efficient bands.

  15. Capillary condensation of short-chain molecules.

    PubMed

    Bryk, Paweł; Pizio, Orest; Sokolowski, Stefan

    2005-05-15

    A density-functional study of capillary condensation of fluids of short-chain molecules confined to slitlike pores is presented. The molecules are modeled as freely jointed tangent spherical segments with a hard core and with short-range attractive interaction between all the segments. We investigate how the critical parameters of capillary condensation of the fluid change when the pore width decreases and eventually becomes smaller than the nominal linear dimension of the single-chain molecule. We find that the dependence of critical parameters for a fluid of dimers and of tetramers on pore width is similar to that of the monomer fluid. On the other hand, for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. We attribute this behavior to the effect of conformational changes of molecules upon confinement.

  16. Unfolding of the myosin head by purealin in glycerol.

    PubMed

    Takito, Jiro; Kobayashi, Jun'ichi; Nakamura, Masanori; Ohizumi, Yasushi; Nonomura, Yoshiaki

    2017-01-11

    Purealin is a small bioactive compound obtained from the marine sponge. The compound modulates various types of ATPase activity of myosin from skeletal muscle, cardiac muscle, and smooth muscle. To elucidate the structural basis of these effects of purealin on myosin ATPases, we examined the effect of purealin on the conformation of skeletal muscle myosin in aqueous solution and in glycerol. Analysis of the circular dichroism spectrum of subfragment 1, a single-headed fragment of myosin, revealed that in 10% glycerol purealin decreased the β-sheet content of S1, but in aqueous solution it had little effect on the secondary structure of S1. A myosin monomer conforms to two pear-like globular heads attached to a long tail. Electron microscopy observations with rotary shadowing revealed that purealin unfolded each globular head to an extended single strand. The tips of the unfolded strand bound each other and formed a ring in one molecule. These results suggest that binding of purealin affects the critical parameters of myosin folding.

  17. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glycerol ester of rosin. 172.735 Section 172.735 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... CONSUMPTION Other Specific Usage Additives § 172.735 Glycerol ester of rosin. Glycerol ester of wood...

  18. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Glycerol ester of rosin. 172.735 Section 172.735 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... CONSUMPTION Other Specific Usage Additives § 172.735 Glycerol ester of rosin. Glycerol ester of wood...

  19. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Glycerol ester of rosin. 172.735 Section 172.735 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... CONSUMPTION Other Specific Usage Additives § 172.735 Glycerol ester of rosin. Glycerol ester of wood...

  20. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Glycerol ester of rosin. 172.735 Section 172.735 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....735 Glycerol ester of rosin. Glycerol ester of wood rosin, gum rosin, or tall oil rosin may be...

  1. 21 CFR 172.735 - Glycerol ester of rosin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Glycerol ester of rosin. 172.735 Section 172.735 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... CONSUMPTION Other Specific Usage Additives § 172.735 Glycerol ester of rosin. Glycerol ester of wood...

  2. Determining Atmospheric Pressure with a Eudiometer and Glycerol

    ERIC Educational Resources Information Center

    Brody, Jed; Rohald, Kate; Sutton, Atasha

    2010-01-01

    We consider a volume of air trapped over a glycerol column in a eudiometer. We demonstrate that there is an approximately linear relationship between the volume of trapped air and the height of the glycerol column. Simply by moving the eudiometer up and down, we cause the glycerol-column height and trapped-air volume to vary. The plot of volume…

  3. 1,2-Isopropylidene glycerol carbonate: preparation, characterization, and hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utilization of excess glycerol supplies derived from the burgeoning biodiesel industry is of major importance to the oleochemical industry as the economic viability of the biodiesel and oleochemical industries are closely linked to glycerol prices. Carbonate compounds based on glycerol, such as...

  4. Digestable and Metabolizable Energy of Crude Glycerol in Growing Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apparent DE and ME value of crude glycerol for growing pigs was determined in a series of 5 experiments using crude glycerol (86.95% glycerol) from a biodiesel production facility with soybean oil used as the initial feedstock (AG Processing Inc., Sergeant Bluff, IA). Dietary treatments were 0, ...

  5. Conversion of glycerol to hydrogen rich gas.

    PubMed

    Tran, Nguyen H; Kannangara, G S Kamali

    2013-12-21

    Presently there is a glut of glycerol as the by-product of biofuel production and it will grow as production increases. The conundrum is how we can consume this material and convert it into a more useful product. One potential route is to reform glycerol to hydrogen rich gas including synthesis gas (CO + H2) and hydrogen. However, there is recent literature on various reforming techniques which may have a bearing on the efficiency of such a process. Hence in this review reforming of glycerol at room temperature (normally photo-catalytic), catalysis at moderate and high temperature and a non-catalytic pyrolysis process are presented. The high temperature processes allow the generation of synthesis gas with the hydrogen to carbon monoxide ratios being suitable for synthesis of dimethyl ether, methanol and for the Fischer-Tropsch process using established catalysts. Efficient conversion of synthesis gas to hydrogen involves additional catalysts that assist the water gas shift reaction, or involves in situ capture of carbon dioxide and hydrogen. Reforming at reduced temperatures including photo-reforming offers the opportunity of producing synthesis gas or hydrogen using single catalysts. Together, these processes will assist in overcoming the worldwide glut of glycerol, increasing the competitiveness of the biofuel production and reducing our dependency on the fossil based, hydrogen rich gas.

  6. Rapid monitoring of glycerol in fermentation growth media: Facilitating crude glycerol bioprocess development.

    PubMed

    Abad, Sergi; Pérez, Xavier; Planas, Antoni; Turon, Xavier

    2014-04-01

    Recently, the need for crude glycerol valorisation from the biodiesel industry has generated many studies for practical and economic applications. Amongst them, fermentations based on glycerol media for the production of high value metabolites are prominent applications. This has generated a need to develop analytical techniques which allow fast and simple glycerol monitoring during fermentation. The methodology should be fast and inexpensive to be adopted in research, as well as in industrial applications. In this study three different methods were analysed and compared: two common methodologies based on liquid chromatography and enzymatic kits, and the new method based on a DotBlot assay coupled with image analysis. The new methodology is faster and cheaper than the other conventional methods, with comparable performance. Good linearity, precision and accuracy were achieved in the lower range (10 or 15 g/L to depletion), the most common range of glycerol concentrations to monitor fermentations in terms of growth kinetics.

  7. Noise suppressing capillary separation system

    DOEpatents

    Yeung, Edward S.; Xue, Yongjun

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans.

  8. Antioxidant behavior of 1-feruloyl-sn-glycerol and 1,3-diferuloyl-sn-glycerol in phospholipid liposomes 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1-Feruloyl-sn-glycerol (FG) and 1,3-diferuloyl-sn-glycerol (DFG) are two natural plant compounds that may be useful in cosmeceutical, food, and skin care applications because of excellent antioxidant properties. FG and DFG enzymatically synthesized through esterification of glycerol and soybean oil...

  9. An improved glycerol biosensor with an Au-FeS-NAD-glycerol-dehydrogenase anode.

    PubMed

    Mahadevan, Aishwarya; Fernando, Sandun

    2017-06-15

    An improved glycerol biosensor was developed via direct attachment of NAD(+)-glycerol dehydrogenase coenzyme-apoenzyme complex onto supporting gold electrodes, using novel inorganic iron (II) sulfide (FeS)-based single molecular wires. Sensing performance factors, i.e., sensitivity, a detection limit and response time of the FeS and conventional pyrroloquinoline quinone (PQQ)-based biosensor were evaluated by dynamic constant potential amperometry at 1.3V under non-buffered conditions. For glycerol concentrations ranging from 1 to 25mM, a 77% increase in sensitivity and a 53% decrease in detection limit were observed for the FeS-based biosensor when compared to the conventional PQQ-based counterpart. The electrochemical behavior of the FeS-based glycerol biosensor was analyzed at different concentrations of glycerol, accompanied by an investigation into the effects of applied potential and scan rate on the current response. Effects of enzyme stimulants ((NH4)2SO4 and MnCl2·4H2O) concentrations and buffers/pH (potassium phosphate buffer pH 6-8, Tris buffer pH 8-10) on the current responses generated by the FeS-based glycerol biosensor were also studied. The optimal detection conditions were 0.03M (NH4)2SO4 and 0.3µm MnCl2·4H2O in non-buffered aqueous electrolyte under stirring whereas under non-stirring, Tris buffer at pH 10 with 0.03M (NH4)2SO4 and 30µm MnCl2·4H2O were found to be optimal detection conditions. Interference by glucose, fructose, ethanol, and acetic acid in glycerol detection was studied. The observations indicated a promising enhancement in glycerol detection using the novel FeS-based glycerol sensing electrode compared to the conventional PQQ-based one. These findings support the premise that FeS-based bioanodes are capable of biosensing glycerol successfully and may be applicable for other enzymatic biosensors.

  10. Capillary Isoelectric Focusing

    NASA Astrophysics Data System (ADS)

    Markuszewski, Michał J.; Bujak, Renata; Daghir, Emilia

    Capillary isoelectric focusing (CIEF) is a widespread technique for the analysis of peptides and proteins in biological samples. CIEF is used to separate mixtures of compounds on the basis of differences in their isoelectric point. Aspects of sample preparation, capillary selection, zone mobilization procedures as well as various detection modes used have been described and discussed. Moreover CIEF, coupled to various types of detection techniques (MALDI or LIF), has increasingly been applied to the analysis of variety different high-molecular compounds. CIEF is considered as a highly specific analytical method which may be routinely used in the separation of rare hemoglobin variants. In addition, the application of CIEF in proteomic field have been discussed on the examples of analyses of glycoproteins and immunoglobins due to the meaning in clinical diagnostic.

  11. Glycerol stress in Saccharomyces cerevisiae: Cellular responses and evolved adaptations.

    PubMed

    Mattenberger, Florian; Sabater-Muñoz, Beatriz; Hallsworth, John E; Fares, Mario A

    2017-03-01

    Glycerol synthesis is key to central metabolism and stress biology in Saccharomyces cerevisiae, yet the cellular adjustments needed to respond and adapt to glycerol stress are little understood. Here, we determined impacts of acute and chronic exposures to glycerol stress in S. cerevisiae. Glycerol stress can result from an increase of glycerol concentration in the medium due to the S. cerevisiae fermenting activity or other metabolic activities. Acute glycerol-stress led to a 50% decline in growth rate and altered transcription of more than 40% of genes. The increased genetic diversity in S. cerevisiae population, which had evolved in the standard nutrient medium for hundreds of generations, led to an increase in growth rate and altered transcriptome when such population was transferred to stressful media containing a high concentration of glycerol; 0.41 M (0.990 water activity). Evolution of S. cerevisiae populations during a 10-day period in the glycerol-containing medium led to transcriptome changes and readjustments to improve control of glycerol flux across the membrane, regulation of cell cycle, and more robust stress response; and a remarkable increase of growth rate under glycerol stress. Most of the observed regulatory changes arose in duplicated genes. These findings elucidate the physiological mechanisms, which underlie glycerol-stress response, and longer-term adaptations, in S. cerevisiae; they also have implications for enigmatic aspects of the ecology of this otherwise well-characterized yeast.

  12. Enantioseparations by capillary electrochromatography.

    PubMed

    Fanali, S; Catarcini, P; Blaschke, G; Chankvetadze, B

    2001-09-01

    The review summarizes recent developments in enantioseparations by capillary electrochromatography (CEC). Selected fundamental aspects of CEC are discussed in order to stress those features which may allow the success of this technique in the competitive field of enantioseparations. In addition, the comparative characteristics of the different modes of chiral CEC and the stationary phases are presented. The effects of the characteristics of the stationary and liquid phases and operational conditions on the separation results are discussed. Finally, some future trends are briefly addressed.

  13. Trapped liquid drop at the end of capillary.

    PubMed

    Wang, Zhengjia; Yen, Hung-Yu; Chang, Cheng-Chung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2013-10-01

    The liquid drop captured at the capillary end, which is observed in capillary valve and pendant drop technique, is investigated theoretically and experimentally. Because of contact line pinning of the lower meniscus, the lower contact angle is able to rise from the intrinsic contact angle (θ*) so that the external force acting on the drop can be balanced by the capillary force. In the absence of contact angle hysteresis (CAH), the upper contact angle remains at θ*. However, in the presence of CAH, the upper contact angle can descend to provide more capillary force. The coupling between the lower and upper contact angles determines the equilibrium shape of the captured drop. In a capillary valve, the pinned contact line can move across the edge as the pressure difference exceeds the valving pressure, which depends on the geometrical characteristic and wetting property of the valve opening. When CAH is considered, the valving pressure is elevated because the capillary force is enhanced by the receding contact angle. For a pendant drop under gravity, the maximal capillary force is achieved as the lower contact angle reaches 180° in the absence of CAH. However, in the presence of CAH, four regimes can be identified by three critical drop volumes. The lower contact angle can exceed 180°, and therefore the drop takes on the shape of a light bulb, which does not exist in the absence of CAH. The comparisons between Surface Evolver simulations and experiments are quite well.

  14. Capillary Contact Angle in a Completely Wet Groove

    NASA Astrophysics Data System (ADS)

    Parry, A. O.; Malijevský, A.; Rascón, C.

    2014-10-01

    We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θcap(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θcap>0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θcap(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.

  15. Geometry-induced phase transition in fluids: capillary prewetting.

    PubMed

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature T(cw). The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>T(cw), the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  16. Capillary contact angle in a completely wet groove.

    PubMed

    Parry, A O; Malijevský, A; Rascón, C

    2014-10-03

    We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θ(cap)(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θ(cap) > 0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θ(cap)(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.

  17. Continual production of glycerol from carbon dioxide by Dunaliella tertiolecta.

    PubMed

    Chow, Yvonne Y S; Goh, Serena J M; Su, Ziheng; Ng, Daphne H P; Lim, Chan Yuen; Lim, Natalie Y N; Lin, Huixin; Fang, Lei; Lee, Yuan Kun

    2013-05-01

    Microalgae have high photosynthetic efficiencies and produce many valuable compounds from carbon dioxide. The Dunaliella genus accumulates glycerol, yet no commercial process currently exists for glycerol production from this microalga. Here it was found that in addition to intracellular accumulation, Dunaliella tertiolecta also releases glycerol into the external medium continuously, forming a large and stable carbon pool. The process is not affected by nutrient starvation or onset of cell death. Carbon dioxide was fixed at a constant rate, the bulk of it being channelled to extracellular glycerol (82%), resulting in enhanced photosynthetic carbon assimilation of 5 times that used for biomass production. The final extracellular glycerol concentration was 34 times the maximum concentration of intracellular glycerol; the latter declined further during cell death. Findings from this work will assist in the development of a bioconversion process to produce glycerol using D. tertiolecta without the need for cell harvest or disruption.

  18. Automated Parallel Capillary Electrophoretic System

    DOEpatents

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  19. Carbon nanotube patterning with capillary micromolding of catalyst.

    PubMed

    Lee, Jaewon; Ryu, Choonghan; Lee, Sungwoo; Jung, Donggeun; Kim, Hyoungsub; Chae, Heeyeop

    2007-11-01

    Patterning of multi-walled carbon nanotube (MWNT) in a plasma enhanced chemical vapor deposition (PECVD) chamber has been achieved by catalyst patterning using capillary micromolding process. Iron acetate catalyst nanoparticles were dissolved in ethanol and mold was fabricated with polydimethylsiloxane (PDMS). The ethanol solution containing catalyst nanoparticles was filled into the microchannel formed between PDMS mold and Si-wafer by capillary force. The capillary action of different solvents was simulated by commercial CFD-ACE+ simulation code to determine optimal solvents. Simulated result shows that the choice of solvent was critical in this capillary filling process. After the catalyst patterning, MWNT was grown at 700 approximately 800 degrees C by PECVD process using CH4 and Ar gas in a scale of approximately 10 micro-meters in a tubular inductively coupled plasma reactor. Grown CNTs were analyzed by FE-SEM and Raman Spectroscopy.

  20. C5b-9 deposits on endomysial capillaries in non-dermatomyositis cases.

    PubMed

    Braczynski, Anne K; Harter, Patrick N; Zeiner, Pia S; Drott, Ulrich; Tews, Dominique-Suzanne; Preusse, Corinna; Penski, Cornelia; Dunst, Maika; Weis, Joachim; Stenzel, Werner; Mittelbronn, Michel

    2016-01-01

    Deposits of the terminal-membrane-attack-complex (MAC) C5b-9 on perfascicular endomysial capillaries are generally regarded as diagnostic hallmark of dermatomyositis (DM). Although the pathophysiology is not clear, C5b-9 deposits on capillaries seem to be associated with microinfarctions and vascular damage. Here, we report on a series of 19 patients presenting with C5b-9 accumulation on endomysial capillaries in the absence of features for DM. To decipher differences in the capillary C5b-9 accumulation pattern between DM and non-DM cases, we assessed the extent of endomysial capillary C5b-9 deposits related to capillary density and extent of myofiber necrosis by immunohistochemistry in 12 DM and 8 control patients. We found similar numbers of C5b-9-positive myofibers in both DM and non-DM C5b-9(+) cases. The distribution pattern differed as DM cases showed significantly more perifascicular capillary C5b-9 deposits as compared to non-DM cases, which presented stronger endomysial capillary C5b-9 deposits in a diffuse pattern. While total capillary density was not differing, DM patients displayed significantly more C5b-9(+) necrotic fibers as compared to non-DM C5b-9(+). In summary, endomysial capillary C5b-9 deposits are present in a variety of non-DM cases, however with differing distribution pattern. In conclusion, capillary C5b-9(+) deposits should be assessed critically, taking into consideration the distribution pattern.

  1. Transversally periodic solitary gravity–capillary waves

    PubMed Central

    Milewski, Paul A.; Wang, Zhan

    2014-01-01

    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  2. Ultrasound assisted enzyme catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate.

    PubMed

    Waghmare, Govind V; Vetal, Mangesh D; Rathod, Virendra K

    2015-01-01

    The present work illustrates the transesterification of glycerol to glycerol carbonate (GlyC) from dimethyl carbonate (DMC) using commercial immobilized lipase (Novozym 435) under ultrasonic irradiation. The experiments were performed in a batch reactor placed in an ultrasonic water bath using a sequence of experimental protocol to evaluate the effects of temperature, molar ratios of substrates, enzyme loading, duty cycle and ultrasound power on the conversion of glycerol to GlyC. It has been found that ultrasound-assisted lipase-catalyzed transesterification of glycerol would be a potential alternative to conventional alkali-catalyzed method, as high conversion (99.75%) was obtained at mild operating conditions: molar ratio of DMC to glycerol 3:1, catalyst amount of 13% (w/w), lower power input (100W), duty cycle 50% and temperature (60°C) in a relatively short reaction time (4h) using Novozym 435 as catalyst. Ultrasound reduces the reaction time up to 4h as compared to conventional stirring method (14h) catalyzed by Novozym 435. The repeated use of the catalyst under the optimum experimental condition resulted in decay in both enzyme activity and product conversion.

  3. Biological Conversion of Glycerol to Ethanol by Enterobacter aerogenes

    NASA Astrophysics Data System (ADS)

    Nwachukwu, Raymond E. S.

    In a search to turn the economically and environmentally non-valuable "waste" streams of biodiesel production into a profitable byproduct, a mutant strain of Enterobacter aerogenes ATCC 13048 was developed by six-tube subculturing technique. This technique is based on the principle of adaptive evolution, and involved subculturing the bacterium in a tryptic soy broth without dextrose (TSB) containing specific glycerol and ethanol concentration for six consecutive times. Then, the six consecutive subculturing was repeated in a fresh TSB of higher glycerol and ethanol concentrations. A new mutant strain, E. aerogenes S012, which could withstand a combination of 200 g/l glycerol and 30 g/l ethanol concentrations, was developed. The wild and mutant strains were used for the fermentation of pure (P-) and recovered (R-) glycerol. Taguchi and full factorial methods of design of experiments were used to screen and optimize the important process factors that influence the microbial production of ethanol. A statistically sound regression model was used to establish the mathematical relationship between the process variables and ethanol production. Temperature of 38°C, agitation speed of 200 rpm, pH of 6.3-6.6, and microaerobic condition were the optimum process conditions. Different pretreatment methods to recover glycerol from the crude glycerol and the subsequent fermentation method showed that direct acidification using 85% H3PO4 was the best. The R-glycerol contained 51% pure glycerol and 21% methanol. The wild strain, E. aerogenes ATCC 13048, produced only 12 g/l and 12.8 g/l ethanol from 20 g/l P- and R-glycerol respectively, and could not utilize higher glycerol concentrations. The mutant, E. aerogenes S012, produced ethanol amount and yield of 43 g/l and 1.12 mol/mol-glycerol from P-glycerol, respectively within 96 h. It also produced ethanol amount and yield of 26.8 g/l and 1.07 mol/mol-glycerol, respectively, from R-glycerol within the same duration. In a

  4. Capillary reference half-cell

    DOEpatents

    Hall, Stephen H.

    1996-01-01

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods.

  5. Capillary reference half-cell

    DOEpatents

    Hall, S.H.

    1996-02-13

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods. 11 figs.

  6. Capillary rogue waves.

    PubMed

    Shats, M; Punzmann, H; Xia, H

    2010-03-12

    We report the first observation of extreme wave events (rogue waves) in parametrically driven capillary waves. Rogue waves are observed above a certain threshold in forcing. Above this threshold, frequency spectra broaden and develop exponential tails. For the first time we present evidence of strong four-wave coupling in nonlinear waves (high tricoherence), which points to modulation instability as the main mechanism in rogue waves. The generation of rogue waves is identified as the onset of a distinct tail in the probability density function of the wave heights. Their probability is higher than expected from the measured wave background.

  7. Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate.

    PubMed

    Yu, Kyung Ok; Kim, Seung Wook; Han, Sung Ok

    2010-10-15

    Ethanol plays an important role in substituting the increasingly limited oil as the high-value, renewable fuel. In our previous studies, we successfully established the conversion of glycerol to ethanol by overexpression of pGcyaDak with pGup1Cas in Saccharomyces cerevisiae. In addition to increasing ethanol production using glycerol as substrate, we minimized the synthesis of glycerol, which is the main by-product in ethanol fermentation processing. The glycerol production pathway was impaired by deletion of the genes FPS1 and GPD2. Strains deleted for both FPS1 and GPD2 reduce glycerol production and become highly sensitive to osmotic stress. We provide osmotic protection in YPH499fps1Δgpd2Δ by overexpression of Gup1. In this study, S. cerevisiae using glycerol as substrate was modified through one-step gene disruption for redirection of glycerol carbon flux into ethanol by the deletion of two glycerol production genes, FPS1 and GPD2. The overall ethanol production in the modified strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupCas) was about 4.4 gl⁻¹. These results demonstrate the possibility of providing protection against osmotic stress while simultaneously increasing ethanol and reducing glycerol production in S. cerevisiae strains using glycerol as a carbon source.

  8. Capillary suspensions: Particle networks formed through the capillary force

    PubMed Central

    Koos, Erin

    2014-01-01

    The addition of small amounts of a secondary fluid to a suspension can, through the attractive capillary force, lead to particle bridging and network formation. The capillary bridging phenomenon can be used to stabilize particle suspensions and precisely tune their rheological properties. This effect can even occur when the secondary fluid wets the particles less well than the bulk fluid. These materials, so-called capillary suspensions, have been the subject of recent research studying the mechanism for network formation, the properties of these suspensions, and how the material properties can be modified. Recent work in colloidal clusters is summarized and the relationship to capillary suspensions is discussed. Capillary suspensions can also be used as a pathway for new material design and some of these applications are highlighted. Results obtained to date are summarized and central questions that remain to be answered are proposed in this review. PMID:25729316

  9. Protein phase behavior and crystallization: Effect of glycerol

    NASA Astrophysics Data System (ADS)

    Sedgwick, H.; Cameron, J. E.; Poon, W. C. K.; Egelhaaf, S. U.

    2007-09-01

    Glycerol is widely used as an additive to stabilize proteins in aqueous solution. We have studied the effect of up to 40wt% glycerol on the crystallization of lysozyme from brine. As the glycerol concentration increased, progressively larger amounts of salt were needed to crystallize the protein. Like previous authors, we interpret this as evidence for glycerol changing the interaction between lysozyme molecules. We quantitatively model the interprotein interaction using a Derjaguin-Landau-Verwey-Overbeek potential. We find that the effect of glycerol can be entirely accounted for by the way it modifies the dielectric constant and refractive index of the solvent. Quantifying the interprotein interaction by the second virial coefficient, B2, we find a universal crystallization boundary for all glycerol concentrations.

  10. Protein phase behavior and crystallization: effect of glycerol.

    PubMed

    Sedgwick, H; Cameron, J E; Poon, W C K; Egelhaaf, S U

    2007-09-28

    Glycerol is widely used as an additive to stabilize proteins in aqueous solution. We have studied the effect of up to 40 wt % glycerol on the crystallization of lysozyme from brine. As the glycerol concentration increased, progressively larger amounts of salt were needed to crystallize the protein. Like previous authors, we interpret this as evidence for glycerol changing the interaction between lysozyme molecules. We quantitatively model the interprotein interaction using a Derjaguin-Landau-Verwey-Overbeek potential. We find that the effect of glycerol can be entirely accounted for by the way it modifies the dielectric constant and refractive index of the solvent. Quantifying the interprotein interaction by the second virial coefficient, B(2), we find a universal crystallization boundary for all glycerol concentrations.

  11. Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.

    PubMed

    Scoffield, Jessica; Silo-Suh, Laura

    2016-08-01

    Pseudomonas aeruginosa causes persistent infections in the airways of cystic fibrosis (CF) patients. Airway sputum contains various host-derived nutrients that can be utilized by P. aeruginosa, including phosphotidylcholine, a major component of host cell membranes. Phosphotidylcholine can be degraded by P. aeruginosa to glycerol and fatty acids to increase the availability of glycerol in the CF lung. In this study, we explored the role that glycerol metabolism plays in biofilm formation by P. aeruginosa. We report that glycerol metabolism promotes biofilm formation by both a chronic CF isolate (FRD1) and a wound isolate (PAO1) of P. aeruginosa. Moreover, loss of the GlpR regulator, which represses the expression of genes involved in glycerol metabolism, enhances biofilm formation in FRD1 through the upregulation of Pel polysaccharide. Taken together, our results suggest that glycerol metabolism may be a key factor that contributes to P. aeruginosa persistence by promoting biofilm formation.

  12. Tapered capillary optics

    DOEpatents

    Hirsch, Gregory

    1998-01-01

    A metal or glass wire is etched with great precision into a very narrowly tapering cone which has the shape of the desired final capillary-optics bore. By controlling the rate of removal of the wire from an etchant bath, a carefully controlled taper is produced. A sensor measures the diameter of the wire as it leaves the surface of the etchant. This signal is used for feedback control of the withdrawal speed. The etched wire undergoes a treatment to produce an extremely low surface-roughness. The etched and smoothed wire is coated with the material of choice for optimizing the reflectivity of the radiation being focused. This could be a vacuum evaporation, sputtering, CVD or aqueous chemical process. The coated wire is either electroplated, built up with electroless plating, or encapsulated in a polymer cylinder such as epoxy to increase the diameter of the wire for easier handling and greater robustness. During this process, the wire is vertically oriented and tensioned to assure that the wire is absolutely straight. The coated and electroformed wire is bonded to a flat, rigid substrate and is then periodically segmented by cutting or etching a series of narrow slits or grooves into the wire. The wire is vertically oriented and tensioned during the bonding process to assure that it is straight. The original wire material is then chemically etched away through the slits or otherwise withdrawn to leave the hollow internal bore of the final tapered-capillary optical element.

  13. Fungal biotransformation of crude glycerol into malic acid.

    PubMed

    West, Thomas P

    2015-01-01

    Malic acid production from the biodiesel coproduct crude glycerol by Aspergillus niger ATCC 9142, ATCC 10577 and ATCC 12846 was observed to occur with the highest malic acid level acid being produced by A. niger ATCC 12846. Fungal biomass production from crude glycerol was similar, but ATCC 10577 produced the highest biomass. Fungal biotransformation of crude glycerol into the commercially valuable organic acid malic acid appeared feasible.

  14. Effect of Ambient Temperature on the Toxicity of Palmitoyl Glycerol.

    DTIC Science & Technology

    1985-11-25

    consumed or its rate of absorption. Similarly, there were no differences between those fed the palmitoyl glycerol diet with or without safflower oil...level. circulating neurotensin in mice fed the palmitoyl glycerol diet wit" or with safflower oil by radioimmunoassay. We found no differe between...involvement, we injected prostaglandin E2 intracisternally into mice fed palmitoyl glycerol with or without safflower oil. This hormone had no effect on

  15. On Capillary Rise and Nucleation

    ERIC Educational Resources Information Center

    Prasad, R.

    2008-01-01

    A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)

  16. Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism

    SciTech Connect

    Yeh, Joanne I.; Chinte, Unmesh; Du, Shoucheng

    2008-04-02

    Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 {angstrom} resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes.

  17. Borrelia burgdorferi Requires Glycerol for Maximum Fitness During The Tick Phase of the Enzootic Cycle

    PubMed Central

    Pappas, Christopher J.; Iyer, Radha; Petzke, Mary M.; Caimano, Melissa J.; Radolf, Justin D.; Schwartz, Ira

    2011-01-01

    Borrelia burgdorferi, the spirochetal agent of Lyme disease, is a vector-borne pathogen that cycles between a mammalian host and tick vector. This complex life cycle requires that the spirochete modulate its gene expression program to facilitate growth and maintenance in these diverse milieus. B. burgdorferi contains an operon that is predicted to encode proteins that would mediate the uptake and conversion of glycerol to dihydroxyacetone phosphate. Previous studies indicated that expression of the operon is elevated at 23°C and is repressed in the presence of the alternative sigma factor RpoS, suggesting that glycerol utilization may play an important role during the tick phase. This possibility was further explored in the current study by expression analysis and mutagenesis of glpD, a gene predicted to encode glycerol 3-phosphate dehydrogenase. Transcript levels for glpD were significantly lower in mouse joints relative to their levels in ticks. Expression of GlpD protein was repressed in an RpoS-dependent manner during growth of spirochetes within dialysis membrane chambers implanted in rat peritoneal cavities. In medium supplemented with glycerol as the principal carbohydrate, wild-type B. burgdorferi grew to a significantly higher cell density than glpD mutant spirochetes during growth in vitro at 25°C. glpD mutant spirochetes were fully infectious in mice by either needle or tick inoculation. In contrast, glpD mutants grew to significantly lower densities than wild-type B. burgdorferi in nymphal ticks and displayed a replication defect in feeding nymphs. The findings suggest that B. burgdorferi undergoes a switch in carbohydrate utilization during the mammal to tick transition. Further, the results demonstrate that the ability to utilize glycerol as a carbohydrate source for glycolysis during the tick phase of the infectious cycle is critical for maximal B. burgdorferi fitness. PMID:21750672

  18. Glycerol enhances fungal germination at the water-activity limit for life.

    PubMed

    Stevenson, Andrew; Hamill, Philip G; Medina, Ángel; Kminek, Gerhard; Rummel, John D; Dijksterhuis, Jan; Timson, David J; Magan, Naresh; Leong, Su-Lin L; Hallsworth, John E

    2017-03-01

    For the most-extreme fungal xerophiles, metabolic activity and cell division typically halts between 0.700 and 0.640 water activity (approximately 70.0-64.0% relative humidity). Here, we investigate whether glycerol can enhance xerophile germination under acute water-activity regimes, using an experimental system which represents the biophysical limit of Earth's biosphere. Spores from a variety of species, including Aspergillus penicillioides, Eurotium halophilicum, Xerochrysium xerophilum (formerly Chrysosporium xerophilum) and Xeromyces bisporus, were produced by cultures growing on media supplemented with glycerol (and contained up to 189 mg glycerol g dry spores(-1) ). The ability of these spores to germinate, and the kinetics of germination, were then determined on a range of media designed to recreate stresses experienced in microbial habitats or anthropogenic systems (with water-activities from 0.765 to 0.575). For A. penicillioides, Eurotium amstelodami, E. halophilicum, X. xerophilum and X. bisporus, germination occurred at lower water-activities than previously recorded (0.640, 0.685, 0.651, 0.664 and 0.637 respectively). In addition, the kinetics of germination at low water-activities were substantially faster than those reported previously. Extrapolations indicated theoretical water-activity minima below these values; as low as 0.570 for A. penicillioides and X. bisporus. Glycerol is present at high concentrations (up to molar levels) in many types of microbial habitat. We discuss the likely role of glycerol in expanding the water-activity limit for microbial cell function in relation to temporal constraints and location of the microbial cell or habitat. The findings reported here have also critical implications for understanding the extremes of Earth's biosphere; for understanding the potency of disease-causing microorganisms; and in biotechnologies that operate at the limits of microbial function.

  19. Glycerol enhances fungal germination at the water‐activity limit for life

    PubMed Central

    Stevenson, Andrew; Hamill, Philip G.; Medina, Ángel; Kminek, Gerhard; Rummel, John D.; Dijksterhuis, Jan; Timson, David J.; Magan, Naresh; Leong, Su‐Lin L.

    2016-01-01

    Summary For the most‐extreme fungal xerophiles, metabolic activity and cell division typically halts between 0.700 and 0.640 water activity (approximately 70.0–64.0% relative humidity). Here, we investigate whether glycerol can enhance xerophile germination under acute water‐activity regimes, using an experimental system which represents the biophysical limit of Earth's biosphere. Spores from a variety of species, including Aspergillus penicillioides, Eurotium halophilicum, Xerochrysium xerophilum (formerly Chrysosporium xerophilum) and Xeromyces bisporus, were produced by cultures growing on media supplemented with glycerol (and contained up to 189 mg glycerol g dry spores−1). The ability of these spores to germinate, and the kinetics of germination, were then determined on a range of media designed to recreate stresses experienced in microbial habitats or anthropogenic systems (with water‐activities from 0.765 to 0.575). For A. penicillioides, Eurotium amstelodami, E. halophilicum, X. xerophilum and X. bisporus, germination occurred at lower water‐activities than previously recorded (0.640, 0.685, 0.651, 0.664 and 0.637 respectively). In addition, the kinetics of germination at low water‐activities were substantially faster than those reported previously. Extrapolations indicated theoretical water‐activity minima below these values; as low as 0.570 for A. penicillioides and X. bisporus. Glycerol is present at high concentrations (up to molar levels) in many types of microbial habitat. We discuss the likely role of glycerol in expanding the water‐activity limit for microbial cell function in relation to temporal constraints and location of the microbial cell or habitat. The findings reported here have also critical implications for understanding the extremes of Earth's biosphere; for understanding the potency of disease‐causing microorganisms; and in biotechnologies that operate at the limits of microbial function. PMID:27631633

  20. The order of condensation in capillary grooves.

    PubMed

    Rascón, Carlos; Parry, Andrew O; Nürnberg, Robert; Pozzato, Alessandro; Tormen, Massimo; Bruschi, Lorenzo; Mistura, Giampaolo

    2013-05-15

    We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure p(co)(L) described, for large widths, by the Kelvin equation p(sat) - p(co)(L) = 2σ cosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θcap; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σ sinθcap/L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θcap = 0 and the influence of corner menisci on adsorption isotherms are presented.

  1. Hypoxia-inducible factor-1α contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain.

    PubMed

    Higashida, Tetsuhiro; Peng, Changya; Li, Jie; Dornbos, David; Teng, Kailing; Li, Xiaohua; Kinni, Harish; Guthikonda, Murali; Ding, Yuchuan

    2011-02-01

    Brain edema following stroke is a critical clinical problem due to its association with increased morbidity and mortality. Despite its significance, present treatment for brain edema simply provides symptomatic relief due to the fact that molecular mechanisms underlying brain edema remain poorly understood. The present study investigated the role of hypoxia-inducible factor-1α (HIF-1α) and aquaporins (AQP-4 and -9) in regulating cerebral glycerol accumulation and inducing brain edema in a rodent model of stroke. Two-hours of middle cerebral artery occlusion (MCAO) followed by reperfusion was performed in male Sprague-Dawley rats (250-280 g). Anti-AQP-4 antibody, anti-AQP-9 antibody, or 2-Methoxyestradiol (2ME2, an inhibitor of HIF-1α) was given at the time of MCAO. The rats were sacrificed at 1 and 24 hours after reperfusion and their brains were examined. Extracellular and intracellular glycerol concentration of brain tissue was calculated with an enzymatic glycerol assay. The protein expressions of HIF-1α, AQP-4 and AQP-9 were determined by Western blotting. Brain edema was measured by brain water content. Compared to control, edema (p < 0.01), increased glycerol (p < 0.05), and enhanced expressions of HIF-1α, AQP-4, and AQP-9 (p < 0.05) were observed after stroke. With inhibition of AQP-4, AQP-9 or HIF-1α, edema and extracellular glycerol were significantly (p < 0.01) decreased while intracellular glycerol was increased (p < 0.01) 1 hour after stroke. Inhibition of HIF-1α with 2ME2 suppressed (p < 0.01) the expression of AQP-4 and AQP-9. These findings suggest that HIF-1α serves as an upstream regulator of cerebral glycerol concentrations and brain edema via a molecular pathway involving AQP-4 and AQP-9. Pharmacological blockade of this pathway in stroke patients may provide novel therapeutic strategies.

  2. Fermentation of crude glycerol from biodiesel production by Clostridium pasteurianum.

    PubMed

    Jensen, Torbjørn Olshøj; Kvist, Thomas; Mikkelsen, Marie Just; Christensen, Peter Vittrup; Westermann, Peter

    2012-05-01

    Clostridium pasteurianum can utilize glycerol as the sole carbon source for the production of butanol and 1,3-propanediol. Crude glycerol derived from biodiesel production has been shown to be toxic to the organism even in low concentrations. By examination of different pretreatments we found that storage combined with activated stone carbon addition facilitated the utilization of crude glycerol. A pH-controlled reactor with in situ removal of butanol by gas stripping was used to evaluate the performance. The fermentation pattern on pretreated crude glycerol was quite similar to that on technical grade glycerol. C. pasteurianum was able to utilize 111 g/l crude glycerol. The average consumption rate was 2.49 g/l/h and maximum consumption rate was 4.08 g/l/h. At the maximal glycerol consumption rate butanol was produced at 1.3 g/l/h. These rates are higher than those previously reported for fermentations on technical grade glycerol by the same strain. A process including pretreatment and subsequent fermentation of the crude glycerol could be usable for industrial production of butanol by C. pasteurianum.

  3. Photosynthetic production of glycerol by a recombinant cyanobacterium.

    PubMed

    Savakis, Philipp; Tan, Xiaoming; Du, Wei; Branco dos Santos, Filipe; Lu, Xuefeng; Hellingwerf, Klaas J

    2015-02-10

    Cyanobacteria are prokaryotic organisms capable of oxygenic photosynthesis. Glycerol is an important commodity chemical. Introduction of phosphoglycerol phosphatase 2 from Saccharomyces cerevisiae into the model cyanobacterium Synechocystis sp. PCC6803 resulted in a mutant strain that produced a considerable amount of glycerol from light, water and COPhotosynthetic production . Mild salt stress (200 mM NaCl) on the cells led to an increase of the extracellular glycerol concentration of more than 20%. Under these conditions the mutant accumulated glycerol to an extracellular concentration of 14.3 mM after 17 days of culturing.

  4. Principles of micellar electrokinetic capillary chromatography applied in pharmaceutical analysis.

    PubMed

    Hancu, Gabriel; Simon, Brigitta; Rusu, Aura; Mircia, Eleonora; Gyéresi, Arpád

    2013-01-01

    Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  5. Capillary optics for radiation focusing

    SciTech Connect

    Peurrung, A.J.; Reeder, P.L.; Bliss, M.; Craig, R.A.; Lepel, E.A.; Stromswold, D.C.; Stoffels, J.; Sunberg, D.S.; Tenny, H.

    1996-11-01

    Capillary lens technology may ultimately bring benefits to neutron and x-ray-based science like conventional lenses with visible light. Although the technology is not yet 10 years old, these lenses have already had a significant impact in engineering, science, and medicine. Capillary lenses are advantageous when it is desirable to increase the radiation flux at a location without regard to its angular divergence. PNNL has worked to improve the technology in several ways. A single, optimally tapered capillary was manufactured, which allows intensity gains of a factor of 270 for an initially parallel, incident x-ray beam. Feasibility of constructing neutron lenses using {sup 58}Ni (particularly effective at reflecting neutrons) has been explored. Three applications for capillary optics have been identified and studied: neutron telescope, Gandolphi x-ray diffractometry, and neutron radiotherapy. A brief guide is given for determining which potential applications are likely to be helped by capillary optics.

  6. Noise suppressing capillary separation system

    DOEpatents

    Yeung, E.S.; Xue, Y.

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans. 13 figs.

  7. Geometry-induced capillary emptying.

    PubMed

    Rascón, Carlos; Parry, Andrew O; Aarts, Dirk G A L

    2016-10-24

    When a capillary is half-filled with liquid and turned to the horizontal, the liquid may flow out of the capillary or remain in it. For lack of a better criterion, the standard assumption is that the liquid will remain in a capillary of narrow cross-section, and will flow out otherwise. Here, we present a precise mathematical criterion that determines which of the two outcomes occurs for capillaries of arbitrary cross-sectional shape, and show that the standard assumption fails for certain simple geometries, leading to very rich and counterintuitive behavior. This opens the possibility of creating very sensitive microfluidic devices that respond readily to small physical changes, for instance, by triggering the sudden displacement of fluid along a capillary without the need of any external pumping.

  8. Biomedical applications of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Kartsova, L. A.; Bessonova, E. A.

    2015-08-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references.

  9. Rotation of ultrasonically levitated glycerol drops

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Leung, E. W.; Trinh, E. H.

    1991-01-01

    Ultrasonic levitation is used to suspend single millimeter-size glycerol drops in a rectangular chamber. Audio-frequency laterally standing waves set up in the chamber are used to torque the suspended drops. The shape evolution of the drop under the combined effect of centrifugal forces and the acoustic radiation stress, along with its angular velocity are monitored, using video imaging and light scattering techniques. The results show good qualitative agreement with the theoretically predicted shape evolution as a function of angular velocity.

  10. Activation and stabilization of penicillin V acylase from streptomyces lavendulae in the presence of glycerol and glycols.

    PubMed

    Arroyo, M; Torres-Guzmán, R; de La Mata, I; Castillón, M P; Acebal, C

    2000-01-01

    Penicillin V acylase (EC 3.5.1.11) from Streptomyces lavendulae showed both enhanced activity and stability in mixed water/glycerol and water/glycols solvents. The catalytic activity was increased up to a critical concentration of these cosolvents, but further addition of the latter led to a gradual protein deactivation. The highest stabilizing effect was achieved in the presence of glycerol. Thermal stability was increased proportionally to the concentration of glycerol and glycols in the reaction mixture only if the amount added is below the threshold concentration. Reaction conditions that allow simultaneously enhanced activity and stability in the hydrolysis of penicillin V catalyzed by penicillin V acylase from S. lavendulae could be established.

  11. Effects of glycerol on enzymatic hydrolysis and ethanol production using sugarcane bagasse pretreated by acidified glycerol solution.

    PubMed

    Zhang, Zhanying; Wong, Heng H; Albertson, Peter L; Harrison, Mark D; Doherty, William O S; O'Hara, Ian M

    2015-09-01

    In this study, for the first time the effects of glycerol on enzymatic hydrolysis and ethanol fermentation were investigated. Enzymatic hydrolysis was inhibited slightly with 2.0 wt% glycerol, leading to reduction in glucan digestibility from 84.9% without glycerol to 82.9% (72 h). With 5.0 wt% and 10.0 wt% glycerol, glucan digestibility was reduced by 4.5% and 11.0%, respectively. However, glycerol did not irreversibly inhibit cellulase enzymes. Ethanol fermentation was not affected by glycerol up to 5.0 wt%, but was inhibited slightly at 10.0 wt% glycerol, resulting in reduction in ethanol yield from 86.0% in the absence of glycerol to 83.7% (20 h). Based on the results of laboratory and pilot-scale experiments, it was estimated that 0.142 kg ethanol can be produced from 1.0 kg dry bagasse (a glucan content of 38.0%) after pretreatment with acidified glycerol solution.

  12. On singularities of capillary surfaces in the absence of gravity

    DOE PAGES

    Roytburd, V.

    1983-01-01

    We smore » tudy numerical solutions to the equation of capillary surfaces in trapezoidal domains in the absence of gravity when the boundary contact angle declines from 90 ° to some critical value. We also discuss a result on the behavior of solutions in more general domains that confirms numerical calculations.« less

  13. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  14. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  15. Steady Capillary Driven Flow

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.

    1996-01-01

    A steady capillary driven flow is developed for a liquid index in a circular tube which is partially coated with a surface modifier to produce a discontinuous wetting condition from one side of the tube to the other. The bulk flow is novel in that it is truly steady, and controlled solely by the physics associated with dynamic wetting. The influence of gravity on the flow is minimized through the use of small diameter tubes approximately O(1 mm) tested horizontally in a laboratory and larger tubes approximately O(10 mm) tested in the low gravity environment of a drop tower. Average steady velocities are predicted and compared against a large experimental data set which includes the effects of tube dimensions and fluid properties. The sensitivity of the velocity to surface cleanliness is dramatic and the advantages of experimentation in a microgravity environment are discussed.

  16. A capillary Archimedes' screw

    NASA Astrophysics Data System (ADS)

    Darbois Texier, Baptiste; Dorbolo, Stephane

    2014-11-01

    As used by Egyptians for irrigation and reported by Archimedes, a screw turning inside a hollow pipe can pull out a fluid againt gravity. At a centimetric scale, an analagous system can be found with a drop pending on a rotating spiral which is tilted toward the horizontal. The ascent of the drop to the top of the spiral is considered and a theoretical model based on geometrical considerations is proposed. The climb of the drop is limited by the fluid deposition on the screw at high capillary number and by a centrifugation phenomenon. We find out the range of fluid proprities and spiral characteristics for which an ascending motion of the drop is possible. Finally we discuss the efficiency of such system to extract a fluid from a bath at a centrimetric scale.

  17. Multidimensional capillary electrophoresis.

    PubMed

    Grochocki, Wojciech; Markuszewski, Michał J; Quirino, Joselito P

    2015-01-01

    Multidimensional separation where two or more orthogonal displacement mechanisms are combined is a promising approach to increase peak capacity in CE. The combinations allow dramatic improvement of analytical performance since the total peak capacity is given by a product of the peak capacities of all methods. The initial reports were concentrated on the construction of effective connections between capillaries for 2D analysis. Today, 2D and 3D CE systems are now able to separate real complex biological or environmental mixtures with good repeatability, improved resolution with minimal loss of sample. This review will present the developments in the field of multidimensional CE during the last 15 years. The endeavors in this specific field were on the development of interfaces, interface-free techniques including integrated separations, microdevices, and on-line sample concentration techniques to improve detection sensitivity.

  18. Ruminal fermentation of propylene glycol and glycerol.

    PubMed

    Trabue, Steven; Scoggin, Kenwood; Tjandrakusuma, Siska; Rasmussen, Mark A; Reilly, Peter J

    2007-08-22

    Bovine rumen fluid was fermented anaerobically with 25 mM R-propylene glycol, S-propylene glycol, or glycerol added. After 24 h, all of the propylene glycol enantiomers and approximately 80% of the glycerol were metabolized. Acetate, propionate, butyrate, valerate, and caproate concentrations, in decreasing order, all increased with incubation time. Addition of any of the three substrates somewhat decreased acetate formation, while addition of either propylene glycol increased propionate formation but decreased that of butyrate. R- and S-propylene glycol did not differ significantly in either their rates of disappearance or the products formed when they were added to the fermentation medium. Fermentations of rumen fluid containing propylene glycol emitted the sulfur-containing gases 1-propanethiol, 1-(methylthio)propane, methylthiirane, 2,4-dimethylthiophene, 1-(methylthio)-1-propanethiol, dipropyl disulfide, 1-(propylthio)-1-propanethiol, dipropyl trisulfide, 3,5-diethyl-1,2,4-trithiolane, 2-ethyl-1,3-dithiane, and 2,4,6-triethyl-1,3,5-trithiane. Metabolic pathways that yield each of these gases are proposed. The sulfur-containing gases produced during propylene glycol fermentation in the rumen may contribute to the toxic effects seen in cattle when high doses are administered for therapeutic purposes.

  19. Instability of the capillary bridge

    NASA Astrophysics Data System (ADS)

    Pare, Gounseti; Hoepffner, Jerome

    2014-11-01

    Capillary adhesion is a physical mechanism that maintains two bodies in contact by capillarity through a liquid ligament. The capillary bridge is an idealization of this capillary adhesion. In this study we first focus on the classical case of the stability of the capillary bridge. Secondly we study a slightly more complex configuration, imagining a flow in the capillary bridge as in the case of the dynamics of the neck of a liquid ligament, in its withdrawal under the effect of capillarity. Inspired by the experiments on soap films of Plateau, the configuration analyzed consists of an initially axisymmetric, mass of fluid held by surface tension forces between two parallel, coaxial, solid pipes of the same diameter. The results presented are obtained by numerical simulations using the free software, Gerris Flow Solver. We first focus on the capillary Venturi. In the static configuration the stability diagram of the capillary bridge obtained is in perfect agreement with the results of Lev A. Slobozhanin. In the dynamic case we develop a matlab code based on the one dimensional equations of Eggers and Dupont. The comparison of the bifurcation diagram obtained and the numerical simulations shows a good agreement.

  20. Inertial Rise in Short Capillaries

    NASA Astrophysics Data System (ADS)

    Shardt, Orest; Waghmare, Prashant; Mitra, Sushanta; Derksen, Jos

    2013-11-01

    We investigate the primarily inertial rise of liquid in vertical glass capillaries that are shorter than the equilibrium rise height (Jurin height). We focus on the behavior of the liquid upon reaching the top of the capillary and use high-speed imaging to observe the motion of the liquid-air interface with high spatial and temporal resolution. We examine the dependence of the interface behavior on the meniscus speed and capillary height and describe a new phenomenon. Upon reaching the upper edge of a sufficiently short capillary, the meniscus inverts, rises upward, and bulges out radially. The bulging liquid then wets the external surface of the capillary and slides down. The meniscus inside the capillary retracts, falling below the upper edge, and then oscillates vertically with decaying amplitude, inverting several times before reaching a steady shape. A theoretical analysis is used to interpret the conditions required for this phenomenon to occur. A key assumption in the analysis is that the transient flow is inertial and therefore the capillary driving force is balanced by the weight and inertia of the rising liquid column while viscous forces are comparatively small. The analysis points to the possibility of obtaining previously-unseen behavior under reduced gravity.

  1. Urea, glycolic acid, and glycerol in an organic residue produced by ultraviolet irradiation of interstellar/pre-cometary ice analogs.

    PubMed

    Nuevo, Michel; Bredehöft, Jan Hendrik; Meierhenrich, Uwe J; d'Hendecourt, Louis; Thiemann, Wolfram H-P

    2010-03-01

    More than 50 stable organic molecules have been detected in the interstellar medium (ISM), from ground-based and onboard-satellite astronomical observations, in the gas and solid phases. Some of these organics may be prebiotic compounds that were delivered to early Earth by comets and meteorites and may have triggered the first chemical reactions involved in the origin of life. Ultraviolet irradiation of ices simulating photoprocesses of cold solid matter in astrophysical environments have shown that photochemistry can lead to the formation of amino acids and related compounds. In this work, we experimentally searched for other organic molecules of prebiotic interest, namely, oxidized acid labile compounds. In a setup that simulates conditions relevant to the ISM and Solar System icy bodies such as comets, a condensed CH(3)OH:NH(3) = 1:1 ice mixture was UV irradiated at approximately 80 K. The molecular constituents of the nonvolatile organic residue that remained at room temperature were separated by capillary gas chromatography and identified by mass spectrometry. Urea, glycolic acid, and glycerol were detected in this residue, as well as hydroxyacetamide, glycerolic acid, and glycerol amide. These organics are interesting target molecules to be searched for in space. Finally, tentative mechanisms of formation for these compounds under interstellar/pre-cometary conditions are proposed.

  2. Electrospraying from nanofluidic capillary slot

    NASA Astrophysics Data System (ADS)

    Arscott, Steve; Troadec, David

    2005-09-01

    We present here an original electrospray emitter tip based on a nanofluidic capillary slot. The nanofabrication involves focused ion beam etching to form the slot which has a cross-section of 50×300nm and a length of 4μm. The liquid is deformed into the nanofluidic capillary slot by capillary action; the electrospray is produced by the application of a low voltage. Using a water-methanol-formic acid solution, we have observed an electrospray onset voltage of 125V. At a measured electrospray current of 1nA, the unforced flow-rate is estimated to be 110pLmin-1.

  3. Integrated multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  4. Biodegradation of Glycerol Trinitrate and Pentaerythritol Tetranitrate by Agrobacterium radiobacter

    PubMed Central

    White, G. F.; Snape, J. R.; Nicklin, S.

    1996-01-01

    Bacteria capable of metabolizing highly explosive and vasodilatory glycerol trinitrate (GTN) were isolated under aerobic and nitrogen-limiting conditions from soil, river water, and activated sewage sludge. One of these strains (from sewage sludge) chosen for further study was identified as Agrobacterium radiobacter subgroup B. A combination of high-pressure liquid chromatography and nuclear magnetic resonance analyses of the culture medium during the growth of A. radiobacter on basal salts-glycerol-GTN medium showed the sequential conversion of GTN to glycerol dinitrates and glycerol mononitrates. Isomeric glycerol 1,2-dinitrate and glycerol 1,3-dinitrate were produced simultaneously and concomitantly with the disappearance of GTN, with significant regioselectivity for the production of the 1,3-dinitrate. Dinitrates were further degraded to glycerol 1- and 2-mononitrates, but mononitrates were not biodegraded. Cells were also capable of metabolizing pentaerythritol tetranitrate, probably to its trinitrate and dinitrate analogs. Extracts of broth-grown cells contained an enzyme which in the presence of added NADH converted GTN stoichiometrically to nitrite and the mixture of glycerol dinitrates. The specific activity of this enzyme was increased 160-fold by growth on GTN as the sole source of nitrogen. PMID:16535244

  5. 40 CFR 721.10323 - Glycerol fatty acid ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Glycerol fatty acid ester (generic... Specific Chemical Substances § 721.10323 Glycerol fatty acid ester (generic). (a) Chemical substance and... acid ester (PMN P-03-248) is subject to reporting under this section for the significant new...

  6. 40 CFR 721.10323 - Glycerol fatty acid ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Glycerol fatty acid ester (generic... Specific Chemical Substances § 721.10323 Glycerol fatty acid ester (generic). (a) Chemical substance and... acid ester (PMN P-03-248) is subject to reporting under this section for the significant new...

  7. 40 CFR 721.10323 - Glycerol fatty acid ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Glycerol fatty acid ester (generic... Specific Chemical Substances § 721.10323 Glycerol fatty acid ester (generic). (a) Chemical substance and... acid ester (PMN P-03-248) is subject to reporting under this section for the significant new...

  8. Thermal and Structural Properties of Silk Biomaterials Plasticized by Glycerol.

    PubMed

    Brown, Joseph E; Davidowski, Stephen K; Xu, Dian; Cebe, Peggy; Onofrei, David; Holland, Gregory P; Kaplan, David L

    2016-12-12

    The molecular interactions of silk materials plasticized using glycerol were studied, as these materials provide options for biodegradable and flexible protein-based systems. Plasticizer interactions with silk were analyzed by thermal, spectroscopic, and solid-state NMR analyses. Spectroscopic analysis implied that glycerol was hydrogen bonded to the peptide matrix, but may be displaced with polar solvents. Solid-state NMR indicated that glycerol induced β-sheet formation in the dried silk materials, but not to the extent of methanol treatment. Fast scanning calorimetry suggested that β-sheet crystal formation in silk-glycerol films appeared to be less organized than in the methanol treated silk films. We propose that glycerol may be simultaneously inducing and interfering with β-sheet formation in silk materials, causing some improper folding that results in less-organized silk II structures even after the glycerol is removed. This difference, along with trace residual glycerol, allows glycerol extracted silk materials to retain more flexibility than methanol processed versions.

  9. Unilamellar DMPC vesicles in aqueous glycerol: preferential interactions and thermochemistry.

    PubMed

    Westh, Peter

    2003-01-01

    Glycerol is accumulated in response to environmental stresses in a diverse range of organisms. Understanding of favorable in vivo effects of this solute requires insight into its interactions with biological macromolecules, and one access to this information is the quantification of so-called preferential interactions in glycerol-biopolymer solutions. For model membrane systems, preferential interactions have been discussed, but not directly measured. Hence, we have applied a new differential vapor pressure equipment to quantify the isoosmotic preferential binding parameter, Gamma( micro 1), for systems of unilamellar vesicles of DMPC in aqueous glycerol. It is found that Gamma( micro 1) decreases linearly with the glycerol concentration with a slope of -0.14 +/- 0.014 per molal. This implies that glycerol is preferentially excluded from the membrane-solvent interface. Calorimetric investigations of the same systems showed that the glycerol-DMPC interactions are weakly endothermic, and the temperature of the main phase transition increases slightly (0.16 degrees C per molal) with the glycerol concentration. The results are discussed with respect to a molecular picture which takes into account both the partitioning of glycerol into the membrane and the preferential exclusion from the hydration layer, and it is concluded that the latter effect contributes about four times stronger than the former to the net interaction.

  10. The Acrylation of Glycerol: a Precursor to Functionalized Lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Didecanoylacryloylglycerol was synthesized from decanoic and acrylic acids and glycerol using K2O as catalyst. This reaction was carried out in hexane in a closed stainless steel reactor at 200°C for 5h. The reactants were added in a 1:3:4 glycerol:decanoic acid:acrylic acid molar ratio. The resu...

  11. Synthesis and applications of {sup 13}C glycerol

    SciTech Connect

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  12. Fabrication of a glycerol from CO2 reaction system, supplement

    NASA Technical Reports Server (NTRS)

    Weiss, A. H.

    1973-01-01

    The fabrication, installation, and testing of a glycerol hydrogenation and a CO2 hydrogenation - CH4 partial oxidation units are reported. The glycerol system proved to be operational while the CO2 system was installed but not bought on operational steam.

  13. 75 FR 71556 - Polyoxyalkylated Glycerol Fatty Acid Esters; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... AGENCY 40 CFR Part 180 Polyoxyalkylated Glycerol Fatty Acid Esters; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of polyoxyalkylated glycerol fatty acid esters; the... unsaturated, fatty acids containing up to 15% water by weight reacted with a minimum of three moles of...

  14. Analysis of Capillary Rise in Asymmetric Branch-Like Capillary

    NASA Astrophysics Data System (ADS)

    Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Yang, Zhihui; Su, Shuai; Ren, Kai; Huang, Heyu

    2016-05-01

    Transport in porous media is common in nature, attracting many attentions for a long time. Tree-like network model is often used as a simplification for porous space, expressing the complexity of pore spaces instead of capillary bundle. To investigate spontaneous imbibition characteristics in this network, a dynamic asymmetric branch-like capillary model is used to represent basic network structure, using fractal method to represent tortuosity. This work investigates the influence of parameters on imbibition process in the branch-like capillary model. An analytical equation for the imbibition mass versus time is derived. Parameters from capillary structures to liquid properties are taken into account and analyzed based on the numerical solution of the equation. It is found that the imbibition process in asymmetric branch-like capillary model can be recognized by four sections and brunching tubes are positive for imbibition process. Concomitantly, meniscus arrest event is simulated and discussed. Moreover, the influence of parameters on imbibition process is discussed. These parameters can be classified as static and dynamic. Static parameters mainly change the capillary force, which are related to the ultimate imbibition mass or imbibition ability, while dynamic parameters mainly have influence on resistance of flowing fluid, which are related to the imbibition speed in the imbibition process.

  15. Conserved family of glycerol kinase loci in Drosophila melanogaster

    PubMed Central

    Martinez Agosto, Julian A.; McCabe, Edward R.B.

    2009-01-01

    Glycerol kinase (GK) is an enzyme that catalyzes the formation of glycerol 3-phosphate from ATP and glycerol, the rate-limiting step in glycerol utilization. We analyzed the genome of the model organism Drosophila melanogaster and identified five GK orthologs, including two loci with sequence homology to the mammalian Xp21 GK protein. Using a combination of sequence analysis and evolutionary comparisons of orthologs between species, we characterized functional domains in the protein required for GK activity. Our findings include additional conserved domains that suggest novel nuclear and mitochondrial functions for glycerol kinase in apoptosis and transcriptional regulation. Investigation of GK function in Drosophila will inform us about the role of this enzyme in development and will provide us with a tool to examine genetic modifiers of human metabolic disorders. PMID:16545593

  16. Glycerol, an underestimated flavor precursor in the Maillard reaction.

    PubMed

    Smarrito-Menozzi, Candice; Matthey-Doret, Walter; Devaud-Goumoens, Stéphanie; Viton, Florian

    2013-10-30

    The objective of the present work was to investigate in depth the role of glycerol in Maillard reactions and its potential to act as an active flavor precursor. Reactions using isotopically labeled compounds (various reducing sugars, proline, and glycerol) unambiguously demonstrated that, in addition to its role of solvent, glycerol actively contributes to the formation of proline-specific compounds in Maillard model systems. Additionally, rhamnose and fucose/proline/glycerol systems generated the 2-propionyl-1(3),4,5,6-tetrahydropyridines, known for their roasty, popcorn aroma. Their formation from such systems is unprecedented. The results presented here have direct implications for flavor generation during thermal processing of foods containing glycerol, which is a ubiquitous food ingredient and an underestimated flavor precursor.

  17. Microbial conversion of glycerol to 1,3-propanediol

    SciTech Connect

    Zeng, A.P.; Biebl, H.; Deckwer, W.D.

    1996-10-01

    Glycerol is a byproduct from the soap and detergent industry and possibly from future biodiesel plants. The conversion of glycerol to 1,3-propanediol (PD) is of industrial interest due to the potential use of PD for the synthesis of polyesters. We have been studying the microbial conversion of glycerol to PD with work ranging from strain isolation, medium optimization, pathway analysis, product formation kinetics and growth modeling, downstream processing and reactor scale-up (up to 2000 1). PD yields of nearly 100% of the theoretical maximum (0.72 mol/mol glycerol) and final product concentrations of about 65 g/l were achieved with both Klebsiella pneumoniae and Clostridium butyricum. In addition to summarizing our experimental results the advances of bioconversion of glycerol will be reviewed in this presentation, with emphasis on discussing further research and development needs in this area. Results of process engineering and cost analysis will also be presented.

  18. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  19. Capillary fracturing in granular media.

    PubMed

    Holtzman, Ran; Szulczewski, Michael L; Juanes, Ruben

    2012-06-29

    We study the displacement of immiscible fluids in deformable, noncohesive granular media. Experimentally, we inject air into a thin bed of water-saturated glass beads and observe the invasion morphology. The control parameters are the injection rate, the bead size, and the confining stress. We identify three invasion regimes: capillary fingering, viscous fingering, and "capillary fracturing," where capillary forces overcome frictional resistance and induce the opening of conduits. We derive two dimensionless numbers that govern the transition among the different regimes: a modified capillary number and a fracturing number. The experiments and analysis predict the emergence of fracturing in fine-grained media under low confining stress, a phenomenon that likely plays a fundamental role in many natural processes such as primary oil migration, methane venting from lake sediments, and the formation of desiccation cracks.

  20. Capillary Fracturing in Granular Media

    NASA Astrophysics Data System (ADS)

    Holtzman, Ran; Szulczewski, Michael L.; Juanes, Ruben

    2012-06-01

    We study the displacement of immiscible fluids in deformable, noncohesive granular media. Experimentally, we inject air into a thin bed of water-saturated glass beads and observe the invasion morphology. The control parameters are the injection rate, the bead size, and the confining stress. We identify three invasion regimes: capillary fingering, viscous fingering, and “capillary fracturing,” where capillary forces overcome frictional resistance and induce the opening of conduits. We derive two dimensionless numbers that govern the transition among the different regimes: a modified capillary number and a fracturing number. The experiments and analysis predict the emergence of fracturing in fine-grained media under low confining stress, a phenomenon that likely plays a fundamental role in many natural processes such as primary oil migration, methane venting from lake sediments, and the formation of desiccation cracks.

  1. DNA typing by capillary electrophoresis

    SciTech Connect

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  2. Flow rate limitation in open capillary channel flows.

    PubMed

    Haake, Dennis; Rosendahl, Uwe; Ohlhoff, Antje; Dreyer, Michael E

    2006-09-01

    This paper reports the experimental and theoretical investigations of forced liquid flows through open capillary channels under reduced gravity conditions. An open capillary channel is a structure that establishes a liquid flow path at low Bond numbers, when the capillary pressure caused by the surface tension force dominates in comparison to the hydrostatic pressure induced by gravitational or residual accelerations. In case of steady flow through the channel, the capillary pressure of the free surface balances the pressure difference between the liquid and the surrounding constant-pressure gas phase. Because of convective and viscous momentum transport, the pressure along the flow path decreases and causes the free surface to bend inward. The maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the geometry of the channel and the properties of the liquid. In this paper we present a comparison of the theoretical and experimental critical flow rates and surface profiles for convective dominated flows. For the prediction of the critical flow rate a one-dimensional theoretical model taking into account the entrance pressure loss and the frictional pressure loss in the channel is developed.

  3. Liquefaction of lignin by polyethyleneglycol and glycerol.

    PubMed

    Jin, Yanqiao; Ruan, Xuemin; Cheng, Xiansu; Lü, Qiufeng

    2011-02-01

    Enzymatic hydrolysis lignin (EHL), isolated from the enzymatic hydrolysis residues of the biomass, was liquefied using the mixed solvents of polyethyleneglycol (PEG) and glycerol at the temperature of 130-170°C with sulfuric acid as a catalyst. The influences of liquefaction parameters, such as the molecular weight of PEG, mass ratio of sulfuric acid to EHL, liquefaction temperature and time, and mass ratio of liquid (liquefying cosolvent) to solid (EHL) on the residue content and hydroxyl number were discussed. The FT-IR spectrum result showed that the liquefaction product of EHL was polyether polyol. The hydroxyl number of the liquefaction product was 80-120 mgKOH/g higher than that of PEG.

  4. Renewable Chemicals: Dehydroxylation of Glycerol and Polyols

    PubMed Central

    ten Dam, Jeroen; Hanefeld, Ulf

    2011-01-01

    The production of renewable chemicals is gaining attention over the past few years. The natural resources from which they can be derived in a sustainable way are most abundant in sugars, cellulose and hemicellulose. These highly functionalized molecules need to be de-functionalized in order to be feedstocks for the chemical industry. A fundamentally different approach to chemistry thus becomes necessary, since the traditionally employed oil-based chemicals normally lack functionality. This new chemical toolbox needs to be designed to guarantee the demands of future generations at a reasonable price. The surplus of functionality in sugars and glycerol consists of alcohol groups. To yield suitable renewable chemicals these natural products need to be defunctionalized by means of dehydroxylation. Here we review the possible approaches and evaluate them from a fundamental chemical aspect. PMID:21887771

  5. Molecular dynamics simulation study of the effect of glycerol dialkyl glycerol tetraether hydroxylation on membrane thermostability.

    PubMed

    Huguet, Carme; Fietz, Susanne; Rosell-Melé, Antoni; Daura, Xavier; Costenaro, Lionel

    2017-02-16

    Archaeal tetraether membrane lipids span the whole membrane width and present two C40 isoprenoid chains bound by two glycerol groups (or one glycerol and calditol). These lipids confer stability and maintain the membrane fluidity in mesophile to extremophile environments, making them very attractive for biotechnological applications. The isoprenoid lipid composition in archaeal membranes varies with temperature, which has placed these lipids in the focus of paleo-climatological studies for over a decade. Non-hydroxylated isoprenoid archaeal lipids are typically used as paleo-thermometry proxies, but recently identified hydroxylated (OH) derivatives have also been proposed as temperature proxies. The relative abundance of hydroxylated lipids increases at lower temperatures, but the physiological function of the OH moiety remains unknown. Here we present molecular dynamics simulations of membranes formed by the acyclic glycerol-dialkyl-glycerol-tetraether caldarchaeol (GDGT-0), the most widespread archaeal core lipid, and its mono-hydroxylated variant (OH-GDGT-0) to better understand the physico-chemical properties conferred to the membrane by this additional moiety. The molecular dynamics simulations indicate that the additional OH group forms hydrogen bonds mainly with the sugar moieties of neighbouring lipids and with water molecules, effectively increasing the size of the polar headgroups. The hydroxylation also introduces local disorder that propagates along the entire alkyl chains, resulting in a slightly more fluid membrane. These changes would help to maintain trans-membrane transport in cold environments, explaining why the relative abundance of hydroxylated Archaea lipids increases at lower temperatures. The in silico approach aids to understand the underlying physiological mechanisms behind the hydroxylated lipid based paleo-thermometer recently proposed.

  6. Dynamics of liquid rise in a vertical capillary tube.

    PubMed

    Masoodi, Reza; Languri, Ehsan; Ostadhossein, Alireza

    2013-01-01

    The governing equation for capillary rise in a vertical tube is derived using energy balance. The derived governing equation includes kinetic, gravity, and viscous effects. Through normalizing different terms in the governing equation, a form of nonlinear ordinary differential equation (ODE) with a positive dimensionless parameter was obtained. The ODE equation was solved numerically and the numerical results were compared with some published experimental data. The derived governing equation was found to be quite accurate for predicting the liquid rise and oscillation in a capillary tube. The effect of a dimensionless parameter on the behavior of the liquid rise was explored numerically. A simple critical condition, which leads to the oscillation of the liquid column in the capillary tube, was found in the form of a dimensionless parameter in the governing equation.

  7. Design and analysis of biorefineries based on raw glycerol: addressing the glycerol problem.

    PubMed

    Posada, John A; Rincón, Luis E; Cardona, Carlos A

    2012-05-01

    Glycerol as a low-cost by-product of the biodiesel industry can be considered a renewable building block for biorefineries. In this work, the conversion of raw glycerol to nine added-value products obtained by chemical (syn-gas, acrolein, and 1,2-propanediol) or bio-chemical (ethanol, 1,3-propanediol, d-lactic acid, succinic acid, propionic acid, and poly-3-hydroxybutyrate) routes were considered. The technological schemes for these synthesis routes were designed, simulated, and economically assessed using Aspen Plus and Aspen Icarus Process Evaluator, respectively. The techno-economic potential of a glycerol-based biorefinery system for the production of fuels, chemicals, and plastics was analyzed using the commercial Commercial Sale Price/Production Cost ratio criteria, under different production scenarios. More income can be earned from 1,3-propanediol and 1,2-propanediol production, while less income would be obtained from hydrogen and succinic acid. This analysis may be useful mainly for biodiesel producers since several profitable alternatives are presented and discussed.

  8. The fate of glycerol entering the rumen of dairy cows and sheep.

    PubMed

    Werner Omazic, A; Kronqvist, C; Zhongyan, L; Martens, H; Holtenius, K

    2015-04-01

    This study investigated the fate of glycerol entering the rumen, in particular whether glycerol could be absorbed across the rumen epithelium. Three non-lactating rumen-fistulated cows were used to calculate the overall disappearance rate of glycerol in vivo and evaluate the rate of ruminal glycerol absorption. Rumen epithelial tissues isolated from sheep were used to characterise glycerol transport properties. The rate of rumen microbial degradation of glycerol was then studied in an in vitro system under anaerobic and thermo-regulated conditions. The results showed that glycerol can be absorbed from the rumen in significant amounts. The fractional rate of absorption of glycerol was not affected by variations in glycerol concentration in the buffer solution in the in vivo study. The glycerol absorption apparently occurred largely by passive diffusion and was probably not facilitated by carriers. Glycerol also disappeared via microbial digestion and outflow from the rumen through the omasal orifice.

  9. Yeast Aquaglyceroporins Use the Transmembrane Core to Restrict Glycerol Transport*

    PubMed Central

    Geijer, Cecilia; Ahmadpour, Doryaneh; Palmgren, Madelene; Filipsson, Caroline; Klein, Dagmara Medrala; Tamás, Markus J.; Hohmann, Stefan; Lindkvist-Petersson, Karin

    2012-01-01

    Aquaglyceroporins are transmembrane proteins belonging to the family of aquaporins, which facilitate the passage of specific uncharged solutes across membranes of cells. The yeast aquaglyceroporin Fps1 is important for osmoadaptation by regulating intracellular glycerol levels during changes in external osmolarity. Upon high osmolarity conditions, yeast accumulates glycerol by increased production of the osmolyte and by restricting glycerol efflux through Fps1. The extended cytosolic termini of Fps1 contain short domains that are important for regulating glycerol flux through the channel. Here we show that the transmembrane core of the protein plays an equally important role. The evidence is based on results from an intragenic suppressor mutation screen and domain swapping between the regulated variant of Fps1 from Saccharomyces cerevisiae and the hyperactive Fps1 ortholog from Ashbya gossypii. This suggests a novel mechanism for regulation of glycerol flux in yeast, where the termini alone are not sufficient to restrict Fps1 transport. We propose that glycerol flux through the channel is regulated by interplay between the transmembrane helices and the termini. This mechanism enables yeast cells to fine-tune intracellular glycerol levels at a wide range of extracellular osmolarities. PMID:22593571

  10. Glycerol Enhances the Antifungal Activity of Dairy Propionibacteria

    PubMed Central

    Lind, Helena; Broberg, Anders; Jacobsson, Karin; Jonsson, Hans; Schnürer, Johan

    2010-01-01

    Dairy propionibacteria are widely used in starter cultures for Swiss type cheese. These bacteria can ferment glucose, lactic acid, and glycerol into propionic acid, acetic acid, and carbon dioxide. This research examined the antifungal effect of dairy propionibacteria when glycerol was used as carbon source for bacterial growth. Five type strains of propionibacteria were tested against the yeast Rhodotorula mucilaginosa and the molds Penicillium commune and Penicillium roqueforti. The conversion of 13C glycerol by Propionibacterium jensenii was followed with nuclear magnetic resonance. In a dual culture assay, the degree of inhibition of the molds was strongly enhanced by an increase in glycerol concentrations, while the yeast was less affected. In broth cultures, decreased pH in glycerol medium was probably responsible for the complete inhibition of the indicator fungi. NMR spectra of the glycerol conversion confirmed that propionic acid was the dominant metabolite. Based on the results obtained, the increased antifungal effect seen by glycerol addition to cultures of propionibacteria is due to the production of propionic acid and pH reduction of the medium. PMID:21331381

  11. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress.

    PubMed

    Modig, Tobias; Granath, Katarina; Adler, Lennart; Lidén, Gunnar

    2007-05-01

    Glycerol formation is vital for reoxidation of nicotinamide adenine dinucleotide (reduced form; NADH) under anaerobic conditions and for the hyperosmotic stress response in the yeast Saccharomyces cerevisiae. However, relatively few studies have been made on hyperosmotic stress under anaerobic conditions. To study the combined effect of salt stress and anaerobic conditions, industrial and laboratory strains of S. cerevisiae were grown anaerobically on glucose in batch-cultures containing 40 g/l NaCl. The time needed for complete glucose conversion increased considerably, and the specific growth rates decreased by 80-90% when the cells were subjected to the hyperosmotic conditions. This was accompanied by an increased yield of glycerol and other by-products and reduced biomass yield in all strains. The slowest fermenting strain doubled its glycerol yield (from 0.072 to 0.148 g/g glucose) and a nearly fivefold increase in acetate formation was seen. In more tolerant strains, a lower increase was seen in the glycerol and in the acetate, succinate and pyruvate yields. Additionally, the NADH-producing pathway from acetaldehyde to acetate was analysed by overexpressing the stress-induced gene ALD3. However, this had no or very marginal effect on the acetate and glycerol yields. In the control experiments, the production of NADH from known sources well matched the glycerol formation. This was not the case for the salt stress experiments in which the production of NADH from known sources was insufficient to explain the formed glycerol.

  12. Homeoviscous response of Clostridium pasteurianum to butanol toxicity during glycerol fermentation.

    PubMed

    Venkataramanan, Keerthi P; Kurniawan, Yogi; Boatman, Judy J; Haynes, Cassandra H; Taconi, Katherine A; Martin, Lenore; Bothun, Geoffrey D; Scholz, Carmen

    2014-06-10

    Clostridium pasteurianum ATCC 6013 achieves high n-butanol production when glycerol is used as the sole carbon source. In this study, the homeoviscous membrane response of C. pasteurianum ATCC 6013 has been examined through n-butanol challenge experiments. Homeoviscous response is a critical aspect of n-butanol tolerance and has not been examined in detail for C. pasteurianum. Lipid membrane compositions were examined for glycerol fermentations with n-butanol production, and during cell growth in the absence of n-butanol production, using gas chromatography-mass spectrometry (GC-MS) and proton nuclear magnetic resonance ((1)H-NMR). Membrane stabilization due to homeoviscous response was further examined by surface pressure-area (π-A) analysis of membrane extract monolayers. C. pasteurianum was found to exert a homeoviscous response that was comprised of an increase lipid tail length and a decrease in the percentage of unsaturated fatty acids with increasing n-butanol challenge. This led to a more rigid or stable membrane that counteracted n-butanol fluidization. This is the first report on the changes in the membrane lipid composition during n-butanol production by C. pasteurianum ATCC 6013, which is a versatile microorganism that has the potential to be engineered as an industrial n-butanol producer using crude glycerol.

  13. Effects of glycerol and moisture gradient on thermomechanical properties of white bread.

    PubMed

    Baik, M Y; Chinachoti, P

    2001-08-01

    The thermomechanical properties of breadcrumb were investigated using dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The main transition (T(1), near 0 degrees C) shifted to lower temperature with added glycerol due to freezing point depression. The low-temperature transition (T(3), approximately -50 degrees C), found only in high-glycerol (8.8%) bread, suggested that of excess or phase-separated glycerol. The high-temperature transition (T(2), 60-85 degrees C) appeared only in aged breadcrumbs; its temperature range was correlated well with the amylopectin melting transition (DSC) but its tan delta amplitude did not correlate well with the amylopectin melting enthalpy (r(2) = 0.72). On the other hand, the change of E' ' (viscous behavior) suggested that T(2) might be related to the change in the amorphous region. Domain-to-domain (amorphous) and crumb-to-crust moisture migrations are two critical phenomenological changes associated with aging and could lead to significant local dehydration of some amorphous regions contributing to mechanical firming during storage.

  14. Threshold capillary pressure in capillaries with curved sides

    NASA Astrophysics Data System (ADS)

    Lago, Marcelo; Araujo, Mariela

    2003-03-01

    Modeling of fluid flow through permeable media is of great importance in assessing the performance of both hydrocarbon reservoirs and aquifers. In this process, network models based on cylindrical capillaries with circular cross sections are frequently used. This type of capillaries are not able to reproduce interesting physical phenomena observed in the experiments, for example, situations where there is flow by films with the wetting fluid occupying the crevices and wedges of the structure. We present an analysis of the behavior of the capillary pressure of a droplet of non-wetting fluid with an infinite length, inside objects of cylindrical symmetry with curved sides. The calculation is based on a method proposed by Mayer and Stowe and Princen (MS-P). Different capillary geometries are considered, and the behavior of the capillary pressure and transversal fluid saturation as a function of the shape factor is studied. The results found either analytically or numerically, allow to understand the relation between geometry and flow properties, and helps in the building of more realistic pore network models for flow studies at the pore scale.

  15. Two-dimensional capillary electrophoresis using tangentially connected capillaries.

    PubMed

    Sahlin, Eskil

    2007-06-22

    A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.

  16. Capillary viscometer with a pressure sensor: a subject for student projects

    NASA Astrophysics Data System (ADS)

    Massalha, Taha; Digilov, Rafael M.

    2015-11-01

    We describe a vacuum-based pressure-detecting capillary viscometer for the viscosity determination of Newtonian fluids without known density. The viscometer operates on the principle that the variation in air pressure of the vacuum vessel p≤ft(t\\right) replaces the flow rate and pressure drop measurements which are usually required for the operation of a capillary tube viscometer. The mathematical expression for p≤ft(t\\right), found in the terms of the Lambert-W function, is used to fit the experimental data for viscosity determination. The results for viscosities of distilled water and 50 wt.% glycerol aqueous solution obtained under ambient temperature condition were compared to reference data and a good agreement was observed. The viscometer is suitable for undergraduate laboratories due to its low cost and simplicity in experimental setup. Moreover, the experimental with the vacuum vessel setup provides an in-depth understanding of fluid flow.

  17. Glycerol metabolism and bitterness producing lactic acid bacteria in cidermaking.

    PubMed

    Garai-Ibabe, G; Ibarburu, I; Berregi, I; Claisse, O; Lonvaud-Funel, A; Irastorza, A; Dueñas, M T

    2008-02-10

    Several lactic acid bacteria were isolated from bitter tasting ciders in which glycerol was partially removed. The degradation of glycerol via glycerol dehydratase pathway was found in 22 out of 67 isolates. The confirmation of glycerol degradation by this pathway was twofold: showing their glycerol dehydratase activity and detecting the presence of the corresponding gene by a PCR method. 1,3-propanediol (1,3-PDL) and 3-hydroxypropionic acid (3-HP) were the metabolic end-products of glycerol utilization, and the accumulation of the acrolein precursor 3-hydroxypropionaldehyde (3-HPA) was also detected in most of them. The strain identification by PCR-DGGE rpoB showed that Lactobacillus collinoides was the predominant species and only 2 belonged to Lactobacillus diolivorans. Environmental conditions conducting to 3-HPA accumulation in cidermaking were studied by varying the fructose concentration, pH and incubation temperature in L. collinoides 17. This strain failed to grow with glycerol as sole carbon source and the addition of fructose enhanced both growth and glycerol degradation. Regarding end-products of glycerol metabolism, 1,3-PDL was always the main end-product in all environmental conditions assayed, the only exception being the culture with 5.55 mM fructose, where equimolar amounts of 1,3-PDL and 3-HP were found. The 3-HPA was transitorily accumulated in the culture medium under almost all culture conditions, the degradation rate being notably slower at 15 degrees C. However, no disappearance of 3-HPA was found at pH 3.6, a usual value in cider making. After sugar exhaustion, L. collinoides 17 oxidated lactic acid and/or mannitol to obtain energy and these oxidations were accompanied by the removal of the toxic 3-HPA increasing the 1,3-PDL, 3-HP and acetic acid contents.

  18. Inactivation mechanism of glycerol dehydration by diol dehydratase from combined quantum mechanical/molecular mechanical calculations.

    PubMed

    Doitomi, Kazuki; Kamachi, Takashi; Toraya, Tetsuo; Yoshizawa, Kazunari

    2012-11-13

    Inactivation of diol dehydratase during the glycerol dehydration reaction is studied on the basis of quantum mechanical/molecular mechanical calculations. Glycerol is not a chiral compound but contains a prochiral carbon atom. Once it is bound to the active site, the enzyme adopts two binding conformations. One is predominantly responsible for the product-forming reaction (G(R) conformation), and the other primarily contributes to inactivation (G(S) conformation). Reactant radical is converted into a product and byproduct in the product-forming reaction and inactivation, respectively. The OH group migrates from C2 to C1 in the product-forming reaction, whereas the transfer of a hydrogen from the 3-OH group of glycerol to C1 takes place during the inactivation. The activation barrier of the hydrogen transfer does not depend on the substrate-binding conformation. On the other hand, the activation barrier of OH group migration is sensitive to conformation and is 4.5 kcal/mol lower in the G(R) conformation than in the G(S) conformation. In the OH group migration, Glu170 plays a critical role in stabilizing the reactant radical in the G(S) conformation. Moreover, the hydrogen bonding interaction between Ser301 and the 3-OH group of glycerol lowers the activation barrier in G(R)-TS2. As a result, the difference in energy between the hydrogen transfer and the OH group migration is reduced in the G(S) conformation, which shows that the inactivation is favored in the G(S) conformation.

  19. Accelerated glycerol fermentation in Escherichia coli using methanogenic formate consumption.

    PubMed

    Richter, Katrin; Gescher, Johannes

    2014-06-01

    Escherichia coli can ferment glycerol anaerobically only under very defined restrictive conditions. Hence, it was the aim of this study to overcome this limitation via a co-cultivation approach. Anaerobic glycerol fermentation by a pure E. coli culture was compared to a co-culture that also contained the formate-oxidizing methanogen Methanobacterium formicicum. Co-cultivation of the two strains led to a more than 11-fold increased glycerol consumption. Furthermore, it supported a constantly neutral pH and a shift from ethanol to succinate production. Moreover, M. formicicum was analyzed for its ability to grow on different standard media and a surprising versatility could be demonstrated.

  20. Capillary Pressure of a Liquid Between Uniform Spheres Arranged in a Square-Packed Layer

    NASA Technical Reports Server (NTRS)

    Alexader, J. Iwan D.; Slobozhanin, Lev A.; Collicott, Steven H.

    2004-01-01

    The capillary pressure in the pores defined by equidimensional close-packed spheres is analyzed numerically. In the absence of gravity the menisci shapes are constructed using Surface Evolver code. This permits calculation the free surface mean curvature and hence the capillary pressure. The dependences of capillary pressure on the liquid volume constructed here for a set of contact angles allow one to determine the evolution of basic capillary characteristics under quasi-static infiltration and drainage. The maximum pressure difference between liquid and gas required for a meniscus passing through a pore is calculated and compared with that for hexagonal packing and with approximate solution given by Mason and Morrow [l]. The lower and upper critical liquid volumes that determine the stability limits for the equilibrium capillary liquid in contact with square packed array of spheres are tabulated for a set of contact angles.

  1. Glycerol Dehydrogenase Plays a Dual Role in Glycerol Metabolism and 2,3-Butanediol Formation in Klebsiella pneumoniae *

    PubMed Central

    Wang, Yu; Tao, Fei; Xu, Ping

    2014-01-01

    Glycerol dehydrogenase (GDH) is an important polyol dehydrogenase for glycerol metabolism in diverse microorganisms and for value-added utilization of glycerol in the industry. Two GDHs from Klebsiella pneumoniae, DhaD and GldA, were expressed in Escherichia coli, purified and characterized for substrate specificity and kinetic parameters. Both DhaD and GldA could catalyze the interconversion of (3R)-acetoin/(2R,3R)-2,3-butanediol or (3S)-acetoin/meso-2,3-butanediol, in addition to glycerol oxidation. Although purified GldA appeared more active than DhaD, in vivo inactivation and quantitation of their respective mRNAs indicate that dhaD is highly induced by glycerol and plays a dual role in glycerol metabolism and 2,3-butanediol formation. Complementation in K. pneumoniae further confirmed the dual role of DhaD. Promiscuity of DhaD may have vital physiological consequences for K. pneumoniae growing on glycerol, which include balancing the intracellular NADH/NAD+ ratio, preventing acidification, and storing carbon and energy. According to the kinetic response of DhaD to modified NADH concentrations, DhaD appears to show positive homotropic interaction with NADH, suggesting that the physiological role could be regulated by intracellular NADH levels. The co-existence of two functional GDH enzymes might be due to a gene duplication event. We propose that whereas DhaD is specialized for glycerol utilization, GldA plays a role in backup compensation and can turn into a more proficient catalyst to promote a survival advantage to the organism. Revelation of the dual role of DhaD could further the understanding of mechanisms responsible for enzyme evolution through promiscuity, and guide metabolic engineering methods of glycerol metabolism. PMID:24429283

  2. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions.

    PubMed

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.

  3. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions

    PubMed Central

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source. PMID:25880041

  4. Glycerol administration before endurance exercise: metabolism, urinary glycerol excretion and effects on doping-relevant blood parameters.

    PubMed

    Koehler, Karsten; Braun, Hans; de Marees, Markus; Geyer, Hans; Thevis, Mario; Mester, Joachim; Schaenzer, Wilhelm

    2014-03-01

    Glycerol is prohibited as a masking agent by the World Anti-Doping Agency and a urinary threshold has recently been recommended. However, little is known about urinary glycerol excretion after exercise, when (1) exogenous glycerol is metabolized increasingly and (2) endogenous glycerol levels are elevated. The purpose of the placebo-controlled cross-over study was to determine the effects of pre-exercise glycerol administration on glycerol metabolism, urinary excretion, and selected blood parameters. After administration of glycerol (G; 1.0 g/kg body weight (BW) + 25 ml fluid/kg BW) or placebo (P; 25 ml fluid/kg), 14 cyclists exercised 90 min at 60% VO2max . Samples were taken at 0 h (before administration), 2.5 h (before exercise), 4 h (after exercise) and 6.5 h and additional urine samples were collected until 24 h. Exercise increased endogenous plasma glycerol (0.51 ± 0.21 mmol/l) but peak concentrations were much higher in G (2.5 h: 15.6 ± 7.8 mmol/l). Urinary glycerol increased rapidly (58,428 ± 71,084 µg/ml after 2.5 h) and was significantly higher than in P until 13.6 ± 0.9 h (p < 0.01). In comparison with placebo administration, G caused significantly greater changes in plasma volume and haemoglobin concentrations after 2.5 h. BW and urine production were significantly different between P and G after 2.5 h and post-exercise. Despite exercise-induced increases in endogenous glycerol in the control group, urinary excretion remained well below the previously recommended threshold. In addition, exercise-related glycerol degradation did not appear to negatively affect the detection of exogenously administered glycerol.

  5. Comprehensive utilization of glycerol from sugarcane bagasse pretreatment to fermentation.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin

    2015-11-01

    In this study, the effects of glycerol pretreatment on subsequent glycerol fermentation and biomass fast pyrolysis were investigated. The liquid fraction from the pretreatment process was evaluated to be feasible for fermentation by Paenibacillus polymyxa and could be an economic substrate. The pretreated biomass was further utilized to obtain levoglucosan by fast pyrolysis. The pretreated sugarcane bagasse exhibited significantly higher levoglucosan yield (47.70%) than that of un-pretreated sample (11.25%). The promotion could likely be attributed to the effective removal of alkali and alkaline earth metals by glycerol pretreatment. This research developed an economically viable manufacturing paradigm to utilize glycerol comprehensively and enhance the formation of levoglucosan effectively from lignocellulose.

  6. Physicochemical characterization of oil palm mesocarp fibre treated with glycerol

    NASA Astrophysics Data System (ADS)

    Nor Hamizah M., A.; Roila, A.; Rahimi M., Y.

    2015-09-01

    Lignocellulose has been identified as another source for conversion into value added products. In the present work, physicochemical features from the oil palm mesocarp fibre treated by using pure glycerol with 2% (w/w) NaOH catalyst and crude glycerol have been studied. Treatment was conducted at temperatures 150 °C for 60 min. Fibre treated by crude glycerol resulted in high percentages of holocellulose and lower content of insoluble lignin. These results suggest that crude glycerol can be used as an alternative solvent for pretreatment process. The characterization treated fibre by means of FTIR and TGA has shown significant differences compared to untreated fibre. It was revealed that treated fibre successful eliminated hemicellulose and reduce of lignin content.

  7. Glycerol extracting dealcoholization for the biodiesel separation process.

    PubMed

    Ye, Jianchu; Sha, Yong; Zhang, Yun; Yuan, Yunlong; Wu, Housheng

    2011-04-01

    By means of utilizing sunflower oil and Jatropha oil as raw oil respectively, the biodiesel transesterification production and the multi-stage extracting separation were carried out experimentally. Results indicate that dealcoholized crude glycerol can be utilized as the extracting agent to achieve effective separation of methanol from the methyl ester phase, and the glycerol content in the dealcoholized methyl esters is as low as 0.02 wt.%. For the biodiesel separation process utilizing glycerol extracting dealcoholization, its technical and equipment information were acquired through the rigorous process simulation in contrast to the traditional biodiesel distillation separation process, and results show that its energy consumption decrease about 35% in contrast to that of the distillation separation process. The glycerol extracting dealcoholization has sufficient feasibility and superiority for the biodiesel separation process.

  8. Vibrational properties of bioprotectant mixtures of trehalose and glycerol.

    PubMed

    Magazù, Salvatore; Migliardo, Federica; Parker, Stewart F

    2011-09-22

    In this work vibrational spectra of mixtures of two glass-forming bioprotectant systems, i.e., trehalose and glycerol, are collected at very low temperature by using the indirect geometry time-of-flight (t.o.f.) TOSCA spectrometer at the ISIS Pulse Neutron Facility (Rutherford Appleton Laboratory, Oxford, U.K.). The main aim of this work is to investigate, through inelastic neutron scattering (INS), the vibrational behavior of trehalose and its mixtures with glycerol at different concentration values in order to characterize the changes induced by glycerol on the trehalose hydrogen bonded network. The obtained experimental findings, which are discussed and interpreted in the framework of previous INS, quasi elastic neutron scattering (QENS) and molecular simulation data obtained on trehalose/glycerol mixtures at different concentration and temperature values, will be linked to the different mixtures bioprotectant effectiveness.

  9. Energetics of glycerol conduction through aquaglyceroporin GlpF

    NASA Astrophysics Data System (ADS)

    Jensen, Morten Ø.; Park, Sanghyun; Tajkhorshid, Emad; Schulten, Klaus

    2002-05-01

    Aquaglyceroporin GlpF selectively conducts water and linear polyalcohols, such as glycerol, across the inner membrane of Escherichia coli. We report steered molecular dynamics simulations of glycerol conduction through GlpF, in which external forces accelerate the transchannel conduction in a manner that preserves the intrinsic conduction mechanism. The simulations reveal channel-glycerol hydrogen bonding interactions and the stereoselectivity of the channel. Employing Jarzynski's identity between free energy and irreversible work, we reconstruct the potential of mean force along the conduction pathway through a time series analysis of molecular dynamics trajectories. This potential locates binding sites and barriers inside the channel; it also reveals a low energy periplasmic vestibule suited for efficient uptake of glycerol from the environment.

  10. Renewable hydrogen and carbon nanotubes from biodiesel waste glycerol.

    PubMed

    Wu, Chunfei; Wang, Zichun; Williams, Paul T; Huang, Jun

    2013-09-25

    In this report, we introduce a novel and commercially viable method to recover renewable hydrogen and carbon nanotubes from waste glycerol produced in the biodiesel process. Gas-phase catalytic reforming converts glycerol to clean hydrogen fuel and by replacing the problematical coke formed on the catalyst with high value carbon nanotubes, added value can be realised. Additional benefits of around 2.8 kg CNTs from the reforming of 1 tonne of glycerol and the production of 500 Nm(3) H2 could have a considerable impact on the economics of glycerol utilization. Thereby, the contribution of this research will be a significant step forward in solving a current major technical and economic challenge faced by the biofuels industry.

  11. Recent Advances in Glycerol Polymers: Chemistry and Biomedical Applications

    PubMed Central

    Zhang, Heng

    2015-01-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, we describe the underlying chemistry of glycerol, which provides access to a range of monomers for subsequent polymerizations. We then review the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth. Next, we describe several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity. Fourth, we describe the growing market opportunity for the use of polymers in medicine. Finally we conclude and summarize the findings, as well as discuss potential opportunities for continued research efforts. PMID:25308354

  12. Renewable hydrogen and carbon nanotubes from biodiesel waste glycerol

    PubMed Central

    Wu, Chunfei; Wang, Zichun; Williams, Paul T.; Huang, Jun

    2013-01-01

    In this report, we introduce a novel and commercially viable method to recover renewable hydrogen and carbon nanotubes from waste glycerol produced in the biodiesel process. Gas-phase catalytic reforming converts glycerol to clean hydrogen fuel and by replacing the problematical coke formed on the catalyst with high value carbon nanotubes, added value can be realised. Additional benefits of around 2.8 kg CNTs from the reforming of 1 tonne of glycerol and the production of 500 Nm3 H2 could have a considerable impact on the economics of glycerol utilization. Thereby, the contribution of this research will be a significant step forward in solving a current major technical and economic challenge faced by the biofuels industry. PMID:24067754

  13. Recent advances in glycerol polymers: chemistry and biomedical applications.

    PubMed

    Zhang, Heng; Grinstaff, Mark W

    2014-11-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, the underlying chemistry of glycerol that provides access to a range of monomers for subsequent polymerizations is described. Then, the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth are reviewed. Next, several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity are described. Fourth, the growing market opportunity for the use of polymers in medicine is described. Finally, the findings are concluded and summarized, as well as the potential opportunities for continued research efforts are discussed.

  14. Capillary imbibition in parallel tubes

    NASA Astrophysics Data System (ADS)

    McRae, Oliver; Ramakrishnan, T. S.; Bird, James

    2016-11-01

    In modeling porous media two distinct approaches can be employed; the sample can be examined holistically, using global variables such as porosity, or it can be treated as a network of capillaries connected in series to various intermediate reservoirs. In forced imbibition this series-based description is sufficient to characterize the flow, due to the presence of an externally maintained pressure difference. However, in spontaneous imbibition, flow is driven by an internal capillary pressure, making it unclear whether a series-based model is appropriate. In this talk, we show using numerical simulations the dynamics of spontaneous imbibition in concentrically arranged capillary tubes. This geometry allows both tubes access to a semi-infinite reservoir but with inlets in close enough proximity to allow for interference. We compare and contrast the results of our simulations with theory and previous experiments. Schlumberger-Doll Research.

  15. Non-Aqueous Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Szumski, Michał; Buszewski, Bogusław

    Non-aqueous capillary electrophoresis and capillary electrochromatography are special variants of these techniques. Here, organic solvents or their mixtures with or without dissolved electrolytes are used as separation buffer or mobile phase, respectively. The most important features of non-aqueous systems are: better solubility of more hydrophobic ionic substances (many natural products) than in water, much less current and Joule heating allows for using highly concentrated buffers and/or larger capillary internal diameters, polar interactions are enhanced in organic solvents which is often highly advantageous in chiral separation systems. This chapter presents most frequently used solvents, their properties, as well as shows pH* scale which is often used in non-aqueous systems.

  16. Decay of capillary wave turbulence.

    PubMed

    Deike, Luc; Berhanu, Michael; Falcon, Eric

    2012-06-01

    We report on the observation of freely decaying capillary wave turbulence on the surface of a fluid. The capillary wave turbulence spectrum decay is found to be self-similar in time with the same power law exponent as the one found in the stationary regime, in agreement with weak turbulence predictions. The amplitude of all Fourier modes are found to decrease exponentially with time at the same damping rate. The longest wavelengths involved in the system are shown to be damped by a viscous surface boundary layer. These long waves play the role of an energy source during the decay that sustains nonlinear interactions to keep capillary waves in a wave turbulent state.

  17. Quantitative NMR Analysis of Partially Substituted Biodiesel Glycerols

    SciTech Connect

    Nagy, M.; Alleman, T. L.; Dyer, T.; Ragauskas, A. J.

    2009-01-01

    Phosphitylation of hydroxyl groups in biodiesel samples with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane followed by 31P-NMR analysis provides a rapid quantitative analytical technique for the determination of substitution patterns on partially esterified glycerols. The unique 31P-NMR chemical shift data was established with a series mono and di-substituted fatty acid esters of glycerol and then utilized to characterize an industrial sample of partially processed biodiesel.

  18. Comparative study of muscle regeneration following cardiotoxin and glycerol injury.

    PubMed

    Mahdy, Mohamed A A; Lei, Hsiao Yin; Wakamatsu, Jun-Ichi; Hosaka, Yoshinao Z; Nishimura, Takanori

    2015-11-01

    In the present study, we examined muscle regeneration following two types of chemical injuries, cardiotoxin (CTX) and glycerol, in order to compare their effect on the morphological characteristics during muscle regeneration, in addition we studied the structural changes of the intramuscular connective tissue (IMCT) during the regeneration process, by scanning electron microscopy (SEM) after digestion of the cellular elements of the muscle with sodium hydroxide. Tibialis anterior (TA) muscles of adult male mice were injected either with CTX or glycerol. Muscle degeneration was greater in the CTX-injured model than in the glycerol-injured model at day 4 post injection. Muscle regeneration started at day 7 in both the CTX and glycerol models. However, the CTX-injured model showed a higher myotube density and larger myotube diameter than the glycerol-injured model at days 10 and 14 post injection. On other hand, adipocyte infiltration was detected in the glycerol-injured model. In contrast, no adipocytes could be detected in the CTX-injured model. Furthermore, ultrastructural analysis showed a significant difference in myofiber damage and regeneration between the two models. SEM of the IMCT showed a transient increase in endomysial collagen deposition at early stages of regeneration in the CTX-injured model. In contrast, glycerol-injured model showed slight endomysial collagen deposition. Our results suggest that changes in IMCT affect the efficiency of muscle regeneration. Studying the three dimensional structure of IMCT may help clinical therapies to reduce skeletal muscle fibrosis. To our knowledge this is the first time the changes in IMCT following CTX and glycerol injury using SEM-cell maceration technique have been compared.

  19. Glycerol accumulation in edema formation following diffuse traumatic brain injury.

    PubMed

    Ali, Ahmer; Konakondla, Sanjay; Zwagerman, Nathan T; Peng, Changya; Schafer, Steven; Ding, Jamie Y; Dornbos, David; Sikharam, Chaitanya; Geng, Xiaokun; Guthikonda, Murali; Kreipke, Christian W; Rafols, José A; Ding, Yuchuan

    2012-06-01

    Traumatic brain injury (TBI) induces brain edema via water and glycerol transport channels, called aquaporins (AQPs). The passage of glycerol across brain cellular compartments has been shown during edema. Using a modified impact/head acceleration rodent model of diffuse TBI, we assessed the role of hypoxia inducible factor (HIF)-1alpha in regulating AQP9 expression and glycerol accumulation during the edema formation. Adult (400-425 g) male Sprague-Dawley rats received a closed head injury with a weight drop (450 g, 2-m height) and were allowed to survive up to 48 hours. Some rat groups were administered 2-methoxyestradiol (2ME2, a HIF-1alpha inhibitor) 30 minutes after injury and were euthanized at 4 and 24 hours after injury. Brain edema was measured directly by water content, and glycerol concentration was determined by the Cayman Glycerol Assay. HIF-1alpha and AQP9 protein levels were assessed by Western immunoblotting. This study demonstrated a significant (P<0·05) increase in brain water content at 4-48 hours following impact. Cerebral glycerol was significantly (P<0.05) up-regulated at as early as 1 hour and remained at high levels for up to 48 hours. Similarly, significant (P<0.05) increases in HIF-1alpha and AQP9 protein levels were found at 1 hour and up to 48 hours after injury. Compared to untreated but injured rats, inhibition of HIF-1alpha by 2ME2 significantly (P<0.05) reduced the TBI-induced AQP9 up-regulation. This reduction was temporally associated with significant (P<0.05) decreases in both edema and glycerol accumulation. The data suggested an associated induction of HIF-1alpha, AQP9, and extracellular glycerol accumulation in edema formation following diffuse TBI. The implication of HIF-1alpha and AQP9 underlying TBI-induced edema formation offers possibilities for novel TBI therapies.

  20. A comparison of absorption of glycerol tristearate and glycerol trioleate by rat small intestine

    SciTech Connect

    Bergstedt, S.E.; Hayashi, H.; Kritchevsky, D.; Tso, P. )

    1990-09-01

    Generally, fats rich in saturated fatty acids raise serum cholesterol, whereas fats rich in polyunsaturated fatty acids lower it. There appear to be exceptions; e.g., stearic acid (18:0)-rich fats have little or no effect on serum cholesterol concentrations. This apparent lack of cholesterolemic effect of stearic acid-rich fat could be because intestinal absorption of fat is poor or subsequent plasma and/or tissue metabolism of fat is different. To investigate mechanisms involved, we compared intestinal digestion, uptake, and lymphatic transport of glycerol tristearate (TS) and glycerol trioleate (TO, 18:1). Two groups of rats bearing intestinal lymph fistulas were used. TO rats were fed intraduodenally for 8 h at a constant rate a lipid emulsion of 25 mumols/h of TO (labeled with glycerol tri(9,10 (n)-3H)oleate), 7.8 mumols of egg phosphatidylcholine, and 57 mumols of sodium taurocholate in 3 ml of phosphate-buffered saline. TS rats were fed the same lipid emulsion except that TS replaced TO and the emulsion was labeled with glyceryl (1,3-14C)tristearate. The lymph triglyceride and radioactivity were determined. After infusion, the luminal and mucosal radioactive lipid content was analyzed. The results showed that there was significantly less lipid transported in the lymph of TS rats compared with TO rats. The results also showed a significant decrease in the absorption of TS as compared with TO. This was due in part to poor lipolysis. In addition, the lipid absorbed by the intestine of the TS rats was transported into lymph less efficiently than in TO rats.

  1. Degradation behavior of poly(glycerol sebacate).

    PubMed

    Pomerantseva, Irina; Krebs, Nicholas; Hart, Alison; Neville, Craig M; Huang, Albert Y; Sundback, Cathryn A

    2009-12-15

    Poly(glycerol sebacate) (PGS), a promising scaffold material for soft tissue engineering applications, is a soft, tough elastomer with excellent biocompatibility. However, the rapid in vivo degradation rate of PGS limits its use as a scaffold material. To determine the impact of crosslink density on degradation rate, a family of PGS materials was synthesized by incrementally increasing the curing time from 42 to 144 h, at 120 degrees C and 10 mTorr vacuum. As expected, PGS became a stiffer, tougher, and stronger elastomer with increasing curing time. PGS disks were subcutaneously implanted into rats and periodically harvested; only mild tissue responses were observed and the biocompatibility remained excellent. Regardless of crosslink density, surface erosion degradation was observed. The sample dimensions linearly decreased with implantation time, and the mass loss rates were constant after 1-week implantation. As surface erosion degradation frequently correlates with enzymatic digestion, parallel in vitro digestion studies were conducted in lipase solutions which hydrolyze ester bonds. Enzymatic digestion played a significant role in degrading PGS, and the mass loss rates were not a function of curing time. Alternative chemistry approaches will be required to decrease the enzymatic hydrolysis rate of the ester bonds in PGS polymers.

  2. Value-added uses for crude glycerol--a byproduct of biodiesel production

    PubMed Central

    2012-01-01

    Biodiesel is a promising alternative, and renewable, fuel. As its production increases, so does production of the principle co-product, crude glycerol. The effective utilization of crude glycerol will contribute to the viability of biodiesel. In this review, composition and quality factors of crude glycerol are discussed. The value-added utilization opportunities of crude glycerol are reviewed. The majority of crude glycerol is used as feedstock for production of other value-added chemicals, followed by animal feeds. PMID:22413907

  3. Control of mechanical properties of chitin nanofiber film using glycerol without losing its characteristics.

    PubMed

    Ifuku, Shinsuke; Ikuta, Akiko; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki

    2014-01-30

    Surface-deacetylated chitin nanofiber films plasticized with glycerol were prepared to control mechanical properties. Nanofiber networks were able to retain excessive glycerol content up to 70% to obtain self-standing film. All films were flexible and highly transparent independent of glycerol content. Glycerol significantly decreased the Young's moduli and tensile strengths, and increased the fracture strain due to its plasticizing effect. At the same time, glycerol did not change the high transparency or the low thermal expansion of the nanofiber film.

  4. Processes and systems for the production of propylene glycol from glycerol

    SciTech Connect

    Frye, John G; Oberg, Aaron A; Zacher, Alan H

    2015-01-20

    Processes and systems for converting glycerol to propylene glycol are disclosed. The glycerol feed is diluted with propylene glycol as the primary solvent, rather than water which is typically used. The diluted glycerol feed is sent to a reactor where the glycerol is converted to propylene glycol (as well as other byproducts) in the presence of a catalyst. The propylene glycol-containing product from the reactor is recycled as a solvent for the glycerol feed.

  5. Capillary interactions in Pickering emulsions

    NASA Astrophysics Data System (ADS)

    Guzowski, J.; Tasinkevych, M.; Dietrich, S.

    2011-09-01

    The effective capillary interaction potentials for small colloidal particles trapped at the surface of liquid droplets are calculated analytically. Pair potentials between capillary monopoles and dipoles, corresponding to particles floating on a droplet with a fixed center of mass and subjected to external forces and torques, respectively, exhibit a repulsion at large angular separations and an attraction at smaller separations, with the latter resembling the typical behavior for flat interfaces. This change of character is not observed for quadrupoles, corresponding to free particles on a mechanically isolated droplet. The analytical results are compared with the numerical minimization of the surface free energy of the droplet in the presence of spherical or ellipsoidal particles.

  6. Capillary haemangioma of the testis

    PubMed Central

    Mazal, P; Kratzik, C; Kain, R; Susani, M

    2000-01-01

    A case of testicular capillary haemangioma is reported and the importance of intraoperative examination of this very rare lesion emphasised. Capillary haemangioma of the testis can be similar to malignant testicular tumours on clinical presentation, as well as on ultrasonography and magnetic resonance imaging, and therefore should be included in the intraoperative differential diagnosis. Because of the benign nature of this lesion, conservative surgical treatment by means of tumour enucleation with preservation of the testis is possible, if intraoperative examination of frozen sections of representative tissue can be performed. Key Words: testis • haemangioma PMID:11002773

  7. Nonsteady Flow in Capillary Tubes

    NASA Astrophysics Data System (ADS)

    Hara, Ayako

    2000-03-01

    Surface phenomena in the field of electron devices and the problem of how long. It takes plants to absorb water during their growth in hydroponic cultivation is attraching the attention of riseachers. However, the related study of non-steady flow in capillary tubes has a number of issues that require investigation. In response to this situation, we made attempted to assess nonsteady fiow in capillary tubes, the liquid rise time and other issues, using a motion equation that takes factors including the friction force of the tube and the surface tension into consideration.

  8. Revised Capillary Breakup Rheometer Method

    NASA Astrophysics Data System (ADS)

    Lu, Louise; Schultz, William; Solomon, Michael

    2014-11-01

    Rather than integrate the one-dimensional equation of motion for a capillary breakup rheometer, we take the axial derivative of that equation. This avoids the determination of the axial force with all of its complications and correction factors. The resulting evolutionary equation that involves either two or four derivatives of the capillary radius as a function of the axial coordinate determines the ratio of elongational viscosity to surface tension coefficient. We examine several silicone and olive oils to show the accuracy of the method for Newtonian fluids. We will discuss our surface tension measurement techniques and briefly describe measurements of viscoelastic materials, including saliva.

  9. Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent.

    PubMed

    Seligra, Paula González; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-03-15

    Biodegradable and non-retrogradable starch-glycerol based films were obtained using citric acid (CA) as crosslinking agent at 75°C. This material allowed decreasing water vapor permeability (WVP) more than 35%, remained amorphous for at least 45 days as a result of the network formed by the CA that avoided starch retrogradation and maintained the degradability in compost, occurring only six days after the films without citric acid. A simulation of the gelatinization process of starch-glycerol with and without CA, using a differential thermal analysis device, showed that the system with CA completed the gelatinization 5°C before than the other and, CA first reacted with glycerol and then starch-glycerol-CA reaction occurred. The temperature at which the gelatinization process was carried out was critical to obtain the best results. An increase of gelatinization process temperature at 85°C in system with CA, led to a worsening on WVP and its integrity after a swelling process with dimethylsulphoxide (DMSO), compared to the films processed at 75°C.

  10. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation.

    PubMed

    Ujor, Victor; Agu, Chidozie Victor; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka

    2014-01-01

    Lignocellulose-derived microbial inhibitors such as furfural and 5-hydroxymethyl furfural adversely affect fermentation of lignocellulosic biomass hydrolysates to fuels and chemicals due to their toxicity on fermenting microbes. To harness the potential of lignocellulose as a cheap source of fermentable sugars, in situ detoxification of furfural and other lignocellulose-derived microbial inhibitors is essential. To enhance in situ detoxification and tolerance of furfural by Clostridium beijerinckii NCIMB 8052 during acetone-butanol-ethanol (ABE) fermentation, the effect of glycerol on NADH/NADPH generation and ABE production by furfural (4, 5, and 6 g/L)-challenged cultures was investigated in this study. In all instances, beneficial outcomes were observed. For example, the fermentation medium supplemented with glycerol and subjected to 5 g/L furfural elicited up to 1.8- and 3-fold increases, respectively, in NADH and NADPH levels in C. beijerinckii 8052 relative to the control culture. These critical changes are the likely underpinnings for the glycerol-mediated 2.3-fold increase in the rate of detoxification of 5 g/L furfural, substrate consumption, and ABE production compared to the unsupplemented medium. Collectively, these results demonstrate that increased intracellular NADH/NADPH in C. beijerinckii 8052 due to glycerol utilization engenders favorable effects on many aspects of cellular metabolism, including enhanced furfural reduction and increased ABE production.

  11. Sugar-glycerol cofermentations in lactobacilli: the fate of lactate.

    PubMed

    Veiga da Cunha, M; Foster, M A

    1992-02-01

    The simultaneous fermentation of glycerol and sugar by lactobacillus brevis B22 and Lactobacillus buchneri B190 increases both the growth rate and total growth. The reduction of glycerol to 1,3-propanediol by the lactobacilli was found to influence the metabolism of the sugar cofermented by channelling some of the intermediate metabolites (e.g., pyruvate) towards NADH-producing (rather than NADH-consuming) reactions. Ultimately, the absolute requirement for NADH to prevent the accumulation of 3-hydroxypropionaldehyde leads to a novel lactate-glycerol cofermentation. As a result, additional ATP can be made not only by (i) converting pyruvate to acetate via acetyl phosphate rather than to the ethanol usually found and (ii) oxidizing part of the intermediate pyruvate to acetate instead of the usual reduction to lactate but also by (iii) reoxidation of accumulated lactate to acetate via pyruvate. The conversion of lactate to pyruvate is probably catalyzed by NAD-independent lactate dehydrogenases that are found only in the cultures oxidizing lactate and producing 1,3-propanediol, suggesting a correlation between the expression of these enzymes and a raised intracellular NAD/NADH ratio. The enzymes metabolizing glycerol (glycerol dehydratase and 1,3-propanediol dehydrogenase) were expressed in concert without necessary induction by added glycerol, although their expression may also be influenced by the intracellular NAD/NADH ratio set by the different carbohydrates fermented.

  12. Glycerol fermentation by (open) mixed cultures: a chemostat study.

    PubMed

    Temudo, Margarida F; Poldermans, Rolf; Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2008-08-15

    Glycerol is an important byproduct of bioethanol and biodiesel production processes. This study aims to evaluate its potential application in mixed culture fermentation processes to produce bulk chemicals. Two chemostat reactors were operated in parallel, one fed with glycerol and the other with glucose. Both reactors operated at a pH of 8 and a dilution rate of 0.1 h(-1). Glycerol was mainly converted into ethanol and formate. When operated under substrate limiting conditions, 60% of the substrate carbon was converted into ethanol and formate in a 1:1 ratio. This product spectrum showed sensitivity to the substrate concentration, which partly shifted towards 1,3-propanediol and acetate in a 2:1 ratio at increasing substrate concentrations. Glucose fermentation mainly generated acetate, ethanol and butyrate. At higher substrate concentrations, acetate and ethanol were the dominant products. Co-fermentations of glucose-glycerol were performed with both mixed cultures, previously cultivated on glucose and on glycerol. The product spectrum of the two experiments was very similar: the main products were ethanol and butyrate (38% and 34% of the COD converted, respectively). The product spectrum obtained for glucose and glycerol fermentation could be explained based on the general metabolic pathways found for fermentative microorganisms and on the metabolic constraints: maximization of the ATP production rate and balancing the reducing equivalents involved.

  13. Microaerobic conversion of glycerol to ethanol in Escherichia coli.

    PubMed

    Wong, Matthew S; Li, Mai; Black, Ryan W; Le, Thao Q; Puthli, Sharon; Campbell, Paul; Monticello, Daniel J

    2014-05-01

    Glycerol has become a desirable feedstock for the production of fuels and chemicals due to its availability and low price, but many barriers to commercialization remain. Previous investigators have made significant improvements in the yield of ethanol from glycerol. We have developed a fermentation process for the efficient microaerobic conversion of glycerol to ethanol by Escherichia coli that presents solutions to several other barriers to commercialization: rate, titer, specific productivity, use of inducers, use of antibiotics, and safety. To increase the rate, titer, and specific productivity to commercially relevant levels, we constructed a plasmid that overexpressed glycerol uptake genes dhaKLM, gldA, and glpK, as well as the ethanol pathway gene adhE. To eliminate the cost of inducers and antibiotics from the fermentation, we used the adhE and icd promoters from E. coli in our plasmid, and we implemented glycerol addiction to retain the plasmid. To address the safety issue of off-gas flammability, we optimized the fermentation process with reduced-oxygen sparge gas to ensure that the off-gas remained nonflammable. These advances represent significant progress toward the commercialization of an E. coli-based glycerol-to-ethanol process.

  14. Microaerobic Conversion of Glycerol to Ethanol in Escherichia coli

    PubMed Central

    Wong, Matthew S.; Li, Mai; Black, Ryan W.; Le, Thao Q.; Puthli, Sharon; Campbell, Paul

    2014-01-01

    Glycerol has become a desirable feedstock for the production of fuels and chemicals due to its availability and low price, but many barriers to commercialization remain. Previous investigators have made significant improvements in the yield of ethanol from glycerol. We have developed a fermentation process for the efficient microaerobic conversion of glycerol to ethanol by Escherichia coli that presents solutions to several other barriers to commercialization: rate, titer, specific productivity, use of inducers, use of antibiotics, and safety. To increase the rate, titer, and specific productivity to commercially relevant levels, we constructed a plasmid that overexpressed glycerol uptake genes dhaKLM, gldA, and glpK, as well as the ethanol pathway gene adhE. To eliminate the cost of inducers and antibiotics from the fermentation, we used the adhE and icd promoters from E. coli in our plasmid, and we implemented glycerol addiction to retain the plasmid. To address the safety issue of off-gas flammability, we optimized the fermentation process with reduced-oxygen sparge gas to ensure that the off-gas remained nonflammable. These advances represent significant progress toward the commercialization of an E. coli-based glycerol-to-ethanol process. PMID:24584248

  15. Key enzymes catalyzing glycerol to 1,3-propanediol.

    PubMed

    Jiang, Wei; Wang, Shizhen; Wang, Yuanpeng; Fang, Baishan

    2016-01-01

    Biodiesel can replace petroleum diesel as it is produced from animal fats and vegetable oils, and it produces about 10 % (w/w) glycerol, which is a promising new industrial microbial carbon, as a major by-product. One of the most potential applications of glycerol is its biotransformation to high value chemicals such as 1,3-propanediol (1,3-PD), dihydroxyacetone (DHA), succinic acid, etc., through microbial fermentation. Glycerol dehydratase, 1,3-propanediol dehydrogenase (1,3-propanediol-oxydoreductase), and glycerol dehydrogenase, which were encoded, respectively, by dhaB, dhaT, and dhaD and with DHA kinase are encompassed by the dha regulon, are the three key enzymes in glycerol bioconversion into 1,3-PD and DHA, and these are discussed in this review article. The summary of the main research direction of these three key enzyme and methods of glycerol bioconversion into 1,3-PD and DHA indicates their potential application in future enzymatic research and industrial production, especially in biodiesel industry.

  16. Droplet motion driven by electro-elasto-capillary effects

    NASA Astrophysics Data System (ADS)

    Shah, Jaymeen; Yang, Xin; Sun, Ying

    2013-11-01

    The motion of droplets on natural and synthetic fibers underlines many technological applications including flexible displays, insulation, and smart filters. However, there is a lack of fundamental understanding of the coupled electrical, elastic, and capillary forces on droplets in fiber networks. In the present study, the motion of a water droplet suspended between two electrically insulated fibers of different Young's modulus, lengths and diameters are examined under electric fields. The results on rigid fibers reveal a critical voltage, under which the droplet remain stationary. Above this critical voltage, droplet self-propulsion is observed as a result of the interplay of electro, elasto and capillary forces on the droplet. The effects of the inter-fiber distance and Young's modulus on droplet motion are also discussed. The controllable motion of droplets can be used to manipulate or transport liquid at small scales.

  17. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  18. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  19. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  20. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  1. Use of agar/glycerol and agar/glycerol/water as a translucent brain simulant for ballistic testing.

    PubMed

    Falland-Cheung, Lisa; Waddell, J Neil; Lazarjan, Milad Soltanipour; Jermy, Mark C; Winter, Taylor; Tong, Darryl; Brunton, Paul A

    2017-01-01

    The suitability of agar/glycerol/water and agar/glycerol mixtures as brain simulants was investigated. Test specimens (n=15) (50x27×37mm) were fabricated for these different mixtures and conditioned to 12°C, 22°C, and 26°C prior to testing. For comparison, fresh deer brain specimens (n=20) were sourced and prepared to the same dimensions as the agar/glycerol(/water) mixtures and conditioned to 12°C and 37°C. High impact tests were carried out with a 0.22-caliber air rifle pellet and a high-speed camera was used to record the projectile as it passed through the specimens, allowing for energy loss and vertical displacement velocity calculation. Although the agar/glycerol/water mixture presented with similar vertical expansion and contraction of the specimens to the warm and cold deer brains, a two-fold decrease of the vertical expansion and contraction was noticed with the agar/glycerol specimens. Also considerably less extrusion of this mixture out of the exit and entry sides after specimen penetration was observed. Of the simulants tested, agar/glycerol/water was the most suitable brain simulant for ballistic testing and impact studies.

  2. Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae to strengthen the fumaric acid biosynthesis from crude glycerol.

    PubMed

    Huang, Di; Wang, Ru; Du, Wenjie; Wang, Guanyi; Xia, Menglei

    2015-11-01

    Rhizopus oryzae is strictly inhibited by biodiesel-based by-product crude glycerol, which results in low fumaric acid production. In this study, evolutionary engineering was employed to activate the glycerol utilization pathway for fumaric acid production. An evolved strain G80 was selected, which could tolerate and utilize high concentrations of crude glycerol to produce 14.9g/L fumaric acid with a yield of 0.248g/g glycerol. Key enzymes activity analysis revealed that the evolved strain displayed a significant upregulation in glycerol dissimilation, pyruvate consumption and reductive tricarboxylic acid pathways, compared with the parent strain. Subsequently, intracellular metabolic profiling analysis showed that amino acid biosynthesis, tricarboxylic acid cycle, fatty acid and stress response metabolites accounted for metabolic difference between two strains. Moreover, a glycerol fed-batch strategy was optimized to obtain the highest fumaric acid production of 25.5g/L, significantly increased by 20.9-fold than that of the parent strain of 1.2g/L.

  3. Effect of chirality on monoacylglycerol ester monolayer characteristics: 3-monostearoyl-sn-glycerol.

    PubMed

    Vollhardt, D; Brezesinski, G

    2017-03-08

    The effect of chirality on the thermodynamic behavior, the morphological features, and the 2D lattice structures of 3-monostearoyl-sn-glycerol monolayers is studied. The present study focusses on the influence of the alkyl chain length on the chiral discrimination. Surface pressure-area (π-A) isotherms, Brewster angle microscopy (BAM), and particularly, grazing incidence X-ray diffraction (GIXD) are the experimental basis of the presented results. The π-A isotherms of the enantiomeric 3-monostearoyl-sn-glycerol monolayers measured between 25 and 38 °C resemble those of the racemic 1-monostearoyl-rac-glycerol monolayers, thus indicating small energetic differences between the enantiomeric and the racemic forms. The absolute ΔS values increase as the temperature decreases and thus, the ordering of the condensed phase increases at lower temperatures. The extrapolation to zero ΔS provides a critical temperature Tc of 42.1 °C (315.3 K), above which the monolayer cannot be compressed into the condensed state. Despite the great tendency of the 3-monostearoyl-sn-glycerol domains to develop irregular deviations in shape and inner texture, regular domains similar to those of the racemic monoacylglycerol esters are also formed. GIXD measurements performed over a large range of lateral pressures at four different temperatures (5, 10, 15 and 20 °C) indicate the dominance of the chiral nature. Contour plots with three clearly separated diffraction signals are observable in a large pressure range which is shifted to higher lateral pressures with increasing temperature. The comparison with the contour plots of the homologous 3-monopalmitoyl-sn-glycerol monolayers reveals the stronger dominance of the chiral nature with increasing alkyl chain length and thus, demonstrates the stronger influence of the lattice symmetry. The lattice data obtained by fitting the contour plots with 3 or 2 peaks demonstrate the resemblance to orthorhombic structures with NN tilted molecules at

  4. Hydration of gelatin molecules in glycerol-water solvent and phase diagram of gelatin organogels.

    PubMed

    Sanwlani, Shilpa; Kumar, Pradip; Bohidar, H B

    2011-06-09

    We present a systematic investigation of hydration and gelation of the polypeptide gelatin in water-glycerol mixed solvent (glycerol solutions). Raman spectroscopy results indicated enhancement in water structure in glycerol solutions and the depletion of glycerol density close to hydration sheath of the protein molecule. Gelation concentration (c(g)) was observed to decrease from 1.92 to 1.15% (w/v) while the gelation temperature (T(g)) was observed to increase from 31.4 to 40.7 °C with increase in glycerol concentration. Data on hand established the formation of organogels having interconnected networks, and the universal gelation mechanism could be described through an anomalous percolation model. The viscosity of sol diverged as η ∼ (1 - c(g)/c)(-k) as c(g) was approached from below (c < c(g)), while the elastic storage modulus grew as G' ∼ (c/c(g) - 1)(t) (for c > c(g)). It is important to note that values determined for critical exponents k and t were universal; that is, they did not depend on the microscopic details. The measured values were k = 0.38 ± 0.10 and t = 0.92 ± 0.17 whereas the percolation model predicts k = 0.7-1.3 and t = 1.9. Isothermal frequency sweep studies showed power-law dependence of gel storage modulus (G') and loss modulus (G'') on oscillation frequency ω given as G'(ω) ∼ ω(n') and G''(ω) ∼ ω(n''), and consistent with percolation model prediction it was found that n' ≈ n'' ≈ δ ≈ 0.73 close to gelation concentration. We propose a unique 3D phase diagram for the gelatin organogels. Circular dichroism data revealed that the gelatin molecules retained their biological activity in these solvents. Thus, it is shown that the thermomechanical properties of these organogels could be systematically tuned and customized as per application requirement.

  5. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota.

    PubMed

    Damsté, Jaap S Sinninghe; Schouten, Stefan; Hopmans, Ellen C; van Duin, Adri C T; Geenevasen, Jan A J

    2002-10-01

    The basic structure and stereochemistry of the characteristic glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipid of cosmopolitan pelagic crenarchaeota has been identified by high field two-dimensional (2D)-NMR techniques. It contains one cyclohexane and four cyclopentane rings formed by internal cyclisation of the biphytanyl chains. Its structure is similar to that of GDGTs biosynthesized by (hyper)thermophilic crenarchaeota apart from the cyclohexane ring. These findings are consistent with the close phylogenetic relationship of (hyper)thermophilic and pelagic crenarchaeota based 16S rRNA. The latter group inherited the biosynthetic capabilities for a membrane composed of cyclopentane ring-containing GDGTs from the (hyper)thermophilic crenarchaeota. However, to cope with the much lower temperature of the ocean, a small but key step in their evolution was the adjustment of the membrane fluidity by making a kink in one of the bicyclic biphytanyl chains by the formation of a cyclohexane ring. This prevents the dense packing characteristic for the cyclopentane ring-containing GDGTs membrane lipids used by hyperthermophilic crenarchaeota to adjust their membrane fluidity to high temperatures.

  6. The Holocene Records of Glycerol Dialkyl Glycerol Tetraethers From the Northern Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Park, Y.; Yamamoto, M.; Nam, S.; Polyak, L. V.

    2013-12-01

    We analyzed glycerol dialkyl glycerol tetraethers (GDGTs) in Cores HOTRAX 05-01 JPC5 and JPC 8, and ARA02B 01-GC in the northern Chukchi Sea. All of the three cores showed a similar changing pattern in GDGT composition during the Holocene. In the beginning of early Holocene, both isoprenoid and branched GDGT concentrations were low, and BIT and CBT were relatively high. The similar composition is found in modern sediments from the western Arctic Ocean north of 75°N, suggesting that the northern Chukchi Sea was covered by perennial sea ice. GDGT concentration increased, and BIT and CBT decreased during the early Holocene and reached the same level as those in modern sediments at 8 ka. TEX86 and CBT/MBT indices showed millennial-scale variation. We interpret that these proxies did not simply indicate temperatures but were affected by the relative contribution of different sediment sources. Millennial-scale variability likely reflected changes in sediment transport in the northern Chukchi Sea.

  7. [Propagation of autowaves in capillaries thick with moving viscous excitable medium].

    PubMed

    Davydov, V A; Davydov, N V

    2015-01-01

    We consider the propagation of autowaves in the moving liquid excitable medium. The shapes of the autowave fronts in cases of the Poiseuille and Couette flows are determined in flat capillaries within a kinematic approach. We show the existence of a critical velocity for the flows above which the autowave fronts should break off. The possibility of a diode effect--the one-way capillary conductivity--is studied. The results of computer simulations are in good agreement with the theoretical predictions.

  8. Capillary electrophoresis for drug analysis

    NASA Astrophysics Data System (ADS)

    Lurie, Ira S.

    1999-02-01

    Capillary electrophoresis (CE) is a high resolution separation technique which is amenable to a wide variety of solutes, including compounds which are thermally degradable, non-volatile and highly polar, and is therefore well suited for drug analysis. Techniques which have been used in our laboratory include electrokinetic chromatography (ECC), free zone electrophoresis (CZE) and capillary electrochromatography (CEC). ECC, which uses a charged run buffer additive which migrates counter to osmotic flow, is excellent for many applications, including, drug screening and analyses of heroin, cocaine and methamphetamine samples. ECC approaches include the use of micelles and charged cyclodextrins, which allow for the separation of complex mixtures. Simultaneous separation of acidic, neutral and basic solutes and the resolution of optical isomers and positional isomers are possible. CZE has been used for the analysis of small ions (cations and anions) in heroin exhibits. For the ECC and CZE experiments performed in our laboratory, uncoated capillaries were used. In contrast, CEC uses capillaries packed with high performance liquid chromatography stationary phases, and offers both high peak capacities and unique selectivities. Applications include the analysis of cannabinoids and drug screening. Although CE suffers from limited concentration sensitivity, it is still applicable to trace analysis of drug samples, especially when using injection techniques such as stacking, or detection schemes such as laser induced fluorescence and extended pathlength UV.

  9. Capillary Rise in a Wedge

    ERIC Educational Resources Information Center

    Piva, M.

    2009-01-01

    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  10. Glycerol monolaurate prevents mucosal SIV transmission

    PubMed Central

    Li, Qingsheng; Estes, Jacob D.; Schlievert, Patrick M.; Duan, Lijie; Brosnahan, Amanda J.; Southern, Peter J.; Reilly, Cavan S.; Peterson, Marnie L.; Schultz-Darken, Nancy; Brunner, Kevin G.; Nephew, Karla R.; Pambuccian, Stefan; Lifson, Jeffrey D.; Carlis, John V.; Haase, Ashley T.

    2009-01-01

    While there has been great progress in treating HIV-1 infection1, preventing transmission has thus far proven an elusive goal. Indeed, recent trials of a candidate vaccine and microbicide have been disappointing, both for want of efficacy and concerns about increased rates of transmission2–4. Nonetheless, studies of vaginal transmission in the SIV-rhesus macaque model point to opportunities in the earliest stages of infection where a vaccine or microbicide might be protective, by limiting the expansion of infected founder populations at the portal of entry5, 6. Here we show in this SIV-macaque model, that an outside-in endocervical mucosal signalling system, involving MIP-3α, plasmacytoid dendritic cells and CCR5+cell-attracting chemokines produced by these cells, in combination with the innate immune and inflammatory responses to infection in both cervix and vagina, recruit CD4+T cells to fuel this obligate expansion. We then show that glycerol monolaurate, a widely used antimicrobial compound 7 with inhibitory activity against production of MIP-3α and other proinflammatory cytokines8, can inhibit mucosal signalling and the innate and inflammatory response to HIV-1 and SIV in vitro, and in vivo can protect rhesus macaques from acute infection despite repeated intra-vaginal exposure to high doses of SIV. This novel approach, plausibly linked to interfering with innate host responses that recruit the target cells necessary to establish systemic infection, opens a promising new avenue for development of effective interventions to block HIV-1 mucosal transmission. PMID:19262509

  11. Glycerol monolaurate prevents mucosal SIV transmission.

    PubMed

    Li, Qingsheng; Estes, Jacob D; Schlievert, Patrick M; Duan, Lijie; Brosnahan, Amanda J; Southern, Peter J; Reilly, Cavan S; Peterson, Marnie L; Schultz-Darken, Nancy; Brunner, Kevin G; Nephew, Karla R; Pambuccian, Stefan; Lifson, Jeffrey D; Carlis, John V; Haase, Ashley T

    2009-04-23

    Although there has been great progress in treating human immunodeficiency virus 1 (HIV-1) infection, preventing transmission has thus far proven an elusive goal. Indeed, recent trials of a candidate vaccine and microbicide have been disappointing, both for want of efficacy and concerns about increased rates of transmission. Nonetheless, studies of vaginal transmission in the simian immunodeficiency virus (SIV)-rhesus macaque (Macacca mulatta) model point to opportunities at the earliest stages of infection in which a vaccine or microbicide might be protective, by limiting the expansion of infected founder populations at the portal of entry. Here we show in this SIV-macaque model, that an outside-in endocervical mucosal signalling system, involving MIP-3alpha (also known as CCL20), plasmacytoid dendritic cells and CCR5(+ )cell-attracting chemokines produced by these cells, in combination with the innate immune and inflammatory responses to infection in both cervix and vagina, recruits CD4(+) T cells to fuel this obligate expansion. We then show that glycerol monolaurate-a widely used antimicrobial compound with inhibitory activity against the production of MIP-3alpha and other proinflammatory cytokines-can inhibit mucosal signalling and the innate and inflammatory response to HIV-1 and SIV in vitro, and in vivo it can protect rhesus macaques from acute infection despite repeated intra-vaginal exposure to high doses of SIV. This new approach, plausibly linked to interfering with innate host responses that recruit the target cells necessary to establish systemic infection, opens a promising new avenue for the development of effective interventions to block HIV-1 mucosal transmission.

  12. Glycerol decreases the volume and compressibility of protein interior.

    PubMed

    Priev, A; Almagor, A; Yedgar, S; Gavish, B

    1996-02-20

    The addition of hydrogen-bonded cosolvents to aqueous solutions of proteins is known to modify both thermodynamic and dynamic properties of the proteins in a variety of ways. Previous studies suggest that glycerol reduces the free volume and compressibility of proteins. However, there is no directly measured evidence for that. We have measured the apparent specific volume (V) and adiabatic compressibility (K) of a number of proteins, sugars, and amino acids in water and in 30% glycerol at pH 7.4 and 30 degrees C. The values of V and K in water and their changes induced by glycerol were extrapolated to the limit of infinite solute size. The main results were the following: (a) glycerol decreases V and K of proteins, but increases it for amino acids; (b) the V and K values of the protein interior in water were found to be 0.784 +/- 0.026 mL/g and (12.8 +/- 2.5) x 10(-6) mL/g x atm, where the glycerol reduces these values by 8 and 32%, respectively; (c) the coefficient of adiabatic compressibility of the structural component of proteins affected by the glycerol is estimated to be (50 +/- 10) x 10(-6) atm(-1), which is comparable to that of water. We propose that the glycerol induces a release of the so-called "lubricant" water, which maintains conformational flexibility by keeping apart neighboring segments of the polypeptide chain. This is expected to lead to the collapsing of the voids containing the water as well as to increase intramolecular bonding, which explains the observed effect.

  13. Engineering of a Glycerol Utilization Pathway for Amino Acid Production by Corynebacterium glutamicum▿

    PubMed Central

    Rittmann, Doris; Lindner, Steffen N.; Wendisch, Volker F.

    2008-01-01

    The amino acid-producing organism Corynebacterium glutamicum cannot utilize glycerol, a stoichiometric by-product of biodiesel production. By heterologous expression of Escherichia coli glycerol utilization genes, C. glutamicum was engineered to grow on glycerol. While expression of the E. coli genes for glycerol kinase (glpK) and glycerol 3-phosphate dehydrogenase (glpD) was sufficient for growth on glycerol as the sole carbon and energy source, additional expression of the aquaglyceroporin gene glpF from E. coli increased growth rate and biomass formation. Glutamate production from glycerol was enabled by plasmid-borne expression of E. coli glpF, glpK, and glpD in C. glutamicum wild type. In addition, a lysine-producing C. glutamicum strain expressing E. coli glpF, glpK, and glpD was able to produce lysine from glycerol as the sole carbon substrate as well as from glycerol-glucose mixtures. PMID:18757581

  14. Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.

    PubMed

    Meiswinkel, Tobias M; Rittmann, Doris; Lindner, Steffen N; Wendisch, Volker F

    2013-10-01

    Corynebacterium glutamicum possesses genes for glycerol kinase and glycerol-3-phosphate dehydrogenase that were shown to support slow growth with glycerol only when overexpressed from a plasmid. Pure glycerol and crude glycerol from biodiesel factories were tested for growth of recombinant strains expressing glpF, glpK and glpD from Escherichia coli. Some, but not all crude glycerol lots served as good carbon sources. Although the inhibitory compound(s) present in these crude glycerol lots remained unknown, the addition of substoichiometric glucose concentrations (below 10% by weight) enabled the utilization of some of the inhibitory crude glycerol lots. Besides growth, production of the amino acids L-glutamate, L-lysine, L-ornithine and L-arginine as well as of the diamine putrescine based on crude glycerol qualities from biodiesel factories was demonstrated.

  15. Plasticization of a protein-based film by glycerol: a spectroscopic, mechanical, and thermal study.

    PubMed

    Gao, Chunli; Stading, Mats; Wellner, Nikolaus; Parker, Mary L; Noel, Timothy R; Mills, E N Clare; Belton, Peter S

    2006-06-28

    Kafirin, the seed storage protein of the cereal sorghum, is highly homologous with the maize storage protein zein. The effects of plasticisation of a kafirin film by glycerol in the absence of water were examined by a combination of spectroscopic (NMR and infrared), rheological, and calorimetric methods. The results suggest that at low glycerol levels the glycerol is absorbed onto and possibly into the protein. Increasing the level of glycerol increases the motion of the protein and changes the protein conformation. There are corresponding changes of the mechanical properties of protein films. At 40% (w/w) of glycerol, two glass transition temperatures were observed, one of which corresponded to the glass transition temperature of pure glycerol. This result indicates that at this level of plasticizer there are sufficient glycerol/glycerol interactions occurring to allow a separate glass formation process for glycerol.

  16. Capillary Flow in Containers of Polygonal Section: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.; Rame, Enrique (Technical Monitor)

    2001-01-01

    An improved understanding of the large-length-scale capillary flows arising in a low-gravity environment is critical to that engineering community concerned with the design and analysis of spacecraft fluids management systems. Because a significant portion of liquid behavior in spacecraft is capillary dominated it is natural to consider designs that best exploit the spontaneous character of such flows. In the present work, a recently verified asymptotic analysis is extended to approximate spontaneous capillary flows in a large class of cylindrical containers of irregular polygonal section experiencing a step reduction in gravitational acceleration. Drop tower tests are conducted using partially-filled irregular triangular containers for comparison with the theoretical predictions. The degree to which the experimental data agree with the theory is a testament to the robustness of the basic analytical assumption of predominantly parallel flow. As a result, the closed form analytical expressions presented serve as simple, accurate tools for predicting bulk flow characteristics essential to practical low-g system design and analysis. Equations for predicting corner wetting rates, total container flow rates, and transient surfaces shapes are provided that are relevant also to terrestrial applications such as capillary flow in porous media.

  17. Pore-scale study of capillary trapping mechanism during CO2 injection in geological formations

    SciTech Connect

    Bandara, Uditha C.; Tartakovsky, Alexandre M.; Palmer, Bruce J.

    2011-11-01

    Geological sequestration of CO{sub 2} gas emerged as a promising solution for reducing amount of green house gases in atmosphere. A number of continuum scale models are available to describe the transport phenomena of CO{sub 2} sequestration. These models rely heavily on a phenomenological description of subsurface transport phenomena and the predictions can be highly uncertain. Pore-scale models provide a better understanding of fluid displacement processes, nonetheless such models are rare. In this work we use a Smoothed Particle Hydrodynamics (SPH) model to study pore-scale displacement and capillary trapping mechanisms of super-critical CO{sub 2} in the subsurface. Simulations are carried out to investigate the effects of gravitational, viscous, and capillary forces in terms of Gravity, Capillary, and Bond numbers. Contrary to the other published continuum scale investigations, we found that not only Gravity number but also Capillary number plays an important role on the fate of injected CO{sub 2}. For large Gravity numbers (on the order of 10), most of the injected CO{sub 2} reaches the cap-rock due to gravity segregation. A significant portion of CO{sub 2} gets trapped by capillary forces when Gravity number is small (on the order of 0.1). When Gravity number is moderately high (on the order of 1), trapping patterns are heavily dependent on Capillary number. If Capillary number is very small (less than 0.001), then capillary forces dominate the buoyancy forces and a significant fraction of injected CO{sub 2} is trapped by the capillary forces. Conversely, if Capillary number is high (higher than 0.001), capillary trapping is relatively small since buoyancy dominates the capillary forces. In addition, our simulations reveal different types of capillary trapping and flow displacement mechanisms during and after injection. In gravity dominated cases leave behind was the widespread trapping mechanism. Division was the primary trapping mechanism in viscous

  18. Microbial conversion of glycerol: present status and future prospects.

    PubMed

    Khanna, Swati; Goyal, Arun; Moholkar, Vijayanand S

    2012-09-01

    Biodiesel has emerged as a potential alternate renewable liquid fuel in the past two decades. Total annual production of biodiesel stands at 6.96 million tons and 11.2 million tons in USA and Europe, respectively. In other countries, Asia and Latin America, biodiesel production has increased at unprecedented rate. Despite this, the economy of biodiesel is not attractive. An obvious solution for boosting the economy of the biodiesel industry is to look for markets for side products of the transesterification process of biodiesel synthesis. The main by-product is glycerol. However, this glycerol is contaminated with alkali/acid catalyst and alcohol, and thus, is not useful for conventional applications such as in toothpaste, drugs, paints and cosmetics. Conversion of this glycerol to value-added product is a viable solution for effective and economic utilization, which would also generate additional revenue for the biodiesel industry. Intensive research has taken place in area of conversion of glycerol to numerous products. The conventional catalytic route of glycerol transformation employs prohibitively harsh conditions of temperature and pressure, and thus, has slim potential for large-scale implementation. In addition, the selectivity of the process is rather small with formation of many undesired side products. The bioconversion processes, on the other hand, are highly selective although with slower kinetics. In this review, we have given an assessment and overview of the literature on bioconversion of glycerol. We have assessed as many as 23 products from glycerol bioconversion, and have reviewed the literature in terms of microorganism used, mode of fermentation, type of fermentor, yield and productivity of the process and recovery/purification of the products. The metabolic pathway of conversion of glycerol to various products has been discussed. We have also pondered over economic and engineering issues of large-scale implementation of process and have

  19. Titanium glycerolate-based electrorheological fluids with stable properties

    NASA Astrophysics Data System (ADS)

    Dong, Xufeng; Zhao, Hong; Qi, Min; Tao, Wanyong

    2014-04-01

    Titanium glycerolate (TiGly) particles were prepared with different molar ratios of glycerol to tetrabutyltitanate (TBOT) (glycerol/TBOT = 2, 2.5, and 3) by a simple precipitation method. For comparison, titanium propanediol (TiPro) particles were prepared with 1,3-propanediol and TBOT (propanediol/TBOT = 2) by the same route. The composition and morphology of the four kinds of particles were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), respectively. The results indicate that the secondary hydroxyl groups originating from glycerolate are doped into the TiGly particles, and the four kinds of particles present different morphology. The suspensions prepared with TiGly particles by 60% weight fraction and silicone oil show significant electrorheological (ER) performance, while the TiPro particles-based fluid with the same particles fraction present weak ER properties. Constant shear rate and step-function electric field pulses were applied to investigate the stability of the ER fluids. The TiGly particles synthesized with the molar ratio of glycerol to TBOT equaling 2.5 exhibit significant (˜40 kPa at 5 kV mm-1) and stable ER activity.

  20. Development of glycerol/O 2 biofuel cell

    NASA Astrophysics Data System (ADS)

    Arechederra, Robert L.; Treu, Becky L.; Minteer, Shelley D.

    Glycerol is an attractive fuel for a fuel cell, because it is non-toxic, non-volatile, non-flammable, has high energy density, and is abundant due to the fact that it is a byproduct of biodiesel production. However, it has not been an effective fuel for low temperature, precious metal catalyzed fuel cells. In this paper, we describe the use of glycerol as a fuel in an enzymatic biofuel cell. An alcohol dehydrogenase and aldehyde dehydrogenase-based bioanode has been developed that oxidizes glycerol, a safe high energy density fuel. Glycerol/O 2 biofuel cells employing these bioanodes have yielded power densities of up to 1.21 mW cm -2, and have the ability to operate at 98.9% fuel concentrations. Previous biofuel cells could not operate effectively at high fuel concentrations due to the nature of the solid fuel such as sugar or the solvent characteristics of fuels such as lower aliphatic alcohols. The glycerol/O 2 biofuel cell provides improved power densities compared to ethanol biofuel cells due to ability to more completely oxidize the fuel.

  1. Determination of optimal glycerol concentration for optical tissue clearing

    NASA Astrophysics Data System (ADS)

    Youn, Eungjun; Son, Taeyoon; Kim, Han-Sung; Jung, Byungjo

    2012-02-01

    The laser scattering in tissue is significant in diagnostic and therapeutic purposes of laser. Many studies have been conducted to minimize laser scattering in tissue and therefore, to maximize the clinical efficacy by enhancing photon density. Optical clearing agents (OCAs) have been employed for optical tissue clearing (OTC). This study was aimed to investigate the optimal concentration of an OCA, glycerol, in topical application,, so that it can be utilized for clinical diagnosis and therapy in dermatology. Glycerol was topically applied to avoid possible edema caused by dermal injection. The effect of OTC was quantitatively evaluated as a function of the concentration of glycerol with various methods. Optical methods such as optical coherence tomography (OCT) and an integrating sphere were used to assess the enhancement of light penetration depth and refractive index matching. In addition, a non-optical method, ultrasound scanner, was utilized to evaluate quantitatively collagen dissociation. The results revealed that 70 % glycerol was the optimal concentration of OTC for topical application. This study may provide a guideline regarding to the use of glycerol for optimal diagnostic and therapeutic effects in dermatology.

  2. Effect of NaCl on the accumulation of glycerol by three Aspergillus species.

    PubMed

    Zidan, M A; Abdel-Mallek, A Y

    1987-01-01

    The accumulation of glycerol was investigated in three Aspergillus species, A. niger, A. ochraceus and A. tamarii after being grown in media containing different NaCl concentrations. Intra-extracellular as well as total glycerol were markedly accumulated by the three organisms in response to increased salinity. However, at salinity levels of 10-14% NaCl, extracellular glycerol was somewhat lowered. In addition, it was found that the maximum accumulation of glycerol in A. niger and A. tamarii was reached within the first 10 hours after salinization. However, after desalinization, the extracellular glycerol was continuously increased within the first 6 hours at the expense of intracellular glycerol.

  3. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of yellowstone national park.

    PubMed

    Schouten, Stefan; van der Meer, Marcel T J; Hopmans, Ellen C; Rijpstra, W Irene C; Reysenbach, Anna-Louise; Ward, David M; Sinninghe Damsté, Jaap S

    2007-10-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are core membrane lipids originally thought to be produced mainly by (hyper)thermophilic archaea. Environmental screening of low-temperature environments showed, however, the abundant presence of structurally diverse GDGTs from both bacterial and archaeal sources. In this study, we examined the occurrences and distribution of GDGTs in hot spring environments in Yellowstone National Park with high temperatures (47 to 83 degrees C) and mostly neutral to alkaline pHs. GDGTs with 0 to 4 cyclopentane moieties were dominant in all samples and are likely derived from both (hyper)thermophilic Crenarchaeota and Euryarchaeota. GDGTs with 4 to 8 cyclopentane moieties, likely derived from the crenarchaeotal order Sulfolobales and the euryarchaeotal order Thermoplasmatales, are usually present in much lower abundance, consistent with the relatively high pH values of the hot springs. The relative abundances of cyclopentane-containing GDGTs did not correlate with in situ temperature and pH, suggesting that other environmental and possibly genetic factors play a role as well. Crenarchaeol, a biomarker thought to be specific for nonthermophilic group I Crenarchaeota, was also found in most hot springs, though in relatively low concentrations, i.e., <5% of total GDGTs. Its abundance did not correlate with temperature, as has been reported previously. Instead, the cooccurrence of relatively abundant nonisoprenoid GDGTs thought to be derived from soil bacteria suggests a predominantly allochthonous source for crenarchaeol in these hot spring environments. Finally, the distribution of bacterial branched GDGTs suggests that they may be derived from the geothermally heated soils surrounding the hot springs.

  4. Amperometric triglyceride bionanosensor based on nanoparticles of lipase, glycerol kinase, glycerol-3-phosphate oxidase.

    PubMed

    Pundir, C S; Aggarwal, V

    2017-01-15

    The nanoparticles (NPs) aggregates of lipase from porcine pancreas, glycerol kinase (GK) from Cellulomonas sp. and glycerol-3-phosphate oxidase (GPO) from Aerococcus viridanss were prepared by desolvation and glutaraldehyde crosslinking and functionalized by cysteamine. These enzyme nanoparticles (ENPs) were characterized by transmission electron microscopy (TEM) and Fourier transform infra red (FTIR) spectroscopy. The functionalzed ENPs aggregates were co-immobilized covalently onto polycrystalline Au electrode through thiolated bond. An improved amperometric triglyceride (TG) bionanosensor was constructed using this ENPs modified Au electrode as working electrode. Biosensor showed optimum current at 1.2 V within 5s, at pH 6.5 and 35 °C.A linear relationship was obtained between current (mA) and triolein concentration in lower concentration range,10-100 mg/dL and higher concentration range, 100-500 mg/dL. Limit of detection (LOD) of bionanosensor was 1.0 μg/ml. Percent analytical recovery of added trolein (50 and 100 mg/dL) in serum was 95.2 ± 0.5 and 96.0 ± 0.17. Within and between batch coefficients of variation (CV) were 2.33% and 2.15% respectively. A good correlation (R(2) = 0.99) was obtained between TG values in sera measured by present biosensor and standard enzymic colorimetric method with the regression equation: y= (0.993x + 0.967). ENPs/Au electrode was used 180 times over a period of 3 months with 50% loss in its initial activity, when stored dry at 4 °C.

  5. Source, settling and degradation of branched glycerol dialkyl glycerol tetraethers in the marine water column

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masanobu; Shimamoto, Akifumi; Fukuhara, Tatsuo; Tanaka, Yuichiro

    2016-10-01

    Branched glycerol dialkyl glycerol tetraethers (branched GDGTs) are commonly found in distal marine sediments. However, their presence in the water column, source and delivery process are not fully understood. In this study, we examined seasonal and depth variation in the flux of branched GDGTs in sinking particles and underlying sediment at 39°N, 147°E in the mid-latitude NW Pacific from November 1997 to August 1999. Branched GDGTs showed synchronous variation in their sinking flux at different depths, and the variation was similar to that of lithogenic material of eolian dust origin. Their degrees of cyclization and methylation were nearly constant and bear some resemblance to those of alkaline soils. This suggests that westerly winds transport branched GDGTs to the study site via the atmosphere from continental Asia. The sinking flux of branched GDGTs was higher in 1999 than in 1998, presumably reflecting changes in the migration path of Asian dust in response to the El Niño-Southern Oscillation. Synchronous variation in branched GDGT concentrations at different depths implies rapid vertical transport of branched GDGTs to deep water with a sinking velocity exceeding 260 m d-1. The sinking flux of the branched GDGTs decreased with increasing depth, but the rate of decrease was much smaller than those of other compounds. The preservation efficiency of branched GDGTs was 3.5-6.4% of surface inputs at the water-sediment interface, which is much higher than those of isoprenoid GDGTs (1.0-1.3%) and other compounds. The branched and isoprenoid tetraether (BIT) index values were extremely low (i.e. <0.0015) in comparison with any other studies so far. The BIT values in the surface sediment were five times higher than those in sinking particles, which is attributed to the preferential preservation of branched GDGTs in oxic environments.

  6. In situ production of branched glycerol dialkyl glycerol tetraethers in a great basin hot spring (USA)

    PubMed Central

    Zhang, Chuanlun L.; Wang, Jinxiang; Dodsworth, Jeremy A.; Williams, Amanda J.; Zhu, Chun; Hinrichs, Kai-Uwe; Zheng, Fengfeng; Hedlund, Brian P.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are predominantly found in soils and peat bogs. In this study, we analyzed core (C)-bGDGTs after hydrolysis of polar fractions using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry and analyzed intact P-bGDGTs using total lipid extract (TLE) without hydrolysis by liquid chromatography-electrospray ionization-multiple stage mass spectrometry. Our results show multiple lines of evidence for the production of bGDGTs in sediments and cellulolytic enrichments in a hot spring (62–86°C) in the Great Basin (USA). First, in situ cellulolytic enrichment led to an increase in the relative abundance of hydrolysis-derived P-bGDGTs over their C-bGDGT counterparts. Second, the hydrolysis-derived P- and C-bGDGT profiles in the hot spring were different from those of the surrounding soil samples; in particular, a monoglycosidic bGDGT Ib containing 13,16-dimethyloctacosane and one cyclopentane moiety was detected in the TLE but it was undetectable in surrounding soil samples even after sample enrichments. Third, previously published 16S rRNA gene pyrotag analysis from the same lignocellulose samples demonstrated the enrichment of thermophiles, rather than mesophiles, and total bGDGT abundance in cellulolytic enrichments correlated with the relative abundance of 16S rRNA gene pyrotags from thermophilic bacteria in the phyla Bacteroidetes, Dictyoglomi, EM3, and OP9 (“Atribacteria”). These observations conclusively demonstrate the production of bGDGTs in this hot spring; however, the identity of organisms that produce bGDGTs in the geothermal environment remains unclear. PMID:23847605

  7. Capillary rise in cellulose sponges

    NASA Astrophysics Data System (ADS)

    Kim, Jungchul; Kim, Ho-Young; Mahadevan, L.

    2011-11-01

    A cellulose sponge, commonly used for clean-up jobs, can absorb and hold a significant amount of water within its pores, whose size ranges from micrometers to millimeters. We investigate the dynamics of capillary rise of water in the sponge using a combination of experiment and theory. We find that the rate of the capillary rise is significantly lower than Washburn's rule that assumes the sponge as a row of adjoined pores and the liquid flow to be driven by the Laplace pressure. We introduce a novel theory to model the flow in the hygroscopic porous media by combining Darcy's law based on the moisture concentration and the modified Young-Laplace equation. The scaling law constructed through this work agrees well with the experimental results.

  8. Preparation of high grade YBCO powders and pellets through the glycerol route

    NASA Astrophysics Data System (ADS)

    Kamat, R. V.; Vittal Rao, T. V.; Pillai, K. T.; Vaidya, V. N.; Sood, D. D.

    1991-10-01

    Superconducting powders and pellets of Y-Ba-Cu-O were prepared by a new solution route. Nitrates of Y, Ba and Cu were heated with a controlled amount of glycerol to get a dry powder which on suitable heat treatment gave high grade YBCO powder/pellets. Characterisation was done by X-ray diffractometry, thermogravimetry, differential thermal analysis and also by measuring the surface area, carbon-content, bulk-density, transition temperature and the critical current. The pellets could be densified to 94% theoretical density (TD) and had a superconducting transition width of 1 K. The critical current densities were in the range of 200-500 A/cm 2.

  9. Random lasing from cholesteric liquid crystal microspheres dispersed in glycerol.

    PubMed

    Li, Yong; Luo, Dan; Chen, Rui

    2016-11-01

    We demonstrate random lasing from a scattering system formed by a cholesteric liquid crystal dispersed in glycerol. Strong scattering of light is produced from the interference between the cholesteric liquid crystal microsphere and glycerol and leads to random lasing. The optical properties of random lasing, such as intensity, threshold, and the temperature effect on lasing emission are demonstrated. The random laser is distinguished from the band-edge laser generated within the cholesteric liquid crystal microspheres by analyzing the positions of the photonic band-edge of the cholesteric liquid crystal and the photoluminescence of the doped laser dye. The random laser from cholesteric liquid crystal microspheres in glycerol possesses a simple fabrication process, small volume, and low threshold, which enable it to be used in speckle-free imaging, target identification, biomedicine, document coding, and other photonic devices.

  10. Ru/FTO: Heterogeneous catalyst for glycerol hydrogenolysis

    NASA Astrophysics Data System (ADS)

    Samad, Wan Zurina; Isahak, Wan Nor Roslam Wan; Liew, Kin Hong; Nordin, Norazzizi; Yarmo, Mohd Ambar; Yusop, Muhammad Rahimi

    2014-09-01

    An introduction of Fluorine-doped tin oxide (FTO) as new catalyst support with Ru metal had enhanced the conversion and selectivity for glycerol hydrogenolysis. A small cluster of Ru were highly dispersed and intercalated over FTO via simple chemical mixture and reduction method. In comparison with various metal (Pd, Os, Cu), Ru/FTO catalyst showed the highest conversion (100%) and highly selectivity of 1,2-propanediol (94%) in the hydrogenolysis of glycerol. The reaction was optimally conducted at 150 °C, 20 bar of H2 pressure and at 8 hours. Ru/FTO catalyst was ascribed as active catalyst due to the amphoteric sites of FTO and small size of Ru metal. This provides high surface concentration of reduction process that involves the chemical bond dissociation in the glycerol hydrogenolysis.

  11. Superlubricity achieved with mixtures of acids and glycerol.

    PubMed

    Li, Jinjin; Zhang, Chenhui; Ma, Liran; Liu, Yuhong; Luo, Jianbin

    2013-01-08

    In this work, superlubricity between glass and Si(3)N(4) surfaces lubricated by mixtures of acid solutions and glycerol solutions has been found by using a traditional tribometer. Ultralow friction coefficients of between 0.004 and 0.006 were obtained after a running-in period. Related experiments indicate that the hydrogen ions in the mixtures play an important role in achieving superlubricity. Moreover, the ultralow friction is also closely related to the pH value of the acid and the concentration of glycerol. According to these results, the possible superlubricity mechanism has been revealed, which is attributed to a fluid-hydrated water layer between the hydrogen-bonded networks of glycerol and water molecules on the positively charged surfaces.

  12. Step-gradient capillary electrochromatography.

    PubMed

    Euerby, M R; Gilligan, D; Johnson, C M; Bartle, K D

    1997-10-01

    The analytical benefits of using a step-gradient in capillary electrochromatography (CEC) are demonstrated. The application of step-gradient CEC to the analysis of six diuretics of widely differing lipophilicities was evaluated and shown to result in a marked reduction in the analysis time and an improvement in the peak shape for later-eluting lipophilic components. When the step-gradient approach was performed in an automated mode, the retention time RSD for repeated injections was below 1%.

  13. Capillary electrophoresis systems and methods

    DOEpatents

    Dorairaj, Rathissh; Keynton, Robert S.; Roussel, Thomas J.; Crain, Mark M.; Jackson, Douglas J.; Walsh, Kevin M.; Naber, John F.; Baldwin, Richard P.; Franco, Danielle B.

    2011-08-02

    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  14. Passing on the legacy: teaching capillary filtration and developing presentation skills using classic papers.

    PubMed

    McGeown, J Graham

    2006-09-01

    Capillary filtration is a key area in the understanding of cardiovascular function and has both physiological and pathophysiological relevance in nearly every organ system. This article describes how classic papers in the Legacy collection of American Physiological Society publications can be used in a teaching symposium exploring the evidence supporting current concepts of capillary fluid exchange. Individual students are given papers to read, edit, and present to the class. The appropriate selection and sequencing of these papers allows the development of important physiological concepts to be tracked. A series of papers concerned with capillary filtration is suggested, and the contribution of each to the developing story is outlined. This approach allows students to develop critical and presentation skills and provides them with a case study of the scientific method as it is applied to physiology as well as establishing an appropriate knowledge base concerning the role of hydrostatic and oncotic forces in capillary fluid exchange. Relevant teaching points are explored further using questions based on a figure from one of the three classic papers used: "Microinjection studies of capillary permeability: II. The relationship between capillary pressure and the rate at which fluid passes through the walls of single capillaries," by E. M. Landis (Am J Physiol 82: 217-238, 1927).

  15. Production of 1,2-propanediol from glycerol in Saccharomyces cerevisiae.

    PubMed

    Jung, Joon-Young; Yun, Hyun Shik; Lee, Jinwon; Oh, Min-Kyu

    2011-08-01

    Glycerol has become an attractive carbon source in the biotechnology industry owing to its low price and reduced state. However, glycerol is rarely used as a carbon source in Saccharomyces cerevisiae because of its low utilization rate. In this study, we used glycerol as a main carbon source in S. cerevisiae to produce 1,2-propanediol. Metabolically engineered S. cerevisiae strains with overexpression of glycerol dissimilation pathway genes, including glycerol kinase (GUT1), glycerol 3-phosphate dehydrogenase (GUT2), glycerol dehydrogenase (gdh), and a glycerol transporter gene (GUP1), showed increased glycerol utilization and growth rate. More significant improvement of glycerol utilization and growth rate was accomplished by introducing 1,2-propanediol pathway genes, mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase) from Escherichia coli. By engineering both glycerol dissimilation and 1,2-propanediol pathways, the glycerol utilization and growth rate were improved 141% and 77%, respectively, and a 2.19 g 1,2- propanediol/l titer was achieved in 1% (v/v) glycerolcontaining YEPD medium in engineered S. cerevisiae.

  16. Capillary Electrophoresis - Optical Detection Systems

    SciTech Connect

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  17. Capillary stretching of elastic fibers

    NASA Astrophysics Data System (ADS)

    Protiere, Suzie; Stone, Howard A.; Duprat, Camille

    2014-11-01

    Fibrous media consisting of constrained flexible fibers can be found in many engineered systems (membranes in filters, woven textile, matted paper). When such materials interact with a liquid, the presence of liquid/air interfaces induces capillary forces that deform the fibers. To model this interaction we study the behaviour of a finite volume of liquid deposited on two parallel flexible fibers clamped at both ends. A tension along the fibers is imposed and may be varied. We show that the system undergoes various morphological changes as the interfiber distance, the elasticity and the tension of the fibers are varied. For a certain range of parameters, the liquid spreads along the fibers and pulls them together, leading to the ``zipping'' of the fibers. This capillary adhesion can then be enhanced or reduced by changing the tension within the fibers. We will show that balancing stretching and capillary forces allows the prediction of this transition as well as the conditions for which detachment of the fibers occurs. These results may be used to prevent the clogging of fibrous membranes or to optimize the capture of liquids.

  18. Modelling the effect of pore structure and wetting angles on capillary rise in soils having different wettabilities

    NASA Astrophysics Data System (ADS)

    Czachor, Henryk

    2006-09-01

    SummaryCapillary rise in axis symmetrical sinusoidal capillary (SC) has been modelled. Analytical formula for meniscus radius, capillary pressure and meniscus rate in SC have been found. Capillary shape described by wall waviness highly influences all of them. The limit between wettability and repellency in such capillary is described by critical value of contact angle θc which is related to the pore geometry by the equation ctg( θc) = πd2, where d2 - pore wall waviness. Kinetics of capillary rise in sinusoidal capillary has been determined by numerical integration of meniscus rate equation for a wide range of pore wall waviness and several values of contact angles. Application of Washburn theory to the data obtained from simulation gives the contact angle value much higher than the true one. In contrast, the obtained pore radius value is usually well correlated with capillary neck. However, in some cases a calculated radius can be even smaller. Above conclusions have been qualitatively confirmed by experiments performed on glass beads and soils. Contact angle measured on flat glass was 27.4°. The calculations concerning the data from capillary rise experiments on 90-1000 μm fraction of glass powder and Washburn theory gave values ca. 80°. The contact angle values for peat soils and loamy sand have close values, which supports the opinion that non-cylindrical shape of soil pores highly influences both the wettability/repellency and the water flux in soils.

  19. 2H NMR studies of glycerol dynamics in protein matrices.

    PubMed

    Herbers, C R; Sauer, D; Vogel, M

    2012-03-28

    We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  20. Haemodynamic and cerebrovascular responses to glycerol infusion in dogs.

    PubMed

    Chen, J L; Wang, Y C; Wang, J Y

    1989-11-01

    1. The response of cerebral blood vessels to hyperosmolar agents in vivo remains controversial, and little is known about the effect of glycerol on cerebral vessels. In this study we investigated the cerebrovascular response to intravenous administration of glycerol (1 g/kg, infused over 25 min) in dogs under pentobarbital anaesthesia. 2. intracranial pressure, systemic arterial pressure, mean arterial blood pressure, serum osmolarity and packed cell volume were continuously monitored, and blood gases were checked frequently. Through a parietal cranial window, pial vessel diameter was measured by means of a surgical microscope and a video image-analyser. 3. Pial vessel diameter increased gradually with a maximum at 30 min after the beginning of glycerol infusion. The maximum increase in diameter in small (less than or equal to 100 microns) vessels was 14.3%, whereas that in large (greater than 100 microns) vessels was 10.3%. There was only a slight increase (less than 4%) in pial vessel diameter in vehicle-infused animals. The intracranial pressure decreased drastically after glycerol infusion, whereas the mean arterial blood pressure remained constant. There were correlations between the rise in serum osmolarity, fall in packed cell volume and vasodilatation, indicating that glycerol caused vasodilatation accompanied by plasma volume expansion. 4. Our data suggest that glycerol produces cerebral vasodilatation, which might be beneficial in cerebral ischaemia and vasospasm, in addition to its intracranial pressure-reducing effect on normal or oedematous brain. The degree of vasodilatation was not sufficient to affect the predominant intracranial pressure drop resulting from cerebral dehydration.

  1. 2H NMR studies of glycerol dynamics in protein matrices

    NASA Astrophysics Data System (ADS)

    Herbers, C. R.; Sauer, D.; Vogel, M.

    2012-03-01

    We use 2H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  2. Predict the glass transition temperature of glycerol-water binary cryoprotectant by molecular dynamic simulation.

    PubMed

    Li, Dai-Xi; Liu, Bao-Lin; Liu, Yi-shu; Chen, Cheng-lung

    2008-04-01

    Vitrification is proposed to be the best way for the cryopreservation of organs. The glass transition temperature (T(g)) of vitrification solutions is a critical parameter of fundamental importance for cryopreservation by vitrification. The instruments that can detect the thermodynamic, mechanical and dielectric changes of a substance may be used to determine the glass transition temperature. T(g) is usually measured by using differential scanning calorimetry (DSC). In this study, the T(g) of the glycerol-aqueous solution (60%, wt/%) was determined by isothermal-isobaric molecular dynamic simulation (NPT-MD). The software package Discover in Material Studio with the Polymer Consortium Force Field (PCFF) was used for the simulation. The state parameters of heat capacity at constant pressure (C(p)), density (rho), amorphous cell volume (V(cell)) and specific volume (V(specific)) and radial distribution function (rdf) were obtained by NPT-MD in the temperature range of 90-270K. These parameters showed a discontinuity at a specific temperature in the plot of state parameter versus temperature. The temperature at the discontinuity is taken as the simulated T(g) value for glycerol-water binary solution. The T(g) values determined by simulation method were compared with the values in the literatures. The simulation values of T(g) (160.06-167.51K) agree well with the DSC results (163.60-167.10K) and the DMA results (159.00K). We drew the conclusion that molecular dynamic simulation (MDS) is a potential method for investigating the glass transition temperature (T(g)) of glycerol-water binary cryoprotectants and may be used for other vitrification solutions.

  3. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions†

    PubMed Central

    2015-01-01

    Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C–H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P–N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files (https

  4. Progression of Diabetic Capillary Occlusion: A Model

    PubMed Central

    Gens, John Scott; Glazier, James A.; Burns, Stephen A.; Gast, Thomas J.

    2016-01-01

    An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions. PMID:27300722

  5. Fluid Delivery System For Capillary Electrophoretic Applications.

    SciTech Connect

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  6. Quantifying the cleanliness of glass capillaries.

    PubMed

    Bowman, C L

    1998-01-01

    I used capillary rise methods to investigate the lumenal surface properties of quartz (fused silica, Amersil T-08), borosilicate (Corning 7800), and high-lead glass (Corning 0010) capillaries commonly used to make patch pipets. I calculated the capillary rise and contact angle for water and methanol from weight measurements. The capillary rise was compared with the theoretical maximum value calculated by assuming each fluid perfectly wetted the lumenal surface of the glass (i.e., zero contact angle, which reflects the absence of surface contamination). For borosilicate, high-lead, and quartz capillaries, the rise for water was substantially less than the theoretical maximum rise. Exposure of the borosilicate, lead, and quartz capillaries to several cleaning methods resulted in substantially better--but not perfect--agreement between the theoretical maximum rise and calculated capillary rise. By contrast, the capillary rise for methanol was almost identical in untreated and cleaned capillaries, but less than its theoretical maximum rise. The residual discrepancy between the observed and theoretical rise for water could not be improved on by trying a variety of cleaning procedures, but some cleaning methods were superior to others. The water solubility of the surface contaminants, deduced from the effectiveness of repeated rinsing, was different for each of the three types of capillaries examined: Corning 7800 > quartz > Corning 0010. A surface film was also detected in quatz tubing with an internal filament. I conclude that these borosilicate, quartz, and high-lead glass capillaries have a film on the lumenal surface, which can be removed using appropriate cleaning methods. The surface contaminants may be unique to each type of capillary and may also be hydrophobic. Two simple methods are presented to quantitate the cleanliness of glass capillary tubing commonly used to make pipets for studies of biological membranes. It is not known if the surface film is of

  7. Glycerol and bioglycerol conversion in supercritical water for hydrogen production.

    PubMed

    Yu-Wu, Q M; Weiss-Hortala, E; Barna, R; Boucard, H; Bulza, S

    2012-01-01

    Catalytic transesterification of vegetable oils leads to biodiesel and an alkaline feed (bioglycerol and organic residues, such as esters, alcohols. . .). The conversion ofbioglycerol into valuable organic molecules represents a sustainable industrial process leading to the valorization of a renewable organic resource. The physicochemical properties in the supercritical domain (T > 374 degrees C, P > 22.1 MPa) transform water into a solvent for organics and a reactant favouring radical reactions. In this context, the conversion ofbioglycerol in supercritical water (SCW) into platform molecules and/or high energetic gases (hydrogen, hydrocarbons) could represent an interesting valorization process. The reported research results concern the conversion of bioglycerol compared to pure glycerol. The experiments have been done in batch autoclaves (5 ml and 500 ml stirred). Solutions of pure (5 or 10 wt%) and crude (3.5 wt%) glycerol have been processed with or without catalyst (K2CO3 1.5 wt%) in the range of 450-600 degrees C. The molecular formula of bioglycerol was determined as C4.3H9.7O1.8Na0.1Si0.08. Glycerol was partially decomposed in the batch systems during the heating (42% before reaching 420 degrees C) and some intermediates (propanediol, ethylene glycol . . .) were quantified, leading to a proposition of a reaction pathway. Acrolein, a valuable platform molecule, was mainly produced in the absence of catalyst. No solid phase was recovered after SCW conversion of pure and bioglycerol in batch reactors. The optimal parameters for gasification were 600 degrees C, 25 MPa for bioglycerol and 525 degrees C, 25 MPa, for pure glycerol. In these operating conditions, 1 kg of pure or bioglycerol leads to 15 and, respectively, 10 mol of hydrogen. Supercritical water gasification of crude glycerol favoured the generation of light hydrocarbons, while pure glycerol promoted H2 production. SCW conversion of glycerol (pure and crude) allows to obtain simultaneously energetic

  8. Propylene from renewable resources: catalytic conversion of glycerol into propylene.

    PubMed

    Yu, Lei; Yuan, Jing; Zhang, Qi; Liu, Yong-Mei; He, He-Yong; Fan, Kang-Nian; Cao, Yong

    2014-03-01

    Propylene, one of the most demanded commodity chemicals, is obtained overwhelmingly from fossil resources. In view of the diminishing fossil resources and the ongoing climate change, the identification of new efficient and alternative routes for the large-scale production of propylene from biorenewable resources has become essential. Herein, a new selective route for the synthesis of propylene from bio-derived glycerol is demonstrated. The route consists of the formation of 1-propanol (a versatile bulk chemical) as intermediate through hydrogenolysis of glycerol at a high selectivity. A subsequent dehydration produces propylene.

  9. Dielectric and specific heat relaxations in vapor deposited glycerol

    NASA Astrophysics Data System (ADS)

    Kasina, A.; Putzeys, T.; Wübbenhorst, M.

    2015-12-01

    Recently [S. Capponi, S. Napolitano, and M. Wübbenhorst, Nat. Commun. 3, 1233 (2012)], vapor deposited glasses of glycerol have been found to recover their super-cooled liquid state via a metastable, ordered liquid (MROL) state characterized by a tremendously enhanced dielectric strength along with a slow-down of the relaxation rate of the structural relaxation. To study the calorimetric signature of this phenomenon, we have implemented a chip-based, differential AC calorimeter in an organic molecular beam deposition setup, which allows the simultaneous measurement of dielectric relaxations via interdigitated comb electrodes and specific heat relaxation spectra during deposition and as function of the temperature. Heating of the as-deposited glass just above the bulk Tg and subsequent cooling/reheating revealed a step-wise increase in cp by in total 9%, indicating unambiguously that glycerol, through slow vapour deposition, forms a thermodynamically stable glass, which has a specific heat as low as that of crystalline glycerol. Moreover, these glasses were found to show excellent kinetic stability as well as evidenced by both a high onset-temperature and quasi-isothermal recovery measurements at -75 °C. The second goal of the study was to elucidate the impact of the MROL state on the specific heat and its relaxation to the super-cooled state. Conversion of "MROL glycerol" to its "normal" (ordinary liquid, OL) state revealed a second, small (˜2%) increase of the glassy cp, a little gain (<10%) in the relaxed specific heat, and no signs of deviations of τcal from that of normal "bulk" glycerol. These findings altogether suggest that the MROL state in glycerol comprises largely bulk-type glycerol that coexist with a minor volume fraction (<10%) of PVD-induced structural anomalies with a crystal-like calorimetric signature. Based on the new calorimetric findings, we have proposed a new physical picture that assumes the existence of rigid polar clusters (RPCs) and

  10. Pulse loading of glycerol by electric explosion of wire

    NASA Astrophysics Data System (ADS)

    Uvarov, S. V.; Bannikova, I. A.; Naimark, O. B.

    2015-11-01

    A series of experiments was carried out to investigate the relaxation properties of glycerol under shock-wave loading. The strain rates at the compression wave front were in the range of 105-107 s-1. A modified version of the wire explosion set-up was used. Free surface velocity profiles were recorded by VISAR with fiber-optic sensor. We found that the glycerol exhibits the non-Newtonian liquid behavior: viscosity is higher at the high strain rate. Strain rate at the compressive wave front is found to be dependent on the wave amplitude in power of 1.3.

  11. Cryoprotective effect of different glycerol concentrations on domestic cat spermatozoa.

    PubMed

    Villaverde, Ana Izabel S Balbin; Fioratti, Eduardo G; Penitenti, Marcimara; Ikoma, Maura R V; Tsunemi, Miriam H; Papa, Frederico O; Lopes, Maria D

    2013-10-15

    Cryopreservation of spermatozoa is a pivotal tool in assisted reproduction, and studies aiming to establish optimal freezing/thawing protocols are essential to enhance sperm survival. The objectives of the present study were to (1) compare the cryoprotective efficiency of three different glycerol concentrations (3%, 5%, and 7%) on the basis of post-thaw sperm quality and (2) investigate whether the incidence of morphologically abnormal sperm in fresh samples is related to cryodamage sensitivity. Semen was collected from six tomcats using an artificial vagina (total 18 ejaculates). Each ejaculate was diluted using Tris-egg yolk-based extender (TEY), evaluated, equally divided into three aliquots, and rediluted using TEY with and without glycerol to achieve final concentrations of 3%, 5%, and 7%. Samples were loaded into 0.25 mL straws, equilibrated for 60 minutes at 5 °C, frozen, and then thawed at 46 °C for 12 seconds. Fresh and frozen-thawed samples were evaluated for sperm motion parameters (computer-assisted sperm analysis), plasma membrane integrity (PMI; propidium iodide and carboxyfluorescein diacetate), and DNA integrity (acridine orange). Plasma and acrosomal membrane integrity were assessed by flow cytometry (propidium iodide and fluorescein isothiocyanate-conjugated pea (Pisum sativum) agglutinin) immediately after thawing. Sperm motion parameters were also evaluated at 30 and 60 minutes of postincubation. For all treatment groups, cryopreservation significantly impaired the PMI and sperm motion parameters, except for straightness and amplitude of lateral head displacement. DNA integrity showed a slight reduction (P < 0.05) when 3% glycerol was used. The percentage of total motility, progressive motility, and rapid spermatozoa were significantly lower immediately after thawing and up to 60 minutes of incubation for the 3% glycerol group when compared with 5% and 7%. No difference (P > 0.05) was found for PMI, acrosome integrity, and DNA integrity among

  12. CO2 Capillary-Trapping Processes in Deep Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Soltanian, Mohamadreza; Ritzi, Robert W., Jr.; Dominic, David F.

    2014-05-01

    reservoirs. The results strongly suggest that representing these small scales features, and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes. References [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in Facies Models Revisited, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85-170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, Water Resources Research, v. 46, W04515.

  13. The Flow of Sickle-Cell Blood in an Arteriolar-Capillary Network

    NASA Astrophysics Data System (ADS)

    Berger, Stanley A.; Carlson, Brian

    1999-11-01

    The clinical symptomology of sickle-cell disease is primarily a manifestation of abnormal events in the microcirculation. Sickle-cell (HbSS) blood undergoes rheological and shape changes if the oxygen tension levels fall to sufficiently low values. The senior author developed a quantitative theoretical model coupling oxygen transport to the motion of the red blood cells in the capillaries, and including the most relevant physico-chemical characteristics of HbSS blood (S.A.Berger & W.S.King, The Flow of Sickle Cell Blood in the Capillaries, Biophysical J., Vol. 29: 119-148, 1980). We will report on an extension of this work to an arteriolar-capillary network to simulate the flow of sickle-cell blood in a typical skeletal muscle microvasculature. The aim is to uncover the critical factors that lead to ischemic events in the surrounding tissue and the extent of these events as a result of stasis in the capillaries.

  14. DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418.

    PubMed Central

    Forage, R G; Lin, E C

    1982-01-01

    In Klebsiella pneumoniae NCIB 418, the pathways normally responsible for aerobic growth on glycerol and sn-glycerol 3-phosphate (the glp system) are superrepressed. However, aerobic growth on glycerol can take place by the intervention of the NAD-linked glycerol dehydrogenase and the ATP-dependent dihydroxyacetone kinase of the dha system normally inducible only anaerobically by glycerol or dihydroxyacetone. Conclusive evidence that the dha system is responsible for both aerobic and anaerobic dissimilation of glycerol was provided by a Tn5 insertion mutant lacking dihydroxyacetone kinase. An enzymatically coupled assay specific for this enzyme was devised. Spontaneous reactivation of the glp system was achieved by selection for aerobic growth on sn-glycerol 3-phosphate or on limiting glycerol as the sole carbon and energy source. However, the expression of this system became constitutive. Aerobic operation of the glp system highly represses synthesis of the dha system enzymes by catabolite repression. Images PMID:6284704

  15. Capillary channel flow experiments aboard the International Space Station.

    PubMed

    Conrath, M; Canfield, P J; Bronowicki, P M; Dreyer, M E; Weislogel, M M; Grah, A

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  16. Capillary channel flow experiments aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Conrath, M.; Canfield, P. J.; Bronowicki, P. M.; Dreyer, M. E.; Weislogel, M. M.; Grah, A.

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  17. Capillary freezing of ionic liquids confined between metallic interfaces

    NASA Astrophysics Data System (ADS)

    Comtet, Jean; Niguès, Antoine; Kaiser, Vojtech; Bocquet, Lydéric; Siria, Alessandro

    2016-11-01

    Using a quartz tuning fork based AFM, we investigate the behavior of ionic liquids under confinement. Using nanorheological measurements, we show that nanometric confinements can lead to solidification and capillary freezing of the ionic liquid. We find that the critical confinement at which the liquid-solid transition occurs depends strongly on the bulk electronic properties of the confining substrate, with stronger effects observed for more metallic surfaces. This behavior is rationalized on the basis of a Gibbs-Thompson framework for the shift of the freezing transition, taking into account surface energies with the imperfect metal at the level of a Thomas-Fermi model. Finally, we show that capillary freezing can also be tuned by electrifying the confining interfaces.

  18. Characterization and optimization of glycerol/sebacate ratio in poly(glycerol-sebacate) elastomer for cell culture application.

    PubMed

    Guo, Xiao-Long; Lu, Xi-Li; Dong, De-Li; Sun, Zhi-Jie

    2014-11-01

    Poly(glycerol-sebacate) (PGS) is an elastomeric biodegradable polyester. Our previous series of studies have showed that PGS has good biocompatibility. In view of the potential use of PGS in bioengineering, we attempt to characterize the PGS polymer with different ratio of glycerol and sebacic acid, and the cell adhesion and growth on these polymers. PGSs with different proportion of glycerol and sebacic acid were synthesized by polycondensation reaction. The microstructure of the series PGSs were characterized by infrared spectroscopy and X-ray diffraction analysis (XRD). Results showed that, with the increase of the ratio of sebacic acid in PGS from 1:0.8, 1:1, to 1:1.2 (ratio of glycerol to sebacic acid), the main diffraction peak in XRD, the sol content and gel swelling increased but then decreased, suggesting that the degree of crosslinking and the inherent degree of order of the series PGS increased and then decreased. With the increase of sebacic acid proportion, water absorption increased and then decreased, and the water absorption ranged from 9.62% to 10.66%. The mass loss of the series of samples in degradation experiments ranged from 24.63% to 40.06% on the 32nd day of degradation. Cell culture data suggested that the polymer with the ratio of 1:0.8 for glycerol and sebacate was suitable for cell adhesion and growth. In conclusion, PGS can be used as the cell culture matrix by modifying the composition ratio of glycerol and sebacic acid to improve the properties of cell adhesion and growth.

  19. Chemical Interactions of Polyethylene Glycols (PEG) and Glycerol with Protein Functional Groups: Applications to PEG, Glycerol Effects on Protein Processes

    PubMed Central

    Knowles, DB; Shkel, Irina A; Phan, Noel M; Sternke, Matt; Lingeman, Emily; Cheng, Xian; Cheng, Lixue; O’Connor, Kevin; Record, M. Thomas

    2015-01-01

    Here we obtain the data needed to predict chemical interactions of polyethylene glycols (PEGs) and glycerol with proteins and related organic compounds, and thereby interpret or predict chemical effects of PEGs on protein processes. To accomplish this we determine interactions of glycerol and tetraEG with >30 model compounds displaying the major C, N, and O functional groups of proteins. Analysis of these data yields coefficients (α-values) quantifying interactions of glycerol, tetraEG and PEG end (-CH2OH) and interior (-CH2OCH2-) groups with these groups, relative to interactions with water. TetraEG (strongly) and glycerol (weakly) interact favorably with aromatic C, amide N, and cationic N, but unfavorably with amide O, carboxylate O and salt ions. Strongly unfavorable O and salt anion interactions help make both small and large PEGs effective protein precipitants. Interactions of tetraEG and PEG interior groups with aliphatic C are quite favorable, while interactions of glycerol and PEG end groups with aliphatic C are not. Hence tetraEG and PEG 300 favor unfolding of the DNA-binding domain of lac repressor (lacDBD) while glycerol, di- and mono-ethylene glycol are stabilizers. Favorable interactions with aromatic and aliphatic C explain why PEG400 greatly increases the solubility of aromatic hydrocarbons and steroids. PEG400-steroid interactions are unusually favorable, presumably because of simultaneous interactions of multiple PEG interior groups with the fused ring system of the steroid. Using α-values reported here, chemical contributions to PEG m-values can be predicted or interpreted in terms of changes in water-accessible surface area (ΔASA), and separated from excluded volume effects. PMID:25962980

  20. Use of quasi-isoelectric buffers as anolyte and catholyte to improve capillary isoelectric focusing performances.

    PubMed

    Poitevin, Martine; Peltre, Gabriel; Descroix, Stephanie

    2008-04-01

    The use of quasi-isoelectric anolytes and catholytes has been investigated to improve CIEF performances. Narrow pH cuts of carrier ampholytes (NC) have been compared to more conventional couples of anolytes/catholytes (phosphoric acid/sodium hydroxide and glutamic acid/lysine). First, a CIEF setup that consists in a bare silica capillary and 70:30 water/glycerol separation medium has been used. The experiments have shown that when using NC instead of more classical anolytes and catholytes, an increase in the protein detection time was observed and the resolutions obtained for neutral and acidic proteins were doubled. Moreover, according to the NC fraction used, the resolution was modified. In order to investigate further the mechanisms involved, a second setup using a capillary coated with hydroxypropylcellulose was used. With this setup no difference has been observed when changing anolyte and catholyte nature. A simple methodology has then been developed to evaluate EOF during focusing and mobilization steps of CIEF experiments. It highlighted the crucial role played by EOF when using a bare silica capillary. EOF indeed decreased by 33% during mobilization step when using NC instead of classical anolytes and catholytes.

  1. Breakup of Bubbles or Drops by Capillary Waves Induced by Coalescence or Other Excitations

    NASA Astrophysics Data System (ADS)

    Zhang, Feng Hua; Taborek, Peter; Burton, Justin; Cheong Khoo, Boo; Thoroddsen, Siggi

    2012-02-01

    Capillary breakup of a bubble or drop by various excitations is ubiquitous in both nature and technology. Examples include coalescence with another bubble or drop, wetting on a solid surface, impact on a solid surface, detachment from a nozzle, or vibrations driven by acoustic, electrical, or magnetic fields. When the excitation ceases, capillary forces on the surface naturally drive the deformed bubble or drop to recover its spherical shape. However, when the viscosity is small, this recovery can lead to nonlinear oscillations of the interface and a singularity in the flow. Here we use high-speed imaging to investigate the coalescence of bubbles and drops of various sizes. In many cases, coalescence leads to pinch-off events and the formation of the satellite and sub-satellite. Our experiments use pressured xenon gas in glycerol/water mixtures so that the density ratio and viscosity ratio can be varied over many orders of magnitude. We characterize the generation, propagation, and convergence of capillary waves, the formation time and sizes of satellites, and the dynamics of two-fluid pinch-off as a function of the density ratio and viscosity ratio. The work shall benefit the wide-spread applications and fulfill the scientific and public curiosities.

  2. Microfluidic PMMA interfaces for rectangular glass capillaries

    NASA Astrophysics Data System (ADS)

    Evander, Mikael; Tenje, Maria

    2014-02-01

    We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics.

  3. Capillary pumped loop body heat exchanger

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  4. Excess wing in glass-forming glycerol and LiCl-glycerol mixtures detected by neutron scattering

    SciTech Connect

    Gupta, S.; Arend, N.; Lunkenheimer, P.; Loidl, A.; Stingaciu, L.; Jalarvo, N.; Mamontov, E.; Ohl, M.

    2015-01-22

    The relaxational dynamics in glass-forming glycerol and glycerol mixed with LiCl is investigated using different neutron scattering techniques. The performed neutron spin echo experiments, which extend up to relatively long relaxation time scales of the order of 10 ns, should allow for the detection of contributions from the so-called excess wing. This phenomenon, whose microscopic origin is controversially discussed, arises in a variety of glass formers and, until now, was almost exclusively investigated by dielectric spectroscopy and light scattering. In conclusion, we show here that the relaxational process causing the excess wing can also be detected by neutron scattering, which directly couples to density fluctuations.

  5. Glial Cell Calcium Signaling Mediates Capillary Regulation of Blood Flow in the Retina

    PubMed Central

    Biesecker, Kyle R.; Srienc, Anja I.; Shimoda, Angela M.; Agarwal, Amit; Bergles, Dwight E.; Kofuji, Paulo

    2016-01-01

    The brain is critically dependent on the regulation of blood flow to nourish active neurons. One widely held hypothesis of blood flow regulation holds that active neurons stimulate Ca2+ increases in glial cells, triggering glial release of vasodilating agents. This hypothesis has been challenged, as arteriole dilation can occur in the absence of glial Ca2+ signaling. We address this controversy by imaging glial Ca2+ signaling and vessel dilation in the mouse retina. We find that sensory stimulation results in Ca2+ increases in the glial endfeet contacting capillaries, but not arterioles, and that capillary dilations often follow spontaneous Ca2+ signaling. In IP3R2−/− mice, where glial Ca2+ signaling is reduced, light-evoked capillary, but not arteriole, dilation is abolished. The results show that, independent of arterioles, capillaries actively dilate and regulate blood flow. Furthermore, the results demonstrate that glial Ca2+ signaling regulates capillary but not arteriole blood flow. SIGNIFICANCE STATEMENT We show that a Ca2+-dependent glial cell signaling mechanism is responsible for regulating capillary but not arteriole diameter. This finding resolves a long-standing controversy regarding the role of glial cells in regulating blood flow, demonstrating that glial Ca2+ signaling is both necessary and sufficient to dilate capillaries. While the relative contributions of capillaries and arterioles to blood flow regulation remain unclear, elucidating the mechanisms that regulate capillary blood flow may ultimately lead to the development of therapies for treating diseases where blood flow regulation is disrupted, including Alzheimer's disease, stroke, and diabetic retinopathy. This finding may also aid in revealing the underlying neuronal activity that generates BOLD fMRI signals. PMID:27605617

  6. Synthesis of isotopically labeled R- or S-[.sup.13C, .sup.2H] glycerols

    DOEpatents

    Martinez, Rodolfo A.; Unkefer, Clifford J.; Alvarez, Marc A.

    2008-01-22

    The present invention is directed to asymmetric chiral labeled glycerols including at least one chiral atom, from one to two .sup.13C atoms and from zero to four deuterium atoms bonded directly to a carbon atom, e.g., (2S) [1,2-.sup.13C.sub.2]glycerol and (2R) [1,2-.sup.13C.sub.2]glycerol, and to the use of such chiral glycerols in the preparation of labeled amino acids.

  7. Direct measurement of the surface dynamics of supercooled liquid-glycerol by optical scanning a film

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Zhang, Guo-Feng; Dong, Shuang-Li; Sun, Jian-Hu; Chen, Rui-Yun; Xiao, Lian-Tuan; Jia, Suo-Tang

    2009-09-01

    The surface dynamics of supercooled liquid-glycerol is studied by scanning the thickness of the glycerol film with single photon detection. Measurements are performed at room temperature well above the glycerol's glass transition temperature. It is shown that the surface dynamics of the glycerol film is very sensitive to the temperature. The linear relationship between the thickness of the film and the viscosity predicted by the Vogel-Fulcher-Tammann-Hesse (VFTH) law is also presented experimentally.

  8. Equilibrium capillary forces with atomic force microscopy.

    PubMed

    Sprakel, J; Besseling, N A M; Leermakers, F A M; Cohen Stuart, M A

    2007-09-07

    We present measurements of equilibrium forces resulting from capillary condensation. The results give access to the ultralow interfacial tensions between the capillary bridge and the coexisting bulk phase. We demonstrate this with solutions of associative polymers and an aqueous mixture of gelatin and dextran, with interfacial tensions around 10 microN/m. The equilibrium nature of the capillary forces is attributed to the combination of a low interfacial tension and a microscopic confinement geometry, based on nucleation and growth arguments.

  9. Studies of capillary phase transitions of methane in metal-organic frameworks by gauge cell Monte Carlo simulation.

    PubMed

    Ma, Qintian; Yang, Qingyuan; Zhong, Chongli; Mi, Jianguo; Liu, Dahuan

    2010-04-06

    Capillary phase transitions of CH(4) confined in a series of metal-organic frameworks (MOFs) were investigated in this work using gauge cell Monte Carlo simulations. The results show that capillary phase transitions can occur in MOFs, and the effects of temperature, pore size, and adsorption energy are very significant. Furthermore, this work shows the confinement can induce a shift in critical point for fluids confined in MOFs, leading to a decrease in critical temperature and an increase in critical density. The critical point shift is more obvious for MOFs with small pore size and large adsorption energy.

  10. Plio-Pleistocene Temperature Variability in the Terrestrial Arctic: Insights from Branched Glycerol Dialkyl Glycerol Tetraethers

    NASA Astrophysics Data System (ADS)

    Castañeda, I. S.; Salacup, J.; de Wet, G.; Habicht, M. H.; Keisling, B. A.; Phu, V.; Johnson, J.; Lukas, S.; Lyons, N.; Brigham-Grette, J.

    2014-12-01

    Drill coring at Lake El'gygytgyn (Far East Russia) in 2009 retrieved a 3.6 Ma long sediment core, which is presently the oldest continuous sedimentary record available from the terrestrial Arctic. This unique Plio-Pleistocene record allows for the response of the Arctic to global climate events under a variety of different boundary conditions to be examined. Here we present results of ongoing organic geochemical analyses of Lake El'gygytgyn sediments focusing on the mid-Pliocene warm period, the Plio-Pleistocene transition, the mid-Brunhes transition, and warm Pleistocene interglacial periods including Marine Isotope Stages (MIS) 5, 9, 11, 19 and 31. Despite the ultra-oligotrophic nature of Lake El'gygytgyn and the generally low sedimentary total organic carbon (TOC) content, we find abundant branched glycerol dialkyl glycerol tetraethers (brGDGTs) throughout the entire record and use the methylation and cyclization indices of branched tetraethers (MBT and CBT, respectively) to reconstruct past temperature (Weijers et al., 2007). We hypothesize that the majority of brGDGTs are produced in the lake during the brief summer period of ice free conditions and that MBT/CBT likely reflects a warm season temperature. Trends noted in the MBT/CBT record are in close agreement with pollen-based temperature estimates throughout the entire core. For example, we note a dramatic ~6°C cooling associated with the mid-Pliocene M2 event and thus far MIS 31 has emerged as the warmest period at Lake El'gygytgyn during the past ~ 1 Ma, corroborating the pollen data. Interestingly, a number of abrupt and relatively short-lived cooling events of 2 to 4°C are noted within several of the particularly warm interglacial periods (e.g. MIS 5e, MIS 11 and MIS 31) and are the subject of ongoing investigation. Overall, application of the MBT/CBT paleothermometer to Lake El'gygytgyn sediments is a highly promising technique for generating a Plio-Pleistocene temperature record from the continental

  11. The use of glycerol-preserved corneas in the developing world.

    PubMed

    Feilmeier, Michael R; Tabin, Geoffrey C; Williams, Lloyd; Oliva, Matt

    2010-01-01

    Corneal opacity is the third leading cause of blindness in the developing world and encompasses a wide variety of infectious, inflammatory and degenerative eye diseases. Most caes of corneal blindness are treatable with partial or full-thickness keratoplasty, provided adequate corneal tissue and surgical skill is available. However, access to sightrestoring keratoplasty in developing countries is limited by the lack of developed eye banking networks and a critical shortage of tissue suitable for transplantation. Beyond the developed world, corneal transplantation using fresh corneal tissue (FCT) is further hindered by unreliable storage and transportation facilities, unorganized distribution networks, the cost-prohibitive nature of imported tissue, unreliable compliance with medications and follow-up instructions and inadequate health and education services. Glycerol-preserved corneas overcome many of these limitations inherent to the use of FCT. As surgical innovation in lamellar corneal surgery expands the potential use of acellular corneal tissue, long-term preservation techniques are being revisited as a way to increase availability of corneal tissue to corneal surgeons throughout the developing world. Herein, we discuss the advantages of using and the applications for glycerol-preserved corneal tissue throughout the developing world.

  12. Polyhydroxyalkanoates: waste glycerol upgrade into electrospun fibrous scaffolds for stem cells culture.

    PubMed

    Canadas, Raphaël F; Cavalheiro, João M B T; Guerreiro, João D T; de Almeida, M Catarina M D; Pollet, Eric; da Silva, Cláudia Lobato; da Fonseca, M M R; Ferreira, Frederico Castelo

    2014-11-01

    This integrated study shows that waste glycerol can be bio-valorized by the fabrication of electrospun scaffolds for stem cells. Human mesenchymal stem cells (hMSC) provide an interesting model of regenerating cells because of their ability to differentiate into osteo-, chrondro-, adipo- and myogenic lineages. Moreover, hMSC have modulatory properties with potential on treatment of immunologic diseases. Electrospun fiber meshes offer tunable mechanical and physical properties that can mimic the structure of the native extracellular matrix, the natural environment where cells inhabit. Following a biorefinery approach, crude glycerol directly recovered from a biodiesel post-reaction stream was fed as major C source to Cupriavidus necator DSM 545 to produce polyhydroxyalkanoates at polymer titers of 9-25g/L. Two of the P(3HB-4HB-3HV) terpolymers produced, one containing 11.4% 4HB and 3.5% 3HV and the other containing 35.6% 4HB and 3.4% 3HV, were electrospun into fibers of average diameters of 600 and 1400nm, respectively. hMSC were cultured for 7 days in both fiber meshes, showing their ability to support stem cell growth at acceptable proliferation levels. Comparative results clearly demonstrate that scaffold topology is critical, with electrospun PHA fibers succeeding on the support of significant cell adhesion and proliferation, where planar PHA films failed.

  13. Açai berry extract attenuates glycerol-induced acute renal failure in rats.

    PubMed

    Unis, Amina

    2015-03-01

    Acute renal failure (ARF) is one of the most common problems encountered in hospitalized critically ill patients. In recent years great effort has been focused on the introduction of herbal medicine as a novel therapeutic agent for prevention of ARF. Hence, the current study was designed to investigate the effect of Açai berry extract (ABE) on glycerol-induced ARF in rats. Results of the present study showed that rat groups that received oral ABE in a dose of 100 and 200 mg/kg/day for 7 days before or 7 days after induction of ARF by a single intramuscular glycerol injection reported a significant improvement in kidney functions tests [decrease in serum urea, serum creatinine, and blood urea nitrogen (BUN)] when compared to the ARF model groups. Moreover, there was significant amelioration in renal oxidative stress markers [renal catalase (CAT), renal reduced glutathione (GSH)] and renal histopathological changes in the ABE-treated groups when compared to ARF model groups. The most significant improvement was reported in the groups where ABE was administered in a dose 200 mg/kg/day. These results indicate that ABE has a potential role in ameliorating renal damage involved in ARF.

  14. Structure and Evolution of the Archaeal Lipid Synthesis Enzyme sn-Glycerol-1-phosphate Dehydrogenase*

    PubMed Central

    Carbone, Vincenzo; Schofield, Linley R.; Zhang, Yanli; Sang, Carrie; Dey, Debjit; Hannus, Ingegerd M.; Martin, William F.; Sutherland-Smith, Andrew J.; Ronimus, Ron S.

    2015-01-01

    One of the most critical events in the origins of cellular life was the development of lipid membranes. Archaea use isoprenoid chains linked via ether bonds to sn-glycerol 1-phosphate (G1P), whereas bacteria and eukaryotes use fatty acids attached via ester bonds to enantiomeric sn-glycerol 3-phosphate. NAD(P)H-dependent G1P dehydrogenase (G1PDH) forms G1P and has been proposed to have played a crucial role in the speciation of the Archaea. We present here, to our knowledge, the first structures of archaeal G1PDH from the hyperthermophilic methanogen Methanocaldococcus jannaschii with bound substrate dihydroxyacetone phosphate, product G1P, NADPH, and Zn2+ cofactor. We also biochemically characterized the enzyme with respect to pH optimum, cation specificity, and kinetic parameters for dihydroxyacetone phosphate and NAD(P)H. The structures provide key evidence for the reaction mechanism in the stereospecific addition for the NAD(P)H-based pro-R hydrogen transfer and the coordination of the Zn2+ cofactor during catalysis. Structure-based phylogenetic analyses also provide insight into the origins of G1PDH. PMID:26175150

  15. Production of arabitol from glycerol: strain screening and study of factors affecting production yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol is a major byproduct from biodiesel production, and developing new uses for glycerol is imperative to overall economics and sustainability of the biodiesel industry. With the aim of producing xylitol and/or arabitol as the value-added products from glycerol, 214 yeast strains, many osmotole...

  16. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylated fatty acid esters of glycerol and... esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and... additive is a mixture of esters produced by the lactylation of a product obtained by reacting edible...

  17. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Lactylated fatty acid esters of glycerol and... esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and... additive is a mixture of esters produced by the lactylation of a product obtained by reacting edible...

  18. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Lactylated fatty acid esters of glycerol and... CONSUMPTION Multipurpose Additives § 172.850 Lactylated fatty acid esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and propylene glycol may be safely used...

  19. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Lactylated fatty acid esters of glycerol and... esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and... additive is a mixture of esters produced by the lactylation of a product obtained by reacting edible...

  20. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Lactylated fatty acid esters of glycerol and... esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and... additive is a mixture of esters produced by the lactylation of a product obtained by reacting edible...

  1. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.

    PubMed

    Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A

    2017-03-09

    Glycerol is used by the cosmetic, paint, automotive, food, and pharmaceutical industries and for production of explosives. Currently, glycerol is available in commercial quantities as a by-product from biodiesel production, but the purity and the cost of its purification are prohibitive. The industrial production of glycerol by glucose aerobic fermentation using osmotolerant strains of the yeasts Candida sp. and Saccharomyces cerevisiae has been described. A major drawback of the aerobic process is the high cost of production. For this reason, the development of yeast strains that effectively convert glucose to glycerol anaerobically is of great importance. Due to its ability to grow under anaerobic conditions, the yeast S. cerevisiae is an ideal system for the development of this new biotechnological platform. To increase glycerol production and accumulation from glucose, we lowered the expression of TPI1 gene coding for triose phosphate isomerase; overexpressed the fused gene consisting the GPD1 and GPP2 parts coding for glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate phosphatase, respectively; overexpressed the engineered FPS1 gene that codes for aquaglyceroporin; and overexpressed the truncated gene ILV2 that codes for acetolactate synthase. The best constructed strain produced more than 20 g of glycerol/L from glucose under micro-aerobic conditions and 16 g of glycerol/L under anaerobic conditions. The increase in glycerol production led to a drop in ethanol and biomass accumulation.

  2. Preparation, characterization, and properties of 1,2-isopropylidene glycerol carbonate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utilization of excess glycerol supplies derived from the burgeoning biodiesel industry is of major importance to the oleochemical industry as the economic viability of the biodiesel and oleochemical industries are closely linked to glycerol prices. Carbonate compounds based on glycerol, such as...

  3. Oral Glycerol Solutions as a Deterrent to Dehydration during Heat Exposure.

    DTIC Science & Technology

    1982-01-01

    Glycerol oxidation in the animal organism Acta Physiol. Scand. 7:69-79. Larsen , Jens Anker . 1963. Elimination of glycerol as a measure of the...Following a single pharmacological oral dose the glycerol is distributed throughout 56 to 85% of the body mass (Shafrir and Gorin 1963, Larsen 1963, Holst

  4. The Effect of Glycerol Ingestion on Performance during Simulated Multisport Activity

    ERIC Educational Resources Information Center

    Knight, Christopher; Braakhuis, Andrea; Paton, Carl

    2010-01-01

    Glycerol-induced hyperhydration has been applied to endurance sport with limited success as a performance enhancement strategy. Glycerol has been used as a hyperhydrating agent, because it has been shown to be rapidly absorbed and osmotically active; therefore, the fluid intake with glycerol is distributed throughout the body. Hyperhydration with…

  5. Synthesis, characterization and nanocomposite formation of poly(glycerol succinate-co-maleate) with cellulose nanowhiskers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with cellulose nanowhiskers. This glycerol-based polymer is thermally stable as...

  6. Thermal and mechanical properties of glycerol-based polymer films infused with plant cell wall polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(glutaric acid-co-glycerol) films were produced by first synthesizing polymer gels from uncatalyzed polyesterification of glutaric acid to glycerol in toluene. Residual amounts of starting materials in the gel matrices were determined by gas chromatography (GC) to contain 15 percent glycerol and...

  7. Nitrogen-Corrected Apparent Metabolizable Energy Value of Crude Glycerol for Laying Hens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment was conducted with laying hens to determine the AMEn value of crude glycerol, a co-product of biodiesel production. Crude glycerol (87% glycerol, 9% water, 0.03% methanol, 1.26% Na, and 3,625 kcal/kg gross energy) was obtained from a commercial biodiesel production facility (Ag Process...

  8. Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One refined and 2 crude glycerol samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. Fermentation conditions were determined to efficiently utilize glycerol while maintaining PHB yields. A batch culture protocol including 1% glycerol and an aerati...

  9. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol.

    PubMed

    Vagenende, Vincent; Yap, Miranda G S; Trout, Bernhardt L

    2009-11-24

    The stability of proteins in aqueous solution is routinely enhanced by cosolvents such as glycerol. Glycerol is known to shift the native protein ensemble to more compact states. Glycerol also inhibits protein aggregation during the refolding of many proteins. However, mechanistic insight into protein stabilization and prevention of protein aggregation by glycerol is still lacking. In this study, we derive mechanisms of glycerol-induced protein stabilization by combining the thermodynamic framework of preferential interactions with molecular-level insight into solvent-protein interactions gained from molecular simulations. Contrary to the common conception that preferential hydration of proteins in polyol/water mixtures is determined by the molecular size of the polyol and the surface area of the protein, we present evidence that preferential hydration of proteins in glycerol/water mixtures mainly originates from electrostatic interactions that induce orientations of glycerol molecules at the protein surface such that glycerol is further excluded. These interactions shift the native protein toward more compact conformations. Moreover, glycerol preferentially interacts with large patches of contiguous hydrophobicity where glycerol acts as an amphiphilic interface between the hydrophobic surface and the polar solvent. Accordingly, we propose that glycerol prevents protein aggregation by inhibiting protein unfolding and by stabilizing aggregation-prone intermediates through preferential interactions with hydrophobic surface regions that favor amphiphilic interface orientations of glycerol. These mechanisms agree well with experimental data available in the literature, and we discuss the extent to which these mechanisms apply to other cosolvents, including polyols, arginine, and urea.

  10. Genetically engineered rhamnolipid-producing organism for glycerol utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhamnolipid (RL) is a microbial glycolipid currently developed for industrial use as a biobased surfactant. It also possesses antimicrobial activity that is attractive for applications in sanitizing washes. Glycerol byproduct stream from biodiesel production is a promising low-cost substrate for m...

  11. Optimization process of tribenzoine production as a glycerol derived product

    NASA Astrophysics Data System (ADS)

    Widayat, Abdurrakhman, Rifianto, Y.; Abdullah, Hadiyanto, Samsudin, Asep M.; Annisa, A. N.

    2015-12-01

    Tribenzoin is a derived product from glycerol that can produce from glycerol conversion via esterification process. The product can be used in the food industry, cosmetics industry, polymer industry and also can be used to improve the properties of adhesive materials and water resistance in the ink printer.In the other hand, it advantages is environmentally friendly andrenewable because it is not derived from petroleum. This paper discusses the effect of temperature and catalyst concentration for tribenzoin production. For the responses, yield and product composition were observed. Results showed that the highest yield achieved at optimal variable data processed using Central Composite Design (CCD) which is 63.64 temperature (°C), mole ratio of benzoic acidto glycerol is 3.644:1, and catalyst concentration 6.25% (wt% glycerol). Yield products produced 58.71%. FTIR analysis results showed that the samples contained the results of IR spectra wavelength 1761 cm-1 in the fingerprint region and 3165 cm-1 frequency region group. The existence of these two adjustments that fixed in the area is strong evidence that the compound is tribenzoin.

  12. Toxicity of palmitoyl glycerol to mice: depression of thyroid function

    SciTech Connect

    Trumbo, P.R.; Meuten, D.J.; King, M.W.; Tove, S.B.

    1987-10-01

    Mice given propylthiouracil, a thyroid inhibitor, and fed a diet containing a nontoxic level of rac-1(3)-palmitoyl glycerol showed the hypothermia and mortality expected for a toxic dose, but did not show these signs when linoleate or oleate was added to the diet. Loss of radioiodine from the whole animal and thyroid gland was slower when mice were fed the toxic palmitoyl glycerol diet than when fed the same diet containing 4% safflower oil. However, mice fed the two diets did not differ in the extent of the incorporation of radioiodine, and essentially all was bound to protein in each case. Follicular thyroid cells from mice fed the potentially toxic diet that contained unsaturated fat were normal in appearance. Conversely, cells from mice fed the toxic diet were smaller and more densely stained, showing evidence of glycoprotein inside the cell. These findings show that the thyroid gland is affected by the palmitoyl glycerol diet. However, the thyroid is not the only organ affected, because giving either thyroxine or triiodothyronine had no effect on the toxicity of palmitoyl glycerol.

  13. Crude glycerol combustion: particulate, acrolein, and other volatile organic emissions

    EPA Science Inventory

    Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and ...

  14. Biocomposites Prepared from Fiber Processing Wastes and Glycerol Polyesters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biocomposites were prepared by the addition of flax fiber processing waste to glycerol and adipic acid mixtures. The processing waste consisted of fiber, cuticle, and shive fragments generated during the commercial cleaning of retted flax bast fibers. These waste materials were added at 1, 3, or 5 w...

  15. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis.

    PubMed

    Kumar, Prasun; Sharma, Rishi; Ray, Subhasree; Mehariya, Sanjeet; Patel, Sanjay K S; Lee, Jung-Kul; Kalia, Vipin C

    2015-04-01

    Biodiesel manufacturing units discharge effluents rich in glycerol. The need is to convert crude glycerol (CG) into useful products such as hydrogen (H2). Under batch culture, Bacillusthuringiensis EGU45 adapted on pure glycerol (PG, 2% v/v) resulted in an H2 yield of 0.646 mol/mol glycerol consumed on minimal media (250 mL) supplemented with 1% ammonium nitrate at 37°C over 4 days. Here, H2 constituted 67% of the total biogas. Under continuous culture, at 2 days of hydraulic retention time, B. thuringiensis immobilized on ligno-cellulosic materials (banana leaves - BL, 10% v/v) resulted in a H2 yield of 0.386 mol/mol PG consumed. On CG, the maximal H2 yield of 0.393 mol/mol feed consumed was recorded. In brief, B. thuringiensis could transform CG, on limited resources - minimal medium with sodium nitrate, by immobilizing them on cheap and easily available biowaste, which makes it a suitable candidate for H2 production on a large scale.

  16. Adaptation to physical training in rats orally supplemented with glycerol.

    PubMed

    Andrade, Eric Francelino; Lobato, Raquel Vieira; de Araújo, Ticiana Vasques; Orlando, Débora Ribeiro; Vicente da Costa, Diego; de Oliveira Silva, Víviam; Rogatto, Gustavo Puggina; Zangeronimo, Márcio Gilberto; Rosa, Priscila Vieira; Pereira, Luciano José

    2015-01-01

    We evaluated training adaptation and physical performance parameters in rats orally supplemented with glycerol, glucose, or saline, and submitted to moderate aerobic exercise. Thirty male rats were trained for 6 weeks and administered the supplements during the last 4 weeks of the experiment. Animals were distributed in a completely randomized factorial 2 × 3 design (with or without exercise and 3 substrates). Data were subjected to analysis of variance (ANOVA) and means were compared using the Student-Newmann-Keuls test at 5%. Among the trained animals, none of the substances caused differences in the percentages of protein, fat, or water content in the carcass. Compared with the sedentary animals, the trained animals supplemented with saline and glucose showed a higher protein percentage in the carcass. The relative mass of the heart and adrenal glands was higher in the trained animals. Glycerol improved the protein content in non-trained animals and increased the relative adrenal mass in both groups. Glycerol reduced the variation in levels of lactate and aspartate aminotransferase (AST) during the last exercise session. There was no difference between groups regarding the relative mass of the thymus and gastrocnemius or with the diameter of muscle fibers or the neutrophil-lymphocyte ratio. Supplementation with glycerol was efficient at attenuating variation in AST and lactate levels during exercise.

  17. Apparent digestible energy value of crude glycerol fed to pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The apparent digestible energy of crude glycerol, a co-product of biodiesel production, was determined in two studies conducted at the Iowa State University Swine Nutrition Research Farm, Ames, IA. In the first study, 24 barrows with an average body weight of 11.0 kg were fed 376 g/d of a basal corn...

  18. Performance and carcass characteristics of growing pigs fed crude glycerol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Performance and carcass characteristics of growing pigs fed crude glycerol, a co-product of biodiesel production, were determined in a 138-d feeding trial conducted at the Iowa State University Swine Nutrition Research Farm, Ames, IA. Pigs were weaned at 21d of age and were fed a commercial starter-...

  19. Horizontal microscopy in square capillaries

    NASA Astrophysics Data System (ADS)

    Moroz, Pavel E.

    1992-07-01

    Intracellular protoplasmic movements may, due to gravity, have a vertical component greater or different from the horizontal one. This makes horizontal microscopy indispensable in the search for the cellular sensor of gravity. The possibility of the latter being a cell organelle assigns special significance to high-resolution microscopy. A horizontal suction device for picking up a cell and its high-resolution horizontal microscopy in a rectangular capillary may be helpful for detection of gravity-related shifts of cellular organelles in vivo.

  20. Capillary wave spectroscopy on ferrofluids

    NASA Astrophysics Data System (ADS)

    Patzke, J.; Rathke, B.; Will, S.

    2007-12-01

    We investigate the magnetoviscous effect in ferrofluids by Capillary Wave Spectroscopy (CWS, Surface Light Scattering). This technique probes a specific mode of thermally excited surface waves giving information on surface tension and viscosity. In ferrofluids we detect a transition from propagating surface modes to overdamped ones depending on the particle concentration and strength and the orientation of an externally applied magnetic field. We interprete this effect as caused by an increase of the liquid viscosity with an increasing particle concentration and field-strength. Changing the relative orientation of the scattering vector and magnetic field shows that the viscous properties of ferrofluids in a magnetic field are anisotropic. Figs 8, Refs 12.

  1. High pressure pulsed capillary viscometry

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Walowitt, J. A.; Pan, C. H. T.

    1972-01-01

    An analytical and test program was conducted in order to establish the feasibility of a multichamber pulsed-capillary viscometer. The initial design incorporated a piston, ram, and seals which produced measured pulses up to 30,000 psi in the closed chamber system. Pressure pulses from one to ten milliseconds were investigated in a system volume of 1 cuin. Four test fluids: a MIL-L-7808, a 5P4E polyphenyl ether, a MIL-L-23699A, and a synthetic hydrocarbon were examined in the test pressure assembly. The pressure-viscosity coefficient and viscosity delay time were determined for the MIL-L-7808 lubricant tested.

  2. Capillary Bridges between Soft Substrates

    NASA Astrophysics Data System (ADS)

    Wexler, Jason S.; Heard, Tiara M.; Stone, Howard A.

    2014-02-01

    A wetting droplet trapped in the thin gap between two elastic bodies will deflect the bodies towards one another. The deformation increases the total capillary adhesion force by increasing the contact radius and narrowing the gap height. For flat droplets, with a large ratio of radius to gap height, the Laplace pressure causes surface deformations that are orders of magnitude larger than those induced by a sessile droplet of the same radius. We present experiments, scalings, and closed-form solutions that describe the deformation. Using variational techniques, we also show that the problem exhibits a bifurcation, where the gap spontaneously closes due to an incremental increase in drop volume.

  3. Rainbow smelt: the unusual case of cryoprotection by sustained glycerol production in an aquatic animal.

    PubMed

    Driedzic, William R

    2015-07-01

    Rainbow smelt flourish at -1.8 °C, the freezing point of sea water. An antifreeze protein contributes to freeze point depression but, more importantly, cryoprotection is due to an elevation in osmotic pressure, by the accumulation of glycerol. The lower the water temperature, the higher the plasma glycerol with levels recorded as high as 400 mmol l(-1). Glycerol freely diffuses out in direct relation to the glycerol concentration and fish may lose as much as 15% of their glycerol reserve per day. Glycerol levels decrease from a maximum in February/March while water temperature is still sub-zero. The decrease in glycerol may respond to a photoperiod signal as opposed to initiation which is triggered by low temperature. The initial increase in glycerol level is supported by liver glycogen but high sustained glycerol level is dependent upon dietary carbohydrate and protein. The metabolic pathways leading to glycerol involve flux from glycogen/glucose to the level of dihydroxyacetone phosphate (DHAP) via the initial part of glycolysis and from amino acids via a truncated gluconeogenesis again to the level of DHAP. DHAP in turn is converted to glycerol 3-phosphate (G3P) and then directly to glycerol. The key to directing DHAP to G3P is a highly active glycerol 3-P dehydrogenase. G3P is converted directly to glycerol via G3P phosphatase, the rate-limiting step in the process. The transition to glycerol production is associated with increased activities of enzymes at key loci in the top part of glycogenolysis/glycolysis. Curtailment of the final section of glycolysis may reside at the level of pyruvate oxidation with an inactivation of pyruvate dehydrogenase (PDH) driven by increased levels of PDH kinase. Enzymes associated with amino acid trafficking are elevated as is the pivotal enzyme phosphoenolpyruvate carboxykinase.

  4. Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai-Tibetan Plateau: implications of brGDGTs-based proxies in cold and dry regions

    NASA Astrophysics Data System (ADS)

    Ding, S.; Xu, Y.; Wang, Y.; He, Y.; Hou, J.; Chen, L.; He, J.-S.

    2015-06-01

    The methylation index of branched tetraethers (MBT) and cyclization ratio of branched tetraethers (CBT) based on the distribution of branched glycerol dialkyl glycerol tetraethers (brGDGT) are useful proxies for the reconstruction of mean annual air temperature (MAT) and soil pH. Recently, a series of 6-methyl brGDGTs were identified which were previously co-eluted with 5-methyl brGDGTs. However, little is known about 6-methyl brGDGTs in the Qinghai-Tibetan Plateau (QTP), a critical region of the global climate system. Here, we analyze 30 surface soils covering a large area of the QTP, among which 6-methyl brGDGTs were the most abundant components (average 53 ± 17% of total brGDGT). The fractional abundance of 6-methyl brGDGTs showed a good correlation with soil pH, while the global MBT'5ME calibration overestimates MAT in the QTP. We therefore proposed a MBT5/6 index including both 5- and 6-methyl brGDGTs, presenting a strong correlation with MAT in QTP: MAT = -20.14 + 39.51 × MBT5/6 (n = 27, r2 = 0.82; RMSE = 1.3 °C). Another index, namely IBT (isomerization of branched tetraether), based on carbon skeleton isomerization of the 5-methyl to 6-methyl brGDGTs, is dependent on soil pH: pH = 6.77 - 1.56 × IBT (n = 27; r2 = 0.74, RMSE = 0.32). Our study suggests that changing the position of methyl group of brGDGTs may be another mechanism for some soil bacteria to adapt to the ambient pH change in addition to the well-known cyclization.

  5. Content of plasmatic glycerol and activity of hepatic glycerol kinase in broiler chickens fed diets containing different sources and concentrations of glycerine.

    PubMed

    Bernardino, V M P; Rodrigues, P B; de Paula Naves, L; Rosa, P V; Zangerônimo, M G; Gomide, E M; Saldanha, M M; Alvarenga, R R

    2014-04-01

    The objective of this study was to evaluate the effect of three sources of glycerine (crude glycerine from soya bean oil - CGSO, mixed crude glycerine from frying oil and lard--MCG, and a semipurified glycerine from soya bean oil--SPGSO) in four concentrations in the diet (17.5, 35.0, 52.5 and 70.0 g of each type of glycerine per kg of feed) on the levels of plasmatic glycerol and the activity of the hepatic enzyme glycerol kinase in broilers of 22-35 days old (experiment I) and 33-42 days old (experiment II). The highest (p < 0.05) plasmatic glycerol level was detected in broilers fed diet containing CGSO. Independent of the source, increasing the concentration of glycerine led to a linear increase (p < 0.05) in the plasmatic glycerol concentration. In experiment I, all the diets containing glycerine resulted in increased concentrations of plasmatic glycerol, in relation to the control diet without glycerine. However, in experiment II, only the diet containing 17.5 g of CGSO per kg of feed and the diets formulated with any of the three types of glycerine in the inclusion concentrations of 35, 52.5 and 70 g/kg of feed resulted in higher plasmatic glycerol levels than those observed in the control broilers. The source of glycerine influenced the glycerol kinase activity only in experiment II, where the use of CGSO in the diet increased the enzyme activity. For both experiments, the glycerol kinase activity increased with the inclusion of glycerine in the diet. In conclusion, based on the absence of saturation of the glycerol kinase activity for the three glycerine sources and for both rearing periods evaluated, the broilers can metabolize the glycerol (at the level of the phosphorylation of the glycerol to glycerol-3-phosphate in the liver) present in the glycerine when the diet is supplemented with up to 70 g of glycerine per kg of feed.

  6. Crystallization and transformation of polymorphic forms of trioleoyl glycerol and 1,2-dioleoyl-3-rac-linoleoyl glycerol.

    PubMed

    Bayés-García, Laura; Calvet, Teresa; Cuevas-Diarte, Miquel Àngel; Ueno, Satoru; Sato, Kiyotaka

    2013-08-08

    This study examined the influence of different thermal treatments on the crystallization and transformation of trioleoyl glycerol (OOO) and 1,2-dioleoyl-3-rac-linoleoyl glycerol (OOL). Two triacylglycerol (TAG) samples were cooled at 0.5-15 °C·min(-1) and heated at 2 and 15 °C·min(-1). The polymorphic characteristics of the two TAGs were analyzed in situ using differential scanning calorimetry, Raman spectroscopy, and synchrotron radiation X-ray diffraction. Multiple polymorphic forms were identified in OOO (α, β'2, β'1, β2, and β1) and OOL (α, β'2, and β'1). Larger quantities of more stable forms (e.g., β2 and β1 of OOO and β'1 of OOL) were obtained when the samples were slowly cooled and heated. In contrast, less stable polymorphs were obtained with increased cooling and heating rates. Polymorphic transformations occurred in either solid-state or melt-mediation and were influenced by heating rates. The results were analyzed by considering the activation energies for crystallization and transformation of stable and less stable polymorphic forms in comparison with previous studies on 1,3-dipalmitoyl-2-oleoyl-glycerol and 1, 3-dioleoyl-2-palmitoyl-glycerol.

  7. Cryogenic Capillary Screen Heat Entrapment

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L.G.; Hastings, L.J.; Stathman, G.

    2007-01-01

    Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of sub-cooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: "To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs.?"Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, "200x1400" and "325x2300", both with Twill Dutch Weave. Upon consideration of both the water and LN2 data it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.

  8. Atomic Force Controlled Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham

    2010-03-01

    Lithography based on scanning probe microscopic techniques has considerable potential for accurate & localized deposition of material on the nanometer scale. Controlled deposition of metallic features with high purity and spatial accuracy is of great interest for circuit edit applications in the semiconductor industry, for plasmonics & nanophotonics and for basic research in surface enhanced Raman scattering & nanobiophysics. Within the context of metal deposition we will review the development of fountain pen nanochemistry and its most recent emulation Atomic Force Controlled Capillary Electrophoresis (ACCE). Using this latter development we will demonstrate achievement of unprecedented control of nanoparticle deposition using a three-electrode geometry. Three electrodes are attached: one on the outside of a metal coated glass probe, one on the inside of a hollow probe in a solution containing Au nanoparticles in the capillary, and a third on the surface where the writing takes place. The three electrodes provide electrical pulses for accurate control of deposition and retraction of the liquid from the surface overcoming the lack of control seen in both dip pen lithography & fountain pen nanochemistry when the tip contacts the surface. With this development, we demonstrate depositing a single 1.3 nm Au nanoparticle onto surfaces such as semiconductors.

  9. Evaluation of capillary reinforced composites

    NASA Technical Reports Server (NTRS)

    Cahill, J. E.; Halase, J. F.; South, W. K.; Stoffer, L. J.

    1985-01-01

    Anti-icing of the inlet of jet engines is generally performed with high pressure heated air that is directed forward from the compressor through a series of pipes to various manifolds located near the structures to be anti-iced. From these manifolds, the air is directed to all flowpath surfaces that may be susceptible to ice formation. There the anti-icing function may be performed by either heat conduction or film heating. Unfortunately, the prospect of utilizing lighweight, high strength composites for inlet structures of jet engines has been frustrated by the low transverse thermal conductivity of such materials. It was the objective of this program to develop an advanced materials and design concept for anti-icing composite structures. The concept that was evaluated used capillary glass tubes embedded on the surface of a composite structure with heated air ducted through the tubes. An analytical computer program was developed to predict the anti-icing performance of such tubes and a test program was conducted to demonstrate actual performance of this system. Test data and analytical code results were in excellent agreement. Both indicate feasibility of using capillary tubes for surface heating as a means for composite engine structures to combat ice accumulation.

  10. Capillary Rise in Porous Media.

    PubMed

    Lago, Marcelo; Araujo, Mariela

    2001-02-01

    Capillary rise experiments were performed in columns filled with glass beads and Berea sandstones, using visual methods to register the advance of the water front. For the glass bead filled columns, early time data are well fitted by the Washburn equation. However, in the experiments, the advancing front exceeded the predicted equilibrium height. For large times, an algebraic behavior of the velocity of the front is observed (T. Delker et al., Phys. Rev. Lett. 76, 2902 (1996)). A model for studying the capillary pressure evolution in a regular assembly of spheres is proposed and developed. It is based on a quasi-static advance of the meniscus with a piston-like motion and allows us to estimate the hydraulic equilibrium height, with values very close to those obtained by fitting early time data to a Washburn equation. The change of regime is explained as a transition in the mechanism of advance of the meniscus. On the other hand, only the Washburn regime was observed for the sandstones. The front velocity was fitted to an algebraical form with an exponent close to 0.5, a value expected from the asymptotic limit of the Washburn equation. Copyright 2001 Academic Press.

  11. Atlantic cod (Gadus morhua) larvae can biosynthesis phospholipid de novo from 2-oleoyl-glycerol and glycerol precursors.

    PubMed

    Li, Keshuai; Olsen, Rolf Erik; Østensen, Mari-Ann; Altin, Dag; Kjørsvik, Elin; Olsen, Yngvar

    2016-02-01

    The dietary requirement of phospholipid (PL) of fish larvae has been suggested to originate in an inefficient ability for de novo biosynthesis of PL based on dietary triacylglycerol (TAG). The main objective of the present study was to investigate whether cod larvae could synthesis PL from sn-2-monoacylglycerol (2-MAG) and glycerol precursors. A tube feeding method was used to deliver equal molar aliquots of 2-oleoyl-[1,2,3-(3)H]glycerol and [U-(14)C] glycerol together with bovine serum albumin (BSA) bound 16:0 (palmitic acid) and 22:6n-3 (docosahexaenoic acid, DHA), with or without choline chloride to the foregut of anesthetized cod larvae and thereafter monitoring the metabolism of these components in the larvae through 4 h following injection. Our results showed that both 2-MAG and glycerol precursors contributed to the de novo synthesis of phosphatidylcholine (PC) and the 2-MAG pathway predominated over the G-3-P (glycerol-3-phosphate) pathway in the synthesis of TAG and PC. The molecular ratio of PC/TAG obtained from the 2-MAG and the G-3-P pathways was 0.44-0.74 and 1.02-2.06 within the first hour of tube feeding, suggesting they might have comparable biosynthesis ability of PC and TAG under the conditions of the present study. Furthermore, supplementation of choline chloride significantly increased PC/TAG ratio (p < 0.05) for both pathways. However, further studies are needed to quantify the enzyme activity involved in the CDP-choline (cytidine diphosphate choline) pathway, and the function of choline either in simulating PC synthesis or TAG catabolism or both needs further investigation.

  12. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    DOEpatents

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  13. Experimental study on thermal effect on infiltration mechanisms of glycerol into ZSM-5 zeolite under cyclic loadings

    NASA Astrophysics Data System (ADS)

    Zhang, Yafei; Li, Na; Luo, Rui; Zhang, Yifeng; Zhou, Qulan; Chen, Xi

    2016-01-01

    Understanding the fundamental infiltration mechanisms under thermal response is of crucial importance to design and develop nanoporous energy systems. In this work, a glycerol/ZSM-5 zeolite-based pressure-driven energy absorption system was built, while the temperature-dependent intrusion of glycerol molecules into lyophobic nanopores of ZSM-5 zeolite and the underlying mechanisms were experimentally studied. By changing the system temperature, the correlations of infiltration pressure with the infiltration and defiltration percentages of the liquid phase under thermal response were explored. It turns out that lifting the system temperature will reduce the critical infiltration pressure barriers and change the system’s wettability. The equivalent surface tension and contact angle are calculated to elucidate the thermal dependence of the system’s wettability. Elevating system temperature can also help enlarge the entry area of the nanochannels and trigger more glycerol molecules to flow out of the nanochannels, which means an increase of the infiltration and defiltration percentages. Weakened hydrogen bonding interaction, temperature sensitivity of glycerol viscosity, and the inherent gas phase in the nanoporous channels may contribute to the infiltration and outflow process at a higher temperature level. Cyclic loadings were applied under each working condition to test the recoverability of the built system. Results showed that the system’s throughput shrank in the first three/four cycles and became stable afterwards. Lifting the system temperature could enhance both intrusion and extrusion processes, thus helping the system reach a faster throughput balance, which is beneficial in establishing a recoverable and reusable energy absorption/storage/conversion system.

  14. Characterization of the Proteostasis Roles of Glycerol Accumulation, Protein Degradation and Protein Synthesis during Osmotic Stress in C. elegans

    PubMed Central

    Choung-Hee Lee, Elaine; Deonarine, Andrew; Strange, Kevin

    2012-01-01

    Exposure of C. elegans to hypertonic stress-induced water loss causes rapid and widespread cellular protein damage. Survival in hypertonic environments depends critically on the ability of worm cells to detect and degrade misfolded and aggregated proteins. Acclimation of C. elegans to mild hypertonic stress suppresses protein damage and increases survival under more extreme hypertonic conditions. Suppression of protein damage in acclimated worms could be due to 1) accumulation of the chemical chaperone glycerol, 2) upregulation of protein degradation activity, and/or 3) increases in molecular chaperoning capacity of the cell. Glycerol and other chemical chaperones are widely thought to protect proteins from hypertonicity-induced damage. However, protein damage is unaffected by gene mutations that inhibit glycerol accumulation or that cause dramatic constitutive elevation of glycerol levels. Pharmacological or RNAi inhibition of proteasome and lyosome function and measurements of cellular protein degradation activity demonstrated that upregulation of protein degradation mechanisms plays no role in acclimation. Thus, changes in molecular chaperone capacity must be responsible for suppressing protein damage in acclimated worms. Transcriptional changes in chaperone expression have not been detected in C. elegans exposed to hypertonic stress. However, acclimation to mild hypertonicity inhibits protein synthesis 50–70%, which is expected to increase chaperone availability for coping with damage to existing proteins. Consistent with this idea, we found that RNAi silencing of essential translational components or acute exposure to cycloheximide results in a 50–80% suppression of hypertonicity-induced aggregation of polyglutamine-YFP (Q35::YFP). Dietary changes that increase protein production also increase Q35::YFP aggregation 70–180%. Our results demonstrate directly for the first time that inhibition of protein translation protects extant proteins from damage

  15. Internal capillary insulation for cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Mcgrew, J. L.

    1972-01-01

    Capillary-type insulation was devised for installation on inside of liquid methane fuel tanks for future aircraft. Insulation consists of honeycomb core of fiberglass cloth impregnated with polyimide resin which is bonded onto metal tank wall using polyimide adhesive. Capillary holes in each honeycomb cell admit methane which provides static pressure in cell.

  16. Capillary waveguide optrodes for Medical applications

    NASA Astrophysics Data System (ADS)

    Kieslinger, Dietmar; Weigl, Bernhard H.; Draxler, Sonja; Lippitsch, Max E.

    1997-01-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. The capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Different optical setups have been investigated and compared regarding its waveguiding properties.

  17. Glycerol extends lifespan of Brachionus manjavacas (Rotifera) and protects against stressors

    PubMed Central

    Snell, Terry W.; Johnston, Rachel K.

    2014-01-01

    Diet has profound effects on animal longevity and manipulation of nutrient sensing pathways is one of the primary interventions capable of lifespan extension. This often is done through caloric restriction (CR) and a variety of CR mimics have been identified that produce life extending effects without adhering to the rigorous CR dietary regimen. Glycerol is a dietary supplement capable mimicking CR by shifting metabolism away from glycolysis and towards oxidative phosphorylation. Glycerol supplementation has a number of beneficial effects, including lifespan extension, improved stress resistance, and enhanced locomotory and mitochondria activity in older age classes. Using rotifers as a model, we show that supplements of 150–300 mM glycerol produced 40–50% extension of mean lifespan. This effect was produced by raising glycerol concentration only three times higher than its baseline concentration in rotifer tissues. Glycerol supplementation decreased rotifer reliance on glycolysis and reduced the pro-aging effects of glucose. Glycerol also acted as a chemical chaperone, mitigating damage by protein aggregation. Glycerol treatment improved rotifer swimming performance in older age classes and maintained more mitochondrial activity. Glycerol treatment provided increased resistance to starvation, heat, oxidation, and osmotic stress, but not UV stress. When glycerol was co-administered with the hexokinase inhibitor 2-deoxyglucose, the lifespan extending effect of glycerol was enhanced. Co-administration of glycerol with inhibitors like 2- deoxyglucose can lower their efficacious doses, thereby reducing their toxic side effects. PMID:24835191

  18. Glycerol extends lifespan of Brachionus manjavacas (Rotifera) and protects against stressors.

    PubMed

    Snell, Terry W; Johnston, Rachel K

    2014-09-01

    Diet has profound effects on animal longevity and manipulation of nutrient sensing pathways is one of the primary interventions capable of lifespan extension. This often is done through caloric restriction (CR) and a variety of CR mimics have been identified that produce life extending effects without adhering to the rigorous CR dietary regimen. Glycerol is a dietary supplement capable mimicking CR by shifting metabolism away from glycolysis and towards oxidative phosphorylation. Glycerol supplementation has a number of beneficial effects, including lifespan extension, improved stress resistance, and enhanced locomotory and mitochondria activity in older age classes. Using rotifers as a model, we show that supplements of 150-300mM glycerol produced 40-50% extension of mean lifespan. This effect was produced by raising glycerol concentration only three times higher than its baseline concentration in rotifer tissues. Glycerol supplementation decreased rotifer reliance on glycolysis and reduced the pro-aging effects of glucose. Glycerol also acted as a chemical chaperone, mitigating damage by protein aggregation. Glycerol treatment improved rotifer swimming performance in older age classes and maintained more mitochondrial activity. Glycerol treatment provided increased resistance to starvation, heat, oxidation, and osmotic stress, but not UV stress. When glycerol was co-administered with the hexokinase inhibitor 2-deoxyglucose, the lifespan extending effect of glycerol was enhanced. Co-administration of glycerol with inhibitors like 2-deoxyglucose can lower their efficacious doses, thereby reducing their toxic side effects.

  19. Capillary electrophoresis using core-based hyperbranched polyethyleneimine (CHPEI) static-coated capillaries.

    PubMed

    Boonyakong, Cheerapa; Tucker, Sheryl A

    2009-10-01

    With unique 3-D architecture, the application of core-based hyperbranched polyethyleneimine (CHPEI), as a capillary coating in capillary electrophoresis, is demonstrated by manipulation of the electroosmotic mobility (EOF). CHPEI coatings (CHPEI5, M(w) approximately 5000 and CHPEI25, M(w) approximately 25,000) were physically adsorbed onto the inner surface of bare fused-silica capillary (BFS) via electrostatic interaction of the oppositely charged molecules by rinsing the capillaries with different CHPEI aqueous solutions. The EOF values of the coated capillaries were measured over the pH range of 4.0-9.0. At higher pH (pH >6) the coated capillary surface possesses excess negative charges, which causes the reversal of the EOF. The magnitudes of the EOF obtained from the coated capillaries were three-fold lower than that of BFS capillary. Desirable reproducibility of the EOF with % RSD (n = 5) < or = 2 was obtained. Effect of ionic strength, stability of the coating (% RSD = 0.3) and the dependence of the EOF on pH (% RSD = 0.5) were also investigated. The CHPEI-coated capillaries were successfully utilized to separate phenolic compounds, B vitamins, as well as basic drugs and related compounds with reasonable analysis time (< 20 min) and acceptable migration-time repeatability (< 0.7% RSD for intra-capillary and < 2% RSD for inter-capillary).

  20. The capillary flow experiments aboard the International Space Station: Status

    NASA Astrophysics Data System (ADS)

    Weislogel, Mark M.; Jenson, Ryan; Chen, Yongkang; Collicott, Steven H.; Klatte, Jörg; Dreyer, Michael

    2009-09-01

    This paper provides a current overview of the in-flight operations and experimental results of the capillary flow experiment (CFE) performed aboard the International Space Station (ISS) beginning August 2004 to present, with at least 16 operations to date by five astronauts. CFE consists of six approximately 1-2 kg experiment units designed to probe certain capillary phenomena of fundamental and applied importance, such as capillary flow in complex containers, critical wetting in discontinuous structures, and large length scale contact line dynamics. Highly quantitative video images from the simply performed experiments provide direct confirmation of the usefulness of current analytical design tools as well as provide guidance to the development of new ones. A description of the experiments, crew procedures, performances and status of the data collection and reduction is provided for the project. The specific experimental objectives are briefly introduced by way of the crew procedures and a sample of the verified theoretical predictions of the fluid behavior is provided. The potential impact of the flight experiments on the design of spacecraft fluid systems is discussed in passing.

  1. Effect of gravity on capillary instability of liquid jets.

    PubMed

    Amini, Ghobad; Ihme, Matthias; Dolatabadi, Ali

    2013-05-01

    The effect of gravity on the onset and growth rate of capillary instabilities in viscous liquid jets is studied. To this end, a spatial linear stability analysis of Cosserat's equations is performed using a multiscale expansion technique. A dispersion relation and expressions for the perturbation amplitude are derived to evaluate the growth rate of the most unstable axisymmetric disturbance mode. Modeling results are compared with classical results in the limit of zero Bond number, confirming the validity of this approach. Expressions for the critical Weber number, demarcating the transition between convective and absolute instability are derived as functions of capillary and Bond numbers. Parametric investigations for a range of relevant operating conditions (characterized by capillary, Weber, and Bond numbers) are performed to examine the jet breakup and the perturbation growth rate. In addition to the physical insight that is obtained from this investigation, the results that are presented in this work could also be of relevance as test cases for the algorithmic development and the verification of high-fidelity multiphase simulation codes.

  2. Condensation and evaporation transitions in deep capillary grooves.

    PubMed

    Malijevský, Alexandr; Parry, Andrew O

    2014-09-03

    We study the order of capillary condensation and evaporation transitions of a simple fluid adsorbed in a deep capillary groove using a fundamental measure density functional theory (DFT). The walls of the capillary interact with the fluid particles via long-ranged, dispersion, forces while the fluid-fluid interaction is modelled as a truncated Lennard-Jones-like potential. We find that below the wetting temperature Tw condensation is first-order and evaporation is continuous with the metastability of the condensation being well described by the complementary Kelvin equation. In contrast above Tw both phase transitions are continuous and their critical singularities are determined. In addition we show that for the evaporation transition above Tw there is an elegant mapping, or covariance, with the complete wetting transition occurring at a planar wall. Our numerical DFT studies are complemented by analytical slab model calculations which explain how the asymmetry between condensation and evaporation arises out of the combination of long-ranged forces and substrate geometry.

  3. Effect of crude glycerol impurities on lipid preparation by Rhodosporidium toruloides yeast 32489.

    PubMed

    Gao, Zhen; Ma, Yingqun; Wang, Qunhui; Zhang, Min; Wang, Juan; Liu, Yu

    2016-10-01

    Crude glycerol (byproduct of biodiesel preparation) was utilised as the carbon source to produce lipid using oleaginous yeast Rhodosporidium toruloides 32489. Under the same conditions, lipid production with crude glycerol was higher than those produced with glucose and pure glycerol. The effects of 4 main impurities in crude glycerol (methyl oleate, sodium oleate, NaCl and methanol) on lipid production were investigated. Compared with utilising pure glycerol, addition of methyl oleate, sodium oleate, and NaCl impurities increased lipid production by 47.0%, 68.0% and 64.0%, respectively, while methanol decreased lipid production by 17.7%. However, when methanol was mixed with other impurities, its inhibition effect was alleviated due to the promoting effect of other impurities. Hence, crude glycerol could be used as a renewable and low-cost carbon source to replace pure glucose or glycerol for lipid preparation.

  4. Interlaboratory study to evaluate the robustness of capillary electrophoresis-mass spectrometry for peptide mapping.

    PubMed

    Wenz, Christian; Barbas, Coral; López-Gonzálvez, Ángeles; Garcia, Antonia; Benavente, Fernando; Sanz-Nebot, Victoria; Blanc, Tim; Freckleton, Gordon; Britz-McKibbin, Philip; Shanmuganathan, Meera; de l'Escaille, Francois; Far, Johann; Haselberg, Rob; Huang, Sean; Huhn, Carolin; Pattky, Martin; Michels, David; Mou, Si; Yang, Feng; Neusuess, Christian; Tromsdorf, Nora; Baidoo, Edward E K; Keasling, Jay D; Park, SungAe Suhr

    2015-07-06

    A collaborative study on the robustness and portability of a capillary electrophoresis-mass spectrometry method for peptide mapping was performed by an international team, consisting of 13 independent laboratories from academia and industry. All participants used the same batch of samples, reagents and coated capillaries to run their assays, whereas they utilized the capillary electrophoresis-mass spectrometry equipment available in their laboratories. The equipment used varied in model, type and instrument manufacturer. Furthermore, different types of sheath-flow capillary electrophoresis-mass spectrometry interfaces were used. Migration time, peak height and peak area of ten representative target peptides of trypsin-digested bovine serum albumin were determined by every laboratory on two consecutive days. The data were critically evaluated to identify outliers and final values for means, repeatability (precision within a laboratory) and reproducibility (precision between laboratories) were established. For relative migration time the repeatability was between 0.05 and 0.18% RSD and the reproducibility between 0.14 and 1.3% RSD. For relative peak area repeatability and reproducibility values obtained were 3-12 and 9-29% RSD, respectively. These results demonstrate that capillary electrophoresis-mass spectrometry is robust enough to allow a method transfer across multiple laboratories and should promote a more widespread use of peptide mapping and other capillary electrophoresis-mass spectrometry applications in biopharmaceutical analysis and related fields.

  5. Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury

    PubMed Central

    Østergaard, Leif; Engedal, Thorbjørn S; Aamand, Rasmus; Mikkelsen, Ronni; Iversen, Nina K; Anzabi, Maryam; Næss-Schmidt, Erhard T; Drasbek, Kim R; Bay, Vibeke; Blicher, Jakob U; Tietze, Anna; Mikkelsen, Irene K; Hansen, Brian; Jespersen, Sune N; Juul, Niels; Sørensen, Jens CH; Rasmussen, Mads

    2014-01-01

    Most patients who die after traumatic brain injury (TBI) show evidence of ischemic brain damage. Nevertheless, it has proven difficult to demonstrate cerebral ischemia in TBI patients. After TBI, both global and localized changes in cerebral blood flow (CBF) are observed, depending on the extent of diffuse brain swelling and the size and location of contusions and hematoma. These changes vary considerably over time, with most TBI patients showing reduced CBF during the first 12 hours after injury, then hyperperfusion, and in some patients vasospasms before CBF eventually normalizes. This apparent neurovascular uncoupling has been ascribed to mitochondrial dysfunction, hindered oxygen diffusion into tissue, or microthrombosis. Capillary compression by astrocytic endfeet swelling is observed in biopsies acquired from TBI patients. In animal models, elevated intracranial pressure compresses capillaries, causing redistribution of capillary flows into patterns argued to cause functional shunting of oxygenated blood through the capillary bed. We used a biophysical model of oxygen transport in tissue to examine how capillary flow disturbances may contribute to the profound changes in CBF after TBI. The analysis suggests that elevated capillary transit time heterogeneity can cause critical reductions in oxygen availability in the absence of ‘classic' ischemia. We discuss diagnostic and therapeutic consequences of these predictions. PMID:25052556

  6. Glycerol dialkyl glycerol tetraethers preserved in stalagmites: a new continental palaeothermometer

    NASA Astrophysics Data System (ADS)

    Blyth, A. J.; Schouten, S.

    2010-12-01

    The ability to recover reliable temperature records is central to palaeoclimatic research, informing our understanding of the past and our models of the future. However, there is a need for new quantitative terrestrial temperature proxies. Here we present a novel palaeothermometer, combining molecular temperature proxies with the strong dating control and established environmental records provided by stalagmites. The results show good correlations between known and calculated temperatures, suggesting that the approach has considerable potential as a climatic proxy. Glycerol dialkyl glycerol tetraethers (GDGTs) are microbial membrane lipids, which vary in structure with temperature and pH [1]. In the terrestrial realm, the focus is on bacterially derived GDGTs, which have been used to measure terrestrial organic matter input to aquatic deposits via the BIT index [2], and developed into a temperature related index (MBT/CBT) in soils and near-shore marine sediments (MBT/CBT), based upon the degree of branching and cyclicisation of the carbon skeleton [3]. Stalagmites form an ideal archive for terrestrial climate records, as they are stable, can be easily dated, and contain a number of environmental proxies (stable isotopes, trace elements, organic matter etc). Attempts have been made to develop inorganic temperature proxies in stalagmites, most recently using isotopic analysis of fluid inclusions. However, the use of organic temperature proxies in this context is largely unstudied. Thirty-eight stalagmite or stalactite samples from twenty-one sites around the world were analysed for their GDGT content. Calcite samples were cleaned and decalcified with HCl, and lipids extracted into dichloromethane via liquid-liquid extraction. Each extract was then prepared and analysed via HPLC-MS following Weijers et al. [3]. The results show low but usable levels of GDGTs in all but one sample. Peak size measurements were made for all recognised compounds associated with BIT and

  7. Micellization of alkyltrimethylammonium bromide surfactants in choline chloride:glycerol deep eutectic solvent.

    PubMed

    Sanchez-Fernandez, Adrian; Arnold, Thomas; Jackson, Andrew J; Fussell, Sian L; Heenan, Richard K; Campbell, Richard A; Edler, Karen J

    2016-12-07

    Deep eutectic solvents have shown the ability to promote the self-assembly of surfactants in solution. However, some differences have been found compared with self-assembly in pure water and other polar organic solvents. The behaviour of alkyltrimethylammonium bromides in choline chloride:glycerol deep eutectic solvent has been studied by means of surface tension, X-ray and neutron reflectivity and small-angle neutron scattering. The surfactants were found to remain surface active and showed comparable critical micelle concentrations to the same surfactants in water. Our scattering studies demonstrate that these surfactants form globular micelles with ellipsoidal shape in solution. The size, shape and aggregation number of the aggregates were found to vary with the chain length of the surfactant. Specific solvent-headgroup interactions were not found in this system, unlike those we have previously postulated for anionic surfactants in choline chloride deep eutectic solvents.

  8. Poly(glycerol sebacate) elastomer: a novel material for mechanically loaded bone regeneration.

    PubMed

    Zaky, Samer Helal; Lee, Kee-Won; Gao, Jin; Jensen, Adrianna; Close, John; Wang, Yadong; Almarza, Alejandro J; Sfeir, Charles

    2014-01-01

    The selection criteria for potential bone engineering scaffolds are based chiefly on their relative mechanical comparability to mature bone. In this study, we challenge this notion by obtaining full regeneration of a rabbit ulna critical size defect by employing the elastomeric polymer, poly(glycerol sebacate) (PGS). We tested the regeneration facilitated by PGS alone, PGS in combination with hydroxyapatite particles, or PGS seeded with bone marrow stromal cells. We investigated the quantity and quality of the regenerated bone histologically, by microcomputed tomography and by four-point bending flexural mechanical testing at 8 weeks postimplantation. We conclude that the relatively lower stiffness of this biocompatible elastomer allows a load-transducing milieu in which osteogenesis, matrix deposition, and eventual bone maturation can take place. This study's results suggest that PGS elastomer is an auspicious osteoconductive material for the regeneration of bony defects. These results call for an innovative reassessment of the current art of selection for novel bone scaffold materials.

  9. Study of Capillary-Based Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Iacobaeus, C.; Francke, T.; Danielsson, M.; Ostling, J.; Peskov, V.

    2004-06-01

    We have studied gain vs. voltage characteristics and position resolutions of multistep capillary plates (two or three capillary plates operating in a cascade), as well as capillary plates operating in a mode when the main amplification occurs between plates or between the capillary plate and the readout plate (parallel plate amplification mode). Results of these studies demonstrated that in the parallel-plate amplification mode one can reach both high gains (>100000) and good position resolutions (~100 micro meter) even with a single step arrangement. It offers a compact amplification structure, which can be used in many applications. For example, in preliminary tests we succeeded to combine it with a photocathode and use it as a position sensitive gaseous photomultiplier. CsI coated capillary plates could also be used as a high position resolution and high rate X-ray converter.

  10. Oximetry of retinal capillaries by multicomponent analysis.

    PubMed

    Furukawa, Hiromitsu; Arimoto, Hidenobu; Shirai, Tomohiro; Ooto, Sotaro; Hangai, Masanori; Yoshimura, Nagahisa

    2012-08-01

    Retinal oximetry of capillaries was performed for early detection of retinal vascular abnormalities, which are caused predominantly by complications of systemic circulatory diseases. As the conventional method for determining absorbance is not applicable to capillaries, multicomponent analysis was used to estimate the absorbance spectra of the retinal blood vessels. In this analysis, the capillary spectrum was classified as intermediate between those of the retinal arteries and veins, enabling relative estimation of oxygen saturation in the capillaries. This method could be useful for early recognition of disturbances in the peripheral circulation. Furthermore, a spectroscopic ophthalmoscope system based on the proposed method was developed to examine the human retina. A clinical trial of this system demonstrated that oximetry of the retinal capillaries may be an improvement over the present diagnosis for patients of malignant hypertension.

  11. sn-Glycerol-3-phosphate transport in Salmonella typhimurium.

    PubMed Central

    Hengge, R; Larson, T J; Boos, W

    1983-01-01

    Salmonella typhimurium contains a transport system for sn-glycerol-3-phosphate that is inducible by growth on glycerol and sn-glycerol-3-phosphate. In fully induced cells, the system exhibited an apparent Km of 50 microM and a Vmax of 2.2 nmol/min . 10(8) cells. The corresponding system in Escherichia coli exhibits, under comparable conditions, a Km of 14 microM and a Vmax of 2.2 nmol/min . 10(8) cells. Transport-defective mutants were isolated by selecting for resistance against the antibiotic fosfomycin. They mapped in glpT at 47 min in the S. typhimurium linkage map, 37% cotransducible with gyrA. In addition to the glpT-dependent system, S. typhimurium LT2 contains, like E. coli, a second, ugp-dependent transport system for sn-glycerol-3-phosphate that was derepressed by phosphate starvation. A S. typhimurium DNA bank containing EcoRI restriction fragments in phage lambda gt7 was used to clone the glpT gene in E. coli. Lysogens that were fully active in the transport of sn-glycerol-3-phosphate with a Km of 33 microM and a Vmax of 2.0 nmol/min . 10(8) cells were isolated in a delta glpT mutant of E. coli. The EcoRI fragment harboring glpT was 3.5 kilobases long and carried only part of glpQ, a gene distal to glpT but on the same operon. The fragment was subcloned in multicopy plasmid pACYC184. Strains carrying this hybrid plasmid produced large amounts of cytoplasmic membrane protein with an apparent molecular weight of 33,000, which was identified as the sn-glycerol-3-phosphate permease. Its properties were similar to the corresponding E. coli permease. The presence of the multicopy glpT hybrid plasmid had a strong influence on the synthesis or assembly of other cell envelope proteins of E. coli. For instance, the periplasmic ribose-binding protein was nearly absent. On the other hand, the quantity of an unidentified E. coli outer membrane protein usually present only in small amounts increased. Images PMID:6408060

  12. Glycerol carbonate as green solvent for pretreatment of sugarcane bagasse

    PubMed Central

    2013-01-01

    Background Pretreatment of lignocellulosic biomass is a prerequisite for effective saccharification to produce fermentable sugars. In this study, “green” solvent systems based on acidified mixtures of glycerol carbonate (GC) and glycerol were used to treat sugarcane bagasse and the roles of each solvent in deconstructing biomass were determined. Results Pretreatment of sugarcane bagasse at 90°C for only 30 min with acidified GC produced a solid residue having a glucan digestibility of 90% and a glucose yield of 80%, which were significantly higher than a glucan digestibility of 16% and a glucose yield of 15% obtained for bagasse pretreated with acidified ethylene carbonate (EC). Biomass compositional analyses showed that GC pretreatment removed more lignin than EC pretreatment (84% vs 54%). Scanning electron microscopy (SEM) showed that fluffy and size-reduced fibres were produced from GC pretreatment whereas EC pretreatment produced compact particles of reduced size. The maximal glucan digestibility and glucose yield of GC/glycerol systems were about 7% lower than those of EC/ethylene glycol (EG) systems. Replacing up to 50 wt% of GC with glycerol did not negatively affect glucan digestibility and glucose yield. The results from pretreatment of microcrystalline cellulose (MCC) showed that (1) pretreatment with acidified alkylene glycol (AG) alone increased enzymatic digestibility compared to pretreatments with acidified alkylene carbonate (AC) alone and acidified mixtures of AC and AG, (2) pretreatment with acidified GC alone slightly increased, but with acidified EC alone significantly decreased, enzymatic digestibility compared to untreated MCC, and (3) there was a good positive linear correlation of enzymatic digestibility of treated and untreated MCC samples with congo red (CR) adsorption capacity. Conclusions Acidified GC alone was a more effective solvent for pretreatment of sugarcane bagasse than acidified EC alone. The higher glucose yield obtained

  13. Influence of local capillary trapping on containment system effectiveness

    SciTech Connect

    Bryant, Steven

    2014-03-31

    Immobilization of CO2 injected into deep subsurface storage reservoirs is a critical component of risk assessment for geologic CO2 storage (GCS). Local capillary trapping (LCT) is a recently established mode of immobilization that arises when CO2 migrates due to buoyancy through heterogeneous storage reservoirs. This project sought to assess the amount and extent of LCT expected in storage formations under a range of injection conditions, and to confirm the persistence of LCT if the seal overlying the reservoir were to lose its integrity. Numerical simulation using commercial reservoir simulation software was conducted to assess the influence of injection. Laboratory experiments, modeling and numerical simulation were conducted to assess the effect of compromised seal integrity. Bench-scale (0.6 m by 0.6 m by 0.03 m) experiments with surrogate fluids provided the first empirical confirmation of the key concepts underlying LCT: accumulation of buoyant nonwetting phase at above residual saturations beneath capillary barriers in a variety of structures, which remains immobile under normal capillary pressure gradients. Immobilization of above-residual saturations is a critical distinction between LCT and the more familiar “residual saturation trapping.” To estimate the possible extent of LCT in a storage reservoir an algorithm was developed to identify all potential local traps, given the spatial distribution of capillary entry pressure in the reservoir. The algorithm assumes that the driving force for CO2 migration can be represented as a single value of “critical capillary entry pressure” Pc,entrycrit, such that cells with capillary entry pressure greater/less than Pc,entrycrit act as barriers/potential traps during CO2 migration. At intermediate values of Pc,entrycrit, the barrier regions become more laterally extensive in the reservoir

  14. Mechanism of Kinetically Controlled Capillary Condensation in Nanopores: A Combined Experimental and Monte Carlo Approach.

    PubMed

    Hiratsuka, Tatsumasa; Tanaka, Hideki; Miyahara, Minoru T

    2017-01-24

    We find the rule of capillary condensation from the metastable state in nanoscale pores based on the transition state theory. The conventional thermodynamic theories cannot achieve it because the metastable capillary condensation inherently includes an activated process. We thus compute argon adsorption isotherms on cylindrical pore models and atomistic silica pore models mimicking the MCM-41 materials by the grand canonical Monte Carlo and the gauge cell Monte Carlo methods and evaluate the rate constant for the capillary condensation by the transition state theory. The results reveal that the rate drastically increases with a small increase in the chemical potential of the system, and the metastable capillary condensation occurs for any mesopores when the rate constant reaches a universal critical value. Furthermore, a careful comparison between experimental adsorption isotherms and the simulated ones on the atomistic silica pore models reveals that the rate constant of the real system also has a universal value. With this finding, we can successfully estimate the experimental capillary condensation pressure over a wide range of temperatures and pore sizes by simply applying the critical rate constant.

  15. Modified silica-based heterogeneous catalysts for etherification of glycerol

    NASA Astrophysics Data System (ADS)

    Gholami, Zahra; Abdullah, Ahmad Zuhairi; Gholami, Fatemeh; Vakili, Mohammadtaghi

    2015-07-01

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca1.6La0.6/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.

  16. Biomass Pretreatment using Ionic Liquid and Glycerol Mixtures

    NASA Astrophysics Data System (ADS)

    Lynam, Joan Goerss

    Lignocellulosic biomass is a renewable, sustainable resource that can replace or supplement fossil fuels use for liquid fuels and chemicals. However, its recalcitrant structure including interwoven cellulose, hemicelluloses, and lignin biomacromolecules is challenging to deconstruct. Pretreating biomass so that it can be converted to useful liquids dominates process economics. Many pretreatment methods exist, but most require hazardous chemicals or processing conditions. Many ionic liquids (ILs), salts molten below 100°C, can be used to deconstruct lignocellulosic biomass and are less hazardous than the volatile organic compounds typically used. While effective, relatively safe, and recyclable, ILs are expensive. To reduce costs, dilution with other safe compounds is desirable, if there is no impact on deconstruction efficiency. Glycerol, a food additive, is inexpensive and becoming even more so since it is a by-product of the burgeoning biodiesel industry. Use of glycerol as an additive or diluent for ILs is extensively evaluated in this work. Rice hulls are an abundant biomass, with over 100 million tons produced per year, but with little practical use. The IL 1-ethyl-3-methylimidazolium formate ([C2mim][O2CH] or EMIM Form) when mixed with an equal amount of glycerol has been shown to be effective in pretreating rice hulls. Ambient pressure, a pretreatment temperature of 110°C, and a reaction time of three hours produced rice hulls that could be enzymatically hydrolyzed to give reasonably good glucose and xylose yields considering the recalcitrance of this silica-armored biomass. The IL [C2mim][O2CH] was also effective when mixed with an equal amount of glycerol to pretreat loblolly pine, a fast-growing softwood. Loblolly pine was pretreated at 140°C for three hours to produce a solid rich in cellulose and hemicelluloses, while a lignin-rich product could be precipitated from the IL. Similar products were obtained from pretreatment with a mixture of 75% 1

  17. The effect of glycerol treatment on crab muscle fibres.

    PubMed

    Papir, D

    1973-04-01

    1. Membrane constants of the closer muscle of the ghost crab, Ocypoda cursor, were determined before and after treatment in hypertonic glycerol solution and return to an artificial sea-water (A.S.W.) solution.2. Muscle contraction was abolished after return of the muscle to A.S.W.3. The membrane capacitance was reduced from 29.0 muF/cm(2) to 10.5 muF/cm(2).4. Other passive properties of the muscle membrane, not dependent on capacitance, were not changed.5. The presynaptic nerve, transmitter release, post-synaptic sensitivity to transmitter and ionic mechanisms of synaptic action were unaffected by glycerol treatment.6. More than 60% of the membrane capacitance/unit area is contributed by the complex tubular system.7. The tubular system in crustacea is necessary for excitation-contraction coupling.

  18. Influence of heat shock on glycerol production in alcohol fermentation.

    PubMed

    Berovic, Marin; Pivec, Aleksandra; Kosmerl, Tatjana; Wondra, Mojmir; Celan, Stefan

    2007-02-01

    The influence of single and double heat shocks induced during the exponential growth phase of the Saccharomyces cerevisiae fermentation of cultivar Sauvignon Blanc grape must was examined. Rapid temperature changes from 18 degrees C to 34 degrees C have been applied. The effect of the duration of exposure to a high temperature has been analyzed. By the applications of a single heat shock and a double heat shock, up to 8.2 g l(-1) and 11.0 g l(-1) glycerol have been produced, respectively. To prevent the evaporation of fine wine bouquet compounds during the temperature changes, reflux coolers on the top of bioreactors have been employed. By using this method, glycerol production was increased by up to 65%.

  19. Modified silica-based heterogeneous catalysts for etherification of glycerol

    SciTech Connect

    Gholami, Zahra; Abdullah, Ahmad Zuhairi Gholami, Fatemeh; Vakili, Mohammadtaghi

    2015-07-22

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca{sub 1.6}La{sub 0.6}/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.

  20. Controllable superlubricity of glycerol solution via environment humidity.

    PubMed

    Chen, Zhe; Liu, Yuhong; Zhang, Shaohua; Luo, Jianbin

    2013-09-24

    The effect of humidity on the lubrication property of glycerol solution between steel surfaces has been investigated in this paper. A stable superlubricity with a friction coefficient about 0.006 has been found under the relative humidity between around 40% RH and 50% RH. Especially, it is noted that the lubrication state can be switched between superlubricity and nonsuperlubricity by adjusting humidity, which is attributed to the humidity-dependent hydrogen-bonding pattern in the solution. The mechanism of such superlubricity is attributed to the hydrated layer of water between the surface layers, which is formed by hydrogen-bonded glycerol and water molecules and strong enough to bear load, absorbed on each side of the solid surfaces. The work has potential applications, providing a simple and environment-friendly way to accomplish controllable superlubrication between steel pairs, which are commonly used in industry.

  1. Capillary Gravity Waves over an Obstruction - Forced Generalized KdV equation

    NASA Astrophysics Data System (ADS)

    Choi, Jeongwhan; Whang, S. I.; Sun, Shu-Ming

    2013-11-01

    Capillary gravity surface waves of an ideal fluid flow over an obstruction is considered. When the Bond number is near the critical value 1/3, a forced generalized KdV equation of fifth order is derived. We study the equation analytically and numerically. Existence and stability of solutions are studied and new types of numerical solutions are found.

  2. Two-dimensional capillary origami

    NASA Astrophysics Data System (ADS)

    Brubaker, N. D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  3. Capillary Separation: Micellar Electrokinetic Chromatography

    NASA Astrophysics Data System (ADS)

    Terabe, Shigeru

    2009-07-01

    Micellar electrokinetic chromatography (MEKC), a separation mode of capillary electrophoresis (CE), has enabled the separation of electrically neutral analytes. MEKC can be performed by adding an ionic micelle to the running solution of CE without modifying the instrument. Its separation principle is based on the differential migration of the ionic micelles and the bulk running buffer under electrophoresis conditions and on the interaction between the analyte and the micelle. Hence, MEKC's separation principle is similar to that of chromatography. MEKC is a useful technique particularly for the separation of small molecules, both neutral and charged, and yields high-efficiency separation in a short time with minimum amounts of sample and reagents. To improve the concentration sensitivity of detection, several on-line sample preconcentration techniques such as sweeping have been developed.

  4. Copolymers For Capillary Gel Electrophoresis

    SciTech Connect

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  5. Capillary Properties of Model Pores.

    NASA Astrophysics Data System (ADS)

    Walsh, Tim J.

    Available from UMI in association with The British Library. Liquid menisci in small pores exhibit a curved surface across which there is a significant pressure difference. In the past it has been difficult to calculate the curvatures, of this class of menisci. Some recent studies have shown that a relatively straightforward, but hitherto neglected, method originated by Mayer & Stowe (1965) and Princen (1969a) can be applied to analyse wedging menisci. However, the method has lacked a comprehensive experimental verification. This investigation follows on from the previously limited studies. A standardised method for the application of the analysis is described, the results from which are compared to observations made using modified experimental procedures. The behaviour of the capillary surfaces formed in several model pores are analysed with the method. The model systems studied are rectangular ducts, the pores formed by a rod in an angled corner, by two contacting rods and a plate and the space between a rod and a plate. For the latter two shapes the analysis is extended to include systems of mixed wettability which have a particular bearing on enhanced oil recovery operations. Experiments in which curvatures are inferred from observations of capillary rise, are performed using two comparative techniques. An involved procedure confirms predictions of meniscus curvature to within 0.3%. Use of a more straightforward, through less accurate, technique enables variations of curvature with tube shape or contact angle(s) to be conveniently studied. Results obtained are excellent and confirm the theory within the determined experimental errors. (Abstract shortened by UMI.).

  6. Adjuvant properties of a simplified C32 monomycolyl glycerol analogue.

    PubMed

    Bhowruth, Veemal; Minnikin, David E; Agger, Else Marie; Andersen, Peter; Bramwell, Vincent W; Perrie, Yvonne; Besra, Gurdyal S

    2009-04-01

    A simplified C(32) monomycolyl glycerol (MMG) analogue demonstrated enhanced immunostimulatory activity in a dioctadecyl ammonium bromide (DDA)/Ag85B-ESAT-6 formulation. Elevated levels of IFN-gamma and IL-6 were produced in spleen cells from mice immunised with a C(32) MMG analogue comparable activity to the potent Th1 adjuvant, trehalose 6,6'-di-behenate (TDB).

  7. Selective oxidation of glycerol under acidic conditions using gold catalysts

    SciTech Connect

    Villa, Alberto; Veith, Gabriel M; Prati, Laura

    2010-01-01

    H-mordenite-supported PtAu nanoparticles are highly active and selective in the oxidation of glycerol under acidic conditions, which allows the direct preparation of free acids (see picture). The high selectivity for C{sub 3} compounds results from the negligible formation of H{sub 2}O{sub 2}, in contrast to PtAu nanoparticles supported on activated carbon.

  8. Metabolic Flexibility of Yarrowia lipolytica Growing on Glycerol

    PubMed Central

    Egermeier, Michael; Russmayer, Hannes; Sauer, Michael; Marx, Hans

    2017-01-01

    The yeast Yarrowia lipolytica is a fascinating microorganism with an amazing metabolic flexibility. This yeast grows very well on a wide variety of carbon sources from alkanes over lipids, to sugars and glycerol. Y. lipolytica accumulates a wide array of industrially relevant metabolites. It is very tolerant to many environmental factors, above all the pH value. It grows perfectly well over a wide pH range, but it has been described, that the pH has a decisive influence on the metabolite pattern accumulated by this yeast. Here, we set out to characterize the metabolism of different Y. lipolytica strains, isolated from various environments, growing on glycerol at different pH values. The conditions applied for strain characterization are of utmost importance. Shake flask cultures lead to very different results, when compared to controlled conditions in bioreactors regarding pH and aeration. Only one of the tested strains was able to accumulate high amounts of citric acid in shake flask experiments, whereas a group of six strains turned out to accumulate citric acid efficiently under controlled conditions. The present study shows that strains isolated from dairy products predominantly accumulate sugar alcohols at any given pH, when grown on glycerol under nitrogen-limitation. PMID:28174563

  9. Glycerol production by anaerobic fermentation of molasses on pilot scale

    SciTech Connect

    Virkar, P.D.; Panesar, M.S.

    1987-04-20

    The use of sodium sulphite as a steering agent for enhancing the yield of glycerol during anaerobic ethanol fermentation is well established. Several studies have been reported in the literature using free as well as immobilized cells of Saccharomyces cerevisiae. In these studies it was observed that a relatively high concentration of sulphite in the fermentation broth, typically 40-100 g/l, was required to obtain a commercially significant yield of glycerol on sugar fermented. However, the dosing of large quantities of sulphite generally resulted in reduced viability of the microorganisms and slow fermentations. The glycerol concentration in the fermented broth was generally observed to be in the range 20-40 g/l. The low productivity coupled with the high cost of sulfite rendered the process commercially unattractive. In order to reduce the sulphite requirement, whilst at the same time increasing the productivity, a modified vacuum fermentation was developed in the laboratories. The process was successfully estabilished on a pilot scale and typical data obtained on scaleup are reported below. 8 references.

  10. Enhanced succinate production from glycerol by engineered Escherichia coli strains.

    PubMed

    Li, Qing; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-10-01

    In this study, an engineered strain Escherichia coli MLB (ldhA(-)pflB(-)) was constructed for production of succinate from glycerol. The succinate yield was 0.37mol/mol in anaerobic culture, however, the growth and glycerol consumption rates were very slow, resulting in a low succinate level. Two-stage fermentation was performed in flasks, and the succinate yield reached 0.93mol/mol, but the succinate titer was still low. Hence, overexpression of malate dehydrogenase, malic enzyme, phosphoenolpyruvate (PEP) carboxylase and PEP carboxykinase (PCK) from E. coli, and pyruvate carboxylase from Corynebacterium glutamicum in MLB was investigated for improving succinate production. Overexpression of PCK resulted in remarkable enhancement of glycerol consumption and succinate production. In flask experiments, the succinate concentration reached 118.1mM, and in a 1.5-L bioreactor the succinate concentration further increased to 360.2mM. The highest succinate yield achieved 0.93mol/mol, which was 93% of the theoretical yield, in the anaerobic stage.

  11. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase.

    PubMed

    Michnick, S; Roustan, J L; Remize, F; Barre, P; Dequin, S

    1997-07-01

    The possibility of the diversion of carbon flux from ethanol towards glycerol in Saccharomyces cerevisiae during alcoholic fermentation was investigated. Variations in the glycerol 3-phosphate dehydrogenase (GPDH) level and similar trends for alcohol dehydrogenase (ADH), pyruvate decarboxylase and glycerol-3-phosphatase were found when low and high glycerol-forming wine yeast strains were compared. GPDH is thus a limiting enzyme for glycerol production. Wine yeast strains with modulated GPD1 (encoding one of the two GPDH isoenzymes) expression were constructed and characterized during fermentation on glucose-rich medium. Engineered strains fermented glucose with a strongly modified [glycerol] : [ethanol] ratio. gpd1delta mutants exhibited a 50% decrease in glycerol production and increased ethanol yield. Overexpression of GPD1 on synthetic must (200 g/l glucose) resulted in a substantial increase in glycerol production ( x 4) at the expense of ethanol. Acetaldehyde accumulated through the competitive regeneration of NADH via GPDH. Accumulation of by-products such as pyruvate, acetate, acetoin, 2,3 butane-diol and succinate was observed, with a marked increase in acetoin production.

  12. Capillary forces between chemically different substrates.

    PubMed

    De Souza, E J; Brinkmann, M; Mohrdieck, C; Crosby, A; Arzt, E

    2008-09-16

    Motivated by experimental results, we present numerical and analytical calculations of the capillary force exerted by a capillary bridge spanning the gap between two parallel flat plates of asymmetric wettability. Depending on whether the sum of the two contact angles is smaller or larger than 180 degrees, the capillary force is either attractive or repulsive at small separations D between the plates. In either cases the magnitude of the force diverges as D approaches zero. The leading order of this divergence is captured by an analytical expression deduced from the geometry of the meniscus of a flat capillary bridge. The results for substrates with different wettability reveal an interesting behavior: with the sum of the contact angles fixed, the magnitude of the capillary force and the rupture separation decreases as the asymmetry in contact angles is increased. In addition, we present the rupture separation, i.e., the maximal extension of a capillary bridge, as a function of the contact angles. Our results provide an extensive picture of surface wettability effects on capillary adhesion.

  13. Towards new applications using capillary waveguides

    PubMed Central

    Stasio, Nicolino; Shibukawa, Atsushi; Papadopoulos, Ioannis N.; Farahi, Salma; Simandoux, Olivier; Huignard, Jean-Pierre; Bossy, Emmanuel; Moser, Christophe; Psaltis, Demetri

    2015-01-01

    In this paper we demonstrate the enhancement of the sensing capabilities of glass capillaries. We exploit their properties as optical and acoustic waveguides to transform them potentially into high resolution minimally invasive endoscopic devices. We show two possible applications of silica capillary waveguides demonstrating fluorescence and optical-resolution photoacoustic imaging using a single 330 μm-thick silica capillary. A nanosecond pulsed laser is focused and scanned in front of a capillary by digital phase conjugation through the silica annular ring of the capillary, used as an optical waveguide. We demonstrate optical-resolution photoacoustic images of a 30 μm-thick nylon thread using the water-filled core of the same capillary as an acoustic waveguide, resulting in a fully passive endoscopic device. Moreover, fluorescence images of 1.5 μm beads are obtained collecting the fluorescence signal through the optical waveguide. This kind of silica-capillary waveguide together with wavefront shaping techniques such as digital phase conjugation, paves the way to minimally invasive multi-modal endoscopy. PMID:26713182

  14. Lipolysis and glycerol gluconeogenesis in simultaneously fasting and lactating northern elephant seals.

    PubMed

    Houser, Dorian S; Champagne, Cory D; Crocker, Daniel E

    2007-12-01

    Adult female elephant seals (Mirounga angustirostris) combine long-term fasting with lactation and molting. Glycerol gluconeogenesis has been hypothesized as potentially meeting all of the glucose requirements of the seals during these fasts. To test this hypothesis, a primed constant infusion of [2-(14)C]glycerol was administered to 10 ten adult female elephant seals at 5 and 21-22 days postpartum and to 10 additional adult females immediately after the molt. Glycerol kinetics, rates of lipolysis, and the contribution of glycerol to glucose production were determined for each period. Plasma metabolite levels as well as insulin, glucagon, and cortisol were also measured. Glycerol rate of appearance was not significantly correlated with mass (P = 0.14, r2 = 0.33) but was significantly related to the percentage of glucose derived from glycerol (P < 0.01, r2 = 0.81) during late lactation. The contribution of glycerol to glucose production was <3% during each fasting period, suggesting a lower contribution to gluconeogenesis than is observed in other long-term fasting mammals. Because of a high rate of endogenous glucose production in fasting elephant seals, it is likely that glycerol gluconeogenesis still makes a substantial contribution to the substrate needs of glucose-dependent tissues. The lack of a relationship between glucoregulatory hormones and glycerol kinetics, glycerol gluconeogenesis, and metabolites supports the proposition that fasting elephant seals do not conform to the traditional insulin-glucagon model of substrate metabolism.

  15. Regulation of glycerol metabolism in Enterobacter aerogenes NBRC12010 under electrochemical conditions.

    PubMed

    Hatayama, Kouta; Yagishita, Tatsuo

    2009-06-01

    Enterobacter aerogenes NBRC12010 was able to ferment glycerol to ethanol and hydrogen gas. Fermentation of glycerol ceased in the stationary phase of growth, and it was activated by electrochemical reactions using thionine as an electron transfer mediator from bacterial cells to an electrode. Using resting cells of E. aerogenes NBRC12010 in only citrate buffer solution, the cells did not consume glycerol at all, but they could metabolize glucose. These results suggest that the regulation of glycerol metabolism occurred at enzymatic steps before glycolysis. In E. aerogenes NBRC12010, glycerol was metabolized via glycerol dehydrogenase (GDH) and then dehydroxyacetone kinase. The GDH-catalyzed reaction mainly depended on the ratio of NAD(+)/NADH. At a NAD(+)/NADH ratio of nearly 1 or less, it was substantially suppressed and glycerol metabolism stopped. When the ratio was higher than 1, GDH was activated and glycerol was metabolized. Thus, the reaction of glycerol metabolism depended on the balance of cellular NAD(+)/NADH. Exogenous NADH was oxidized to NAD(+) by electrochemical reactions with thionine. We proposed the activation mechanism of glycerol metabolism under electrochemical conditions.

  16. Measurement of serum total glycerides and free glycerol by high-performance liquid chromatography.

    PubMed

    Li, Hongxia; Dong, Jun; Chen, Wenxiang; Wang, Shu; Guo, Hanbang; Man, Yong; Mo, Peisheng; Li, Jianzhai

    2006-09-01

    Serum levels of total glycerides and free glycerol are important indices of lipid metabolism and cardiovascular disease risk. Convenient enzymatic methods of measurement have been available, but they are susceptible to interference. Situations exist in both research and clinical laboratories in which more specific and precise methods are needed. We developed HPLC methods for the measurement of serum total glycerides and free glycerol. For total glycerides, serum was mixed with an internal standard (1,2,4-butanetriol) and treated with alcoholic sodium hydroxide to hydrolyze glycerides to glycerol. After deproteinization with tungstic acid, the glycerol was benzoylated with an optimized Schotten-Baumann reaction and analyzed by HPLC. For free glycerol, serum was equilibrated with the internal standard and deproteinized with tungstic acid to remove the glycerides. The glycerol was benzoylated and analyzed as for total glycerol. Various factors were investigated, and no significant sources of interference were detected. The total coefficients of variation ranged from 0.7% to 2.0% for total glycerides and from 1.7% to 3.2% for free glycerol. The analytical recoveries ranged from 98.5% to 101.6%. In conclusion, simple and reliable HPLC methods for serum total glycerides and free glycerol have been developed. The methods may also be used for the analyses of glycerol or glycerides in other biological samples.

  17. Effect of Glycerol Water Binary Mixtures on the Structure and Dynamics of Protein Solutions

    SciTech Connect

    Ghattyvenkatakrishna, Pavan K; Carri, Gustavo A.

    2014-01-01

    We have performed 20ns of fully atomistic molecular dynamics simulations of Hen Egg-White Lysozyme in 0, 10, 20, 30 and 100% by weight of glycerol in water to better understand the microscopic physics behind the bioprotection offered by glycerol to naturally occuring biological systems. The sovlent exposure of protein surface residues changes when glycerol is introduced. The dynamic behavior of the protein, as quantified by the Incoherent Intermediate Scattering Function, shows a non-monotonic dependence on glycerol content. The fluctuations of the protein residues with respect to each other were found to be similar in all water containing solvents; but different from the pure glycerol case. The increase in the number of protein glycerol hydrogen bonds in glycerol water binary mixtures explains the slowing down of protein dynamics as the glycerol content increases. We also explored the dynamic behavior of the hydration layer. We show that the short-length scale dynamics of this layer are insenstive to glycerol concentration. However, the long-length scale behavior shows a significant dependence on glycerol content. We also provide insights into the behavior of bound and mobile water molecules.

  18. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella.

    PubMed

    Park, Youngjin; Kim, Yonggyun

    2014-08-01

    Insects in temperate zones survive low temperatures by migrating or tolerating the cold. The diamondback moth, Plutella xylostella, is a serious insect pest on cabbage and other cruciferous crops worldwide. We showed that P. xylostella became cold-tolerant by expressing rapid cold hardiness (RCH) in response to a brief exposure to moderately low temperature (4°C) for 7h along with glycerol accumulation in hemolymph. Glycerol played a crucial role in the cold-hardening process because exogenously supplying glycerol significantly increased the cold tolerance of P. xylostella larvae without cold acclimation. To determine the genetic factor(s) responsible for RCH and the increase of glycerol, four glycerol kinases (GKs), and glycerol-3-phosphate dehydrogenase (PxGPDH) were predicted from the whole P. xylostella genome and analyzed for their function associated with glycerol biosynthesis. All predicted genes were expressed, but differed in their expression during different developmental stages and in different tissues. Expression of the predicted genes was individually suppressed by RNA interference (RNAi) using double-stranded RNAs specific to target genes. RNAi of PxGPDH expression significantly suppressed RCH and glycerol accumulation. Only PxGK1 among the four GKs was responsible for RCH and glycerol accumulation. Furthermore, PxGK1 expression was significantly enhanced during RCH. These results indicate that a specific GK, the terminal enzyme to produce glycerol, is specifically inducible during RCH to accumulate the main cryoprotectant.

  19. Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures.

    PubMed

    Selembo, Priscilla A; Perez, Joe M; Lloyd, Wallis A; Logan, Bruce E

    2009-12-15

    The conversion of glycerol into high value products, such as hydrogen gas and 1,3-propanediol (PD), was examined using anaerobic fermentation with heat-treated mixed cultures. Glycerol fermentation produced 0.28 mol-H(2)/mol-glycerol (72 mL-H(2)/g-COD) and 0.69 mol-PD/mol-glycerol. Glucose fermentation using the same mixed cultures produced more hydrogen gas (1.06 mol-H(2)/mol-glucose) but no PD. Changing the source of inoculum affected gas production likely due to prior acclimation of bacteria to this type of substrate. Fermentation of the glycerol produced from biodiesel fuel production (70% glycerol content) produced 0.31 mol-H(2)/mol-glycerol (43 mL H(2)/g-COD) and 0.59 mol-PD/mol-glycerol. These are the highest yields yet reported for both hydrogen and 1,3-propanediol production from pure glycerol and the glycerol byproduct from biodiesel fuel production by fermentation using mixed cultures. These results demonstrate that production of biodiesel can be combined with production of hydrogen and 1,3-propanediol for maximum utilization of resources and minimization of waste.

  20. Research note: investigation on the metabolism of glycerol in the rumen of bulls.

    PubMed

    Kijora, C; Bergner, H; Götz, K P; Bartelt, J; Szakács, J; Sommer, A

    1998-01-01

    Two bulls, each fitted with rumen and duodenal cannulas, received (in addition to a hay-grain diet) twice daily an infusion of 200 g glycerol into the rumen over a period of six days. During this preliminary in vivo investigation, the influence of a glycerol application on the rumen environment over a six-day adaptation period was examined. Samples of rumen fluid were collected daily, two hours after glycerol infusion. An additional 15N-urea application into the rumen was given on days 1 (without glycerol infusion), 3 and 7 (with glycerol infusion). Extra samples of rumen fluid and blood plasma (from puncture of vena jungularis) were taken through the 12th hour following urea application. Rumen fluid pH was reduced due to glycerol intake from 6.3 (day 1, without glycerol) to 5.4 by day 7. Molar proportion of acetic acid to propionic acid decreased from 3.5 (day 1) to 2.1 (days 6 and 7). Average glycerol disappearance rate from the rumen was 4.7 gl-1 h-1 for the first hour. Only small amounts of glycerol could be detected in the duodenal digesta. Blood plasma glycerol content was significantly higher after glycerol application (0.061 mmol l-1 vs. 0.019 mmol l-1). The incorporation of 15N into the rumen bacteria and the proportion of bacterial N (as percent of TCA-precipitable N in the rumen fluid) were lower after glycerol influsion. These results, coupled with the lower concentration of iso-acids (isobutyric and isovaleric acids) in the rumen fluid, indicate that the high amount of glycerol infusion (10% of DMI) reduced protein metabolism of rumen bacteria throughout the experimental period.

  1. Possibility of analytical finding of glycerol caused by self-catheterization in doping control.

    PubMed

    Okano, Masato; Nishitani, Yasunori; Kageyama, Shinji

    2014-01-01

    Glycerol is listed on the World Anti-Doping Agency (WADA) prohibited list as a masking agent principally because the administration of glycerol increases plasma volume and decreases the concentration of haemoglobin and the value of haematocrit in blood. Glycerol is a naturally occurring substance; therefore, the threshold is set as 1.0 mg/mL in the WADA technical document (WADA TD2013DL). In a WADA-accredited doping control laboratory, three doping control urine specimens collected from impaired athletes were determined to contain a high concentration of glycerol (>1.0 mg/mL); two of these specimens were considered adverse analytical findings (AAFs). Self-catheterization is necessary for athletes with neurological disorders such as neurogenic bladder dysfunction. We conducted a simple simulation of self-catheterization as an experimental test using urethral catheters with an antiseptic agent containing glycerol to confirm the influence of this antiseptic agent on the quantitative value of glycerol in doping control analysis. Some users employ a catheter with glycerol solution (ca. 1 mL) to avoid pain during use. The urine sample passed through such a catheter exhibited a glycerol concentration (4.94 mg/mL) greater than the threshold level. In September 2014, the threshold for glycerol will change from 1.0 to 4.3 mg/mL (WADA TD2014DL); however, a possibility exists for the quantitative value of glycerol in doping control analysis to exceed the threshold because of the use of an antiseptic agent containing glycerol for self-catheterization. The AAF for glycerol for impaired athletes, particularly those who participate in Paralympic sports, should account for the use of a catheter with glycerol.

  2. Excess wing in glass-forming glycerol and LiCl-glycerol mixtures detected by neutron scattering

    DOE PAGES

    Gupta, S.; Arend, N.; Lunkenheimer, P.; ...

    2015-01-22

    The relaxational dynamics in glass-forming glycerol and glycerol mixed with LiCl is investigated using different neutron scattering techniques. The performed neutron spin echo experiments, which extend up to relatively long relaxation time scales of the order of 10 ns, should allow for the detection of contributions from the so-called excess wing. This phenomenon, whose microscopic origin is controversially discussed, arises in a variety of glass formers and, until now, was almost exclusively investigated by dielectric spectroscopy and light scattering. In conclusion, we show here that the relaxational process causing the excess wing can also be detected by neutron scattering, whichmore » directly couples to density fluctuations.« less

  3. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013.

    PubMed

    Venkataramanan, Keerthi P; Boatman, Judy J; Kurniawan, Yogi; Taconi, Katherine A; Bothun, Geoffrey D; Scholz, Carmen

    2012-02-01

    During the production of biodiesel, crude glycerol is produced as a byproduct at 10% (w/w). Clostridium pasteurianum has the inherent potential to grow on glycerol and produce 1,3-propanediol and butanol as the major products. Growth and product yields on crude glycerol were reported to be slower and lower, respectively, in comparison to the results obtained from pure glycerol. In this study, we analyzed the effect of each impurity present in the biodiesel-derived crude glycerol on the growth and metabolism of glycerol by C. pasteurianum. The crude glycerol contains methanol, salts (in the form of potassium chloride or sulfate), and fatty acids that were not transesterified. Salt and methanol were found to have no negative effects on the growth and metabolism of the bacteria on glycerol. The fatty acid with a higher degree of unsaturation, linoleic acid, was found to have strong inhibitory effect on the utilization of glycerol by the bacteria. The fatty acid with lower or no degrees of unsaturation such as stearic and oleic acid were found to be less detrimental to substrate utilization. The removal of fatty acids from crude glycerol by acid precipitation resulted in a fermentation behavior that is comparable to the one on pure glycerol. These results show that the fatty acids in the crude glycerol have a negative effect by directly affecting the utilization of glycerol as the carbon source, and hence their removal from crude glycerol is an essential step towards the utilization of crude glycerol.

  4. Study and comparison of two enzyme membrane reactors for fatty acids and glycerol production

    SciTech Connect

    Molinari, R.; Santoro, M.E.; Drioli, E. . Dept. of Chemical Engineering and Materials Inst. on Membranes and Chemical Reactors-CNR, Arcavacata di Rende )

    1994-11-01

    Two enzyme membrane reactors (EMR), (1) with one substrate (olive oil) in an oil-in-water emulsion (E-EMR) and (2) with two separated liquid phases (oil and water) (TSLP-EMR), have been studied for the conversion of the triglycerides to fatty acids and glycerol. The enzyme was Candida cylindracea lipase confined on the pressurized face or entrapped in the sponge side of capillary ultrafiltration membranes. Two methods for immobilizing the enzyme in the TSLP-EMR were used: ultrafiltration on a virgin membrane and ultrafiltration on glutaraldehyde pretreated membranes. A multiple use of the reactor was obtained immobilizing the enzyme on the membrane preactivated with glutaraldehyde. The TSLP-EMR showed a specific activity of 0.529 mmol/(mg[center dot]h) versus a specific activity of 0.170 mmol/(mg[center dot]h) of the E-EMR. The rate of fatty acid production in the TSLP-EMR was linear with time showing no enzyme deactivation in an operating time of 80 h. The kinetics observed in the two reactors was different: an equilibrium reaction product-inhibited for the E-EMR and an apparent irreversible reaction of zero order for the TSLP-EMR. Taking into account that in the TSLP-EMR, compared to the E-EMR, (1) the specific activity was higher, (2) the specific rate was constant with the time, and (3) the two products were already separated after the reaction, the TSLP-EMR configuration seems the more convenient.

  5. Micromechanism linear actuator with capillary force sealing

    DOEpatents

    Sniegowski, Jeffry J.

    1997-01-01

    A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.

  6. Capillary electrophoresis with indirect amperometric detection.

    PubMed

    Olefirowicz, T M; Ewing, A G

    1990-01-19

    The use of indirect amperometric detection with capillary electrophoresis is demonstrated. The system consists of a porous glass coupler which allows amperometric detection at a carbon fiber electrode placed in the end of the capillary. 3,4-Dihydroxybenzylamine is added to the buffer system as a continuously eluting electrophore. Indirect amperometric detection in 9-mumol I.D. capillaries provides detection limits as low as 380 attomole for the amino acid arginine. Finally, both direct and indirect amperometric detection can be accomplished simultaneously.

  7. Studies on Freezing RAM Semen in Absence of Glycerol.

    NASA Astrophysics Data System (ADS)

    Abdelnaby, Abdelhady Abdelhakeam

    1988-12-01

    Glycerol is widely used as a major cryoprotective agent for freezing spermatozoa of almost all species. However, it reduces fertility of sheep inseminated cervically compared with intrauterine insemination. Studies were conducted to develop a method and procedure for freezing ram semen in the absence of glycerol. Post -thaw survival of ram spermatozoa frozen in the absence of glycerol was affected by time and temperature after collection and before dilution and time after dilution and before freezing. Increase in time at 5^ circC before or after dilution and before freezing increased both post-thaw motility and number of cells passing through Sephadex filter. A cold dilution method was developed. Slow cooling of fresh ram semen and diluting at 5^circ C 2-3 hr. after collection, then freezing 1 hr. after dilution improved both post-thaw motility and number of cells passing through Sephadex filter compared with immediate dilution at 30-37^circC after collection and freezing 3-4 hr. later (P < 0.05). An extender was developed to freeze ram semen in the absence of glycerol. An increase in post-thaw motility was obtained when semen was extended in TES titrated with Tris to pH 7.0 (TEST) and osmotic pressure of 375-400 mOsm/kg, containing 25-30% (v/v) egg yolk and 10% (v/v) maltose. A special device (boat) for freezing was constructed to insure the same height of the sample above LN _2 and thus the same freezing rate from freeze to freeze. Freezing of semen in 0.25cc straws at 5-10 cm above LN_2 (73.8 to 49.5 ^circC/min) yielded higher post-thaw motility than the rates resulted from freezing at 15 cm above LN_2 or 1 cm above LN _2. Faster Thawing in 37^ circC water for 30 sec. (7.8^ circC/sec.) increased post-thaw motility compared with slower thawing in 5 or 20^circ C water (P < 0.05). A lambing rate of 52.2% was obtained in one fertility trial conducted with ram semen frozen without glycerol and 17.1% in a second trial. One injection (IM) of 15 mg PGF_{2alpha}/ewe for

  8. Capillary electrophoresis and mass spectrometry for screening of metabolic disorders in newborns.

    PubMed

    Senk, Petr; Kozák, Libor; Foret, Frantisek

    2004-06-01

    Clinical analyses always represent a challenge for the sensitivity and selectivity of the analytical techniques. Of the most critical are the techniques required for the quick determination of the disease state and application of the proper treatment in newborns. This short critical review overviews the present state of the art of the use of mass spectrometry and capillary electrophoresis for screening of metabolic disorders in newborns.

  9. Analytical potential of enzyme-coated capillary reactors in capillary zone electrophoresis.

    PubMed

    Simonet, Bartolomé M; Ríos, Angel; Valcárcel, Miguel

    2004-01-01

    Enzymes immobilized on the inner surface of an electrophoretic capillary were used to increase sensitivity and resolution in capillary zone electrophoresis (CZE). Sensitivity is enhanced by inserting a piece of capillary containing the immobilized enzyme into the main capillary, located before the detector, in order to transform the analyte into a product with a higher absorptivity. This approach was used to determine ethanol. In order to improve resolution, capillary pieces containing immobilized enzymes were inserted at various strategic positions along the electrophoretic capillary. On reaching the enzyme, the analyte was converted into a product with a high electrophoretic mobility, the migration time for which was a function of the position of the enzyme reactor. This approach was applied to the separation and determination of acetaldehyde and pyruvate. Finally, the proposed method was validated with the determination of ethanol, acetaldehyde, and pyruvate in beer and wine samples.

  10. Dielectric and specific heat relaxations in vapor deposited glycerol

    SciTech Connect

    Kasina, A. E-mail: wubbenhorst@fys.kuleuven.be; Putzeys, T.; Wübbenhorst, M. E-mail: wubbenhorst@fys.kuleuven.be

    2015-12-28

    Recently [S. Capponi, S. Napolitano, and M. Wübbenhorst, Nat. Commun. 3, 1233 (2012)], vapor deposited glasses of glycerol have been found to recover their super-cooled liquid state via a metastable, ordered liquid (MROL) state characterized by a tremendously enhanced dielectric strength along with a slow-down of the relaxation rate of the structural relaxation. To study the calorimetric signature of this phenomenon, we have implemented a chip-based, differential AC calorimeter in an organic molecular beam deposition setup, which allows the simultaneous measurement of dielectric relaxations via interdigitated comb electrodes and specific heat relaxation spectra during deposition and as function of the temperature. Heating of the as-deposited glass just above the bulk T{sub g} and subsequent cooling/reheating revealed a step-wise increase in c{sub p} by in total 9%, indicating unambiguously that glycerol, through slow vapour deposition, forms a thermodynamically stable glass, which has a specific heat as low as that of crystalline glycerol. Moreover, these glasses were found to show excellent kinetic stability as well as evidenced by both a high onset-temperature and quasi-isothermal recovery measurements at −75 °C. The second goal of the study was to elucidate the impact of the MROL state on the specific heat and its relaxation to the super-cooled state. Conversion of “MROL glycerol” to its “normal” (ordinary liquid, OL) state revealed a second, small (∼2%) increase of the glassy c{sub p}, a little gain (<10%) in the relaxed specific heat, and no signs of deviations of τ{sub cal} from that of normal “bulk” glycerol. These findings altogether suggest that the MROL state in glycerol comprises largely bulk-type glycerol that coexist with a minor volume fraction (<10%) of PVD-induced structural anomalies with a crystal-like calorimetric signature. Based on the new calorimetric findings, we have proposed a new physical picture that assumes the

  11. Heat of capillary condensation in nanopores: new insights from the equation of state.

    PubMed

    Tan, Sugata P; Piri, Mohammad

    2017-02-15

    Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) coupled with the Young-Laplace equation is a recently developed equation of state (EOS) that successfully presents not only the capillary condensation but also the pore critical phenomena. The development of this new EOS allows further investigation of the heats involved in condensation. Compared to the conventional approaches, the EOS calculations present the temperature-dependent behavior of the heat of capillary condensation as well as that of the contributing effects. The confinement effect was found to be the strongest at the pore critical point. Therefore, contrary to the bulk heat condensation that vanishes at the critical point, the heat of capillary condensation in small pores shows a minimum and then increases with temperature when approaching the pore critical temperature. Strong support for the existence of the pore critical point is also discussed as the volume expansivity of the condensed phase in confinement was found to increase dramatically near the pore critical temperature. At high reduced temperatures, the Clausius-Clapeyron equation was found to apply better for confined fluids than it does for bulk fluids.

  12. Effect of the capillary meniscus height on the instability of large Prandtl number Czochralski melt flow

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, E.; Kit, E.; Gelfgat, A. Yu.

    2016-11-01

    Effect of the capillary meniscus on the instability of large Prandtl number Czochralski melt flow is studied experimentally. The measurements are conducted in two experimental facilities by two independent non-intrusive optical techniques. The quantitative results are presented as dependencies of the critical Grashof number (critical temperature difference) on the meniscus height for different Prandtl numbers, radii and aspect ratios. The results show that with increase of the meniscus height the critical temperature difference noticeably grows and sometimes doubles. Recently reported parametric relations for the critical Grashof number and oscillations frequency are extended to include parameters of the meniscus.

  13. Applicability of chemically modified capillaries in chiral capillary electrophoresis for methamphetamine profiling.

    PubMed

    Iwata, Yuko T; Mikuma, Toshiyasu; Kuwayama, Kenji; Tsujikawa, Kenji; Miyaguchi, Hajime; Kanamori, Tatsuyuki; Inoue, Hiroyuki

    2013-03-10

    We examined the applicability of chemically modified capillaries on the chiral capillary electrophoresis of essential compounds for methamphetamine (MA) profiling (MA, amphetamine, ephedrine, pseudoephedrine, norephedrine, and norpseudoephedrine) using highly sulfated γ-cyclodextrin as a chiral selector. Four types of chemically modified capillaries, namely, FunCap-CE/Type D (possessing diol groups), Type A (amino groups), Type C (carboxyl groups), and Type S (sulfate groups), were evaluated. Repeatability, speed, and good chiral resolution sufficient for routine MA profiling were achieved with the Type S capillary.

  14. Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production.

    PubMed

    Kanno, Masahiro; Atsumi, Shota

    2017-01-20

    Cyanobacteria have attracted much attention as a means to directly recycle carbon dioxide into valuable chemicals that are currently produced from petroleum. However, the titers and productivities achieved are still far below the level required in industry. To make a more industrially applicable production scheme, glycerol, a byproduct of biodiesel production, can be used as an additional carbon source for photomixotrophic chemical production. Glycerol is an ideal candidate due to its availability and low cost. In this study, we found that a heterologous glycerol respiratory pathway enabled Synechococcus elongatus PCC 7942 to utilize extracellular glycerol. The engineered strain produced 761 mg/L of 2,3-butanediol in 48 h with a 290% increase over the control strain under continuous light conditions. Glycerol supplementation also allowed for continuous cell growth and 2,3-butanediol production in diurnal light conditions. These results highlight the potential of glycerol as an additional carbon source for photomixotrophic chemical production in cyanobacteria.

  15. Bioconversion of glycerol for bioethanol production using isolated Escherichia coli ss1

    PubMed Central

    Suhaimi, Sheril Norliana; Phang, Lai-Yee; Maeda, Toshinari; Abd-Aziz, Suraini; Wakisaka, Minato; Shirai, Yoshihito; Hassan, Mohd Ali

    2012-01-01

    Bioconverting glycerol into various valuable products is one of glycerol's promising applications due to its high availability at low cost and the existence of many glycerol-utilizing microorganisms. Bioethanol and biohydrogen, which are types of renewable fuels, are two examples of bioconverted products. The objectives of this study were to evaluate ethanol production from different media by local microorganism isolates and compare the ethanol fermentation profile of the selected strains to use of glucose or glycerol as sole carbon sources. The ethanol fermentations by six isolates were evaluated after a preliminary screening process. Strain named SS1 produced the highest ethanol yield of 1.0 mol: 1.0 mol glycerol and was identified as Escherichia coli SS1 Also, this isolated strain showed a higher affinity to glycerol than glucose for bioethanol production. PMID:24031858

  16. [Construction and fermentation of a recombinant Candida glycerinogenes strain with high glycerol production].

    PubMed

    Liu, Ailing; Rao, Zhiming; Ma, Zheng; Zhuge, Bin; Fang, Huiying; Zhuge, Jian

    2009-06-01

    Candida glycerinogenes WL2002-5 (C.g) is an important industrial strain for glycerol production. To further improve glycerol production, we reconstructed a binary vector pCAM3300-zeocin-CgGPD1, introduced it to Agrobacterium tumefaciens LBA4404 by electroporation, and then transformed the T-DNA harboring the CgGPD1 to Candida glycerinogenes by Agrobacterium tumefaciens-mediated transformation (ATMT). After 96 h fermentation with glucose as the substrate, we screened a transformant named C.g-G8 with high glycerol production. Compared with the wild strain, the glucose consumption rate of C.g-G8 and the glycerol production were 12.97% and 18.06% higher, respectively. During the fermentation, the activity of glycerol-3-phosphate dehydrogenase of C.g-G8 was 27.55% higher than that of the wild strain. The recombinant Candida glycerinogenes with high glycerol production was successful constructed by ATMT method.

  17. Value-added processing of crude glycerol into chemicals and polymers.

    PubMed

    Luo, Xiaolan; Ge, Xumeng; Cui, Shaoqing; Li, Yebo

    2016-09-01

    Crude glycerol is a low-value byproduct which is primarily obtained from the biodiesel production process. Its composition is significantly different from that of pure glycerol. Crude glycerol usually contains various impurities, such as water, methanol, soap, fatty acids, and fatty acid methyl esters. Considerable efforts have been devoted to finding applications for converting crude glycerol into high-value products, such as biofuels, chemicals, polymers, and animal feed, to improve the economic viability of the biodiesel industry and overcome environmental challenges associated with crude glycerol disposal. This article reviews recent advances of biological and chemical technologies for value-added processing of crude glycerol into chemicals and polymers, and provides strategies for addressing production challenges.

  18. Natural nanocontainer for the controlled delivery of glycerol as a moisturizing agent.

    PubMed

    Suh, Y J; Kil, D S; Chung, K S; Abdullayev, E; Lvov, Y M; Mongayt, D

    2011-01-01

    Natural halloysite nanotubes with a 15-nm internal lumen and a 50 nm outer diameter were investigated as a nanocontainer for the loading and extended release of glycerol for cosmetic applications. Cytotoxicity testing of the halloysite was conducted on 3T3 and MCF-7 cells, and the tubules showed no toxic effect on the cells for over 48 h. The capability of halloysite for loading glycerol was higher with the USA halloysite than with the New Zealand's, being approximately 20% and 2.3% by weight, respectively. The total elapsed time for releasing glycerol from the nanotubes exceeded 20 h. To further retard the glycerol release rate, the halloysite samples filled with glycerol were coated with several alternate layers of polyethyleneimine and polyacrylic acid. The release rate remained at the same level, however, probably due to the low molecular weight of the polyelectrolytes and the high solubility of glycerol in water.

  19. Supercooling and vitrification of aqueous glycerol solutions at normal and high pressures.

    PubMed

    Miyata, K; Hayakawa, S; Kajiwara, K; Kanno, H

    2012-10-01

    The supercooling and vitrification of aqueous glycerol solutions was studied at high pressures. Homogeneous ice nucleation temperatures (T(H)) were obtained for aqueous glycerol solutions of R=50, 30, 20, 12, and 10 (R: moles of water/moles of glycerol) up to 300MPa. The R=20 glycerol solution formed a glass above 200MPa at a cooling rate of 200°C/min, indicating that pressure enhances glass-formation of aqueous glycerol solutions. The (dT(g)/dP) values were obtained for vitrified aqueous glycerol solutions of R=3, 5, 10, and 20. These data can be used for the development of cryo-preservation liquids for living cells at high pressures.

  20. Valorization of glycerol through the production of biopolymers: the PHB case using Bacillus megaterium.

    PubMed

    Naranjo, Javier M; Posada, John A; Higuita, Juan C; Cardona, Carlos A

    2013-04-01

    In this work technical and economic analyses were performed to evaluate the glycerol transformation into Polyhydroxybutyrate using Bacillus megaterium. The production of PHB was compared using glycerol or glucose as substrates and similar yields were obtained. The total production costs for PHB generation with both substrates were estimated at an industrial scale. Compared to glucose, glycerol showed a 10% and 20% decrease in the PHB production costs using two different separation schemes respectively. Moreover, a 20% profit margin in the PHB sales price using glycerol as substrate resulted in a 166% valorization of crude glycerol. In this work, the feasibility of glycerol as feedstock for the production of PHB at laboratory (up to 60% PHB accumulation) and industrial (2.6US$/kgPHB) scales is demonstrated.

  1. Electron beam irradiation of maltodextrin and cinnamyl alcohol mixtures: influence of glycerol on cross-linking.

    PubMed

    Khandal, Dhriti; Aggarwal, Manjeet; Suri, Gunjan; Coqueret, Xavier

    2015-03-06

    The influence of glycerol on the electron beam-induced changes in maltodextrins-cinnamyl alcohol (CA) blends is examined with respect to its influence on the degree of chain scission, grafting, and cross-linking. The study is relevant to radiation-induced polysaccharide modification, specifically in the perspective of using blended starch as a thermoplastic material, where glycerol is commonly used as a plasticizer. In the absence of CA, glycerol protects maltodextrin from chromophore formation onto the main chain, but also induces more chain scission. The presence of CA provides efficient radiation-protection against scission. Glycerol is shown to affect the interaction between maltodextrin and CA, most likely in the form of an inclusion complex when glycerol is absent. The global behavior under radiation is therefore governed by the physical interactions between the blend constituents rather than on the role of glycerol role as a plasticizer, or as an OH˙ radical scavenger.

  2. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS

    SciTech Connect

    Y.S. Wu; W. Zhang; L. Pan; J. Hinds; G. Bodvarsson

    2000-10-01

    This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow.

  3. Multistaged stokes injected Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  4. CAPILLARY ELECTROPHORETIC BEHAVIOR OF SEVEN SULFONYLUREAS

    EPA Science Inventory

    The electrophoretic behavior of bensulfuron Me, sulfometuron Me, nicosulfuron (Accent), chlorimuron Et, thifensulfuron Me (Harmony), metsulfuron Me, and chlorsulfuron was studied under capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) conditio...

  5. Capillary underwater discharges in repetitive pulse regime

    NASA Astrophysics Data System (ADS)

    de Baerdemaeker, F.; Monte, M.; Leys, C.

    2004-03-01

    In this study a capillary underwater discharge, that is sustained with AC (50 Hz) voltages up to 7.5 kV, is investigated. In a capillary discharge scheme, the current is, at some point along its path between two submerged electrodes, flowing through a narrow elongated bore in a dielectric material. When the current density is sufficiently high, local boiling and subsequent vapour breakdown results in the formation of a plasma within this capillary. At the same time the capillary emits an intense jet of vapour bubbles. Time-dependent electrical current, voltage and light emission curves are recorded for discharges in solutions of NaCl in distilled water and reveal different discharge regimes, depending on the conductivity and the excitation voltage, ranging from repetitive microsecond discharge pulses to a quasi-continuous discharge with a glow-like voltage-current characteristic.

  6. ISS Update: Capillary Flow Experiments-2

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries interviews Dr. Mark Weislogel, Principal Investigator for the Capillary Flow Experiments-2 (CFE), from the Portland State University in Oregon. The CFE i...

  7. Cycloaliphatic epoxy resin coating for capillary electrophoresis.

    PubMed

    Shah, Roopa S; Wang, Qinggang; Lee, Milton L

    2002-04-05

    Coating the interior surface of a fused-silica capillary with a polymeric material has long been used in capillary electrophoresis (CE) to reduce or eliminate electroosmotic flow and suppress adsorption. A cycloaliphatic epoxide-based resin was bonded to silane treated capillaries and crosslinked with a curing agent. The epoxy resin coating significantly reduced electroosmotic flow over a pH range of 3-10. This coating was sufficiently hydrophilic to suppress protein adsorption. The epoxy resin coated capillary was used to separate several acidic and basic proteins and peptides. Separation efficiencies greater than 400,000 theoretical plates were achieved. The relative standard deviations in migration times for proteins were <0.8%. Speed and simplicity are important advantages of the coating procedure compared to other published coating methods.

  8. Capillary electrochromatography using fibers as stationary phases.

    PubMed

    Jinno, K; Watanabe, H; Saito, Y; Takeichi, T

    2001-10-01

    Fiber-packed capillary columns have been evaluated in chromatographic performance in capillary electrochromatography (CEC). The change of electroosmotic flow (EOF) velocity and selectivity using different kinds of fiber materials was examined. Although the EOF velocity among the different fiber packed columns was almost the same, retention of parabens was larger on the Kevlar-packed column than on the Zylon-packed one, and was larger on the as-span-type fiber-packed column than on the high-modulus-type packed one. Using 200 microm ID x 5 cm Kevlar packed column combined with a 100 microm ID x 20 cm precolumn capillary and a 530 microm ID x 45 cm postcolumn capillary, the separation of three parabens within 30 s was achieved. Other compounds were also separated in a few minutes by the fiber-packed CEC method.

  9. Unusual intraosseous capillary hemangioma of the mandible.

    PubMed

    Dereci, Omur; Acikalin, Mustafa Fuat; Ay, Sinan

    2015-01-01

    Intraosseous hemangioma is a benign vascular neoplasm, which is mostly seen in vertebrae, maxillofacial bones, and long bones. Intraosseous hemangioma is rarely seen on jaw bones compared to other skeletal bones and usually occurs in the cavernous form. Capillary intraosseous hemangioma of jaws is an uncommon form of intraosseous hemangioma and has not been thoroughly described so far. In this study, a case of capillary intraosseous hemangioma of the mandible was presented with relevant literature review.

  10. Thin film capillary process and apparatus

    DOEpatents

    Yu, Conrad M.

    2003-11-18

    Method and system of forming microfluidic capillaries in a variety of substrate materials. A first layer of a material such as silicon dioxide is applied to a channel etched in substrate. A second, sacrificial layer of a material such as a polymer is deposited on the first layer. A third layer which may be of the same material as the first layer is placed on the second layer. The sacrificial layer is removed to form a smooth walled capillary in the substrate.

  11. Capillary threads and viscous droplets in square microchannels

    NASA Astrophysics Data System (ADS)

    Cubaud, Thomas; Mason, Thomas G.

    2008-05-01

    We experimentally study the formation and evolution of threads containing more viscous liquids surrounded by less viscous, immiscible liquids through hydrodynamic focusing in square microchannels. Over a large range of viscosities and interfacial tensions, five characteristic regimes of flow behavior are identified: threading, jetting, dripping, tubing, and displacement. We locate the boundaries between these regimes on a flow map based on the capillary number of each fluid. In the jetting and the dripping regimes, the droplet size is measured and related to fluid properties, flow parameters, and geometry. The critical thread length before jetting droplets and the critical length of a viscous tail before breakup in dripping are also examined. This study classifies and defines regimes of thread instabilities that can be used to produce supra- and subchannel size viscous droplets in an elementary microfluidic geometry.

  12. Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol

    NASA Astrophysics Data System (ADS)

    Colombo-Pallotta, M. F.; Rodríguez-Román, A.; Iglesias-Prieto, R.

    2010-12-01

    All reef-building corals are symbiotic with dinoflagellates of the genus Symbiodinium, which influences many aspects of the host’s physiology including calcification. Coral calcification is a biologically controlled process performed by the host that takes place several membranes away from the site of photosynthesis performed by the symbiont. Although it is well established that light accelerates CaCO3 deposition in reef-building corals (commonly referred to as light-enhanced calcification), the complete physiological mechanism behind the process is not fully understood. To better comprehend the coral calcification process, a series of laboratory experiments were conducted in the major Caribbean reef-building species Montastraea faveolata, to evaluate the effect of glycerol addition and/or the super-saturation of oxygen in the seawater. These manipulations were performed in bleached and unbleached corals, to separate the effect of photosynthesis from calcification. The results suggest that under normal physiological conditions, a 42% increase in seawater oxygen concentration promotes a twofold increase in dark-calcification rates relative to controls. On the other hand, the results obtained using bleached corals suggest that glycerol is required, as a metabolic fuel, in addition to an oxygenic environment in a symbiosis that has been disrupted. Also, respiration rates in symbiotic corals that were pre-incubated in light conditions showed a kinetic limitation, whereas corals that were pre-incubated in darkness were oxygen limited, clearly emphasizing the role of oxygen in this regard. These findings indicate that calcification in symbiotic corals is not strictly a “light-enhanced” or “dark-repressed” process, but rather, the products of photosynthesis have a critical role in calcification, which should be viewed as a “photosynthesis-driven” process. The results presented here are discussed in the context of the current knowledge of the coral

  13. Anaerobic fermentation of glycerol in Paenibacillus macerans: metabolic pathways and environmental determinants.

    PubMed

    Gupta, Ashutosh; Murarka, Abhishek; Campbell, Paul; Gonzalez, Ramon

    2009-09-01

    Paenibacillus macerans is one of the species with the broadest metabolic capabilities in the genus Paenibacillus, able to ferment hexoses, deoxyhexoses, pentoses, cellulose, and hemicellulose. However, little is known about glycerol metabolism in this organism, and some studies have reported that glycerol is not fermented. Despite these reports, we found that several P. macerans strains are capable of anaerobic fermentation of glycerol. One of these strains, P. macerans N234A, grew fermentatively on glycerol at a maximum specific growth rate of 0.40 h(-1) and was chosen for further characterization. The use of [U-13C]glycerol and further analysis of extracellular metabolites and proteinogenic amino acids via nuclear magnetic resonance (NMR) spectroscopy allowed identification of ethanol, formate, acetate, succinate, and 1,2-propanediol (1,2-PDO) as fermentation products and demonstrated that glycerol is incorporated into cellular components. A medium formulation with low concentrations of potassium and phosphate, cultivation at acidic pH, and the use of a CO2-enriched atmosphere stimulated glycerol fermentation and are proposed to be environmental determinants of this process. The pathways involved in glycerol utilization and synthesis of fermentation products were identified using NMR spectroscopy in combination with enzyme assays. Based on these studies, the synthesis of ethanol and 1,2-PDO is proposed to be a metabolic determinant of glycerol fermentation in P. macerans N234A. Conversion of glycerol to ethanol fulfills energy requirements by generating one molecule of ATP per molecule of ethanol synthesized. Conversion of glycerol to 1,2-PDO results in the consumption of reducing equivalents, thus facilitating redox balance. Given the availability, low price, and high degree of reduction of glycerol, the high metabolic rates exhibited by P. macerans N234A are of paramount importance for the production of fuels and chemicals.

  14. Thermal Transitions and Extrusion of Glycerol-Plasticized Whey Protein Mixtures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of glycerol and moisture contents on the thermal transitions of whey protein isolate (WPI) powder-glycerol-water mixtures were studied. Mixtures with ratios of 100:0, 70:30, 60:40 and 50:50 WPI:glycerol on a dry basis (db) were pre-conditioned to 0.34+/-0.01 (25.4±0.4ºC) and 0.48+/-0.02...

  15. Quantitative analysis of glycerol in dicarboxylic acid-rich cutins provides insights into Arabidopsis cutin structure.

    PubMed

    Yang, Weili; Pollard, Mike; Li-Beisson, Yonghua; Ohlrogge, John

    2016-10-01

    Cutin is an extracellular lipid polymer that contributes to protective cuticle barrier functions against biotic and abiotic stresses in land plants. Glycerol has been reported as a component of cutin, contributing up to 14% by weight of total released monomers. Previous studies using partial hydrolysis of cuticle-enriched preparations established the presence of oligomers with glycerol-aliphatic ester links. Furthermore, glycerol-3-phosphate 2-O-acyltransferases (sn-2-GPATs) are essential for cutin biosynthesis. However, precise roles of glycerol in cutin assembly and structure remain uncertain. Here, a stable isotope-dilution assay was developed for the quantitative analysis of glycerol by GC/MS of triacetin with simultaneous determination of aliphatic monomers. To provide clues about the role of glycerol in dicarboxylic acid (DCA)-rich cutins, this methodology was applied to compare wild-type (WT) Arabidopsis cutin with a series of mutants that are defective in cutin synthesis. The molar ratio of glycerol to total DCAs in WT cutins was 2:1. Even when allowing for a small additional contribution from hydroxy fatty acids, this is a substantially higher glycerol to aliphatic monomer ratio than previously reported for any cutin. Glycerol content was strongly reduced in both stem and leaf cutin from all Arabidopsis mutants analyzed (gpat4/gpat8, att1-2 and lacs2-3). In addition, the molar reduction of glycerol was proportional to the molar reduction of total DCAs. These results suggest "glycerol-DCA-glycerol" may be the dominant motif in DCA-rich cutins. The ramifications and caveats for this hypothesis are presented.

  16. Evaporation and instabilities of microscopic capillary bridges

    PubMed Central

    Maeda, Nobuo; Israelachvili, Jacob N.; Kohonen, Mika M.

    2003-01-01

    The formation and disappearance of liquid bridges between two surfaces can occur either through equilibrium or nonequilibrium processes. In the first instance, the bridge molecules are in thermodynamic equilibrium with the surrounding vapor medium. In the second, chemical potential gradients result in material transfer; mechanical instabilities, because of van der Waals force jumps on approach or a Rayleigh instability on rapid separation, may trigger irreversible film coalescence or bridge snapping. We have studied the growth and disappearance mechanisms of laterally microscopic liquid bridges of three hydrocarbon liquids in slit-like pores. At rapid slit-opening rates, the bridges rupture by means of a mechanical instability described by the Young–Laplace equation. Noncontinuum but apparently reversible behavior is observed when a bridge is held at nanoscopic surface separations H close to the thermodynamic equilibrium Kelvin length, 2rKcosθ, where rK is the Kelvin radius and θ is the contact angle. During the course of slow evaporation (at H > 2rKcosθ) and subsequent regrowth by capillary condensation (at H < 2rKcosθ), the refractive index of the bridge may vary continuously and reversibly between that of the bulk liquid and vapor. The evaporation process becomes irreversible only at the very final stage of evaporation, when the refractive index of the fluid attains virtually that of the vapor. Measured refractive index profiles and the time-dependence of evaporating neck diameters also seem to differ from predictions based on a continuum picture of bridge evaporation far from the critical point. We discuss these findings in terms of the probable density profiles in evolving liquid bridges. PMID:12538868

  17. A capillary valve for microfluidic systems.

    SciTech Connect

    Cummings, Eric B.; Kanouff, Michael P.; Rush, Brian M.

    2004-10-01

    Microfluidic systems are becoming increasingly complicated as the number of applications grows. The use of microfluidic systems for chemical and biological agent detection, for example, requires that a given sample be subjected to many process steps, which requires microvalves to control the position and transport of the sample. Each microfluidic application has its own specific valve requirements and this has precipitated the wide variety of valve designs reported in the literature. Each of these valve designs has its strengths and weaknesses. The strength of the valve design proposed here is its simplicity, which makes it easy to fabricate, easy to actuate, and easy to integrate with a microfluidic system. It can be applied to either gas phase or liquid phase systems. This novel design uses a secondary fluid to stop the flow of the primary fluid in the system. The secondary fluid must be chosen based on the type of flow that it must stop. A dielectric fluid must be used for a liquid phase flow driven by electroosmosis, and a liquid with a large surface tension should be used to stop a gas phase flow driven by a weak pressure differential. Experiments were carried out investigating certain critical functions of the design. These experiments verified that the secondary fluid can be reversibly moved between its 'valve opened' and 'valve closed' positions, where the secondary fluid remained as one contiguous piece during this transport process. The experiments also verified that when Fluorinert is used as the secondary fluid, the valve can break an electric circuit. It was found necessary to apply a hydrophobic coating to the microchannels to stop the primary fluid, an aqueous electrolyte, from wicking past the Fluorinert and short-circuiting the valve. A simple model was used to develop valve designs that could be closed using an electrokinetic pump, and re-opened by simply turning the pump off and allowing capillary forces to push the secondary fluid back into its

  18. Bundled capillary electrophoresis using microstructured fibres.

    PubMed

    Rogers, Benjamin; Gibson, Graham T T; Oleschuk, Richard D

    2011-01-01

    Joule heating, arising from the electric current passing through the capillary, causes many undesired effects in CE that ultimately result in band broadening. The use of narrow-bore capillaries helps to solve this problem as smaller cross-sectional area results in decreased Joule heating and the rate of heat dissipation is increased by the larger surface-to-volume ratio. Issues arising from such small capillaries, such as poor detection sensitivity, low loading capacity and high flow-induced backpressure (complicating capillary loading) can be avoided by using a bundle of small capillaries operating simultaneously that share buffer reservoirs. Microstructured fibres, originally designed as waveguides in the telecommunication industry, are essentially a bundle of parallel ∼5 μm id channels that extend the length of a fibre having otherwise similar dimensions to conventional CE capillaries. This work presents the use of microstructured fibres for CZE, taking advantage of their relatively high surface-to-volume ratio and the small individual size of each channel to effect highly efficient separations, particularly for dye-labelled peptides.

  19. [Transvascular fluid exchange disturbed by capillary injuries].

    PubMed

    Lugrin, D; Chave, S; Raucoules, M; Grimaud, D

    1996-01-01

    Fluid exchange disorders due to capillary lesions are numerous and their extent depends on the underlying disease as well as the capillary structure of the affected organ. The inflammatory cascade, triggered by sepsis or reperfusion injury, is mediated by several humoral mediators and activated blood cells. These include pro-inflammatory cytokines, arachidonic acid, proteases, oxygen free radicals, polymorphonuclears, procoagulant, complement and fibrinolytic system. The interaction between these mediators leads to a loss of endothelial integrity, a loss of basment membrane and a disruption of the interstitial matrix, with wasting of the endothelial cytoskeleton. The alteration in permeability induces transcapillary exudation of water and protein in the interstitial space, leading to organ dysfunction, mainly the lungs and splanchnic organs. Nitric oxyde, by modulating the response of the endothelium to the cellular interaction may protect against capillary injury. Capillary "stress lesions" following microvascular hypertension are the physiological basis of neurogenic or high altitude pulmonary oedema, and overinflation injury from mechanical ventilation. The anatomic specific features of the cerebral capillaries resulted in the well known concept of blood brain barrier with it's changeing morphology. Under the effect of humoral mediators and cellular interactions, the endothelial cells are able, via a calcium-mediated mechanism, to contract and to modify capillary permeability, leading to vasogenic oedema.

  20. Multiple capillary biochemical analyzer with barrier member

    DOEpatents

    Dovichi, Norman J.; Zhang, Jian Z.

    1996-01-01

    A multiple capillary biochemical analyzer for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal to noise ratio.

  1. Multiple capillary biochemical analyzer with barrier member

    DOEpatents

    Dovichi, N.J.; Zhang, J.Z.

    1996-10-22

    A multiple capillary biochemical analyzer is disclosed for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal-to-noise ratio. 12 figs.

  2. Capillary breakup of fluid threads within confinement

    NASA Astrophysics Data System (ADS)

    Hu, Guoqing; Xue, Chundong; Chen, Xiaodong

    2016-11-01

    Fluid thread breakup is a widespread phenomenon in nature, industry, and daily life. Driven by surface tension (or capillarity) at low flow-rate condition, the breakup scenario is usually called capillary instability or Plateau-Rayleigh instability. Fluid thread deforms under confinement of ambient fluid to form a fluid neck. Thinning of the neck at low flow-rate condition is quasistatic until the interface becomes unstable and collapses to breakup. Underlying mechanisms and universalities of both the stable and unstable thinning remain, however, unclear and even contradictory. Here we conduct new numerical and experimental studies to show that confined interfaces are not only stabilized but also destabilized by capillarity at low flow-rate condition. Capillary stabilization is attributed to confinement-determined internal pressure that is higher than capillary pressure along the neck. Two origins of capillary destabilization are identified: one is confinement-induced gradient of capillary pressure along the interface; the other is the competition between local capillary pressure and internal pressure. This work was supported by National Natural Science Foundation of China (Grant No. 11402274, 11272321, and 11572334).

  3. [The determination of glucose, sucrose and fructose by the method of capillary electrophoresis].

    PubMed

    Yakuba, Yu F; Markovsky, M G

    2015-01-01

    The possibilities of different regimes of micellar capillary electrophoresis using negative polarity and alkaline electrolyte for determination of glucose, sucrose, fructose in extracts of vegetative organs of plants and products of fruits and grapes processing have been studied. A comparative evaluation of the limits of detection of glucose, sucrose, fructose for developed electrolytes have been performed, the advantages and disadvantages of techniques have been discussed. It is recommended to use an aqueous electrolyte containing 0.5% potassium sorbate, 0.62% cetyltrimethylammonium bromide, and 0.02% potassium hydroxide. The analyzed components were detected at 254 nm. The sample was dosed hydrodynamically (30 mbar, 5 sec). Negative voltage 16 kV is recommended, current--54 ± 4 µA, capillary thermostating at 24 °C is applied, the analysis time--15 min. The detection limits for fructose and glucose is 0.03 g/dm3 to 0.07 g of sucrose/dm3. Linearity is stored for each component to 5.0 g/dm 3 inclusive. Electrophoretic mobility of carbohydrates was (10(-4) sm2V(-1)sec(-1)): fructose--3.12, glucose--3.03, sucrose--2.74. Approximate time of release: glucose--13 min, sucrose--13.5 min, fructose--12.5 min. The developed options for mass concentration determining of mono- and disaccharides provide complete separation of the components. Anions, glycerol, ethylene glycol, propylene glycol and butylene isomers do not affect the analysis results.

  4. Interface scaling in a two-dimensional porous medium under combined viscous, gravity, and capillary effects.

    PubMed

    Méheust, Yves; Løvoll, Grunde; Måløy, Knut Jørgen; Schmittbuhl, Jean

    2002-11-01

    We have investigated experimentally the competition between viscous, capillary, and gravity forces during drainage in a two-dimensional synthetic porous medium. The displacement of a mixture of glycerol and water by air at constant withdrawal rate has been studied. The setup can be tilted to tune gravity, and pressure is recorded at the outlet of the model. Viscous forces tend to destabilize the displacement front into narrow fingers against the stabilizing effect of gravity. Subsequently, a viscous instability is observed for sufficiently large withdrawal speeds or sufficiently low gravity components on the model. We predict the scaling of the front width for stable situations and characterize it experimentally through analyses of the invasion front geometry and pressure recordings. The front width under stable displacement and the threshold for the instability are shown, both experimentally and theoretically, to be controlled by a dimensionless number F which is defined as the ratio of the effective fluid pressure drop (i.e., average hydrostatic pressure drop minus viscous pressure drop) at pore scale to the width of the fluctuations in the threshold capillary pressures.

  5. OCT methods for capillary velocimetry

    PubMed Central

    Srinivasan, Vivek J.; Radhakrishnan, Harsha; Lo, Eng H.; Mandeville, Emiri T.; Jiang, James Y.; Barry, Scott; Cable, Alex E.

    2012-01-01

    To date, two main categories of OCT techniques have been described for imaging hemodynamics: Doppler OCT and OCT angiography. Doppler OCT can measure axial velocity profiles and flow in arteries and veins, while OCT angiography can determine vascular morphology, tone, and presence or absence of red blood cell (RBC) perfusion. However, neither method can quantify RBC velocity in capillaries, where RBC flow is typically transverse to the probe beam and single-file. Here, we describe new methods that potentially address these limitations. Firstly, we describe a complex-valued OCT signal in terms of a static scattering component, dynamic scattering component, and noise. Secondly, we propose that the time scale of random fluctuations in the dynamic scattering component are related to red blood cell velocity. Analysis was performed along the slow axis of repeated B-scans to parallelize measurements. We correlate our purported velocity measurements against two-photon microscopy measurements of RBC velocity, and investigate changes during hypercapnia. Finally, we image the ischemic stroke penumbra during distal middle cerebral artery occlusion (dMCAO), where OCT velocimetry methods provide additional insight that is not afforded by either Doppler OCT or OCT angiography. PMID:22435106

  6. Evaporation on/in Capillary Structures of High Heat Flux Two-Phase Devices

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Khrustalev, Dmitry

    1996-01-01

    Two-phase devices (heat pipes, capillary pumped loops, loop heat pipes, and evaporators) have become recognized as key elements in thermal control systems of space platforms. Capillary and porous structures are necessary and widely used in these devices, especially in high heat flux and zero-g applications, to provide fluid transport and enhanced heat transfer during vaporization and condensation. However, some unexpected critical phenomena, such as dryout in long heat pipe evaporators and high thermal resistance of loop heat pipe evaporators with high heat fluxes, are possible and have been encountered in the use of two-phase devices in the low gravity environment. Therefore, a detailed fundamental investigation is proposed to better understand the fluid behavior in capillary-porous structures during vaporization at high heat fluxes. The present paper addresses some theoretical aspects of this investigation.

  7. Capillary liquid chromatography using laser-based and mass spectrometric detection

    SciTech Connect

    Sepaniak, M.J.; Cook, K.D.

    1990-01-01

    The DOE-supported research performed during the past year has mainly focused on investigating and minimizing three problems that limit the practical utility of these capillary electrokinetic separation techniques in chemical analysis. (1) Analyses are hindered by poor reproducibility. This is largely a result of complicated and irreproducible capillary wall-solute interactions that often result in adsorption and mobility changes. (2) While the (micellar electrokinetic capillary chromatography) (MECC) technique permits the separations of neutral solutes, hydrophobic compounds are difficult to separate and manipulation of capacity factors (k's) is critically important. (3) The very small solute band volumes require that on-column detection be performed (usually optical detection) and this seriously limits detectability. In addition to these projects, the electrokinetic equivalent of affinity chromatography and development of remote fiber-optic sensors to measure chemical carcinogens and other compounds have been investigated. 5 refs., 2 figs.

  8. Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.

  9. Effect of crude glycerol-derived inhibitors on ethanol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Kim, Sung Bong; Kang, Seong Woo; Han, Sung Ok; Park, Chulhwan; Kim, Seung Wook

    2012-01-01

    In this study, ethanol production from pure and crude glycerol using Enterobacter aerogenes ATCC 29007 was evaluated under anaerobic culture conditions. Inhibitory effects of substrate concentrations, pH, and salt concentrations were investigated based on crude glycerol components. Ethanol production was performed with pure glycerol concentrations ranging from 5 to 30 g/L to evaluate the effects of substrate concentration and osmotic pressure. The consumed glycerol was 5-14.33 g/L, and the yield of ethanol was higher than 0.75 mol ethanol/mol glycerol after 24 h of cultivation. To evaluate the inhibitory effects of salts (NaCl and KCl), experiments were performed with 0-20 g/L of each salt. Inhibitory effects of salts were strongest at high salt concentrations. The inhibitory effect of pH was performed in the pH range 4-10, and cell growth and ethanol production were highest at pH 5-6. Also, ethanol production was slightly inhibited at low concentration of crude glycerol comparison with pure glycerol. However, significant inhibitory effects were not observed at 1.5 and 2% crude glycerol which showed higher ethanol production compared to pure glycerol.

  10. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    PubMed

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  11. Determination of glycerol in oils and fats using liquid chromatography chloride attachment electrospray ionization mass spectrometry.

    PubMed

    Jin, Chunfen; Viidanoja, Jyrki

    2017-01-15

    Existing liquid chromatography - mass spectrometry method for the analysis of short chain carboxylic acids was expanded and validated to cover also the measurement of glycerol from oils and fats. The method employs chloride anion attachment and two ions, [glycerol+(35)Cl](-) and [glycerol+(37)Cl](-), as alternative quantifiers for improved selectivity of glycerol measurement. The averaged within run precision, between run precision and accuracy ranged between 0.3-7%, 0.4-6% and 94-99%, respectively, depending on the analyte ion and sample matrix. Selected renewable diesel feedstocks were analyzed with the method.

  12. Enzymatic coproduction of biodiesel and glycerol carbonate from soybean oil in solvent-free system.

    PubMed

    Go, A-Ra; Lee, Youngrak; Kim, Young Hwan; Park, Sehkyu; Choi, Joongso; Lee, Jinwon; Han, Sung Ok; Kim, Seung Wook; Park, Chulhwan

    2013-08-15

    The enzymatic coproduction of biodiesel and glycerol carbonate by transesterification of soybean oil and dimethyl carbonate (DMC) has been studied in a solvent-free system. The effects on biodiesel and glycerol carbonate conversion of reaction conditions including the kind of enzyme, the amount of enzyme, the molar ratio of DMC to soybean oil, the reaction temperature, and water addition were investigated. The optimal conditions for biodiesel and glycerol carbonate were 20% Novozym 435, 10:1 molar ratio of DMC to soybean oil, and 0.7% water addition. Under these conditions, the conversions of 96.4% biodiesel and 92.1% glycerol carbonate have been achieved after 48h.

  13. Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester.

    PubMed

    Tanadchangsaeng, Nuttapol; Yu, Jian

    2012-11-01

    Glycerol is considered as an ideal feedstock for producing bioplastics via bacterial fermentation due to its ubiquity, low price, and high degree of reduction substrate. In this work, we study the yield and cause of limitation in poly(3-hydroxybutyrate) (PHB) production from glycerol. Compared to glucose-based PHB production, PHB produced by Cupriavidus necator grown on glycerol has a low productivity (0.92 g PHB/L/h) with a comparably low maximum specific growth rate of 0.11 h(-1) . We found that C. necator can synthesize glucose from glycerol and that the lithotrophical utilization of glycerol (non-fermentative substrate) or gluconeogenesis is an essential metabolic pathway for biosynthesis of cellular components. Here, we show that gluconeogenesis affects the reduction of cell mass, the productivity of biopolymer product, and the molecular chain size of intracellular PHB synthesized from glycerol by C. necator. We use NMR spectroscopy to show that the isolated PHB is capped by glycerol. We then characterized the physical properties of the isolated glycerol-based PHB with differential scanning calorimetry and tensile tests. We found that although the final molecular weight of the glycerol-based PHB is lower than those of glucose-based and commercial PHB, the thermal and mechanical properties of the biopolymers are similar.

  14. Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae.

    PubMed

    Kim, Jin-Woo; Chin, Young-Wook; Park, Yong-Cheol; Seo, Jin-Ho

    2012-01-01

    Bioethanol is currently used as an alternative fuel for gasoline worldwide. For economic production of bioethanol by Saccharomyces cerevisiae, formation of a main by-product, glycerol, should be prevented or minimized in order to reduce a separation cost of ethanol from fermentation broth. In this study, S. cerevisiae was engineered to investigate the effects of the sole and double disruption of NADH-dependent glycerol-3-phosphate dehydrogenase 1 (GPD1) and NADPH-requiring glutamate dehydrogenase 1 (GDH1) on the production of glycerol and ethanol from glucose. Even though sole deletion of GPD1 or GDH1 reduced glycerol production, double deletion of GPD1 and GDH1 resulted in the lowest glycerol concentration of 2.31 g/L, which was 46.4% lower than the wild-type strain. Interestingly, the recombinant S. cerevisiae ∆GPD1∆GDH1 strain showed a slight improvement in ethanol yield (0.414 g/g) compared with the wild-type strain (0.406 g/g). Genetic engineering of the glycerol and glutamate metabolic pathways modified NAD(P)H-requiring metabolic pathways and exerted a positive effect on glycerol reduction without affecting ethanol production.

  15. Pre-exercise glycerol hydration improves cycling endurance time

    NASA Technical Reports Server (NTRS)

    Montner, P.; Stark, D. M.; Riedesel, M. L.; Murata, G.; Robergs, R.; Timms, M.; Chick, T. W.

    1996-01-01

    The effects of glycerol ingestion (GEH) on hydration and subsequent cycle ergometer submaximal load exercise were examined in well conditioned subjects. We hypothesized that GEH would reduce physiologic strain and increase endurance. The purpose of Study I (n = 11) was to determine if pre-exercise GEH (1.2 gm/kg glycerol in 26 ml/kg solution) compared to pre-exercise placebo hydration (PH) (26 ml/kg of aspartame flavored water) lowered heart rate (HR), lowered rectal temperature (Tc), and prolonged endurance time (ET) during submaximal load cycle ergometry. The purpose of Study II (n = 7) was to determine if the same pre-exercise regimen followed by carbohydrate oral replacement solution (ORS) during exercise also lowered HR, Tc, and prolonged ET. Both studies were double-blind, randomized, crossover trials, performed at an ambient temperature of 23.5-24.5 degrees C, and humidity of 25-27%. Mean HR was lower by 2.8 +/- 0.4 beats/min (p = 0.05) after GEH in Study I and by 4.4 +/- 1.1 beats/min (p = 0.01) in Study II. Endurance time was prolonged after GEH in Study I (93.8 +/- 14 min vs. 77.4 +/- 9 min, p = 0.049) and in Study II (123.4 +/- 17 min vs. 99.0 +/- 11 min, p = 0.03). Rectal temperature did not differ between hydration regimens in both Study I and Study II. Thus, pre-exercise glycerol-enhanced hyperhydration lowers HR and prolongs ET even when combined with ORS during exercise. The regimens tested in this study could potentially be adapted for endurance activities.

  16. Self-assembling behavior of glycerol monoundecenoate in water.

    PubMed

    Nyame Mendendy Boussambe, Gildas; Valentin, Romain; Fabre, Jean-François; Navailles, Laurence; Nallet, Frédéric; Gaillard, Cedric; Mouloungui, Zephirin

    2017-03-14

    Self-assembling properties of glycerol esters in water are well known. Still, few data on glyc-erol monoesters of undecylenic acid are available. The aim of this study was to highlight the behavior of the glycerol monoundecenoate (GM-C11:1) in different, diluted and concentrated states. Self-assembling properties in water and upon solid inorganic surfaces were investigated in diluted state with surface tension experiments, AFM and Cryo-TEM studies. In concen-trated state, the gelling properties in presence of water were investigated by polarized light microscopy, DSC and SAXS experiments. GM-C11:1 at 100 mg/L self-assembles at the liq-uid/air interfaces as aggregates of about 20 nm in diameter, organized into concentric forms. These aggregates were spherical globules composed of several molecules of GM-C11:1. At higher concentrations (1000 mg/L and 104 mg/L), GM-C11:1 was able to coat uniformly liq-uid/air and liquid/solid interfaces. In bulk GM-C11:1 form spontaneously aggregates and ves-icles. In more concentrated state, GM-C11:1 assembles into lamellar Lβ and Lα form in water. By cross-referencing SAXS and DSC findings, we were able to distinguish between interla-mellar water molecules strongly bound to GM-C11:1 and other molecules remaining unbound and considered as "mobile" water. The percentage of water strongly bound was proportional to the percentage of GM-C11:1 in the system. In this case, GM-C11:1 appears to be an effec-tive molecule for surface treatments for which water retention is important.

  17. Glycerol effects on protein flexibility: a tryptophan phosphorescence study.

    PubMed Central

    Gonnelli, M.; Strambini, G. B.

    1993-01-01

    In exploring the dynamic properties of protein structure, numerous studies have focussed on the dependence of structural fluctuations on solvent viscosity, but the emerging picture is still not well defined. Exploiting the sensitivity of the phosphorescence lifetime of tryptophan to the viscosity of its environment we have used the delayed emission as an intrinsic probe of protein flexibility and investigated the effects of glycerol as a viscogenic cosolvent. The phosphorescence lifetime of alcohol dehydrogenase, alkaline phosphatase, apoazurin and RNase T1, as a function of glycerol concentration was studied at various temperatures. Flexibility data, which refer to rather rigid sites of the globular structures, point out that, for some concentration ranges glycerol, effects on the rate of structural fluctuations of alcohol dehydrogenase and RNase T1 do not obey Kramers' a power law on solvent viscosity and emphasize that cosolvent-induced structural changes can be important, even for inner cores of the macromolecule. When the data is analyzed in terms of Kramers' model, for the temperature range 0-30 degrees C one derives frictional coefficients that are relatively large (0.6-0.7) for RNase T1, where the probe is in a flexible region near the surface of the macromolecule and much smaller, less than 0.2, for the rigid sites of the other proteins. For the latter sites the frictional coefficient rises sharply between 40 and 60 degrees C, and its value correlates weakly with molecular parameters such as the depth of burial or the rigidity of a particular site. For RNase T1, coupling to solvent viscosity increases at subzero temperatures, with the coefficient becoming as large as 1 at -20 degrees C. Temperature effects were interpreted by proposing that solvent damping of internal protein motions is particularly effective for low frequency, large amplitude, structural fluctuations yielding highly flexible conformers of the macromolecule. PMID:8369422

  18. Bending and Fracture in Thin Polymer Films during Capillary Origami Assembly

    NASA Astrophysics Data System (ADS)

    Twohig, Timothy; Croll, Andrew

    Capillary origami uses liquid tension to bend thin films into useful shapes and structures. The ability to scale this process to the microscopic range has led to growing interest in capillary origami and many potential applications. Clearly, the creation of three dimensional structures from flat sheets depends deeply on a combination of properties: fluid tensions, film thickness, film modulus and importantly the film's fracture properties. Fractures in a film are a critical component of macroscopic origami but macroscopic methods for creating these fractures are not possible at the microscopic scale. We present an experimental investigation of the interplay of capillary forces and material properties in the creation of controlled fractures in thin polymer films. Specifically, we use capillary forces to lift and bend a thin polymer film to the point of fracture using a variety of film thicknesses and material properties and attempt to model the basic underlying physics. We observe the creation of delaminations and fractures at pre-determined sites that can be tailored to specific shapes to be utilized in capillary origami.

  19. Crossover from shear-driven to thermally activated drainage of liquid-infused microscale capillaries

    NASA Astrophysics Data System (ADS)

    Colosqui, Carlos E.; Wexler, Jason S.; Liu, Ying; Stone, Howard A.

    2016-10-01

    The shear-driven drainage of capillary grooves filled with viscous liquid is a dynamic wetting phenomenon relevant to numerous industrial processes and lubricant-infused surfaces for drag reduction and antifouling. Prior work has reported that a finite length L∞ of the capillary groove can remain indefinitely filled with liquid even when large shear stresses are applied. The mechanism preventing full drainage is attributed to a balance between the shear-driven flow and a counterflow driven by capillary pressures caused by deformation of the free surface. In this work, we examine closely the approach to the final equilibrium length L∞ and report a crossover to a slow drainage regime that cannot be described by conventional dynamic models considering solely hydrodynamic and capillary forces. The slow drainage regime observed in experiments can be instead modeled by a kinetic equation describing a sequence of random thermally activated transitions between multiple metastable states caused by surface defects with nanoscale dimensions. Our findings provide insights on the critical role that natural or engineered surface roughness with nanoscale dimensions can play in the imbibition and drainage of capillaries and other dynamic wetting processes in microscale systems.

  20. Scattering of water from the glycerol liquid-vacuum interface

    NASA Technical Reports Server (NTRS)

    Benjamin, I.; Wilson, M. A.; Pohorille, A.; Nathanson, G. M.

    1995-01-01

    Molecular dynamics calculations of the scattering of D2O from the glycerol surface at different collision energies are reported. The results for the trapping probabilities and energy transfer are in good agreement with experiments. The calculations demonstrate that the strong attractive forces between these two strongly hydrogen bonding molecules have only a minor effect on the initial collision dynamics. The trapping probability is influenced to a significant extent by the repulsive hard sphere-like initial encounter with the corrugated surface and, only at a later stage, by the efficiency of energy flow in the multiple interactions between the water and the surface molecules.

  1. Distributions of glycerol dialkyl glycerol tetraethers in surface soils of Qinghai-Tibetan Plateau: implications of GDGT-based proxies in cold and dry regions

    NASA Astrophysics Data System (ADS)

    Ding, S.; Xu, Y.; Wang, Y.; He, Y.; Hou, J.; Chen, L.; He, J.-S.

    2015-01-01

    The methylation index of branched tetraethers (MBT) and cyclization ratio of branched tetraethers (CBT) based on the distribution of bacteria-derived branched glycerol dialkyl glycerol tetraethers (bGDGTs) are useful proxies for the reconstruction of continental paleotemperature and soil pH. Several calibrations of the MBT-CBT index have been proposed based on global and regional soils and lake sediments. However, little is known about the distribution and applicability of GDGTs proxies in the Qinghai-Tibet Plateau (QTP), a critical region of the global climate system. Here, we investigated 33 surface soils covering a large area of the QTP. Redundancy analysis showed that soil pH was the most important factor affecting GDGT distributions, followed by mean annual precipitation (MAP) and mean annual air temperature (MAT). The branched-isoprenoid tetraether (BIT) index, an indicator for estimation of soil organic matter in aquatic environments, varied from 0.48 to 1 and negatively correlated with soil pH (r2 = 0.38), suggesting that the BIT index should be used with caution in the QTP. A transfer function of the CBT index-soil pH was established to estimate paleo-soil pH in the QTP: pH = 8.33-1.43 × CBT (r2 = 0.80, RMSE = 0.27 pH unit). The local calibration of MBT-CBT index presented a weak, still significant correlation with MAT (r2 = 0.36) mainly owing to the additional influence of MAP (r2 = 0.50). Combining our data with previously reported GDGTs for Chinese soils resulted in a new calibration of MBT/CBT-MAT: MAT = 2.68+26.14 × MBT-3.37 × CBT (r2 = 0.73; RMSE = 4.2 °C, n = 164). The correlation coefficient and residual error of this new transfer function is comparable with global calibrations, suggesting that MBT-CBT paleotemperature proxy is still valid in the QTP.

  2. Characterization of BSA unfolding and aggregation using a single-capillary viscometer and dynamic surface tension detector.

    PubMed

    Bramanti, Emilia; Ferrari, Carlo; Angeli, Valeria; Onor, Massimo; Synovec, Robert E

    2011-10-15

    A dynamic surface tension detector (DSTD) has been equipped with an additional pressure sensor for simultaneous viscosity measurements, as a detector for flow injection analysis. The viscosity measurement is based on a single capillary viscometer (SCV) placed in parallel configuration with the DSTD. The viscometer in the optimized conditions consists of a PEEK capillary (i.d.=0.25 mm, L=75 cm) kept at constant temperature using a thermostatic bath, which leads on the two sides to the two arms of a differential piezoelectric pressure transducer with a range of 0-35 psi. The DSTD, described previously, measures the changing pressure across the liquid/air interface of 2 μL drops repeatedly forming at the end of a capillary. SCV performance has been evaluated by measuring dynamic viscosity of water/glycerol mixtures analysed in flow injection and comparing the results with the values reported in the literature. The detection limits of SCV and DSTD, calculated as 3σ of the blank, were 0.012 cP and 0.6 dyn cm(-1), respectively. The FI-SCV-DSTD system has been applied to the study of temperature-induced denaturation/aggregation process in bovine serum albumin (BSA). The results have been supported and discussed with respect to BSA conformational analysis performed using Fourier Transform infrared spectroscopy.

  3. Gold nanoparticle-coated capillaries for protein and peptide analysis on open-tubular capillary electrochromatography.

    PubMed

    Hamer, Mariana; Yone, Angel; Rezzano, Irene

    2012-01-01

    We report a new method of immobilization of gold nanoparticles (AuNPs) on a fused-silica capillary through covalent binding. The resulting modified capillary was applied to electrophoretic systems to improve the efficiency of separation and the selectivity of selected solutes. The immobilization of AuNPs on the capillary wall was performed in a very simple and fast way without requiring heating. The surface features of an AuNP-coated capillary column were determined using the scanning electron microscopy. The chromatographic properties of AuNP-coated capillaries were investigated through variation of the buffer pH and separation voltage. Effective separations of synthetic peptides mixture were obtained on the AuNP-coated capillaries. The method shows a remarkable stability since it was reused about 900 times. The capacity factor was duplicated. Therefore, this modification is stable and can be applied to different separation purposes. A complex mixture of tryptic peptide fragments of HSA was analyzed in both the bare- and the AuNP-coated capillaries. Better electrophoretic peptide profile was observed when using the AuNP-coated capillary.

  4. Capillary electrophoresis in a fused-silica capillary with surface roughness gradient.

    PubMed

    Horká, Marie; Šlais, Karel; Karásek, Pavel; Růžička, Filip; Šalplachta, Jiří; Šesták, Jozef; Kahle, Vladislav; Roth, Michal

    2016-10-01

    The electro-osmotic flow, a significant factor in capillary electrophoretic separations, is very sensitive to small changes in structure and surface roughness of the inner surface of fused silica capillary. Besides a number of negative effects, the electro-osmotic flow can also have a positive effect on the separation. An example could be fused silica capillaries with homogenous surface roughness along their entire separation length as produced by etching with supercritical water. Different strains of methicillin-resistant and methicillin-susceptible Staphylococcus aureus were separated on that type of capillaries. In the present study, fused-silica capillaries with a gradient of surface roughness were prepared and their basic behavior was studied in capillary zone electrophoresis with UV-visible detection. First the influence of the electro-osmotic flow on the peak shape of a marker of electro-osmotic flow, thiourea, has been discussed. An antifungal agent, hydrophobic amphotericin B, and a protein marker, albumin, have been used as model analytes. A significant narrowing of the detected zones of the examined analytes was achieved in supercritical-water-treated capillaries as compared to the electrophoretic separation in smooth capillaries. Minimum detectable amounts of 5 ng/mL amphotericin B and 5 μg/mL albumin were reached with this method.

  5. Two-dimensional capillary electrophoresis: capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection.

    PubMed

    Dickerson, Jane A; Ramsay, Lauren M; Dada, Oluwatosin O; Cermak, Nathan; Dovichi, Norman J

    2010-08-01

    CIEF and CZE are coupled with LIF detection to create an ultrasensitive 2-D separation method for proteins. In this method, two capillaries are joined through a buffer-filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first-dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second-dimension separation. A fraction was transferred to the second-dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125.

  6. Microfluidic flow counterbalanced capillary electrophoresis.

    PubMed

    Xia, Ling; Dutta, Debashis

    2013-04-07

    Flow counterbalanced capillary electrophoresis (FCCE) offers a powerful approach to realizing difficult charge based separations in compact microchip devices with application of relatively small electrical voltages. The need for dynamically controlling the pressure-gradient in the FCCE column however presents a significant challenge in implementing this technique on the microchip platform. In this article, we report the use of a simple on-chip pumping unit that allows precise introduction of a periodic pressure-driven backflow into a microfluidic separation channel enabling an FCCE analysis. The backflow in our device was produced by fabricating a shallow segment (0.5 μm deep) downstream of the analysis column (5 μm deep) and applying an electric field across it. A mismatch in the electroosmotic transport rate at the interface of this segment was shown to yield a pressure-gradient that could reverse the flow of the analyte bands without inverting the direction of the electric field. Although such a pressure-gradient also led to additional band broadening in the system, overall, the separation resolution of our device was observed to improve with an increasing number of back-and-forth sample passes through the analysis channel. For our current design, the corresponding improvement in the effective separation length was as much as 52% of the actual distance travelled by the chosen FITC-labeled amino acid samples. The reported device is well suited for further miniaturization of the FCCE method to the nanofluidic length scale which likely would improve its performance, and is easily integrable to other analytical procedures on the microchip platform for lab-on-a-chip applications.

  7. Capillary adhesion at the nanometer scale.

    PubMed

    Cheng, Shengfeng; Robbins, Mark O

    2014-06-01

    Molecular dynamics simulations are used to study the capillary adhesion from a nonvolatile liquid meniscus between a spherical tip and a flat substrate. The atomic structure of the tip, the tip radius, the contact angles of the liquid on the two surfaces, and the volume of the liquid bridge are varied. The capillary force between the tip and substrate is calculated as a function of their separation h. The force agrees with continuum predictions based on macroscopic theory for h down to ∼5 to 10 nm. At smaller h, the force tends to be less attractive than predicted and has strong oscillations. This oscillatory component of the capillary force is completely missed in the macroscopic theory, which only includes contributions from the surface tension around the circumference of the meniscus and the pressure difference over the cross section of the meniscus. The oscillation is found to be due to molecular layering of the liquid confined in the narrow gap between the tip and substrate. This effect is most pronounced for large tip radii and/or smooth surfaces. The other two components considered by the macroscopic theory are also identified. The surface tension term, as well as the meniscus shape, is accurately described by the macroscopic theory for h down to ∼1 nm, but the capillary pressure term is always more positive than the corresponding continuum result. This shift in the capillary pressure reduces the average adhesion by a factor as large as 2 from its continuum value and is found to be due to an anisotropy in the pressure tensor. The component in the plane of the substrate is consistent with the capillary pressure predicted by the macroscopic theory (i.e., the Young-Laplace equation), but the normal pressure that determines the capillary force is always more positive than the continuum counterpart.

  8. L (+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol

    PubMed Central

    2013-01-01

    Background Given its availability and low price, glycerol derived from biodiesel industry has become an ideal feedstock for the production of fuels and chemicals. A solution to reduce the negative environmental problems and the cost of biodiesel is to use crude glycerol as carbon source for microbial growth media in order to produce valuable organic chemicals. In the present paper, crude glycerol was used as carbon substrate for production of L (+)-lactic acid using pelletized fungus R. oryzae NRRL 395 on batch fermentation. More, the experiments were conducted on media supplemented with inorganic nutrients and lucerne green juice. Results Crude and pure glycerols were first used to produce the highest biomass yield of R. oryzae NRRL 395. An enhanced lactic acid production then followed up using fed-batch fermentation with crude glycerol, inorganic nutrients and lucerne green juice. The optimal crude glycerol concentration for cultivating R. oryzae NRRL 395 was 75 g l-1, which resulted in a fungal biomass yield of 0.72 g g-1 in trial without lucerne green juice addition and 0.83 g g-1 in trial with lucerne green juice. The glycerol consumption rate was 1.04 g l-1 h-1 after 48 h in trial with crude glycerol 75 g l-1 while in trial with crude glycerol 10 g l-1 the lowest rate of 0.12 g l-1 h-1 was registered. The highest L (+)-lactic acid yield (3.72 g g-1) was obtained at the crude glycerol concentration of 75 g l-1 and LGJ 25 g l-1, and the concentration of lactic acid was approximately 48 g l-1. Conclusions This work introduced sustainable opportunities for L (+)-lactic acid production via R. oryzae NRRL 395 fermentation on biodiesel crude glycerol media. The results showed good fungal growth on crude glycerol at 75 g l-1 concentration with lucerne green juice supplementation of 25 g l-1. Lucerne green juice provided a good source of nutrients for crude glycerol fermentation, without needs for supplementation with inorganic nutrients

  9. Joule heating and determination of temperature in capillary electrophoresis and capillary electrochromatography columns.

    PubMed

    Rathore, Anurag S

    2004-05-28

    This article reviews the progress that has taken place in the past decade on the topic of estimation of Joule heating and temperature inside an open or packed capillary in electro-driven separation techniques of capillary electrophoresis (CE) and capillary electrochromatography (CEC), respectively. Developments in theoretical modeling of the heat transfer in the capillary systems have focused on attempts to apply the existing models on newer techniques such as CEC and chip-based CE. However, the advent of novel analytical tools such as pulsed magnetic field gradient nuclear magnetic resonance (NMR), NMR thermometry, and Raman spectroscopy, have led to a revolution in the area of experimental estimation of Joule heating and temperature inside the capillary via the various noninvasive techniques. This review attempts to capture the major findings that have been reported in the past decade.

  10. Separation of Recombinant Therapeutic Proteins Using Capillary Gel Electrophoresis and Capillary Isoelectric Focusing.

    PubMed

    De Jong, Caitlyn A G; Risley, Jessica; Lee, Alexis K; Zhao, Shuai Sherry; Chen, David D Y

    2016-01-01

    Detailed step-by-step methods for protein separation techniques based on capillary electrophoresis (CE) are described in this chapter. Focus is placed on two techniques, capillary gel electrophoresis (CGE) and capillary isoelectric focusing (cIEF). CGE is essentially gel electrophoresis, performed in a capillary, where a hydrogel is used as a sieving matrix to separate proteins or peptides based on size. cIEF separates proteins or peptides based on their isoelectric point (pI), the pH at which the protein or peptide bears no charges. Detailed protocols and steps (including capillary preparation, sample preparation, CE separation conditions, and detection) for both CGE and cIEF presented so that readers can follow the described methods in their own labs.

  11. High speed and reproducible analysis of nitrosamines by capillary electrophoresis with a sulfonated capillary.

    PubMed

    Taga, Atsushi; Nishi, Tomoko; Honda, Yoshitaka; Sato, Atsushi; Terashima, Hiroyuki; Suzuki, Kentaro; Kodama, Shuji; Boki, Keito

    2007-01-01

    Recently environmental control is regarded as important for good human health conditions, and toxic substances, including carcinogens and endocrine disruptors should be eliminated from our living environment. Hence easy quantitative methods are expected for a high level of environmental control. Our previous paper describes an easy quantitative analysis of nitrosamines (NAs) by capillary electrophoresis with an untreated fused silica capillary installed in an ordinary apparatus. In this paper, utilizing a novel type capillary column having sulfonated inner wall was investigated for improvements of separation performance and reproducibility. A sulfonated capillary causes fast and stabile electroosmotic flow because its inner wall is strongly negative charged. On a performance comparison of a sulfonated capillary with an untreated fused silica, analysis time reduction of c.a. forty percent was achieved, and relative standard deviations of migration times and peak responses were less than one third. In addition sample concentrations giving detection and quantitation limits were also reduced to a half.

  12. Use of molecular dynamics to assess the biophysiological role of hydroxyl groups in glycerol dyalkyl glycerol teraethers

    NASA Astrophysics Data System (ADS)

    Huguet, Carme; Costenaro, Lionel; Fietz, Susanne; Daura, Xavier

    2015-04-01

    The cell membrane of some Archaea is constituted by lipids that span the whole membrane width and contain two alkyl chains bound by two glycerol groups (glycerol dyalkyl glycerol teraethers or GDGTs). These lipids confer stability to the membrane in mesophile to extremophile environments. Besides the more frequently studied isoprenoid archaeal lipids, both mono- and dihydroxy-GDGTs (OH-GDGT) have been recently reported to occur in marine sediments (1). OH-GDGTs contain up to two cyclopentane moieties and have been identified in both core and intact forms. In 2013, a correlation between OH-GDGTs and temperature was reported, with higher relative OH-GDGT abundances at high latitudes (2,3). The physiological function of the hydroxyl group in a GDGT is not yet known, but given the field results, it could be linked to an adaptation of the membrane to changes in temperature. For hydroxydiether lipid cores in methanogenic bacteria, it has been postulated that the hydroxyl group may alter the cell membrane properties: either extending the polar head group region or creating a hydrophilic pocket (4). It has also been suggested that the hydroxylation of the biphytany (l) moiety may result in enhanced membrane rigidity (1). To improve our understanding of the effect of the hydroxylation on physical properties of membranes, we performed molecular-dynamics simulations of GDGT membranes presenting and lacking these additional OH groups. This is an approach with a great development potential in the archaea lipid field, especially in relation to proxy validation. Our results indicate that the addition of an OH increases the membrane fluidity, thus providing an advantage in cold environments. We also observe a widening of the polar head group area, which could enhance transport. 1. Liu et al. 2012, GCA 2. Huguet et al. 2013, Org. Geochem 3. Fietz et al. 2013 4. Sprott et al. 1990. J. Biol. Chem. 265, 13735-13740.

  13. Crystal structure of substrate free form of glycerol dehydratase

    SciTech Connect

    Liao, Der-Ing; Dotson, Garry; Turner, Jr., Ivan; Reiss, Lisa; Emptage, Mark

    2010-03-08

    Glycerol dehydratase (GDH) and diol dehydratase (DDH) are highly homologous isofunctional enzymes that catalyze the elimination of water from glycerol and 1,2-propanediol (1,2-PD) to the corresponding aldehyde via a coenzyme B{sub 12}-dependent radical mechanism. The crystal structure of substrate free form of GDH in complex with cobalamin and K{sup +} has been determined at 2.5 {angstrom} resolution. Its overall fold and the subunit assembly closely resemble those of DDH. Comparison of this structure and the DDH structure, available only in substrate bound form, shows the expected change of the coordination of the essential K{sup +} from hexacoordinate to heptacoordinate with the displacement of a single coordinated water by the substrate diol. In addition, there appears to be an increase in the rigidity of the K{sup +} coordination (as measured by lower B values) upon the binding of the substrate. Structural analysis of the locations of conserved residues among various GDH and DDH sequences has aided in identification of residues potentially important for substrate preference or specificity of protein-protein interactions.

  14. Substrate versatility of polyhydroxyalkanoate producing glycerol grown bacterial enrichment culture.

    PubMed

    Moralejo-Gárate, Helena; Kleerebezem, Robbert; Mosquera-Corral, Anuska; Campos, José Luis; Palmeiro-Sánchez, Tania; van Loosdrecht, Mark C M

    2014-12-01

    Waste-based polyhydroxyalkanoate (PHA) production by bacterial enrichments generally follows a three step strategy in which first the wastewater is converted into a volatile fatty acid rich stream that is subsequently used as substrate in a selector and biopolymer production units. In this work, a bacterial community with high biopolymer production capacity was enriched using glycerol, a non-fermented substrate. The substrate versatility and PHA production capacity of this community was studied using glucose, lactate, acetate and xylitol as substrate. Except for xylitol, very high PHA producing capacities were obtained. The PHA accumulation was comparable or even higher than with glycerol as substrate. This is the first study that established a high PHA content (≈70 wt%) with glucose as substrate in a microbial enrichment culture. The results presented in this study support the development of replacing pure culture based PHA production by bacterial enrichment cultures. A process where mixtures of substrates can be easily handled and the acidification step can potentially be avoided is described.

  15. Stability conditions and mechanism of cream soaps: role of glycerol.

    PubMed

    Sagitani, Hiromichi

    2014-01-01

    Fatty acids, fatty acid potassium soaps, glycerol and water are essential ingredients in the production of stable cream soaps. In this study, the behavior of these components in solution was investigated to elucidate the stability conditions and mechanism of cream soaps. It was determined that the cream soaps were a dispersion of 1:1 acid soap (1:1 molar ratio of potassium soap/fatty acid) crystals in the lamellar gel phase, which has confirmed from the phase behavior diagrams and small angle X-ray scattering data. Glycerol was crucial ingredient in the formation of the lamellar gel phase. The cleansing process of the cream soaps was also evaluated using the same diagrams. The structure of the continuous phase in cream soaps changed from lamellar gel to a micellar aqueous solution upon the addition of water. This structural change during the washing process is important in producing the foaming activity of acid soaps to wash away dirt or excess fats from the skin surface.

  16. Capillary liquid chromatography using laser-based and mass spectrometric detection. [Capillary zone electrophoresis (CZE); micellar electrokinetic capillary kchromatography (MECC)

    SciTech Connect

    Sepaniak, M.J.; Cook, K.D.

    1992-01-01

    In the years following the 1986 seminal paper (J. Chromatogr. Sci., 24, 347-352) describing modern capillary zone electrophoresis (CZE), the prominence of capillary electrokinetic separation techniques has grown. A related electrochromatographic technique is micellar electrokinetic capillary chromatography (MECC). This report presents a brief synopsis of research efforts during the current 3-year period. In addition to a description of analytical separations-based research, results of efforts to develop and expand spectrometric detection for the techniques is reviewed. Laser fluorometric detection schemes have been successfully advanced. Mass spectrometric research was less fruitful, largely owing to personnel limitations. A regenerable fiber optic sensor was developed that can be used to remotely monitor chemical carcinogens, etc. (DLC)

  17. Effect of crude glycerol on pellet mill production and nursery pig growth performance.

    PubMed

    Groesbeck, C N; McKinney, L J; Derouchey, J M; Tokach, M D; Goodband, R D; Dritz, S S; Nelssen, J L; Duttlinger, A W; Fahrenholz, A C; Behnke, K C

    2008-09-01

    The objective of this study was to determine the effects of diets containing crude glycerol on pellet mill production efficiency and nursery pig growth performance. In a pilot study, increasing crude glycerol (0, 3, 6, 9, 12, and 15%) in a corn-soybean meal diet was evaluated for pellet mill production efficiency. All diets were steam conditioned to 65.5 degrees C and pelleted through a pellet mill equipped with a die that had an effective thickness of 31.8 mm and holes 3.96 mm in diameter. Each diet was replicated by manufacturing a new batch of feed 3 times. Increasing crude glycerol increased both the standard (linear and quadratic, P < 0.01) and modified (linear, P < 0.01; quadratic, P glycerol decreased (linear; P < 0.01) production rate (t/h) and production efficiency (kWh/t). In a 26-d growth assay, 182 pigs (initial BW, 11.0 +/- 1.3 kg; 5 or 6 pigs/pen) were fed 1 of 7 corn-soybean meal-based diets with no added soy oil or crude glycerol (control), the control diet with 3 or 6% added soy oil, 3 or 6% added crude glycerol, and 6 or 12% addition of a 50:50 (wt/wt) soy oil/crude glycerol blend with 5 pens/diet. The addition of crude glycerol lowered (P < 0. 01) delta temperature, amperage, motor load, and production efficiency. The addition of crude glycerol improved (P < 0.01) pellet durability compared with soy oil and the soy oil/crude glycerol blend treatments. Pigs fed increasing crude glycerol had increased (linear, P = 0.03) ADG. Average daily gain tended to increase with increasing soy oil (quadratic; P = 0.07) or the soy oil/crude glycerol blend (linear, P = 0.06). Adding crude glycerol to the diet did not affect G:F compared with the control. Gain:feed tended to increase with increasing soy oil (linear, P < 0.01; quadratic, P = 0.06) or the soy oil/crude glycerol blend (linear, P < 0.01; quadratic, P = 0.09). Nitrogen digestibility tended (P = 0

  18. Glass polymorphism in glycerol-water mixtures: II. Experimental studies.

    PubMed

    Bachler, Johannes; Fuentes-Landete, Violeta; Jahn, David A; Wong, Jessina; Giovambattista, Nicolas; Loerting, Thomas

    2016-04-28

    We report a detailed experimental study of (i) pressure-induced transformations in glycerol-water mixtures at T = 77 K and P = 0-1.8 GPa, and (ii) heating-induced transformations of glycerol-water mixtures recovered at 1 atm and T = 77 K. Our samples are prepared by cooling the solutions at ambient pressure at various cooling rates (100 K s(-1)-10 K h(-1)) and for the whole range of glycerol mole fractions, χ(g). Depending on concentration and cooling rates, cooling leads to samples containing amorphous ice (χg ≥ 0.20), ice (χ(g) ≤ 0.32), and/or "distorted ice" (0 < χ(g) ≤ 0.38). Upon compression, we find that (a) fully vitrified samples at χ(g) ≥ 0.20 do not show glass polymorphism, in agreement with previous works; (b) samples containing ice show pressure-induced amorphization (PIA) leading to the formation of high-density amorphous ice (HDA). PIA of ice domains within the glycerol-water mixtures is shown to be possible only up to χ(g) ≈ 0.32 (T = 77 K). This is rather surprising since it has been known that at χ(g) < 0.38, cooling leads to phase-separated samples with ice and maximally freeze-concentrated solution of χ(g) ≈ 0.38. Accordingly, in the range 0.32 < χ(g) < 0.38, we suggest that the water domains freeze into an interfacial ice, i.e., a highly-distorted form of layered ice, which is unable to transform to HDA upon compression. Upon heating samples recovered at 1 atm, we observe a rich phase behavior. Differential scanning calorimetry indicates that only at χ(g) ≤ 0.15, the water domains within the sample exhibit polyamorphism, i.e., the HDA-to-LDA (low-density amorphous ice) transformation. At 0.15 < χ(g) ≤ 0.38, samples contain ice, interfacial ice, and/or HDA domains. All samples (χ(g) ≤ 0.38) show: the crystallization of amorphous ice domains, followed by the glass transition of the vitrified glycerol-water domains and, finally, the melting of ice at high temperatures. Our work exemplifies the complex "phase" behavior

  19. Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk on the enzymatic digestibility, structural characteristics, and bioethanol production.

    PubMed

    Ebrahimi, Majid; Villaflores, Oliver B; Ordono, Emma E; Caparanga, Alvin R

    2017-03-01

    Rice husk as an abundant biomass was used in this study, and it contained 30.1% glucan and 13.5% xylan, 22.4% lignin. The pretreated rice husk with glycerol carbonate and acidified aqueous glycerol (10% water) at 90°C and 130°C for 60min had the maximum yield of glucan digestibility which was 78.2% and 69.7% respectively, using cellulase for 72h. The simultaneous saccharification and fermentation was conducted anaerobically at 37°C with Saccharomyces cerevisiae, 5% w/v glucan and 10FPU/g glucan of cellulase. 11.58 and 8.84g/L was the highest ethanol concentration after 3days of incubation form pretreated rice husk with glycerol carbonate and acidified aqueous glycerol respectively.

  20. Thermal lens detector system for capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Seidel, Bernd S.; Faubel, Werner N.; Ache, Hans-Joachim

    1997-07-01

    The characteristics and the performance of a thermal lens detector, which uses a double-beam absorption scheme, were studied in a capillary electrophoresis system with various types of toxic pollutants, e.g., pesticides. The setup of the detector system was miniaturized using the smallest diverging path lengths between the cell and the pinhole (4 mm). The probe laser beam (He:Ne laser, 633 nm) and the excitation beam (Ar+ ion laser, 364, 457, 488, and 514 nm) with a crossed setup were directed by mirrors into two microscope objectives that focused the beam to a 5-micrometers waist inside the capillary. The detection volume was on the order of 75 nl when a 75-micrometers capillary was employed. The change in intensity of the probe beam was detected by a photodiode behind a pinhole, which was protected with different band-pass interference filters. The excitation laser can be used in the multiline order. Micellar electrokinetic methods are used for pesticide separation. The performance of the detector in capillary electrophoresis was assessed with various types of capillaries and compared with a conventional absorption detector. The limit of detection is at least one order of magnitude better than it is with the absorption detector.