Device to improve detection in electro-chromatography
Garguilo, Michael G.; Paul, Phillip H.; Rakestraw, David J.
2000-01-01
Apparatus and method for improving the resolution of non-pressure driven capillary chromatographic systems, and particularly for capillary electrochromatography (CEC) systems. By reducing the cross-sectional area of a packed capillary column by means of a second open capillary contiguous with the outlet end of a packed capillary column, where the packed capillary column has a cross sectional area of between about 2 and 5 times that of the open capillary column, the phenomenon of band broadening in the transition region between the open capillary and the packed capillary column, where the individual components of the mixture are analyzed, can be eliminated, thereby providing for a significant improvement in resolution and more accurate detection and analysis.
Device to improve detection in electro-chromatography
Garguilo, Michael G.; Paul, Phillip H.; Rakestraw, David J.
2002-01-01
Apparatus and method for improving the resolution of non-pressure driven capillary chromatographic systems, and particularly for capillary electrochromatography (CEC) systems. By reducing the cross-sectional area of a packed capillary column by means of a second open capillary contiguous with the outlet end of a packed capillary column, where the packed capillary column has a cross sectional area of between about 2 and 5 times that of the open capillary column, the phenomenon of band broadening in the transition region between the open capillary and the packed capillary column, where the individual components of the mixture are analyzed, can be eliminated, thereby providing for a significant improvement in resolution and more accurate detection and analysis.
Godinho, Justin M; Reising, Arved E; Tallarek, Ulrich; Jorgenson, James W
2016-09-02
Slurry packing capillary columns for ultrahigh pressure liquid chromatography is complicated by many interdependent experimental variables. Previous results have suggested that combination of high slurry concentration and sonication during packing would create homogeneous bed microstructures and yield highly efficient capillary columns. Herein, the effect of sonication while packing very high slurry concentrations is presented. A series of six, 1m×75μm internal diameter columns were packed with 200mg/mL slurries of 2.02μm bridged-ethyl hybrid silica particles. Three of the columns underwent sonication during packing and yielded highly efficient separations with reduced plate heights as low as 1.05. Copyright © 2016 Elsevier B.V. All rights reserved.
Method for making a non-extractable stationary phase of polymer within a capillary column
Springston, Stephen R.
1990-01-01
A method for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating.
Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography.
Stanelle, Rayman D; Sander, Lane C; Marcus, R Kenneth
2005-12-23
The flow characteristics of capillary-channel polymer (C-CP) fiber liquid chromatographic (LC) columns have been investigated. The C-CP fibers are manufactured with eight longitudinal grooves (capillary channels) extending the length of the fibers. Three C-CP fiber examples were studied, with fiber dimensions ranging from approximately 35 microm to 65 microm, and capillary-channel dimensions ranging from approximately 6 microm to 35 microm. The influence of fiber packing density and column inner diameter on peak asymmetry, peak width, and run-to-run reproducibility have been studied for stainless steel LC columns packed with polyester (PET) and polypropylene (PP) C-CP fibers. The van Deemter A-term was evaluated as a function of fiber packing density (approximately 0.3 g/cm(3)-0.75 g/cm(3)) for columns of 4.6 mm inner diameter (i.d.) and at constant packing densities for 1.5 mm, 3.2 mm, 4.6 mm, and 7.7 mm i.d. columns. Although column diameter had little influence on the eluting peak widths, peak asymmetry increased with increasing column diameter. The A-terms for the C-CP fiber packed columns are somewhat larger than current commercial, microparticulate-packed columns, and means for improvement are discussed. Applications in the area of protein (macromolecule) separations appear the most promising at this stage of the system development.
Method for making a non-extractable stationary phase of polymer within a capillary column
Springston, S.R.
1990-10-30
A method is described for coating interior capillary column surfaces, or packing material of a packed column, used for gas chromatography, with a stationary polymer phase that is cross-linked by exposing it to a low-temperature plasma that is uniformly distributed over the column or packing material for a predetermined period of time to effect the desired degree of cross-linking of the coating. 7 figs.
[Examples for using capillary gas chromatography with wide bore columns in occupational health].
Frank, H; Senf, L; Welsch, T
1990-12-01
Wide bore capillary columns (0.4-0.75 mm ID) can be easily and inexpensively installed in packed column GCs. The analytical advantages cause an expanding market for such capillaries and interconverting hardware kits. It is illustrated with some examples that often individual exposition levels can be determined exactly only by using capillary columns: ethylbenzene may be separated from the C8-isomers also in complex mixtures, the marker PBN for rubber smoke expositions can be determined with 30 min sampling time, the detection sensitivity of the FID is sufficient also for chlorinated pesticides and the analyses of high-boiling compounds profit by the high phase ratio of wide bore capillary columns. A single capillary column substitutes a variety of different packed columns, so saving time and money and protecting the analyst from failures and frustrating compromises.
Gritti, Fabrice; McDonald, Thomas; Gilar, Martin
2016-06-17
250μm×100mm fused silica glass capillaries were packed with 1.8μm high-strength silica (HSS) fully porous particles. They were prepared without bulky stainless steel endfittings and metal frits, which both generate significant sample dispersion. The isocratic efficiencies and gradient peak capacities of these prototype capillary columns were measured for small molecules (n-alkanophenones) using a home-made ultra-low dispersive micro-HPLC instrument. Their resolution power was compared to that of standard 2.1mm×100mm very high-pressure liquid chromatography (vHPLC) narrow-bore columns packed with the same particles. The results show that, for the same column efficiency (25000 plates) and gradient steepness (0.04min(-1)), the peak capacity of the 250μm i.d. capillary columns is systematically 15-20% higher than that of the 2.1mm i.d. narrow-bore columns. A validated model of gradient chromatography enabled one to predict accurately the observed peak capacities of the capillary columns for non-linear solvation strength retention behavior and under isothermal conditions. Thermodynamics applied to the eluent quantified the temperature difference for the thermal gradients in both capillary and narrow-bore columns. Experimental data revealed that the gradient peak capacity is more affected by viscous heating than the column efficiency. Unlike across 2.1mm i.d. columns, the changes in eluent composition across the 250μm i.d. columns during the gradient is rapidly relaxed by transverse dispersion. The combination of (1) the absence of viscous heating and (2) the high uniformity of the eluent composition across the diameter of capillary columns explains the intrinsic advantage of capillary over narrow-bore columns in gradient vHPLC. Copyright © 2016 Elsevier B.V. All rights reserved.
Bakry, R; Stöggl, W M; Hochleitner, E O; Stecher, G; Huck, C W; Bonn, G K
2006-11-03
In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which indicated that the chromatographic properties of the silica packing material were still active after polymerization. The prepared capillary columns were found to be stable and could easily be operated continuously up to a pressure of 350 bar without column damage and capillary can be cut to any desired length.
Reising, Arved E; Godinho, Justin M; Jorgenson, James W; Tallarek, Ulrich
2017-06-30
Column wall effects and the formation of larger voids in the bed during column packing are factors limiting the achievement of highly efficient columns. Systematic variation of packing conditions, combined with three-dimensional bed reconstruction and detailed morphological analysis of column beds, provide valuable insights into the packing process. Here, we study a set of sixteen 75μm i.d. fused-silica capillary columns packed with 1.9μm, C18-modified, bridged-ethyl hybrid silica particles slurried in acetone to concentrations ranging from 5 to 200mg/mL. Bed reconstructions for three of these columns (representing low, optimal, and high slurry concentrations), based on confocal laser scanning microscopy, reveal morphological features associated with the implemented slurry concentration, that lead to differences in column efficiency. At a low slurry concentration, the bed microstructure includes systematic radial heterogeneities such as particle size-segregation and local deviations from bulk packing density near the wall. These effects are suppressed (or at least reduced) with higher slurry concentrations. Concomitantly, larger voids (relative to the mean particle diameter) begin to form in the packing and increase in size and number with the slurry concentration. The most efficient columns are packed at slurry concentrations that balance these counteracting effects. Videos are taken at low and high slurry concentration to elucidate the bed formation process. At low slurry concentrations, particles arrive and settle individually, allowing for rearrangements. At high slurry concentrations, they arrive and pack as large patches (reflecting particle aggregation in the slurry). These processes are discussed with respect to column packing, chromatographic performance, and bed microstructure to help reinforce general trends previously described. Conclusions based on this comprehensive analysis guide us towards further improvement of the packing process. Copyright © 2017 Elsevier B.V. All rights reserved.
Peterson, Dominic S; Montoya, Velma M
2009-08-01
Trace levels of actinides have been separated on capillary extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer, which was coupled with the extraction chromatography system. In this study, we compare 30-cm long, 4.6 mm i.d. columns to capillary columns (750 microm i.d.) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ((232)Th, (238)U, (237)Np, (239)Pu, and (241)Am). This work has application to rapid bioassay as well as automated separations of actinide materials.
Bruns, Stefan; Tallarek, Ulrich
2011-04-08
We report a fast, nondestructive, and quantitative approach to characterize the morphology of packed beds of fine particles by their three-dimensional reconstruction from confocal laser scanning microscopy images, exemplarily shown for a 100μm i.d. fused-silica capillary packed with 2.6μm-sized core-shell particles. The presented method is generally applicable to silica-based capillary columns, monolithic or particulate, and comprises column pretreatment, image acquisition, image processing, and statistical analysis of the image data. It defines a unique platform for fundamental comparisons of particulate and monolithic supports using the statistical measures derived from their reconstructions. Received morphological data are column cross-sectional porosity profiles and chord length distributions from the interparticle macropore space, which are a descriptor of local density and can be characterized by a simplified k-gamma distribution. This distribution function provides a parameter of location and a parameter of dispersion which can be correlated to individual chromatographic band broadening processes (i.e., to transchannel and short-range interchannel contributions to eddy dispersion, respectively). Together with the transcolumn porosity profile the presented approach allows to analyze and quantify the packing microstructure from pore to column scale and therefore holds great promise in a comparative study of packing conditions and particle properties, particularly for characterizing and minimizing the packing process-specific heterogeneities in the final bed structure. Copyright © 2011 Elsevier B.V. All rights reserved.
Xu, Hongjuan; Weber, Stephen G.
2006-01-01
A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (Nobs) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte’s retention factor, k′, is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (ar) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of ar become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 μm radius is suitable for all columns smaller than 150 μm (radius) packed with 2–5 μm particles. For 1 μm packing particles, only columns smaller than 42.5 μm (radius) can be used and the reactor radius needs to be 5 μm. PMID:16494886
Chen, Chao-Jung; Chen, Wei-Yun; Tseng, Mei-Chun; Chen, Yet-Ran
2012-01-03
In this study, an easy method to fabricate a durable in-capillary frit was developed for use in nanoflow liquid chromatography (nanoLC). A small orifice was tunneled into the sol-gel frit during the polymerization process resulting in the simple fabrication of a tunnel frit. A short packing tunnel frit column (2 cm, C(18) particles) was able to sustain over 10,000 psi continuous liquid flow for 10 days without observation of particle loss, and back pressure variation was less than 5%. The tunnel frit was successfully applied to the fabrication of nanoflow ultra high-performance liquid chromatography (nano-UHPLC) trap and analytical columns. In the analysis of tryptic peptides, the tunnel frit trap and analytical columns were demonstrated to have high separation efficiency and sensitivity. In analysis of phosphopeptides, the use of the nonmetallic tunnel frit column showed better sensitivity than the metallic frit column. This design can facilitate the preparation of nano-HPLC and nano-UHPLC columns and the packing material can easily be refilled when the column is severely contaminated or clogged. © 2011 American Chemical Society
Horie, Kanta; Ikegami, Tohru; Hosoya, Ken; Saad, Nabil; Fiehn, Oliver; Tanaka, Nobuo
2007-09-14
Monolithic silica capillary columns for hydrophilic interaction liquid chromatography (HILIC) were prepared by on-column polymerization of acrylic acid on monolithic silica in a fused silica capillary modified with anchor groups. The products maintained the high permeability (K=5 x 10(-14)m(2)) and provided a plate height (H) of less than 10 microm at optimum linear velocity (u) and H below 20 microm at u=6mm/s for polar solutes including nucleosides and carbohydrates. The HILIC mode monolithic silica capillary column was able to produce 10000 theoretical plates (N) with column dead time (t(0)) of 20s at a pressure drop of 20 MPa or lower. The total performance was much higher than conventional particle-packed HILIC columns currently available. The gradient separations of peptides by a capillary LC-electrospray mass spectrometry system resulted in very different retention selectivity between reversed-phase mode separations and the HILIC mode separations with a peak capacity of ca. 100 in a 10 min gradient time in either mode. The high performance observed with the monolithic silica capillary column modified with poly(acrylic acid) suggests that the HILIC mode can be an alternative to the reversed-phase mode for a wide range of compounds, especially for those of high polarity in isocratic as well as gradient elution.
Nakagawa, Hiroyuki; Kitagawa, Shinya; Araki, Shuki; Ohtani, Hajime
2006-02-01
Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.
Fabrication and investigation of electrochromatographic columns with a simplex configuration.
Liu, Qing; Yang, Lijun; Wang, Qiuquan; Zhang, Bo
2014-07-04
Duplex capillary columns with a packed and an open section are widely used in electrochromatography (CEC). The duplex column configuration leads to non-uniform voltage drop, electrical field distribution and separation performance. It also adds to the complexity in understanding and optimizing electrochromatographic process. In this study, we introduced a simplex column configuration based on single particle fritting technology. The new column configuration has an essentially uniform packed bed through the entire column length, with only 1mm length left unpacked serving as the optical detection window. The study shows that a simplex column has higher separation efficiency than a duplex column, especially at the high voltage range, due to the consistent distribution of electrical field over the column length. In comparison to the duplex column, the simplex column presented a lower flow rate at the same applied voltage, suggesting that an open section may support a higher speed than a packed section. In practice, the long and short ends of the simplex column could be used as independent CEC columns respectively. This "two-in-one" bi-functional column configuration provided extra flexibilities in selecting and optimizing electrochromatographic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Method of filling a microchannel separation column
Arnold, Don W.
2002-01-01
A method for packing a stationary phase into a small diameter fluid passageway or flow channel. Capillary action is employed to distribute a stationary phase uniformly along both the length and diameter of the flow channel. The method disclosed here: 1) eliminates the need for high pressure pumps and fittings and the safety hazards associated therewith; 2) allows the use of readily available commercial microparticles, either coated or uncoated, as the stationary phase; 3) provides for different types of particles, different particle sizes, and different particle size distributions to be packed in sequence, or simultaneously; 4) eliminates the need for plugging the flow channel prior to adding the stationary phase to retain the packing particles; and 5) many capillaries can be filled simultaneously.
Park, Sin Young; Cheong, Won Jo
2016-05-01
Tiny polyether ether ketone encased monolith frits have been prepared by modified catalytic sulfonation of the inner surface of polyether ether tubing (1.6 mm od, 0.25 mm id) followed by modified formation of organic monolith and cutting of the tubing into slices. The frit was placed below the central hole of the column outlet union and supported by a combination of a silica capillary (0.365 mm od, 0.05 mm id) and a polyether ether ketone sleeve (1.6 mm od, 0.38 mm id) tightened with a nut and a ferrule when the column was packed to prevent sinking of the frit element into the union hole (0.25 mm opening) otherwise. The column packed this way with the frits investigated in this study has shown better separation performance owing to the reduced frit volume in comparison to the column packed with a commercial stainless-steel screen frit. This study establishes the strategy of disposable microcolumns in which cheap disposable frits are used whenever the column is re-packed to yield columns of even better chromatographic performance than the columns with commercial frits. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation of ODS-AQ stationary phase for use in capillary electrochromatography.
Djordjevic, N M; Fitzpatrick, F; Houdiere, F
2001-04-01
The aim of this study was to evaluate the applicability of ODS-AQ packing material as a stationary phase in capillary electrochromatography (CEC). The electroosmotic flow created on an ODS-AQ stationary phase was measured at different mobile phase compositions and at different column temperatures. It was observed that the electroosmotic flow generated in the column increased by 50% when the temperature of the system was raised from 20 degrees C to 60 degrees C, while all other conditions were kept constant. The electroosmotic flow produced by the ODS-AQ stationary phase was found to be comparable to the flow generated in a column packed with Nucleosil bare-silica material. In addition, a set of polar compounds (D-lysergic acid diethylamide derivatives) was utilized to determine the influence of temperature and mobile phase composition on their chromatographic behavior on an ODS-AQ stationary phase in a CEC mode. A linear relationship between the solute retention factor and column temperatures was seen over the temperature range studied (20 degrees C to 60 degrees C). A quadratic function was used to describe the changes in the solute retention factors with variation of acetonitrile concentration in the mobile phase.
Rocco, Anna; Maruška, Audrius; Fanali, Salvatore
2012-03-01
Enantioseparations of racemic nonsteroidal anti-inflammatory drugs (naproxen, ibuprofen, ketoprofen, flurbiprofen, suprofen, indoprofen, cicloprofen, and carprofen) were performed by nano-liquid chromatography, employing achiral capillary columns and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) or hydroxylpropyl-β-cyclodextrin (HP-β-CD) as a chiral mobile phase additive (CMPA). Working under the same experimental conditions (in terms of mobile phase and linear velocity), the performance of a RP-C18 monolithic column was compared with that of a RP-C18 packed column of the same dimensions (100 μm i.d. × 10 cm). Utilizing a mobile phase composed of 30% ACN (v/v) buffered with 50 mM sodium acetate at pH 3, and containing 30 mM TM-β-CD, the monolithic column provided faster analysis but lower resolution than the packed column. This behavior was ascribed to the high permeability of the monolithic column, as well as to its minor selectivity. HP-β-CD was chosen as an alternative to TM-β-CD. Employing the monolithic column, the effects of different parameters such as HP-β-CD concentration, mobile phase composition, and pH on the retention factor and the chiral resolution of the analytes were studied. For the most of the analytes, enantioresolution (which ranged from R(s) = 1.80 for naproxen to R(s) = 0.86 for flurbiprofen) was obtained with a mobile phase consisting of sodium acetate buffer (25 mM, pH 3), 10% MeOH, and 15 mM HP-β-CD. When the same experimental conditions were used with the packed column, no compound eluted within 1 h. Upon increasing the percentage of organic modifier to favor analyte elution, only suprofen eluted within 30 min, with an R(s) value of 1.14 (20% MeOH). Replacing MeOH with ACN resulted in a loss of enantioresolution, except for naproxen (R(s) = 0.89).
Wu, Yi; Zhang, Xiaohui; Wei, Juan; Xue, Yunyun; Bahatibieke, Marjan; Wang, Yan; Yan, Chao
2009-09-01
Capillary electrochromatography (CEC), in which electroosmotic flow (EOF) created from the electrical double layer is made to act as a pump to drive the mobile phase in a capillary column packed with micro-particulates or coated with stationary phase. Both neutral and charged species can be resolved by CEC. It has been demonstrated that the efficiency of a separation obtained by electroosmotic propulsion is superior to that obtained by pressure-driven flow (as is the case in HPLC). CEC combines the best features of CE and versatile selectivity and large sample capacity of HPLC, promising high efficiency, high resolution, high selectivity and high peak capacity. However, in practice, when CEC is used without pressure, often used on a commercial CE instrument, there are problems and difficulties associated with bubbles formation and column dry-out. These difficulties can be overcome by a pressurized CEC (pCEC) system, in which a supplementary pressure is applied to the column in addition to the EOF. In such a system, a pressure can be applied to the capillary column to suppress bubbles formation. Quantitative sample introduction in pCEC can be easily achieved through a rotary-type injector. Most importantly, it is amenable for a solvent gradient mode, similar to that in HPLC, by programming the composition of mobile phase. The article brings a comprehensive survey of recent development of CEC and pCEC, including the development of instrumentation, capillary columns and stationary phase as well as CEC and pCEC applications in life science, biotechnology, pharmaceutical analysis, food safety and environmental security. Prospects for CEC and pCEC development and application are also discussed.
Grinias, Kaitlin M; Godinho, Justin M; Franklin, Edward G; Stobaugh, Jordan T; Jorgenson, James W
2016-10-21
Commercial chromatographic instrumentation for bottom-up proteomics is often inadequate to resolve the number of peptides in many samples. This has inspired a number of complex approaches to increase peak capacity, including various multidimensional approaches, and reliance on advancements in mass spectrometry. One-dimensional reversed phase separations are limited by the pressure capabilities of commercial instruments and prevent the realization of greater separation power in terms of speed and resolution inherent to smaller sorbents and ultrahigh pressure liquid chromatography. Many applications with complex samples could benefit from the increased separation performance of long capillary columns packed with sub-2μm sorbents. Here, we introduce a system that operates at a constant pressure and is capable of separations at pressures up to 45kpsi. The system consists of a commercially available capillary liquid chromatography instrument, for sample management and gradient creation, and is modified with a storage loop and isolated pneumatic amplifier pump for elevated separation pressure. The system's performance is assessed with a complex peptide mixture and a range of microcapillary columns packed with sub-2μm C18 particles. Copyright © 2016 Elsevier B.V. All rights reserved.
Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.
Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa
2007-09-01
A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.
2000-01-01
For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.
Trace-Level Automated Mercury Speciation Analysis
Taylor, Vivien F.; Carter, Annie; Davies, Colin; Jackson, Brian P.
2011-01-01
An automated system for methyl Hg analysis by purge and trap gas chromatography (GC) was evaluated, with comparison of several different instrument configurations including chromatography columns (packed column or capillary), detector (atomic fluorescence, AFS, or inductively coupled plasma mass spectrometry, ICP-MS, using quadrupole and sector field ICP- MS instruments). Method detection limits (MDL) of 0.042 pg and 0.030 pg for CH3Hg+ were achieved with the automated Hg analysis system configured with AFS and ICPMS detection, respectively. Capillary GC with temperature programming was effective in improving resolution and decreasing retention times of heavier Hg species (in this case C3H7Hg+) although carryover between samples was increased. With capillary GC, the MDL for CH3Hg+ was 0.25 pg for AFS detection and 0.060 pg for ICP-MS detection. The automated system was demonstrated to have high throughput (72 samples analyzed in 8 hours) requiring considerably less analyst time than the manual method for methyl mercury analysis described in EPA 1630. PMID:21572543
Hsieh, Ming-Yueh; Hsiao, He-Hsuan
2015-07-30
In this work we demonstrated a facile method for the fabrication of C18 coordination polymer gel in a capillary, called stage-frit, which was efficiently applied to pack sub-2 μm C18 beads into the capillary by a high pressure bomb for the online separation of proteolytic peptides. The back pressure of the column with 10 cm × 75 μm i.d. is regularly lower than 170 bar at a flow rate of 300 nl/min, which could be operated on a common nanoLC system instead of nanoUPLC system due to the good permeability, low back pressure and high mechanical stress of the frit that will totally reduce the cost for the purchase of instrument. The stage-frit allows long-term continuous flow of the solvent and no significant beads loss or pressure instability was observed during the period. The repeatability of retention time for fifteen BSA tryptic peaks was found to be less than 1.08% (RSD) in six time nanoLC-ESI-MS/MS experiments. The average full width at half maximum (FWHM) of peptide peaks is 5.87 s. The sub-2 μm stage-frit nanoLC column showed better sensitivity than the commercial available for large scale proteomic analysis of total tissue proteins from human spleen. The number of identified peptides is approximately 0.4-fold and 0.2-fold higher than that obtained by utilizing commercial columns packed with 3 μm and 1.8 μm C18 materials, respectively. In the field of analytical chemistry, particularly the use of nanoLC systems, stage-frit nanoLC column offers a great potential for the separation of complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.
Bruggink, C.; Koeleman, C.; Barreto, V.; Lui, Y.; Pohl, C.; Ingendoh, A.; Wuhrer, M.; Hokke, C.; Deelder, A.
2007-01-01
High-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) is an established technique for selective separation and analysis of underivatized carbohydrates. The miniaturization of chromatographic techniques by means of capillary columns, and on-line coupling to mass spectrometry are critical to the further development of glycan analysis methods that are compatible with the current requirements in clinical settings. A system has been developed based on the Dionex BioLC equipped with a microbore gradient pump with PEEK flow splitter, a FAMOS micro autosampler, a modified electrochemical cell for on-line capillary PAD, and a capillary column (380 μm i.d.) packed with a new type of anion-exchange resin. This system operates with sensitivity in the low femtomol range. In addition, an on-line capillary desalter has been developed to allow direct coupling to the Bruker Esquire 3000 ion-trap mass spectrometer with electrospray ionization interface (ESI-IT-MS). Both systems have been evaluated using oligosaccharide standards as well as urine samples exhibiting various lysosomal oligosaccharide storage diseases. Initial data indicate that the robust and selective anion-exchange system, in combination with ESI-IT-MS for structure confirmation and analysis, provides a powerful platform that complements existing nano/capillary LC-MS methods for analytical determination of oligosaccharides in biological matrices.
Belisle, A.A.; Swineford, D.M.
1988-01-01
A simple, specific procedure was developed for the analysis of organophosphorus and carbamate pesticides in sediment. The wet soil was mixed with anhydrous sodium sulfate to bind water and the residues were column extracted in acetone:methylene chloride (1:l,v/v). Coextracted water was removed by additional sodium sulfate packed below the sample mixture. The eluate was concentrated and analyzed directly by capillary gas chromatography using phosphorus and nitrogen specific detectors. Recoveries averaged 93 % for sediments extracted shortly after spiking, but decreased significantly as the samples aged.
Rapid separation of beryllium and lanthanide derivatives by capillary gas chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Scott D.; Lucke, Richard B.; Douglas, Matt
2012-09-04
Previous studies describe derivatization of metal ions followed by analysis using gas chromatography, usually on packed columns. In many of these studies, stable and volatile derivatives were formed using fluorinated β-diketonate reagents. This paper extends previous work by investigating separations of the derivatives on small-diameter capillary gas chromatography columns and exploring on-fiber, solid-phase microextraction derivatization techniques for beryllium. The β-diketonate used for these studies was 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Derivatization of lanthanides also required addition of a neutral donor, dibutyl sulfoxide, in addition to 1,1,1,2,2,6,6,7,7,7-decafluoro-3,5-heptanedione. Unoptimized separations on a 100-μm i.d. capillary column proved capable of rapid separations (within 15 min) of lanthanidemore » derivatives that are adjacent to one another in the periodic table. Full-scan mass spectra were obtained from derivatives containing 5 ng of each lanthanide. Studies also developed a simple on-fiber solid-phase microextraction derivatization of beryllium. Beryllium could be analyzed in the presence of other alkali earth elements (Ba(II) and Sr(II)) without interference. Finally, extension of the general approach was demonstrated for several additional elements (i.e. Cu(II), Cr(III), and Ga(III)).« less
Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V
2015-02-15
Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles facilitated the transport of ΦX174, while hindered the transport of MS2. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦX174, and the capillary potential energy of KGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water film is the same for each pair of particles. Moreover, the capillary potential energy is several orders of magnitude greater than the DLVO potential energy. Copyright © 2014 Elsevier Inc. All rights reserved.
Chu, Bin; Lou, Dujuan; Yu, Panfeng; Hu, Shaonan; Shen, Shun
2011-10-14
In this study, a novel on-column enrichment technique filled with C(18)-functionalized magnetic silica nanoparticles was successfully developed for the determination of lidocaine in rat plasma by high performance liquid chromatography (HPLC). The synthesized Fe(3)O(4)@SiO(2)-C(18) nanoparticles were locally packed into the capillary by the application of magnets. Lidocaine in the sample solutions pumped into the capillary tube could be easily adsorbed by Fe(3)O(4)@SiO(2)-C(18) through hydrophobic interaction by the interior C(18) groups, and eluted by acetonitrile solution. Different extraction conditions were investigated. Method validations including linear range, quantification limit, detection limit, precision, accuracy and recovery were also studied. The results showed that the proposed method based on on-column enrichment by Fe(3)O(4)@SiO(2)-C(18) was a novel, little solvent and efficient approach for the determination of lidocaine in the complex plasma samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Pierri, Giuseppe; Kotoni, Dorina; Simone, Patrizia; Villani, Claudio; Pepe, Giacomo; Campiglia, Pietro; Dugo, Paola; Gasparrini, Francesco
2013-10-25
Casein proteins constitute approximately 80% of the proteins present in bovine milk and account for many of its nutritional and technological properties. The analysis of the casein fraction in commercially available pasteurized milk and the study of its time-dependent degradation is of considerable interest in the agro-food industry. Here we present new analytical methods for the study of caseins in fresh and expired bovine milk, based on the use of lab-made capillary organic monolithic columns. An integrated capillary high performance liquid chromatography and high-resolution mass spectrometry (Cap-LC-HRMS) approach was developed, exploiting the excellent resolution, permeability and biocompatibility of organic monoliths, which is easily adaptable to the analysis of intact proteins. The resolution obtained on the lab-made Protein-Cap-RP-Lauryl-γ-Monolithic column (270 mm × 0.250 mm length × internal diameter, L × I.D.) in the analysis of commercial standard caseins (αS-CN, β-CN and κ-CN) through Cap-HPLC-UV was compared to the one observe using two packed capillary C4 columns, the ACE C4 (3 μm, 150 mm × 0.300 mm, L × I.D.) and the Jupiter C4 column (5 μm, 150 mm × 0.300 mm, L × I.D.). Thanks to the higher resolution observed, the monolithic capillary column was chosen for the successive degradation studies of casein fractions extracted from bovine milk 1-4 weeks after expiry date. The comparison of the UV chromatographic profiles of skim, semi-skim and whole milk showed a major stability of whole milk towards time-dependent degradation of caseins, which was further sustained by high-resolution analysis on a 50-cm long monolithic column using a 120-min time gradient. Contemporarily, the exact monoisotopic and average molecular masses of intact αS-CN and β-CN protein standards were obtained through high resolution mass spectrometry and used for casein identification in Cap-LC-HRMS analysis. Finally, the proteolytic degradation of β-CN in skim milk and the contemporary formation of low-molecular-weight proteose-peptones (PP) with exact monoisotopic Mr between 9444.0989 Da and 14098.9861 Da was confirmed through the deconvolution of high resolution mass spectra and literature data. Copyright © 2013 Elsevier B.V. All rights reserved.
Fanali, S; Rudaz, S; Veuthey, J L; Desiderio, C
2001-06-01
A capillary electrochromatography method, using vancomycin chiral stationary phase packed capillary, was optimized for the simultaneous chiral separation of the antidepressant drug venlafaxine and its main active metabolite O-desmethylvenlafaxine. Simultaneous baseline enantiomeric separation of the two compounds was obtained using a mobile phase composed of 100 mM ammonium acetate buffer pH 6/water/acetonitrile (5:5:90, v/v). The electrokinetic injection for sample introduction provided a limit of quantitation for both the compounds of 0.05 microg/ml racemate concentration suitable for the analysis of venlafaxine and metabolite in biological samples. The acetonitrile mobile phase concentration was found to modulate the analytes elution times, the enantiomeric resolution and the efficiency of the separation. The column was tested for repeatability and linearity showing RSD values (%) in the range of 0.13-0.24, 2.47-3.66 and 1.35-2.50 for migration time, sample/internal standard peak area ratio and enantiomeric resolution, respectively and correlation coefficients higher than 0.9990. The method was applied to the analysis of clinical samples of patients under depression therapy showing a stereoselective metabolism for venlafaxine.
Pitarch, Elena; Hernandez, Felix; ten Hove, Jan; Meiring, Hugo; Niesing, Willem; Dijkman, Ellen; Stolker, Linda; Hogendoorn, Elbert
2004-03-26
We have investigated the potential of capillary-column-switching liquid chromatography coupled to tandem mass spectrometry (cLC-MS-MS) for the quantitative on-line trace analysis of target compounds in aqueous solutions. The technical design of the nano-scale cLC system developed at our Institute for peptide and protein identification has been tested and evaluated for the direct trace analysis of drugs in water samples. Sulphametoxazole, bezafibrate, metoprolol, carbamazepine and bisoprolol occurring frequently in Dutch waters, were selected as test compounds. Adequate conditions for trapping, elution and MS-MS detection were investigated by employing laboratory made 200 microm i.d. capillary columns packed with 5 microm aqua C18 material. In the final cLC-MS-MS conditions, a 1 cm length trapping column and a 4 cm length analytical column were selected. Under these conditions, the target compounds could be directly determined in water down to a level of around 50 ng/l employing only 25 microl of water sample. Validation was done by recovery experiments in ground-, surface- and drinking-water matrices as well as by the analysis of water samples with incurred residues and previously analyzed with a conventional procedure involving off-line solid-phase extraction and narrow-bore LC with MS-MS detection. The new methodology provided recoveries (50-500 ng/l level) between 50 and 114% with RSDs (n = 3, each level) below 20% for most of the compounds. Despite the somewhat less analytical performance in comparison to the conventional procedure, the on-line approach of the new methodology is very suitable for screening of drugs in aqueous samples.
Xie, Xiaofeng; Tolley, Luke T; Truong, Thy X; Tolley, H Dennis; Farnsworth, Paul B; Lee, Milton L
2017-11-10
The design of a miniaturized LED-based UV-absorption detector was significantly improved for on-column nanoflow LC. The detector measures approximately 27mm×24mm×10mm and weighs only 30g. Detection limits down to the nanomolar range and linearity across 3 orders of magnitude were obtained using sodium anthraquinone-2-sulfonate as a test analyte. Using two miniaturized detectors, a dual-detector system was assembled containing 255nm and 275nm LEDs with only 216nL volume between the detectors A 100μm slit was used for on-column detection with a 150μm i.d. packed capillary column. Chromatographic separation of a phenol mixture was demonstrated using the dual-detector system, with each detector producing a unique chromatogram. Less than 6% variation in the ratios of absorbances measured at the two wavelengths for specific analytes was obtained across 3 orders of magnitude concentration, which demonstrates the potential of using absorption ratio measurements for target analyte detection. The dual-detector system was used for simple, but accurate, mobile phase flow rate measurement at the exit of the column. With a flow rate range from 200 to 2000nL/min, less than 3% variation was observed. Copyright © 2017 Elsevier B.V. All rights reserved.
Tascon, Marcos; Romero, Lílian M; Acquaviva, Agustín; Keunchkarian, Sonia; Castells, Cecilia
2013-06-14
This study focused on an investigation into the experimental quantities inherent in the determination of partition coefficients from gas-liquid chromatographic measurements through the use of capillary columns. We prepared several squalane - (2,6,10,15,19,23-hexamethyltetracosane) - containing columns with very precisely known phase ratios and determined solute retention and hold-up times at 30, 40, 50 and 60°C. We calculated infinite dilution partition coefficients from the slopes of the linear regression of retention factors as a function of the reciprocal of the phase ratio by means of fundamental chromatographic equations. In order to minimize gas-solid and liquid-solid interface contributions to retention, the surface of the capillary inner wall was pretreated to guarantee a uniform coat of stationary phase. The validity of the proposed approach was first tested by estimating the partition coefficients of n-alkanes between n-pentane and n-nonane, for which compounds data from the literature were available. Then partition coefficients of sixteen aliphatic alcohols in squalane were determined at those four temperatures. We deliberately chose these highly challenging systems: alcohols in the reference paraffinic stationary phase. These solutes exhibited adsorption in the gas-liquid interface that contributed to retention. The corresponding adsorption constant values were estimated. We fully discuss here the uncertainties associated with each experimental measurement and how these fundamental determinations can be performed precisely by circumventing the main drawbacks. The proposed strategy is reliable and much simpler than the classical chromatographic method employing packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.
Shah, Kumar A; Peoples, Michael C; Halquist, Matthew S; Rutan, Sarah C; Karnes, H Thomas
2011-01-25
The work described in this paper involves development of a high-throughput on-line microfluidic sample extraction method using capillary micro-columns packed with MIP beads coupled with tandem mass spectrometry for the analysis of urinary NNAL. The method was optimized and matrix effects were evaluated and resolved. The method enabled low sample volume (200 μL) and rapid analysis of urinary NNAL by direct injection onto the microfluidic column packed with molecularly imprinted beads engineered to NNAL. The method was validated according to the FDA bioanalytical method validation guidance. The dynamic range extended from 20.0 to 2500.0 pg/mL with a percent relative error of ±5.9% and a run time of 7.00 min. The lower limit of quantitation was 20.0 pg/mL. The method was used for the analysis of NNAL and NNAL-Gluc concentrations in smokers' urine. Copyright © 2010 Elsevier B.V. All rights reserved.
2007-11-01
auto-sampler, and controller module , was used in this study. Chromatographic separation was performed on a Vydac C18 polymeric nanocolumn...as a dry powder at70C. Just before use, the dry powder was dissolved in 100% ethanol to a concentration of 13.3 mg/ml and diluted with saline to 15...for3min, and then eluted onto a C18 PepMap TM capillary column (15 cm3 75mm id, 3mm particle size both from LC Packings), using a flow rate of 200–300
The impact of column connection on band broadening in very high pressure liquid chromatography.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Guiochon, Georges
2013-09-01
A series of experiments was conducted to evaluate the degree of band broadening in very high pressure LC due to column connections. Different column manufacturers use slightly different designs for their column fittings. If the same column connections are repeatedly used to attach columns of different origins, different void volumes form between capillary tubes and column inlets. An Agilent Ultra Low Dispersion Kit (tubing id 75 μm) was installed on an Agilent Infinity 1290 ultra HPLC and used to connect successively an Agilent, a Phenomenex, and a Waters column. A series of uracil (unretained) samples were injected and eluted at a wide range of flow rates with a water/acetonitrile mixture as eluent. In order to determine the variance contribution from column connections as accurately as possible a nonretained probe compound was selected because the variance contribution from the column is the smallest for analytes, which have very low k values. Yet, this effect still has an impact on the resolution for moderately retained compounds (k > 2) for narrow-bore columns packed with fine particles, since variance contributions are additive for linear chromatographic systems. Each injection was replicated five times under the same experimental conditions. Then NanoViper column connections (tubing id 75 μm) were used and the same injections were made. This system was designed to minimize connection void volumes for any column. Band variances were calculated as the second central moment of elution peaks and used to assess the degree of band broadening due to the column connections. Band broadening may increase from 3.8 to 53.9% when conventional metal ferrules were used to join columns to connection sites. The results show that the variance contribution from improper connections can generate as much as 60.5% of the total variance observed. This demonstrates that column connections can play a larger role than the column packing with respect to band dispersion. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Separation of catechins and methylxanthines in tea samples by capillary electrochromatography.
Uysal, Ulku Dilek; Aturki, Zeineb; Raggi, Maria Augusta; Fanali, Salvatore
2009-04-01
In this paper, the simultaneous separation of several polyphenols such as (+)-catechin, (-)-epicatechin, (-)-epigallocatechin, theophylline, caffeine in green and black teas by capillary electrochromatography (CEC) was developed. Several experimental parameters such as stationary phase type, mobile phase composition, buffer and pH, inner diameter of the columns, sample injection, were evaluated to obtain the complete separation of the analysed compounds. Baseline resolution of the studied polyphenols was achieved within 30 min by using a capillary column (id 100 microm) packed with bidentate C(18) particles for 24.5 cm and a mobile phase composed of 5 mM ammonium acetate buffer pH 4 with H(2)O/ACN (80:20, v/v). The applied voltage and the temperature were set at 30 kV and 20 degrees C. Precision, detection and quantification limits, linearity, and accuracy were investigated. A good linearity (R(2) > 0.9992) was achieved over a concentration working range of 2-100 microg/mL for all the analytes. LOD and LOQ were 1 and 2 microg/mL, respectively, for all studied compounds. The CEC method was applied to the analysis of those polyphenols in green and black tea samples after an extraction procedure. Good recovery data from accuracy studies ranged between 90% and 112% for all analytes.
Capillary Pressure of a Liquid Between Uniform Spheres Arranged in a Square-Packed Layer
NASA Technical Reports Server (NTRS)
Alexader, J. Iwan D.; Slobozhanin, Lev A.; Collicott, Steven H.
2004-01-01
The capillary pressure in the pores defined by equidimensional close-packed spheres is analyzed numerically. In the absence of gravity the menisci shapes are constructed using Surface Evolver code. This permits calculation the free surface mean curvature and hence the capillary pressure. The dependences of capillary pressure on the liquid volume constructed here for a set of contact angles allow one to determine the evolution of basic capillary characteristics under quasi-static infiltration and drainage. The maximum pressure difference between liquid and gas required for a meniscus passing through a pore is calculated and compared with that for hexagonal packing and with approximate solution given by Mason and Morrow [l]. The lower and upper critical liquid volumes that determine the stability limits for the equilibrium capillary liquid in contact with square packed array of spheres are tabulated for a set of contact angles.
Column-to-column packing variation of disposable pre-packed columns for protein chromatography.
Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois
2017-12-08
In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Krull, I S; Sebag, A; Stevenson, R
2000-07-28
Separation of biopolymers is an obvious application of capillary electrochromatography (CEC) technology, since speed and resolution should increase significantly over high-performance liquid chromatography (HPLC). All too often, HPLC chromatograms of polymers show poorly resolved envelopes of overlapping peaks from oligomers. The practical limitation of column length and pressure drop has hindered development of high resolution separations of many polymers in HPLC. However, this generally applies only to packed beds of small particles, and not to continuous (or monolithic) beds, as introduced by Hjerten et al. [S. Hjerten, Ind. Eng. Chem. Res. 38 (1999) 1205; S. Hjerten, C. Ericson, Y.-M. Li, R. Zhang, Biomed. Chromatogr. 12 (1998) 120; C. Ericson, S. Hjerten, Anal. Chem. 71 (1999) 1621; J.-L. Liao, N. Chen, C. Ericson, S. Hjerten, Anal. Chem. 68 (1996) 3468; S. Hjerten, A. Vegvari, T. Srichaiyo, H.-X. Zhang, C. Ericson, D. Eaker, J. Capillary. Elec. 5 (1998) 13; C. Ericson, J.-L. Liao, K. Nakazato, S. Hjerten, J. Chromatogr. A 767 (1997) 33; S. Hjerten, D. Eaker, K. Elenbring, C. Ericson, K. Kubo, J.-L. Liao, C.-M. Zeng, P.-A. Lidstrom, C. Lindh, A. Palm, T. Srichiayo, L. Valtcheva, R. Zhang, Jpn. J. Electroph. 39 (1995) 1]. Throughout this review we will refer to such packings as monolithic or continuous beds, but they are identical type packings, formed by the in situ polymerization in the capillary or column. CEC capillaries can be much longer, and contain smaller particles than is practical for HPLC. This improves resolution significantly. CEC is able to capitalize on existing mobile phase technology developed over 30 years to improve separations. The requirement that the mobile phase simultaneously promote the separation and mobile phase mobility needs to be considered. In RPLC, this dual role is not much of a problem. It may be much more important in other modes, particularly ion-exchange (IEC). As the field develops, it is becoming clear that CEC is not just a simple extension of HPLC. Instruments, column technology and operating optima are clearly different than HPLC. CEC will develop into its own unique field. Open tubular HPLC is almost precluded by the high pressures required for forcing liquids through 10 microm or smaller capillaries. Electroosmotic pumping (EOF) avoids the pressure constraints and provides better flow profiles. Compared to HPCE, the ability to interact with the stationary phase may enable separations that would be difficult with electrophoresis alone. Since the mobile phase can be less complex than micellar electrokinetic chromatography (MEKC), CEC also avoids the problem of high background signals from the micelle forming compounds. Thus CEC-MS (mass spectrometry) is expected to be even more powerful than HPCE-MS. The fortuitous, simultaneous development of matrix assisted laser desorption-time of flight MS (MALDI-TOF-MS) technology will enable extension of the mass range to above 100 000 Da. Lack of familiarity is the perhaps the largest liability of CEC compared to other techniques. This paper critically compares the state-of-the-art of CEC with HPLC and HPCE, with a particular emphasis on separation of biopolymers. The goal is to help the reader overcome the fear of the unknown, in this case, CEC.
Fully packed capillary electrochromatographic microchip with self-assembly colloidal silica beads.
Park, Jongman; Lee, Dami; Kim, Won; Horiike, Shigeyoshi; Nishimoto, Takahiro; Lee, Se Hwan; Ahn, Chong H
2007-04-15
A fully packed capillary electrochromatographic (CEC) microchip showing improved solution and chip handling was developed. Microchannels for the CEC microchip were patterned on a cyclic olefin copolymer substrate by injection molding and packed fully with 0.8-microm monodisperse colloidal silica beads utilizing a self-assembly packing technique. The silica packed chip substrate was covered and thermally press-bonded. After fabrication, the chip was filled with buffer solution by self-priming capillary action. The self-assembly packing at each channel served as a built-in nanofilter allowing quick loading of samples and running buffer solution without filtration. Because of a large surface area-to-volume ratio of the silica packing, reproducible control of electroosmotic flow was possible without leveling of the solutions in the reservoirs resulting 1.3% rsd in migration rate. The capillary electrophoretic separation characteristics of the chip were studied using fluorescein isothiocyanate (FITC)-derivatized amino acids as probe molecules. A mixture of FITC and four FITC-derivatized amino acids was successfully separated with 2-mm separation channel length.
2016-08-01
5 Extraction Apparatus. A.5.1 Accelerated Solvent Extractor (ASE) Dionex Corporation or equal A.5.1.1 Liquid Nitrogen Cylinder to Deliver High...Chromatograph equipped with ChemStation software, or equal A.6.1 Carrier Gas Cylinder , Appropriate Regulator Set at 80psi A.6.2 Hewlett-Packard...Capillary Column, 5% Phenyl Methyl Siloxane/30.0m x 250μm 0.25μm nominal, 325oC Max, or equal. A.6.3 Split Inlet Liner , Packed with Silanized Glass
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2000-01-01
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2006-02-21
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.
2004-08-24
The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.
Kubán, Pavel; Kubán, Petr; Kubán, Vlastimil; Hauser, Peter C; Bocek, Petr
2008-05-09
In this paper capillary electrochromatography of alkali and alkaline-earth metal cations in open tubular capillary columns is described. Capillary columns are prepared by coating fused silica capillaries of 75 microm I.D. with poly(butadiene-maleic acid) copolymer (PBMA) in multiple layers. Thermally initiated radical polymerization is used to crosslink the stationary phase. Capillary columns with different number of stationary phase layers can be prepared and allow for the adjustment of separation selectivity in the electrochromatographic mode. Fast and sensitive separations of common inorganic cations are achieved in less than 6 min in a 60 cm capillary column with on-column capacitively coupled contactless conductivity detector. Limits of detection (S/N=3) for the determination of alkali and alkaline-earth metal cations range from 0.3 to 2.5 microM and repeatability is better than 0.5, 4.5 and 6.1% for migration times, peak heights and peak areas, respectively.
NASA Technical Reports Server (NTRS)
Mohamadinejad, H.; Knox, J. C.; Smith, J. E.; Croomes, Scott (Technical Monitor)
2001-01-01
The experimental results of CO2 adsorption and desorption in a packed column indicated that the concentration wave front at the center of the packed column differs from those which are close to the wall of column filled with adsorbent material even though the ratio of column diameter to the particle size is greater than 20. The comparison of the experimental results with one dimensional model of packed column shows that in order to simulate the average breakthrough in a packed column a two dimensional (radial and axial) model of packed column is needed. In this paper the mathematical model of a non-slip flow through a packed column with 2 inches in diameter and 18 inches in length filled with 5A zeolite pellets is presented. The comparison of experimental results of CO2 absorption and desorption for the mixed and central breakthrough of the packed column with numerical results is also presented.
On-line DNA analysis system with rapid thermal cycling
Swerdlow, Harold P.; Wittwer, Carl T.
1999-01-01
An apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column.
On-line DNA analysis system with rapid thermal cycling
Swerdlow, H.P.; Wittwer, C.T.
1999-08-10
This application describes an apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column. 6 figs.
Wouters, Bert; Broeckhoven, Ken; Wouters, Sam; Bruggink, Cees; Agroskin, Yury; Pohl, Christopher A; Eeltink, Sebastiaan
2014-11-28
The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Shuiba; Yi, Jun; Ye, Jianglei; Zheng, Wenhui; Cai, Xueqin; Gong, Zhenbin
2004-03-01
A method has been developed for the simultaneous determination of buprofezin, methamidophos, acephate and triazophos residues in Chinese tea samples. The pesticide residues were extracted from tea samples with a mixture of ethyl acetate and n-hexane (50:50, v/v) at 45 degrees C. The extracts were subsequently treated with a column packed with 40 mg of active carbon by gradient elution with ethyl acetate and n-hexane. Buprofenzin and the three organophosphorus pesticides were analyzed by gas chromatography using a DB-210 capillary column and a nitrogen-phosphorus detector. The recoveries for spiked standards were 73.4%-96.9%. The relative standard deviations were all within 4.63%. The limits of quantitation (3sigma) in the tea samples were about 7.0-12.0 microg/kg.
Liang, Yu; Zhang, Lihua; Zhang, Yukui
2013-03-01
Capillary liquid chromatography (cLC) has great potential for protein and peptide separation, with advantages of high efficiency, high resolution, low sample consumption, and high sensitivity when coupled with mass spectrometry. In recent years, monoliths have been widely used as the stationary phases for capillary columns, owing to easy preparation, high permeability, fast mass transfer, and low backpressure. This review summarizes recent advances (2007-2012) in monolithic columns for protein and peptide separation by cLC. After a brief introduction on the preparation of monolithic capillary columns, the emphasis of this review is focused on the recent application of such columns for protein and peptide separation by cLC. Furthermore, the challenges and potential hot points of monolithic capillary columns in the future are discussed.
Guo, Heying; Niu, Xiaoying; Pan, Congjie; Yi, Tao; Chen, Hongli; Chen, Xingguo
2017-06-01
Inspired by the chiral recognition ability of β-cyclodextrin and the natural adhesive properties of polydopamine under alkaline conditions, in this study, a rapid and in situ modification strategy was developed to fabricate β-cyclodextrin/polydopamine composite material coated-capillary columns for open tubular capillary electrochromatography. The results of scanning electron microscopy, FTIR spectroscopy, streaming potential, and electro-osmotic flow studies indicated that β-cyclodextrin/polydopamine was successfully fixed on the inner wall of the capillary column. This coating can be achieved within 1 h affording a greatly reduced capillary preparation time. The performance of the β-cyclodextrin/polydopamine-coated capillary was validated by the analysis of seven pairs of chiral analytes, namely epinephrine, norepinephrine, isoprenaline, terbutaline, verapamil, tryptophane, carvedilol. Good enantioseparation efficiencies were achieved for all. For three consecutive runs, the relative standard deviations for the migration times of the analytes for intraday, interday, and column-to-column repeatability were in the range of 0.41-1.74, 1.03-4.18, and 1.66-8.24%, respectively. Moreover, the separation efficiency of the β-cyclodextrin/polydopamine-coated capillary column did not decrease obviously over 90 runs. The strategy should also be feasible to introduce and immobilize other chiral selectors on the inner walls surface of capillary columns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Yin-Yin; Lv, Wen-Juan; Ren, Cui-Ling; Niu, Xiao-Ying; Chen, Hong-Li; Chen, Xing-Guo
2018-01-12
The popularity of novel nanoparticles coated capillary column has aroused widespread attention of researchers. Metal organic frameworks (MOFs) with special structure and chemical properties have received great interest in separation sciences. This work presents the investigation of HKUST-1 (Hong Kong University of Science and Technology-1, called Cu 3 (BTC) 2 or MOF-199) nanoparticles as a new type of coating material for capillary electrochromatography. For the first time, three layers coating (3-LC), five layers coating (5-LC), ten layers coating (10-LC), fifteen layers coating (15-LC), twenty layers coating(20-LC) and twenty-five layers coating (25-LC) capillary columns coated with HKUST-1 nanoparticles were synthesized by covalent bond with in situ, layer-by-layer self-assembly approach. The results of scanning electron microscopy (SEM), X-ray diffraction (XRD) and plasma atomic emission spectrometry (ICP-AES) indicated that HKUST-1 was successfully grafted on the inner wall of the capillary. The separating performances of 3-LC, 5-LC, 10-LC, 15-LC, 20-LC and 25-LC open tubular (OT) capillary columns were studied with some neutral small organic molecules. The results indicated that the neutral small organic molecules were separated successfully with 10-LC, 15-LC and 20-LC OT capillary columns because of the size selectivity of lattice aperture and hydrophobicity of organic ligands. In addition, 10-LC and 15-LC OT capillary columns showed better performance for the separation of certain phenolic compounds. Furthermore, 10-LC, 15-LC and 20-LC OT capillary columns exhibited good intra-day repeatability with the relative standard deviations (RSDs; %) of migration time and peak areas lying in the range of 0.3-1.2% and 0.5-4.2%, respectively. For inter-day reproducibility, the RSDs of the three OT capillary columns were found to be lying in the range of 0.3-5.5% and 0.3-4.5% for migration time and peak area, respectively. The RSDs of retention times for column-to-column for three batches of 10-LC, 15-LC and 20-LC OT capillary columns were in the range from 2.3% to 7.2%. Moreover, the fabricated 10-LC, 15-LC and 20-LC OT capillary columns exhibited good repeatability and stability for separation, which could be used successively for more than 120 runs with no observable changes on the separation efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.
Xu, Liang; Cui, Pengfei; Wang, Dongmei; Tang, Cheng; Dong, Linyi; Zhang, Can; Duan, Hongquan; Yang, Victor C
2014-01-03
In this study, poly(glycidyl methacrylate) (PGMA) nanoparticles (NPs) were prepared and chemically immobilized for the first time onto a capillary inner wall for open tubular capillary electrochromatography (OTCEC). The immobilization of PGMA NPs onto the capillary was attained by a ring-opening reaction between the NPs and an amino-silylated fused capillary inner surface. Scanning electron micrographs clearly demonstrated that the NPs were bound to the capillary inner surface in a dense monolayer. The PGMA NP-coated column was then functionalized by lysine (Lys). After fuctionalization, the capillary can afford strong anodic electroosmotic flow, especially in acidic running buffers. Separations of three amino acids (including tryptophan, tyrosine and phenylalanine) were performed in NP-modified, monolayer Lys-functionalized and bare uncoated capillaries. Results indicated that the NP-coated column can provide more retention and higher resolution for analytes due to the hydrophobic interaction between analytes and the NP-coating. Run-to-run and column-to-column reproducibilities in the separation of the amino acids using the NP-modified column were also demonstrated. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pohl, Nicola; Clague, Allen; Schwarz, Kimberly
2002-06-01
We describe an integrated set of experiments for the undergraduate organic laboratory that allows students to compare and contrast biological and chemical means of introducing chirality into a molecule. The racemic reduction of ethyl acetoacetate with sodium borohydride and the same reduction in the presence of a tartaric acid ligand are described, and a capillary gas chromatography column packed with a chiral material for product analysis is introduced. The results of these two hydride reactions are compared with the results of a common undergraduate experiment, the baker's yeast reduction of ethyl acetoacetate.
Visualization and quantification of two-phase flow in transparent miniature packed beds
NASA Astrophysics Data System (ADS)
Zhu, Peixi; Papadopoulos, Kyriakos D.
2012-10-01
Optical microscopy was used to visualize the flow of two phases [British Petroleum (BP) oil and an aqueous surfactant phase] in confined space, three-dimensional, transparent, natural porous media. The porous media consisted of water-wet cryolite grains packed inside cylindrical, glass microchannels, thus producing microscopic packed beds. Primary drainage of BP oil displacing an aqueous surfactant phase was studied at capillary numbers that varied between 10-6 and 10-2. The confinement space had a significant effect on the flow behavior. Phenomena of burst motion and capillary fingering were observed for low capillary numbers due to the domination of capillary forces. It was discovered that breakthrough time and capillary number bear a log-log scale linear relationship, based on which a generalized correlation between oil travel distance x and time t was found empirically.
Visualization and quantification of two-phase flow in transparent miniature packed beds.
Zhu, Peixi; Papadopoulos, Kyriakos D
2012-10-01
Optical microscopy was used to visualize the flow of two phases [British Petroleum (BP) oil and an aqueous surfactant phase] in confined space, three-dimensional, transparent, natural porous media. The porous media consisted of water-wet cryolite grains packed inside cylindrical, glass microchannels, thus producing microscopic packed beds. Primary drainage of BP oil displacing an aqueous surfactant phase was studied at capillary numbers that varied between 10(-6) and 10(-2). The confinement space had a significant effect on the flow behavior. Phenomena of burst motion and capillary fingering were observed for low capillary numbers due to the domination of capillary forces. It was discovered that breakthrough time and capillary number bear a log-log scale linear relationship, based on which a generalized correlation between oil travel distance x and time t was found empirically.
NASA Astrophysics Data System (ADS)
Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid
2017-09-01
In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.
Norton, Dean; Shamsi, Shahab A.
2009-01-01
The preparation and characterization of a novel lithocholic acid (LCA)-based liquid crystalline (LC) stationary phase (SP) suitable for application in packed-column CEC and CEC coupled to MS is described. The extent of bonding reactions of LCA-SP was assessed using 1H-NMR, 13C-NMR and elemental analysis. This characterization is followed by application of the LCA-SP for separation of β-blockers, phenylethylamines (PEAs), polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Using the optimum mobile phase operating conditions (pH 3.0-4.5, 10 mM ammonium acetate, 85% v/v ACN), a comparison of the chromatographic ability of the aminopropyl silica phase vs. the LCA-bonded phase was conducted. The results showed improved selectivity for all test analytes using the latter phase. For example, the CEC-MS of β-blockers demonstrated that the LCA-bonded phase provides separation of six out of seven β-blockers, whereas the amino silica phase provides four peaks of several co-eluting β-blockers. For the CEC-MS analysis of PEAs, the LCA-bonded phase showed improved resolution and different selectivity as compared to the aminopropyl phase. An evaluation of the retention trends for PEAs on both phases suggested that the PEAs were retained based on varying degree of hydroxyl substitution on the aromatic ring. In addition, the MS characterization shows several PEAs fragment in the electrospray either by loss of an alkyl group and/or by loss of H2O. Finally, the LCA-bonded phase displayed significantly higher separation selectivity for PAHs and PCBs as compared to the amino silica phase. PMID:18425746
Kumar, Avvaru Praveen; Park, Jung Hag
2010-06-25
This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol-gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 microA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases. Copyright 2010 Elsevier B.V. All rights reserved.
Separation of natural product using columns packed with Fused-Core particles.
Yang, Peilin; Litwinski, George R; Pursch, Matthias; McCabe, Terry; Kuppannan, Krishna
2009-06-01
Three HPLC columns packed with 3 microm, sub-2 microm, and 2.7 microm Fused-Core (superficially porous) particles were compared in separation performance using two natural product mixtures containing 15 structurally related components. The Ascentis Express C18 column packed with Fused-Core particles showed an 18% increase in column efficiency (theoretical plates), a 76% increase in plate number per meter, a 65% enhancement in separation speed and a 19% increase in back pressure compared to the Atlantis T3 C18 column packed with 3 microm particles. Column lot-to-lot variability for critical pairs in the natural product mixture was observed with both columns, with the Atlantis T3 column exhibiting a higher degree of variability. The Ascentis Express column was also compared with the Acquity BEH column packed with sub-2 microm particles. Although the peak efficiencies obtained by the Ascentis Express column were only about 74% of those obtained by the Acquity BEH column, the 50% lower back pressure and comparable separation speed allowed high-efficiency and high-speed separation to be performed using conventional HPLC instrumentation.
Zheng, Juan; Lu, Cuiming; Huang, Junlong; Chen, Luyi; Ni, Chuyi; Xie, Xintong; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng
2018-08-15
Novel powdery polymer aerogel (PPA) prepared via the (micro)emulsion polymerization and the following hyper crosslinking reaction was fabricated as stationary phase of capillary column for the first time. Due to its powdery morphology, unique 3D nano-network structure, high surface area and good thermostability, the PPA-coated capillary column demonstrated high-resolution chromatographic separation towards nonpolar and weakly polar organic compounds, including benzene series, n-alkanes, ketone mixtures and trichlorobenzenes. Moreover, the reproducibility, quantitative analysis ability and thermostability of PPA-coated capillary column were also evaluated. The relative standard deviations for three replicate determinations of selected analytes were 0.02-0.11%, 0.12-0.26% and 1.2-3.6% for run-to-run, day-to-day and column-to-column analyses, respectively. The PPA demonstrated good thermostability, and the PPA-coated capillary column was proved to be heat-resistant (270 °C). The results of this study show PPA is an excellent candidate to be employed as stationary phase for gas chromatography capillary. Copyright © 2018 Elsevier B.V. All rights reserved.
Transport of Chemotactic Bacteria in Porous Media with Structured Heterogeneity
NASA Astrophysics Data System (ADS)
Ford, R. M.; Wang, M.; Liu, J.; Long, T.
2008-12-01
Chemical contaminants that become trapped in low permeability zones (e.g. clay lenses) are difficult to remediate using conventional pump-and-treat approaches. Chemotactic bacteria that are transported by groundwater through more permeable regions may migrate toward these less permeable zones in response to chemical gradients created by contaminant diffusion from the low permeability source, thereby enhancing the remediation process by directing bacteria to the contaminants they degrade. What effect does the heterogeneity associated with coarse- and fine-grained layers that are characteristic of natural groundwater environments have on the transport of microorganisms and their chemotactic response? To address this question experiments were conducted over a range of scales from a single capillary tube to a laboratory- scale column in both static and flowing systems with and without chemoattractant gradients. In static capillary assays, motile bacteria accumulated at the interface between an aqueous solution and a suspension of agarose particulates. In microfluidic devices with an array of staggered cylinders, chemotactic bacteria migrated transverse to flow in response to a chemoattractant gradient. In sand columns packed with a coarse-grained core and surrounded by a fine-grained annulus, chemotactic bacteria migrated preferentially toward a chemoattractant source along the centerline. Mathematical models and computer simulations were developed to analyze the experimental observations in terms of transport parameters from the advection- disperson-sorption equation.
Wang, Ling-Chi; Okitsu, Cindy Yen; Kochounian, Harold; Rodriguez, Anthony; Hsieh, Chih-Lin; Zandi, Ebrahim
2008-05-01
A modified sol-gel method for a one-step on-column frit preparation for fused-silica capillaries and its utility for peptide separation in LC-MS/MS is described. This method is inexpensive, reproducible, and does not require specialized equipments. Because the frit fabrication process does not damage polyimide coating, the frit-fabricated column can be tightly connected on-line for high pressure LC. These columns can replace any capillary liquid transfer tubing without any specialized connections up-stream of a spray tip column. Therefore multiple columns with different phases can be connected in series for one- or multiple-dimensional chromatography.
Reising, Arved E; Schlabach, Sabine; Baranau, Vasili; Stoeckel, Daniela; Tallarek, Ulrich
2017-09-01
Column wall effects are well recognized as major limiting factor in achieving high separation efficiency in HPLC. This is especially important for modern analytical columns packed with small particles, where wall effects dominate the band broadening. Detailed knowledge about the packing microstructure of packed analytical columns has so far not been acquired. Here, we present the first three-dimensional reconstruction protocol for these columns utilizing focused ion-beam scanning electron microscopy (FIB-SEM) on a commercial 2.1mm inner diameter×50mm length narrow-bore analytical column packed with 1.7μm bridged-ethyl hybrid silica particles. Two sections from the packed bed are chosen for reconstruction by FIB-SEM: one from the bulk packing region of the column and one from its critical wall region. This allows quantification of structural differences between the wall region and the center of the bed due to effects induced by the hard, confining column wall. Consequences of these effects on local flow velocity in the column are analyzed with flow simulations utilizing the lattice-Boltzmann method. The reconstructions of the bed structures reveal significant structural differences in the wall region (extending radially over approximately 62 particle diameters) compared to the center of the column. It includes the local reduction of the external porosity by up to 10% and an increase of the mean particle diameter by up to 3%, resulting in a decrease of the local flow velocity by up to 23%. In addition, four (more ordered) layers of particles in the direct vicinity of the column wall induce local velocity fluctuations by up to a factor of three regarding the involved velocity amplitudes. These observations highlight the impact of radial variations in packing microstructure on band migration and column performance. This knowledge on morphological peculiarities of column wall effects helps guiding us towards further optimization of the packing process for analytical HPLC columns. Copyright © 2017 Elsevier B.V. All rights reserved.
Recent advances in capillary ultrahigh pressure liquid chromatography.
Blue, Laura E; Franklin, Edward G; Godinho, Justin M; Grinias, James P; Grinias, Kaitlin M; Lunn, Daniel B; Moore, Stephanie M
2017-11-10
In the twenty years since its initial demonstration, capillary ultrahigh pressure liquid chromatography (UHPLC) has proven to be one of most powerful separation techniques for the analysis of complex mixtures. This review focuses on the most recent advances made since 2010 towards increasing the performance of such separations. Improvements in capillary column preparation techniques that have led to columns with unprecedented performance are described. New stationary phases and phase supports that have been reported over the past decade are detailed, with a focus on their use in capillary formats. A discussion on the instrument developments that have been required to ensure that extra-column effects do not diminish the intrinsic efficiency of these columns during analysis is also included. Finally, the impact of these capillary UHPLC topics on the field of proteomics and ways in which capillary UHPLC may continue to be applied to the separation of complex samples are addressed. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, B.J.; Guiochon, G.
1994-11-01
Adsorption energy distributions (AEDs) are calculated from the classical, fundamental integral equation of adsorption using adsorption isotherms and the expectation-maximization method of parameter estimation. The adsorption isotherms are calculated from nonlinear elution profiles obtained from gas chromatographic data using the characteristic points method of finite concentration chromatography. Porous layer open tubular capillary columns are used to support the adsorbent. The performance of these columns is compared to that of packed columns in terms of their ability to supply accurate isotherm data and AEDs. The effect of the finite column efficiency and the limited loading factor on the accuracy of themore » estimated energy distributions is presented. This accuracy decreases with decreasing efficiency, and approximately 5000 theoretical plates are needed when the loading factor, L[sub f], equals 0.56 for sampling of a unimodal Gaussian distribution. Increasing L[sub f] further increases the contribution of finite efficiency to the AED and causes a divergence at the low-energy endpoint if too high. This occurs as the retention time approaches the holdup time. Data are presented for diethyl ether adsorption on porous silica and its C-18-bonded derivative. 36 refs., 8 figs., 2 tabs.« less
Yang, Peilin; McCabe, Terry; Pursch, Matthias
2011-11-01
Commercial C(18) columns packed with superficially porous particles of different sizes and shell thicknesses (Ascentis Express, Kinetex, and Poroshell 120) or sub-2-μm totally porous particles (Acquity BEH) were systematically compared using a small molecule mixture and a complex natural product mixture as text probes. Significant efficiency loss was observed on 2.1-mm id columns even with a low dispersion ultra-high pressure liquid chromatography system. The Kinetex 4.6-mm id column packed with 2.6-μm particles exhibited the best overall efficiency for small molecule separations and the Poroshell 120 column showed better performance for mid-size natural product analytes. The Kinetex 2.1-mm id column packed with 1.7-μm particles did not deliver the expected performance and the possible reasons besides extra column effect have been proved to be frictional heating effect and poor column packing quality. Different column retentivities and selectivities have been observed on the four C(18) columns of different brands for the natural product separation. Column batch-to-batch variability that has been previously observed on the Ascentis Express column was also observed on the Kinetex and Poroshell 120 column. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Loading properties of porous layered capillary columns with sorbents of different natures
NASA Astrophysics Data System (ADS)
Patrushev, Y. V.; Nikolaeva, O. A.; Sidelnikov, V. N.
2017-04-01
Loading properties are studied for the commercial porous layered capillary columns GASPRO, Rt-Q-BOND, and for columns with porous layers based on the divinylbenzene-vinylimidazole copolymer (DVB-VIm), poly(trimethylsilyl)propyn (PTMSP) and ordered silica of the MCM-41 type. It is shown that the loading capacity of a column based on MCM-41 is 5-10 times higher than in the other considered columns. The loading properties of porous layered columns and columns for gas-liquid chromatography are compared.
Wang, Y; Zeng, Z; Guan, N; Cheng, J
2001-07-01
A novel open-tubular capillary electrochromatography (OT-CEC) column coated with 2,6-dibutyl-beta-cyclodextrin (DB-beta-CD) was prepared using sol-gel technique. In the sol-gel approach, owing to the three-dimensional network of sol-gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. We achieved high efficiencies of 5-14 x 10(4) plates/m for the isomeric nitrophenols using the sol-gel-derived DB-beta-CD columns. The migration time reproducibility of the separation of the isomeric nitrophenols was better than 2.2% over five runs and 4.5% from column to column. These sol-gel-coated DB-beta-CD columns have shown improved separations of isomeric aminophenols, isomeric dihydroxybenzenes and isomeric nitrophenols, in comparison with the sol-gel matrix capillary column. The influences of buffer pH and methanol solvent on separation were investigated. The chiral resolution of enantiomers such as ibuprofen and binaphthol was explored primarily.
Wang, Xuan; Ye, Nengsheng; Hu, Xiaoyu; Liu, Qingye; Li, Jian; Peng, Lin; Ma, Xiaotong
2018-05-25
In this study, a metal-organic framework (MOF), [Mn(cam)(bpy)], was synthesized and characterized by thermogravimetric analysis, scanning electron microscopy, and Fourier transform infrared spectrometry. An open-tubular capillary column was fabricated from [Mn(cam)(bpy)] via the amide coupling method. Ten types of sulfonamides were separated through the fabricated capillary column, which showed a good limits of detection (< 0.07 μg·mL -1 ) and a linear ranges (1-100 μg·mL -1 or 5-100 μg·mL -1 ) with a high correlation coefficients (R 2 > 0.9987). The intra-day, inter-day and column-to-column relative standard deviations (RSDs) in the migration times ranged from 0.44% to 4.87%, and the peak area RSDs ranged from 0.80% to 7.28%. The developed capillary electrochromatography method can be successfully utilized for the determination of sulfonamides in tap water and milk samples. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Pavlenko, A. N.; Zhukov, V. E.; Pecherkin, N. I.; Nazarov, A. D.; Li, X.; Li, H.; Gao, X.; Sui, H.
2017-09-01
The use of modern structured packing in the distillation columns allows much more even distribution of the liquid film over the packing surface, but it does not completely solve the problem of uniform distribution of flow parameters over the entire height of the packing. Negative stratification of vapor along the packing height caused by different densities of vapor mixture components and higher temperature in the lower part of the column leads to formation of large-scale maldistributions of temperature and mixture composition over the column cross-section even under the conditions of uniform irrigation of packing with liquid. In these experiments, the idea of compensatory action of liquid distributor on the large-scale maldistribution of mixture composition over the column cross-section was implemented. The experiments were carried out in the distillation column with the diameter of 0.9 m on 10 layers of the Mellapak 350Y packing with the total height of 2.1 m. The mixture of R-21 and R-114 was used as the working mixture. To irrigate the packing, the liquid distributorr with 126 independently controlled solenoid valves overlapping the holes with the diameter of 5 mm, specially designed by the authors, was used. Response of the column to the action of liquid distributor was observed in real time according to the indications of 3 groups of thermometers mounted in 3 different cross-sections of the column. The experiments showed that the minimal correction of the drip point pattern in the controlled liquid distributor can significantly affect the pattern of flow parameter distribution over the cross-section and height of the mass transfer surface and increase separation efficiency of the column within 20%.
Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping
2012-05-15
In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF-coated capillaries for high-resolution gas chromatography (GC). We have explored a dynamic coating approach to fabricate a MOF-coated capillary for the GC separation of important raw chemicals and persistent organic pollutants with high resolution and excellent selectivity. We have combined a MOF-coated fiber for solid-phase microextraction with a MOF-coated capillary for GC separation, which provides an effective MOF-based tandem molecular sieve platform for selective microextraction and high-resolution GC separation of target analytes in complex samples. Microsized MOFs with good solvent stability are attractive stationary phases for high-performance liquid chromatography (HPLC). These materials have shown high resolution and good selectivity and reproducibility in both the normal-phase HPLC separation of fullerenes and substituted aromatics on MIL-101 packed columns and position isomers on a MIL-53(Al) packed column and the reversed-phase HPLC separation of a wide range of analytes from nonpolar to polar and acidic to basic solutes. Despite the above achievements, further exploration of MOFs in analytical chemistry is needed. Especially, analytical application-oriented engineering of MOFs is imperative for specific applications.
Thermodynamics of Capillary Rise: Why Is the Meniscus Curved?
ERIC Educational Resources Information Center
Henriksson, Ulf; Eriksson, Jan Christer
2004-01-01
The thermodynamics of capillary rise is explained as the gravitational elevation of the whole column of liquid caused by the positive connection between the liquid, and the solid wall of the capillary tube. The curvature of the meniscus is ascribed to the maintenance of a physiochemical balance throughout the gravitational column of liquid.
40 CFR 141.40 - Monitoring requirements for unregulated contaminants.
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring to be completed Reserved i Reserved i Reserved i Reserved i Reserved i Reserved i Column headings... Pesticides and Flame Retardants in Drinking Water by Solid Phase Extraction and Capillary Column Gas... Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/MS...
Sol-gel chemistry-based Ucon-coated columns for capillary electrophoresis.
Hayes, J D; Malik, A
1997-07-18
A sol-gel chemistry-based novel approach for the preparation of a Ucon-coated fused-silica capillary column in capillary electrophoresis is presented. In this approach the sol-gel process is carried out inside 25 microm I.D. fused-silica capillaries. The sol solution contained appropriate quantities of an alkoxide-based sol-gel precursor, a polymeric coating material (Ucon), a crosslinking reagent, a surface derivatizing reagent, controlled amounts of water and a catalyst dissolved in a suitable solvent system. The coating procedure involves filling a capillary with the sol solution and allowing the sol-gel process to proceed for an optimum period. Hydrolysis of the alkoxide precursor and polycondensation of the hydrolyzed products with the surface silanol groups and the hydroxy-terminated Ucon molecules lead to the formation of a surface-bonded sol-gel coating on the inner walls of the capillary. The thickness of the coated film can be controlled by varying the reaction time, coating solution composition and experimental conditions. Commercial availability of high purity sol-gel precursors (e.g., TEOS 99.999%), the ease of coating, run-to-run and column-to-column reproducibility, and long column lifetimes make sol-gel coating chemistry very much suitable for being applied in analytical microseparations column technology. Test samples of basic proteins and nucleotides were used to evaluate the column performance. These results show that the sol-gel coating scheme has allowed for the generation of bio-compatible surfaces characterized by high separation efficiencies in CE. For different types of solutes, the sol-gel coated Ucon column consistently provided migration time R.S.D. values of the order of 0.5%.
Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina
2017-02-01
Experimental and modeling studies were performed to investigate bacteria deposition behavior in unsaturated porous media. The coupled effect of different forces, acting on bacteria at solid-air-water interfaces and their relative importance on bacteria deposition mechanisms was explored by calculating Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions such as hydrophobic, capillary and hydrodynamic forces. Negatively charged non-motile bacteria and quartz sands were used in packed column experiments. The breakthrough curves and retention profiles of bacteria were simulated using the modified Mobile-IMmobile (MIM) model, to identify physico-chemical attachment or physical straining mechanisms involved in bacteria retention. These results indicated that both mechanisms might occur in both sand. However, the attachment was found to be a reversible process, because attachment coefficients were similar to those of detachment. DLVO calculations supported these results: the primary minimum did not exist, suggesting no permanent retention of bacteria to solid-water and air-water interfaces. Calculated hydrodynamic and resisting torques predicted that bacteria detachment in the secondary minimum might occur. The capillary potential energy was greater than DLVO, hydrophobic and hydrodynamic potential energies, suggesting that film straining by capillary forces might largely govern bacteria deposition under unsaturated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Gritti, Fabrice; Guiochon, Georges
2010-07-30
Surprisingly, the mass transfer kinetic properties of columns packed with superficially porous particles are markedly different from those of columns packed with fully porous particles. The performances of 2.1mmx150mm columns packed with a new type of sub-2microm particles, the superficially porous 1.7microm Kinetex-C(18), and with the classical 1.7microm BEH-C(18) fully porous particles were measured and are discussed. The sample was naphtho[2,3-a]pyrene; the use of different mobile phase compositions allowed a comparison between data measured with retention factors of k(') approximately 2 and k(') approximately 20. The minimum reduced height equivalent to a theoretical plate (HETP) of the two columns were similar, at h(min)=2.0. However, this minimum HETP was observed at a markedly shorter reduced linear velocity for the column packed with totally porous particles, between 5 and 7 for BEH, than for the one packed with shell particles, between 8 and 10 for Kinetex. This result is explained by the combination of (1) a 35% smaller B term for the Kinetex column than for the BEH column, due to the 37% lower porous volume of the former; (2) a larger reduced A term for the Kinetex column (1.6), showing a relatively poorly packed column with significant trans-column velocity biases than for the BEH column (ca. 1.0); and (3) a much lesser dependance of the efficiency on the mobile phase velocity at high velocities for the Kinetex than for the BEH column, when these columns are placed in the oven of the instrument under still-air conditions. The heat friction affects significantly more the efficiency of the BEH column than that of the Kinetex column. This unexpected result is accounted for by the three times smaller heat conductivity of the BEH bed (lambda(BEH) approximately 0.25 W/m/K) than that of the Kinetex bed (lambda(Kinetex) approximately 0.75W/m/K).
Characterization of new types of stationary phases for fast liquid chromatographic applications.
Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin
2009-12-05
The performance of a narrow bore silica based monolith column (5 cm x 2 mm) was compared to 5 cm long narrow bore (internal diameter < or = 2.1 mm) columns, packed with shell particles (2.7 microm) and totally porous sub-2 microm particles (1.5 microm, 1.7 microm and 1.9 microm) in gradient and isocratic elution separations of steroids. The highest peak capacity could be achieved with the column packed with 1.5 microm totally porous particles. The columns packed with porous 1.7 microm and shell 2.7 microm particles showed very similar capacity. The monolith column provided the lowest capacity during gradient elution. The plate height (HETP) of the 2.7 microm Ascentis Express column was very similar to the HETP obtained with 1.5 microm and 1.7 microm totally porous particles. The Chromolith monolithic column displayed an efficiency that is comparable to that of columns packed with spherical particles having their diameter between 3 microm and 4 microm. A kinetic plot analysis is presented to compare the theoretical analysis speed of different separation media. At 200 bar, the monolith column provided the highest performance when the required plate number was higher than 5000 (N>5000), however the efficiency drifted off faster in the range of N<5000 than in the case of packed columns. If the possibility of maximum performance was utilized (1000 bar for sub-2 microm particles, 600 bar for shell particles and 200 bar for monolith column) the monolith column would provide the poorest efficiency, while the column, packed with 1.5 microm particles offered the shortest impedance time.
Specific yield - laboratory experiments showing the effect of time on column drainage
Prill, Robert C.; Johnson, A.I.; Morris, Donald Arthur
1965-01-01
The increasing use of ground water from many major aquifers in the United States has required a more thorough understanding of gravity drainage, or specific yield. This report describes one phase of specific yield research by the U.S. Geological Survey's Hydrologic Laboratory in cooperation with the California Department of Water Resources. An earlier phase of the research concentrated on the final distribution of moisture retained after drainage of saturated columns of porous media. This report presents the phase that concentrated on the distribution of moisture retained in similar columns after drainage for various periods of time. Five columns, about 4 cm in diameter by 170 cm long, were packed with homogenous sand of very fine, medium, and coarse sizes, and one column was packed with alternating layers of coarse and medium sand. The very fine materials were more uniform in size range than were the medium materials. As the saturated columns drained, tensiometers installed throughout the length recorded changes in moisture tension. The relation of tension to moisture content, determined for each of the materials, was then used to convert the tension readings to moisture content. Data were then available on the distribution of retained moisture for different periods of drainage from 1 to 148 hours. Data also are presented on the final distribution of moisture content by weight and volume and on the degree of saturation. The final zone of capillary saturation was approximately 12 cm for coarse sand, 13 cm for medium sand, and 52 cm for very fine sand. The data showed these zones were 92 to 100 percent saturated. Most of the outflow from the columns occurred in the earlier hours of drainage--90 percent in 1 hour for the coarse materials, 50 percent for the medium, and 60 percent for the very fine. Although the largest percentage of the specific yield was reached during the early hours of .drainage, this study amply demonstrates that a very long time would be required to reach drainage equilibrium. In the layered columns the middle (medium sand) layer functioned as a hanging water column accelerating the drainage of the overlying coarse-sand layer. After the middle layer started to drain, the moisture distribution as retained in all three layers showed trends similar to that obtained when the same materials were tested in homogenous columns.
NASA Astrophysics Data System (ADS)
Lee, Cheng-Hsien; Huang, Zhenhua
2018-05-01
The collapse process of a submerged granular column is strongly affected by its initial packing. Previous models for particle response time, which is used to quantify the drag force between the solid and liquid phases in rheology-based two-phase flow models, have difficulty in simulating the collapse process of granular columns with different initial concentrations (initial packing conditions). This study introduces a new model for particle response time, which enables us to satisfactorily model the drag force between the two phases for a wide range of volume concentration. The present model can give satisfactory results for both loose and dense packing conditions. The numerical results have shown that (i) the initial packing affects the occurrence of contractancy/diltancy behavior during the collapse process, (ii) the general buoyancy and drag force are strongly affected by the initial packing through contractancy and diltancy, and (iii) the general buoyancy and drag force can destabilize the granular material in loose packing condition but stabilize the granular material in dense packing condition. The results have shown that the collapse process of a densely-packed granular column is more sensitive to particle response time than that of a loosely-packed granular column.
Microfabricated packed gas chromatographic column
Kottenstette, Richard; Matzke, Carolyn M.; Frye-Mason, Gregory C.
2003-12-16
A new class of miniaturized gas chromatographic columns has been invented. These chromatographic columns are formed using conventional micromachining techniques, and allow packed columns having lengths on the order of a meter to be fabricated with a footprint on the order of a square centimeter.
Prevention and suppression of metal packing fires.
Roberts, Mark; Rogers, William J; Sam Mannan, M; Ostrowski, Scott W
2003-11-14
Structured packing has been widely used because of large surface area that makes possible columns with high capacity and efficiency. The large surface area also contributes to fire hazards because of hydrocarbon deposits that can easily combust and promote combustion of the thin metal packing materials. Materials of high surface area that can fuel fires include reactive metals, such as titanium, and materials that are not considered combustible, such as stainless steel. Column design and material selection for packing construction is discussed together with employee training and practices for safe column maintenance and operations. Presented also are methods and agents for suppression of metal fires. Guidance for prevention and suppression of metal fires is related to incidents involving packing fires in columns.
Schmidt, Irma; Minceva, Mirjana; Arlt, Wolfgang
2012-02-17
The X-ray computed tomography (CT) is used to determine local parameters related to the column packing homogeneity and hydrodynamics in columns packed with spherically and irregularly shaped particles of same size. The results showed that the variation of porosity and axial dispersion coefficient along the column axis is insignificant, compared to their radial distribution. The methodology of using the data attained by CT measurements to perform a CFD simulation of a batch separation of model binary mixtures, with different concentration and separation factors is demonstrated. The results of the CFD simulation study show that columns packed with spherically shaped particles provide higher yield in comparison to columns packed with irregularly shaped particles only below a certain value of the separation factor. The presented methodology can be used for selecting a suited packing material for a particular separation task. Copyright © 2012 Elsevier B.V. All rights reserved.
Automated two-dimensional interface for capillary gas chromatography
Strunk, M.R.; Bechtold, W.E.
1996-02-20
A multidimensional gas chromatograph (GC) system is disclosed which has wide bore capillary and narrow bore capillary GC columns in series and has a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration. 3 figs.
Automated two-dimensional interface for capillary gas chromatography
Strunk, Michael R.; Bechtold, William E.
1996-02-20
A multidimensional gas chromatograph (GC) system having wide bore capillary and narrow bore capillary GC columns in series and having a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration.
Lü, Haixia; Li, Qingyin; Yu, Xiaowei; Yi, Jiaojiao; Xie, Zenghong
2013-07-01
A novel open-tubular CEC column coated with chitosan-graft-(β-CD) (CDCS) was prepared using sol-gel technique. In the sol-gel approach, owing to the 3D network of sol-gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. The column efficiencies of 55,000∼163,000 plates/m for the isomeric xanthopterin and phenoxy acid herbicides using the sol-gel-derived CDCS columns were achieved. Good stabilities were demonstrated that the RSD values for the retention time of thiourea and isoxanthopterin were 1.3 and 1.4% (run to run, n = 5), 1.6 and 2.0% (day to day, n = 3), 2.9 and 3.1% (column to column, n = 3), respectively. The sol-gel-coated CDCS columns have shown improved separations of isomeric xanthopterin in comparison with CDCS-bonded capillary column. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterisation of RPLC columns packed with porous sub-2 microm particles.
Petersson, Patrik; Euerby, Melvin R
2007-08-01
Eight commercially available sub-2 microm octadecyl silane columns (C18 columns) have been characterised by the Tanaka protocol. The columns can be grouped into two groups that display large differences in selectivity and peak shape due to differences in hydrophobicity, degree of surface coverage and silanol activity. Measurements of particle size distributions were made using automated microscopy and electrical sensing zone measurements. Only a weak correlation could be found between efficiency and particle size. Large differences in column backpressure were observed. These differences are not related to particle size distribution. A more likely explanation is differences in packing density. In order to take full advantage of 100-150 mm columns packed with sub-2 microm particles, it is often necessary to employ not only an elevated pressure but also an elevated temperature. A comparison between columns packed with sub-2, 3 and 5 microm versions of the same packing indicates potential method transferability problems for several of the columns due to selectivity differences. Currently, the best alternative for fast high-resolution LC is the use of sub-2 microm particles in combination with elevated pressure and temperature. However, as shown in this study additional efforts are needed to improve transferability as well as column performance.
Rosales-Conrado, N; León-González, M E; Pérez-Arribas, L V; Polo-Díez, L M
2008-01-01
Chlorophenoxy acid herbicides are intensively applied to get rid of unwanted plants because of their low cost and selectivity. Due to their toxicity, which depends on their chemical form, the European Community has established legal directives to restrict their use and to control their maximum residue levels in several matrices. Determination of chlorophenoxy acids-2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2-(2,4-dichlorophenoxy)propanoic acid (2,4-DP), 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP), 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB) and 2-(2,4,5-trichlorophenoxy)propanoic acid (2,4,5-TP) in spiked human urine samples has been carried out by capillary LC, after solid-phase extraction on a column packed with silica C18 restricted-access material. Chromatographic analysis was performed in gradient-elution mode at 25 degrees C, with injection of 20 microL low-organic-solvent composition herbicide solutions for focusing purposes on the head of the capillary column, and diode array detection at 232 nm. Urine samples collected during 24 h from healthy and unexposed volunteers were spiked in the concentration range 25-150 microg L(-1); recoveries obtained were between 66 and 100% (n = 6 for each spiked level) and RSDs (relative standard deviations) were between 1 and 5%. Detection limits in the urine samples from volunteers were between 3.5 and 6.0 microg L(-1). The developed methodology has allowed the clean-up and preconcentration of low volumes of untreated human urine without previous treatment, showing the effectiveness of the employed SPE sorbent for extracting the target analytes and ultimately resulting in the reduction of the sample-preparation time.
Fanali, Salvatore; Catarcini, Paolo; Quaglia, Maria Giovanna
2002-02-01
The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.
Ionic liquid stationary phases for gas chromatography.
Poole, Colin F; Poole, Salwa K
2011-04-01
This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Qian, Michael C.
Gas chromatography (GC) has many applications in the analysis of food products. GC has been used for the determination of fatty acids, triglycerides, cholesterol, gases, water, alcohols, pesticides, flavor compounds, and many more. While GC has been used for other food components such as sugars, oligosaccharides, amino acids, peptides, and vitamins, these substances are more suited to analysis by high performance liquid chromatography. GC is ideally suited to the analysis of volatile substances that are thermally stable. Substances such as pesticides and flavor compounds that meet these criteria can be isolated from a food and directly injected into the GC. For compounds that are thermally unstable, too low in volatility, or yield poor chromatographic separation due to polarity, a derivatization step must be done before GC analysis. The two parts of the experiment described here include the analysis of alcohols that requires no derivatization step, and the analysis of fatty acids which requires derivatization. The experiments specify the use of capillary columns, but the first experiment includes conditions for a packed column.
Radial heterogeneity of some analytical columns used in high-performance liquid chromatography.
Abia, Jude A; Mriziq, Khaled S; Guiochon, Georges A
2009-04-10
An on-column electrochemical microdetector was used to determine accurately the radial distribution of the mobile phase velocity and of the column efficiency at the exit of three common analytical columns, namely a 100 mm x 4.6mm C18 bonded silica-based monolithic column, a 150 mm x 4.6mm column packed with 2.7 microm porous shell particles of C18 bonded silica (HALO), and a 150 mm x 4.6mm column packed with 3 microm fully porous C18 bonded silica particles (LUNA). The results obtained demonstrate that all three columns are not radially homogeneous. In all three cases, the efficiency was found to be lower in the wall region of the column than in its core region (the central core with a radius of 1/3 the column inner radius). The decrease in local efficiency from the core to the wall regions was lower in the case of the monolith (ca. 25%) than in that of the two particle-packed columns (ca. 35-50%). The mobile phase velocity was found to be ca. 1.5% higher in the wall than in the core region of the monolithic column while, in contrast, it was ca. 2.5-4.0% lower in the wall region for the two particle-packed columns.
Wahab, M Farooq; Pohl, Christopher A; Lucy, Charles A
2012-12-28
The development of small particles in ion chromatography (IC) is a recent phenomenon. Very few studies are available on packing polymeric particles bearing ionizable functional groups. This study explores the colloidal and rheological properties that govern slurry packing to form high efficiency IC columns. The polymeric substrate used was non-porous 4.4 μm sulfonated ethylvinylbenzene–divinylbenzene (1.4 mequiv. SO(3)H/g resin) with 55% crosslink. We developed simple tests optical microscopy and sedimentation tests for predicting the quality of packed columns. The negatively charged particles (zeta potential: −52 mV in water) behave like colloids. The influence of counter-ion charge (Al(3+), Mg(2+), Na(+)) and ionic strength on column efficiency followed the Schulze–Hardy rule. Highly flocculating slurries give poorly packed columns with N ~ 900 whereas under non-agglomerating slurry conditions efficiencies up to N > 10,000 can be achieved. A non-agglomerating slurry also shows non-Newtonian behaviour, specifically shear thickening. Packing at lower flow rate (<1 mL/min) or higher temperature (>50 °C) reduces the shear thickening and produces higher efficiency columns. The packed sulfonated resin column is coated with 72 nm quaternary ammonium bearing latex (AS4A) and used in the separation of F(−), Cl(−), NO(2)(−), Br(−), and NO(3)(−) yielding a reduced plate height of 1.9 under optimum conditions.
Development of and fabrication of high resolution gas chromatographic capillary columns
NASA Technical Reports Server (NTRS)
Zlatkis, A.
1982-01-01
Gas chromatographic columns which are used in the trace gas analyzer (TGA) for the space shuttle are coated with a polyoxyethylene lauryl ether. This stationary phase is of medium polarity and has a temperature limit of 160 C. A polymer for this application which has an improved thermal stability is investigated. The use of fused silica capillary columns with specially bonded phases as well as an introduction system (on column) was also studied.
Open-split interface for mass spectrometers
Diehl, John W.
1991-01-01
An open-split interface includes a connector body having four leg members projecting therefrom within a single plane, the first and third legs being coaxial and the second and fourth legs being coaxial. A tubular aperture extends through the first and third legs and a second tubular aperture extends through the second and fourth legs, connecting at a juncture within the center of the connector body. A fifth leg projects from the connector body and has a third tubular aperture extending therethrough to the juncture of the first and second tubular apertures. A capillary column extends from a gas chromatograph into the third leg with its end adjacent the juncture. A flow restrictor tube extends from a mass spectrometer through the first tubular aperture in the first and third legs and into the capillary columnm end, so as to project beyond the end of the third leg within the capillary column. An annular gap between the tube and column allows excess effluent to pass to the juncture. A pair of short capillary columns extend from separate detectors into the second tubular aperture in the second and fourth legs, and are oriented with their ends spaced slightly from the first capillary column end. A sweep flow tube is mounted in the fifth leg so as to supply a helium sweep flow to the juncture.
Gharbharan, Deepa; Britsch, Denae; Soto, Gabriela; Weed, Anna-Marie Karen; Svec, Frantisek; Zajickova, Zuzana
2015-08-21
Tuning of preparation conditions, such as variations in the amount of a porogen, concentration of an aqueous acid catalyst, and adjustment in polymerization temperature and time, towards optimized chromatographic performance of thermally polymerized monolithic capillaries prepared from 3-(methacryloyloxy)propyltrimethoxysilane has been carried out. Performance of capillary columns in reversed-phase liquid chromatography was assessed utilizing various sets of solutes. Results describing hydrophobicity, steric selectivity, and extent of hydrogen bonding enabled comparison of performance of hybrid monolithic columns prepared under thermal (TSG) and photopolymerized (PSG) conditions. Reduced amounts of porogen in the polymerization mixture, and prolonged reaction times were necessary for the preparation of monolithic columns with enhanced retention and column efficiency that reached to 111,000 plates/m for alkylbenzenes with shorter alkyl chains. Both increased concentration of catalyst and higher temperature resulted in faster polymerization but inevitably in insufficient time for pore formation. Thermally polymerized monoliths produced surfaces, which were slightly more hydrophobic (a methylene selectivity of 1.28±0.002 TSG vs 1.20±0.002 PSG), with reduced number of residual silanols (a caffeine/phenol selectivity of 0.13±0.001 TSG vs 0.17±0.003 PSG). However, steric selectivity of 1.70±0.01 was the same for both types of columns. The batch-to-batch repeatability was better using thermal initiation compared to monolithic columns prepared under photopolymerized conditions. RSD for retention factor of benzene was 3.7% for TSG capillaries (n=42) vs. 6.6% for PSG capillaries (n=18). A similar trend was observed for columns prepared within the same batch. Copyright © 2015 Elsevier B.V. All rights reserved.
Gama, Mariana R; Aggarwal, Pankaj; Lee, Milton L; Bottoli, Carla B G
2017-11-01
Organic monolithic columns based on single crosslinking of trimethylolpropane trimethacrylate (TRIM) monomer were prepared in a single step by living/controlled free-radical polymerization. Full optimization of the preparation, such as using different percentages of TRIM and different amounts of radical promoter as well as various porogen solvents were explored. The resulting monolithic columns were characterized by scanning electronic microscopy and nitrogen sorption for structure morphology studies and surface area measurements, respectively. Using capillary liquid chromatography, 150 μm i.d. columns were applied to separate a mixture of small hydrophobic molecules. The results indicated that column performance is highly sensitive to the type and the amount of porogen solvents used in the polymerization mixture composition. Good resolution factors and methylene selectivity were obtained, indicating the promising potential of this material for capillary liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for packing chromatographic beds
Freeman, David H.; Angeles, Rosalie M.; Keller, Suzanne
1991-01-01
Column chromatography beds are packed through the application of static force. A slurry of the chromatography bed material and a non-viscous liquid is filled into the column plugged at one end, and allowed to settle. The column is transferred to a centrifuge, and centrifuged for a brief period of time to achieve a predetermined packing level, at a range generally of 100-5,000 gravities. Thereafter, the plug is removed, other fixtures may be secured, and the liquid is allowed to flow out through the bed. This results in an evenly packed bed, with no channeling or preferential flow characteristics.
Mobility of multiwalled carbon nanotubes in porous media.
Liu, Xueying; O'Carroll, Denis M; Petersen, Elijah J; Huang, Qingguo; Anderson, C Lindsay
2009-11-01
Engineered multiwalled carbon nanotubes (MWCNTs) are the subject of intense research and are expected to gain widespread usage in a broad variety of commercial products. However, concerns have been raised regarding potential environmental and human health risks. The mobility of MWCNTs in porous media is examined in this study using one-dimensional flow-through column experiments under conditions representative of subsurface and drinking water treatment systems. Results demonstrate that pore water velocity strongly influenced MWCNT transport, with high MWCNT mobility at pore water velocities greater than 4.0 m/d. A numerical simulator, which incorporated a newly developed theoretical collector efficiency relationship for MWCNTs in spherical porous media, was developed to model observed column results. The model, which incorporated traditional colloid filtration theory in conjunction with a site-blocking term, yielded good agreement with observed results in quartz sand-packed column experiments. Experiments were also conducted in glass bead-packed columns with the same mean grain size as the quartz sand-packed columns. MWCNTs were more mobile in the glass bead-packed columns.
Practical issues relating to soil column chromatography for sorption parameter determination.
Bi, Erping; Schmidt, Torsten C; Haderlein, Stefan B
2010-08-01
Determination of sorption distribution coefficients (K(d)) of organic compounds by a dynamic soil column chromatography (SCC) method was developed and validated. Eurosoil 4, quartz, and alumina were chosen as exemplary packing materials. Heterocyclic aromatic compounds were selected in the validation of SCC. The prerequisites of SCC with regard to column dimension, packing procedure, and sample injection volume are discussed. Reproducible soil column packing was achieved by addition of a pre-column and an HPLC pump for subsequent compression of the packed material. Various methods to determine retention times from breakthrough curves are discussed and the use of the half mass method is recommended. To dilute soil with inert material can prevent column-clogging and help to complete experiments in a reasonable period of time. For the chosen probe compounds, quartz rather than alumina proved a suitable dilution material. Non-equilibrium issue can be overcome by conducting the experiments under different flowrates and/or performing numerical simulation. Copyright 2010 Elsevier Ltd. All rights reserved.
Micro-fabricated packed gas chromatography column based on laser etching technology.
Sun, J H; Guan, F Y; Zhu, X F; Ning, Z W; Ma, T J; Liu, J H; Deng, T
2016-01-15
In this work, a micro packed gas chromatograph column integrated with a micro heater was fabricated by using laser etching technology (LET) for analyzing environmental gases. LET is a powerful tool to etch deep well-shaped channels on the glass wafer, and it is the most effective way to increase depth of channels. The fabricated packed GC column with a length of over 1.6m, to our best knowledge, which is the longest so far. In addition, the fabricated column with a rectangular cross section of 1.2mm (depth) × 0.6mm (width) has a large aspect ratio of 2:1. The results show that the fabricated packed column had a large sample capacity, achieved a separation efficiency of about 5800 plates/m and eluted highly symmetrical Gaussian peaks. Copyright © 2015 Elsevier B.V. All rights reserved.
Greiderer, Andreas; Ligon, S Clark; Huck, Christian W; Bonn, Günther K
2009-08-01
Monolithic poly(1,2-bis(p-vinylphenyl)ethane (BVPE)) capillary columns were prepared by thermally initiated free radical polymerisation of 1,2-bis(p-vinylphenyl)ethane in the presence of inert diluents (porogens) and alpha,alpha'-azoisobutyronitrile (AIBN) as initiator. Polymerisations were accomplished in 200 microm ID fused silica capillaries at 65 degrees C and for 60 min. Mercury intrusion porosimetry measurements of the polymeric RP support showed a broad bimodal pore-size-distribution of mesopores and small macropores in the range of 5-400 nm and flow-channels in the mum range. N(2)-adsorption (BET) analysis resulted in a tremendous enhancement of surface area (101 m(2)/g) of BVPE stationary phases compared to typical organic monoliths (approximately 20 m(2)/g), indicating the presence of a considerable amount of mesopores. Consequently, the adequate proportion of both meso- and (small) macropores allowed the rapid and high-resolution separation of low-molecular-weight compounds as well as biomolecules on the same monolithic support. At the same time, the high fraction of flow-channels provided enhanced column permeability. The chromatographic performance of poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for the separation of biomolecules (proteins, oligonucleotides) and small molecules (alkyl benzenes, phenols, phenons) are demonstrated in this article. Additionally, pressure drop versus flow rate measurements of novel poly(1,2-bis(p-vinylphenyl)ethane) capillary columns confirmed high mechanical robustness, low swelling in organic solvents and high permeability. Due to the simplicity of monolith fabrication, comprehensive studies of the retention and separation behaviour of monolithic BVPE columns resulted in high run-to-run and batch-to-batch reproducibilities. All these attributes prove the excellent applicability of monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for micro-HPLC towards a huge range of analytes of different chemistries and molecular sizes.
Sun, Yaming; Wu, Qi; Shi, Xiaofeng; Gao, Jie; Dong, Shuqing; Zhao, Liang
2018-04-01
The chiral organic-inorganic hybrid materials can exhibit a high loading, and the chiral selector nanoparticles can create efficient stationary phases for open-tubular capillary electrochromatography (OT-CEC). Hence, a novel protocol for the preparation of an OT column coated with nano-amylose-2,3-bis(3,5-dimethylphenylcarbamate) (nano-ABDMPC)-silica hybrid sol through in situ layer-by-layer self-assembly method was developed for CEC enantioseparation. By controlling the assembly cycle number of nano-ABDMPC-silica hybrid sol, a homogeneous, dense and stable coating was successfully prepared, which was confirmed by SEM and elemental analysis. As the main parameter influencing the chiral separating effect, the nano-ABDMPC bearing 3-(triethoxysilyl)propyl residues concentration was investigated. The experimental results showed that 10.0 mg/mL nano-ABDMPC bearing 3-(triethoxysilyl)propyl residues coated OT capillary column possessed chiral recognition ability toward the six enantiomers (phenylalanine, tyrosine, tryptophan, phenethyl alcohol, 1-phenyl-2-propanol, and Tröger's base) at some of the different conditions tested. Additionally, the coated OT column revealed adequate repeatability concerning run-to-run, day-to-day and column-to-column. These results demonstrated the promising applicability of nano-ABDMPC-silica hybrid sol coated OT column in CEC enantioseparations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Leiker, Thomas J.; Madsen, J.E.; Deacon, J.R.; Foreman, W.T.
1995-01-01
A method for the determination of chlorinated organic compounds in aquatic tissue by dual capillary-column gas chromatography with electron-capture detection is described. Whole-body-fish or corbicula tissue is homogenized, Soxhlet extracted, lipid removed by gel permeation chromatography, and fractionated using alumina/silica adsorption chromatography. The extracts are analyzed by dissimilar capillary-column gas chromatography with electron-capture detection. The method reporting limits are 5 micrograms per kilogram (μg/kg) for chlorinated compounds, 50 μg/kg for polychlorinated biphenyls, and 200 μg/kg for toxaphene.
Seven commercially-available chiral capillary gas chromatography columns containing modified cyclodextrins were evaluated for their ability to separate enantiomers of the 19 stable chiral polychlorinated biphenyl (PCB) atropisomers, and for their ability to separate these enantio...
SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN AND HPLC
Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. sing a density programming and a 50-pm i.d. capillary column, a total of 18 group oligomers was separated. he effects of the operating parameters, such a...
Bao, Tao; Zhang, Juan; Zhang, Wenpeng; Chen, Zilin
2015-02-13
Much attention is being paid to applying metal-organic frameworks (MOFs) as stationary phases in chromatography because of their fascinating properties, such as large surface-to-volume ratios, high levels of porosity, and selective adsorption. HKUST-1 is one of the best-studied face-centered-cubic MOF containing nano-sized channels and side pockets for film growth. However, growth of HKUST-1 framework inside capillary column as stationary phase for capillary electrochromatography is a challenge work. In this work, we carry out the growth of HKUST-1 on the inner wall of capillary by using liquid-phase epitaxy process at room temperature. The fabricated HKUST-1@capillary can be successfully used for the separation of substituted benzene including methylbenzene, ethylbenzene, styrene, chlorobenzene, bromobenzene, o-dichlorobenzene, benzene series, phenolic acids, and benzoic acids derivates. High column efficiency of 1.5×10(5) N/m for methylbenzene was achieved. The formation of HKUST-1 grown in the capillary was confirmed and characterized by scanning electron microscopy images, Fourier transform infrared spectra and X-ray diffraction. The column showed long lifetime and excellent stability. The relative standard deviations for intra-day and inter-day repeatability of the HKUST-1@capillary were lower than 7%. Copyright © 2015 Elsevier B.V. All rights reserved.
SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY SUPERCRITICAL FLUID CHROMATOGRAPHY
The application of supercritical fluid chromatography (SFC) to the analysis of T-MAZ ethoxylated sorbitan fatty acid esters is described. FC separation methods utilize a density programming technique and a 50 um I.D. capillary column. his work demonstrates that capillary column S...
SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN SFC AND HPLC
Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. Using a density programming and a 50-μm i.d. capillary column, a total of 18 group oligomers was separated. The effects of the operating parameters, such...
Hayes, J D; Malik, A
2001-03-01
Sol-gel chemistry was successfully used for the fabrication of open tubular columns with surface-bonded octadecylsilane (ODS) stationary-phase coating for capillary electrochromatography (OT-CEC). Following column preparations, a series of experiments were performed to investigate the performance of the sol-gel coated ODS columns in OT-CEC. The incorporation of N-octadecyldimethyl[3-(trimethoxysilyl)propyl]ammonium chloride as one of the sol-gel precursors played an important role in the electrochromatographic performance of the prepared columns. This chemical reagent possesses a chromatographically favorable, bonded ODS moiety, in conjunction with three methoxy groups allowing for sol-gel reactivity. In addition, a positively charged nitrogen atom is present in the molecular structure of this reagent and provides a positively charged capillary surface responsible for the reversed electroosmotic flow (EOF) in the columns during CEC operation. Comparative studies involving the EOF within such sol-gel ODS coated and uncoated capillaries were performed using acetonitrile and methanol as the organic modifiers in the mobile phase. The use of a deactivating reagent, phenyldimethylsilane, in the sol-gel solution was evaluated. Efficiency values of over 400,000 theoretical plates per meter were achieved in CEC on a 64 cm x 25 microm i.d. sol-gel ODS open tubular column. Test mixtures of polycyclic aromatic hydrocarbons, benzene derivatives, and aromatic aldehydes and ketones were used to evaluate the CEC performances of both nondeactivated and deactivated open tubular sol-gel columns. The effects of mobile-phase organic modifier contents and pH on EOF in such columns were evaluated. The prepared sol-gel ODS columns are characterized by switchable electroosmotic flow. A pH value of approximately 8.5 was found correspond to the isoelectric point for the prepared sol-gel ODS coatings.
Simmons, Blake A.; Volponi, Joanne V.; Ingersoll, David; Walker, Andrew
2007-09-04
Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.
Some results of hemosorption columns development and usage in Czechoslovakia.
Kálal, J; Tlustáková, M
Hemoperfusion columns packed with active charcoal and a synthetic resin have been manufactured in Czechoslovakia since 1983. In both cases the sorption packings are coated with a layer of poly(2-hydroxyethyl methacrylate). The columns are manufactured in two sizes: for adults (800 ml) and for children (400 ml). The manufacturer is OPS Kolín: the number of columns manufactured so far is 3400.
Ronco, Nicolás R; Menestrina, Fiorella; Romero, Lílian M; Castells, Cecilia B
2017-06-09
In this paper, we report gas-liquid partition constants for thirty-five volatile organic solutes in the room temperature ionic liquid trihexyl(tetradecyl)phosphonium bromide measured by gas-liquid chromatography using capillary columns. The relative contribution of gas-liquid partition and interfacial adsorption to retention was evaluated through the use of columns with different the phase ratio. Four capillary columns with exactly known phase ratios were constructed and employed to measure the solute retention factors at four temperatures between 313.15 and 343.15K. The partition coefficients were calculated from the slopes of the linear regression between solute retention factors and the reciprocal of phase ratio at a given temperature according to the gas-liquid chromatographic theory. Gas-liquid interfacial adsorption was detected for a few solutes and it has been considered for the calculations of partition coefficient. Reliable solute's infinite dilution activity coefficients can be obtained when retention data are determined by a unique partitioning mechanism. The partial molar excess enthalpies at infinite dilution have been estimated from the dependence of experimental values of solute activity coefficients with the column temperature. A thorough discussion of the uncertainties of the experimental measurements and the main advantages of the use of capillary columns to acquire the aforementioned relevant thermodynamic information was performed. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Chunye; Chen, Jierong
2005-01-01
An overview is provided on the advancement and development of coating preparation methodology and materials used in capillaries and channels in microfluidic chip. Discussion is also given on the effects of coatings in the resolutions of separation and the reproducibility of separations. Dynamic coatings and linked coatings, classified as homo-polymers, copolymers and heterocyclic compounds, are further discussed, and so are the methods for the preparation of the coatings by cross-linked reaction, sol-gel process, photomodification and chemical deposition, etc. The discussion will be useful for the optimization of capillary columns that are used in capillary electrophoresis and nanochannels of chip.
Qu, Qishu; Liu, Yuanyuan; Shi, Wenjun; Yan, Chao; Tang, Xiaoqing
2015-06-19
A simple coating procedure employing a multilayer-by-multilayer process to modify the inner surface of bare fused-silica capillaries with silica nanoparticles was established. The silica nanoparticles were adsorbed onto the capillary wall via a strong electrostatic interaction between amino functional groups and silica particles. The thickness of the coating could be tuned from 130 to 600 nm by increasing the coating cycles from one to three. Both the retention factor and the resolution were greatly increased with increasing coating cycles. The loading capacity determined by naphthalene in the column with three coating cycles is 152.1 pmol. The effects of buffer concentration and pH value on the stability of the coating were evaluated. The retention reproducibility of the separation of toluene was 0.8, 1.2, 2.3, and 4.5%, respectively, for run-to-run, day-to-day, column-to-column, and batch-to-batch, respectively. The chromatographic performance of these columns was evaluated by both capillary liquid chromatography and open-tubular capillary electrochromatography (OT-CEC). Separation of aromatic hydrocarbons in the column with three coating cycles provided high theoretical plate numbers (up to 269,280 plates m(-1) for toluene) and short separation time (<15 min) by using OT-CEC mode. The method was also used to separate egg white proteins. Both acidic and basic proteins as well as four glycoisoforms were separated in a single run. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Shao-Ting; Wang, Meng-Ya; Su, Xin; Yuan, Bi-Feng; Feng, Yu-Qi
2012-09-18
A novel SiO(2)/TiO(2) composite monolithic capillary column was prepared by sol-gel technology and successfully applied to enrich phosphopeptides as a metal oxide affinity chromatography (MOAC) material. For the monolith preparation, tetramethoxysilane (TMOS) and tetrabutoxytitanium (TBOT) were used as silica and titania source, respectively, and glycerol was introduced to attenuate the activity of titanium precursor, which provided a mild synthetic condition. The prepared monolith was characterized by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results revealed an approximate 1/2 molar ratio of titanium to silica as well as an atom-scale homogeneity in the framework. The scanning electron microscopy (SEM) results demonstrated an excellent anchorage between the column and the inner capillary wall, and nitrogen adsorption-desorption experiments showed a bimodal porosity with a narrow mesopore distribution around 3.6 nm. The prepared monolith was then applied for selective enrichment of phosphopeptides from the digestion mixture of phosphoproteins and bovine serum albumin (BSA) as well as human blood serum, nonfat milk, and egg white using an in-tube solid phase microextraction (SPME) system. Our results showed that SiO(2)/TiO(2) composite monolithic capillary column could efficiently enrich the phosphopeptides from complex matrixes. To the best of our knowledge, this is the first attempt for preparing the silica-metal composite monolithic capillary column, which offers the promising application of the monolith on phosphoproteomics study.
Liu, Shengju; Peng, Jiaxi; Liu, Zheyi; Liu, Zhongshan; Zhang, Hongyan; Wu, Ren'an
2016-10-04
A facile "one-pot" approach to prepare organo-silica hybrid capillary monolithic column with intact mesoporous silica nanoparticle (IMSN) as crosslinker and building block was described. An IMSN crosslinked octadecyl-silica hybrid capillary monolithic column (IMSN-C18 monolithic column) was successfully prepared, and the effects of fabrication conditions (e.g. concentration of intact mesoporous silica nanoparticle, polycondensation temperature, content of vinyltrimethoxysilane and stearyl methacrylate) on the structures of the IMSN-C18 monolithic column were studied in detail. The IMSN-C18 hybrid monolithic column possessed uniform morphology, good mechanical and pH stability (pH 1.1-11), which was applied to the separations of alkyl benzenes, polycyclic aromatic hydrocarbons (PAHs), as well as proteins. The minimum plate height of 10.5 μm (corresponding to 95000 N m -1 ) for butylbenzene and high reproducibility were achieved. The analysis of tryptic digest of bovine serum albumin (BSA) was carried out on the IMSN-C18 monolithic column by cLC coupled mass spectrometry (cLC-MS/MS), with the protein sequence coverage of 87.5% for BSA, demonstrating its potential application in proteomics.
High-performance cation-exchange chromatofocusing of proteins.
Kang, Xuezhen; Frey, Douglas D
2003-03-28
Chromatofocusing using high-performance cation-exchange column packings, as opposed to the more commonly used anion-exchange column packings, is investigated with regard to the performance achieved and the range of applications possible. Linear or convex gradients in the range from pH 2.6 to 9 were formed using a variety of commercially available column packings that provide a buffering capacity in different pH ranges, and either polyampholytes or simple mixtures having a small number (three or fewer) of buffering species as the elution buffer. The resolutions achieved using cation-exchange or anion-exchange chromatofocusing were in general comparable, although for certain pairs of proteins better resolution could be achieved using one type of packing as compared to the other, evidently due to the way electrostatic charges are distributed on the protein surface. Several chromatofocusing methods were investigated that take advantage of the acid-base properties of commercially available cation-exchange column packings. These include the use of gradients with a composite shape, the use of very low pH ranges, and the use of elution buffers containing a single buffering species. The advantages of chromatofocusing over ion-exchange chromatography using a salt gradient at constant pH were illustrated by employing the former method and a cation-exchange column packing to separate beta-lactoglobulins A and B, which is a separation reported to be impossible using the latter method and a cation-exchange column packing. Trends in the apparent isoelectric points determined using cation- and anion-exchange chromatofocusing were interpreted using applicable theories. Results of this study indicate that cation-exchange chromatofocusing is a useful technique which is complementary to anion-exchange chromatofocusing and isoelectric focusing for separating proteins at both the analytical and preparative scales.
Chaisuwan, Patcharin; Nacapricha, Duangjai; Wilairat, Prapin; Jiang, Zhengjin; Smith, Norman W
2008-06-01
This work reports the first use of a monolith with method development for the separation of tocopherol (TOH) compounds by CEC with UV detection. A pentaerythritol diacrylate monostearate-ethylene dimethacrylate (PEDAS-EDMA) monolithic column has been investigated for an optimised condition to separate alpha-, beta-, gamma- and delta-TOHs, and alpha-tocopherol acetate (TAc). The PEDAS-EDMA monolith showed a remarkably good selectivity for separation of the TOH isomers including the beta- and gamma-isomers which are not easily separated by standard C8 or C18 particle-packed columns. Retention studies indicated that an RP mechanism was involved in the separation on the PEDAS-EDMA column, but polar interactions with the underlying ester and hydroxyl groups enhanced the separation of the problematic beta- and gamma-isomers. Separation of all the compounds was achieved within 25 min using 3:10:87 v/v/v 100 mM Tris buffer (pH 9.3)/methanol/ACN as the mobile phase. The method was successfully applied to a pharmaceutical sample with recoveries from 93 to 99%. Intraday and interday precisions (%RSD) for peak area and retention time were less than 2.3. LODs for all four TOHs and TAc were below 1 ppm.
Gas chromatographic separation of fatty acid methyl esters on weakly polar capillary columns.
Yamamoto, Kouhei; Kinoshita, Akemi; Shibahara, Akira
2008-02-22
It was found that weakly polar columns, routinely used in capillary GC for analyzing sterols, food additives, etc., can also be used for separating fatty acid methyl esters (FAMEs). On these columns, FAMEs elute in the order of their unsaturation. The equivalent chain-length value of methyl 22:6 is below 23.00. This means FAMEs within a carbon chain length, having up to six double bonds, elute before the next (one carbon longer) saturated FAME elutes. Peak identification is easy. Weakly polar columns are compatible in both GC and GC/MS systems.
Method for converting sucrose to .beta.-D-glucose
Simmons, Blake A [San Francisco, CA; Volponi, Joanne V [Livermore, CA; Ingersoll, David [Albuquerque, NM; Walker, Andrew [Woodinville, WA
2009-07-07
Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three-stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.
Yan, Na; Zhou, Lei; Zhu, Zaifang; Zhang, Huige; Zhou, Ximin; Chen, Xingguo
2009-05-15
In this work, a novel method combining constant pressure-assisted head-column field-amplified sample injection (PA-HC-FASI) with in-capillary derivatization was developed for enhancing the sensitivity of capillary electrophoresis. PA-HC-FASI uses an appropriate positive pressure to counterbalance the electroosmotic flow in the capillary column during electrokinetic injection, while taking advantage of the field amplification in the sample matrix and the water of the "head column". Accordingly, the analytes were stacked at the stationary boundary between water and background electrolyte. After 600s PA-HC-FASI, 4-fluoro-7-nitro-2,1,3-benzoxadiazole as derivatization reagent was injected, followed by an electrokinetic step (5kV, 45s) to enhance the mixing efficiency of analytes and reagent plugs. Standing a specified time of 10min for derivatization reaction under 35 degrees C, then the capillary temperature was cooled to 25 degrees C and the derivatives were immediately separated and determined under 25 degrees C. By investigating the variables of the presented approach in detail, on-line preconcentration, derivatization and separation could be automatically operated in one run and required no modification of current CE commercial instrument. Moreover, the sensitivity enhancement factor of 520 and 800 together with the detection limits of 16.32 and 6.34pg/mL was achieved for model compounds: glufosinate and aminomethylphosphonic acid, demonstrating the high detection sensitivity of the presented method.
A Versatile, Automatic Chromatographic Column Packing Device
ERIC Educational Resources Information Center
Barry, Eugene F.; And Others
1977-01-01
Describes an inexpensive apparatus for packing liquid and gas chromatographic columns of high efficiency. Consists of stainless steel support struts, an Automat Getriebmotor, and an associated three-pulley system capable of 10, 30, and 300 rpm. (MLH)
Gailly, C; Sandra, P; Verzele, M; Cocito, C
1982-06-15
The cell wall of leprosy-derived corynebacteria (a group of 'diphtheroids' isolated from human leprosy lesions and patients' blood) was previously shown to contain, in addition to peptidoglycan and arabinogalactan, mycolic acids. These alpha-branched beta-hydroxy fatty acids were attributed to the corynomycolic group, according to their RF in monodimensional thin-layer chromatography. In the present work, mycolic acids from leprosy-derived and reference corynebacteria have been fractionated by monodimensional and bidimensional thin-layer chromatography and by gas chromatography. Pyrolyzed mycolic acids have been analyzed on conventional packed columns, whereas intact methyl esters of mycolic acids with free and silylated beta-hydroxyl group have been analyzed on capillary columns, and their structure has been established by mass spectrometry. In all leprosy-derived corynebacteria, some 20 components containing 24-36 carbon atoms and 0-4 double bonds were obtained. The three major groups had 32, 34 and 36 carbons, and the frequency of unsaturated versus saturated chains increased proportionally to the molecular weight. For comparison, the main components of a reference corynebacterium. Corynebacterium diphtheriae PW8, had 30 and 32 carbons, and their hydrocarbon chains were essentially saturated. This work confirms the relative chemical homogeneity of different leprosy-derived corynebacteria and describes some peculiar traits in the chemical structure of this group of organisms. In addition, it shows the complexity of the mycolic acid fraction of corynebacterial cell wall and suggests that the mycolic acid pattern is a sort of fingerprint of each bacterial strain grown under standard conditions. Finally, the fractionation of intact corynomycolic acid methyl esters with free or silylated beta-hydroxyl group by capillary gas chromatography proved to be the best analytical procedure at present available for resolving this complex mixture of corynomycolate isomers. Structural determination of silylated samples by mass spectrometry is preferred because they have more diagnostic fragments.
Chemical microreactor and method thereof
Morse, Jeffrey D.; Jankowski, Alan
2005-11-01
A chemical microreactor suitable for generation of hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. One such microreactor employs a packed catalyst capillary microchannel and at least one porous membrane. Another employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2 /cm.sup.3. The packed catalyst capillary microchannels, porous membranes and porous membrane support structures may be formed by a variety of methods.
Lin, Chun-Chi; Liu, Chuen-Ying
2004-10-01
With 3-trimethoxysilylpropyl chloride as the spacer, a proline-coated capillary column was prepared for the capillary electrochromatographic (CEC) separation of amino acids by in-column derivatization. Nine standard mixtures, including aspartic acid, glutamic acid, valine, phenylalanine, alanine, isoleucine, leucine, tyrosine, and tryptophan, were injected. o-Phthalaldehyde (OPA), OPA/2-mercaptoethanol (2-ME) and OPA/N-acetylcysteine (NAC) in borate buffer were tested as the derivatizing agent. Among them, OPA (50 mM) in borate buffer (pH 9.5, 50 mM) gave the best performance. The formation of isoindole could be detected by UV detection. The sandwich-type injection was carried out in hydrostatic mode (10 cm) with the program R(10 s)S(10 s) R(10 s)W(10 min) with R, S, and W being the reagent, sample, and waiting times. Mesityl oxide, benzyl alcohol, and acetone showed some interaction with the column. A current monitoring method was used instead of the determination of the electroosmotic flow (EOF). The direction of EOF was from anode to cathode even under acidic condition lower than the pI value (6.31) of the bonded group due to some unreacted silanol groups. Some parameters including pH, nature, and concentration of the mobile phase and the effect of organic modifier with regard to the CEC separation were investigated. With the proline-coated column (75 (50) cm x 75 microm ID) the best separation was performed in phosphate buffer (pH 4.00, 100 mM) with an applied voltage of -15 kV. The established method was also compared with those precolumn derivatized prior to the separation with proline-coated column as well as with in-capillary derivatization and separation with a bare fused-silica column. Copyright 2004 WILEY-VCH Verlag GmbH & Co.
NASA Astrophysics Data System (ADS)
Liang, Bo; Clarens, Andres F.
2018-01-01
Gas leakage from geologic carbon storage sites could undermine the long-term goal of reducing emissions to the atmosphere and negatively impact groundwater resources. Despite this, there remain uncertainties associated with the transport processes that would govern this leakage. These stem from the complex interaction between governing forces (e.g., gravitational, viscous, and capillary), the heterogeneous nature of the porous media, and the characteristic length scales of these leakage events, all of which impact the CO2 fluid flow processes. Here we assessed how sub-basin-scale horizons in porous media could impact the migration and trapping of a CO2 plume. A high-pressure column packed with two layers of sand with different properties (e.g., grain size and wettability) was used to create a low-contrast stratigraphic horizon. CO2 in supercritical or liquid phase was injected into the bottom of the column under various conditions (e.g., temperature, pressure, and capillary number) and the transport of the resulting plume was recorded using electrical resistivity. The results show that CO2 trapping was most strongly impacted by shifting the wettability balance to mixed-wet conditions, particularly for residual saturation. A 16% increase in the cosine of the contact angle for a mixed-wet sand resulted in nearly twice as much residual trapping. Permeability contrast, pressure, and temperature also impacted the residual saturation but to a lesser extent. Flow rate affected the dynamics of saturation profile development, but the effect is transient, suggesting that the other effects observed here could apply to a broad range of leakage conditions.
Huang, Yi-Chen; Lin, Chun-Chi; Liu, Chuen-Ying
2004-02-01
A molecularly imprinted polymer (MIP) comprising 9-ethyladenine was polymerized in situ inside the capillary for the electrochromatographic separation of nucleotide bases. The capillary wall was first functionalized with 3-trimethoxysilylpropyl methacrylate (10% v/v) and 1,1-diphenyl-2-picrylhydrazyl (0.01% w/v) in toluene. Following this treatment, the capillary was filled with acetonitrile containing 9-ethyladenine, methacrylic acid, ethylene glycol dimethacrylate, and initiator. After polymerization, the MIP was shrunk into a film against the inner wall of the capillary with the syringe pump. The template was then removed with methanol under nitrogen flow. For evaluation the feasibility of the MIP column for the separation of nucleotide bases, some parameters including the pH, concentration of the background electrolyte, the applied voltage as well as the effect of organic modifier were studied. The migration behavior of nucleotide bases on the MIP column was also compared with that on the bare fused-silica column. The results indicated that the MIP columns demonstrated better recognition properties at a pH range of 6-8. The efficiency (plates/m) at pH 8 for the nonimprinted analyte was 75,300 for cytosine, 50,200 for thymine, and 14,800 for guanine. However, the efficiency for the imprinted analyte, adenine, was quite low. This was evidenced by the broad peak, yielding only 2600 plates/m.
Testoni, Guilherme Apolinario; Kim, Sihwan; Pisupati, Anurag; Park, Chung Hae
2018-09-01
We propose a new model for the capillary rise of liquid in flax fibers whose diameter is changed by liquid absorption. Liquid absorption into the flax fibers is taken into account in a new modified Washburn equation by considering the mass of the liquid absorbed inside the fibers as well as that imbibed between the fibers. The change of permeability and hydraulic radius of pores in a fibrous medium due to the fiber swelling is modeled by a statistical approach considering a non-uniform distribution of flax fiber diameter. By comparisons between capillary rise test results and modeling results, we prove the validity of the proposed modified Washburn model to take into account the effects from fiber swelling and liquid absorption on the decrease of capillary rise velocity. The experimental observation of long-term capillary rise tests show that the swelling behavior of the fibers highly packed in a closed volume and its influence on the capillary wicking are different from those of an individual single fiber in a free space. The current approach was useful to characterize the swelling of fibers highly packed in a closed volume and its influence of the long-term behavior of capillary wicking. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Boutchko, Rostyslav; Rayz, Vitaliy L.; Vandehey, Nicholas T.; O'Neil, James P.; Budinger, Thomas F.; Nico, Peter S.; Druhan, Jennifer L.; Saloner, David A.; Gullberg, Grant T.; Moses, William W.
2012-01-01
This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99mTc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.
Boutchko, Rostyslav; Rayz, Vitaliy L; Vandehey, Nicholas T; O'Neil, James P; Budinger, Thomas F; Nico, Peter S; Druhan, Jennifer L; Saloner, David A; Gullberg, Grant T; Moses, William W
2012-01-01
This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18 F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99m Tc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.
Oláh, Erzsébet; Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin
2010-06-04
Today sub-2 microm packed columns are very popular to conduct fast chromatographic separations. The mass-transfer resistance depends on the particle size but some practical limits exist not to reach the theoretically expected plate height and mass-transfer resistance. Another approach applies particles with shortened diffusion path to enhance the efficiency of separations. In this study a systematical evaluation of the possibilities of the separations obtained with 5 cm long narrow bore columns packed with new 2.6 microm shell particles (1.9 microm nonporous core surrounded by a 0.35 microm porous shell, Kinetex, Core-Shell), packed with other shell-type particles (Ascentis Express, Fused-Core), totally porous sub-2 microm particles and a 5 cm long narrow bore monolith column is presented. The different commercially available columns were compared by using van Deemter, Knox and kinetic plots. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Data are presented on polar neutral real-life analytes. Comparison of a low molecular weight compounds (MW=270-430) and a high molecular weight one (MW approximately 900) was conducted. This study proves that the Kinetex column packed with 2.6 microm shell particles is worthy of rivaling to sub-2 microm columns and other commercially available shell-type packings (Ascentis Express or Halo), both for small and large molecule separation. The Kinetex column offers a very flat C term. Utilizing this feature, high flow rates can be applied to accomplish very fast separations without significant loss in efficiency. Copyright 2010 Elsevier B.V. All rights reserved.
Rangabhashiyam, S; Nandagopal, M S Giri; Nakkeeran, E; Selvaraju, N
2016-07-01
Packed bed column studies were carried out to evaluate the performance of chemically modified adsorbents for the sequestration of hexavalent chromium from synthetic and electroplating industrial effluent. The effects of parameters such as bed height (3-9 cm), inlet flow rate (5-15 mL/min), and influent Cr(VI) concentration (50-200 mg/L) on the percentage removal of Cr(VI) and the adsorption capacity of the adsorbents in a packed bed column were investigated. The breakthrough time increased with increasing bed height and decreased with the increase of inlet flow rate and influent Cr(VI) concentration. The adsorption column models such as Thomas, Adams-Bohart, Yoon-Nelson, and bed depth service time (BDST) were successfully correlated with the experimental data. The Yoon-Nelson and BDST model showed good agreement with the experimental data for all the studied parameter conditions. Results of the present study indicated that the chemically modified Swietenia mahagoni shell can be used as an adsorbent for the removal of Cr(VI) from industrial wastewater in a packed bed column.
Zaidi, Shabi Abbas; Lee, Seung Mi; Cheong, Won Jo
2011-03-04
Some open tubular (OT) molecule imprinted polymer (MIP) silica capillary columns have been prepared using atenolol, sulpiride, methyl benzylamine (MBA) and (1-naphthyl)-ethylamine (NEA) as templates by the pre-established generalized preparation protocol. The four MIP thin layers of different templates showed quite different morphologies. The racemic selectivity of each MIP column for the template enantiomers was optimized by changing eluent composition and pH. The template structural effects on chiral separation performance have been examined. This work verifies the versatility of the generalized preparation protocol for OT-MIP silica capillary columns by extending its boundary toward templates with basic functional group moieties. This study is the very first report to demonstrate a generalized MIP preparation protocol that is valid for both acidic and basic templates. The chiral separation performances of atenolol and sulpiride by the MIPs of this study were found better than or comparable to those of atenolol and sulpiride obtained by non-MIP separation techniques and those of some basic template enantiomers obtained by MIP based techniques. Copyright © 2011 Elsevier B.V. All rights reserved.
A new structure of permeable pavement for mitigating urban heat island.
Liu, Yong; Li, Tian; Peng, Hangyu
2018-09-01
The urban heat island (UHI) effect has been a great threat to human habitation, and how to mitigate this problem has been a global concern over decades. This paper addresses the cooling effect of a novel permeable pavement called evaporation-enhancing permeable pavement, which has capillary columns in aggregate and a liner at the bottom. To explore the efficiency of mitigating the UHI, bench-scale permeable pavement units with capillary columns were developed and compared with conventional permeable pavement. Criteria of capillary capacities of the column, evaporation rates, and surface temperature of the pavements were monitored under simulated rainfall and Shanghai local weather conditions. Results show the capillary column was important in increasing evaporation by lifting water from the bottom to the surface, and the evaporation-enhancing permeable pavement was cooler than a conventional permeable pavement by as much as 9.4°C during the experimental period. Moreover, the cooling effect of the former pavement could persist more than seven days under the condition of no further rainfall. Statistical analysis result reveals that evaporation-enhancing permeable pavement can mitigate the UHI effect significantly more than a conventional permeable pavement. Copyright © 2018 Elsevier B.V. All rights reserved.
In-column bonded phase polymerization for improved packing uniformity
Huckabee, Alexis G.; Yerneni, Charu; Jacobson, Rachel E.; Alzate, Edwin J.; Chen, Tse-Hong; Wirth, Mary J.
2017-01-01
It is difficult to pack chromatographic particles having polymeric-bonded phases because solvents used for making a stable slurry cause the polymer layer to swell. Growth of the polymer inside the column (in situ) after packing was investigated and compared with conventional, ex situ polymer growth. The method of activators generated by electron transfer, along with atom-transfer radical polymerization, enabled polymerization under ambient conditions. Nonporous, 0.62 µm silica particles with silane initiators were used. Polyacrylamide films with a hydrated thickness of 23 nm in 75:25 water/isopropanol grew in 55 min for both in situ and ex situ preparations, and the same carbon coverage was observed. Higher chromatographic resolution and better column-to-column reproducibility were observed for in situ polymer growth, as evaluated by hydrophilic interaction liquid chromatography for the model glycoprotein, ribonuclease B. In situ polymer growth was also found to give lower eddy diffusion, as shown by a narrower peak width for injected acetonitrile in 50:50 acetonitrile/water. When columns were packed more loosely, bed collapse occurred quickly for ex situ, but not for in situ, polymer growth. The higher resolution and stability for in situ polymer growth is explained by packing with hard, rather than soft, contacts between particles. PMID:28387037
Broeckhoven, Ken; Desmet, Gert
2007-11-16
Using a combination of both analytical and numerical techniques, approximate analytical expressions have been established for the transient and long time limit band broadening, originating from the presence of a thin disturbed sidewall layer in liquid chromatography columns, including packed, monolithic as well as microfabricated columns. The established expressions can be used to compare the importance of a thin disturbed sidewall layer with that of other radial heterogeneity effects (such as transcolumn packing density variations due to the relief of packing stresses). The expressions are independent of the actual velocity profile inside the layer as long as the disturbed sidewall layer occupies less than 2.5% of the column width.
Fekete, Szabolcs; Fekete, Jeno
2011-04-15
The performance of 5 cm long narrow-bore columns packed with 2.6-2.7 μm core-shell particles and a column packed with 1.7 μm totally porous particles was compared in very fast gradient separations of polar neutral active pharmaceutical compounds. Peak capacities as a function of flow-rate and gradient time were measured. Peak capacities around 160-170 could be achieved within 25 min with these 5 cm long columns. The highest peak capacity was obtained with the Kinetex column however it was found that as the flow-rate increases, the peak capacity of the new Poroshell-120 column is getting closer to that obtained with the Kinetex column. Considering the column permeability, peak capacity per unit time and per unit pressure was also calculated. In this comparison the advantage of sub-3 μm core-shell particles is more significant compared to sub-2 μm totally porous particles. Moreover it was found that the very similar sized (d(p)=2.7 μm) and structured (ρ=0.63) new Poroshell-120 and the earlier introduced Ascentis Express particles showed different efficiency. Results obtained showed that the 5 cm long narrow bore columns packed with sub-3 μm core-shell particles offer the chance of very fast and efficient gradient separations, thus these columns can be applied for fast screening measurements of routine pharmaceutical analysis such as cleaning validation. Copyright © 2011 Elsevier B.V. All rights reserved.
π-Extended triptycene-based material for capillary gas chromatographic separations.
Yang, Yinhui; Wang, Qinsi; Qi, Meiling; Huang, Xuebin
2017-10-02
Triptycene-based materials feature favorable physicochemical properties and unique molecular recognition ability that offer good potential as stationary phases for capillary gas chromatography (GC). Herein, we report the investigation of utilizing a π-extended triptycene material (denoted as TQPP) for GC separations. As a result, the TQPP capillary column exhibited high column efficiency of 4030 plates m -1 and high-resolution performance for a wide range of analytes, especially structural and positional isomers. Interestingly, the TQPP stationary phase showed unique shape selectivity for alkanes isomers and preferential retention for analytes with halogen atoms and H-bonding nature mainly through their halogen-bonding and H-bonding interactions. In addition, the TQPP column had good repeatability and reproducibility with the RSD values of 0.02-0.34% for run-to-run, 0.09-0.80% for day-to-day and 1.4-5.2% for column-to-column, respectively, and favorable thermal stability up to 280 °C. This work demonstrates the promising future of triptycene-based materials as a new class of stationary phases for GC separations. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Baker, Jared Scott
2011-12-01
The development of novel nanomaterials and the understanding of their fundamental physical and chemical properties represent an exciting area of research. These materials are continuously being sought for ever-increasing applications; finding their way into uses that influence mankind on a daily basis. Combining elements from traditional nanoparticle characterization with electrophoretic-based techniques, this dissertation presents the analysis of carbon nanoparticles (CNPs) generated from a novel source (candle soot) as well as a unique perspective on the reactivity and degradation process of magic-sized cadmium chalcogenide nanocrystals. One potential application of CNPs is their use as an alternative fluorophore in a separation-based sensor system. Laser-induced-fluorescence (LIF) is a commonly used manner of detection in this type of platform, but is limited in many cases by problems associated with the fluorophore. Carbon-based nanoparticles have the potential to improve upon traditional fluorophores in applications that make use of LIF as the detection scheme. CNPs were extracted from the carbonaceous material produced by the incomplete combustion of a candle. The soot was submitted to an oxidizing treatment and extraction/filtration procedures rendering watersoluble luminescent species. Electron microscopy was used to identify globular, amorphous structures in the nanometer size-range. An aqueous suspension of CNPs demonstrated excellent stability in terms of its electronic properties, showing little change in absorption and emission spectra upon storage under ambient conditions over a two-year period. Capitalizing on the strengths of capillary electrophoresis (CE) as a characterization technique, we have analyzed the negatively-charged CNPs in terms of charge and size by studying the influence of variable CE conditions on the resulting separation. Separations at different pH revealed a highly complex mixture of CNPs, containing species with large electrophoretic mobilities under a wide range of pH values. The mobility of these nanoparticles as a function of ionic strength was compared to classical electrokinetic theory, suggesting that the species are small, highly charged particles with appreciable zeta potentials, even at low pH. In an attempt to reduce the complexity of the CNP solution, two molecular-weight based fractionation techniques were employed and evaluated. Traditional dialysis and ultracentrifugation filtration techniques were modified to generate multiple CNPs fractions based on size. Analysis of the fractions by absorption and photoluminescence spectroscopy as well as CE revealed specific characteristics for a given sized-fraction. Namely, a strong correlation between the size of the CNPs and their luminescent emission was observed. CE was utilized to characterize each fraction and to ultimately judge the effectiveness of the fractionation techniques. The characterization of the persistence and degradation of magic-sized CdSe nanocrystals (NCs) after their removal from the original reaction mixture and dispersion into basic aqueous solutions was performed by absorption spectroscopy. NCs degraded after dilution into aqueous NaOH, resulting in red-shifted excitonic absorption bands and eventual flocculation. Dilution of NCs into basic aqueous solutions of cysteinate resulted in degradation via a different mechanism with an absence of flocculation; kinetics varied with concentration of cysteinate. The chemical fate of NCs after dilution into basic aqueous solutions containing both Cd2+ and cysteinate varied with the cysteinate-to-Cd 2+ molar ratio, which determined the relative solute mole fractions of various Cd2+-cysteinate complexes. CdSe NCs persisted on long timescales only when dispersed in solutions containing [Cd(cysteinate) 3]4-. Equilibria are presented to account for the observed spectral changes after dilution of CdSe into various basic media. Cadmium(II)-cysteinate complex-formation equilibria influenced the temporal persistence of the nanocrystals; the pathway through which CdSe NCs degraded depended on the concentration of free, uncoordinated cysteinate. These findings indicate that solution-phase chemistry can determine whether NCs remain intact upon removal from their original reaction mixtures. Departing from the analysis of nanomaterials, an additional chapter focuses on the evaluation of a new chromatographic packing material. Two chromatographic columns packed with superficially porous packing material, Kinetex(TM) 1.7 mum and 2.6 mum C18 particles were evaluated in terms of their physical properties and performance characteristics. These columns were compared to a column packed with a sub-2 mum totally porous material and to a Halo(TM) column packed with 2.7 mum C18 superficially porous packing. The columns packed with superficially porous particles displayed a comparably narrower size distribution, which is narrower than the distribution of the totally porous sub-2 mum particles. Physical characteristics of the Kinetex(TM) particles were evaluated in terms of surface area, pore diameter, and specific pore volume. Total, external, internal and shell porosities among the four different columns were evaluated and compared. The specific permeability for the Kinetex columns showed values close to those predicted by the Kozeny-Carman equation. All four columns were evaluated in terms of their chromatographic performance and compared using the Knox equation. The columns packed with the 2.6 mum and 2.7 mum superficially porous materials showed reduced plate heights below 2, while the sub-2 mum particles showed values of 2.2 and above.
Desiderio, C; Aturki, Z; Fanali, S
2001-02-01
Chiral separation of basic compounds was achieved by using 75 or 100 microm ID fused-silica capillaries packed with a vanoomycin-modified diol silica stationary phase. The capillary was firstly packed for about 12 cm with a slurry mixture composed of diolsilica (3:1) then with the vancomycin modified diol-silica (3:1) (23 cm), and finally with diol-silica (3:1) for about 2 cm. Frits were prepared by a heating wire at the two ends of the capillary; the detector window was prepared at 8.5 cm from the end of the capillary where vancomycin was not present. The influence of the mobile phase composition (pH and concentration, organic modifier type and concentration) on the velocity of the electroosmotic flow, chiral resolution and enantioselectivity was studied. Good enantiomeric resolution was achieved for atenolol, oxprenolol, propranolol, and venlafaxine using a mobile phase composition of 100 mM ammonium acetate solution (pH 6)/water/acetonitrile (5:5:90 v/v/v) while for terbutaline a mixture of 5:15:80 v/v/v provided the best separations. The use of methanol instead of acetonitrile caused a general increase of enantiomer resolution of the studied compounds together with a reduction of efficiency and detector response. However, the combination of acetonitrile and methanol in the mobile phase (as, e.g., 10% methanol and 80% acetonitrile) allowed to improve the enantiomer resolution with satisfactory detector response.
NASA Astrophysics Data System (ADS)
Pronk, G. J.; Mellage, A.; Milojevic, T.; Smeaton, C. M.; Rezanezhad, F.; Van Cappellen, P.
2017-12-01
Microbial growth and turnover of soil organic carbon (SOC) depend on the availability of electron donors and acceptors. The steep geochemical gradients in the capillary fringe between the saturated and unsaturated zones provide hotspots of soil microbial activity. Water table fluctuations and the associated drying and wetting cycles within these zones have been observed to lead to enhanced turnover of SOC and adaptation of the local microbial communities. To improve our understanding of SOC degradation under changing moisture conditions, we carried out an automated soil column experiment with integrated of hydro-bio-geophysical monitoring under both constant and oscillating water table conditions. An artificial soil mixture composed of quartz sand, montmorillonite, goethite and humus was used to provide a well-defined system. This material was inoculated with a microbial community extracted from a forested riparian zone. The soils were packed into 6 columns (60 cm length and 7.5 cm inner diameter) to a height of 45 cm; and three replicate columns were incubated under constant water table while another three were saturated and drained monthly. The initial soil development, carbon cycling and microbial community development were then characterized during 10 months of incubation. This system provides an ideal artificial gradient from the saturated to the unsaturated zone to study soil development from initially homogeneous materials and the same microbial community composition under controlled conditions. Depth profiles of SOC and microbial biomass after 329 days of incubation showed a depletion of carbon in the transition drying and wetting zone that was not associated with higher accumulation of microbial biomass, indicating a lower carbon use efficiency of the microbial community established within the water table fluctuation zone. This was supported by a higher ATP to microbial biomass carbon ratio within the same zone. The findings from this study highlight the importance of considering the effects of transient soil moisture and oxygen availability on microbial mediated SOC transformations. The effects of these changes in carbon use efficiency need to be included in soil models in order to accurately predict SOC turnover.
Method for forming a chemical microreactor
Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA
2009-05-19
Disclosed is a chemical microreactor that provides a means to generate hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water. The microreactor contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. Two distinct embodiment styles are discussed. One embodiment style employs a packed catalyst capillary microchannel and at least one porous membrane. Another embodiment style employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2/cm.sup.3. Various methods to form packed catalyst capillary microchannels, porous membranes and porous membrane support structures are also disclosed.
Mimura, Mayumi; Nakashima, Harunobu; Yoshida, Jin; Yoshida, Toshiaki; Kawakami, Tsuyoshi; Isama, Kazuo
2014-01-01
The official analytical method for tris(2,3-dibromopropyl)phosphate (TDBPP), which is banned from use in textile products by the "Act on Control of Household Products Containing Harmful Substances", requires revision. This study examined an analytical method for TDBPP by GC/MS using a capillary column. Thermal decomposition of TDBPP was observed by GC/MS measurement using capillary column, unlike in the case of gas chromatography/flame photometric detector (GC/FPD) measurement based on a direct injection method using a capillary megabore column. A quadratic curve, Y=2572X(1.416), was obtained for the calibration curve of GC/FPD in the concentration range 2.0-100 μg/mL. The detection limit was 1.0 μg/mL under S/N=3. The reproducibility for repetitive injections was satisfactory. A pretreatment method was established using methanol extraction, followed by liquid-liquid partition and purification with a florisil cartridge column. The recovery rate of this method was ~100%. TDBPP was not detected in any of the five commercial products that this study analyzed. To understand the cause of TDBPP decomposition during GC/MS (electron ionization; EI) measurement using capillary column, GC/MS (chemical ionization; CI), GC/FPD, and gas chromatography/flame ionization detector (GC/FID) measurements were conducted. It was suggested that TDBPP might thermally decompose both during GC injection, especially through a splitless injection method, and in the column or ion sources. To attempt GC/MS measurement, an injection part comprising quartz liner was used and the column length was halved (15 m); thus, only one peak could be obtained.
Lin, Shu-Ling; Wang, Chih-Chieh; Fuh, Ming-Ren
2016-10-05
In this study, divinylbenzene (DVB) was used as the cross-linker to prepare alkyl methacrylate (AlMA) monoliths for incorporating π-π interactions between the aromatic analytes and AlMA-DVB monolithic stationary phases in capillary LC analysis. Various AlMA/DVB ratios were investigated to prepare a series of 30% AlMA-DVB monolithic stationary phases in fused-silica capillaries (250-μm i.d.). The physical properties (such as porosity, permeability, and column efficiency) of the synthesized AlMA-DVB monolithic columns were investigated for characterization. Isocratic elution of phenol derivatives was first employed to evaluate the suitability of the prepared AlMA-DVB columns for small molecule separation. The run-to-run (0.16-1.20%, RSD; n = 3) and column-to-column (0.26-2.95%, RSD; n = 3) repeatabilities on retention times were also examined using the selected AlMA-DVB monolithic columns. The π-π interactions between the aromatic ring and the DVB-based stationary phase offered better recognition on polar analytes with aromatic moieties, which resulted in better separation resolution of aromatic analytes on the AlMA-DVB monolithic columns. In order to demonstrate the capability of potential environmental and/or food safety applications, eight phenylurea herbicides with single benzene ring and seven sulfonamide antibiotics with polyaromatic moieties were analyzed using the selected AlMA-DVB monolithic columns. Copyright © 2016. Published by Elsevier B.V.
Forssén, Patrik; Samuelsson, Jörgen; Fornstedt, Torgny
2014-06-20
In this study we investigated how the maximum productivity for commonly used, realistic separation system with a competitive Langmuir adsorption isotherm is affected by changes in column length, packing particle size, mobile phase viscosity, maximum allowed column pressure, column efficiency, sample concentration/solubility, selectivity, monolayer saturation capacity and retention factor of the first eluting compound. The study was performed by generating 1000 random separation systems whose optimal injection volume was determined, i.e., the injection volume that gives the largest achievable productivity. The relative changes in largest achievable productivity when one of the parameters above changes was then studied for each system and the productivity changes for all systems were presented as distributions. We found that it is almost always beneficial to use shorter columns with high pressure drops over the column and that the selectivity should be greater than 2. However, the sample concentration and column efficiency have very limited effect on the maximum productivity. The effect of packing particle size depends on the flow rate limiting factor. If the pumps maximum flow rate is the limiting factor use smaller packing, but if the pressure of the system is the limiting factor use larger packing up to about 40μm. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
NASA Astrophysics Data System (ADS)
Rod, Kenton; Um, Wooyong; Chun, Jaehun; Wu, Ning; Yin, Xialong; Wang, Guohui; Neeves, Keith
2018-06-01
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d-1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500-600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500-600 μm and 300-400 μm). A chemical heterogeneity was created using 25% of the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500-600 μm). Input solution with 0.5 mM CsI and 50 mg L-1 colloids (1-μm diameter SiO2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.
NASA Astrophysics Data System (ADS)
Sanlı, Ceyda; Saitoh, Kuniyasu; Luding, Stefan; van der Meer, Devaraj
2014-09-01
When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We apply the methods developed to study dynamic heterogeneity and show that the typical time and length scales of the fluctuations due to rearrangements of observed particle groups significantly increase when the system approaches its largest experimentally accessible packing concentration. To connect the system to the dynamic criticality literature, we fit power laws to our results. The resultant critical exponents are consistent with those found in densely packed suspensions of colloids.
Sanlı, Ceyda; Saitoh, Kuniyasu; Luding, Stefan; van der Meer, Devaraj
2014-09-01
When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We apply the methods developed to study dynamic heterogeneity and show that the typical time and length scales of the fluctuations due to rearrangements of observed particle groups significantly increase when the system approaches its largest experimentally accessible packing concentration. To connect the system to the dynamic criticality literature, we fit power laws to our results. The resultant critical exponents are consistent with those found in densely packed suspensions of colloids.
The paper describes the application of capillary supercritical fluid chromatography (SFC) to the analysis of a middle distillate fuel. Small diameter (50 micrometer i.d.) fused silica capillary columns coated with crosslinked 50% phenyl polymethylsiloxane provided high separation...
Condensation in Nanoporous Packed Beds.
Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid
2016-05-10
In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.
Gritti, Fabrice; Guiochon, Georges
2012-05-04
The kinetic performance of 0.5 mm × 50 mm columns packed with 2.7 μm Halo-C(18) core-shell particles and 3 μm EP-120-C(18) fully porous particles fitted on an Eksigent LC-Express Ultra μHPLC system were measured. The instrument contribution to band broadening was obtained by directly connecting the injection valve and the detector cell with a short, narrow PEEKSIL tube. The connections between the column and the connecting tubes, the column endfittings and its frits contribute to band spreading and are responsible for a significant rear peak tailing, even for retained compounds, resulting in a significant loss of efficiency. Our results show that the μHPLC system could outperform the current VHPLC systems using 2.1mm I.D. columns packed with 1.7 μm particles if it were using 0.5mm I.D. columns packed with 1 μm particles, if it could operate at a few kbar pressure drop, and if the sum of the contributions of the instrument, column endfittings and the column frits to band dispersion were three times smaller than it is at present. Copyright © 2012 Elsevier B.V. All rights reserved.
Organics in water contamination analyzer, phase 1
NASA Technical Reports Server (NTRS)
1986-01-01
The requirements which would result in identifying the components of an automatic analytical system for the analysis of specific organic compounds in the space station potable water supply are defined. The gas chromatographic system for such an analysis is limited to commercially available off-the-shelf hardware and includes the sample inlet, an ionization detector, capillary columns as well as computerized compound identification. The sampling system will be a special variation of the purge and trap Tenax mode using six-port valves and a 500 microliter water sample. Capillary columns used for the separating of contaminants will be bonded phase fused silica with a silicone stationary phase. Two detectors can be used: photoionization and far ultraviolet, since they are sensitive and compatible with capillary columns. A computer system evaluation and program with the principle of compound identification based on the retention index is presented.
NASA Astrophysics Data System (ADS)
Chrysikopoulos, C. V.; Syngouna, V. I.
2013-12-01
The role of gravitational force on biocolloid and colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with biocolloids (bacteriophages: ΦΧ174, MS2) and colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q=1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one dimensional, colloid transport model, accounting for gravity effects. The results revealed that flow direction has a significant influence on particle deposition. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for biocolloid and colloid deposition. Schematic illustration of a packed column with up-flow velocity having orientation (-i) with respect to gravity. The gravity vector components are: g(i)= g(-z) sinβ i, and g(-j)= -g(-z) cosβ j. Experimental setup showing the various column arrangements: (a) horizontal, (b) diagonal, and (c) vertical.
Liu, Zhao-Sheng; Xu, Yan-Li; Yan, Chao; Gao, Ru-Yu
2005-09-16
The recognition mechanism of molecularly imprinted polymer (MIP) in capillary electrochromatography (CEC) is complicated since it possesses a hybrid process, which comprises the features of chromatographic retention, electrophoretic migration and molecular imprinting. For an understanding of the molecular recognition of MIP in CEC, a monolithic MIP in a capillary with 1,1'-binaphthyl-2,2'-diamine (BNA) imprinting was prepared by in situ copolymerization of imprinted molecule, methacrylic acid and ethylene glycol dimethacrylate in porogenic solvent, a mixture of toluene-isooctane. Strong recognition ability and high column performance (theory plates was 43,000 plates/m) of BNA were achieved on this monolithic MIP in CEC mode. In addition, BNA and its structural analogue, 1,1'-bi-2, 2'-naphthol, differing in functional groups, were used as model compounds to study imprinting effect on the resultant BNA-imprinted monolithic column, a reference column without imprinting of BNA and a open capillary. The effects of organic modifier concentration, pH value of buffer, salt concentration of buffer and column temperature on the retention and recognition of two compounds were investigated. The results showed that the molecular recognition on MIP monolith in CEC mode mainly derived from imprinting cavities on BNA-imprinted polymer other than chromatographic retention and electrophoretic migration.
Kang, Jingwu; Wistuba, Dorothee; Schurig, Volker
2002-04-01
A method for the preparation of a silica monolithic capillary electrochromatography (CEC) column for the separation of enantiomers has been developed. The porous silica monolith was fabricated inside a fused-silica capillary column by using the sol-gel process. After gelation for 24 h, hydrothermal treatment at 100 degrees C for 24 h was performed to prevent the sol-gel matrix from cracking. The prepared monolith was then coated with Chirasil-beta-Dex which represents a chiral polymer prepared by grafting permethyl-beta-cyclodextrin to polymethylsiloxane with an octamethylene spacer. Immobilization of Chirasil-beta-Dex was performed by heat treatment at 120 degrees C for 48 h to give a nonextractable coating. The column performance was evaluated by using racemic hexobarbital as a model compound. The efficiency of 9.2 x 10(4) theoretical plates/m for the first eluted enantiomer of hexobarbital was obtained at an optimal flow rate of the mobile phase. The effect of mobile phase composition on enantiomeric separation of hexobarbital was also investigated. The column proved to be stable for more than one hundreds of runs during a two-months period. The enantiomers of several neutral and negatively charged chiral compounds were baseline separated on this column.
High speed capillary liquid chromatographic separations using a simple home made system constructed from readily available inexpensive components have been studied. Using thermally stable zirconia and titania based packing, the separation of eight alkylbenzene...
GC/IR computer-aided identification of anaerobic bacteria
NASA Astrophysics Data System (ADS)
Ye, Hunian; Zhang, Feng S.; Yang, Hua; Li, Zhu; Ye, Song
1993-09-01
A new method was developed to identify anaerobic bacteria by using pattern recognition. The method is depended on GC / JR data. The system is intended for use as a precise rapid and reproduceable aid in the identification of unknown isolates. Key Words: Anaerobic bacteria Pattern recognition Computeraided identification GC / JR 1 . TNTRODUCTTON A major problem in the field of anaerobic bacteriology is the difficulty in accurately precisely and rapidly identifying unknown isolates. Tn the proceedings of the Third International Symposium on Rapid Methods and Automation in Microbiology C. M. Moss said: " Chromatographic analysis is a new future for clinical microbiology" . 12 years past and so far it seems that this is an idea whose time has not get come but it close. Now two major advances that have brought the technology forword in terms ofmaking it appropriate for use in the clinical laboratory can aldo be cited. One is the development and implementation of fused silica capillary columns. In contrast to packed columns and those of'' greater width these columns allow reproducible recovery of hydroxey fatty acids with the same carbon chain length. The second advance is the efficient data processing afforded by modern microcomputer systems. On the other hand the practical steps for sample preparation also are an advance in the clinical laboratory. Chromatographic Analysis means mainly of analysis of fatty acids. The most common
Leaching of the organophosphorus nematicide fosthiazate.
Karpouzas, Dimitrios G; Pantelelis, Ioannis; Menkissoglu-Spiroudi, Urania; Golia, Evangelia; Tsiropoulos, Nikolas G
2007-07-01
Fosthiazate is an organophosphorus nematicide which was recently included in Annex I of the Directive 91/414/EEC under the clause that it should be used with special care in soils vulnerable to leaching. Thus, the leaching of fosthiazate was investigated in columns packed with three different soils which represented situations of high (site 2), intermediate (site 1) and low (site 3) leaching potential. The recommended dose of fosthiazate was applied at the surface of the soil columns and fosthiazate fate and transport was investigated for the next two months. Fosthiazate concentrations in the leachate collected from the bottom of the columns packed with soil from site 2 exceeded 0.1 microgl(-1) in most cases. This soil was characterized as acidic, indicating longer fosthiazate persistence, with low organic matter content, indicating weak adsorption, thus representing a situation vulnerable to leaching. In contrast, the lowest concentrations of fosthiazate in the leachate were evident in the columns packed with soil from site 3. This soil was characterized as alkaline, indicating faster degradation, with higher organic matter content, indicating stronger adsorption, thus representing a situation not favoring leaching of fosthiazate. The highest concentration of fosthiazate in the leachate from the columns packed with soil from site 2 was 3.44 microgl(-1) compared to 1.17 and 0.16 microgl(-1), which were the corresponding maximum values measured in columns packed with soil from sites 1 and 3, respectively. The results of the current study further suggest that fosthiazate is mobile in soil and can leach under conducive soil conditions like acidic soils with low organic matter content.
Aota, Arata; Date, Yasumoto; Terakado, Shingo; Ohmura, Naoya
2013-01-01
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that are present in the insulating oil inside a large number of transformers. To aid in eliminating PCB-contaminated transformers, PCBs in oil need to be measured using a rapid and cost-effective analytical method. We previously reported a pretreatment method for the immunoassay of PCBs in oil using a large-scale multilayer column and a microchip with multiple microrecesses, which permitted concentrated solvent extraction. In this paper, we report on a more rapid and facile pretreatment method, without an evaporation process, by improving the column and the microchip. In a miniaturized column, the decomposition and separation of oil were completed in 2 min. PCBs can be eluted from the capillary column at concentrations seven-times higher than those from the previous column. The total volume of the microrecesses was increased by improving the microrecess structure, the enabling extraction of four-times the amount of PCBs achieved with the previous system. By interfacing the capillary column with the improved microchip, PCBs in the eluate from the column were extracted into dimethyl sulfoxide in microrecesses with high enrichment and without the need for evaporation. Pretreatment was completed within 20 min. The pretreated oil was analyzed using a flow-based kinetic exclusion immunoassay. The limit of detection of PCBs in oil was 0.15 mg kg(-1), which satisfies the criterion set in Japan of 0.5 mg kg(-1).
Zhang, Bingyu; Lei, Xiaoyun; Deng, Lijun; Li, Minsheng; Yao, Sicong; Wu, Xiaoping
2018-06-06
An ionic liquid hybrid monolithic capillary column was prepared within 7 min via photoinitiated free-radical polymerization of an ionic liquid monomer (1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide); VBIMNTF 2 ) and a methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) acting as a cross-linker. The effects of composition of prepolymerization solution and initiation time on the porous structure and electroosmotic flow (EOF) of monolithic column were investigated. The hybrid monolith was characterized by scanning electron microscopy and FTIR. Owing to the introduction of a rigid nanosized POSS silica core and ionic liquids with multiple interaction sites, the monolithic column has a well-defined 3D skeleton morphology, good mechanical stability, and a stable anodic electroosmotic flow. The hybrid monolithic stationary phase was applied to the capillary electrochromatographic separation of various alkylbenzenes, phenols, anilines and polycyclic aromatic hydrocarbons (PAHs). The column efficiency is highest (98,000 plates/m) in case of alkylbenzenes. Mixed-mode retention mechanisms including hydrophobic interactions, π-π stacking, electrostatic interaction and electrophoretic mobility can be observed. This indicates the potential of this material in terms of efficient separation of analytes of different structural type. Graphical Abstract Preparation of a mixed-mode ionic liquid hybrid monolithic column via photoinitiated polymerization of methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) and 1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide (VBIMNTF 2 ) ionic liquid for use in capillary electrochromatography.
Weight-controlled capillary viscometer
NASA Astrophysics Data System (ADS)
Digilov, Rafael M.; Reiner, M.
2005-11-01
The draining of a water column through a vertical discharge capillary tube is examined with the aid of a force sensor. The change of the mass of the liquid in the column with time is found to be not purely exponential as implied by Poiseuille's law. Using observed residuals associated with a kinetic energy correction, an approximate formula for the mass as a function of time is derived and excellent agreement with experimental data is attained. These results are verified by a viscosity test of distilled water at room temperature. A simple and inexpensive weight-controlled capillary viscometer is proposed that is especially suitable for undergraduate physics and chemistry laboratories.
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
Rod, Kenton; Um, Wooyong; Chun, Jaehun; ...
2018-03-31
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rod, Kenton; Um, Wooyong; Chun, Jaehun
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less
Liu, Yu; Jiang, Lanlan; Zhu, Ningjun; Zhao, Yuechao; Zhang, Yi; Wang, Dayong; Yang, Mingjun; Zhao, Jiafei; Song, Yongchen
2015-09-01
The study of immiscible fluid displacement between aqueous-phase liquids and non-aqueous-phase liquids in porous media is of great importance to oil recovery, groundwater contamination, and underground pollutant migration. Moreover, the attendant viscous, capillary, and gravitational forces are essential to describing the two-phase flows. In this study, magnetic resonance imaging was used to experimentally examine the detailed effects of the viscous, capillary, and gravitational forces on water-oil flows through a vertical straight capillary, bifurcate channel, and monolayered glass-bead pack. Water flooding experiments were performed at atmospheric pressure and 37.8°C, and the evolution of the distribution and saturation of the oil as well as the characteristics of the two-phase flow were investigated and analyzed. The results showed that the flow paths, i.e., the fingers of the displacing phase, during the immiscible displacement in the porous medium were determined by the viscous, capillary, and gravitational forces as well as the sizes of the pores and throats. The experimental results afford a fundamental understanding of immiscible fluid displacement in a porous medium. Copyright © 2015 Elsevier Inc. All rights reserved.
Rothenbacher, Thorsten; Schwack, Wolfgang
2009-01-01
Plastic packaging materials may release compounds into packed foodstuffs. To identify potential migrants of toxicological concern, resins, and multilayer foils (mainly polyethylene) intended for the production of food contact materials were extracted and analyzed by GC/mass spectrometry. To identify even compounds of low concentrations, AMDIS software was used and data evaluation was safeguarded by the Kovats retention index (RI) system. In this way, 46 compounds were identified as possible migrants. The expert structure-activity relationship software DEREK for Windows was utilized to evaluate all identified substances in terms of carcinogenicity, genotoxicity, thyroid toxicity, and miscellaneous endpoints for humans. Additionally, a literature search for these compounds was performed with Sci-Finder, but relevant data were missing for 28 substances. Seven compounds with adverse toxicological effects were identified. In addition, the RIs of 24 commercial additive standards, measured with a GC capillary column of intermediate polarity, are given.
Zapadlo, Michal; Krupcík, Ján; Májek, Pavel; Armstrong, Daniel W; Sandra, Pat
2010-09-10
The orthogonality of three columns coupled in two series was studied for the congener specific comprehensive two-dimensional GC separation of polychlorinated biphenyls (PCBs). A non-polar capillary column coated with poly(5%-phenyl-95%-methyl)siloxane was used as the first ((1)D) column in both series. A polar capillary column coated with 70% cyanopropyl-polysilphenylene-siloxane or a capillary column coated with the ionic liquid 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethane-sulfonyl)imide were used as the second ((2)D) columns. Nine multi-congener standard PCB solutions containing subsets of all native 209 PCBs, a mixture of 209 PCBs as well as Aroclor 1242 and 1260 formulations were used to study the orthogonality of both column series. Retention times of the corresponding PCB congeners on (1)D and (2)D columns were used to construct retention time dependences (apex plots) for assessing orthogonality of both columns coupled in series. For a visual assessment of the peak density of PCBs congeners on a retention plane, 2D images were compared. The degree of orthogonality of both column series was, along the visual assessment of distribution of PCBs on the retention plane, evaluated also by Pearson's correlation coefficient, which was found by correlation of retention times t(R,i,2D) and t(R,i,1D) of corresponding PCB congeners on both column series. It was demonstrated that the apolar+ionic liquid column series is almost orthogonal both for the 2D separation of PCBs present in Aroclor 1242 and 1260 formulations as well as for the separation of all of 209 PCBs. All toxic, dioxin-like PCBs, with the exception of PCB 118 that overlaps with PCB 106, were resolved by the apolar/ionic liquid series while on the apolar/polar column series three toxic PCBs overlapped (105+127, 81+148 and 118+106). Copyright 2010 Elsevier B.V. All rights reserved.
Biomass growth restriction in a packed bed reactor
Griffith, William L.; Compere, Alicia L.
1978-01-01
When carrying out continuous biologically catalyzed reactions with anaerobic microorganisms attached to a support in an upflow packed bed column, growth of the microorganisms is restricted to prevent the microorganisms from plugging the column by limiting the availability of an essential nutrient and/or by the presence of predatory protozoa which consume the anaerobic microorganisms. A membrane disruptive detergent may be provided in the column to lyse dead microorganisms to make them available as nutrients for live microorganisms.
Gritti, Fabrice; Omamogho, Jesse; Guiochon, Georges
2011-10-07
The recent successful breakthrough of sub-3 μm shell particles in HPLC has triggered considerable research efforts toward the design of new brands of core-shell particles. We investigated the mass transfer mechanism of a few analytes in narrow-bore columns packed with prototype 1.7 μm shell particles, made of 1.0, 1.2, and 1.4 μm solid nonporous cores surrounded by porous shells 350, 250, and 150 nm thick, respectively. Three probe solutes, uracil, naphthalene, and insulin, were chosen to assess the kinetic performance of these columns. Inverse size exclusion chromatography, peak parking experiments, and the numerical integration of the experimental peak profiles were carried out in order to measure the external, internal, and total column porosities, the true bulk diffusion coefficients of these analytes, the height equivalent to a theoretical plate, the longitudinal diffusion term, and the trans-particle mass transfer resistance term. The residual eddy diffusion term was measured by difference. The results show the existence of important trans-column velocity biases (7%) possibly due to the presence of particle multiplets in the slurry mixture used during the packing process. Our results illustrates some of the difficulties encountered by scientists preparing and packing shell particles into narrow-bore columns. Copyright © 2011 Elsevier B.V. All rights reserved.
Mishra, Ashutosh; Tripathi, Brahma Dutt; Rai, Ashwani Kumar
2016-10-01
The present study represents the first attempt to investigate the biosorption potential of Fenton modified Hydrilla verticillata dried biomass (FMB) in removing chromium(VI) and nickel(II) ions from wastewater using up-flow packed-bed column reactor. Effects of different packed-bed column parameters such as bed height, flow rate, influent metal ion concentration and particle size were examined. The outcome of the column experiments illustrated that highest bed height (25cm); lowest flow rate (10mLmin(-1)), lowest influent metal concentration (5mgL(-1)) and smallest particle size range (0.25-0.50mm) are favourable for biosorption. The maximum biosorption capacity of FMB for chromium(VI) and nickel(II) removal were estimated to be 89.32 and 87.18mgg(-1) respectively. The breakthrough curves were analyzed using Bed Depth Service Time (BDST) and Thomas models. The experimental results obtained agree to both the models. Column regeneration experiments were also carried out using 0.1M HNO3. Results revealed good reusability of FMB during ten cycles of sorption and desorption. Performance of FMB-packed column in treating secondary effluent was also tested under identical experimental conditions. Results demonstrated significant reduction in chromium(VI) and nickel(II) ions concentration after the biosorption process. Copyright © 2016 Elsevier Inc. All rights reserved.
Ou, Junjie; Lin, Hui; Zhang, Zhenbin; Huang, Guang; Dong, Jing; Zou, Hanfa
2013-01-01
Hybrid organic-silica monolithic columns, regarded as a second generation of silica-based monoliths, have received much interest due to their unique properties over the pure silica-based monoliths. This review mainly focuses on development in the fields of preparation of hybrid monolithic columns in a capillary and their application for CEC and capillary liquid chromatography separation, as well as for sample pretreatment of solid-phase microextraction and immobilized enzyme reactor since July 2010. The preparation approaches are comprehensively summarized with three routes: (i) general sol-gel process using trialkoxysilanes and tetraalkoxysilanes as coprecursors; (ii) "one-pot" process of alkoxysilanes and organic monomers concomitantly proceeding sol-gel chemistry and free radical polymerization; and (iii) other polymerization approaches of organic monomers containing silanes. The modification of hybrid monoliths containing reactive groups to acquire the desired surface functionality is also described. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rugged large volume injection for sensitive capillary LC-MS environmental monitoring
NASA Astrophysics Data System (ADS)
Roberg-Larsen, Hanne; Abele, Silvija; Demir, Deniz; Dzabijeva, Diana; Amundsen, Sunniva F.; Wilson, Steven R.; Bartkevics, Vadims; Lundanes, Elsa
2017-08-01
A rugged and high throughput capillary column (cLC) LC-MS switching platform using large volume injection and on-line automatic filtration and filter back-flush (AFFL) solid phase extraction (SPE) for analysis of environmental water samples with minimal sample preparation is presented. Although narrow columns and on-line sample preparation are used in the platform, high ruggedness is achieved e.g. injection of 100 non-filtrated water samples would did not result in a pressure rise/clogging of the SPE/capillary columns (inner diameter 300 µm). In addition, satisfactory retention time stability and chromatographic resolution were also features of the system. The potential of the platform for environmental water samples was demonstrated with various pharmaceutical products, which had detection limits (LOD) in the 0.05 - 12.5 ng/L range. Between-day and within-day repeatability of selected analytes were < 20% RSD.
Teutenberg, T; Goetze, H-J; Tuerk, J; Ploeger, J; Kiffmeyer, T K; Schmidt, K G; Kohorst, W gr; Rohe, T; Jansen, H-D; Weber, H
2006-05-05
A specially designed heating system for temperature-programmed HPLC was developed based on experimental measurements of eluent temperature inside a stainless steel capillary using a very thin thermocouple. The heating system can be operated at temperatures up to 225 degrees C and consists of a preheating, a column heating and a cooling unit. Fast cycle times after a temperature gradient can be realized by an internal silicone oil bath which cools down the preheating and column heating unit. Long-term thermal stability of a polybutadiene-coated zirconium dioxide column has been evaluated using a tubular oven in which the column was placed. The packing material was stable after 50h of operation at 185 degrees C. A mixture containing four steroids was separated at ambient conditions using a mobile phase of 25% acetonitrile:75% deionized water and a mobile phase of pure deionized water at 185 degrees C using the specially designed heating system and the PBD column. Analysis time could be drastically reduced from 17 min at ambient conditions and a flow rate of 1 mL/min to only 1.2 min at 185 degrees C and a flow rate of 5 mL/min. At these extreme conditions, no thermal mismatch was observed and peaks were not distorted, thus underlining the performance of the developed heating system. Temperature programming was performed by separating cytostatic and antibiotic drugs with a temperature gradient using only water as the mobile phase. In contrast to an isocratic elution of this mixture at room temperature, overall analysis time could be reduced two-fold from 20 to 10 min.
Flight contaminant trace analyser. Phase 1: Chromatographic input system
NASA Technical Reports Server (NTRS)
1975-01-01
The development of a chromatographic column capable of resolving compounds associated with spacecraft atmospheres is presented. Consideration is given to sampling techniques, column parameters and operation, and column interface with a mass spectrometer. A capillary column coated with a mixture of polyalkylene glycols is found to provide the best selectivity for resolving multicomponent mixtures found in spacecraft atmospheres. Temperature programming and isothermal operation of the column are evaluated and it is found that temperature programming has a shorter analysis time for a given carrier gas flow rate and overall superior resolution. It is observed that hydrogen provides a 15% savings in analysis time over helium. Following the optimization of column operational parameters, a mixed phase Ucon capillary is prepared for evaluation during the column test period in which the test sample is automatically analyzed. Analysis of the multicomponent test mixture is completed within 45 minutes provided temperature programming is used. All but two of the test compounds are well resolved.
NASA Astrophysics Data System (ADS)
Yakovleva, E. Yu.; Patrushev, Yu. V.; Pai, Z. P.
2018-05-01
The chromatographic properties of capillary columns prepared using functionalized poly(1- trimethylsilyl-1-propyne) (PTMSP) are evaluated and compared with the performance of a commercial column with divinylbenzene polymer sorbent. The loading capacity of a PTMSP column with dimensions of 30 m × 0.53 mm × 0.8 μm is shown to be about 2.5 times higher than that of a divinylbenzene polymer column with a diameter of 0.32 mm and a film thickness of 10 μm. The increased value of the background current for PTMSP columns at 220°C is explained by the presence of non-polar bulky substituents in the polymer chain. Differences in the order of elution are found for the following pairs of compounds: acetylene-ethylene; ethane-water; butene-1-isobutane; and sulfur dioxide-carbonyl sulfide. On a column with the functionalized PTMC, analysis of a mixture composition close to natural gas is found to be complete within 27 min.
7 CFR 923.322 - Washington cherry handling regulation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... solids as determined from a composite sample by refractometer prior to packing, at time of packing, or at.../row size designation the row count/row size marked shall be one of those shown in Column 1 of the... corresponding diameter shown in Column 2 of such table: Provided, That the content of individual containers in...
Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.
Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui
2012-01-01
A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.
Wei, Y-Z; Zhuo, R-X; Jiang, X-L
2016-05-20
The separation and characterization of polyethylene glycols (PEGs) and amino-substituted derivatives on common silica-based reversed-phase packing columns using isocratic elution is described. This separation is achieved by liquid chromatography under the near critical conditions (LCCC), based on the number of amino functional end groups without obvious effect of molar mass for PEGs. The mobile phase is acetonitrile in water with an optimal ammonium acetate buffer. The separation mechanism of PEG and amino-substituted PEG under the near LCCC on silica-based packing columns is confirmed to be ion-exchange interaction. Under the LCCC of PEG backbone, with fine tune of buffer concentration, the retention factor ratios for benzylamine and phenol in buffered mobile phases, α(benzylamine/phenol)-values, were used to assess the ion-exchange capacity on silica-based reversed-phase packing columns. To the best of our knowledge, this is the first report on separation of amino-functional PEGs independent of the molar mass by isocratic elution using common C18 or phenyl reversed-phase packing columns. Copyright © 2016 Elsevier B.V. All rights reserved.
Gritti, Fabrice; Guiochon, Georges
2012-08-24
The column-to-column repeatability of the mass transfer mechanism in columns packed with sub-3μm shell particles was investigated. The parameters of this mechanism were measured for twelve columns (six 2.1mm×100mm and six 4.6mm×100mm) packed with the same batch of 2.6μm Kinetex-C(18) particles (Phenomenex, CA, USA). For both series, the manufacturer provided columns at different positions in the efficiency distribution given by the quality test control. Three compounds were used, uracil, naphthalene and insulin. The reduced longitudinal diffusion term was measured with the peak parking (PP) method, the reduced solid-liquid mass transfer resistance term was given by a combination of the PP results and a model of effective diffusion in ternary composite materials (non-porous cores, concentric porous shell, and eluent matrix), validated previously. The overall eddy diffusion term was obtained by subtraction of these two HETP terms from the overall reduced HETP measured by numerical integration of the entire peak profiles. The results demonstrate that the dispersion of the column efficiencies is only due to the random nature of the packing process. At the highest reduced velocity achieved, the relative standard deviations (RSDs) of the eddy diffusion term for the 2.1mm I.D. columns were ca. 7% and 3% for the low molecular weight compounds and for insulin, respectively. For the 4.6mm I.D. columns, these RSDs were 15% and 5%, respectively. The larger RSDs for the 4.6mm I.D. columns is explained by the exceptionally low value of the eddy diffusion term. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, G.; Erickson, D.C.
1999-07-01
The distillation column is a key component of ammonia-water absorption units including advanced generator-absorber heat exchange (GAX) cycle heat pumps. The design of the distillation column is critical to unit performance, size, and cost. The distillation column can be designed with random packing, structured packing, or various tray configurations. A sieve-tray distillation column is the least complicated tray design and is less costly than high-efficiency packing. Substantial literature is available on sieve tray design and performance. However, most of the correlations and design recommendations were developed for large industrial hydrocarbon systems and are generally not directly applicable to the compactmore » ammonia-water column discussed here. The correlations were reviewed and modified as appropriate for this application, and a sieve-tray design model was developed. This paper presents the sieve-tray design methodology for highly compact ammonia-water columns. A conceptual design of the distillation column for an 8 ton vapor exchange (VX) GAX heat pump is presented, illustrating relevant design parameters and trends. The design process revealed several issues that have to be investigated experimentally to design the final optimized rectifier. Validation of flooding and weeping limits and tray/point efficiencies are of primary importance.« less
Mass transfer equation for proteins in very high-pressure liquid chromatography.
Gritti, Fabrice; Guiochon, Georges
2009-04-01
The mass transfer kinetics of human insulin was investigated on a 50 mm x 2.1 mm column packed with 1.7 microm BEH-C(18) particles, eluted with a water/acetonitrile/trifluoroacetic acid (TFA) (68/32/0.1, v/v/v) solution. The different contributions to the mass transfer kinetics, e.g., those of longitudinal diffusion, eddy dispersion, the film mass transfer resistance, cross-particle diffusivity, adsorption-desorption kinetics, and transcolumn differential sorption, were incorporated into a general mass transfer equation designed to account for the mass transfer kinetics of proteins under high pressure. More specifically, this equation includes the effects of pore size exclusion, pressure, and temperature on the band broadening of a protein. The flow rate was first increased from 0.001 to 0.250 mL/min, the pressure drop increasing from 2 to 298 bar, and the column being placed in stagnant air at 296.5 K, in order to determine the effective diffusivity of insulin through the porous particles, the mass transfer rate constants, and the adsorption equilibrium constant in the low-pressure range. Then, the column inlet pressure was increased by using capillary flow restrictors downstream the column, at the constant flow rate of 0.03 mL/min. The column temperature was kept uniform by immersing the column in a circulating water bath thermostatted at 298.7 and 323.15 K, successively. The results showed that the surface diffusion coefficient of insulin decreases faster than its bulk diffusion coefficient with increasing average column pressure. This is consistent with the adsorption energy of insulin onto the BEH-C(18) surface increasing strongly with increasing pressure. In contrast, given the precision of the height equivalent to a theoretical plate (HETP) measurement (+/-12%), the adsorption kinetics of insulin appears to be rather independent of the pressure. On average, the adsorption rate constant of insulin is doubled from about 40 to 80 s(-1) when the temperature increases from 298.7 to 323.15 K.
Waterspout as a special type of atmospheric aerosol dusty plasma
NASA Astrophysics Data System (ADS)
Rantsev-Kartinov, Valentin A.
2004-11-01
An analysis of databases of photographic images of oceanic surface revealed the presence of oceanic skeletal structures (OSS) [1] Rantsev-Kartinov V.A., Preprint . The OSSs presumably differ from the formerly found skeletal structures (SS) (Phys. Lett. A 306 (2002) 175) only by the fact that OSS are filled in with the closely packed blocks of a smaller size, up to thin, tens of microns-sized capillaries. The SSs in the Earth atmosphere were suggested [1] to be produced during atmospheric electricity activity by the volcanic-born dust. The fall-out of such SSs on the oceanic surface is a material source of OSS. Here we suggest that an OSS block [1] in the form of vertically oriented floating cylinder may be a stimulator of waterspout (WS). The main body of WS may be interpreted as a special type of atmospheric aerosol dusty plasma, and WS column - as a long-lived filament, being formed in the process of electric breakdown between the cloud and oceanic surface. The charged water drops aerosol may behave similar to microdust and lift upward to the cloud by the electrostatic force. With such a capillary&;electrostatic model of WS, it appears possible to interpret many effects related to WS.
Unit operations for gas-liquid mass transfer in reduced gravity environments
NASA Technical Reports Server (NTRS)
Pettit, Donald R.; Allen, David T.
1992-01-01
Basic scaling rules are derived for converting Earth-based designs of mass transfer equipment into designs for a reduced gravity environment. Three types of gas-liquid mass transfer operations are considered: bubble columns, spray towers, and packed columns. Application of the scaling rules reveals that the height of a bubble column in lunar- and Mars-based operations would be lower than terrestrial designs by factors of 0.64 and 0.79 respectively. The reduced gravity columns would have greater cross-sectional areas, however, by factors of 2.4 and 1.6 for lunar and Martian settings. Similar results were obtained for spray towers. In contract, packed column height was found to be nearly independent of gravity.
Derivation of Jurin's Law Revisited
ERIC Educational Resources Information Center
Rodriguez-Valverde, Miguel Angel; Miranda, Maria Tirado
2011-01-01
The capillary rise/fall of a liquid within a thin capillary tube is described by the well-established Jurin's law. The liquid reaches an equilibrium height/depth as the capillary pressure is balanced by the hydrostatic pressure. When the adhesion force at the three-phase contact line is counteracted by the liquid weight, the liquid column also…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ton, H.; Yeung, E.S.
1997-02-15
An integrated on-line prototype for coupling a microreactor to capillary electrophoresis for DNA sequencing has been demonstrated. A dye-labeled terminator cycle-sequencing reaction is performed in a fused-silica capillary. Subsequently, the sequencing ladder is directly injected into a size-exclusion chromatographic column operated at nearly 95{degree}C for purification. On-line injection to a capillary for electrophoresis is accomplished at a junction set at nearly 70{degree}C. High temperature at the purification column and injection junction prevents the renaturation of DNA fragments during on-line transfer without affecting the separation. The high solubility of DNA in and the relatively low ionic strength of 1 x TEmore » buffer permit both effective purification and electrokinetic injection of the DNA sample. The system is compatible with highly efficient separations by a replaceable poly(ethylene oxide) polymer solution in uncoated capillary tubes. Future automation and adaptation to a multiple-capillary array system should allow high-speed, high-throughput DNA sequencing from templates to called bases in one step. 32 refs., 5 figs.« less
Sanaie, Nooshafarin; Cecchini, Douglas; Pieracci, John
2012-10-01
Micro-scale chromatography formats are becoming more routinely used in purification process development because of their ability to rapidly screen large number of process conditions at a time with minimal material. Given the usual constraints that exist on development timelines and resources, these systems can provide a means to maximize process knowledge and process robustness compared to traditional packed column formats. In this work, a high-throughput, 96-well filter plate format was used in the development of the cation exchange and hydrophobic interaction chromatography steps of a purification process designed to alter the glycoform distribution of a small protein. The significant input parameters affecting process performance were rapidly identified for both steps and preliminary operating conditions were identified. These ranges were verified in a packed chromatography column in order to assess the ability of the 96-well plate to predict packed column performance. In both steps, the 96-well plate format consistently led to underestimated glycoform-enrichment levels and to overestimated product recovery rates compared to the column-based approach. These studies demonstrate that the plate format can be used as a screening tool to narrow the operating ranges prior to further optimization on packed chromatography columns. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fundamental Studies on Two-Phase Gas-Liquid Flows Through Packed Beds in Microgravity
NASA Technical Reports Server (NTRS)
Balakotaiah, Vemuri; McCready, Mark J.; Motil, Brian J.
2002-01-01
In the typical operation of a packed-bed reactor, gas and liquid flow simultaneously through a fixed bed of solid particles. Depending on the application, the particles can be of various shapes and sizes and provide for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. NASA has flown two of these packed-bed systems in a microgravity environment with limited or no success. The goal of this research is to develop models (with scale-up capability) needed for the design of the physicochemical equipment to carry out these unit operations in microgravity. New insight will also lead to improvements in normal gravity operations. Our initial experiment was flown using an existing KC-135 two-phase flow rig with a modified test section. The test section is a clear polycarbonate rectangular column with a depth of 2.54 cm, a width of 5.08 cm, and 60 cm long. The column was randomly packed with spherical glass beads by slowly dropping the beads into the bed. Even though care was taken in handling the column after it was filled with packing, the alternating high and low gravity cycles with each parabola created a slightly tighter packed bed than is typically reported for this type. By the usual method of comparing the weight difference of a completely dry column versus a column filled with water, the void fraction was found to be .345 for both sizes of beads used. Five flush mounted differential pressure transducers are spaced at even intervals with the first location 4 cm from the inlet port and the subsequent pressure transducers spaced at 13 cm intervals along the column. Differential pressure data was acquired at 1000 Hz to adequately observe pulse formation and characteristics. Visual images of the flow were recorded using a high-speed SVHS system at 500 frames per second. Over 250 different test conditions were evaluated along with a companion set of tests in normal gravity. The flow rates, fluid properties and packing properties were selected to provide a range of several orders-of-magnitude for the important dimensionless parameters. Additional information is included in the original extended abstract.
7 CFR 923.322 - Washington cherry handling regulation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... solids as determined from a composite sample by refractometer prior to packing, at time of packing, or at... designation the row count/row size marked shall be one of those shown in Column 1 of the following table and... diameter shown in Column 2 of such table: Provided, That the content of individual containers in the lot...
7 CFR 923.322 - Washington cherry handling regulation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... solids as determined from a composite sample by refractometer prior to packing, at time of packing, or at... designation the row count/row size marked shall be one of those shown in Column 1 of the following table and... diameter shown in Column 2 of such table: Provided, That the content of individual containers in the lot...
7 CFR 923.322 - Washington cherry handling regulation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... solids as determined from a composite sample by refractometer prior to packing, at time of packing, or at... designation the row count/row size marked shall be one of those shown in Column 1 of the following table and... diameter shown in Column 2 of such table: Provided, That the content of individual containers in the lot...
7 CFR 923.322 - Washington cherry handling regulation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... solids as determined from a composite sample by refractometer prior to packing, at time of packing, or at... designation the row count/row size marked shall be one of those shown in Column 1 of the following table and... diameter shown in Column 2 of such table: Provided, That the content of individual containers in the lot...
Adsorption of polypropylene from dilute solutions on a zeolite column packing.
Macko, Tibor; Pasch, Harald; Denayer, Joeri F
2005-01-01
Faujasite type zeolite CBV-780 was tested as adsorbent for isotactic polypropylene by liquid chromatography. When cyclohexane, cyclohexanol, n-decanol, n-dodecanol, diphenylmethane, or methylcyclohexane was used as mobile phase, polypropylene was fully or partially retained within the column packing. This is the first series of sorbent-solvent systems to show a pronounced retention of isotactic polypropylene. According to the hydrodynamic volumes of polypropylene in solution, macromolecules of polypropylene should be fully excluded from the pore volume of the sorbent. Sizes of polypropylene macromolecules in linear conformations, however, correlate with the pore size of the column packing used. It is presumed that the polypropylene chains partially penetrate into the pores and are retained due to the high adsorption potential in the narrow pores.
Stationary phase deposition based on onium salts
Wheeler, David R [Albuquerque, NM; Lewis, Patrick R [Albuquerque, NM; Dirk, Shawn M [Albuquerque, NM; Trudell, Daniel E [Albuquerque, NM
2008-01-01
Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.
Evaluation of columns packed with shell particles with compounds of pharmaceutical interest.
Ruta, Joséphine; Zurlino, Daria; Grivel, Candice; Heinisch, Sabine; Veuthey, Jean-Luc; Guillarme, Davy
2012-03-09
The commercial C18 columns packed with sub-3 μm shell particles were tested and compared to a reference UHPLC column, in terms of kinetic performance as well as selectivity, retention capability, peak shape and loading capacity. For this purpose, a set of pharmaceutically relevant molecules was selected, including acidic, neutral and basic drugs. Regarding kinetic performance, h(opt) values for the shell particles were found between 1.7 and 2, while the UHPLC column provided a value of approximately 2.5. However, this impressive performance should be considered with caution, particularly for the construction of kinetic plots since h(opt) values were sometimes related to the column dimensions, depending on the provider (h(opt) comprised between 1.8 and 2.6 for longer columns of 150 mm packed with shell particles). Despite the non-porous inner core of the shell particles representing between 25 and 36% of the particle, we demonstrated that the decrease in retention was on the maximum equal to 15% for Ascentis column while Acquity and Poroshell were strictly equivalent in terms of retention. Concerning loading capacity, it remains comparable to that of fully porous sub-2 μm particles and always more pronounced with 0.1% formic acid vs. phosphate buffer. The loading capacity of the different columns was found to be better correlated to the pore volume or surface coverage than the shell thickness. Experimentally, the most pronounced overloading was observed with the Poroshell. Finally, the selectivity and peak shape were evaluated using a mixture of basic and acidic drugs. It appears that results were very similar between sub-3 μm shell particles and fully porous sub-2-μm particles for our mixture of compounds, showing the ability to transfer existing methods to shell particles, with only limited adjustments. This study confirms the potential of columns packed with shell particles and demonstrates the interest of such column technology with pharmaceutical compounds. Copyright © 2011 Elsevier B.V. All rights reserved.
Gritti, Fabrice; Guiochon, Georges
2012-08-24
The column-to-column repeatability of the mass transfer kinetics in columns packed with sub-3μm shell particles was investigated. The parameters of this kinetics were measured for twelve columns (six 2.1mm×100mm and six 4.6mm×100mm) packed with the same batch of 2.7μm Halo-ES-Peptide-C(18) particles (Advanced Material Technologies, Wilmington, DE, USA). For both series, the manufacturer provided columns at different positions in the efficiency distribution given by the quality test control. Three compounds were used, uracil, naphthalene and insulin. The reduced longitudinal diffusion term was measured with the peak parking (PP) method; the reduced solid-liquid mass transfer resistance term was given by a combination of the PP results and the most accurate model of effective diffusion in ternary composite materials (non-porous cores, concentric porous shell, and eluent matrix), validated previously. The overall eddy diffusion term was obtained by subtraction of these two HETP terms from the overall reduced HETP measured by numerical integration of the entire peak profiles. The results demonstrate that the dispersion of the column efficiencies is mostly due to the random nature of the packing process and the associated eddy diffusion term. At the highest reduced velocity achieved, the relative standard deviations (RSDs) of the eddy diffusion term for the 2.1mm I.D. columns were ca. 5 and 10% (with average values A(ν)=2.3 and 8.5) for naphthalene and uracil, respectively. For the 4.6mm I.D. columns, these RSDs were 3 and 5%, respectively, with average values A(ν)=1.5 and 2.7. Copyright © 2012 Elsevier B.V. All rights reserved.
If You Were a Molecule in a Chromatography Column, What Would You See?
ERIC Educational Resources Information Center
Mattice, John
2008-01-01
To visualize what takes place in a chromatography column, enlarge the molecules to human size and expand the columns to keep the ratio of size of molecule to size of column the same. If we were molecules, what would the columns be like? A typical gas chromatography (GC) capillary column would be 50 x 10 [superscript 6] 6 km (31 million mi) long,…
Wolter, Marc; Lämmerhofer, Michael
2017-05-12
This work reports on the proof-of-principle of preparation of novel one step in-situ functionalized monolithic polysiloxane-polymethacrylate composite materials in capillary columns for enantioselective nano-HPLC using a thiol-ene click reaction. Quinine carbamate as functional monomer and ethylene dimethacrylate as crosslinker were both used as ene components in a thermally initiated double click-type polymerization reaction with poly(3-mercaptopropyl)methylsiloxane as thiol component in presence of 1-propanol as porogenic solvent. Elemental analysis and on-capillary fluorescence measurement proved the successful incorporation of the functional chiral monomer into the polymer. Scanning electron microscopy images revealed a macroporous polymer morphology which is typical for a nucleation and growth mechanism of pore formation. The individual microglobules appear relatively spherical and smooth indicating a non-porous nature. Nano-HPLC experiments of the chiral monolithic capillary column provided successful enantiomer separation of N-3,5-dinitrobenzoylleucine as test compound in polar organic elution mode clearly documenting the successful implementation of the proposed concept towards new functionalized monolithic composite materials. Copyright © 2017 Elsevier B.V. All rights reserved.
1985-06-01
packed column, with low liquid loading (2. 0 mm ID, 4% liquid phase loading on diatomaceous earth *) 0.3 Medium bore analytical packed column, with...moderate liquid loading (4. 5 mm ID, 8%16 liquid phase loading on diatomaceous earth *) 3.0 -3 * diatomaceous earth density 0.24 gm cm 12 associated with the...hydrocarbon fuels. Certain injector inserts have contained packed chromatographic media, e.g., stationary phases coated onto diatomaceous earth . This type
Hetzel, Terence; Blaesing, Christina; Jaeger, Martin; Teutenberg, Thorsten; Schmidt, Torsten C
2017-02-17
The performance of micro-liquid chromatography columns with an inner diameter of 0.3mm was investigated on a dedicated micro-LC system for gradient elution. Core-shell as well as fully porous particle packed columns were compared on the basis of peak capacity and gradient kinetic plot limits. The results for peak capacity showed the superior performance of columns packed with sub-2μm fully porous particles compared to 3.0μm fully porous and 2.7μm core-shell particles within a range of different gradient time to column void time ratios. For ultra-fast chromatography a maximum peak capacity of 16 can be obtained using a 30s gradient for the sub-2μm fully porous particle packed column. A maximum peak capacity of 121 can be achieved using a 5min gradient. In addition, the influence of an alternative detector cell on the basis of optical waveguide technology and contributing less to system variance was investigated showing an increased peak capacity for all applied gradient time/column void time ratios. Finally, the influence of pressure was evaluated indicating increased peak capacity for maximum performance whereas a limited benefit for ultra-fast chromatography with gradient times below 30s was observed. Copyright © 2017 Elsevier B.V. All rights reserved.
Gritti, Fabrice; Guiochon, Georges
2012-08-24
As part of an investigation of the column-to-column repeatability of the efficiency of columns packed with sub-3μm shell particles, the parameters of the mass transfer kinetics of twelve columns packed with the same batch of 2.7μm Poroshell 120 EC-C(18) particles (Agilent Technologies, Little Fall, DE, USA) were sequentially measured, using columns provided by the manufacturers that were representative of the efficiency distribution given by the quality test control. The reduced longitudinal diffusion term (B) was measured using the peak parking (PP) method; the reduced solid-liquid mass transfer resistance term (C) was given by a combination of the PP results and the most accurate model of effective diffusion in ternary composite materials. The overall eddy diffusion term (A) was obtained by subtraction of these two HETP terms from the overall reduced HETP derived from the peak moments measured by numerical integration of the entire peak profiles. The results demonstrate that the dispersion of the column efficiencies is a result of the random nature of the packing process and the eddy diffusion term resulting from the lack of homogeneity of the column bed. At the highest reduced velocity achieved for small analytes, the relative standard deviations (RSD) of the eddy diffusion term for the 2.1mm I.D. columns were ca. 3 and 11% (with average values h(eddy)= 2.5 and 13.5) for naphthalene (k=3) and uracil (k=0), respectively. For the 4.6mm I.D. columns, these RSDs were 5 and 13%, respectively, with average values h(eddy)= 1.4 and 2.9. For insulin at reduced velocities as high as 160, the RSDs of the total reduced plate heights were 3 and 8% for the 2.1 and 4.6mm I.D. columns, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
2016-01-01
Multiplex polymerase chain reaction (PCR) has been widely utilized for high-throughput pathogen identification. Often, a dye is used to intercalate the amplified DNA fragments, and identifications of the pathogens are carried out by DNA melting curve analysis or gel electrophoresis. Integrating DNA amplification and identification is a logic path toward maximizing the benefit of multiplex PCR. Although PCR and gel electrophoresis have been integrated, replenishing the gels after each run is tedious and time-consuming. In this technical note, we develop an approach to address this issue. We perform multiplex PCR inside a capillary, transfer the amplified fragments to a bare narrow capillary, and measure their lengths online using bare narrow capillary–hydrodynamic chromatography (BaNC-HDC), a new technique recently developed in our laboratory for free-solution DNA separation. To intercalate the DNA with YOYO-1 (a fluorescent dye) for BaNC-HDC, we flush the capillary column with a YOYO-1 solution; positively charged YOYO-1 is adsorbed (or charged) onto the negatively charged capillary wall. As DNA molecules are driven down the column for separation, they react with the YOYO-1 stored on the capillary wall and are online-intercalated with the dye. With a single YOYO-1 charging, the column can be used for more than 40 runs, although the fluorescence signal intensities of the DNA peaks decrease gradually. Although the dye-DNA intercalation occurs during the separation, it does not affect the retention times, separation efficiencies, or resolutions. PMID:25555111
Avila, Mónica; Zougagh, Mohammed; Escarpa, Alberto; Ríos, Angel
2009-10-23
A new, simple and versatile method is presented for the determination of different concentration levels of alkenylbenzenes (eugenol, isoeugenol, eugenol methyl ether, myristicin, anethole and estragole) and the related flavour compounds (coumarin and pulegone) in food samples. The method involves the use of a stationary phase (capillary column) for the enrichment with appropriate elution. After the sample had completely passed through the capillary column the eluent was changed and the separation/detection was achieved. Excellent linearity was obtained under the proposed conditions for a direct determination method and a method including on-line preconcentration. The limits of detection were in the ranges 97-148 and 9.5-14.2 ng/mL, respectively. Evidence for a matrix effect was not found and recoveries between 92 and 110% were obtained. The precision of the method, expressed as relative standard deviation values, was below 5% in all cases. The applicability of this methodology was tested by analyzing synthetic and real food samples.
Methyl bromide determination in selected foods by headspace technique.
Daft, J L
1993-01-01
A headspace method used earlier for determining methyl bromide (MB) in assorted nuts and peanut butters has been successfully applied to other foods that could potentially contain traces of this toxic fumigant. The foods tested include 63 off-the-shelf spices and seasonings, 83 table-ready items (grain-based, dried, or highly seasoned), 30 dried fruits and trail mixes, and 38 oil-based items (oil-seeds, cooking oils, or spicy oil-based dressings). Sample headspace gas is produced by blending < or = 50 g sample in 250 +/- 50 mL aqueous solution in a sealed 1000 mL blender cup. After equilibration at 25 degrees C, the headspace is sampled with a gas-tight syringe and injected into a dual column-dual detector gas chromatograph. One determination is made with a 20% OV-101 packed column and a 63Ni electron capture detector (ECD), the other with a GS-Q wide-bore capillary column and a Hall electrolytic conductivity detector (HECD). Of the approximately 200 samples tested, none contained detectable MB residue at a quantitation limit < 100 ng/g sample. All fortified samples yielded MB recovery. Samples were fortified at levels ranging from 78 to 3250 ng MB/g. Recoveries ranged from a mean high of 56% for spices and seasonings to a mean low of 30% for oil-based foods. The overall recovery and CV, including the results from assorted nuts and peanut butters, were 46 and 33%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, H.
1999-03-31
The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performedmore » in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.« less
Zhang, Yanhao; Tian, Xiangyu; Guo, Yaxiao; Li, Haibin; Yu, Ajuan; Deng, Zhifen; Sun, Barry Baoguo; Zhang, Shusheng
2014-04-16
In this work, a new open-tubular capillary electrochromatography (OT-CEC) method with the nanolatex-coated column was proposed for the determination of nitrites and nitrates in foodstuffs. The method was simple and repeatable as a result of avoiding the introduction of an electroosmotic flow reverse additive (such as cetyltrimethylammonium chloride) in electrophoretic buffer. The limits of quantitation were 0.89 and 1.05 mg kg⁻¹ for nitrate and nitrite, respectively, whereas the overall recoveries ranged from 94 to 103%. The developed OT-CEC method was successfully applied for 12 samples, and the residue profiles of nitrites and nitrates in hams and sausages were obtained and evaluated.
Rodriguez, Estrella Sanz; Poynter, Sam; Curran, Mark; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Paull, Brett
2015-08-28
Preservation of ionic species within Antarctic ice yields a unique proxy record of the Earth's climate history. Studies have been focused until now on two proxies: the ionic components of sea salt aerosol and methanesulfonic acid. Measurement of the all of the major ionic species in ice core samples is typically carried out by ion chromatography. Former methods, whilst providing suitable detection limits, have been based upon off-column preconcentration techniques, requiring larger sample volumes, with potential for sample contamination and/or carryover. Here, a new capillary ion chromatography based analytical method has been developed for quantitative analysis of limited volume Antarctic ice core samples. The developed analytical protocol applies capillary ion chromatography (with suppressed conductivity detection) and direct on-column sample injection and focusing, thus eliminating the requirement for off-column sample preconcentration. This limits the total sample volume needed to 300μL per analysis, allowing for triplicate sample analysis with <1mL of sample. This new approach provides a reliable and robust analytical method for the simultaneous determination of organic and inorganic anions, including fluoride, methanesulfonate, chloride, sulfate and nitrate anions. Application to composite ice-core samples is demonstrated, with coupling of the capillary ion chromatograph to high resolution mass spectrometry used to confirm the presence and purity of the observed methanesulfonate peak. Copyright © 2015 Elsevier B.V. All rights reserved.
Shell and small particles; evaluation of new column technology.
Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin
2009-01-15
The performance of 5 cm long columns packed with shell particles was compared to totally porous sub-2 microm particles in gradient and isocratic elution separations of hormones (dienogest, finasteride, gestodene, levonorgestrel, estradiol, ethinylestradiol, noretistherone acetate, bicalutamide and tibolone). Peak capacities around 140-150 could be achieved in 25 min with the 5 cm long columns. The Ascentis Express column (packed with 2.7 microm shell particles) showed similar efficiency to sub-2 microm particles under gradient conditions. Applying isocratic separation, the column of 2.7 microm shell particles had a reduced plate height minimum of approximately h=1.6. It was much smaller than obtained with totally porous particles (h approximately = 2.8). The impedance time also proved more favorable with 2.7 microm shell particles than with totally porous particles. The influence of extra-column volume on column efficiency was investigated. The extra-column dispersion of the chromatographic system may cause a shift of the HETP curves.
Hemdan, A; Abdel-Aziz, Omar
2018-04-01
Run time is a predominant factor in HPLC for quality control laboratories especially if there is large number of samples have to be analyzed. Working at high flow rates cannot be attained with silica based particle packed column due to elevated backpressure issues. The use of monolithic column as an alternative to traditional C-18 column was tested for fast separation of pharmaceuticals, where the results were very competitive. The performance comparison of both columns was tested for separation of anti-diabetic combination containing Metformin, Pioglitazone and Glimepiride using Gliclazide as an internal standard. Working at high flow rates with less significant backpressure was obtained with the monolithic column where the run time was reduced from 6 min in traditional column to only 1 min in monolithic column with accepted resolution. The structure of the monolith contains many pores which can adapt the high flow rate of the mobile phase. Moreover, peak symmetry and equilibration time were more efficient with monolithic column.
DNA Sequencing Using capillary Electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Barry Karger
2011-05-09
The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linkedmore » polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other application papers of sequencing up to this level were also published in the mid 1990's. A major interest of the sequencing community has always been read length. The longer the sequence read per run the more efficient the process as well as the ability to read repeat sequences. We therefore devoted a great deal of time to studying the factors influencing read length in capillary electrophoresis, including polymer type and molecule weight, capillary column temperature, applied electric field, etc. In our initial optimization, we were able to demonstrate, for the first time, the sequencing of over 1000 bases with 90% accuracy. The run required 80 minutes for separation. Sequencing of 1000 bases per column was next demonstrated on a multiple capillary instrument. Our studies revealed that linear polyacrylamide produced the longest read lengths because the hydrophilic single strand DNA had minimal interaction with the very hydrophilic linear polyacrylamide. Any interaction of the DNA with the polymer would lead to broader peaks and lower read length. Another important parameter was the molecular weight of the linear chains. High molecular weight (> 1 MDA) was important to allow the long single strand DNA to reptate through the entangled polymer matrix. In an important paper, we showed an inverse emulsion method to prepare reproducibility linear polyacrylamide polymer with an average MWT of 9MDa. This approach was used in the polymer for sequencing the human genome. Another critical factor in the successful use of capillary electrophoresis for sequencing was the sample preparation method. In the Sanger sequencing reaction, high concentration of salts and dideoxynucleotide remained. Since the sample was introduced to the capillary column by electrokinetic injection, these salt ions would be favorably injected into the column over the sequencing fragments, thus reducing the signal for longer fragments and hence reading read length. In two papers, we examined the role of individual components from the sequencing reaction and then developed a protocol to reduce the deleterious salts. We demonstrated a robust method for achieving long read length DNA sequencing. Continuing our advances, we next demonstrated the achievement of over 1000 bases in less than one hour with a base calling accuracy of between 98 and 99%. In this work, we implemented energy transfer dyes which allowed for cleaner differentiation of the 4 dye labeled terminal nucleotides. In addition, we developed improved base calling software to help read sequencing when the separation was only minimal as occurs at long read lengths. Another critical parameter we studied was column temperature. We demonstrated that read lengths improved as the column temperature was increased from room temperature to 60 C or 70 C. The higher temperature relaxed the DNA chains under the influence of the high electric field.« less
Boyd, Glen R; Ocampo-Gómez, Ana M; Li, Minghua; Husserl, Johana
2006-11-20
Packed column experiments were conducted to study effects of initial saturation of tetrachloroethene (PCE) in the range of 1.0-14% pore volume (PV) on mobilization and downward migration of the non-aqueous phase liquid (NAPL) product upon contact with aqueous isobutanol ( approximately 10 vol.%). This study focused on the consequences of swelling beyond residual saturation. Columns were packed with mixtures of neat PCE, water and glass beads and waterflooded to establish a desired homogeneous residual saturation, and then flooded with aqueous isobutanol under controlled hydraulic conditions. Results showed a critical saturation of approximately 8% PV for these packed column experimental conditions. At low initial PCE saturations (<8% PV), experimental results showed reduced risk of NAPL-product migration upon contact with aqueous isobutanol. At higher initial PCE saturations (>8% PV), results showed NAPL-product mobilization and downward migration which was attributed to interfacial tension (IFT) reduction, swelling of the NAPL-product, and reduced density modification. Packed column results were compared with good agreement to theoretical predictions of NAPL-product mobilization using the total trapping number, N(T). In addition to the packed column study, preliminary batch experiments were conducted to study the effects of PCE volumetric fraction in the range of 0.5-20% on density, viscosity, and IFT modification as a function of time following contact with aqueous isobutanol ( approximately 10 vol.%). Modified NAPL-product fluid properties approached equilibrium within approximately 2 h of contact for density and viscosity. IFT reduction occurred immediately as expected. Measured fluid properties were compared with good agreement to theoretical equilibrium predictions based on UNIQUAC. Overall, this study demonstrates the importance of initial DNAPL saturation, and the associated risk of downward NAPL-product migration, in applying alcohol flooding for remediation of DNAPL contaminated ground water sites.
Leaching behaviour of azoxystrobin and metabolites in soil columns.
Ghosh, Rakesh Kumar; Singh, Neera
2009-09-01
Azoxystrobin [methyl (E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate], a strobilurin fungicide, is a broad-spectrum, systemic and soil-applied fungicide. Azoxystrobin has been registered for rice cultivation in India, but no information is available on its leaching behaviour in Indian soils. Therefore, leaching behaviour of azoxystrobin was studied in packed and intact soil columns under different irrigation regimes. Azoxystrobin did not leach out of the 300 mm long columns after 126 and 362 mm rainfall. After percolating water equivalent to 362 mm rainfall, azoxystrobin leached down to 10-15 cm (packed columns) and 15-20 cm (intact columns) depth. Azoxystrobin was not detected in the leachate from the packed column leached with 94.5 mL water every week (140 mm rainfall per month) during the 28 weeks of the study period. However, azoxystrobin acid, formed by azoxystrobin degradation, was detected in the leachate after 18 weeks. At the end of the study, azoxystrobin had leached down to 5-10 cm depth, and only 60% of initially applied azoxystrobin was recovered from the soil. The results indicate that azoxystrobin is fairly immobile in sandy loam soil, but azoxystrobin acid, a major metabolite of azoxystrobin, is quite mobile and may pose a threat of soil and groundwater contamination. Copyright 2009 Society of Chemical Industry.
Radial distribution of the flow velocity, efficiency and concentration in a wide HPLC column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farkas, T.; Sepaniak, M.J.; Guiochon, G.
1997-08-01
The use of optical fibers in a fluorescence-detection scheme permits the accurate determination of the radial distribution of the transit time, the column efficiency, and the analyte concentration at the exit of a chromatographic axial-compression column (50 mmID). The results obtained demonstrate that the column is not homogeneous, but suggest a nearly cylindrical distribution of the packing density. The average velocity close to the column wall is 7% lower than along its axis and the HETP 25% higher. The lack of homogeneity of the column packing is another source of band broadening not taken into account in chromatography so far.more » It causes the apparent HETP derived from the conventional elution chromatogram recorded on the bulk eluent to be larger than the local HETP and the band profile to be unsymmetrical with a slight tail reminiscent of kinetic tailing.« less
Homestead Valley, California, aftershocks (March 17-18, 1979) recorded on portable seismographs
Perry-Huston, Sue; Eberhart-Phillips, Donna
1994-01-01
A method for the determination of chlorinated organic compounds in aquatic tissue by dual capillary-column gas chromatography with electron- capture detection is described. Whole-body-fish or corbicula tissue is homogenized, Soxhlet extracted, lipid removed by gel permeation chromatography, and fractionated using alumina/silica adsorption chromatography. The extracts are analyzed by dissimilar capillary-column gas chromatography with electron-capture detection. The method reporting limits are 5 micrograms per kilogram (ug/kg) for chlorinated compounds, 50 ug/kg for polychlorinated biphenyls, and 200 ug/kg for toxaphene.
Dopamine-imprinted monolithic column for capillary electrochromatography.
Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil
2017-11-01
A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5 m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yuan, Ruijuan; Wang, Yan; Ding, Guosheng
2010-01-01
A sulfated poly β-cyclodextrin (SPCD) modified silica-based monolithic column was prepared for enantiomeric separation. First, 2-hydroxy-3-allyloxy-propyl-β-cyclodextrin (allyl-β-CD) was bonded onto a bifunctional reagent 3-(methacryloxy)propyltriethoxysilane (γ-MAPS) modified silica-based monolith through radical polymerization; the column was then sulfated with chlorosulfonic acid. The SPCD chiral stationary phase resolved the boring problem associated with desalting when sulfated CDs were synthesized to act as chiral additives. The inorganic salt in the column introduced during the sulfating process could be easily removed by washing the column with water for some time. Chiral compounds investigated were successfully resolved into their enantiomers on the SPCD modified monolith in the capillary electrochromatography (CEC) mode. Due to the existence of the -SO(3)H group, electrosmotic flow (EOF) was obviously increased, and all of the separations could be carried out in 20 min with only a minor loss in the column efficiency and resolution.
Temperature-Modulated Array High-Performance Liquid Chromatography
Premstaller, Andreas; Xiao, Wenzhong; Oberacher, Herbert; O'Keefe, Matthew; Stern, David; Willis, Thomas; Huber, Christian G.; Oefner, Peter J.
2001-01-01
Using novel monolithic poly(styrene-divinylbenzene) capillary columns with an internal diameter of 0.2 mm, we demonstrate for the first time the feasibility of constructing high-performance liquid chromatography arrays for the detection of mutations by heteroduplex analysis under partially denaturing conditions. In one embodiment, such an array can be used to analyze one sample simultaneously at different temperatures to maximize the detection of mutations in DNA fragments containing multiple discrete melting domains. Alternatively, one may inject different samples onto columns kept at the same effective temperature. Further improvements in throughput can be obtained by means of laser-induced fluorescence detection and the differential labeling of samples with up to four different fluorophores. Major advantages of monolithic capillary high-performance liquid chromatographic arrays over their capillary electrophoretic analogs are the chemical inertness of the poly(styrene-divinylbenzene) stationary phase, the physical robustness of the column bed due to its covalent linkage to the inner surface of the fused silica capillary, and the feasibility to modify the stationary phase thereby allowing the separation of compounds not only on the principle of size exclusion, but also adsorption, distribution, and ion exchange. Analyses times are on the order of a few minutes and turnaround time is extremely short as there is no need for the replenishment of the separation matrix between runs. PMID:11691859
NASA Technical Reports Server (NTRS)
Spencer, Maegan K.; Liu, De-Ling; Kanik, Isik; Beegle, Luther
2010-01-01
Because salt and metals can mask the signature of a variety of organic molecules (like amino acids) in any given sample, an automated system to purify complex field samples has been created for the analytical techniques of electrospray ionization/ mass spectroscopy (ESI/MS), capillary electrophoresis (CE), and biological assays where unique identification requires at least some processing of complex samples. This development allows for automated sample preparation in the laboratory and analysis of complex samples in the field with multiple types of analytical instruments. Rather than using tedious, exacting protocols for desalting samples by hand, this innovation, called the Automated Sample Processing System (ASPS), takes analytes that have been extracted through high-temperature solvent extraction and introduces them into the desalting column. After 20 minutes, the eluent is produced. This clear liquid can then be directly analyzed by the techniques listed above. The current apparatus including the computer and power supplies is sturdy, has an approximate mass of 10 kg, and a volume of about 20 20 20 cm, and is undergoing further miniaturization. This system currently targets amino acids. For these molecules, a slurry of 1 g cation exchange resin in deionized water is packed into a column of the apparatus. Initial generation of the resin is done by flowing sequentially 2.3 bed volumes of 2N NaOH and 2N HCl (1 mL each) to rinse the resin, followed by .5 mL of deionized water. This makes the pH of the resin near neutral, and eliminates cross sample contamination. Afterward, 2.3 mL of extracted sample is then loaded into the column onto the top of the resin bed. Because the column is packed tightly, the sample can be applied without disturbing the resin bed. This is a vital step needed to ensure that the analytes adhere to the resin. After the sample is drained, oxalic acid (1 mL, pH 1.6-1.8, adjusted with NH4OH) is pumped into the column. Oxalic acid works as a chelating reagent to bring out metal ions, such as calcium and iron, which would otherwise interfere with amino acid analysis. After oxalic acid, 1 mL 0.01 N HCl and 1 mL deionized water is used to sequentially rinse the resin. Finally, the amino acids attached to the resin, and the analytes are eluted using 2.5 M NH4OH (1 mL), and the NH4OH eluent is collected in a vial for analysis.
Simple gas chromatographic system for analysis of microbial respiratory gases
NASA Technical Reports Server (NTRS)
Carle, G. C.
1972-01-01
Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.
Broeckhoven, Ken; Desmet, Gert
2012-10-05
The maximal gain in efficiency that can be expected from the use of the segmented column end fittings that were recently introduced to alleviate the effect of transcolumn packing density gradients has been quantified and generalized using numerical computations of the band broadening process. It was found that, for an unretained compound in a column with a parabolic packing density gradient, the use of a segmented inlet or a segmented outlet allows to eliminate about 60-100% of the plate height contribution (H(tc)) originating from a parabolic transcolumn velocity gradient in a d(c)=4.6 mm column. In a d(c)=2.1 mm column, these percentages change from 10 to 100%. Using a combined segmented in- and outlet, H(tc) can be reduced by about 90-100% (d(c)=4.6 mm column) or 20-100% (d(c)=2.1 mm column). The strong variation of these gain percentages is due to fact that they depend very strongly on the column length and the flow rate. Dimensionless graphs have been established that allow to directly quantify the effect for each specific case. It was also found that, in agreement with one's physical intuition, trans-column velocity profiles that are more flat in the central region benefit more from the concept than sharp, parabolic-like profiles. The gain margins furthermore tend to become smaller with increasing retention and increasing diffusion coefficient. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gordillo-Delgado, F.; Soto-Barrera, C. C.; Plazas-Saldaña, J.
2017-01-01
The increasing demand for equipment to remove organic compounds in industry and research activity has led to evaluate nanometric zinc oxide (ZnO). In this work, we present the ZnO nanoparticles synthesis for reusing of discarded columns, as a low-cost alternative. The compound was obtained by sol-gel technique using zinc chloride and sodium hydroxide as precursors and a drying temperature of 169°C. An X-ray diffractometer was used to estimate the average particle size at 20.3±0.2nm the adsorption capacity was 0.0144L/g and the chemical resistance was tested with HCl and NaOH. The ZnO nanopowder was packed with 100psi pressure in an empty C-18 column cavity. The column packing resolution was evaluated using a high performance liquid chromatographer (HPLC-Thermo Scientific Dionex UltiMate 3000); using a caffeine standard, the following parameters were established: solvent flow: 1.2mL/min, average column temperature: 40°C, running time: 10 minutes, mobile phase acetonitrile-water composition (9:1). These results validate the potential of ZnO nanopowder as a column packing material in HPLC technique.
Ding, Shujing; Dudley, Ed; Chen, Lijuan; Plummer, Sue; Tang, Jiandong; Newton, Russell P; Brenton, A Gareth
2006-01-01
Ginkgo biloba is one of the most popular herbal nutritional supplements, with terpene lactones and flavonoids being the two major active components. An on-line purification high-performance liquid chromatography/mass spectrometry (HPLC/MS) method was successfully developed for the quantitative determination of flavonoids and terpene lactones excreted in human urine after ingesting the herbal supplement. Satisfactory separation was obtained using a C18 capillary column made in-house with sample clean-up and pre-concentration achieved using a C18 pre-column with column switching. High selectivity and limits of detection of 1-18 ng/mL were achieved using a selected ion monitoring (SIM) scan in negative ion mode; the on-line solid-phase extraction (SPE) recovery of the active components in Ginkgo biloba determined in this study was greater than 75%. Copyright 2006 John Wiley & Sons, Ltd.
Waterspout as a result of the ocean skeletal structures
NASA Astrophysics Data System (ADS)
Rantsev-Kartinov, Valentin A.
2004-11-01
An analysis of databases of photographic images of oceanic surface, taken from various altitudes and for various types of rough ocean surface, reduced to a revealing the presence of oceanic skeletal structures (OSS) = http://www.arxiv.org/ftp/physics/papers/0401/0401139.pdf [1] Rantsev-Kartinov V.A., Preprint. The OSSs presumably differ from the formerly found skeletal structures (SS) (Phys. Lett. A 306 (2002) 175) only by the fact that OSS are filled in with the closely packed blocks of a smaller size, up to capillary sizes. It is suggested [1] the dust produced by the volcanic activity forms the SS of powerful clouds due to of atmospheric electricity. The fall-out of such SSs on the oceanic surface is a material source of OSS. It is suggested that an OSS block [1] in the form of vertically oriented floating cylinder may be a stimulator of waterspout (WS). The main body of the WS may be interpreted as a special type of atmospheric aerosol dusty plasma, and its column - as a long-lived filament, being formed in the process of electric breakdown between the cloud and oceanic surface. The charged water drops aerosol may behave similar to microdust and lift upward to the cloud by the electrostatic force. Suggested a capillary-electrostatic model of the WS permits to interpret many effects connected with the WS.
Li, Ming-Hsu; Wang, Tsing-Hai; Teng, Shi-Ping
2009-02-15
This study investigated breakthrough curves (BTCs) from a series of column experiments, including different column lengths and flow rates, of a conservative tracer, tritium oxide (HTO), and a radionuclide, cesium, in crushed granite using a reactive transport model. Results of the short column, with length of 2cm, showed an underestimation of the retardation factor and the corresponding HTO BTCs cannot be successfully modeled even with overestimated fluid dispersivity. Column supporting elements, including filters and rings, on both ends of packed granite were shown to be able to induce additional dispersive mixing, thus significantly affecting BTCs of short columns while those of the long column, with length of 8cm, were less affected. By increasing flow rates from 1mL/min to 5mL/min, the contribution of structural dispersive mixing to the false tilting of short column BTCs still cannot be detached. To reduce the influence of structural dispersivity on BTCs, the equivalent pore volume of column supporting materials should be much smaller than that of packed porous medium. The total length of column supporting structures should be greatly shorter than that of porous medium column.
Yang, Yinhui; Chang, Zhengfeng; Yang, Xiaohong; Qi, Meiling; Wang, Jinliang
2018-08-03
Herein we report a propeller-like hexaphenylbenzene-based hydrocarbon material (denoted as BT) as the stationary phase for capillary gas chromatography (GC). The statically-coated BT capillary column showed a high column efficiency of 4340 plates m -1 and weak polarity. Owing to its unique conformation, π-electron toroidal delocalization and intrinsic microporosity, the BT stationary phase exhibited interesting selectivity for aromatic compounds over alkanes. Compared with the graphene (G) column, the BT column showed much prolonged retention and high selectivity for aromatic isomers, especially methylnaphthalenes, dimethylnaphthalenes and phenanthrene/anthracene, mainly because of its propeller-like conformation with rich intercalation effects. Moreover, it exhibited good column repeatability (intra-day, inter-day) and reproducibility (between-column) with RSD values on the retention times less than 0.08% for intra-day, 0.32% for inter-day and 3.8% for between-column, respectively. Also, it showed good potential for determination of minor isomer impurities in real samples. To the best of our knowledge, this work presents the first example of employing an neat aromatic hydrocarbon material as the GC stationary phase with high selectivity for analytes of a wide ranging polarity. Copyright © 2018 Elsevier B.V. All rights reserved.
Gritti, Fabrice; Bell, David S; Guiochon, Georges
2014-08-15
The mass transfer mechanism in four prototype columns (2.1 and 3.0×50mm, 2.1 and 3.0×100mm) packed with 1.9μm fully porous Titan-C18 particles was investigated by using two previously reported home-made protocols. The first one was used to measure the eddy dispersion HETP of these new columns, the second one to estimate their intrinsic (corrected for HPLC system contribution) HETPs. Titan particles are fully porous particles with a narrow particle size distribution (RSD of 9.2%). The mean Sauter diameter (dSauter=2.04μm) was determined from Coulter counter measurements on the raw silica material (before C18 derivatization) and in the absence of a dispersant agent (Triton X-100) in a 2% NaCl electrolyte solution. The results show that these RPLC Titan columns have intrinsic minimum reduced HETPs ranging from 1.7 to 1.9 and generate up to 290,000 plates per meter. The 3.0mm i.d. columns are more efficient than the 2.1mm i.d. ones and short columns are preferred to minimize efficiency losses due to frictional heating at high speeds. This work also revealed that (1) the lowest h values of the Titan columns are observed at low reduced velocities (νopt=5); (2) this is due to the unusually small diffusivity of analytes across the porous Titan-C18 particles; and (3) the Titan columns are not packed more uniformly than conventional columns packed with fully porous particles. Earlier and recent findings showing that the PSD has no direct physical impact on eddy dispersion and column efficiency are confirmed by these results. Copyright © 2014 Elsevier B.V. All rights reserved.
Interior Temperature Measurement Using Curved Mercury Capillary Sensor Based on X-ray Radiography
NASA Astrophysics Data System (ADS)
Chen, Shuyue; Jiang, Xing; Lu, Guirong
2017-07-01
A method was presented for measuring the interior temperature of objects using a curved mercury capillary sensor based on X-ray radiography. The sensor is composed of a mercury bubble, a capillary and a fixed support. X-ray digital radiography was employed to capture image of the mercury column in the capillary, and a temperature control system was designed for the sensor calibration. We adopted livewire algorithms and mathematical morphology to calculate the mercury length. A measurement model relating mercury length to temperature was established, and the measurement uncertainty associated with the mercury column length and the linear model fitted by least-square method were analyzed. To verify the system, the interior temperature measurement of an autoclave, which is totally closed, was taken from 29.53°C to 67.34°C. The experiment results show that the response of the system is approximately linear with an uncertainty of maximum 0.79°C. This technique provides a new approach to measure interior temperature of objects.
Water infiltration in prewetted porous media: dynamic capillary pressure and Green-Ampt modeling
NASA Astrophysics Data System (ADS)
Hsu, S.; Hilpert, M.
2013-12-01
Recently, an experimental study has shown that the modified Green-Ampt (GA) model, which accounts for a velocity-dependent capillary pressure, can describe water infiltration in dry sand columns better than the classical GA model. Studies have also shown that the initial water content of prewetted porous media affects the dynamic capillary pressure during infiltration. In this study, we performed a series of downward water infiltration experiments in prewetted sand columns for four different initial water contents: 0%, 3.3%, 6.5%, and 13.8%. We also used three different ponding heights: 10 cm, 20 cm, and 40 cm. As expected, an increase in ponding height resulted in a monotonic increase in cumulative infiltration. However, we found anomalous behavior, in that the cumulative infiltration did not monotonically decrease as the initial water content increased. When modeling the experiments with the modified GA approach, we linked this anomalous behavior to the reduction factor in the model for dynamic capillary pressure that is a function of initial water content.
Nie, Feng; Hao, Liang; Gao, Mei; Wu, Yingchun; Li, Xinsheng; Yu, Sha
2011-01-01
The Cu(2+)-imprinted cross-linked chitosan resin was synthesized and the binding characteristic of the resin to Cu(2+) was evaluated. The prepared resin was packed into a micro-glass column and used as micro-separating column. The micro-separating column was connected into the chemiluminescence flow system and placed in front of the window of the photomultiplier tube. Based on the luminol-hydrogen peroxide chemiluminescence system, a flow injection online chemiluminescence method for determination of trace copper was developed and trace Cu(2+) in complex samples was successfully determined. The proposed method improved the shortcomings of chemiluminescence method's poor selectivity. Copyright © 2010 John Wiley & Sons, Ltd.
Freissinet, C; Buch, A; Szopa, C; Sternberg, R
2013-09-06
The performances of several commercial chiral capillary columns have been evaluated with the aim of determining the one most suitable for enantiomeric separation in a gas chromatograph onboard a space probe. We compared the GC-MS response of three capillary columns coated with different chiral stationary phases (CSP) using volatile chiral organic molecules which are potential markers of a prebiotic organic chemistry. The three different chiral capillary columns are Chirasil-Val, with an amino acid derivative CSP, ChiralDex-β-PM, with a CSP composed of dissolved permethylated β-cyclodextrins in polysiloxane, and Chirasil-Dex, with a CSP made of modified cyclodextrins chemically bonded to the polysiloxane backbone. Both kinetics and thermodynamics studies have been carried out to evaluate the chiral recognition potential in these different types of columns. The thermodynamic parameters also allow a better understanding of the driving forces affecting the retention and separation of the enantiomers. The Chirasil-Dex-CSP displays the best characteristics for an optimal resolution of the chiral compounds, without preliminary derivatization. This CSP had been chosen to be the only chiral column in the Sample Analysis at Mars (SAM) experiment onboard the current Mars Science Laboratory (MSL) mission, and is also part of the Mars Organic Molecules Analyzer (MOMA) gas chromatograph onboard the next Martian mission ExoMars. The use of this column could also be extended to all space missions aimed at studying chirality in space. Copyright © 2013 Elsevier B.V. All rights reserved.
Guo, Yaxiao; Meng, Lei; Zhang, Yanhao; Tang, Wei; Zhang, Wenfen; Xia, Yan; Ban, Fuguo; Wu, Ningpeng; Zhang, Shusheng
2013-12-30
This paper described the preparation and application of a new dimethylethanolamine aminated polychloromethyl styrene nano-latex (DMEAPL) coated capillary column (ccc-DMEAPL) in the determination of four tetracycline antibiotics (TCA) including tetracycline (TC), oxytetracycline (OTC), doxycycline (DC) and chlorotetracycline (CTC) in pig plasma. The ccc-DMEAPL column was characterized with steady EOF values of ca. 1.5-5.2×10(-5)cm(2)/Vs at pH 1.8-6.3. The optimized conditions for field-amplified sample stacking open-tubular capillary electrochromatography (FASS-OT-CEC) were as following: background electrolyte, 10mmol/L Na2HPO4+15mmol/L citric acid (pH 3.2); ccc-DMEAPL, 50μm i.d.×50cm (effective length 41.5cm), separation voltage, 18kV; column temperature, 25°C; UV detection wavelength, 270nm; water-plug injection: 30mbar×10s; sample electrokinetic injection, 10kV×20s. The four TCA were extracted with the solution of 10mmol/L Na2HPO4+15mmol/L citric acid+4g/L EDTA-2Na (pH 3.2). The FASS-OT-CEC method was validated in terms of linearity, sensitivity, selectivity, precision and accuracy. The LODs ranged from 3 to 7ng/mL, the recoveries for the four TCA were all more than 80%. The developed method was successfully applied for the determination of TCs in the actual pig plasma samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Fantacuzzi, Marialuigia; Bettoni, Giancarlo; D'Orazio, Giovanni; Fanali, Salvatore
2006-03-01
The enantiomeric separation of some demethylated analogues of clofibric acid, namely 2-(6-chloro-benzothiazol-2-ylsulfanyl)-, 2-(6-methoxy-benzothiazol-2-ylsulfanyl)-, 2-(quinolin-2-yloxy)-, 2-(6-chloro-quinolin-2-yloxy)-, 2-(7-chloro-quinolin-4-yloxy)-propionic acid (compounds A-E, respectively), has been studied by CZE and nano-LC using for the first technique two beta-CD derivatives and vancomycin added to the BGE and vancomycin-modified silica particles for the second one, with the aim to find the optimum experimental conditions for the baseline resolution. The type and the concentration of the chiral selector added to the BGE, the buffer pH, the type of organic modifier and its concentration, the capillary temperature and the applied voltage played a very important role in the enantioresolution of the analysed compounds. The use of 6-monodeoxy-6-monoamino-beta-CD allowed to achieve baseline resolution of four of five clofibric acid derivatives in less than 10 min while heptakis-(2,3,6-tri-O-methyl)-beta-CD partially resolved the same compounds in their enantiomers. Employing vancomycin as the chiral selector in CZE, the counter-current partial filling method was chosen achieving baseline resolution of four analytes. All the studied compounds were enantioresolved employing a capillary column packed with vancomycin stationary phase by nano-LC, and the resolution was strongly influenced by the concentration of the organic modifier and by the pH of the mobile phase. The best results were achieved at pH 4.5 in presence of 60% of methanol (MeOH). However, longer analysis times were observed in the experiments carried out by nano-LC.
Qiao, Xiaoqiang; Zhang, Niu; Han, Manman; Li, Xueyun; Qin, Xinying; Shen, Shigang
2017-03-01
A novel periodic imidazolium-bridged hybrid monolithic column was developed. With diene imidazolium ionic liquid 1-allyl-3-vinylimidazolium bromide as both cross-linker and organic functionalized reagent, a new periodic imidazolium-bridged hybrid monolithic column was facilely prepared in capillary with homogeneously distributed cationic imidazolium by a one-step free-radical polymerization with polyhedral oligomeric silsesquioxane methacryl substituted. The successful preparation of the new column was verified by Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, and surface area analysis. Most interestingly, the bonded amount of 1-allyl-3-vinylimidazolium bromide of the new column is three times higher than that of the conventional imidazolium-embedded hybrid monolithic column and the specific surface area of the column reached 478 m 2 /g. The new column exhibited high stability, excellent separation efficiency, and enhanced separation selectivity. The column efficiency reached 151 000 plates/m for alkylbenzenes. Furthermore, the new column was successfully used for separation of highly polar nucleosides and nucleic acid bases with pure water as mobile phase and even bovine serum albumin tryptic digest. All these results demonstrate the periodic imidazolium-bridged hybrid monolithic column is a good separation media and can be used for chromatographic separation of small molecules and complex biological samples with high efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Haiyang; Ou, Junjie; Wei, Yinmao; Wang, Hongwei; Liu, Zhongshan; Zou, Hanfa
2016-04-01
A hybrid fluorous monolithic column was simply prepared via photo-initiated free radical polymerization of an acrylopropyl polyhedral oligomeric silsesquioxane (acryl-POSS) and a perfluorous monomer (2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl acrylate) in UV-transparent fused-silica capillaries within 5min. The physical characterization of hybrid fluorous monolith, including scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, mercury intrusion porosimetry (MIP) and nitrogen adsorption/desorption measurement was performed. Chromatographic performance was also evaluated by capillary liquid chromatography (cLC). Due to the fluorous-fluorous interaction between fluorous monolith and analytes, fluorobenzenes could well be separated, and the column efficiencies reached 86,600-92,500plates/m at the velocity of 0.87mm/s for alkylbenzenes and 51,900-76,000plates/m at the velocity of 1.10mm/s for fluorobenzenes. Meanwhile, an approach to integrate nanoelectrospray ionization (ESI) emitter with hybrid fluorous monolithic column was developed for quantitative determination of perfluoroalkyl acids by nanoHPLC-ESI-MS/MS. The integration design could minimize extracolumn volume, thus excluding undesirable peak broadening and improving separation performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Synthesis of Energetic Polymers.
1981-10-15
demonstrated by a single peak in the gc analysis (injector temperature 2500 C). The reaction will be repeated in a different solvent to avoid the formation of...glass column packed with 10% OV-101 on chrom Q, with n-decane as an internal standard. Rates of polymerization were calculated using the assumption...the Kelen-Tudos method. The disappearance of monomer was monitored by gas chromatography, using a glass column packed with 10% OV-101 on Chrom Q
Catalytic distillation process
Smith, Jr., Lawrence A.
1982-01-01
A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.
Catalytic distillation process
Smith, L.A. Jr.
1982-06-22
A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.
Benton, Christopher M; Lim, Chang Kee; Moniz, Caje; Jones, Donald J L
2012-06-01
Ultra high-performance liquid chromatographic (UHPLC) systems on columns packed with materials ranging from 1.9 to 2.7 µm average particle size were assessed for the fast and sensitive analysis of porphyrins in clinical materials. The fastest separation was achieved on an Agilent Poroshell C(18) column (2.7 µm particle size, 50 × 4.6 mm i.d.), followed by a Thermo Hypersil Gold C(18) column (1.9 µm particle size, 50 × 2.1 mm i.d.) and the Thermo Hypersil BDS C(18) column (2.4 µm particle size, 100 × 2.1 mm i.d.). All columns required a mobile phase containing 1 m ammonium acetate buffer, pH 5.16, with a mixture of acetonitrile and methanol as the organic modifiers for optimum resolution of the type I and III isomers, particularly for uroporphyrin I and III isomers. All UHPLC columns were suitable and superior to conventional HPLC columns packed with 5 µm average particle size materials for clinical sample analysis. Copyright © 2011 John Wiley & Sons, Ltd.
Hetzel, Terence; Loeker, Denise; Teutenberg, Thorsten; Schmidt, Torsten C
2016-10-01
The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro-liquid chromatography system. Fully porous, core-shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub-2 μm fully porous as well as the 2.7 μm core-shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56-2.69) before correction for extra-column contribution compared to normal-bore columns. Moreover, the influence of extra-column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub-2 μm fully porous particle packed column for ultra-fast liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ibrahim, Taleb H; Sabri, Muhammad A; Khamis, Mustafa I
2018-05-10
Multiwalled carbon nanotubes and their magnetite derivatives were employed as adsorbents for emulsified oil removal from produced water. The experimental parameters for maximum emulsified oil removal efficiency and effective regeneration of these adsorbents were determined. The optimum parameters in terms of adsorbent dosage, contact time, salinity, pH and temperature were 3.0 g/L, 20.0 min, 0 ppm, 7.0 and 25°C for both adsorbents. Due to their low density, multiwalledcarbon nanotubes could not be successfully employed in packed bed columns. The magnetite derivative has a larger density and hence, for the removal of emulsified oil from produced water packed bed column studies were performed utilizing multiwalled carbon magnetite nanotubes. The packed bed column efficiency and behaviour were evaluated using Thomas, Clark, Yan et al. and Bohart and Adams models. The Yan model was found to best describe the column experimental data. The adsorbents were regenerated using n-hexane and reused several times for oil removal from produced water without any significant decrease in their initial adsorption capacities.
Extrusion and rheology of fine particulate ceramic pastes
NASA Astrophysics Data System (ADS)
Mazzeo, Fred Anthony
A rheological study was conducted on an extruded blend of two alumina powders, Alcoa A-3500-SG and Reynolds ERC. These extruded blends were mixed in four compositions, varying in distribution modulus. This work focuses on the interaction of the composition components, mainly particle size distribution and amount of water at a constant binder amount. The rheological parameters of extruded pastes, Sigma, Tau, alpha and beta, were determined by using capillary rheometry modeling by the methodology set forth by Benbow and Bridgwater. This methodology makes use of capillary rheometer to determine extrusion parameters, which describe the flow behavior of a paste. The parameter values are indirectly determined by extrapolating high shear rate information obtained by the extrusion process. A goal of this research was to determine fundamental rheological properties directly from fundamental rheological equations of state. This was accomplished by assessing the material properties by using a dynamic stress rheometer. The rheological parameters used in this study to characterize the paste are elastic modulus, viscosity, tan delta, and relaxation time. This technique approaches a step closer in understanding the microstructural influence on flow behavior of a paste. This method directly determines rheological properties by using linear viscoelastic theory, giving a quantitative analysis of material properties. A strong correlation between the elastic modulus and sigma, and viscosity and alpha is shown to exist, indicating a relationship between these two techniques. Predictive process control methodology, based on particle packing modeling, quantitatively determined structural parameters useful in evaluating a composition. The determined parameters are: distribution modulus, interparticle separation distance, porosity, and particle crowding index, which are important to understand the extrudates packed state. A connection between the physical structure of the extrudate and its rheological behavior, can lead to a better understanding of what conditions and parameters are necessary to characterize the extrusion process. This study shows how particle packing and particle size influences the rheological behavior of the paste. Results showed that an optimally packed system was found to occur at a distribution modulus of 0.51. This system was determined both experimentally and quantitatively to exhibit the lowest porosity at any water content. The 0.51 system required a lower amount of water to extrude and the parameters of both rheological techniques agreed well, in which all parameters are influenced by the packing state of the paste, and a consistent trend was generally found. The capillary rheometry results can be explained by the strong interaction of particles that occurs at high shear rates. The dynamic stress rheometer results can be explained by the particle packing characteristics, interparticle separation distance and particle-crowding index, and the capillary forces between particles. The excess amount of liquid that is present in the structure decreases the role of the capillary attraction between particles and an increase in the particle size role on the rheological behavior of the pastes occurs.
Integrated multiplexed capillary electrophoresis system
Yeung, Edward S.; Tan, Hongdong
2002-05-14
The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.
Supercritical fluids in separation science--the dreams, the reality and the future.
Smith, R M
1999-09-24
The last 20 years have seen an intense interest in the use of supercritical fluids in separation science. This started with the introduction of commercial instruments first for packed and then for capillary chromatography and it looked as if this would be a technique to rival gas-liquid chromatography and HPLC. The activity developed quite rapidly into packed column supercritical fluid separations then into supercritical fluid extraction. However, in recent years there has been a decline in publications. These later techniques continue to be used but are now principally applied to a limited group of applications where they offer significant advantages over alternative techniques. This review looks back over this period and analyses how these methods were developed and the fluids, detectors and applications that were examined. It suggests why many of the initial applications have vanished and why the initial apparent promise was not fulfilled. The rise and fall of supercritical fluids represents a lesson in the way analysts approach new techniques and how we might view other new separation developments at the end of this millennium. The review looks forward to the future of supercritical fluids and their role at the end of the first century of separation science. Probably the most important idea that supercritical fluids have brought to separation science is a recognition that there is unity in the separation methods and that a continuum exists from gases to liquids.
Van Duc, Luong; Song, Bongkeun; Ito, Hiroaki; Hama, Takehide; Otani, Masashi; Kawagoshi, Yasunori
2018-04-01
Anaerobic ammonium oxidation (anammox) bacteria were enriched in continuous packed-bed columns with marine sediment. One column (SB-C) was packed with only marine sediment collected from a shrimp-aquaculture pond, and another column (SB-AMX) was inoculated with marine anammox bacteria (MAB) as a control. These columns were continuously fed with natural or artificial seawater including ammonium (NH 4 + ) and nitrite (NO 2 - ). The SB-AMX showed anammox activities from the beginning and continued for over 200 days. However, the SB-C had no nitrogen removal performance for over 170 days. After adding a bicarbonate solution (KHCO 3 ) to the sediment-only packed column, anammox activity was observed within 13 days. The column exhibited a nitrogen removal efficiency (NRE) of 88% at a nitrogen loading rate (NLR) of 1.0 kg-N·m -3 ·day -1 , which was comparable to the control one. A next-generation sequencing analysis revealed the predominance of MAB related to "Candidatus Scalindua spp.". In addition, the co-occurrence of sulfur-oxidizing denitrifiers was observed, which suggests their symbiotic relationship. This study suggests the applicability of MAB for in-situ bioremediation of nitrogen-contaminated marine sediments and reveals a potential microbial interaction between anammox and sulfur-oxidizing communities responsible for nitrogen and sulfur cycling in marine aquaculture systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Poe, Donald P
2005-06-17
A general theory for efficiency of nonuniform columns with compressible mobile phase fluids is applied to the elution of an unretained solute in packed-column supercritical fluid chromatography (pSFC). The theoretical apparent plate height under isothermal conditions is given by the Knox equation multiplied by a compressibility correction factor f1, which is equal to the ratio of the temporal-to-spatial average densities of the mobile phase. If isothermal conditions are maintained, large pressure drops in pSFC should not result in excessive efficiency losses for elution of unretained solutes.
Determination of pesticide residues in food with a 6% cyanopropylphenyl capillary column.
Daft, J L
1989-02-01
A small-diameter 6% cyanopropylphenyl column is studied for its suitability for determining pesticides in food. Repeatability and linearity are satisfactory, and the column is capable of separating residue combinations that are known not to separate on methyl silicone columns. At 150 degrees C or 130 degrees C, the column satisfactorily separates five by-products of tecnazene, a growth regulator and sprout suppressant found in potatoes, and four by-products of quintozene, a soil and seed fungicide found in peanut products.
Evaluating two process scale chromatography column header designs using CFD.
Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris
2014-01-01
Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale-up. Computational Fluid Dynamics (CFD) provides a cost-effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs. © 2014 American Institute of Chemical Engineers.
Transient studies of capillary-induced flow
NASA Technical Reports Server (NTRS)
Reagan, M. K.; Bowman, W. J.
1993-01-01
This paper presents the numerical and experimental results of a study performed on the transient rise of fluid in a capillary tube. The capillary tube problem provides an excellent mechanism from which to launch an investigation into the transient flow of a fluid in a porous wick structure where capillary forces must balance both adverse gravitational effects and frictional losses. For the study, a capillary tube, initially charged with a small volume of water, was lowered into a pool of water. The behavior of the column of fluid during the transient that followed as more water entered the tube from the pool was both numerically and experimentally studied.
NASA Astrophysics Data System (ADS)
Digilov, Rafael M.; Reiner, M.
2007-03-01
The operation principle of the mass-controlled capillary viscometer is presented for a Newtonian liquid. The derived equation for the temporal changes of the mass in a liquid column draining under gravity through a discharge capillary tube accounts self-consistently for the inertial convective term associated with the acceleration effect. The viscosity of water measured at different temperatures using the new approach is in good agreement with literature data.
1994-08-15
repository for TCE, and thus a critical determinant of TCE’s pharmacokinetics. As previously mentioned, it is advantageous to have quantitative tcxicity...steel columns (182 cm x 0.317 cm) packed with 10% FFAP ( Alltech Associates, Deerfield, IL). The GC operating conditions were: headspace sampler...steel columns (182 cm x 0.317 cm) packed with 10% FFAP ( Alltech Associates, Deerfield, IL). The GC operating conditions were: headspace sampler
Synthesis of zirconia monoliths for chromatographic separations.
Randon, Jérôme; Huguet, Samuel; Piram, Anne; Puy, Guillaume; Demesmay, Claire; Rocca, Jean-Louis
2006-03-17
The aim of this work is to join the advantages of two different kinds of stationary phases: monolithic columns and zirconia-based supports. On the one hand, silica monolithic columns allow a higher efficiency with a lower back-pressure than traditional packed columns. On the other hand, chromatographic stationary phases based on zirconia have a higher thermal and chemical stability and specific surface properties. Combining these advantages, a zirconia monolith with a macroporous framework could be a real improvement in separation sciences. Two main strategies can be used in order to obtain a zirconia surface on a monolithic skeleton: coating or direct synthesis. The coverage by a zirconia layer of the surface of a silica-based monolith can be performed using the chemical properties of the silanol surface groups. We realized this coverage using zirconium alkoxide and we further grafted n-dodecyl groups using phosphate derivatives. Any loss of efficiency was observed and fast separations have been achieved. The main advance reported in this paper is related to the preparation of zirconia monoliths by a sol-gel process starting from zirconium alkoxide. The synthesis parameters (hydrolysis ratio, porogen type, precursor concentration, drying step, etc.) were defined in order to produce a macroporous zirconia monoliths usable in separation techniques. We produced various homogeneous structures: zirconia rod 2 cm long with a diameter of 2.3 mm, and zirconia monolith inside fused silica capillaries with a 75 microm I.D. These monoliths have a skeleton size of 2 microm and have an average through pore size of 6 microm. Several separations have been reported.
Zhu, Manman; Zhang, Lingyi; Chu, Zhanying; Wang, Shulei; Chen, Kai; Zhang, Weibing; Liu, Fan
2018-07-01
An open tubular capillary liquid phase chromatographic column (1 m × 25 µm i.d.× 375 µm o.d.) was prepared by incorporating metal organic framework particles modified with vancomycin directly into zwitterionic polymer coating synthesized by the copolymerization of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide and N,N'-methylenebisacrylamide. The incorporation of IRMOF-3 (isoreticular metal organic framework-3) particles improved selectivity of zwitterionic polymer coating with absolute column efficiency reaching 79900 plates for p-xylene. Besides strong hydrophilic interaction, the separation of neutral, basic, and acidic compounds demonstrates that π-π stacking interaction and the coordination effect of unsaturated Zn 2+ of MOF also contribute to separation of various analytes. The RSD values (run-to-run, day-to-day, column-to-column, n = 3) of retention time of neutral compounds were less than 0.71%, 0.69% and 3.08% respectively, suggesting good repeatability. In addition, the column was applied to the analysis of the trypsin digest of bovine serum albumin, revealing the potential in separating biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Active damping of capillary oscillations on liquid columns
NASA Astrophysics Data System (ADS)
Thiessen, David B.; Wei, Wei; Marston, Philip L.
2002-05-01
Active control of acoustic radiation pressure and of electrostatic stresses on liquid columns has been demonstrated to overcome the Rayleigh-Plateau instability that normally causes long liquid columns to break [M. J. Marr-Lyon et al., J. Fluid Mech. 351, 345 (1997); Phys. Fluids 12, 986-995 (2000)]. Though originally demonstrated for liquid-liquid systems in plateau tanks, the electrostatic method also works on columns in air in reduced gravity [D. B. Thiessen, M. J. Marr-Lyon, and P. L. Marston, ``Active electrostatic stabilization of liquid bridges in low gravity,'' J. Fluid Mech. (in press)]. In new research, the electrostatic stresses are applied in proportion to the velocity of the surface of the column so as to actively dampen capillary oscillations of the surface. The mode amplitude is optically sensed and the rate-of-change is electronically determined. Plateau tank measurements and theory both show that the change in damping rate is proportional to the feedback gain. The results suggest that either active control of electrostatic stresses or of acoustic radiation stresses can be used to suppress the response of interfaces to vibration. [Work supported by NASA.
On-line wall-free cell for laser-induced fluorescence detection in capillary electrophoresis.
Yu, Chang-Zhu; He, You-Zhao; Xie, Hai-Yang; Gao, Yong; Gan, Wu-Er; Li, Jun
2009-05-15
A wall-free detection method based on liquid junction in a capillary gap was proposed for laser-induced fluorescence (LIF) of capillary electrophoresis (CE). The capillary gap of the wall-free cell was fabricated by etching a 10-mm x 50-microm I.D. fused-silica capillary to obtain a polyimide coating sleeve, decoating about 6mm at one end of both 50 microm I.D. separation and liquid junction capillary, inserting the treated capillary ends into the coating sleeve oppositely, fixing the capillaries with a gap distance of 140 microm by epoxy glue and removing the coating sleeve by burning. The theoretical model, experimental results and wall-free cell images indicated that the gap distance and applied voltage were main influence factors on the wall-free detection. Since the wall-free cell increased the absorption light path and avoided the stray light from the capillary wall, it improved the ratio of signal to noise and limit of detection (LOD) of CE-LIF. Three flavin compounds of riboflavin (RF), flavin mononucleotide sodium (FMN) and flavin adenine dinucleotide disodium (FAD) were used to evaluate the wall-free detection method. Compared with on-column cell, the LODs of the wall-free cell were improved 15-, 6- and 9-fold for RF, FMN and FAD, respectively. The linear calibration concentrations of the flavins ranged from 0.005 to 5.0 micromol/L. The column efficiency was in the range from 1.0 x 10(5) to 2.5 x 10(5) plates. The wall-free detection of CE-LIF was applied to the analysis of the flavins in spinach and lettuce leaves.
Desiderio, C; Fanali, S
2000-10-20
In this study capillary electrochromatography (CEC) was utilized for the separation of ten non-steroidal anti-inflammatory drugs (NSAIDs). Experiments were carried out in a commercially available CE instrument using a packed capillary with RP-18 silica particles where the stationary phase completely filled the capillary. The mobile phase consisted of a mixture of ammonium formate buffer pH 2.5 and acetonitrile. Selectivity and resolution were studied changing the pH and the concentration of the buffer, the acetonitrile content mobile phase and the capillary temperature. The optimum experimental conditions for CEC separation of the studied drug mixture were found using 50 mM ammonium formate pH 2.5-acetonitrile (40:60) at 25 degrees C. The CEC capillary was coupled to an electrospray mass spectrometer for the characterization of the NSAIDs. A mobile phase composed by the same buffer but with a higher concentration of acetonitrile (90%) was used in order to speed up the separation of analytes.
Furlong, E.T.; Vaught, D.G.; Merten, L.M.; Foreman, W.T.; Gates, Paul M.
1996-01-01
A method for the determination of 79 semivolatile organic compounds (SOCs) and 4 surrogate compounds in soils and bottom sediment is described. The SOCs are extracted from bottom sediment by solvent extraction, followed by partial isolation using high-performance gel permeation chromatography (GPC). The SOCs then are qualitatively identified and quantitative concentrations determined by capillary-column gas chromatography/mass spectrometry (GC/MS). This method also is designed for an optional simultaneous isolation of polychlorinated biphenyls (PCBs) and organochlorine (OC) insecticides, including toxaphene. When OCs and PCBs are determined, an additional alumina- over-silica column chromatography step follows GPC cleanup, and quantitation is by dual capillary- column gas chromatography with electron-capture detection (GC/ECD). Bottom-sediment samples are centrifuged to remove excess water and extracted overnight with dichloromethane. The extract is concentrated, centrifuged, and then filtered through a 0.2-micrometer polytetrafluoro-ethylene syringe filter. Two aliquots of the sample extract then are quantitatively injected onto two polystyrene- divinylbenzene GPC columns connected in series. The SOCs are eluted with dichloromethane, a fraction containing the SOCs is collected, and some coextracted interferences, including elemental sulfur, are separated and discarded. The SOC-containing GPC fraction then is analyzed by GC/MS. When desired, a second aliquot from GPC is further processed for OCs and PCBs by combined alumina-over-silica column chromatography. The two fractions produced in this cleanup then are analyzed by GC/ECD. This report fully describes and is limited to the determination of SOCs by GC/MS.
NASA Astrophysics Data System (ADS)
Trautz, A.; Smits, K. M.; Cihan, A.; Wallen, B.
2014-12-01
Soil-water evaporation is one of the governing processes responsible for controlling water and energy exchanges between the land and atmosphere. Despite its wide relevance and application in many natural and manmade environments (e.g. soil tillage practices, wheel-track compaction, fire burn environments, textural layering and buried ordinances), there are very few studies of evaporation from disturbed soil profiles. The purpose of this study was to explore the effect of soil disturbance and capillary coupling on water distribution and fluxes. We modified a theory previously developed by the authors that allows for coupling single-phase (gas), two-component (air and water vapor) transfer in the atmosphere and two-phase (gas, liquid), two-component (air and water vapor) flow in porous media at the REV scale under non-isothermal, non-equilibrium conditions to better account for the hydraulic and thermal interactions within the media. Modeling results were validated and compared using precision data generated in a two-dimensional soil tank consisting of a loosely packed soil surrounded by a tightly packed soil. The soil tank was outfitted with an array of sensors for the measurement of wind velocity, soil and air temperature, relative humidity, soil moisture, and weight. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process in heterogeneous soils with good accuracy. Evaporation from a heterogeneous soil consisting of a loose and tight packing condition is larger than the homogeneous equivalent systems. Liquid water is supplied from the loosely packed soil region to the tightly packed soil regions, sustaining a longer Stage I evaporation in the tightly packed regions with overall greater evaporation rate than uniform homogeneous packing. In contrast, lower evaporation rates from the loosely packed regions are observed due to a limited liquid water supply resulting from capillary flow to the tightly packed regions and a shorter stage 1 evaporation period.
Zheng, Chao; Liu, Zhaosheng; Gao, Ruyu; Zhang, Lihua; Zhang, Yukui
2007-07-01
Using YPLG (Tyr-Pro-Leu-Gly), a tetrapeptide, as the template, an imprinted monolithic column was prepared and applied to the selective recognition of oxytocin based on the epitope approach and capillary electrochromatography (CEC). By optimizing the polymerization solution in terms of functional monomer, cross-linking reagent, porogen, and imprinted template via CEC evaluations of synthesized columns, an imprinted monolith with good recognition capacity (the imprinting factors for YPLG and oxytocin were 4.499 and 4.013, respectively) and high column efficiency (theoretical plates for YPLG and oxytocin were 22,995 plates/m and 16,952 plates/m, respectively) was achieved. In addition, the effects of various experimental parameters on the recognition of oxytocin, including the organic modifier content, the buffer concentration, and the pH value, were studied systematically. Furthermore, a mixture of oxytocin and other proteins was analyzed using this monolithic CEC column, and oxytocin was eluted much more slowly than other large biomolecules, which demonstrated the high selective recognition ability of such an imprinted monolith for oxytocin with PLG (Pro-Leu-Gly) as the epitope. Figure Separation of a mixture of oxytocin, BSA, bovine hemoglobin, ovalbumin, and lysozyme on the open column, the blank monolithic column, and the monolithic YPLG-imprinted column.
Rácz, Norbert; Kormány, Róbert; Fekete, Jenő; Molnár, Imre
2015-04-10
Column technology needs further improvement even today. To get information of batch-to-batch repeatability, intelligent modeling software was applied. Twelve columns from the same production process, but from different batches were compared in this work. In this paper, the retention parameters of these columns with real life sample solutes were studied. The following parameters were selected for measurements: gradient time, temperature and pH. Based on calculated results, batch-to-batch repeatability of BEH columns was evaluated. Two parallel measurements on two columns from the same batch were performed to obtain information about the quality of packing. Calculating the average of individual working points at the highest critical resolution (R(s,crit)) it was found that the robustness, calculated with a newly released robustness module, had a success rate >98% among the predicted 3(6) = 729 experiments for all 12 columns. With the help of retention modeling all substances could be separated independently from the batch and/or packing, using the same conditions, having high robustness of the experiments. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.
2010-12-01
Understanding chemical fate and transport in the vadose zone is critical to protect groundwater resources and preserve ecosystem health. However, prediction can be challenging due to the dynamic hydrologic and biogeochemical nature of the vadose zone. Additional controls on hydrobiogeochemical processes are added by subsurface structural heterogeneity. This study uses repacked soil column experiments to quantify linkages between microbial activity, geochemical cycling and hydrologic flow. Three “short” laboratory soil columns were constructed to evaluate the effects of soil layering: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. In addition, two “long” columns were constructed using either gamma-irradiated (sterilized) or untreated sediments to evaluate the effects of both soil layers and the presence of microorganisms. The long columns were packed identically; a medium-grained sand matrix with two vertically separated and horizontally offset lenses of organic-rich loam. In all 5 columns, downward and upward infiltration of water was evaluated to simulate rainfall and rising water table events respectively. In-situ colocated probes were used to measure soil water content, matric potential, Eh, major anions, ammonium, Fe2+, and total sulfide. Enhanced biogeochemical cycling was observed in the short layered column versus the short, homogeneous columns, and enumerations of iron and sulfate reducing bacteria were 1-2 orders of magnitude greater. In the long columns, microbial activity caused mineral bands and produced insoluble gases that impeded water flow through the pores of the sediment. Capillary barriers, formed around the lenses due to soil textural differences, retarded water flow rates through the lenses. This allowed reducing conditions to develop, evidenced by the production of Fe2+ and S2-. At the fringes of the lenses, Fe2+ oxidized to form Fe(III)-oxide bands that further retarded water flux. No such mineral bands developed in the sterilized column. As a consequence, water content in the lenses of the sterilized column was half that of the other column and flow rates through the lenses were an order of magnitude lower. This flow impedance limited the interaction and mixing of groundwater with infiltrating vadose zone water and led to the formation of geochemically distinct water masses residing in relatively close proximity to one another. Results provide a specific examples of the direct impact of biogeochemical cycling on water flow in the vadose zone and vice versa. In addition, these demonstrate that the presence of layers in vadose zone environments may be an important control on overall chemical fate and transport in subsurface systems.
A laboratory column study was set up to evaluate changes in contaminant distribution and sediment toxicity following nitrate-based bioremediation and to correlate toxicity reduction with loss of fuel components. Glass columns were packed with sediment from an aquifer that had be...
Wu, Naijun; Bradley, Ashley C; Welch, Christopher J; Zhang, Li
2012-08-01
Effects of extra-column volume on apparent separation parameters were studied in ultra-high pressure liquid chromatography with columns and inlet connection tubings of various internal diameters (id) using 50-mm long columns packed with 1.8-μm particles under isocratic conditions. The results showed that apparent retention factors were on average 5, 11, 18, and 41% lower than those corrected with extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns, respectively, when the extra-column volume (11.3 μL) was kept constant. Also, apparent pressures were 31, 16, 12, and 10% higher than those corrected with pressures from extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns at the respective optimum flow rate for a typical ultra-high pressure liquid chromatography system. The loss in apparent efficiency increased dramatically from 4.6- to 3.0- to 2.1- to 1.0-mm id columns, less significantly as retention factors increased. The column efficiency was significantly improved as the inlet tubing id was decreased for a given column. The results suggest that maximum ratio of extra-column volume to column void volume should be approximately 1:10 for column porosity more than 0.6 and a retention factor more than 5, where 80% or higher of theoretically predicted efficiency could be achieved. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J
2015-03-06
Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3 GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.
Mineral Separation in a CELSS by Ion-exchange Chromatography
NASA Technical Reports Server (NTRS)
Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.
1982-01-01
Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.
Delayed post-traumatic capillary haemangioma of the spine.
Shilton, Hamish; Goldschlager, Tony; Kelman, Anthony; Xenos, Chris
2011-11-01
Capillary haemangiomas are well-circumscribed aggregates of closely packed, thin-walled capillaries separated by connective tissue stroma. In subcutaneous tissue they are termed pyogenic granuloma and commonly follow trauma. They rarely occur in the spine. We present a 43-year-old woman with a 6-week history of thoracic myelopathy and back pain on a background of T7 and T8 vertebral compression fractures from a motor vehicle accident 10 years previously. MRI demonstrated a posteriorly based extradural homogeneously enhancing mass at this level. The lesion was resected and diagnosed histopathologically as a capillary haemangioma. The patient's symptoms resolved and she made an uneventful recovery. The literature is reviewed and the possible pathogenesis is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fast Electrically Driven Capillary Rise Using Overdrive Voltage.
Hong, Sung Jin; Hong, Jiwoo; Seo, Hee Won; Lee, Sang Joon; Chung, Sang Kug
2015-12-29
Enhancement of response speed (or reduction of response time) is crucial for the commercialization of devices based on electrowetting (EW), such as liquid lenses and reflective displays, and presents one of the main challenges in EW research studies. We demonstrate here that an overdrive EW actuation gives rise to a faster rise of a liquid column between parallel electrodes, compared to a DC EW actuation. Here, DC actuation is actually a simple applied step function, and overdrive is an applied step followed by reduction to a lower voltage. Transient behaviors and response time (i.e., the time required to reach the equilibrium height) of the rising liquid column are explored under different DC and overdrive EW actuations. When the liquid column rises up to a target height by means of an overdrive EW, the response time is reduced to as low as 1/6 of the response time using DC EW. We develop a theoretical model to simulate the EW-driven capillary rise by combining the kinetic equation of capillary flow (i.e., Lucas-Washburn equation) and the dynamic contact angle model considering contact line friction, contact angle hysteresis, contact angle saturation, and the EW effect. This theoretical model accurately predicts the outcome to within a ± 5% error in regard to the rising behaviors of the liquid column with a low viscosity, under both DC EW and overdrive actuation conditions, except for the early stage (
Zauner, Jordan; Lusk, Ryan; Koski, Steven; Poe, Donald P
2012-11-30
When a packed column is operated at temperatures and pressures near the critical point in supercritical fluid chromatography, the thermal environment in which it is placed has a significant impact on retention and efficiency. We measured the retention factors, plate heights, and related parameters for elution of a test mixture of alkylbenzenes with 5% methanol/95% carbon dioxide mobile phase on a 250 mm × 4.6 mm i.d. column packed with 5-micron Luna-C18 particles. Separations were performed at outlet pressures from 100 to 150 bar and a column oven temperature of 323K. For a bare column thermostated with convective air, significant efficiency losses were observed for outlet pressures equal to or less than 120 bar. These large efficiency losses are attributed to radial temperature gradients. Addition of foam insulation resulted in significant improvements in efficiency. Operating the column in still air using a commercially available column heater provided the best overall performance, with no measurable efficiency loss over the entire range of pressures studied. A reduced plate height of 1.88 was obtained at an optimum flow rate of 3.0 mL/min at 100 bar outlet pressure and with the temperature of the incoming mobile phase set approximately 2.3K above the temperature of the column oven. Retention time repeatability for all three thermal conditions was equal to or less than 0.5% RSD. These results demonstrate that it is possible to perform fast, efficient separations with excellent repeatability using SFC under near-critical conditions if the thermal environment is optimized to minimize the generation of radial temperature gradients. Copyright © 2012 Elsevier B.V. All rights reserved.
The multi-mode modulator: A versatile fluidic device for two-dimensional gas chromatography.
Seeley, John V; Schimmel, Nicolaas E; Seeley, Stacy K
2018-02-09
A fluidic device called the multi-mode modulator (MMM) has been developed for use as a comprehensive two-dimensional gas chromatography (GC x GC) modulator. The MMM can be employed in a wide range of capacities including as a traditional heart-cutting device, a low duty cycle GC x GC modulator, and a full transfer GC x GC modulator. The MMM is capable of producing narrow component pulses (widths <50ms) while operating at flows compatible with high resolution chromatography. The sample path of modulated components is confined to the interior of a joining capillary. The joining capillary dimensions and the position of the columns within the joining capillary can be optimized for the selected modulation mode. Furthermore, the joining capillary can be replaced easily and inexpensively if it becomes fouled due to sample matrix components or column bleed. The principles of operation of the MMM are described and its efficacy is demonstrated as a heart-cutting device and as a GC x GC modulator. Copyright © 2017 Elsevier B.V. All rights reserved.
Enrichment of Glycoproteins using Nano-scale Chelating Con A Monolithic Capillary Chromatography
Feng, Shun; Yang, Na; Pennathur, Subramaniam; Goodison, Steve; Lubman, David M.
2009-01-01
Immobilized lectin chromatography can be employed for glycoprotein enrichment, but commonly used columns have limitations of yield and resolution. In order to improve efficiency and to make the technique applicable to minimal sample material, we have developed a nano-scale chelating Concanavalin A (Con A) monolithic capillary prepared using GMA-EDMA (glycidyl methacrylate–co-ethylene dimethacrylate) as polymeric support. Con A was immobilized on Cu(II)-charged iminodiacetic acid (IDA) regenerable sorbents by forming a IDA:Cu(II):Con A sandwich affinity structure that has high column capacity as well as stability. When compared with conventional Con A lectin chromatography, the monolithic capillary enabled the better reproducible detection of over double the number of unique N-glycoproteins in human urine samples. Utility for analysis of minimal biological samples was confirmed by the successful elucidation of glycoprotein profiles in mouse urine samples at the microliter scale. The improved efficiency of the nano-scale monolithic capillary will impact the analysis of glycoproteins in complex biological samples, especially where only limited material may be available. PMID:19366252
Khalil, M W; Lawson, V
1983-04-01
Steroids in porcine follicular fluid have been concentrated by reverse phase chromatography in SEP-PAK C18 and purified further on the cation exchanger SP-Sephadex C-25. Fractionation into unconjugated neutral and phenolic steroids, glucuronides and sulfates was carried out on triethylaminohydroxypropyl Sephadex LH-20 (TEAP-LH-20). The unconjugated neutral fraction was analysed by high pressure liquid chromatography (HPLC) on a C18 radial cartridge 5 mm I.D.; 10 mu, or on a C18 5 mu RESOLVE column, and by capillary gas chromatography (GC) on a 12 M OV-1 cross linked fused silica column. Testosterone, progesterone and androstenedione were the major steroids detected by HPLC monitored at 254 nm, although 17- hydroxy-, 20 alpha-dihydro- and 20 beta-dihydroprogesterone were also present. Pregnenolone, pregnanediol, dehydroepiandrosterone, 17-hydroxypregnenolone and androsterone were detected by capillary CG as their 0-methyloxime trimethylsilyether derivatives. Further confirmation of structure was provided by complete mass spectral data or by selective ion monitoring (SIM).
Bobály, Balázs; Guillarme, Davy; Fekete, Szabolcs
2014-02-01
The aim of this study was to evaluate the possibilities/limitations of recent RP-LC columns packed with 1.6 μm superficially porous particles (Waters Cortecs) and to compare its potential to other existing sub-2 μm core-shell packings. The kinetic performance of Kinetex 1.3 μm, Kinetex 1.7 μm and Cortecs 1.6 μm stationary phases was assessed. It was found that the Kinetex 1.3 μm phase outperforms its counterparts for ultra-fast separations. Conversely, the Cortecs 1.6 μm packing seemed to be the best stationary phase for assays with longer analysis time in isocratic and gradient modes, considering small molecules and peptides as test probes. This exceptional behaviour was attributed to its favourable permeability and somewhat higher mechanical stability (ΔPmax of 1200 bar). The loading capacity of these three columns was also investigated with basic and neutral drugs analysed under acidic conditions. It appears that the loading capacities of Cortecs 1.6 μm and Kinetex 1.7 μm were very close, while it was reduced by 2-7-fold on the Kinetex 1.3 μm packing. However, this observation is dependent on the nature of the compound and certainly also on mobile phase conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wahab, M Farooq; Patel, Darshan C; Armstrong, Daniel W
2017-08-04
Most peak shapes obtained in separation science depart from linearity for various reasons such as thermodynamic, kinetic, or flow based effects. An indication of the nature of asymmetry often helps in problem solving e.g. in column overloading, slurry packing, buffer mismatch, and extra-column band broadening. However, existing tests for symmetry/asymmetry only indicate the skewness in excess (tail or front) and not the presence of both. Two simple graphical approaches are presented to analyze peak shapes typically observed in gas, liquid, and supercritical fluid chromatography as well as capillary electrophoresis. The derivative test relies on the symmetry of the inflection points and the maximum and minimum values of the derivative. The Gaussian test is a constrained curve fitting approach and determines the residuals. The residual pattern graphically allows the user to assess the problematic regions in a given peak, e.g., concurrent tailing or fronting, something which cannot be easily done with other current methods. The template provided in MS Excel automates this process. The total peak shape analysis extracts the peak parameters from the upper sections (>80% height) of the peak rather than the half height as is done conventionally. A number of situations are presented and the utility of this approach in solving practical problems is demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Sotgia, Salvatore; Pisanu, Elisabetta; Pintus, Gianfranco; Erre, Gian Luca; Pinna, Gerard Aime; Deiana, Luca; Carru, Ciriaco; Zinellu, Angelo
2013-01-01
Two sensitive and reproducible capillary electrophoresis and high-performance liquid chromatography-fluorescence procedures were established for quantitative determination of L-egothioneine in plasma. After derivatization of L-ergothioneine with 5-iodoacetamidofluorescein, the separation was carried out by HPLC on an ODS-2 C-18 sperisorb column by using a linear gradient elution and by HPCE on an uncoated fused silica capillary, 50 µm id, and 60 cm length. The methods were validated and found to be linear in the range of 0.3 to 10 µmol/l. The limit of quantification was 0.27 µmol/l for HPCE and 0.15 µmol/l for HPLC. The variations for intra- and inter-assay precision were around 6 RSD%, and the mean recovery accuracy close to 100% (96.11%).
Sotgia, Salvatore; Pisanu, Elisabetta; Pintus, Gianfranco; Erre, Gian Luca; Pinna, Gerard Aime; Deiana, Luca; Carru, Ciriaco; Zinellu, Angelo
2013-01-01
Two sensitive and reproducible capillary electrophoresis and high-performance liquid chromatography-fluorescence procedures were established for quantitative determination of L-egothioneine in plasma. After derivatization of L-ergothioneine with 5-iodoacetamidofluorescein, the separation was carried out by HPLC on an ODS-2 C-18 sperisorb column by using a linear gradient elution and by HPCE on an uncoated fused silica capillary, 50 µm id, and 60 cm length. The methods were validated and found to be linear in the range of 0.3 to 10 µmol/l. The limit of quantification was 0.27 µmol/l for HPCE and 0.15 µmol/l for HPLC. The variations for intra- and inter-assay precision were around 6 RSD%, and the mean recovery accuracy close to 100% (96.11%). PMID:23922985
Micro-column plasma emission liquid chromatograph
Gay, Don D.
1984-01-01
In a direct current plasma emission spectrometer for use in combination with a micro-column liquid chromatograph, an improved plasma source unit. The plasma source unit includes a quartz capillary tube having an inlet means, outlet off gas means and a pair of spaced electrodes defining a plasma region in the tube. The inlet means is connected to and adapted to receive eluant of the liquid chromatograph along with a stream of plasma-forming gas. There is an opening through the wall of the capillary tube penetrating into the plasma region. A soft glass capillary light pipe is disposed at the opening, is connected to the spectrometer, and is adapted to transmit light passing from the plasma region to the spectrometer. There is also a source of electromotive force connected to the electrodes sufficient to initiate and sustain a plasma in the plasma region of the tube.
Self-Interaction Chromatography of mAbs: Accurate Measurement of Dead Volumes.
Hedberg, S H M; Heng, J Y Y; Williams, D R; Liddell, J M
2015-12-01
Measurement of the second virial coefficient B22 for proteins using self-interaction chromatography (SIC) is becoming an increasingly important technique for studying their solution behaviour. In common with all physicochemical chromatographic methods, measuring the dead volume of the SIC packed column is crucial for accurate retention data; this paper examines best practise for dead volume determination. SIC type experiments using catalase, BSA, lysozyme and a mAb as model systems are reported, as well as a number of dead column measurements. It was observed that lysozyme and mAb interacted specifically with Toyopearl AF-Formyl dead columns depending upon pH and [NaCl], invalidating their dead volume usage. Toyopearl AF-Amino packed dead columns showed no such problems and acted as suitable dead columns without any solution condition dependency. Dead volume determinations using dextran MW standards with protein immobilised SIC columns provided dead volume estimates close to those obtained using Toyopearl AF-Amino dead columns. It is concluded that specific interactions between proteins, including mAbs, and select SIC support phases can compromise the use of some standard approaches for estimating the dead volume of SIC columns. Two other methods were shown to provide good estimates for the dead volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotoh, K.; Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka; Kubo, K.
2015-03-15
Authors have been developing a cryogenic pressure swing adsorption system for hydrogen isotope separation. In the problem of its design and operation, it is necessary to predict the concentration profiles developing in packed beds of adsorbent pellets. The profiling is affected by the longitudinal dispersion of gas flowing in packed beds, in addition to the mass transfer resistance in porous media of adsorbent pellets. In this work, an equation is derived for estimating the packed-bed dispersion coefficient of hydrogen isotopes, by analyzing the breakthrough curves of trace D{sub 2} or HD replacing H{sub 2} adsorbed in synthetic zeolite particles packedmore » columns at the liquefied nitrogen temperature 77.4 K. Since specialized for hydrogen isotopes, this equation can be considered to estimate the dispersion coefficients more reliable for the cryogenic hydrogen isotope adsorption process, than the existing equations. (authors)« less
NASA Astrophysics Data System (ADS)
Shiryaeva, V. E.; Popova, T. P.; Korolev, A. A.; Kanat'eva, A. Yu.; Kurganov, A. A.
2017-08-01
New stationary phases for capillary columns in GC are synthesized and studied. The phases are prepared by depositing oligo(ethylene glycol)diacrylates on the column walls and subsequent polymerization (crosslinking) in the presence of peroxide initiators. It is shown that stationary phases based on monomers with molecular weights of 10 kDa or higher exhibit separation properties similar to those of conventional stationary phases based on polyethylene glycol (PEG); however, their thermal stability is higher because they have a higher degree of crosslinking and a more ordered structure of the crosslinked polymers than the respective parameters of phases based on native PEG.
Aucamp, J P; Hara, Y; Apostolides, Z
2000-04-21
A micellar electrokinetic capillary chromatography (MEKC) method for the simultaneous analysis of five tea catechins, theanine, caffeine, gallic acid and ascorbic acid has been developed. The catechins are (-)-epicatechin, (+)-catechin, (-)-epigallocatechin, (-)-epicatechin gallate and (-)-epigallocatechin gallate. p-Nitrophenol serves as both reference and internal standard. All the components are separated within 13 min with a 57 cm uncoated fused-silica column. On-column detection was carried out at 200 nm. This method has been used to measure these compounds in fresh tea leaves and tea liquor. The limit of detection for all analytes ranged from 1 to 20 microg/ml.
Sandstrom, Mark W.; Wydoski, Duane S.; Schroeder, Michael P.; Zamboni, Jana L.; Foreman, William T.
1992-01-01
A method for the isolation of organonitrogen herbicides from natural water samples using solid-phase extraction and analysis by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase extraction cartridges containing octadecyl-bonded porous silica to remove the herbicides. The cartridges are dried using carbon dioxide, and adsorbed herbicides are removed from the cartridges by elution with 1.8 milliliters of hexaneisopropanol (3:1). Extracts of the eluants are analyzed by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of at least three characteristic ions. The method detection limits are dependent on sample matrix and each particular herbicide. The method detection limits, based on a 100-milliliter sample size, range from 0.02 to 0.25 microgram per liter. Recoveries averaged 80 to 115 percent for the 23 herbicides and 2 metabolites in 1 reagent-water and 2 natural-water samples fortified at levels of 0.2 and 2.0 micrograms per liter.
Zhao, Qing-Li; Zhou, Jin; Zhang, Li-Shun; Huang, Yan-Ping; Liu, Zhao-Sheng
2016-05-15
Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic coating for capillary electrochromatography. The imprinted monolithic coating was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), S-amlodipine (template), methacrylic acid (functional monomer), and 2-methacrylamidopropyl methacrylate (crosslinker), in a porogenic mixture of toluene-isooctane. The influence of synthesis parameters on the imprinting effect and separation performance, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest resolution for enantiomers separation on the imprinted monolithic column prepared with MA 0702 was up to 22.3, about 2 times higher than that prepared in absence of the POSS. Column efficiency on the POSS-based MIP coatings was beyond 30,000 plate m(-1). The comparisons between MIP coating synthesized with the POSS and without the POSS were made in terms of selectivity, column efficiency, and resolution. POSS-based MIP capillaries with naproxen or zopiclone was also prepared and separation of enantiomers can be achieved. Copyright © 2016 Elsevier B.V. All rights reserved.
Chrysikopoulos, Constantinos V; Syngouna, Vasiliki I
2014-06-17
The role of gravitational force on colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q = 1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one-dimensional, colloid transport model. The effect of gravity is incorporated in the mathematical model by combining the interstitial velocity (advection) with the settling velocity (gravity effect). The results revealed that flow direction influences colloid transport in porous media. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for colloid deposition.
Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro
2001-01-01
This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.
NASA Astrophysics Data System (ADS)
Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H.
2015-12-01
Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp = 200…600 μm, porosity ε = 0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol) = 0 after t = 6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest.
Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H
2015-12-01
Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp=200...600 μm, porosity ε=0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol)=0 after t=6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest. Copyright © 2015 Elsevier B.V. All rights reserved.
Zaugg, Steven D.; Sandstrom, Mark W.; Smith, Steven G.; Fehlberg, Kevin M.
1995-01-01
A method for the isolation of 41 pesticides and pesticide metabolites in natural-water samples using C-18 solid-phase extraction and determination by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase extraction columns containing octadecyl-bonded porous silica to extract the pesticides. The columns are dried using carbon dioxide or nitrogen gas, and adsorbed pesticides are removed from the columns by elution with 3.0 milliliters of hexane-isopropanol (3:1). Extracted pesticides are determined by capillary- column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 4 micrograms per liter (g/L) for most pesticides, with the exception of widely used corn herbicides--atrazine, alachlor, cyanazine, and metolachlor--which have upper concentration limits of 20 g/L. Single- operator method detection limits in reagent-water samples range from 0.001 to 0.018 g/L. Average short-term single-operator precision in reagent- water samples is 7 percent at the 0.1- and 1.0-g/L levels and 8 percent at the 0.01-g/L level. Mean recoveries in reagent-water samples are 73 percent at the 0.1- and 1.0-g/L levels and 83 percent at the 0.01-g/L level. The estimated holding time for pesticides after extraction on the solid-phase extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time.
Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah
2015-08-07
A composite zeolitic imidazolate framework-8 (ZIF-8) with a butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.) was fabricated to enhance the separation efficiency of methacrylate monoliths toward small molecules using conventional low-pressure gas chromatography in comparison with a neat butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.). The addition of 10mgmL(-1) ZIF-8 micro-particles increased the BET surface area of BuMA-co-EDMA by 3.4-fold. A fast separation of five linear alkanes in 36s with high resolution (Rs≥1.3) was performed using temperature program. Isothermal separation of the same sample also showed a high efficiency (3315platesm(-1) for octane) at 0.89min. Moreover, the column was able to separate skeletal isomers, such as iso-octane/octane and 2-methyl octane/nonane. In addition, an iso-butane/iso-butylene gas mixture was separated at ambient temperature. Comparison with an open tubular TR-5MS column (30m long×250μm i.d.) revealed the superiority of the composite column in separating the five-membered linear alkane mixture with 4-5 times increase in efficiency and a total separation time of 0.89min instead of 4.67min. A paint thinner sample was fully separated using the composite column in 2.43min with a good resolution (Rs≥0.89). The perfect combination between the polymeric monolith, with its high permeability, and ZIF-8, with its high surface area and flexible 0.34nm pore openings, led to the fast separation of small molecules with high efficiency and opened a new horizon in GC applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Burgess, Michael W.; Keshishian, Hasmik; Mani, D. R.; Gillette, Michael A.; Carr, Steven A.
2014-01-01
Liquid chromatography–multiple reaction monitoring mass spectrometry (LC-MRM-MS) of plasma that has been depleted of abundant proteins and fractionated at the peptide level into six to eight fractions is a proven method for quantifying proteins present at low nanogram-per-milliliter levels. A drawback of fraction-MRM is the increased analysis time due to the generation of multiple fractions per biological sample. We now report that the use of heated, long, fused silica columns (>30 cm) packed with 1.9 μm of packing material can reduce or eliminate the need for fractionation prior to LC-MRM-MS without a significant loss of sensitivity or precision relative to fraction-MRM. We empirically determined the optimal column length, temperature, gradient duration, and sample load for such assays and used these conditions to study detection sensitivity and assay precision. In addition to increased peak capacity, longer columns packed with smaller beads tolerated a 4- to 6-fold increase in analyte load without a loss of robustness or reproducibility. The longer columns also provided a 4-fold improvement in median limit-of-quantitation values with increased assay precision relative to the standard 12 cm columns packed with 3 μm material. Overall, the optimized chromatography provided an approximately 3-fold increase in analysis throughput with excellent robustness and less than a 2-fold reduction in quantitative sensitivity relative to fraction-MRM. The value of the system for increased multiplexing was demonstrated by the ability to configure an 800-plex MRM-MS assay, run in a single analysis, comprising 2400 transitions with retention time scheduling to monitor 400 unlabeled and heavy labeled peptide pairs. PMID:24522978
Chiral Structures of Thermoresponsive Soft Spheres in Hollow Cylinders
NASA Astrophysics Data System (ADS)
Lohr, Matthew A.; Alsayed, Ahmed; Zhang, Zexin; Yodh, Arjun G.
2009-03-01
We experimentally observe the formation of closely packed crystalline structures in hollow cylinders. The structures have varying degrees of chiral order. The systems are created from aqueous suspensions of thermoresponsive N-isopropylacrylamide (NIPA) microgel particles packed in micron-diameter glass capillaries. We categorize these structures according to classifications used by Erickson for tubular packings of hard spheres [1]. By varying the temperature-tunable diameter of these particles, the system's volume fraction is changed, permitting observations of the resilience of these structures and their melting transitions. Melting of these thermal crystalline structures is observed. [1] R. O. Erickson, Science 181 (1973) 705-716.
Scott, Charles D.; Hancher, Charles W.
1977-01-01
A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksu, Z.; Kutsal, T.; Caglar, A.
1998-03-01
In this study the biosorption of cadmium(II) ions to dried flocs of Cladophora crispata, a kind of green algae, was investigated in a packed bed column. The cadmium(II) removal performance of the column was investigated as a function of the cadmium(II)-bearing solution flow rate and the inlet cadmium(II) concentration. Removal and total removal percentages of cadmium(II) related to flow volume were determined by evaluating the breakthrough curves obtained at three different flow rates for two different constant inlet concentrations. At the lowest flow rate the effect of inlet cadmium(II) concentration on the column capacity was also investigated. Data confirmed thatmore » early saturation and lower cadmium(II) removals were observed at higher flow rates and at higher cadmium(II) concentrations. Column experiments also showed that maximum specific cadmium(II) uptake values of C. crispata flocs were as high as those of other biomass sorbents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sag, Y.; Atacoglu, I.; Kutsal, T.
1999-12-01
The simultaneous biosorption of Cr(VI) and Cu(II) on free Rhizopus arrhizus in a packed column operated in the continuous mode was investigated and compared to the single metal ion situation. The breakthrough curves were measured as a function of feed flow rate, feed pH, and different combinations of metal ion concentrations in the feed solutions. Column competitive biosorption data were evaluated in terms of the maximum (equilibrium) capacity in the column, the amount of metal loading on the R. arrhizus surface, the adsorption yield, and the total adsorption yield. In the single-ion situation the adsorption isotherms were developed for optimummore » conditions, and it was seen that the adsorption equilibrium data fit the noncompetitive Freundlich model. For the multicomponent adsorption equilibrium the competitive adsorption isotherms were also developed. The competitive Freundlich model for binary metal mixtures represented most the column adsorption equilibrium data of Cr(VI) and Cu(II) on R. arrhizus satisfactorily.« less
High throughput screening of active pharmaceutical ingredients by UPLC.
Al-Sayah, Mohammad A; Rizos, Panagiota; Antonucci, Vincent; Wu, Naijun
2008-07-01
Ultra performance LC (UPLC) was evaluated as an efficient screening approach to facilitate method development for drug candidates. Three stationary phases were screened: C-18, phenyl, and Shield RP 18 with column dimensions of 150 mm x 2.1 mm, 1.7 microm, which should theoretically generate 35,000 plates or 175% of the typical column plate count of a conventional 250 mm x 4.6 mm, 5 microm particle column. Thirteen different active pharmaceutical ingredients (APIs) were screened using this column set with a standardized mobile-phase gradient. The UPLC method selectivity results were compared to those obtained for these compounds via methods developed through laborious trial and error screening experiments using numerous conventional HPLC mobile and stationary phases. Peak capacity was compared for columns packed with 5 microm particles and columns packed with 1.7 microm particles. The impurities screened by UPLC were confirmed by LC/MS. The results demonstrate that simple, high efficiency UPLC gradients are a feasible and productive alternative to more conventional multiparametric chromatographic screening approaches for many compounds in the early stages of drug development.
Ren, Yu; Schlager, Hans; Martin, Damien
2014-01-01
A modified method for the quantitative determination of atmospheric perfluoroalkylcycloalkanes (PFCs) using thermal desorption coupled with gas chromatography and detection by negative ion chemical ionization-mass spectrometry was developed. Using an optimized analytical system, a commercially available Al 2 O 3 porous layer open tubular (PLOT) capillary column (30 m × 0.25 mm) deactivated with Na 2 SO 4 was used for separation of PFCs. Improvements in the separation of PFCs, the corresponding identification and the limit of detection of PFCs using this method and column are presented. The method was successfully applied to determine the atmospheric background concentrations of a range of PFCs from a number of samples collected at a rural site in Germany. The results of this study suggest that the method outlined using the Al 2 O 3 -PLOT-S capillary column has good sensitivity and selectivity, and that it can be deployed in a routine laboratory process for the analysis of PFCs in the future research work. In addition, the ability of this column to separate the isomers of one of the lower boiling PFCs (perfluorodimethylcyclobutane) and its ability to resolve perfluoroethylcyclohexane offer the opportunity for single-column analysis for multiple PFCs.
Pérez-Fernández, Virginia; Castro-Puyana, María; González, María José; Marina, María Luisa; García, María Ángeles; Gómara, Belén
2012-07-01
The potential of three capillary columns based on β-cyclodextrin (i.e., Chirasil-Dex, BGB-172, and BGB-176SE) has been studied for the simultaneous enantiomeric separation of polychlorinated biphenyls (PCBs) and methylsulfonyl metabolites of PCBs (MeSO(2)-PCBs) employing a heart-cut multidimensional gas chromatographic system (heart-cut MDGC). Among the columns studied, the BGB-176SE capillary column provided the best results, allowing the simultaneous enantioselective resolution of six MeSO(2)-PCBs and six chiral PCBs; the Chirasil-Dex column did not resolve any of the studied MeSO(2)-PCBs; and a poor resolution was obtained for three MeSO(2)-PCBs when the BGB-172 column was employed. The developed method was successfully applied to two fish oil and one cow liver samples commercially available, which showed different enantioselective pattern. PCBs 91 and 176 presented a clear enrichment of the second eluted atropisomer in codfish oil, whereas in fish oil sample, slight enrichment of the first eluted atropisomer of CB45 and the second eluted atropisomer of CB136 were observed. © 2012 Wiley Periodicals, Inc.
Glycolipid class profiling by packed-column subcritical fluid chromatography.
Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre
2004-06-18
The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.
Non-planar microfabricated gas chromatography column
Lewis, Patrick R.; Wheeler, David R.
2007-09-25
A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.
Nilsson, L G; Walldorf, B; Paulsen, O
1987-12-25
A method based on column liquid chromatography was developed for determination of plasma concentrations of erythromycin. PRP-1, a polymeric type of packing material suitable for chromatography and amperometric detection at high pH, was used. The effect of pH on the column performance and on the electrochemical response was studied. A pH of ca. 10 was found to be optimal. After extraction with tert.-butyl methyl ether, plasma concentrations down to 0.2 mumol/l could be measured, using automated sample injection. Oleandomycin was used as internal standard. The method was used for determination of plasma concentrations in a pharmacokinetic study under steady-state conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertetti, F.P.; Birnbaum, S.J.
1992-01-01
Laboratory experiments were employed to determine the effects of microbial growth upon the hydraulic conductivity (K) of unconsolidated sediments at Kelly Air Force Base, Texas. Indigenous microflora were isolated from sediment samples collected at sites contaminated with toxic organic compounds (e.g. dichlorobenzene) by plating on concentrated and dilute media. Plexiglas columns were packed with silica beads or Kelly AFB sediment and used to simulate ground water flow conditions. Grain sizes were selected to yield realistic K values (2.0 [times] 10[sup [minus]1] to 8.0 [times] 10[sup [minus]3] cm/sec) defined by field data from the contaminated sites. Both individual and mixed microbialmore » colonies, selected based on morphological characteristics individual and mixed microbial colonies, selected based on morphological characteristics deemed favorable for porosity obstruction, were injected into sterile, saturated columns. Growth was stimulated by adding sterile liquid nutrient media. Media flow rates were based upon field derived hydraulic conductivity values and water table gradients. Flow rates were controlled using a peristaltic pump. Growth of the microorganisms produced biomass which reduced the column hydraulic conductivity by up to 90% in 11 days. Reduction in K was accomplished via clogging of pore throats by cell attachment and accumulation on bead surfaces, and extracellular biofilm development. Sediment packed columns showed reduction in K values similar to that of bead packed columns of equivalent grain size. Porosity obstruction and corresponding reduction in K persisted in the columns even when subjected to hydraulic gradients significantly exceeding gradients measured in the field thereby demonstrating the robust nature of biological barrier to flow.« less
Electrophoretic fractional elution apparatus employing a rotational seal fraction collector
NASA Technical Reports Server (NTRS)
Bier, M. (Inventor)
1977-01-01
Electrophoretic fractional elution apparatus which has a column with a rotating seal joint is described. A thin jet of eluting buffer is directed across the lumen of the electrophoretic column in a direction perpendicular to that of electrophoretic migration. Either the content of the column is rotated with respect to the stationary jet, or the jet is rotated with respect to the column. The system may employ electrophoresis either in free solution or in packed columns.
Zhai, Haiyun; Su, Zihao; Chen, Zuanguang; Liu, Zhenping; Yuan, Kaisong; Huang, Lu
2015-03-20
A method was developed to sensitively determine phloxine B in coffee bean by molecularly imprinted polymers (MIPs) coated graphene oxide (GO) solid-phase extraction (GO-MISPE) coupled with high-performance liquid chromatography and laser-induced fluorescence detection (HPLC-LIF). The GO-MISPE capillary monolithic column was prepared by water-bath in situ polymerization, using GO as supporting material, phloxine B, methacrylic acid (MAA), and ethylene dimethacrylate (EDMA) as template, functional monomer, and cross-linker, respectively. The properties of the homemade GO-MISPE capillary monolithic column, including capacity and specificity, were investigated under optimized conditions. The GO-MIPs were characterized by scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FT-IR). The mean recoveries of phloxine B in coffee bean ranged from 89.5% to 91.4% and the intra-day and inter-day relative standard deviation (RSD) values all ranged from 3.6% to 4.7%. Good linearity was obtained over 0.001-2.0 μg mL(-1) (r=0.9995) with the detection limit (S/N=3) of 0.075 ng mL(-1). Under the selected conditions, enrichment factors of over 90-fold were obtained and extraction on the monolithic column effectively cleaned up the coffee bean matrix. The results demonstrated that the proposed GO-MISPE HPLC-LIF method can be applied to sensitively determine phloxine B in coffee bean. Copyright © 2015 Elsevier B.V. All rights reserved.
Gritti, Fabrice
2016-11-18
An new class of gradient liquid chromatography (GLC) is proposed and its performance is analyzed from a theoretical viewpoint. During the course of such gradients, both the solvent strength and the column temperature are simultaneously changed in time and space. The solvent and temperature gradients propagate along the chromatographic column at their own and independent linear velocity. This class of gradient is called combined solvent- and temperature-programmed gradient liquid chromatography (CST-GLC). The general expressions of the retention time, retention factor, and of the temporal peak width of the analytes at elution in CST-GLC are derived for linear solvent strength (LSS) retention models, modified van't Hoff retention behavior, linear and non-distorted solvent gradients, and for linear temperature gradients. In these conditions, the theory predicts that CST-GLC is equivalent to a unique and apparent dynamic solvent gradient. The apparent solvent gradient steepness is the sum of the solvent and temperature steepness. The apparent solvent linear velocity is the reciprocal of the steepness-averaged sum of the reciprocal of the actual solvent and temperature linear velocities. The advantage of CST-GLC over conventional GLC is demonstrated for the resolution of protein digests (peptide mapping) when applying smooth, retained, and linear acetonitrile gradients in combination with a linear temperature gradient (from 20°C to 90°C) using 300μm×150mm capillary columns packed with sub-2 μm particles. The benefit of CST-GLC is demonstrated when the temperature gradient propagates at the same velocity as the chromatographic speed. The experimental proof-of-concept for the realization of temperature ramps propagating at a finite and constant linear velocity is also briefly described. Copyright © 2016 Elsevier B.V. All rights reserved.
Retention and effective diffusion of model metabolites on porous graphitic carbon.
Lunn, Daniel B; Yun, Young J; Jorgenson, James W
2017-12-29
The study of metabolites in biological samples is of high interest for a wide range of biological and pharmaceutical applications. Reversed phase liquid chromatography is a common technique used for the separation of metabolites, but it provides little retention for polar metabolites. An alternative to C18 bonded phases, porous graphitic carbon has the ability to provide significant retention for both non-polar and polar analytes. The goal of this work is to study the retention and effective diffusion properties of porous graphitic carbon, to see if it is suitable for the wide injection bands and long run times associated with long, packed capillary-scale separations. The retention of a set of standard metabolites was studied for both stationary phases over a wide range of mobile phase conditions. This data showed that porous graphitic carbon benefits from significantly increased retention (often >100 fold) under initial gradient conditions for these metabolites, suggesting much improved ability to focus a wide injection band at the column inlet. The effective diffusion properties of these columns were studied using peak-parking experiments with the standard metabolites under a wide range of retention conditions. Under the high retention conditions, which can be associated with retention after injection loading for gradient separations, D eff /D m ∼0.1 for both the C18-bonded and porous graphitic carbon columns. As C18 bonded particles are widely, and successfully utilized for long gradient separations without issue of increasing peak width from longitudinal diffusion, this suggests that porous graphitic carbon should be amenable for long runtime gradient separations as well. Copyright © 2017 Elsevier B.V. All rights reserved.
Selectivity assessment of DB-200 and DB-VRX open-tubular capillary columns.
Kiridena, W; Koziola, W W; Poole, C F
2001-10-12
The solvation parameter model is used to study the influence of composition and temperature on the selectivity of two poly(siloxane) stationary phases used for open-tubular capillary column gas chromatography. The poly(methyltrifluoropropyldimethylsiloxane) stationary phase, DB-200, has low cohesion, intermediate dipolarity/polarizability, low hydrogen-bond basicity, no hydrogen-bond acidity, and repulsive electron lone pair interactions. The DB-VRX stationary phase has low cohesion, low dipolarity/polarizability, low hydrogen-bond basicity and no hydrogen-bond acidity and no capacity for electron lone pair interactions. The selectivity of the two stationary phases is complementary to those in a database of 11 stationary phase chemistries determined under the same experimental conditions.
Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; ...
2014-12-31
During CO 2 injection and storage in deep reservoirs, the injected CO 2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO 2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO 2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space playmore » a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.« less
Chein, Hungmin; Aggarwal, Shankar G; Wu, Hsin-Hsien
2004-11-01
Control of low-concentration pollutants from a semiconductor process vent stream using a wet-scrubbing technique is a challenging task to meet Taiwan environmental emission standards. An efficient wet-scrubber is designed on a pilot scale and tested to control low concentration acid and base waste-gas emission. The scrubber system consisted of two columns, i.e., a fine spray column [cutoff diameter (based on volume), Dv(50) = 15.63 microm; Sauter mean diameter (SMD) = 7.62 microm], which is especially efficient for NH3 removal as the pH of the spraying liquid is approximately 7 followed by a packed column with a scrubbing liquid pH approximately 9.0 mainly for acids removal. It is observed that use of the surfactants in low concentration about 10(-4) M and 10(-7) M in the spray liquid and in the scrubbing liquid, respectively, remarkably enhances the removal efficiency of the system. A traditional packed column (without the spray column and the surfactant) showed that the removal efficiencies of NH3, HF, and HCl for the inlet concentration range 0.2 to 3 ppm were (n = 5) 22.6+/-3.4%, 43.4+/-5.5%, and 40.4+/-7.4%, respectively. The overall efficiencies of the proposed system (the spray column and the packed column) in the presence of the surfactant in the spray liquid and in the scrubbing liquid forthese three species were found to increase significantly (n = 5) from 60.3+/-3.6 to 82.8+/-6.8%, 59.1+/-2.7 to 83.4+/-4.2%, and 56.2+/-7.3 to 81.0+/-6.7%, respectively. In this work, development of charge on the gas-liquid interface due to the surfactants has been measured and discussed. It is concluded that the presence of charge on the gas-liquid interface is the responsible factor for enhancement of the removal efficiency (mass-transfer in liquid phase). The effects of the type of surfactants, their chain length, concentration in liquid, etc. on the removal efficiency are discussed. Since the pilot tests were performed under the operating conditions similar to most of the wet-scrubbers operated in semiconductors manufacturing facilities for inorganic pollutants, this study can be applied to modify the existing wet-scrubbers to enhance the removal efficiencies, especially for low-concentration pollutants.
Zhang, Zheng; Hao, Yan-Hong; Ding, Jun; Xu, Sheng-Nan; Yuan, Bi-Feng; Feng, Yu-Qi
2015-10-16
A newly improved one-pot method, based on "thiol-ene" click chemistry and sol-gel approach in microemulsion system, was developed for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The monolithic column was demonstrated to have cation exchange/reversed-phase (CX/RP) mixed-mode retention for analytes on nano-liquid chromatography (nano-LC). On the basis of the developed nano-LC system with MS detector coupled to pipette tip solid phase extraction (PT-SPE) and derivatization process, we then realized simultaneous determination of 10 gibberellins (GAs) with low limits of detection (LODs, 0.003-0.025 ng/mL). Furthermore, 6 endogenous GAs in only 5mg rice leaves (fresh weight) were successfully detected and quantified. The developed PT-SPE-nano-LC-MS strategy may offer promising applications in the determination of low abundant bioactive molecules from complex matrix. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Fang; Yang, Cheng-Xiong; Yan, Xiu-Ping
2015-05-01
Effective separation of tocopherols is challenging and significant due to their structural similarity and important biological role. Here we report the post-synthetic modification of metal-organic framework (MOF) MIL-101(Cr) with pyridine for high-performance liquid chromatographic (HPLC) separation of tocopherols. Baseline separation of four tocopherols was achieved on a pyridine-grafted MIL-101(Cr) packed column within 10 min using hexane/isopropanol (96:4, v/v) as the mobile phase at a flow rate of 0.5 mL min(-1). The pyridine-grafted MIL-101(Cr) packed column gave high column efficiency (85,000 plates m(-1) for δ-tocopherol) and good precision (0.2-0.3% for retention time, 1.8-3.4% for peak area, 2.6-2.7% for peak height), and also offered much better performance than unmodified MIL-101(Cr) and commercial amino-bonded silica packed column for HPLC separation of tocopherols. The results not only show the promising application of pyridine-grafted MIL-101(Cr) as a novel stationary phase for HPLC separation of tocopherols, but also reveal a facile post-modification of MOFs to expand the application of MOFs in separation sciences. Copyright © 2015 Elsevier B.V. All rights reserved.
Supercritical fluid chromatography for lipid analysis in foodstuffs.
Donato, Paola; Inferrera, Veronica; Sciarrone, Danilo; Mondello, Luigi
2017-01-01
The task of lipid analysis has always challenged separation scientists, and new techniques in chromatography were often developed for the separation of lipids; however, no single technique or methodology is yet capable of affording a comprehensive screening of all lipid species and classes. This review acquaints the role of supercritical fluid chromatography within the field of lipid analysis, from the early developed capillary separations based on pure CO 2 , to the most recent techniques employing packed columns under subcritical conditions, including the niche multidimensional techniques using supercritical fluids in at least one of the separation dimensions. A short history of supercritical fluid chromatography will be introduced first, from its early popularity in the late 1980s, to the sudden fall and oblivion until the last decade, experiencing a regain of interest within the chromatographic community. Afterwards, the subject of lipid nomenclature and classification will be briefly dealt with, before discussing the main applications of supercritical fluid chromatography for food analysis, according to the specific class of lipids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Looms, M. C.; Jensen, K. H.; Wildenschild, D.; Christensen, B. S.; Gudbjerg, J.
2003-12-01
Both dynamic (one-step) and semi-static (syringe pump) outflow experiments were carried out in the lab to test whether the resulting retention characteristics differed according to experiment type. Three sands of varying uniformity and coarseness were packed in a cylindrical sample holder. Compressed air was used to control the air phase pressure, while water was allowed to drain at atmospheric pressure from the outlet at the bottom of the sample. During the outflow experiments the capillary pressure was measured within the sample holder using a tensiometer connected to a pressure transducer. A medical CT-scanner was used to visualize and quantify the outflow patterns within the sand matrix during selected outflow experiments. Positive vertical shifts in capillary pressure during dynamic experiments were found in all three sand types at saturations close to porosity. The size and shape of the shifts corresponded with the dynamic effects found in previous work on the topic. Furthermore, the shifts were slightly greater in the coarsest and most uniform sand type. Numerical simulations of the one-step experiments using HYDRUS1D and T2VOC showed, however, that one of the basic assumptions when calculating the capillary pressure was most likely violated. The air phase could not be considered to be continuous at all times, and assuming this to be the case would result in positive shifts of the retention curves when running T2VOC. The results of using the CT-scanner showed the importance of achieving a homogeneous packing, since the investigated sand packing turned out to have an area at the edge of the sample holder with a higher porosity. This caused the edge to control the initial drainage. Therefore, the data collected at high saturations could not be expected to adequately describe the hydraulic properties of the inner sand. We also found that the time at which the inner sand commenced drainage coincided with a jump in capillary pressure for the resulting measured retention curve.
Arrieta-Garay, Y; Blanco, P; López-Vázquez, C; Rodríguez-Bencomo, J J; Pérez-Correa, J R; López, F; Orriols, I
2014-10-29
Orujo is a traditional alcoholic beverage produced in Galicia (northwest Spain) from distillation of grape pomace, a byproduct of the winemaking industry. In this study, the effect of the distillation system (copper charentais alembic versus packed column) and the yeast strain (native yeast L1 versus commercial yeast L2) on the chemical and sensory characteristics of orujo obtained from Albariño (Vitis vinifera L.) grape pomace has been analyzed. Principal component analysis, with two components explaining 74% of the variance, is able to clearly differentiate the distillates according to distillation system and yeast strain. Principal component 1, mainly defined by C6-C12 esters, isoamyl octanoate, and methanol, differentiates L1 from L2 distillates. In turn, principal component 2, mainly defined by linear alcohols, linalool, and 1-hexenol, differentiates alembic from packed column distillates. In addition, an aroma descriptive test reveals that the distillate obtained with a packed column from a pomace fermented with L1 presented the highest positive general impression, which is associated with the highest fruity and smallest solvent aroma scores. Moreover, chemical analysis shows that use of a packed column increases average ethanol recovery by 12%, increases the concentration of C6-C12 esters by 25%, and reduces the concentration of higher alcohols by 21%. In turn, L2 yeast obtained lower scores in the alembic distillates aroma profile. In addition, with L1, 9% higher ethanol yields were achieved, and L2 distillates contained 34%-40% more methanol than L1 distillates.
[Determination of acetochlor and oxyfluorfen by capillary gas chromatography].
Xiang, Wen-Sheng; Wang, Xiang-Jing; Wang, Jing; Wang, Qing
2002-09-01
A method is described for the determination of acetochlor and oxyfluorfen by capillary gas chromatography with FID and an SE-30 capillary column (60 m x 0.53 mm i. d., 1.5 microm), using dibutyl phthalate as the internal standard. The standard deviations for acetochlor and oxyfluorfen concentration(mass fraction) were 0.44% and 0.47% respectively. The relative standard deviations for acetochlor and oxyfluorfen were 0.79% and 0.88% and the average recoveries for acetochlor and oxyfluorfen were 99.3% and 101.1% respectively. The method is simple, rapid and accurate.
Pietta, P; Bruno, A; Mauri, P; Rava, A
1992-02-28
Calendula officinalis and Sambucus nigra flowers were analysed by reversed-phase high-performance liquid chromatography (RP-HPLC) and micellar electrokinetic capillary chromatography (MECC). RP-HPLC was performed on C8 Aquapore RP 300 columns with eluents containing 2-propanol and tetrahydrofuran. MECC was carried out on a 72-cm fused-silica capillary using sodium dodecyl sulphate and sodium borate (pH 8.3) as the running buffer. The results obtained by these techniques are compared.
CEC-atmospheric pressure ionization MS of pesticides using a surfactant-bound monolithic column.
Gu, Congying; Shamsi, Shahab A
2010-04-01
A surfactant bound poly (11-acrylaminoundecanoic acid-ethylene dimethacrylate) monolithic column was simply prepared by in situ co-polymerization of 11-acrylaminoundecanoic acid and ethylene dimethacrylate with 1-propanol, 1,4-butanediol and water as porogens in 100 microm id fused-silica capillary in one step. This column was used in CEC-atmospheric pressure photoionization (APPI)-MS system for separation and detection of N-methylcarbamates pesticides. Numerous parameters are optimized for CEC-APPI-MS. After evaluation of the mobile phase composition, sheath liquid composition and the monolithic capillary outlet position, a fractional factorial design was selected as a screening procedure to identify factors of ionization source parameters, such as sheath liquid flow rate, drying gas flow rate, drying gas temperature, nebulizing gas pressure, vaporizer temperature and capillary voltage, which significantly influence APPI-MS sensitivity. A face-centered central composite design was further utilized to optimize the most significant parameters and predict the best sensitivity. Under optimized conditions, S/Ns around 78 were achieved for an injection of 100 ng/mL of each pesticide. Finally, this CEC-APPI-MS method was successfully applied to the analysis of nine N-methylcarbamates in spiked apple juice sample after solid phase extraction with recoveries in the range of 65-109%.
NASA Astrophysics Data System (ADS)
McGuire, N. D.; Ewen, R. J.; de Lacy Costello, B.; Garner, C. E.; Probert, C. S. J.; Vaughan, K.; Ratcliffe, N. M.
2014-06-01
Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor sensor and artificial neural network software. For direct analysis of biological samples this prototype offers alternatives to conventional gas chromatography (GC) detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenized in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 min compared to 30 min for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden.
McGuire, N D; Ewen, R J; de Lacy Costello, B; Garner, C E; Probert, C S J; Vaughan, K.; Ratcliffe, N M
2016-01-01
Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor (MOS) sensor and artificial neural network (ANN) software. For direct analysis of biological samples this prototype offers alternatives to conventional GC detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenised in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 minutes compared to 30 minutes for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden. PMID:27212803
SURFACE CHEMICAL EFFECTS ON COLLOID STABILITY AND TRANSPORT THROUGH NATURAL POROUS MEDIA
Surface chemical effects on colloidal stability and transport through porous media were investigated using laboratory column techniques. Approximately 100 nm diameter, spherical, iron oxide particles were synthesized as the mobile colloidal phase. The column packing material was ...
Sun, Xiuhua; Yang, Weichun; Pan, Tao; Woolley, Adam T
2008-07-01
Immunoaffinity monolith pretreatment columns have been coupled with capillary electrophoresis separation in poly(methyl methacrylate) (PMMA) microchips. Microdevices were designed with eight reservoirs to enable the electrically controlled transport of selected analytes and solutions to carry out integrated immunoaffinity extraction and electrophoretic separation. The PMMA microdevices were fabricated reproducibly and with high fidelity by solvent imprinting and thermal bonding methods. Monoliths with epoxy groups for antibody immobilization were prepared by direct in situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in a porogenic solvent consisting of 70% 1-dodecanol and 30% cyclohexanol. Antifluorescein isothiocyanate was utilized as a model affinity group in the monoliths, and the immobilization process was optimized. A mean elution efficiency of 92% was achieved for the monolith-based extraction of fluorescein isothiocyanate (FITC)-tagged human serum albumin. FITC-tagged proteins were purified from a contaminant protein and then separated electrophoretically using these devices. The developed immunoaffinity column/capillary electrophoresis microdevices show great promise for combining sample pretreatment and separation in biomolecular analysis.
Sun, Xiuhua; Yang, Weichun; Pan, Tao; Woolley, Adam T.
2008-01-01
Immunoaffinity monolith pretreatment columns have been coupled with capillary electrophoresis separation in poly(methyl methacrylate) (PMMA) microchips. Microdevices were designed with 8 reservoirs to enable the electrically controlled transport of selected analytes and solutions to carry out integrated immunoaffinity extraction and electrophoretic separation. The PMMA microdevices were fabricated reproducibly and with high fidelity by solvent imprinting and thermal bonding methods. Monoliths with epoxy groups for antibody immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene dimethacrylate in a porogenic solvent consisting of 70% dodecanol and 30% hexanol. Anti-fluorescein isothiocyanate (FITC) was utilized as a model affinity group in the monoliths, and the immobilization process was optimized. A mean elution efficiency of 92% was achieved for the monolith-based extraction of FITC-tagged human serum albumin. FITC-tagged proteins were purified from a contaminant protein and then separated electrophoretically using these devices. The developed immunoaffinity column/capillary electrophoresis microdevices show great promise for combining sample pretreatment and separation in biomolecular analysis. PMID:18479142
Kaiser, Ashley L; Stein, Itai Y; Cui, Kehang; Wardle, Brian L
2018-02-07
Capillary-mediated densification is an inexpensive and versatile approach to tune the application-specific properties and packing morphology of bulk nanofiber (NF) arrays, such as aligned carbon nanotubes. While NF length governs elasto-capillary self-assembly, the geometry of cellular patterns formed by capillary densified NFs cannot be precisely predicted by existing theories. This originates from the recently quantified orders of magnitude lower than expected NF array effective axial elastic modulus (E), and here we show via parametric experimentation and modeling that E determines the width, area, and wall thickness of the resulting cellular pattern. Both experiments and models show that further tuning of the cellular pattern is possible by altering the NF-substrate adhesion strength, which could enable the broad use of this facile approach to predictably pattern NF arrays for high value applications.
Radial particle-size segregation during packing of particulates into cylindrical containers
Ripple, C.D.; James, R.V.; Rubin, J.
1973-01-01
In a series of experiments, soil materials were placed in long cylindrical containers, using various packing procedures. Soil columns produced by deposition and simultaneous vibratory compaction were dense and axially uniform, but showed significant radial segregation of particle sizes. Similar results were obtained with deposition and simultaneous impact-type compaction when the impacts resulted in significant container "bouncing". The latter procedure, modified to minimize "bouncing" produced dense, uniform soil columns, showing little radial particle-size segregation. Other procedures tested (deposition alone and deposition followed by compaction) did not result in radial segregation, but produced columns showing either relatively low or axially nonuniform densities. Current data suggest that radial particle-size segregation is mainly due to vibration-induced particle circulation in which particles of various sizes have different circulation rates and paths. ?? 1973.
Lu, Joann J.; Wang, Shili; Li, Guanbin; Wang, Wei; Pu, Qiaosheng; Liu, Shaorong
2012-01-01
In this report, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to re-route the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed. PMID:22830584
49 CFR 173.240 - Bulk packaging for certain low hazard solid materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... this subchapter and the special provisions specified in column 7 of the § 172.101 table. (a) Rail cars... the IBC packaging code specified for the specific hazardous material in Column (7) of the § 172.101... subchapter at the Packing Group performance level as specified in Column (5) of the § 172.101 Table of this...
49 CFR 173.240 - Bulk packaging for certain low hazard solid materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... this subchapter and the special provisions specified in column 7 of the § 172.101 table. (a) Rail cars... the IBC packaging code specified for the specific hazardous material in Column (7) of the § 172.101... subchapter at the Packing Group performance level as specified in Column (5) of the § 172.101 Table of this...
49 CFR 173.240 - Bulk packaging for certain low hazard solid materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... this subchapter and the special provisions specified in column 7 of the § 172.101 table. (a) Rail cars... the IBC packaging code specified for the specific hazardous material in Column (7) of the § 172.101... subchapter at the Packing Group performance level as specified in Column (5) of the § 172.101 Table of this...
49 CFR 173.240 - Bulk packaging for certain low hazard solid materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... this subchapter and the special provisions specified in column 7 of the § 172.101 table. (a) Rail cars... the IBC packaging code specified for the specific hazardous material in Column (7) of the § 172.101... subchapter at the Packing Group performance level as specified in Column (5) of the § 172.101 Table of this...
49 CFR 173.240 - Bulk packaging for certain low hazard solid materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... this subchapter and the special provisions specified in column 7 of the § 172.101 table. (a) Rail cars... the IBC packaging code specified for the specific hazardous material in Column (7) of the § 172.101... subchapter at the Packing Group performance level as specified in Column (5) of the § 172.101 Table of this...
Process for preparing radiopharmaceuticals
Barak, Morton; Winchell, Harry S.
1977-01-04
A process for the preparation of technetium-99m labeled pharmaceuticals is disclosed. The process comprises initially isolating technetium-99m pertechnetate by adsorption upon an adsorbent packing in a chromatographic column. The technetium-99m is then eluted from the packing with a biological compound to form a radiopharmaceutical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugiyama, T.; Sugura, K.; Enokida, Y.
2015-03-15
Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one andmore » established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)« less
Development Of ABEC Column For Separation Of Tc-99 From Northstar Dissolved Target Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepinski, Dominique C.; Bennett, Megan E.; Naik, Seema R.
Batch and column breakthrough experiments were performed to determine isotherms and mass-transfer parameters for adsorption of Tc on aqueous biphasic extraction chromatographic (ABEC) sorbent in two solutions: 200 g/L Mo, 5.1 M K +, 1 M OH -, and 0.1 M NO 3 - (Solution A) and 200 g/L Mo, 9.3 M K +, 5 M OH -, and 0.1 M NO 3 - (Solution B). Good agreement was found between the isotherm values obtained by batch and column breakthrough studies for both Solutions A and B. Potassium-pertechnetate intra-particle diffusivity on ABEC resin was estimated by VERSE simulations, and goodmore » agreement was found among a series of column-breakthrough experiments at varying flow velocities, column sizes, and technetium concentrations. However, testing of 10 cc cartridges provided by NorthStar with Solutions A and B did not give satisfactory results, as significant Tc breakthrough was observed and ABEC cartridge performance varied widely among experiments. These different experimental results are believed to be due to inconsistent preparation of the ABEC resin prior to packing and/or inconsistent packing.« less
Complete temperature profiles in ultra-high-pressure liquid chromatography columns.
Gritti, Fabrice; Guiochon, Georges
2008-07-01
The temperature profiles were calculated along and across seven packed columns (lengths 30, 50, 100, and 150 mm, i.d., 1 and 2.1 mm, all packed with Acquity UPLC, BEH-C 18 particles, average d(p) approximately 1.7 microm) and their stainless steel tubes (o.d. 4.53 and 6.35 mm). These columns were kept horizontal and sheltered from forced air convection (i.e., under still air conditions), at room temperature. They were all percolated with pure acetonitrile, either under the maximum pressure drop (1034 bar) or at the maximum flow rate (2 mL/min) permitted by the chromatograph. The heat balance equation of chromatographic columns was discretized and solved numerically with minimum approximation. Both the compressibility and the thermal expansion of the eluent were taken into account. The boundary conditions were determined from the experimental measurements of the column inlet pressure and of the temperature profile along the column wall, which were made with a precision better than +/-0.1 K. These calculation results provide the 3-D temperature profiles along and across the columns. The axial and radial temperature gradients are discussed in relationship with the experimental conditions used. The temperature map obtained permits a prediction of the chromatographic data obtained under a very high pressure gradient.
2015-01-01
A hybrid microchip/capillary electrophoresis (CE) system was developed to allow unbiased and lossless sample loading and high-throughput repeated injections. This new hybrid CE system consists of a poly(dimethylsiloxane) (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel, and a fused-silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused-silica capillary separation column. Analytes are rapidly separated in the fused-silica capillary, and following separation, high-sensitivity MS detection is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high-throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates, and CE separation voltages. PMID:24865952
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.
2014-07-01
A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channelmore » and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.« less
Parallel array of independent thermostats for column separations
Foret, Frantisek; Karger, Barry L.
2005-08-16
A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.
Yang, Yang; Zhang, Yongmin; Wei, Chong; Li, Jing; Sun, Wenji
2018-09-01
Silver ion chromatography, utilizing columns packed with silver ions bonded to silica gel, has proved to be an invaluable technique for the analysis of some positional isomers. In this work, silver ion chromatography by combination with online heart-cutting LC-LC technique for the preparative separation of two sesquiterpenes positional isomers from a natural product was investigated. On the basis of the evaluation that silver ion content impacts on the separation, the laboratory-made silver ion columns, utilizing silica gel impregnated with 15% silver nitrate as column packing materials, were used for peak resolution improvement of these two isomers and the preparative separation of them in heart-cutting LC-LC. The relationship among the maximal sample load, flow rate and peak resolution in the silver ion column were optimized, and the performance of the silver ion column was compared with conventional C 18 column and silica gel column. Based on the developed chromatographic conditions, online heart-cutting LC-LC chromatographic separation system in combination with a silica gel column and a silver ion column that was applied to preparative separation of these two isomers from a traditional Chinese medicine, Inula racemosa Hook.f., was established. The results showed that the online heart-cutting LC-LC technique by combination of a silica gel column and a silver ion column for the preparative separation of these two positional isomers from this natural plant was superior to the preparative separation performed on a single-column system with C 18 column or silica gel column. Copyright © 2018 Elsevier B.V. All rights reserved.
Collection of pheromone from atmosphere surrounding boll weevils,Anthonomus grandis.
Chang, J F; Benedict, J H; Payne, T L; Camp, B J; Vinson, S B
1989-02-01
An effluvial method was developed to collect the pheromone, grandlure from actively calling male boll weevils,Anthonomus grandis Boheman. The adsorbant, Porapak Q (ethylvinylbenzene-divinylbenzene), was utilized to trap and concentrate the pheromone. Captured pheromone was desorbed from columns packed with Porapak Q by elution withn-pentane and quantified by capillary column gas-liquid chromatography. In recovery studies with known amounts of synthetic grandlure, we found that the amount of each pheromone component collected was a function of collection duration, elution volume, and initial concentration. This effluvial method was capable of recovering as much as 94.9% of a known quantity (80 μg) of grandlure. The chromatograms were free of extraneous peaks. In studies of insect-produced pheromone, the effluvial method was used to collect pheromone from the air space surrounding male boll weevils as they fed on flower buds from CAMD-E cotton. The quantity and quality of boll-weevil-produced pheromone was determined for days 6, 8, 10, 11, 12, 13, and 14 of boll weevil adulthood. The maximum quantity of natural pheromone was produced on day 13 (4.2 μg/weevil) with a pheromone component ratio of 2.41∶2.29∶0.95∶1 for components I, II, III, and IV, respectively. The effluvial method described in this report is an efficient method to collect and quantify boll weevil pheromone from the atmosphere surrounding actively calling insects. Other applications of this method are suggested.
Fiber-based monolithic columns for liquid chromatography.
Ladisch, Michael; Zhang, Leyu
2016-10-01
Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram.
Experimental Investigation on the Resonance of a Liquid Column in a Capillary Tube.
Hilpert; Miller
1999-11-01
Using a visualization technique, we observed the resonance of a water column trapped in a vertically oriented capillary tube due to acoustic excitation. The analysis of the quasi-static response suggests that the upper nonvisible meniscus followed the imposed flow by means of a sliding contact line without changing its shape. We compared the experiments with a previously developed theoretical model that addresses dissipation by assuming an axially symmetric and incompressible flow field that is spatially constant along the tube axis. Whereas the model agrees well with the measured quasi-static response, the deviations in the dynamic response reveal shortcomings of the model due to the simplified treatment of the viscous dissipation. Copyright 1999 Academic Press.
Separation of fatty acid methyl esters by GC-online hydrogenation × GC.
Delmonte, Pierluigi; Fardin-Kia, Ali Reza; Rader, Jeanne I
2013-02-05
The separation of fatty acid methyl esters (FAME) provided by a 200 m × 0.25 mm SLB-IL111 capillary column is enhanced by adding a second dimension of separation ((2)D) in a GC × GC design. Rather than employing two GC columns of different polarities or using different elution temperatures, the separation in the two-dimensional space is achieved by altering the chemical structure of selected analytes between the two dimensions of separation. A capillary tube coated with palladium is added between the first dimension of separation ((1)D) column and the cryogenic modulator, providing the reduction of unsaturated FAMEs to their fully saturated forms. The (2)D separation is achieved using a 2.5 m × 0.10 mm SLB-IL111 capillary column and separates FAMEs based solely on their carbon skeleton. The two-dimensional separation can be easily interpreted based on the principle that all the saturated FAMEs lie on a straight diagonal line bisecting the separation plane, while the FAMEs with the same carbon skeleton but differing in the number, geometric configuration or position of double bonds lie on lines parallel to the (1)D time axis. This technique allows the separation of trans fatty acids (FAs) and polyunsaturated FAs (PUFAs) in a single experiment and eliminates the overlap between PUFAs with different chain lengths. To our knowledge, this the first example of GC × GC in which a chemical change is instituted between the two dimensions to alter the relative retentions of components and identify unsaturated FAMEs.
Laboratory study on leachability of five herbicides in South Australian soils.
Ying, G G; Williams, B
2000-03-01
Norflurazon, oxadiazon, oxyfluorfen, trifluralin and simazine are herbicides widely used in the vineyards of the Barossa Valley, South Australia. The leaching behaviour of norflurazon, oxadiazon, oxyfluorfen and trifluralin was investigated on four key soils in the Barossa Valley. Leaching potential on packed soil columns and actual mobility using intact soil columns were investigated. On the packed soil columns, norflurazon was the most leachable herbicide. More of the herbicides were detected in the leachates from the sandy soils (Mountadam and Nuriootpa) than from the clayey soils (Lyndoch and Tanunda). Organic matter is generally low in soils in the Barossa region. Porosity and saturated conductivity significantly affect herbicide movement and in the sandy Mountadam and Nuriootpa soils, the water flux is greater than for the higher clay content Lyndoch and Tanunda soils. Increasing the time interval between herbicide application and the incidence of "rainfall" reduced the amounts of herbicides found in the leachates. The use of intact soil columns and including simazine for comparison showed that both norflurazon and simazine were present in the leachates. Simazine was the first herbicide to appear in leachates. Sectioning of the intact soil columns after leaching clearly demonstrated that norflurazon and simazine reached the bottom of the soil columns for all soils studied. Greater amounts of norflurazon were retained in the soil columns compared with simazine. The other herbicides were mostly retained in the initial sections of the soil columns.
Capillary Array Waveguide Amplified Fluorescence Detector for mHealth
Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham
2013-01-01
Mobile Health (mHealth) analytical technologies are potentially useful for carrying out modern medical diagnostics in resource-poor settings. Effective mHealth devices for underserved populations need to be simple, low cost, and portable. Although cell phone cameras have been used for biodetection, their sensitivity is a limiting factor because currently it is too low to be effective for many mHealth applications, which depend on detection of weak fluorescent signals. To improve the sensitivity of portable phones, a capillary tube array was developed to amplify fluorescence signals using their waveguide properties. An array configured with 36 capillary tubes was demonstrated to have a ~100X increase in sensitivity, lowering the limit of detection (LOD) of mobile phones from 1000 nM to 10 nM for fluorescein. To confirm that the amplification was due to waveguide behavior, we coated the external surfaces of the capillaries with silver. The silver coating interfered with the waveguide behavior and diminished the fluorescence signal, thereby proving that the waveguide behavior was the main mechanism for enhancing optical sensitivity. The optical configuration described here is novel in several ways. First, the use of capillaries waveguide properties to improve detection of weak florescence signal is new. Second we describe here a three dimensional illumination system, while conventional angular laser waveguide illumination is spot (or line), which is functionally one-dimensional illumination, can illuminate only a single capillary or a single column (when a line generator is used) of capillaries and thus inherently limits the multiplexing capability of detection. The planar illumination demonstrated in this work enables illumination of a two dimensional capillary array (e.g. x columns and y rows of capillaries). In addition, the waveguide light propagation via the capillary wall provides a third dimension for illumination along the axis of the capillaries. Such an array can potentially be used for sensitive analysis of multiple fluorescent detection assays simultaneously. The simple phone based capillary array approach presented in this paper is capable of amplifying weak fluorescent signals thereby improving the sensitivity of optical detectors based on mobile phones. This may allow sensitive biological assays to be measured with low sensitivity detectors and may make mHealth practical for many diagnostics applications, especially in resource-poor and global health settings. PMID:24039345
Automated solid-phase extraction and liquid chromatography for assay of cyclosporine in whole blood.
Kabra, P M; Wall, J H; Dimson, P
1987-12-01
In this rapid, precise, accurate, cost-effective, automated liquid-chromatographic procedure for determining cyclosporine in whole blood, the cyclosporine is extracted from 0.5 mL of whole blood together with 300 micrograms of cyclosporin D per liter, added as internal standard, by using an Advanced Automated Sample Processing unit. The on-line solid-phase extraction is performed on an octasilane sorbent cartridge, which is interfaced with a RP-8 guard column and an octyl analytical column, packed with 5-microns packing material. Both columns are eluted with a mobile phase containing acetonitrile/methanol/water (53/20/27 by vol) at a flow rate of 1.5 mL/min and column temperature of 70 degrees C. Absolute recovery of cyclosporine exceeded 85% and the standard curve was linear to 5000 micrograms/L. Within-run and day-to-day CVs were less than 8%. Correlation between automated and manual Bond-Elut extraction methods was excellent (r = 0.987). None of 18 drugs and four steroids tested interfered.
Mini-columns for Conducting Breakthrough Experiments. Design and Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas
Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.
Optrode for sensing hydrocarbons
Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.
1987-01-01
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.
Optrode for sensing hydrocarbons
Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.
1987-05-19
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 6 figs.
Optrode for sensing hydrocarbons
Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.
1988-09-13
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.
Optrode for sensing hydrocarbons
Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.
1988-01-01
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.
Development of a screening method for the determination of forty-nine priority pollutants in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiang, P.H.T.
1985-01-01
An extraction procedure followed by capillary GC-MS analysis was used to determine soil pollutants. Dual pH solutions with methylene chloride were used as extraction solvent system. Both base/neutral and acidic fractions were analyzed on the same fused silica 30 meter SPB-1 (SE-30) column. A GC-FID with a 60 meter wide-bore SPB-1 glass capillary column was used for quantitative analysis due to its larger sample capacity and higher sensitivity. The precision and accuracy for 5.1 ppm (51 ..mu..g/10 g) concentration in zero soil was less than 25% RSD. A headspace technique was also developed for the determination of volatile compounds. Themore » same instrumental conditions and columns were used as in the extraction procedure. The precision and accuracy for 3 grams soil sample spiked with 5.1 ppm (52 ..mu..g/10 mL) pollutant mixture in a 20 mL vial was less than 3% RSD.« less
Fixed Packed Bed Reactors in Reduced Gravity
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.
2004-01-01
We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid and liquid-solid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients kLa and kGa (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.
Fixed Packed Bed Reactors in Reduced Gravity
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.
2004-01-01
We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients k(L)a and k(G)a (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.
Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts
NASA Astrophysics Data System (ADS)
Tsubogo, Tetsu; Oyamada, Hidekazu; Kobayashi, Shū
2015-04-01
Chemical manufacturing is conducted using either batch systems or continuous-flow systems. Flow systems have several advantages over batch systems, particularly in terms of productivity, heat and mixing efficiency, safety, and reproducibility. However, for over half a century, pharmaceutical manufacturing has used batch systems because the synthesis of complex molecules such as drugs has been difficult to achieve with continuous-flow systems. Here we describe the continuous-flow synthesis of drugs using only columns packed with heterogeneous catalysts. Commercially available starting materials were successively passed through four columns containing achiral and chiral heterogeneous catalysts to produce (R)-rolipram, an anti-inflammatory drug and one of the family of γ-aminobutyric acid (GABA) derivatives. In addition, simply by replacing a column packed with a chiral heterogeneous catalyst with another column packed with the opposing enantiomer, we obtained antipole (S)-rolipram. Similarly, we also synthesized (R)-phenibut, another drug belonging to the GABA family. These flow systems are simple and stable with no leaching of metal catalysts. Our results demonstrate that multistep (eight steps in this case) chemical transformations for drug synthesis can proceed smoothly under flow conditions using only heterogeneous catalysts, without the isolation of any intermediates and without the separation of any catalysts, co-products, by-products, and excess reagents. We anticipate that such syntheses will be useful in pharmaceutical manufacturing.
Physicochemical application of capillary chromatography
NASA Astrophysics Data System (ADS)
Vasil'ev, A. V.; Aleksandrov, E. N.
1992-04-01
The application of capillary gas chromatography in the determination of the free energy, enthalpy, and entropy of sorption, the saturated vapour pressure and activity coefficients, the assessment of the lipophilicity of volatile compounds, and the study of the properties of polymers and liquid crystals is described. The use of reaction cappillary chromatography in kinetic studies of conformational conversions, thermal degradation, and photochemical reactions is examined. Studies on the use of capillary columns for determination of the second virial coefficients and viscosity of gases and the diffusion coefficients in gases, liquids, supercritical fluids, and polymers are analysed. The bibliography includes 114 references.
Capillary Hemangioma of the Thoracic Spinal Cord
Chung, Sung-Kyun; Nam, Taek-Kyun; Park, Seung-Won
2010-01-01
Capillary hemangiomas are common soft tissue tumors on the skin or mucosa of the head and neck in the early childhood, but very rare in the neuraxis. A 47-year-old man presented with one month history of back pain on the lower thoracic area, radiating pain to both legs, and hypesthesia below T7 dermatome. Thoracic spine MRI showed 1×1.3×1.5 cm, well-defined intradural mass at T6-7 disc space level, which showed isointensity to spinal cord on T1, heterogeneous isointensity on T2-weighted images, and homogeneous strong enhancement. The patient underwent T6-7 total laminotomy, complete tumor removal and laminoplasty. Histologically, the mass showed a capsulated nodular lesion composed of capillary-sized vascular channels, which were tightly packed into nodules separated by fibrous septa. These features were consistent with capillary hemangioma. PMID:21082058
Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates
NASA Astrophysics Data System (ADS)
Dhillon, Navdeep Singh
The modern world is run by semiconductor-based electronic systems. Due to continuous improvements in semiconductor device fabrication, there is a clear trend in the market towards the development of electronic devices and components that not only deliver enhanced computing power, but are also more compact. Thermal management has emerged as the primary challenge in this scenario where heat flux dissipation of electronic chips is increasing exponentially, but conventional cooling solutions such as conduction and convection are no longer feasible. To keep device junction temperatures within the safe operating limit, there is an urgent requirement for ultra-high-conductivity thermal substrates that not only absorb and transport large heat fluxes, but can also provide localized cooling to thermal hotspots. This dissertation describes the design, modeling, and fabrication of a phase change-based, planar, ultra-thin, passive thermal transport system that is inspired by the concept of loop heat pipes and capillary pumped loops. Fabricated on silicon and Pyrex wafers using microfabrication techniques, the micro-columnated loop heat pipe (muCLHP) can be integrated directly with densely packed or multiply-stacked electronic substrates, to provide localized high-heat-flux thermal management. The muCLHP employs a dual-scale coherent porous silicon(CPS)-based micro-columnated wicking structure, where the primary CPS wick provides large capillary forces for fluid transport, while a secondary surface-wick maximizes the rate of thin-film evaporation. To overcome the wick thickness limitation encountered in conventional loop heat pipes, strategies based on MEMS surface micromachining techniques were developed to reduce parasitic heat flow from the evaporator to the compensation chamber of the device. Finite element analysis was used to confirm this reduction in a planar evaporator design, thus enabling the generation of a large motive temperature head for continuous device operation. To predict the overall heat carrying capacity of the muCLHP in the capillary pumping limit, an analytical model was developed to account for a steady state pressure balance in the device flow loop. Based on this model, a design optimization study, employing monotonicity analysis and numerical optimization techniques, was undertaken. It was found that an optimized muCLHP device can absorb heat fluxes as large as 1293 W/cm2 when water is used as a working fluid. A finite volume method-based numerical model was also developed to compute the rates of thin-film evaporation from the patterned surface of the secondary wick. The numerical results indicated that, by properly optimizing the dual-scale wick topology, allowable evaporative heat fluxes can be made commensurate with the heat flux performance predicted by the capillary pumping limit. The latter part of the dissertation deals with the fabrication, packaging, and experimental testing of several in-plane-wicking micro loop heat pipe (muLHP) prototypes. These devices were fabricated on silicon and Pyrex substrates and closely resemble the muCLHP design philosophy, with the exception that the CPS wick is substituted with an easier to fabricate in-plane wick. A novel thermal-flux method was developed for the degassing and fluid charging of the muLHP prototypes. Experiments were conducted to study the process of evaporation and dynamics of the liquid and vapor phases in the device flow loop. Using these results, the overall device and individual component topologies critical to the operation of the two-phase flow loop were identified. A continuous two-phase device flow loop was demonstrated for applied evaporator heat fluxes as high as 41 W/cm2. The performance of these devices, currently found to be limited by the motive temperature head requirement, can be significantly improved by implementing the parasitic heat flow-reduction strategies developed in this work. The 3-D thin-film evaporation model, when integrated into the overall device modeling framework, will enable a design optimization of the micro-columnated wick for further device performance enhancements.
Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges
2012-11-09
The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems to speed up the penetration of proteins into the particles. A stochastic model of the penetration of bulky proteins driven by a concentration gradient across an infinitely thin membrane of known porosity and pore size is suggested to explain this mechanism. Yet, under retained conditions, surface diffusion speeds up the mass transfer into the mesopores and levels the kinetic performance of particles built with either one or two porous shells. Copyright © 2012 Elsevier B.V. All rights reserved.
Properties of water as a novel stationary phase in capillary gas chromatography.
Gallant, Jonathan A; Thurbide, Kevin B
2014-09-12
A novel method of separation that uses water as a stationary phase in capillary gas chromatography (GC) is presented. Through applying a water phase to the interior walls of a stainless steel capillary, good separations were obtained for a large variety of analytes in this format. It was found that carrier gas humidification and backpressure were key factors in promoting stable operation over time at various temperatures. For example, with these measures in place, the retention time of an acetone test analyte was found to reduce by only 44s after 100min of operation at a column temperature of 100°C. In terms of efficiency, under optimum conditions the method produced about 20,000 plates for an acetone test analyte on a 250μm i.d.×30m column. Overall, retention on the stationary phase generally increased with analyte water solubility and polarity, but was relatively little correlated with analyte volatility. Conversely, non-polar analytes were essentially unretained in the system. These features were applied to the direct analysis of different polar analytes in both aqueous and organic samples. Results suggest that this approach could provide an interesting alternative tool in capillary GC separations. Copyright © 2014 Elsevier B.V. All rights reserved.
Development and Calibration of an Oil Spill Behavior Model.
1982-09-01
7675A purge-and-trap sampler. The GC column was a wide bore 50 meter long glass capillary column coated with SE-30 (WCOT from Alltech Associates, Inc...commonly used CGS unit of 1 dyne/cm is 10- 9 N/m or 1 milli-Newtons/meter (mN/m). An advantage of the technique is that there is no solid surface in
Poe, Donald P; Helmueller, Shawn; Kobany, Stephanie; Feldhacker, Hannah; Kaczmarski, Krzysztof
2017-01-27
When an SFC column is operated in a traditional oven with forced air at low pressures near the critical temperature, severe efficiency losses can occur. The mobile phase cools as it expands along the column, forming axial and radial temperature gradients. In this study we present a simple model based on a virtual fluid to predict the conditions which lead to the onset of efficiency loss. The model shows that the Joule-Thomson coefficient is an important factor leading to efficiency loss in packed columns under forced air conditions. The model was tested experimentally for elution of n-alkylbenzenes on 250×4.6-mm ID columns packed with 5-μm Luna-C18 (fully porous) and Kinetex-C18 (superficially porous) particles at optimum flow rates in a forced air oven at 20-80°C and outlet pressures from 90 to 250bar, with CO 2 mobile phase containing 5, 10 and 20% methanol (v/v). For simplicity, we used a formal J-T coefficient corresponding to the inlet temperature and the outlet pressure to characterize the chromatographic conditions. For 5% methanol, there was no significant loss of efficiency for elution of n-octadecylbenzene as long as the formal J-T coefficient was less than 0.11K/bar for Luna or 0.15K/bar for Kinetex, with minimum reduced plate heights equal to 1.82 and 1.55, respectively, at an average apparent retention factor of approximately 4.0 for both columns. The Kinetex column provided superior efficiency in general, and at 10-20bar lower outlet pressures relative to the Luna column due to the higher thermal conductivity of the packing. Results for 10 and 20% methanol showed similar trends but were less predictable. Copyright © 2016 Elsevier B.V. All rights reserved.
Nazario, Carlos E D; Silva, Meire R; Franco, Maraíssa S; Lanças, Fernando M
2015-11-20
The purpose of this article is to underline the miniaturized LC instrumental system and describe the evolution of commercially available systems by discussing their advantages and drawbacks. Nowadays, there are already many miniaturized LC systems available with a great variety of pump design, interface and detectors as well as efficient columns technologies and reduced connections devices. The solvent delivery systems are able to drive the mobile phase without flow splitters and promote gradient elution using either dual piston reciprocating or syringe-type pumps. The mass spectrometry as detection system is the most widely used detection system; among many alternative ionization sources direct-EI LC-MS is a promising alternative to APCI. In addition, capillary columns are now available showing many possibilities of stationary phases, inner diameters and hardware materials. This review provides a discussion about miniaturized LC demonstrating fundamentals and instrumentals' aspects of the commercially available miniaturized LC instrumental system mainly nano and micro LC formats. This review also covers the recent developments and trends in instrumentation, capillary and nano columns, and several applications of this very important and promising field. Copyright © 2015 Elsevier B.V. All rights reserved.
Yoshinaga, Kazuaki; Asanuma, Masaharu; Mizobe, Hoyo; Kojima, Koichi; Nagai, Toshiharu; Beppu, Fumiaki; Gotoh, Naohiro
2014-10-01
In this study, the characterisation of all cis- and trans-octadecenoic acid (C18:1) positional isomers in partially hydrogenated vegetable oil (PHVO) and milk fat, which contain several cis- and trans-C18:1 positional isomers, was achieved by gas chromatography-flame ionisation detector equipped with a highly polar ionic liquid capillary column (SLB-IL111). Prior to analysis, the cis- and trans-C18:1 fractions in PHVO and milk fat were separated using a silver-ion cartridge. The resolution of all cis-C18:1 positional isomers was successfully accomplished at the optimal isothermal column temperature of 120 °C. Similarly, the positional isomers of trans-C18:1, except for trans-6-C18:1 and trans-7-C18:1, were separated at 120 °C. The resolution of trans-6-C18:1 and trans-7-C18:1 isomers was made possible by increasing the column temperature to 160 °C. This analytical method is suitable for determining the cis- and trans-C18:1 positional isomers in edible fats and oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xu, Yan-Li; Liu, Zhao-Sheng; Wang, He-Fang; Yan, Chao; Gao, Ru-Yu
2005-02-01
The racemic naproxen was selectively recognized by capillary electrochromatography (CEC) on an (S)-naproxen-imprinted monolith, which was prepared by an in situ thermal-initiated polymerization. The recognition selectivity of a selected monolith strictly relied on the CEC conditions involved. The factors that influence the imprinting selectivity as well as the electroosmotic flow (EOF), including the applied voltage, organic solvent, salt concentration and pH value of the buffer, column temperature, and surfactant modifiers were systematically studied. Once the column was prepared, the experiment results showed that the successful chiral recognition was dependent on CEC variables. For example: the recognition could be observed in acetonitrile and ethanol electrolytes, while methanol and dimethyl sulfoxide (DMSO) electrolytes had no chiral recognition ability. The buffer with pH values of 2.6 or 3.0 at a higher salt concentration had chiral recognition ability. Column temperatures of 25-35 degrees C were optimal. Three surfactants, sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and polyoxyethylene sorbitan monolaurate (Tween 20), can improve the recognition. Baseline resolution was obtained under optimized conditions and the column efficiency of the later eluent (S)-naproxen was 90 000 plates/m.
Development of novel separation techniques for biological samples in capillary electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Huan -Tsung
1994-07-27
This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good waymore » to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.« less
Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah
2016-03-01
A monolithic capillary column containing a composite of metal-organic framework MIL-53(Al) incorporated into hexyl methacrylate-co-ethylene dimethacrylate was prepared to enhance the separation of mixtures of small aromatic compounds by using capillary liquid chromatography. The addition of 10 mg/mL MIL-53(Al) microparticles increased the micropore content in the monolithic matrix and increased the Brunauer-Emmett-Teller surface area from 26.92 to 85.12 m(2) /g. The presence of 1,4-benzenedicarboxylate moieties within the structure of MIL-53(Al) as an organic linker greatly influenced the separation of aromatic mixtures through π-π interactions. High-resolution separation was obtained for a series of alkylbenzenes (with resolution factors in the range 0.96-1.75) in less than 8 min, with 14 710 plates/m efficiency for propylbenzene, using a binary polar mobile phase of water/acetonitrile in isocratic mode. A reversed-phase separation mechanism was indicated by the increased retention factor and resolution as the water percentage in the mobile phase increased. A stability study on the composite column showed excellent mechanical stability under various conditions. The higher resolution and faster separation observed at increased temperature indicated an exothermic separation, whereas the negative values for the free energy change of transfer indicated a spontaneous process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Consideration of grain packing in granular iron treatability studies
NASA Astrophysics Data System (ADS)
Firdous, R.; Devlin, J. F.
2014-08-01
Commercial granular iron (GI) is light steel that is used in Permeable Reactive Barriers (PRBs). Investigations into the reactivity of GI have focused on its chemical nature and relatively little direct work has been done to account for the effects of grain shape and packing. Both of these factors are expected to influence available grain surface area, which is known to correlate to reactivity. Commercial granular iron grains are platy and therefore pack in preferential orientations that could affect solution access to the surface. Three packing variations were investigated using Connelly Iron and trichloroethylene (TCE). Experimental kinetic data showed reaction rates 2-4 times higher when grains were packed with long axes preferentially parallel to flow (VP) compared to packings with long axes preferentially perpendicular to flow (HP) or randomly arranged (RP). The variations were found to be explainable by variations in reactive sorption capacities, i.e., sorption to sites where chemical transformations took place. The possibility that the different reactive sorption capacities were related to physical pore-scale differences was assessed by conducting an image analysis of the pore structure of sectioned columns. The analyses suggested that pore-scale factors - in particular the grain surface availability, reflected in the sorption capacity terms of the kinetic model used - could only account for a fraction of the observed reactivity differences between packing types. It is concluded that packing does affect observable reaction rates but that micro-scale features on the grain surfaces, rather than the pore scale characteristics, account for most of the apparent reactivity differences. This result suggests that treatability tests should consider the packing of columns carefully if they are to mimic field performance of PRBs to the greatest extent possible.
Improved Thermal Modulator for Gas Chromatography
NASA Technical Reports Server (NTRS)
Hasselbrink, Ernest Frederick, Jr.; Hunt, Patrick J.; Sacks, Richard D.
2008-01-01
An improved thermal modulator has been invented for use in a variant of gas chromatography (GC). The variant in question denoted as two-dimensional gas chromatography (2DGC) or GC-GC involves the use of three series-connected chromatographic columns, in the form of capillary tubes coated interiorly with suitable stationary phases (compounds for which different analytes exhibit different degrees of affinity). The two end columns are relatively long and are used as standard GC columns. The thermal modulator includes the middle column, which is relatively short and is not used as a standard GC column: instead, its temperature is modulated to affect timed adsorption and desorption of analyte gases between the two end columns in accordance with a 2DGC protocol.
Size-exclusion chromatography using core-shell particles.
Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J
2017-02-24
Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.
Wu, Xiabing; You, Linjun; Di, Bin; Hao, Weiqiang; Su, Mengxiang; Gu, Yu; Shen, Lingling
2013-07-19
Novel chiral core-shell silica microspheres with trans-(1R,2R)-diaminocyclohexane (DACH) moiety bridged in the mesoporous shell were synthesized using layer-by-layer method. The chiral mesoporous shell around the nonporous silica core was formed by the co-condensation of N,N'-bis-[(triethoxysilyl)propyl]-trans-(1R,2R)-bis-(ureido)-cyclohexane (DACH-BS) and tetraethoxysilane (TEOS) using octadecyltrimethylammonium chloride (C18TMACl) and triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer (P123) as the templates. The functionalized core-shell silica microspheres were characterized and tested as chiral stationary phases for high performance liquid chromatography (HPLC). R/S-1,1'-bi-2,2'-naphthol, R/S-6,6'-dibromo-1,1'-bi-2-naphthol and R/S-1,1'-bi-2,2'-phenanthrol were enantioseparated rapidly on the column packed with the DACH core-shell silica particles. Moreover, the column packed with core-shell particles exhibited better performance than the column packed with the DACH functionalized periodic mesoporous organosilicas. Copyright © 2013 Elsevier B.V. All rights reserved.
Gritti, Fabrice; Guiochon, Georges
2007-12-28
The adsorption isotherms of phenol, caffeine, insulin, and lysozyme were measured on two C(18)-bonded silica columns. The first one was packed with classical totally porous particles (3 microm Luna(2)-C(18)from Phenomenex, Torrance, CA, USA), the second one with shell particles (2.7 microm Halo-C(18) from Advanced Materials Technology, Wilmington, DE, USA). The measurements were made at room temperature (T=295+/-1K), using mainly frontal analysis (FA) and also elution by characteristic points (FACP) when necessary. The adsorption energy distributions (AEDs) were estimated by the iterative numerical expectation-maximization (EM) procedure and served to justify the choice of the best adsorption isotherm model for each compound. The best isotherm parameters were derived from either the best fit of the experimental data to a multi-Langmuir isotherm model (MLRA) or from the AED results (equilibrium constants and saturation capacities), when the convergence of the EM program was achieved. The experiments show than the loading capacity of the Luna column is more than twice that of the Halo column for low-molecular-weight compounds. This result was expected; it is in good agreement with the values of the accessible surface area of these two materials, which were calculated from the pore size volume distributions. The pore size volume distributions are validated by the excellent agreement between the calculated and measured exclusion volumes of polystyrene standards by inverse size exclusion chromatography (ISEC). In contrast, the loading capacity ratio of the two columns is 1.5 or less with insulin and lysozyme. This is due to a significant exclusion of these two proteins from the internal pore volumes of the two packing materials. This result raises the problem of the determination of the effective surface area of the packing material, particularly in the case of proteins. This area is about 40 and 30% of the total surface area for insulin and for lysozyme, respectively, based on the pore size volume distribution validated by the ISEC method. The ISEC experiments showed that the largest and the smallest mesopores have rather a cylindrical and a spherical shape, respectively, for both packing materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, W.D.
Passive solar heating was used in a still in which a packed column packed with popped popcorn separates the alcohol and water vapors. The still's performance was not satisfactory, and it is concluded that passive solar heating could have been better used to preheat makeup water for the fermentation process and to maintain proper fermentation temperatures during the winter. (LEW)
Continuous, packed-bed, enzymatic bioreactor production and stability of feruloyl soy glycerides
USDA-ARS?s Scientific Manuscript database
The synthesis of feruloyl soy glycerides was demonstrated on a pilot-scale (1 metric ton/year) in a continuous, four-column series, packed-bed, enzymatic bioreactor (herinafter referred to as the bioreactor). Ethyl ferulate and soybean oil were combined and converted at 3.5 kg/d over Candida antarti...
Luo, Quanzhou; Yue, Guihua; Valaskovic, Gary A; Gu, Ye; Wu, Shiaw-Lin; Karger, Barry L.
2008-01-01
Following on our recent work, on-line one dimensional (1D) and two dimensional (2D) PLOT/LC-ESI-MS platforms using 3.2 m × 10 μm i.d. poly(styrenedivinylbenzene) (PS-DVB) porous layer open tubular (PLOT) columns have been developed to provide robust, high performance and ultrasensitive proteomic analysis. Using a PicoClear tee, the dead volume connection between a 50 μm i.d. PS-DVB monolithic microSPE column and the PLOT column was minimized. The microSPE/PLOT column assembly provided a separation performance similar to that obtained with direct injection onto the PLOT column at a mobile phase flow rate of 20 nL/min. The trace analysis potential of the platform was evaluated using an in-gel tryptic digest sample of a gel fraction (15 to 40 kDa) of a cervical cancer (SiHa) cell line. As an example of the sensitivity of the system, ∼2.5 ng of protein in 2 μL solution, an amount corresponding to 20 SiHa cells, was subjected to on-line microSPE-PLOT/LC-ESIMS/MS analysis using a linear ion trap MS. 237 peptides associated with 163 unique proteins were identified from a single analysis when using stringent criteria associated with a false positive rate less than 1% . The number of identified peptides and proteins increased to 638 and 343, respectively, as the injection amount was raised to ∼45 ng of protein, an amount corresponding to 350 SiHa cells. In comparison, only 338 peptides and 231 unique proteins were identified (false positive rate again less than 1%) from 750 ng of protein from the identical gel fraction, an amount corresponding to 6000 SiHa cells, using a typical 15 cm × 75 μm i.d. packed capillary column. The greater sensitivity, higher recovery, and higher resolving power of the PLOT column resulted in the increased number of identifications from only ∼5% of the injected sample amount. The resolving power of the microSPE/PLOT assembly was further extended by 2D chromatography via combination of the high-efficiency reversed phase PLOT column with strong cation exchange chromatography (SCX). As an example, 1071 peptides associated with 536 unique proteins were identified from 75 ng of protein from the same gel fraction, an amount corresponding to 600 cells, using 5 ion exchange fractions in online 2D SCX-PLOT/LC-MS. The 2D system, implemented in an automated format, led to simple and robust operation for proteomic analysis. These promising results demonstrate the potential of the PLOT column for ultratrace analysis. PMID:17625912
[Key factors in the control of electroosmosis with external radial electric field in CE].
Zhu, Y; Chen, Y
1999-11-01
Direct control of electroosmosis flow (EOF) by external radial electric field was performed at room temperature using a home-made field-modulated capillary electrophoresis (CE) system. The EOF was monitored at 206 nm by using DMSO as a probe. To apply a radial electric field across the CE capillary wall, the capillary was cased with a wide column. Both of the concentric space and the capillary bore were then filled with an identical running buffer and applied with an axial electric field of 150 V/cm but starting from different levels. All of the tubes used were made of fused silica with polyimide over-coating (from the Yongnian Optical Fiber Work, Hebei, P. R. China). The size of the CE capillaries adopted was 25-100 microns i.d. (375 microns o.d.) x 28.5/45 cm (effective/total length), and that of the casing column 400 microns i.d. x 32 cm. To investigate the fundamentals of the external EOF control when using the flexible fused silica capillaries, various parameters have been inspected such as pH, buffer composition, additives and capillary wall feature etc.. As expected, to well control both of the magnitude and direction of the electroosmosis, the buffer pH should be kept below 4 and the buffer concentration below 50 mmol/L. However, buffers below 1 mmol/L should be avoided because such a diluted running buffer may result in poor CE separation. Weak electrolytes like citric acid, tartaric acid and acetic acid were found to be capable of generating better EOF control than the strong electrolytes such as phosphate and chlorides. This is possibly due to the formation of looser electric double layer with the weak rather than the strong electrolytes. Some wall coatings like calix arene and its derivatives can evidently improve the EOF control even at pH 5. This reveals an exciting way to expend the controllable pH range. In addition, narrow-bore capillaries were demonstrated to be better than wide-bore tubes. Other conditions such as buffer additives and capillary rinse procedure were shown to have only negligible influence on the control.
Contexts for Column Addition and Subtraction
ERIC Educational Resources Information Center
Lopez Fernandez, Jorge M.; Velazquez Estrella, Aileen
2011-01-01
In this article, the authors discuss their approach to column addition and subtraction algorithms. Adapting an original idea of Paul Cobb and Erna Yackel's from "A Contextual Investigation of Three-Digit Addition and Subtraction" related to packing and unpacking candy in a candy factory, the authors provided an analogous context by…
Prieto-Blanco, M C; Moliner-Martínez, Y; López-Mahía, P; Campíns-Falcó, P
2012-07-27
A quick, miniaturized and on-line method has been developed for the determination in water of the predominant homologue of benzalkonium chloride, dodecyl dimethyl benzyl ammonium chloride or lauralkonium chloride (C(12)-BAK). The method is based on the formation of an ion-pair in both in-tube solid-phase microextraction (IT-SPME) and capillary liquid chromatography. The IT-SPME optimization required the study of the length and nature of the stationary phase of capillary and the processed sample volume. Because to the surfactant character of the analyte both, the extracting and replacing solvents, have played a decisive role in the IT-SPME optimized procedure. Conditioning the capillary with the mobile phase which contains the counter ion (acetate), using an organic additive (tetrabutylammonium chloride) added to the sample and a mixture water/methanol as replacing solvent (processed just before the valve is switched to the inject position), allowed to obtain good precision of the retention time and a narrow peak for C(12)-BAK. A reversed-phase capillary based TiO(2) column and a mobile phase containing ammonium acetate at pH 5.0 for controlling the interactions of cationic surfactant with titania surface were proposed. The optimized procedure provided adequate linearity, accuracy and precision at the concentrations interval of 1.5-300 μg L(-1) .The limit of detection (LOD) was 0.5 μg L(-1) using diode array detection (DAD). The applicability of proposed IT-SPME-capillary LC method has been assessed in several water samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Lin, Zian; Huang, Hui; Sun, Xiaobo; Lin, Yao; Zhang, Lan; Chen, Guonan
2012-07-13
A new polymer monolith with three modes of reverse-phase, hydrophilic and cation-exchange interaction was synthesized in 100 μm i.d. fused-silica capillary by in situ polymerization procedure. The pre-polymerization mixture consisted of glycidyl methacrylate (GMA) and 4-vinylphenylboronic acid (VPBA) as bifunctional monomers, ethylene dimethacrylate (EDMA) as crosslinker, 1,4-butanediol (BDO) and diethylene glycol (DEG) as binary porogenic solvents, and azobisisobutyronitrile (AIBN) as initiator. The resulting poly(GMA-co-VPBA-co-EDMA) monolith showed a relatively homogeneous monolithic structure, good permeability and mechanical stability. Different ratios of monomers and porogens were used for optimizing the properties of monolithic column. The column performance was assessed by the separation of a series of neutral solutes, charge solutes, phenols and anilines. Compared with poly(GMA-co-EDMA) monolith, the proposed monolith exhibited more flexible adjustment of selectivity in terms of hydrophobic, hydrophilic, as well as cation-exchange interaction in the same chromatographic conditions. High column efficiencies for benzene derivatives with 70,000-102,000 theoretical plates/m could be obtained at a linear velocity of 0.265 mm/s. The run-to-run, column-to-column, and batch-to-batch repeatabilities of the retention times were less than 8.23%. Additionally, the purposed monolith was also applied to efficient separation of alkaloids and proteins for demonstrating its potential in biomolecule separation. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Ullrich, Thomas; Wesenberg, Dirk; Bleuel, Corinna; Krauss, Gerd-Joachim; Schmid, Martin G; Weiss, Michael; Gübitz, Gerald
2010-10-01
The development of methods for the separation of the enantiomers of fenoterol by chiral HPLC and capillary zone electrophoresis (CZE) is described. For the HPLC separation precolumn fluorescence derivatization with naphthyl isocyanate was applied. The resulting urea derivatives were resolved on a cellulose tris(3,5-dimethylphenylcarbamate)-coated silica gel column employing a column switching procedure. Detection was carried out fluorimetrically with a detection limit in the low ng/mL range. The method was adapted to the determination of fenoterol enantiomers in rat heart perfusates using liquid-liquid extraction. As an alternative a CE method was used for the direct separation of fenoterol enantiomers comparing different cyclodextrin derivatives as chiral selectors. Copyright © 2010 John Wiley & Sons, Ltd.
Mao, Zhenkun; Chen, Zilin
2017-01-13
A novel monolithic column with ionic liquid and styrene-modified bifunctional group was prepared for capillary electrochromatography (CEC) by in situ copolymerization in a ternary porogenic solvent. Ionic liquid (1-allyl-methylimidazolium chloride, AlMeIm + Cl - ) and styrene served as the bifunctional monomer, while ethylene dimethacrylate (EDMA) was used as the cross-linker. The monomer of AlMeIm + Cl - was introduced as anion-exchange group, while styrene as hydrophobic and aromatic group; the similar conjugated structure in AlMeIm + Cl - and styrene was beneficial for offeing obvious synergistic effect. The bifunctional stationary phase possessed powerful selectivity for the separation of neutral compounds, acidic analytes and phenols. The highest column efficiency was 2.70×10 5 platesm -1 (theoretical plates, N) for toluene. A relatively strong electroosmotic flow (EOF) was obtained in a wide range of pH values from 2.0 to 12.0, which could successfully achieve the rapid separation of the analytes within 10min. The proposed monolithic column was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). The results indicated that the resultant monolithic column had good permeability and excellent mechanical stability. Good reproducibility was obtained with relative standard deviations (RSDs) of the retention time in the range of 0.24-0.47% and 0.81-2.17% for run-to-run (n=5) and day-to-day (n=5), while 1.09-2.70% and 0.98-1.70% for column-to-column (n=3) and batch-to-batch (n=3), respectively. The combination of AlMeIm + Cl - and styrene was a promising option in the fabrication of the organic polymer monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.
Chemical factors influencing colloid-facilitated transport of contaminants in porous media
Roy, Sujoy B.; Dzombak, David A.
1997-01-01
The effects of colloids on the transport of two strongly sorbing solutesa hydrophobic organic compound, phenanthrene, and a metal ion, Ni2+were studied in sand-packed laboratory columns under different pH and ionic strength conditions. Two types of column experiments were performed as follows: (i) sorption/mobilization experiments where the contaminant was first sorbed in the column under conditions where no colloids were released and mobilized under conditions where colloids were released as a result of ionic strength reduction in the influent; and (ii) transport experiments where the contaminant, dissolved or sorbed on colloids, was injected into columns packed with a strongly sorbing porous medium. In the first type of experiment, contaminant mobilization was significant only when all releasable colloids were flushed from the column. In all other cases, although high colloid particle concentrations were encountered, there was no marked effect on total contaminant concentrations. In the second type of experiment, colloid deposition efficiencies were shown to control the enhancement of transport. The deposition efficiency was a function of the pH (for a high organic content sand) and of the contaminant concentration (for a charged species such as Ni2+).
Aprea, C; Sciarra, G; Bozzi, N
1997-01-01
Two methods for the quantitative analysis of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in urine were compared. The first was an high-performance liquid chromatography method using a C8 column with ion suppression and diode array detection. The urine extracts were first purified by solid-phase extraction (SPE) on silica capillary columns. The detection limit of the method was 15 micrograms/L for both compounds. The percentage coefficient of variation of the whole analysis evaluated at a concentration of 125.0 micrograms/L was 6.2% for 2,4-D and 6.8% for MCPA. The mean recovery of analysis was 81% for 2,4-D and 85% for MCPA. The second was a gas chromatographic (GC) method in which the compounds were first derivatized with pentafluorobenzylbromide to pentafluorobenzyl esters, which were determined with a slightly polar capillary column and electron capture detection. Before GC analysis, the urine extracts were purified by SPE on silica capillary columns. This method had a detection limit of 1 microgram/L for both compounds and a percentage coefficient of variation of the whole analysis, evaluated at a concentration of 30.0 micrograms/L, of 8% for 2,4-D, and of 5.5% for MCPA. the mean recovery was 87% for 2,4-D and 94% for MCPA. The low detection limit made the second method suitable for assaying the two herbicides in the general population. Duplicate analysis of ten urine samples from occupationally exposed subjects by the two methods gave identical results for a wide range of concentrations.
Self-regenerating column chromatography
Park, Woo K.
1995-05-30
The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.
Transport of viruses through saturated and unsaturated columns packed with sand
Anders, R.; Chrysikopoulos, C.V.
2009-01-01
Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173-179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid-solid and liquid to air-liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media. ?? Springer Science+Business Media B.V. 2008.
Liu, Kun; Tolley, H Dennis; Lee, Milton L
2012-03-02
Seven crosslinking monomers, i.e., 1,3-butanediol dimethacrylate (1,3-BDDMA), 1,4-butanediol dimethacrylate (1,4-BDDMA), neopentyl glycol dimethacrylate (NPGDMA), 1,5-pentanediol dimethacrylate (1,5-PDDMA), 1,6-hexanediol dimethacrylate (1,6-HDDMA), 1,10-decanediol dimethacrylate (1,10-DDDMA), and 1,12-dodecanediol dimethacrylate (1,12-DoDDMA), were used to synthesize highly cross-linked monolithic capillary columns for reversed-phase liquid chromatography (RPLC) of small molecules. Dodecanol and methanol were chosen as "good" and "poor" porogenic solvents, respectively, for these monoliths, and were investigated in detail to provide insight into the selection of porogen concentration using 1,12-DoDDMA. Isocratic elution of alkylbenzenes at a flow rate of 300 nL/min was conducted for all of the monoliths. Gradient elution of alkylbenzenes and alkylparabens provided high resolution separations. Optimized monoliths synthesized from all seven crosslinking monomers showed high permeability. Several of the monoliths demonstrated column efficiencies in excess of 50,000 plates/m. Monoliths with longer alkyl-bridging chains showed very little shrinking or swelling in solvents of different polarities. Column preparation was highly reproducible; the relative standard deviation (RSD) values (n=3) for run-to-run and column-to-column were less than 0.25% and 1.20%, respectively, based on retention times of alkylbenzenes. Copyright © 2012 Elsevier B.V. All rights reserved.
The importance of system band broadening in modern size exclusion chromatography.
Goyon, Alexandre; Guillarme, Davy; Fekete, Szabolcs
2017-02-20
In the last few years, highly efficient UHP-SEC columns packed with sub-3μm particles were commercialized by several providers. Besides the particle size reduction, the dimensions of modern SEC stationary phases (150×4.6mm) was also modified compared to regular SEC columns (300×6 or 300×8mm). Because the analytes are excluded from the pores in SEC, the retention factors are very low, ranging from -1
Fluorescence multiplexing with time-resolved and spectral discrimination using a near-IR detector.
Zhu, Li; Stryjewski, Wieslaw; Lassiter, Suzanne; Soper, Steven A
2003-05-15
We report on the design and performance of a two-color, time-resolved detector for the acquisition of both steady-state and time-resolved fluorescence data acquired in real time during the capillary gel electrophoresis separation of DNA sequencing fragments. The detector consisted of a pair of pulsed laser diodes operating at 680 and 780 nm. The diode heads were coupled directly to single-mode fibers, which were terminated into a single fiber mounted via a FC/PC connector to the detector body. The detector contained a dichroic filter, which directed the dual-laser beams to an objective. The objective focused the laser light into a capillary gel column and also collected the resulting fluorescence emission. The dual-color emission was transmitted through the dichroic and focused onto a multimode fiber (core diameter 50 microm), which carried the luminescence to a pair of single-photon avalanche diodes (SPADs). The emission was sorted spectrally using a second dichroic onto one of two SPADs and isolated using appropriate interference filters (710- or 810-nm channel). The dual-color detector demonstrated a time response of 450 and 510 ps (fwhm) for the 710- and 810-nm channels, respectively. The mass detection limits for two near-IR dye-labeled sequencing primers electrophoresed in a capillary gel column were found to be 7.1 x 10(-21) and 3.2 x 10(-20) mol (SNR = 3) for the 710- and 810-nm detector channels, respectively. In addition, no leakage of luminescence excited at 680 nm was observed in the 810-nm channel or 780-nm excited luminescence into the 710-nm channel. An M13mp18 template was sequenced in a single capillary gel column using a two-color, two-lifetime format. The read length was found to be 650 base pairs for the test template at a calling accuracy of 95.1% using a linear poly(dimethylacrylamide) (POP6) gel column, with the read length determined primarily by the electrophoretic resolution produced by the sieving gel.
Hattori, Toshiaki; Anraku, Nobuhiro; Kato, Ryo
2010-02-01
Five chitosan oligosaccharides were separated in acidic aqueous solution by capillary electrophoresis (CE) with indirect photometric detection using a positively coated capillary. Electrophoretic mobility of the chitooligosaccharides (COSs) depended on the number of monomer units in acidic aqueous solution, similar to other polyelectrolyte oligomers. The separation was developed in nitric acid aqueous solution at pH 3.0 with 1 mM Crystal Violet, using a capillary positively coated with N-trimethoxypropyl-N,N,N-trimethylammonium chloride. The limit of the detection for chitooligosaccharides with two to six saccharide chains was less than 5 microM. CE determination of an enzymatically hydrolyzed COS agreed with results from HPLC. 2009 Elsevier B.V. All rights reserved.
Treatment of highly polluted groundwater by novel iron removal process.
Sim, S J; Kang, C D; Lee, J W; Kim, W S
2001-01-01
The removal of ferrous iron (Fe(II)) in groundwater has been generally achieved by simple aeration, or the addition of an oxidizing agent. Aeration has been shown to be very efficient in insolubilization ferrous iron at a pH level greater than 6.5. In this study, pH was maintained over 6.5 using limestone granules under constant aeration to oxidize ferrous iron in groundwater in a limestone packed column. A sedimentation unit coupled with a membrane filtration was also developed to precipitate and filtrate the oxidized ferric compound simultaneously. Several bench-scale studies, including the effects of the limestone granule sizes, amounts and hydraulic retention time on iron removal in the limestone packed column were investigated. It was found that 550 g/L of the 7-8 mesh size limestone granules, and 20 min of hydraulic retention time in the limestone packed column, were necessary for the sufficient oxidation of 40 mg/L of iron(II) in groundwater. Long-term operation was successfully achieved in contaminated waters by removing the iron deposits on the surface of the limestone granule by continuous aeration from the bottom of the column. Periodic reverse flow helped to remove caking and fouling of membrane surface caused by the continuous filtration. Recycling of the treated water from the membrane right after reverse flow operation made possible an admissible limit of iron concentration of the treated water for drinking. The pilot-scale process was constructed and has been tested in the rural area of Korea.
Tatari, K; Smets, B F; Albrechtsen, H-J
2013-10-15
A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled and continuous hydraulic and ammonium loading. Flowrates and flow recirculation around the column are chosen to mimic full-scale hydrodynamic conditions, and minimize axial gradients. A reference ammonium loading rate is calculated based on the average loading experienced in the active zone of the full-scale filter. Effluent concentrations of ammonium are analyzed when the bench-scale column is subject to reference loading, from which removal rates are calculated. Subsequently, removal rates above the reference loading are measured by imposing short-term loading variations. A critical loading rate corresponding to the maximum removal rate can be inferred. The assay was successfully applied to characterize biokinetic behavior from a test rapid sand filter; removal rates at reference loading matched those observed from full-scale observations, while a maximum removal capacity of 6.9 g NH4(+)-N/m(3) packed sand/h could easily be determined at 7.5 g NH4(+)-N/m(3) packed sand/h. This assay, with conditions reflecting full-scale observations, and where the biological activity is subject to minimal physical disturbance, provides a simple and fast, yet powerful tool to gain insight in nitrification kinetics in rapid sand filters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Micro-columns packed with Chlorella vulgaris immobilised on silica gel for mercury speciation.
Tajes-Martínez, P; Beceiro-González, E; Muniategui-Lorenzo, S; Prada-Rodríguez, D
2006-02-28
A method has been developed for mercury speciation in water by using columns packed with Chlorella vulgaris immobilised on silica gel. The method involves the retention of CH(3)Hg(+) and Hg(2+) in micro-columns prepared by packing immobilised algae in polypropylene tubes, followed by selective and sequential elution with 0.03 and 1.5M HCl for CH(3)Hg(+) and Hg(2+), respectively. The adsorption capacity of the micro-algae for Hg(2+) and CH(3)Hg(+) has been evaluated using free and immobilised C. vulgaris. The efficiency uptake for both species at pH 3 was higher than 97%. Studies were carried out on the effect of retention and elution conditions for both species. Furthermore, the stability of mercury species retained on algae-silica gel micro-columns and lifetime of the columns were also investigated. Hg(2+) showed a higher stability than CH(3)Hg(+) at 0 degrees C (21 and 3 days, respectively) and a better lifetime than for the organic species. The developed method was applied to the analysis of spiked tap, sea and wastewater samples. Recovery studies on tap and filtered seawater provided results between 96+/-3 and 106+/-2 for Hg(2+) and from 98+/-5 to 107+/-5 for CH(3)Hg(+), for samples spiked with single species. For samples spiked with both CH(3)Hg(+) and Hg(2+), the average recoveries varied from 96+/-5 to 99+/-3 and from 103+/-6 to 115+/-5 for Hg(2+) and CH(3)Hg(+), respectively. However, the percentages of retention and elution on wastewater and unfiltered seawater were only adequate for the inorganic species.
Wei, Dan; Zhu, Yan; Guo, Ming
2018-02-01
A sequential online extraction, clean-up and separation system for the determination of betaine, l-carnitine and choline in human urine using column-switching ion chromatography with nonsuppressed conductivity detection was developed in this work. A self-packed pretreatment column (50 × 4.6 mm, i.d.) was used for the extraction and clean-up of betaine, l-carnitine and choline. The separation was achieved using self-packed cationic exchange column (150 × 4.6 mm, i.d.), followed by nonsuppressed conductivity detection. Under optimized experimental conditions, the developed method presented good analytical performance, with excellent linearity in the range of 0.60-100 μg mL -1 for betaine, 0.75-100 μg mL -1 for l-carnitine and 0.50-100 μg mL -1 for choline, with all correlation coefficients (R 2 ) >0.99 in urine. The limits of detection were 0.15 μg mL -1 for betaine, 0.20 μg mL -1 for l-carnitine and 0.09 μg mL -1 for choline. The intra- and inter-day accuracy and precision for all quality controls were within ±10.32 and ±9.05%, respectively. Satisfactory recovery was observed between 92.8 and 102.0%. The validated method was successfully applied to the detection of urinary samples from 10 healthy people. The values detected in human urine using the proposed method showed good agreement with the measurement reported previously. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, L.T.
Because it has been our goal to interface the supercritical fluid chromatograph with a Fourier transform infrared spectrometer we have initially chosen packed columns due to their increased sample capacities, and supercritical CO/sub 2/ because of its infrared transparency. This paper compares two sampling techniques that can be utilized in packed column supercritical fluid Chromatography (SFC). Traditional sample introduction is accomplished using an injector with a sample loop. The loop is filled with the appropriate amount of material, and subsequently inserted into the mobile phase path. In most cases the sample must be either dissolved or extracted into an appropriatemore » solvent for such sample introduction. Note that unlike HPLC, where the solvent can be the same as the mobile phase, traditional sampling with SFC must use a solvent that is very different from the mobile phase. As a result, solvent peaks are almost always present, especially with universal detectors like FTIR. An alternative method is described here whereby both extraction of the sample and introduction of the extract onto the column is accomplished on-line using only the supercritical fluid mobile phase. This sampling technique is made possible by a simple valving scheme which ties directly the extraction vessel, the injector, the packed column and the detector. This technique has several advantages over the traditional methods, not the least of which is the absence of a large amount of foreign solvent introduced on the column. 11 refs., 7 figs.« less
A "Greenhouse Gas" Experiment for the Undergraduate Laboratory
ERIC Educational Resources Information Center
Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert
2014-01-01
This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…
Kumar, Rajesh; Pant, H J; Goswami, Sunil; Sharma, V K; Dash, A; Mishra, S; Bhanja, K; Mohan, Sadhana; Mahajani, S M
2017-03-01
Holdup and axial dispersion of liquid phase in a catalytic exchange column were investigated by measuring residence time distributions (RTD) using a radiotracer technique. RTD experiments were independently carried out with two different types of packings i.e. hydrophobic water-repellent supported platinum catalyst and a mixture (50% (v/v)) of hydrophobic catalyst and a hydrophillic wettable packing were used in the column. Mean residence times and hold-ups of the liquid phase were estimated at different operating conditions. Axial dispersion model (ADM) and axial dispersion with exchange model (ADEM) were used to simulate the measured RTD data. Both the models were found equally suitable to describe the measured data. The degree of axial mixing was estimated in terms of Peclet number (Pe) and Bodenstein number (Bo). Based on the obtained parameters of the ADM, correlations for total liquid hold-up (H T ) and axial mixing in terms of Bo were proposed for design and scale up of the full-scale catalytic exchange column. Copyright © 2016 Elsevier Ltd. All rights reserved.
Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges
2012-08-10
The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop. Copyright © 2012 Elsevier B.V. All rights reserved.
Future perspectives of using hollow fibers as structured packings in light hydrocarbon distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dali; Orler, Bruce; Tornga, Stephanie
2011-01-26
Olefin and paraffin are the largest chemical commodities. Furthermore, they are major building blocks for the petrochemical industry. Each year, petroleum refining, consumes 4,500 TBtu/yr in separation energy, making it one of the most energy-intensive industries in the United States). Just considering liquefied petroleum gas (ethane/propane/butane) and olefins (ethylene and propylene) alone, the distillation energy consumption is about 400 TBtu/yr in the US. Since petroleum distillation is a mature technology, incremental improvements in column/tray design will only provide a few percent improvements in the performance. However, each percent saving in net energy use amounts to savings of 10 TBtu/yr andmore » reduces CO{sub 2} emissions by 0.2 MTon/yr. In practice, distillation columns require 100 to 200 trays to achieve the desired separation. The height of a transfer unit (HTU) of conventional packings is typical in the range of 36-60 inch. Since 2006, we had explored using several non-selective membranes as the structured packings to replace the conventional packing materials used in propane and propylene distillation. We obtained the lowest HTU of < 8 inch for the hollow fiber column, which was >5 times shorter than that of the conventional packing materials. In 2008, we also investigated this type of packing materials in iso-/n-butane distillation. Because of a slightly larger relative volatility of iso-/n-butane than that of propane/propylene, a wider and a more stable operational range was obtained for the iso-/n-butane pair. However, all of the experiments were conducted on a small scale with flowrate of < 25 gram/min. Recently, we demonstrated this technology on a larger scale (<250 gram/min). Within the loading range of F-factor < 2.2 Pa{sup 0.5}, a pressure drop on the vapor side is below 50 mbar/m, which suggests that the pressure drop of hollow fibers packings is not an engineering barrier for the applications in distillations. The thermal stability study suggests that polypropylene hollow fibers are stable after a long time exposure to C{sub 2} - C{sub 4} mixtures. The effects of packing density on the separation efficiency will be discussed.« less
Urbánek, Marek; Pospísilová, Marie; Polásek, Miroslav
2002-04-01
The combination of capillary isotachophoresis (ITP) and capillary zone electrophoresis (CZE) in the column coupling configuration was optimized in a mode where the electrolyte for the CZE step is different from the leading and terminating ITP electrolytes. Two colored markers, picric acid and 1-nitroso-2-naphthol, were used for exact timing of the transfer of isotachophoretically stacked analyte zones into the CZE column and for the control of the residual amount of the leading and terminating ITP electrolytes entering the CZE capillary together with the analytes, thus controlling the duration of transient ITP migration in the CZE capillary and ensuring good separation of the analytes and reproducibility of the migration times (relative standard deviations 1%). ITP-CZE was applied to the simultaneous assay of several cinnamic acid derivatives and flavonoids in methanolic extracts of Sambucus flowers and Crataegus leaves and flowers. The preconcentrating and cleansing effect of the ITP step allowed injection of relatively large sample volumes (30 microL). The limits of detection were approximately 20-50 ng x mL(-1) and 100 ng x mL(-1) for the acids and flavonoids, respectively ( thick similar 200-times lower compared to conventional CE) with spectrophotometric detection at 254 nm. The ITP-CZE exhibited satisfactory linearity and precision when using CZE buffer of pseudo "pH" 9.0; 1-nitroso-2-naphthol was employed as the internal standard. The separation took approximately 35 min. The ITP-CZE results for rutin, hyperoside, and vitexin-2-O"-rhamnoside were in good accordance with those obtained previously by high-performance liquid chromatography.
Saito, Koichi; Ohmura, Atsuko; Takekuma, Mikiko; Sasano, Ryoichi; Matsuki, Yasuhiko; Nakazawa, Hiroyuki
2007-06-01
A newly developed large-volume injection (LVI) technique that employs a unique stomach-shaped inlet liner (SSIL) inside of a programmable temperature vaporizer was used for the determination of trace amounts of dioxins in human milk and plasma. The initial temperature and the initial dwelling time of the inlet and the kind of solvent used were found to be critical in determining the analytical sensitivity of dioxins due to the loss of these relatively volatile compounds during solvent vaporization. Human milk and plasma were purified and fractionated by pre-packed multi-layered silica-gel chromatography and activated carbon silica-gel column chromatography. A 20-microL aliquot of the fraction collected from the chromatography with toluene was directly applied to the LVI system in high-resolution gas chromatography/high-resolution mass spectrometry. Excellent correlation (r > 0.97) between the values obtained by the LVI method using the SSIL device and those by the conventional regular-volume splitless injection method was obtained for PCDDs, PCDFs and non-ortho PCBs in human milk and plasma samples.
The formation of quasi-alicyclic rings in alkyl-aromatic compounds
NASA Astrophysics Data System (ADS)
Straka, Pavel; Buryan, Petr; Bičáková, Olga
2018-02-01
The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.
Numerical Simulation of rivulet build up via lubrication equations
NASA Astrophysics Data System (ADS)
Suzzi, N.; Croce, G.
2017-11-01
A number of engineering problems involve the evolution of a thin layer of liquid over a non-wettable substrate. For example, CO2 chemical absorption is carried out in packed columns, where post-combustion CO2 flows up while liquid solvent falls down through a collection of corrugated sheets. Further application include, among others, in-flight icing simulations, moisture condensation on de-humidifier fins, fogging build up and removal. Here, we present a development of an in-house code solving numerically the 2D lubrication equation for a film flowing down an inclined plate. The disjoining pressure approach is followed, in order to model both the contact line discontinuity and the surface wettability. With respect to the original implementation, the full modeling of capillary pressure terms according to Young- Laplace relation allows to investigate contact angles close to π/2. The code is thus validated with literature numerical results, obtained by a fully 3D approach (VOF), showing satisfying agreement despite a strong reduction in terms of computational cost. Steady and unsteady wetting dynamics of a developing rivulet are investigated (and validated) under different load conditions and for different values of the contact angles.
Magnetoelectric confinement and stabilization of Z pinch in a soft-x-ray Ar(+8) laser.
Szasz, J; Kiss, M; Santa, I; Szatmari, S; Kukhlevsky, S V
2013-05-03
Magnetoelectric confinement and stabilization of the plasma column in a soft-x-ray Ar(+8) laser, which is excited by a capillary Z pinch, via the combined magnetic and electric fields of the gliding surface discharge is experimentally demonstrated. Unlike soft-x-ray lasers excited by the conventional capillary Z pinches, the magnetoelectric confinement and stabilization of plasma do provide the laser operation without using any external preionization circuit.
Numerical Analysis of Infiltration Into a Sand Profile Bounded by a Capillary Fringe
NASA Astrophysics Data System (ADS)
Curtis, Alan A.; Watson, Keith K.
1980-04-01
The rapid response sometimes observed in a tile drain system following surface ponding of water is discussed in terms of the air compressibility effect. An earlier numerical study describing water movement into a bounded profile with a lower boundary impermeable to the passage of both air and water is reviewed with particular reference to the validity of the time-dependent boundary condition transformation used in simulating the inhibiting effects of the air pressure increase on infiltration. The extension of the transformation approach to a profile bounded by a capillary fringe is then considered in detail, and the results of numerical analyses are presented for infiltration into two columns of a fine sand initially in hydraulic equilibrium from a prior gravity drainage regime. The shorter column develops a steady state flow condition at short times which is consistent with earlier experimental findings. In contrast, the pressure of the entrapped air in the longer column gradually increases as infiltration proceeds until the analysis is terminated when air escape through the lower boundary is imminent.
Swineford, D.M.; Belisle, A.A.
1989-01-01
A method was developed for the simultaneous extraction of trifluralin, methyl paraoxon, methyl parathion, fenvalerate, and 2,4-D dimethylamine salt in pond water using a solid-phase C18 column. After elution from the C18 column, the eluate was analyzed on a capillary gas chromatograph equipped with an electron-capture or flame photometric detector.
Waktola, Habtewold D; Mjøs, Svein A
2018-04-01
The chromatographic efficiency that could be achieved in temperature-programmed gas chromatography was compared for four capillary columns that are typically applied for analysis of fatty acid methyl esters (FAME). Three different carrier gases, hydrogen, helium and nitrogen, were applied. For each experiment, the carrier gas velocities and the temperature rates were varied with a full 9 × 3 design, with nine levels on the carrier gas velocity and temperature rates of 1, 2 or 3°C/min. Response surface methodology was used to create models of chromatographic efficiency as a function of temperature rate and carrier gas velocity. The chromatographic efficiency was defined as the inverse of peak widths measured in retention index units. The final results were standardized so that the efficiencies that could be achieved within a certain time frame, defined by the retention time of the last compound in the chromatogram, could be compared. The results show that there were clear differences in the efficiencies that could be achieved with the different columns and that the efficiency decreased with increasing polarity of the stationary phase. The differences can be explained by higher resistance to mass transfer in the stationary phase in the most polar columns. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kuhlmann, O; Krauss, G J
1997-12-01
A sensitive and selective bioanalytical method for diclofenac using reversed-phase HPLC and fluorescence detection is described. Diclofenac was detected as its fluorescent derivative after on-line post-column photoderivatization. Irradiation with UV light of diclofenac in aqueous solutions leads to the sequential loss of both chlorine substituents and ring closure. The major product, carbazole-1-acetic acid, was detected by a fluorescence detector using an excitation wavelength of 286 nm and an emission wavelength of 360 nm. The self-made reactor was a crocheted ethylene and tetrafluoroethylene (ETFE, named TEFZEL) capillary, 20 m in length, wound directly around a 253.7 nm UV lamp. The capillary was crocheted in order to overcome peak widening. Chromatographic separation was achieved by using a Regis SPS 100 RP-8 column (5 microm; 150 mm x 4.6 mm i.d.) and a LiChrospher 100 RP-18 (5 microm) guard column from E. Merck. The detection limit was 1 ng ml(-1) at an injection volume of 20 microl. Daily relative standard deviations (RSD) were 5.5%, (73 ng diclofenac/ml, n = 9), and 5.1% (405 ng diclofenac/ml, n = 6), respectively. Chromatograms of human aqueous humor and human serum containing diclofenac, and figures showing the time dependent increase/decrease of the photoderivatization product, are shown.
NASA Astrophysics Data System (ADS)
Komarova, A. O.; Shashkov, M. V.; Sidel'nikov, V. N.
2017-11-01
Capillary columns based on a number of thermostable polysiloxane-silarylene motionless phases are prepared and their properties are studied. Three polymers with different contents of methyl and phenyl groups are synthesized: dimethylsiloxanesilarylene (DMS), methylphenylsiloxanesilarylene (MPhS), and diphenylsiloxanesilarylene (DPhS). Studies of their thermostability show that the level of the background current of these columns upon heating to 350°C is several times lower than that of a column based on polydimethylsiloxane. Based on McReynolds' studies of polarity and Abraham's studies of the selectivity of prepared columns according to the parameters of intermolecular interactions, it is found that silarylene MLPs are more affected by the contributions from specific interactions (especially for dipole-dipole, π-π-, and n-π-interactions) than MLPs with no phenylene inserts. The effect on the selectivity of a phenyl group inside a chain differs from the one produced by the phenyl groups in side MLP chains. The effect on the selectivity of a phenyl group inside a chain differs from the one produced by the phenyl groups in side MLP chains. Examples of the separation of test mixtures of aromatic and oxygen-containing compounds are obtained, along with an extract of thistle oil containing tocopherols and phytosterols at a final temperature of analysis of 350°C.
Cheng, Yi-Jie; Huang, Sing-Hao; Singco, Brenda; Huang, Hsi-Ya
2011-10-21
In this work, a series of poly(divinylbenzene-alkyl methacrylate) monolithic stationary phases, which were prepared by single step in situ polymerization of divinylbenzene and various alkyl methacrylates (butyl-, octyl-, lauryl- or stearyl methacrylate), were developed as separation columns of nine common sulfonamide antibiotics for capillary electrochromatography (CEC) coupled to mass spectrometry (MS). Results indicated that the sulfonamide's retention became weak with increased carbon chain length of alkyl methacrylate monomer (for example, t(R)=68 min and 21 min for butyl- and lauryl methacrylate, respectively). Among them, the poly(divinylbenzene-octyl methacrylate) (poly(DVB-OMA)) monolith was regarded as the optimal separation column as this provided better resolution within the shortest retention time. Moreover, the cross-sectional roughness of the monolithic column-end, that was used to couple to the ESI interface, strongly influenced the electrospray stability in the CEC-MS. Before the column was connected to the ESI-MS, a simple polishing was done to reduce the roughness of the column end that resulted to a great improvement in the signal stability. The relative standard deviations (RSDs) of the peak areas for the unpolished and polished ends of the poly(DVB-OMA) columns (n=5) were in the range of 46.1-60.2% and 8.9-16.4%, respectively. Furthermore, optimization of the mobile phase composition and the gradient elution strategy successfully determined the sulfonamide antibiotics in meat samples with as low as 10 μg/L level. Copyright © 2011 Elsevier B.V. All rights reserved.
Grinias, James P; Wong, Jenny-Marie T; Kennedy, Robert T
2016-08-26
The impact of viscous friction on eluent temperature and column efficiency in liquid chromatography is of renewed interest as the need for pressures exceeding 1000bar to use with columns packed with sub-2μm particles has grown. One way the development of axial and radial temperature gradients that arise due to viscous friction can be affected is by the thermal environment the column is placed in. In this study, a new column oven integrated into an ultrahigh pressure liquid chromatograph that enables both still-air and forced-air operating modes is investigated to find the magnitude of the effect of the axial thermal gradient that forms in 2.1×100mm columns packed with sub-2μm particles in these modes. Temperature increases of nearly 30K were observed when the generated power of the column exceeded 25W/m. The impact of the heating due to viscous friction on the repeatability of peak capacity, elution time, and peak area ratio to an internal standard for a gradient UHPLC-MS/MS method to analyze neurotransmitters was found to be limited. This result indicates that high speed UHPLC-MS/MS gradient methods under conditions of high viscous friction may be possible without the negative effects typically observed with isocratic separations under similar conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.
Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A
2016-05-05
This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Zhanjun; Zong, Chen; Ju, Huangxian; Yan, Feng
2011-11-07
A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using α-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL(-1) and a low detection limit of 0.1 ng mL(-1). The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Metzger, Philip T.
2006-01-01
Ergodicity is proved for granular contact forces. To obtain this proof from first principles, this paper generalizes Boltzmann's stosszahlansatz (molecular chaos) so that it maintains the necessary correlations and symmetries of granular packing ensembles. Then it formally counts granular contact force states and thereby defines the proper analog of Boltzmann's H functional. This functional is used to prove that (essentially) all static granular packings must exist at maximum entropy with respect to their contact forces. Therefore, the propagation of granular contact forces through a packing is a truly ergodic process in the Boltzmannian sense, or better, it is self-ergodic. Self-ergodicity refers to the non-dynamic, internal relationships that exist between the layer-by-layer and column-by-column subspaces contained within the phase space locus of any particular granular packing microstate. The generalized H Theorem also produces a recursion equation that may be solved numerically to obtain the density of single particle states and hence the distribution of granular contact forces corresponding to the condition of self-ergodicity. The predictions of the theory are overwhelmingly validated by comparison to empirical data from discrete element modeling.
Lakshmanraj, Levankumar; Gurusamy, Ayyanar; Gobinath, M B; Chandramohan, R
2009-09-30
Investigations were carried out to study the chromium removal efficiency of boiled mucilaginous seeds of Ocimum americanum. Batch experiments were conducted to study the biosorption kinetics of chromium removal for the concentrations 10mg/L, 20mg/L and 40 mg/L of chromium(VI) solutions. The biosorbent dosage was 8 g dry seeds/L. The toxic hexavalent chromium was reduced to less toxic chromium(III) in the presence of seeds and the reduced chromium was adsorbed on the mucilage of seeds. Both the chromium(VI) and chromium(III) were present in the aqueous phase. The optimum chromium reduction and adsorption was observed at the pH value 1.5. The biosorption data fitted well with Langmuir isotherm. The biosorption capacity calculated from the Langmuir isotherm was q=32 mg chromium(III)/g of dry seeds. The continuous column study was also carried out at the flow rate of 27 mL/h for the initial concentration 25mg/L of chromium(VI) feed solution using a packed bed column filled with boiled mucilaginous seeds. The maximum reduction of chromium(VI) to chromium(III) in the packed bed was 80%. The percentage removal of reduced chromium from the aqueous solution was 56.25%. This value was maintained constant until 0.52 L of chromium(VI) solution was pumped through the packed bed column. Thus the naturally immobilized polysaccharides on the seeds mimic the microbial polysaccharides in terms of their ability to adsorb heavy metals with an added advantage of making the immobilization step unnecessary which is a major cost factor of the metal removal process when microbial exopolysaccharides used. The uniform size and spherical shape of swollen seeds give an additional advantage to use them in a packed bed column for continuous removal of chromium(VI) from aqueous solutions.
Fletcher, Paul D I; Savory, Luke D; Woods, Freya; Clarke, Andrew; Howe, Andrew M
2015-03-17
With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil-water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil-water interface and to the water-calcium carbonate interface, and oil-water-calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate-air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate-water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil-water-calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil-water interfacial tension and a pumping pressure increase.
Park, C H; Okos, M R; Wankat, P C
1990-06-20
Acetone-butanol-ethanol (ABE) fermentation was performed continuously in an immobilized cell, trickle bed reactor for 54 days without, degeneration by maintaining the pH above 4.3. Column clogging was minimized by structured packing of immobilization matrix. The reactor contained two serial glass columns packed with Clostridium acetobutylicum adsorbed on 12- and 20-in.-long polyester sponge strips at total flow rates between 38 and 98.7 mL/h. Cells were initially grown at 20 g/L glucose resulting in low butanol (1.15 g/L) production encouraging cell growth. After the initial cell growth phase a higher glucose concentration (38.7 g/L) improved solvent yield from 13.2 to 24.1 wt%, and butanol production rate was the best. Further improvement in solvent yield and butanol production rate was not observed with 60 g/L of glucose. However, when the fresh nutrient supply was limited to only the first column, solvent yield increased to 27.3 wt% and butanol selectivity was improved to 0.592 as compared to 0.541 when fresh feed was fed to both columns. The highest butanol concentration of 5.2 g/L occurred at 55% conversion of the feed with 60 g/L glucose. Liquid product yield of immobilized cells approached the theoretical value reported in the literature. Glucose and product concentration profiles along the column showed that the columns can be divided into production and inhibition regions. The length of each zone was dependent upon the feed glucose concentration and feed pattern. Unlike batch fermentation, there was no clear distinction between acid and solvent production regions. The pH dropped, from 6.18-6.43 to 4.50-4.90 in the first inch of the reactor. The pH dropped further to 4.36-4.65 by the exit of the column. The results indicate that the strategy for long term stable operation with high solvent yield requires a structured packing of biologically stable porous matrix such as polyester sponge, a pH maintenance above 4.3, glucose concentrations up to 60 g/L and nutrient supply only to the inlet of the reactor.
Packing in Two and Three Dimensions
2003-06-01
square on the pallet is either completely covered or uncovered by a box. We first observe there must be at least one unit column with zero waste because...66 ( , , , , )EW N X Y a b X′ ′ ′ ′ ′ ′< . Any such unit column with zero waste must be covered with H-boxes because this corresponds to the
UNDERGRADUATE PROJECT ON VIRUS REMOVAL IN SLOW SAND FILTERS FOR RURAL MAYAN COMMUNITIES
Long-Term Removal in Columns
To simulate the normal operation of a biosand filter, 4 glass columns (Figure 1) packed with different iron orientations were charged daily with 1 PV of aquifer water containing ~108 pfu/mL of MS-2 bacte...
Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture.
Malhautier, Luc; Gracian, Catherine; Roux, Jean-Claude; Fanlo, Jean-Louis; Le Cloirec, Pierre
2003-01-01
The physico-chemical characteristics of granulated sludge lead us to develop its use as a packing material in air biofiltration. Then, the aim of this study is to investigate the potential of unit systems packed with this support in terms of ammonia and hydrogen sulfide emissions treatment. Two laboratory scale pilot biofilters were used. A volumetric load of 680 g H2S m(-3) empty bed day(-1) and 85 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to a unit called BGSn (column packed with granulated sludge and mainly supplied with hydrogen sulfide); a volumetric load of 170 g H2S m(-3) empty bed day(-1) and 340 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to the other called BGNs (column packed with granulated sludge and mainly supplied with ammonia). Ammonia and hydrogen sulfide elimination occur in the biofilters simultaneously. The hydrogen sulphide and ammonia removal efficiencies reached are very high: 100% and 80% for BGSn; 100% and 80% for BGNs respectively. Hydrogen sulfide is oxidized into sulphate and sulfur. The ammonia oxidation products are nitrite and nitrate. The nitrogen error mass balance is high for BGSn (60%) and BGNs (36%). This result could be explained by the denitrification process which would have occurred in anaerobic zones. High percentages of ammonia or hydrogen sulfide are oxidized on the first half of the column. The oxidation of high amounts of hydrogen sulfide would involve some environmental stress on nitrifying bacterial growth and activity.
Improvements in sparse matrix operations of NASTRAN
NASA Technical Reports Server (NTRS)
Harano, S.
1980-01-01
A "nontransmit" packing routine was added to NASTRAN to allow matrix data to be refered to directly from the input/output buffer. Use of the packing routine permits various routines for matrix handling to perform a direct reference to the input/output buffer if data addresses have once been received. The packing routine offers a buffer by buffer backspace feature for efficient backspacing in sequential access. Unlike a conventional backspacing that needs twice back record for a single read of one record (one column), this feature omits overlapping of READ operation and back record. It eliminates the necessity of writing, in decomposition of a symmetric matrix, of a portion of the matrix to its upper triangular matrix from the last to the first columns of the symmetric matrix, thus saving time for generating the upper triangular matrix. Only a lower triangular matrix must be written onto the secondary storage device, bringing 10 to 30% reduction in use of the disk space of the storage device.
Effects of remediation amendments on vadose zone microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Hannah M.; Tilton, Fred A.
2012-08-10
Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had nomore » affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.« less
Gent, David B.; Wani, Altaf; Alshawabkeh, Akram N.
2012-01-01
A combination of direct electrochemical reduction and in-situ alkaline hydrolysis has been proposed to decompose energetic contaminants such as 1,3,5-Trinitroperhydro- 1,3,5-triazine and 2,4,6-Trinitrotoluene (RDX) in deep aquifers. This process utilizes natural groundwater convection to carry hydroxide produced by an upstream cathode to remove the contaminant at the cathode as well as in the pore water downstream as it migrates toward the anode. Laboratory evaluation incorporated fundamental principles of column design coupled with reactive contaminant modeling including electrokinetics transport. Batch and horizontal sand-packed column experiments included both alkaline hydrolysis and electrochemical treatment to determine RDX decomposition reaction rate coefficients. The sand packed columns simulated flow through a contaminated aquifer with a seepage velocity of 30.5 cm/day. Techniques to monitor and record the transient electric potential, hydroxide transport and contaminant concentration within the column were developed. The average reaction rate coefficients for both the alkaline batch (0.0487 hr−1) and sand column (0.0466 hr−1) experiments estimated the distance between the cathode and anode required to decompose 0.5 mg/L RDX to the USEPA drinking water lifetime Health Advisory level of 0.002 mg/L to be 145 and 152 cm. PMID:23472044
Jiang, Hao; Yuan, Huiming; Qu, Yanyan; Liang, Yu; Jiang, Bo; Wu, Qi; Deng, Nan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui
2016-01-01
In this study, a novel kind of amide functionalized hydrophilic monolith was synthesized by the in situ photo-polymerization of N-vinyl-2-pyrrolidinone (NVP), acrylamide (AM), and N, N'-methylenebisacrylamide (MBA) in a UV transparent capillary, and successfully applied for hydrophilic interaction chromatography (HILIC) based enrichment of N-linked glycopeptides. With 2 μg of the tryptic digests of IgG as the sample, after enrichment, 18 glycopeptides could be identified by MALDI-TOF/TOF MS analysis. Furthermore, with the mixture of BSA and IgG digests (10,000:1, m/m) as the sample, 6 N-linked glycopeptides were unambiguously identified after enrichment, indicating the high selectivity and good specificity of such material. Moreover, such a monolithic capillary column was also applied for the N-glycosylation sites profiling of 6 μg protein digests from HeLa cells and 1 μL human serum. In total, 530 and 262 unique N-glycosylated peptides were identified, respectively, corresponding to 282 and 124N-glycoproteins, demonstrating its great potential for the large scale glycoproteomics analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Cryogenic focussing, ohmically heated on-column trap
NASA Technical Reports Server (NTRS)
Springston, Stephen R.
1991-01-01
A procedure is described for depositing a conductive layer of gold on the exterior of a fused-silica capillary used in gas chromatography. By subjecting a section of the column near the inlet to a thermal cycle of cryogenic cooling and ohmic heating, volatile samples are concentrated and subsequently injected. The performance of this trap as a chromatographic injector is demonstrated. Several additional applications are suggested and the unique properties of this device are discussed.
Investigation of energy dissipation due to contact angle hysteresis in capillary effect
NASA Astrophysics Data System (ADS)
Athukorallage, Bhagya; Iyer, Ram
2016-06-01
Capillary action or Capillarity is the ability of a liquid to flow in narrow spaces without the assistance of, and in opposition to, external forces like gravity. Three effects contribute to capillary action, namely, adhesion of the liquid to the walls of the confining solid; meniscus formation; and low Reynolds number fluid flow. We investigate the dissipation of energy during one cycle of capillary action, when the liquid volume inside a capillary tube first increases and subsequently decreases while assuming quasi-static motion. The quasi-static assumption allows us to focus on the wetting phenomenon of the solid wall by the liquid and the formation of the meniscus. It is well known that the motion of a liquid on an non-ideal surface involves the expenditure of energy due to contact angle hysteresis. In this paper, we derive the equations for the menisci and the flow rules for the change of the contact angles for a liquid column in a capillary tube at a constant temperature and volume by minimizing the Helmholtz free energy using calculus of variations. We describe the numerical solution of these equations and present results from computations for the case of a capillary tube with 1 mm diameter.
Development of a microcapillary column for detecting targeted messenger RNA molecules.
Ohnishi, Michihiro
2006-03-24
A capillary column in a rapid-flow system has been developed for detecting targeted messenger RNA (mRNA) molecules. The column has a structure made of two beds-one bed of porous microbeads and one bed of microbeads with a polythymidine base sequence. The targeted eukaryotic mRNA molecules are detected by two-step hybridization (sandwich hybridization) composed of polyadenosine selection of mRNA molecules and formation of a probe-target (targeted mRNA) hybrid. The sandwich hybridization, which is accomplished within 1 h, was tested using synthetic polydeoxynucleotides. Ten picomoles of the targeted polydeoxynucleotide were detected.
DEVELOPMENT, TESTING, AND DEMONSTRATION OF AN OPTIMAL FINE COAL CLEANING CIRCUIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven R. Hadley; R. Mike Mishra; Michael Placha
1999-01-27
The objective of this project was to improve the efficiency of the fine coal froth flotation circuit in commercial coal preparation plants. The plant selected for this project, Cyprus Emerald Coal Preparation Plant, cleans 1200-1400 tph of Pittsburgh seam raw coal and uses conventional flotation cells to clean the minus 100-mesh size fraction. The amount of coal in this size fraction is approximately 80 tph with an average ash content of 35%. The project was carried out in two phases. In Phase I, four advanced flotation cells, i.e., a Jameson cell, an Outokumpu HG tank cell, an open column, andmore » a packed column cell, were subjected to bench-scale testing and demonstration. In Phase II, two of these flotation cells, the Jameson cell and the packed column, were subjected to in-plant, proof-of-concept (POC) pilot plant testing both individually and in two-stage combination in order to ascertain whether a two-stage circuit results in lower levelized production costs. The bench-scale results indicated that the Jameson cell and packed column cell would be amenable to the single- and two-stage flotation approach. POC tests using these cells determined that single-stage coal matter recovery (CMR) of 85% was possible with a product ash content of 5.5-7%. Two-stage operation resulted in a coal recovery of 90% with a clean coal ash content of 6-7.5%. This compares favorably with the plant flotation circuit recovery of 80% at a clean coal ash of 11%.« less
Application of Nanofiber-packed SPE for Determination of Urinary 1-Hydroxypyrene Level Using HPLC.
Ifegwu, Okechukwu Clinton; Anyakora, Chimezie; Chigome, Samuel; Torto, Nelson
2014-01-01
It is always desirable to achieve maximum sample clean-up, extraction, and pre-concentration with the minimum possible organic solvent. The miniaturization of sample preparation devices was successfully demonstrated by packing 10 mg of 11 electrospun polymer nanofibers into pipette tip micro column and mini disc cartridges for efficient pre-concentration of 1-hydroxypyrene in urine samples. 1-hydroxypyrene is an extensively studied biomarker of the largest class of chemical carcinogens. Excretory 1-hydroxypyrene was monitored with HPLC/fluorescence detector. Important parameters influencing the percentage recovery such as fiber diameter, fiber packing amount, eluent, fiber packing format, eluent volume, surface area, porosity, and breakthrough parameters were thoroughly studied and optimized. Under optimized condition, there was a near perfect linearity of response in the range of 1-1000 μg/L with a coefficient of determination (r (2)) between 0.9992 and 0.9999 and precision (% RSD) ≤7.64% (n = 6) for all the analysis (10, 25, and 50 μg/L). The Limit of detection (LOD) was between 0.022 and 0.15 μg/L. When compared to the batch studies, both disc packed nanofiber sorbents and pipette tip packed sorbents exhibited evident dominance based on their efficiencies. The experimental results showed comparable absolute recoveries for the mini disc packed fibers (84% for Nylon 6) and micro columns (80% for Nylon 6), although the disc displayed slightly higher recoveries possibly due to the exposure of the analyte to a larger reacting surface. The results also showed highly comparative extraction efficiencies between the nanofibers and conventional C-18 SPE sorbent. Nevertheless, miniaturized SPE devices simplified sample preparation, reducing back pressure, time of the analysis with acceptable reliability, selectivity, detection levels, and environmental friendliness, hence promoting green chemistry.
Lee, Chang Young; Fan, Yi; Rubakhin, Stanislav S.; Yoon, Sook; Sweedler, Jonathan V.
2016-01-01
The integration of microfluidic devices—which efficiently handle small liquid volumes—with separations/mass spectrometry (MS) is an effective approach for profiling the neurochemistry occurring in selected neurons. Interfacing the microfluidic cell culture to the mass spectrometer is challenging because of geometric and scaling issues. Here we demonstrate the hyphenation of a neuron-in-capillary platform to a solid phase extraction device and off-line MS. A primary neuronal culture of Aplysia californica neurons was established directly inside a cylindrical polyimide capillary. The approach also uses a particle-embedded monolith to condition neuropeptide releasates collected from several Aplysia neurons cultured in the capillary, with the subsequent characterization of released peptides via MS. This system presents a number of advances compared to more traditional microfluidic devices fabricated with polydimethylsiloxane. These include low cost, easy access to cell culture, rigidity, ease of transport, and minimal fluid handling. The cylindrical geometry of the platform allows convenient interface with a wide range of analytical tools that utilize capillary columns. PMID:27245782
Meniscus formation in a capillary and the role of contact line friction.
Andrukh, Taras; Monaenkova, Daria; Rubin, Binyamin; Lee, Wah-Keat; Kornev, Konstantin G
2014-01-28
We studied spontaneous formation of an internal meniscus by dipping glass capillaries of 25 μm to 350 μm radii into low volatile hexadecane and tributyl phosphate. X-ray phase contrast and high speed optical microscopy imaging were employed. We showed that the meniscus completes its formation when the liquid column is still shorter than the capillary radius. After that, the meniscus travels about ten capillary radii at a constant velocity. We demonstrated that the experimental observations can be explained by introducing a friction force linearly proportional to the meniscus velocity with a friction coefficient depending on the air/liquid/solid triplet. It was demonstrated that the friction coefficient does not depend on the capillary radius. Numerical solution of the force balance equation revealed four different uptake regimes that can be specified in a phase portrait. This phase portrait was found to be in good agreement with the experimental results and can be used as a guide for the design of thin porous absorbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oi, Takao; Shimazaki, Hiromi; Ishii, Reiko
1997-07-01
Boron-specific resins with n-methyl glucamine as the functional group were used as column packing material of liquid chromatography for boron isotope separation. The shapes of chromatograms in reverse breakthrough experiments were heavily dependent on the pH of the eluents, and there existed a pH value at which a chromatogram of the displacement type was realized nearly ideally. The value of the single-stage separation factor for the boron isotopes varied between 1.010 and 1.022, depending on the temperature and the form of the resins. The existence of the three-coordinate boron species in addition to the four-coordinate species in the resin phasemore » is suggested.« less
Absorption of mercuric cation by tannins in agricultural residues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waiss, A.C. Jr.; Wiley, M.E.; Kuhnle, J.A.
1973-01-01
Two common environmental pollutants are agricultural residues (skins, pits, husks, tannin bark, grape pomace) and waste streams of water containing only traces of heavy metals (such as mercury at 10 or more ppb) from mining or manufacturing operations. Agricultural residues contain tannins, polyphenolic substances, pectin, and other polymers-all with chemically reactive groups that can chelate, reduce, oxidize, demonstrate ion exchange properties, and aid in removing traces of heavy metals from dilute waste water streams at low cost. Finely ground and water-washed agricultural residues were slurried in water and packed into columns for absorption tests with heavy metals. Solutions of knownmore » concentrations of heavy metals were passed through the packed columns which were then eluted with water or with alkaline or acidic solutions. The fractions and the column absorbents were then analyzed by standard atomic absorption methods. The nature of the physical and chemical forces that are effective in metal absorption from agricultural residues is not clear.« less
Cho, Yirang; Lee, H.W.; Fountain, S.T.; Lubman, D.M.
1994-01-01
Trace quantities of laser ablated organic polymers were analyzed by using commercial capillary column gas chromatography/mass spectrometry; the instrument was modified so that the laser ablation products could be introduced into the capillary column directly and the constituents of each peak in the chromatogram were identified by using a mass spectrometer. The present study takes advantage of the selective ion monitoring mode for significantly improving the sensitivity of the mass spectrometer as a detector, which is critical in analyzing the trace quantities and confirming the presence or absence of the species of interest in laser ablated polymers. The initial composition of the laser ablated polymers was obtained by using an electron impact reflectron time-of-flight mass spectrometer and the possible structure of the fragments observed in the spectra was proposed based on the structure of the polymers.
Continuous electrophoretic purification of individual analytes from multicomponent mixtures.
McLaren, David G; Chen, David D Y
2004-04-15
Individual analytes can be isolated from multicomponent mixtures and collected in the outlet vial by carrying out electrophoretic purification through a capillary column. Desired analytes are allowed to migrate continuously through the column under the electric field while undesired analytes are confined to the inlet vial by application of a hydrodynamic counter pressure. Using pressure ramping and buffer replenishment techniques, 18% of the total amount present in a bulk sample can be purified when the resolution to the adjacent peak is approximately 3. With a higher resolution, the yield could be further improved. Additionally, by periodically introducing fresh buffer into the sample, changes in pH and conductivity can be mediated, allowing higher purity (>or=99.5%) to be preserved in the collected fractions. With an additional reversed cycle of flow counterbalanced capillary electrophoresis, any individual component in a sample mixture can be purified providing it can be separated in an electrophoresis system.
Szymańska, Ewa; Tinnevelt, Gerjen H; Brodrick, Emma; Williams, Mark; Davies, Antony N; van Manen, Henk-Jan; Buydens, Lutgarde M C
2016-08-05
Current challenges of clinical breath analysis include large data size and non-clinically relevant variations observed in exhaled breath measurements, which should be urgently addressed with competent scientific data tools. In this study, three different baseline correction methods are evaluated within a previously developed data size reduction strategy for multi capillary column - ion mobility spectrometry (MCC-IMS) datasets. Introduced for the first time in breath data analysis, the Top-hat method is presented as the optimum baseline correction method. A refined data size reduction strategy is employed in the analysis of a large breathomic dataset on a healthy and respiratory disease population. New insights into MCC-IMS spectra differences associated with respiratory diseases are provided, demonstrating the additional value of the refined data analysis strategy in clinical breath analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Yamada, Hiroki; Kitagawa, Shinya; Ohtani, Hajime
2013-06-01
A method of simultaneous separation of water- and fat-soluble vitamins using pressure-assisted CEC with a methacrylate-based capillary monolithic column was developed. In the proposed method, water-soluble vitamins were mainly separated electrophoretically, while fat soluble-ones were separated chromatographically by the interaction with a methacrylate-based monolith. A mixture of six water-soluble and four fat-soluble vitamins was separated simultaneously within 20 min with an isocratic elution using 1 M formic acid (pH 1.9)/acetonitrile (30:70, v/v) containing 10 mM ammonium formate as a mobile phase. When the method was applied to a commercial multivitamin tablet and a spiked one, the vitamins were successfully analyzed, and no influence of the matrix contained in the tablet was observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M
2011-01-01
In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Hydrodynamics of Packed Bed Reactor in Low Gravity
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Nahra, Henry K.; Balakotaiah, Vemuri
2005-01-01
Packed bed reactors are well known for their vast and diverse applications in the chemical industry; from gas absorption, to stripping, to catalytic conversion. Use of this type of reactor in terrestrial applications has been rather extensive because of its simplicity and relative ease of operation. Developing similar reactors for use in microgravity is critical to many space-based advanced life support systems. However, the hydrodynamics of two-phase flow packed bed reactors in this new environment and the effects of one physiochemical process on another has not been adequately assessed. Surface tension or capillary forces play a much greater role which results in a shifting in flow regime transitions and pressure drop. Results from low gravity experiments related to flow regimes and two-phase pressure drop models are presented in this paper along with a description of plans for a flight experiment on the International Space Station (ISS). Understanding the packed bed hydrodynamics and its effects on mass transfer processes in microgravity is crucial for the design of packed bed chemical or biological reactors to be used for water reclamation and other life support processes involving water purification.
Stereoselective analysis of acid herbicides in natural waters by capillary electrophoresis.
Polcaro, C M; Marra, C; Desiderio, C; Fanali, S
1999-09-01
A capillary electrophoretic method for the stereoselective analysis of aryloxypropionic and aryloxyphenoxypropionic acidic herbicides in ground water and river water was performed. Vancomycin and gamma-cyclodextrin were added to the background electrolyte (BGE) as chiral selectors. Water sample preconcentration was accomplished by solid-phase extraction on styrene-divinylbenzene packed cartridges (2 L of ground water and 1 L of river water). The analytical method allowed for the resolution of mecoprop, fenoprop, fluazifop and haloxyfop racemic mixtures in natural water samples spiked with enantiomer concentration levels in the range 0.1-0.13 ppb for ground water and 0.4-0.54 ppb for river water.
Design and Operation of Cryogenic Distillation Research Column for Ultra-Low Background Experiments
NASA Astrophysics Data System (ADS)
Chiller, Christopher; Alanson Chiller, Angela; Jasinski, Benjamin; Snyder, Nathan; Mei, Dongming
2013-04-01
Motivated by isotopically enriched germanium (76Ge and 73Ge) for monocrystalline crystal growth for neutrinoless double-beta decay and dark matter experiments, a cryogenic distillation research column was developed. Without market availability of distillation columns in the temperature range of interest with capabilities necessary for our purposes, we designed, fabricated, tested, refined and operated a two-meter research column for purifying and separating gases in the temperature range from 100-200K. Due to interest in defining stratification, purity and throughput optimization, capillary lines were integrated at four equidistant points along the length of the column such that real-time residual gas analysis could guide the investigation. Interior gas column temperatures were monitored and controlled within 0.1oK accuracy at the top and bottom. Pressures were monitored at the top of the column to four significant figures. Subsequent impurities were measured at partial pressures below 2E-8torr. We report the performance of the column in this paper.
Investigation related to hydrogen isotopes separation by cryogenic distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornea, A.; Zamfirache, M.; Stefanescu, I.
2008-07-15
Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda (Romania)) is hydrogen cryogenic distillation. Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (formore » The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results. Studies carried out were focused on the following: - Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc. - Columns connected in series in such a way to fulfil the separation requirements. Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute. (authors)« less
Lin, Lihua; Liu, Shengquan; Nie, Zhou; Chen, Yingzhuang; Lei, Chunyang; Wang, Zhen; Yin, Chao; Hu, Huiping; Huang, Yan; Yao, Shouzhuo
2015-04-21
Nowadays, large-scale screening for enzyme discovery, engineering, and drug discovery processes require simple, fast, and sensitive enzyme activity assay platforms with high integration and potential for high-throughput detection. Herein, a novel automatic and integrated micro-enzyme assay (AIμEA) platform was proposed based on a unique microreaction system fabricated by a engineered green fluorescence protein (GFP)-functionalized monolithic capillary column, with thrombin as an example. The recombinant GFP probe was rationally engineered to possess a His-tag and a substrate sequence of thrombin, which enable it to be immobilized on the monolith via metal affinity binding, and to be released after thrombin digestion. Combined with capillary electrophoresis-laser-induced fluorescence (CE-LIF), all the procedures, including thrombin injection, online enzymatic digestion in the microreaction system, and label-free detection of the released GFP, were integrated in a single electrophoretic process. By taking advantage of the ultrahigh loading capacity of the AIμEA platform and the CE automatic programming setup, one microreaction column was sufficient for many times digestion without replacement. The novel microreaction system showed significantly enhanced catalytic efficiency, about 30 fold higher than that of the equivalent bulk reaction. Accordingly, the AIμEA platform was highly sensitive with a limit of detection down to 1 pM of thrombin. Moreover, the AIμEA platform was robust and reliable to detect thrombin in human serum samples and its inhibition by hirudin. Hence, this AIμEA platform exhibits great potential for high-throughput analysis in future biological application, disease diagnostics, and drug screening.
Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C; Quake, Stephen R; Burkholder, William F
2013-01-01
Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation.
Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C.; Quake, Stephen R.; Burkholder, William F.
2013-01-01
Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation. PMID:23894273
Ma, Shujuan; Zhang, Haiyang; Li, Ya; Li, Yanan; Zhang, Na; Ou, Junjie; Ye, Mingliang; Wei, Yinmao
2018-02-23
Although several approaches have been developed to fabricate hybrid monoliths, it would still take a few hours to finish the formation of monoliths. Herein, photo-initiated thiol-yne polymerization was first adopted to in situ fabricate hybrid monoliths within the confines of UV-transparent fused-silica capillary. A silicon-containing diyne (1,3-diethynyltetramethyl-disiloxane, DYDS) was copolymerized with three multithiols, 1,6-hexanedithiol, trimethylolpropane tris(3-mercaptopropionate) and pentaerythriol tetrakis(3-mercaptopropionate), by using a binary porogenic system of diethylene glycol diethyl ether (DEGDE)/poly(ethylene glycol) (PEG200) within 10 min. Several characterizations of three hybrid monoliths (assigned as I, II and III, respectively) were performed. The results showed that these hybrid monoliths possessed bicontinuous porous structure, which was remarkably different from that via typical free-radical polymerization. The highest column efficiency of 76,000 plates per meter for butylbenzene was obtained on the column I in reversed-phase liquid chromatography (RPLC). It was observed that the efficiencies for strong-retained butylbenzene were almost close to those of weak-retained benzene, indicating a retention-independent efficient performance of small molecules on hybrid column I. The surface area of this hybrid monolith was very small in the dry state (less than 10.0 m 2 /g), and the chromatographic behavior of hybrid monolithic columns would be possibly explained by radical-mediated step-growth process of thiol-yne polymerization. Finally, the column I was applied for separation of BSA tryptic digest by cLC-MS/MS, indicating satisfactory separation ability for complicated samples. Copyright © 2018 Elsevier B.V. All rights reserved.
The chromatographic and mass spectral characteristics of perfluorooctanesulfonate (PFOS) and three nitrogen-substituted perfluorooctanesulfonamides have been obtained. A methyl/phenol mixed phase fused silica capillary column was used for GC analysis, while a C18 reversed phase ...
United States Air Force Summer Faculty Research Program, 1988. Program Technical Report. Volume 4
1988-12-01
Professor SDecialty: Gas Phase Ion-Molecule Chem. Dept. of Chemistry Assigned: Air Force Geophysics Lab. Louisiana State University Choppin Hall...For Lucid Dr. Darin DeForest 55 Pre-Sort Processor Phase Distortion Dr. Paul Dingman Evaluation 56 A PROLOG Natural Language Front End Dr. Hugh...analysis in the electron impact mode. The column used was 25m x 0.25am ID bonded phase FSOT capillary column (#952525 Alltech and Associates), coated with
Rittfeldt, L
2001-06-01
The vapor pressures of O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), O-isobutyl S-2-diethylaminoethyl methylphosphonothiolate (RVX), and 2,4-dinitrotoluene (2,4-DNT) were determined with the gas saturation method in temperatures ranging from -12 to 103 degrees C. The saturated vapor was generated using a fused-silica column coated with the compound. This column was placed in a gas chromatograph, and the vapor pressure was determined directly from the detector signal or by sampling on Tenax tubes that were subsequently analyzed. From the linear relationships obtained by plotting log P vs 1/T, the enthalpies of vaporization (deltaHvap) and the vapor pressures at selected temperatures were determined. The vapor pressure of VX at 25 degrees C was 0.110 Pa and the deltaHvap 77.9 kJ x mol(-1). The corresponding results for RVX were 0.082 Pa and 76.6 kJ x mol(-1). The vapor pressure of 2,4-DNT at 72 degrees C (melting point) was determined to 6.0 Pa, and the enthalpies of the solid and the liquid state were 94.2 and 75.3 kJ x mol(-1), respectively. Using capillary columns to generate saturated vapors has three major advantages: short equilibrium time, low consumption of sample, and safe handling of toxic compounds.
NASA Astrophysics Data System (ADS)
Susanti, Ari Diana; Sediawan, Wahyudi Budi; Wirawan, Sang Kompiang; Budhijanto
2017-05-01
Utilization of valuable trace components in agriculture by product such as rice bran oil is interesting to be explored. Among the valuables, oryzanol, a healthy nutrition for cardiovascular prevention, is the most promising one. Literature studies suggest that adsorption-desorption is a prospective method for oryzanol isolation. Design of commercial scale adsorption-desorption system for oryzanol needs a quantitative description of the phenomena involved. In this study, quantitative modeling of the consecutive adsorption-desorption in packed column has been proposed and verified through experimental data. The offered model takes into account the intra-particle concentration gradient in the adsorbent particle. In this model, the rate of mass transfer from the bulk of the liquid to the surface of the adsorbent particle or vice versa is expressed by film theory. The mass transfer of oryzanol from the liquid in the pore of the particle to the adjacent pore surface is assumed to be instantaneous, so solid-liquid equilibrium on the surface of the pores is always attained. For simplicity, the adsorption equilibrium model applied was coefficient distribution approach. The values of the parameters implicated in the model were obtained by curve fitting to the experimental data. It verified that the model proposed works well to quantitatively describe the consecutive adsorption-desorption of oryzanol from rice bran oil in packed column.
Recovery of isopropyl alcohol from waste solvent of a semiconductor plant.
Lin, Sheng H; Wang, Chuen S
2004-01-30
An important waste solvent generated in the semiconductor manufacturing process was characterized by high isopropyl alcohol (IPA) concentration over 65%, other organic pollutants and strong color. Because of these characteristics, IPA recovery was deemed as a logic choice for tackling this waste solvent. In the present work, an integrated method consisting of air stripping in conjunction with condensation and packed activated carbon fiber (ACF) adsorption for dealing with this waste solvent. The air stripping with proper stripping temperature control was employed to remove IPA from the waste solvent and the IPA vapor in the gas mixture was condensed out in a side condenser. The residual IPA remaining in the gas mixture exiting the side condenser was efficiently removed in a packed ACF column. The air stripping with condensation was able to recover up to 93% of total IPA in the initial waste solvent. The residual IPA in the gas mixture, representing less than 3% of the initial IPA, was efficiently captured in the packed ACF column. Experimental tests were conducted to examine the performances of each unit and to identify the optimum operating conditions. Theoretical modeling of the experimental IPA breakthrough curves was also undertaken using a macroscopic model. The verified breakthrough model significantly facilitates the adsorption column design. The recovered IPA was found to be of high purity and could be considered for reuse. Copyright 2003 Elsevier B.V.
[Determination of dicofol residue in tea by wide-bore capillary gas chromatographic column].
Zhu, M X; Wang, Y
2000-01-01
Dicofol residue is harmful to health. More and more countries have established the limitation of dicofol in foods. This paper describes an efficient method of determination for the dicofol residue in tea. The dicofol was extracted from the tea sample with 20% acetone-hexane, cleaned up on a column of Florisil and acidic siliceous earth (sulfuric acid 0.3 mL/g) in series. Then the column was washed with 10 mL, 20% dichloromethane-hexane, the flow rate was 1 mL/min. At last dicofol was hydrolyzed with potassium hydroxide solution, forming p,p'-dichlorobenzophenone(DBP), which was separated from other ingredients through wide-bore capillary(LZ-II, 25 m x 0.53 mm i.d.) and determinated by gas chromatography with electron capture detector(ECD), using Aldrin as internal standard. When the mass ratio of dicofol was in the range of 0.05-3.0 mg/kg, the recoveries were 78%-104% and the limit of determination was 0.5 microgram/kg. This method is simple, sensitive and suitable for pesticide residue analysis. It can also be applied to the determination of dicofol residues in other plant samples such as vegetables, fruits and so on.
Capillary Flow in an Interior Corner
NASA Technical Reports Server (NTRS)
Weislogel, Mark Milton
1996-01-01
The design of fluids management processes in the low-gravity environment of space requires an accurate model and description of capillarity-controlled flow in containers of irregular geometry. Here we consider the capillary rise of a fluid along an interior corner of a container following a rapid reduction in gravity. The analytical portion of the work presents an asymptotic formulation in the limit of a slender fluid column, slight surface curvature along the corner, small inertia, and low gravity. New similarity solutions are found and a list of closed form expressions is provided for flow rate and column length. In particular, it is found that the flow is proportional to t(exp 1/2) for a constant height boundary condition, t(exp 2/5) for a spreading drop, and t(exp 3/5) for constant flow. In the experimental portion of the work, measurements from a 2.2s drop tower are reported. An extensive data set, collected over a previously unexplored range of flow parameters, includes estimates of repeatability and accuracy, the role of inertia and column slenderness, and the effects of corner angle, container geometry, and fluid properties. Comprehensive comparisons are made which illustrate the applicability of the analytic results to low-g fluid systems design.
Improved Flow Modulator Construction for GC × GC with Quadrupole Mass Spectrometry.
Ston, Martin; Cabala, Radomir; Bierhanzl, Vaclav Matej; Krajicek, Jan; Bosakova, Zuzana
2016-08-18
Improvement and testing of a flow modulator for the application in comprehensive two-dimensional gas chromatography separations is the subject of the presented paper. This improved setup constructed from two independent capillary branches each consisting of a pressure regulator, a pressure sensor, a two-way solenoid valve and a microfluidic T-connector, allows an independent and easy settings of the pressures and flow velocities in the modulator and provides system flexibility in an operation without need of any component exchange. The estimated flow rates were 0.4 mL/min in the first column and 3.2 mL/min in the second column. This setup was compared with the commercial Zoex cryogenic modulator for the separation of 17 selected solvents at isothermal conditions. Modulator working conditions were optimized and its separation power was demonstrated on the analysis of a lavender extract under an application of two orthogonal capillary column sets (nonpolar-polar vs. polar-nonpolar) and temperature program. The results were evaluated by two commercial software packages and discussed with respect to the identification compliance. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Reduction of the Nailfold Capillary Blood Velocity in Cigarette Smokers
Kim, Kwang-Min; Lee, Duck-Joo
2012-01-01
Background Cigarette smoking causes cardiovascular disease and activates markers of endothelial dysfunction or injury. We investigated the nailfold capillary blood velocity (NCV) in cigarette smokers compared to non-smokers. Methods Forty-eight men (eighteen non-smokers and thirty smokers) were recruited. We measured NCV using nailfold capillary microscopy and exhaled carbon monoxide (ECO) concentration three times (before smoking; NCV0min and ECO0min, and after smoking; NCV5min, ECO5min, NCV30min, and ECO30min), in a condition of fasting in the case of smokers. In non-smokers, the same measurements were taken without smoking. Additionally, personal cigarette smoking and alcohol drinking history were acquired by a self-administrated questionnaire. Results Mean age, waist circumference, ECO0min, ECO5min, and ECO30min was higher and NCV5min and NCV30min were significantly lower in smokers compared to non-smokers. Total smoking years were negatively correlated with NCV5min. Average pack of the daily smoking, total pack-years, as well as total smoking years were also negatively correlated with NCV30min by regression analysis. After adjustment of significantly different variables, NCV30min was significantly lower in smokers. In the subgroup analysis, the interleukin-6 level was significantly increased in subjects with a long period of cigarette smoking compared with non-smokers. Conclusion Reduction of NCV in smokers is associated with personal smoking history, not with body composition or certain oxidative stress markers. PMID:23267426
Latching mechanism for deployable/re-stowable columns useful in satellite construction
NASA Technical Reports Server (NTRS)
Ahl, E. L., Jr. (Inventor)
1986-01-01
A column longeron latch assembly provides the securing mechanism for the deployable, telescoping column of a hoop/column antenna. The column is an open lattice structure with three longerons disposed 120 deg apart as the principle load bearing member. The column is deployed from a pair of eleven nested bays disposed on opposite sides of a center section under the influence of a motor-cable-pulley system. The longeron latch is a four bar linkage mechanism using the over-center principle for automatically locking the longeron sections into position during deployment. The latch is unlocked when the antenna is to be restowed. A spring pack disposed in the end of each longeron serves to absorb stress forces on the deployed column through the cam head piston and abutting latch from an adjacent longeron.
The role of silica colloids on facilitated cesium transport through glass bead columns and modeling
NASA Astrophysics Data System (ADS)
Noell, Alan L.; Thompson, Joseph L.; Corapcioglu, M. Yavuz; Triay, Inés R.
1998-05-01
Groundwater colloids can act as a vector which enhances the migration of contaminants. While sorbed to mobile colloids, contaminants can be held in the aqueous phase which prevents them from interacting with immobile aquifer surfaces. In this study, an idealized laboratory set-up was used to examine the influence of amorphous silica colloids on the transport of cesium. Synthetic groundwater and saturated glass bead columns were used to minimize the presence of natural colloidal material. The columns were assembled in replicate, some packed with 150-210 μm glass bead and others packed with 355-420 μm glass beads. The colloids used in these experiments were 100 nm amorphous silica colloids from Nissan Chemical Company. In the absence of these colloids, the retardation factor for cesium was 8.0 in the 150-210 μm glass bead columns and 3.6 in the 355-420 μm glass bead columns. The influence of anthropogenic colloids was tested by injecting 0.09 pore volume slugs of an equilibrated suspension of cesium and colloids into the colloid-free columns. Although there was little noticeable facilitation in the smaller glass bead columns, there was a slight reduction in the retardation of cesium in the larger glass bead columns. This was attributed to cesium having less of a retention time in the larger glass bead columns. When cesium was injected into columns with a constant flux of colloids, the retardation of cesium was reduced by 14-32% in the 150-210 μm glass bead columns and by 38-51% in the 355-420 μm glass bead columns. A model based on Corapcioglu and Jiang (1993) [Corapcioglu, M.Y., Jiang, S., 1993. Colloid-facilitated groundwater contaminant transport, Water Resour. Res., 29 (7) 2215-2226] was compared with the experimental elution data. When equilibrium sorption expressions were used and the flux of colloids through the glass bead columns was constant, the colloid facilitated transport of cesium was able to be described using an effective retardation coefficient. Fully kinetic simulations, however, more accurately described the colloid facilitated transport of cesium.
Rho, Hoon Suk; Hanke, Alexander Thomas; Ottens, Marcel; Gardeniers, Han J G E
2018-04-01
A microfluidic device for pH gradient chromatofocusing is presented, which performs creation of a micro-column, pH gradient generation, and fraction collection in a single device. Using a sieve micro-valve, anion exchange particles were packed into a microchannel in order to realize a solid-phase absorption column. To fractionate proteins according to their isoelectric points, elution buffer solutions with a stepwise pH gradient were prepared in 16 parallel mixing reactors and flowed through the micro-column, wherein a protein mixture was previously loaded. The volume of the column is only 20 nL, hence it allows extremely low sample consumption and fast analysis compared with a conventional system. We demonstrated separation of two proteins, albumin-fluorescein isothiocyanate conjugate (FITC-BSA) and R-Phycoerythrin (R-PE), by using a microcolumn of commercial charged polymeric particles (Source 15Q). The microfluidic device can be used as a rapid diagnostic tool to analyse crude mixtures of proteins or nucleic acids and determine adsorption/desorption characteristics of various biochemical products, which can be helpful for scientific fundamental understanding as well as instrumental in various industrial applications, especially in early stage screening and process development. © 2018 The Authors Electrophoresis Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Dong-Mei; Hao, Gang; Shi, Qing-Hong; Sun, Yan
2007-03-30
Novel superporous cellulose (SC) matrix has been fabricated by water-in-oil emulsification-thermal regeneration using granules of calcium carbonate as porogenic agents. As a control, microporous cellulose (MC) bead was fabricated in the absence of calcium carbonate. Simultaneously, double cross-linking was applied to enhance the mechanical strength of the particles. The photographs by scanning electron microscopy of the SC bead illustrated that there were more "craters" of several microns scattering on the surface of the beads. It led to a higher water content and effective porosity of the SC medium. The two beads were then modified with diethylaminoethyl (DEAE) group to prepare anion exchangers. The dynamic uptake results of bovine serum albumin (BSA) exhibited that the pore diffusivity of BSA in the DEAE-SC bead was two to three times larger than that in the DEAE-MC bead. In addition, the column packed with the DEAE-SC showed lower backpressure, higher column efficiency and dynamic binding capacity than the column packed with the DEAE-MC at a flow rate range of 150-900cm/h. Moreover, the column efficiency of the DEAE-SC column was independent of flow velocity up to a flow rate of 1200cm/h. All the results exhibited the superior characteristics of the SC bead as a potential medium for high-speed protein chromatography.
Vijayaraghavan, K; Joshi, U M
2013-01-01
Laboratory batch and column experiments were carried out to examine the efficiency of algal-based treatment technique to clean-up wastewaters emanating from inductively coupled plasma-optical emission spectrometry (ICP-OES). Chemical characterization revealed the extreme complexity of the wastewater, with the presence of 14 different metals under very low pH (pH = 1.1), high conductivity (6.98 mS/cm), total dissolved solid (4.46 g/L) and salinity (3.77). Batch experiments using Sargassum biomass indicated that it was possible to attain high removal efficiencies at optimum pH of 4.0. Efforts were also made to continuously treat ICP-OES wastewater using up-flow packed column. However, swelling of Sargassum biomass leads to stoppage of column. To address the problem, Sargassum was mixed with sand at a ratio of 40: 60 on volume basis. Remarkably, the hybrid Sargassum-sand sorbent showed very high removal efficiency towards multiple metal ions with the column able to operate for 11 h at a flow rate of 10 mL/min. Metal ions such as Cu, Cd, and Pb were only under trace levels in the treated water until 11 h. The results of the treatment process were compared with trade effluent discharge standards. Further the process evaluation and cost analysis were presented.
Tao, Dingyin; Zhang, Lihua; Shan, Yichu; Liang, Zhen; Zhang, Yukui
2011-01-01
High-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS-MS) is regarded as one of the most powerful techniques for separation and identification of proteins. Recently, much effort has been made to improve the separation capacity, detection sensitivity, and analysis throughput of micro- and nano-HPLC, by increasing column length, reducing column internal diameter, and using integrated techniques. Development of HPLC columns has also been rapid, as a result of the use of submicrometer packing materials and monolithic columns. All these innovations result in clearly improved performance of micro- and nano-HPLC for proteome research.
Development of a screening method for the determination of 49 priority pollutants in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiang, P.H.; Grob, R.L.
1986-01-01
A screening procedure was develop for the determination of 49 priority pollutants in soil. An extraction procedure followed by the capillary gas chromatographic technique was used. Dual pH solutions with methylene chloride were used as extraction solvent system; no sample clean-up procedure was applied. Both base/neutral and acid fractions were analyzed on the same capillary column (SPB-1). The relative standard deviation for 5.1 ppm (51 ..mu..g/ 10 g) concentration in zero soil was less than 25%.
Rathnasekara, Renuka; Khadka, Shantipriya; Jonnada, Murthy; El Rassi, Ziad
2017-01-01
This review article is a continuation of the previous reviews on the area of monolithic columns covering the progress made in the field over the last couple of years from the beginning of the second half of 2014 until the end of the first half of 2016. It summarizes and evaluates the evolvement of both polar and nonpolar organic monolithic columns and their use in hydrophilic interaction LC and CEC and reversed-phase chromatography and RP-CEC. The review article discusses the results reported in a total of 62 references. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Separation of delta-, gamma- and alpha-tocopherols by CEC.
Fanali, Salvatore; Catarcini, Paolo; Quaglia, Maria Giovanna; Camera, Emanuela; Rinaldi, Mariarosa; Picardo, Mauro
2002-08-01
In this study capillary electrochromatography (CEC) was used for the separation of three tocopherols (TOHs), namely delta-, gamma- and alpha-TOH and the antioxidant compound, butylated hydroxytoluene (BHT). The CEC experiments were carried out using an octadecylsilica (ODS) stationary phase packed, in our laboratory, in a fused-silica capillary (100 microm I.D., 365 microm O.D. x 33 cm of total length and 24.6 or 8.4 cm effective length). The mobile phase was composed by a mixture of methanol (MeOH) and acetonitrile (ACN), at different concentrations and 0.01% (w/v) of ammonium acetate. Retention time (t(R)), retention factor (k), resolution (R(s)) of the three TOHs were strongly influenced by the organic solvent composition of the run buffer and by the effective length of the capillary. Optimum experimental conditions were found even employing the short effective length of the capillary achieving the baseline separation of the studied analytes in a relatively short time (less than 5 min). The optimized method was applied to the qualitative analysis of vitamin E (alpha-TOH) present in a human serum extract.
Percolation study for the capillary ascent of a liquid through a granular soil
NASA Astrophysics Data System (ADS)
Cárdenas-Barrantes, Manuel Antonio; Muñoz, José Daniel; Araujo, Nuno Machado
2017-06-01
Capillary rise plays a crucial role in the construction of road embankments in flood zones, where hydrophobic compounds are added to the soil to suppress the rising of water and avoid possible damage of the pavement. Water rises through liquid bridges, menisci and trimers, whose width and connectivity depends on the maximal half-length λ of the capillary bridges among grains. Low λs generate a disconnect structure, with small clusters everywhere. On the contrary, for high λ, create a percolating cluster of trimers and enclosed volumes that form a natural path for capillary rise. Hereby, we study the percolation transition of this geometric structure as a function of λ on a granular media of monodisperse spheres in a random close packing. We determine both the percolating threshold λc = (0.049 ± 0.004)R (with R the radius of the granular spheres), and the critical exponent of the correlation length v = 0.830 ± 0.051, suggesting that the percolation transition falls into the universality class of ordinary percolation.
Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization
NASA Astrophysics Data System (ADS)
Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin
2007-12-01
High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.
Li, Yong-Guo; Chen, Ming; Chou, Gui-Xin; Wang, Zheng-Tao; Hu, Zhi-Bi
2004-09-03
The work of the ruggedness/robustness evaluation and system suitability tests was oriented to profound understand the practicability of using assay methods issued by United States Pharmacopoeia (USP XXVI and XXVII) for ginsenosides in Asian ginseng and American ginseng. The items chosen for the method validation included quantitative related items such as recovery of Rg(1) and Rb(1), respectively, and qualitative related items such as resolution, theoretical plate number, relative retention time of two critical-band-pairs, Rg(1)/Re and Rb(1) with its neighboring peak, respectively. Totally, 16 column types were used for comparison of different vendors, different packing materials, different size, etc. and five sets of LC systems and two laboratories were involved in comparing the data of both quantitative and qualitative items. The results showed that different packing materials of columns used might significantly alters separation. The column packing material Hypersil afforded the preferable separating for the ginsenosides. No significant difference was observed from the different instrumentations and inter-laboratories. Our results suggest a modification of the system suitability test as given in USP26-NF21 and the latest version of USP27-NF22, which was not suitable for most systems. Using resolutions of Rg(1)/Re and Rb(1) with its neighboring peak as critical parameters for the ginsenosides assay and omitting the relative retention time of both Rg(1)/Re and Rb(1) with its neighboring peak is our suggestion for a more reasonable, yet practicable system suitability. Six typical chromatograms gain from different columns were figured out as well.
Fmoc-RGDS based fibrils: atomistic details of their hierarchical assembly.
Zanuy, David; Poater, Jordi; Solà, Miquel; Hamley, Ian W; Alemán, Carlos
2016-01-14
We describe the 3D supramolecular structure of Fmoc-RGDS fibrils, where Fmoc and RGDS refer to the hydrophobic N-(fluorenyl-9-methoxycarbonyl) group and the hydrophilic Arg-Gly-Asp-Ser peptide sequence, respectively. For this purpose, we performed atomistic all-atom molecular dynamics simulations of a wide variety of packing modes derived from both parallel and antiparallel β-sheet configurations. The proposed model, which closely resembles the cross-β core structure of amyloids, is stabilized by π-π stacking interactions between hydrophobic Fmoc groups. More specifically, in this organization, the Fmoc-groups of β-strands belonging to the same β-sheet form columns of π-stacked aromatic rings arranged in a parallel fashion. Eight of such columns pack laterally forming a compact and dense hydrophobic core, in which two central columns are surrounded by three adjacent columns on each side. In addition to such Fmoc···Fmoc interactions, the hierarchical assembly of the constituent β-strands involves a rich variety of intra- and inter-strand interactions. Accordingly, hydrogen bonding, salt bridges and π-π stacking interactions coexist in the highly ordered packing network proposed for the Fmoc-RGDS amphiphile. Quantum mechanical calculations, which have been performed to quantify the above referred interactions, confirm the decisive role played by the π-π stacking interactions between the rings of the Fmoc groups, even though both inter-strand and intra-strand hydrogen bonds and salt bridges also play a non-negligible role. Overall, these results provide a solid reference to complement the available experimental data, which are not precise enough to determine the fibril structure, and reconcile previous independent observations.
NASA Astrophysics Data System (ADS)
Sygouni, Varvara; Tsakiroglou, Christos D.; Payatakes, Alkiviades C.
2006-05-01
A transparent porous medium of controlled fractional wettability is fabricated by mixing intermediate-wet glass microspheres with strongly oil-wet polytetrafluouroethylene microspheres, and packing them between two transparent glass plates. Silicon oil is displaced by water, the growth pattern is video-recorded, and the transient response of the pressure drop across the pore network is measured for various fractions of oil-wet particles. The measured global capillary pressure fluctuates as the result of the variation of the equilibrium curvature of menisci between local maxima and local minima. With the aid of wavelets, the transient response of the capillary pressure is transformed to a capillary pressure spectrum (CPS). The peaks of the CPS are used to identify the most significant flow events and correlate their amplitude with the spatial distribution of fractional wettability. The flow events are closely related with the fluctuations of the capillary pressure and are classified into three main categories: motion in pore clusters, generation/expansion of capillary fingers, coalescence of interfaces. The amplitude of the peaks of CPS is related quasilinearly with a local coefficient of fractional wettability presuming that the same class of flow events is concerned. Approximate calculations of the maximum meniscus curvature in pores of converging-diverging geometry and uniform wettability in combination with simple mixing laws predict satisfactorily the experimentally measured average prebreakthrough capillary pressure as a function of the fraction of the oil-wet particles.
Nguyen, Luong N; Hai, Faisal I; Dosseto, Anthony; Richardson, Christopher; Price, William E; Nghiem, Long D
2016-06-01
Laccase was immobilized on granular activated carbon (GAC) and the resulting GAC-bound laccase was used to degrade four micropollutants in a packed-bed column. Compared to the free enzyme, the immobilized laccase showed high residual activities over a broad range of pH and temperature. The GAC-bound laccase efficiently removed four micropollutants, namely, sulfamethoxazole, carbamazepine, diclofenac and bisphenol A, commonly detected in raw wastewater and wastewater-impacted water sources. Mass balance analysis showed that these micropollutants were enzymatically degraded following adsorption onto GAC. Higher degradation efficiency of micropollutants by the immobilized compared to free laccase was possibly due to better electron transfer between laccase and substrate molecules once they have adsorbed onto the GAC surface. Results here highlight the complementary effects of adsorption and enzymatic degradation on micropollutant removal by GAC-bound laccase. Indeed laccase-immobilized GAC outperformed regular GAC during continuous operation of packed-bed columns over two months (a throughput of 12,000 bed volumes). Copyright © 2016 Elsevier Ltd. All rights reserved.
Uchiyama, Shoichiro; Sasaki, Takaaki; Ishihara, Ryo; Fujiwara, Kunio; Sugo, Takanobu; Umeno, Daisuke; Saito, Kyoichi
2018-01-19
An efficient method for rare metal recovery from environmental water and urban mines is in high demand. Toward rapid and high-resolution rare metal ion separation, a novel bis(2-ethylhexyl) phosphate (HDEHP)-impregnated graft-type particle as a filler for a chromatography column is proposed. To achieve rapid and high-resolution separation, a convection-flow-aided elution mode is required. The combination of 35 μm non-porous particles and a polymer-brush-rich particle structure minimizes the distance from metal ion binding sites to the convection flow in the column, resulting in minimized diffusional mass transfer resistance and the convection-flow-aided elution mode. The HDEHP-impregnated graft-type non-porous-particle-packed cartridge developed in this study exhibited a higher separation performance for model rare metals, neodymium (III) and dysprosium (III) ions, and a narrower peak at a higher linear velocity, than those of previous HDEHP-impregnated fiber-packed and commercially available Lewatit ® VP OC 1026-packed cartridges. Copyright © 2017 Elsevier B.V. All rights reserved.
Study of the water transportation characteristics of marsh saline soil in the Yellow River Delta.
He, Fuhong; Pan, Yinghua; Tan, Lili; Zhang, Zhenhua; Li, Peng; Liu, Jia; Ji, Shuxin; Qin, Zhaohua; Shao, Hongbo; Song, Xueyan
2017-01-01
One-dimensional soil column water infiltration and capillary adsorption water tests were conducted in the laboratory to study the water transportation characteristics of marsh saline soil in the Yellow River Delta, providing a theoretical basis for the improvement, utilization and conservation of marsh saline soil. The results indicated the following: (1) For soils with different vegetation covers, the cumulative infiltration capacity increased with the depth of the soil layers. The initial infiltration rate of soils covered by Suaeda and Tamarix chinensis increased with depth of the soil layers, but that of bare soil decreased with soil depth. (2) The initial rate of capillary rise of soils with different vegetation covers showed an increasing trend from the surface toward the deeper layers, but this pattern with respect to soil depth was relatively weak. (3) The initial rates of capillary rise were lower than the initial infiltration rates, but infiltration rate decreased more rapidly than capillary water adsorption rate. (4) The two-parameter Kostiakov model can very well-simulate the changes in the infiltration and capillary rise rates of wetland saline soil. The model simulated the capillary rise rate better than it simulated the infiltration rate. (5) There were strong linear relationships between accumulative infiltration capacity, wetting front, accumulative capillary adsorbed water volume and capillary height. Copyright © 2016 Elsevier B.V. All rights reserved.
Weaver, Mitchell T; Lynch, Kyle B; Zhu, Zaifang; Chen, Huang; Lu, Joann J; Pu, Qiaosheng; Liu, Shaorong
2017-04-01
Laser-induced fluorescence (LIF) detectors for low-micrometer and sub-micrometer capillary on-column detection are not commercially available. In this paper, we describe in details how to construct a confocal LIF detector to address this issue. We characterize the detector by determining its limit of detection (LOD), linear dynamic range (LDR) and background signal drift; a very low LOD (~70 fluorescein molecules or 12 yoctomole fluorescein), a wide LDR (greater than 3 orders of magnitude) and a small background signal drift (~1.2-fold of the root mean square noise) are obtained. For detecting analytes inside a low-micrometer and sub-micrometer capillary, proper alignment is essential. We present a simple protocol to align the capillary with the optical system and use the position-lock capability of a translation stage to fix the capillary in position during the experiment. To demonstrate the feasibility of using this detector for narrow capillary systems, we build a 2-μm-i.d. capillary flow injection analysis (FIA) system using the newly developed LIF prototype as a detector and obtain an FIA LOD of 14 zeptomole fluorescein. We also separate a DNA ladder sample by bare narrow capillary - hydrodynamic chromatography and use the LIF prototype to monitor the resolved DNA fragments. We obtain not only well-resolved peaks but also the quantitative information of all DNA fragments. Copyright © 2016 Elsevier B.V. All rights reserved.
Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment
NASA Technical Reports Server (NTRS)
Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan
2013-01-01
Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and flexibility to fit around columns of various shapes and sizes. ECVT is also safer than other commonly used imaging modalities as it operates in the range of low frequencies (1 MHz) and does not radiate radioactive energy. In this effort, ECVT is being used to image flow parameters in a packed bed reactor for an ISS flight experiment.
Min, Yi; Jiang, Bo; Wu, Ci; Xia, Simin; Zhang, Xiaodan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui
2014-08-22
In this work, 1.9 μm reversed-phase packing materials with superficially porous structure were prepared to achieve the rapid and high efficient separation of peptides and proteins. The silica particles were synthesized via three steps, nonporous silica particle preparation by a modified seeded growth method, mesoporous shell formation by a one pot templated dissolution and redeposition strategy, and pore size expansion via acid-refluxing. By such a method, 1.9 μm superficially porous materials with 0.18 μm shell thickness and tailored pore diameter (10 nm, 15 nm) were obtained. After pore enlargement, the formerly dense arrays of mesoporous structure changed, the radially oriented pores dominated the superficially porous structure. The chromatographic performance of such particles was investigated after C18 derivatization. For packing materials with 1.9 μm diameter and 10 nm pore size, the column efficiency could reach 211,300 plates per m for naphthalene. To achieve the high resolution separation of peptides and proteins, particles with pore diameter of 15 nm were tailored, by which the baseline separation of 5 peptides and 5 intact proteins could be respectively achieved within 1 min, demonstrating the superiority in the high efficiency and high throughput analysis of biomolecules. Furthermore, BSA digests were well separated with peak capacity of 120 in 30 min on a 15 cm-long column. Finally, we compared our columns with a 1.7 μm Kinetex C18 column under the same conditions, our particles with 10nm pore size demonstrated similar performance for separation of the large intact proteins. Moreover, the particles with 15 nm pore size showed more symmetrical peaks for the separation of large proteins (BSA, OVA and IgG) and provided rapid separation of protein extracts from Escherichia coli in 5 min. All these results indicated that the synthesized 1.9 μm superficially porous silica packing materials would be promising in the ultra-fast and high-resolution separation of biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.
Gritti, Fabrice; McDonald, Thomas; Gilar, Martin
2015-11-13
The impact of the column hardware volume (≃ 1.7 μL) on the optimum reduced plate heights of a series of short 2.1 mm × 50 mm columns (hold-up volume ≃ 80-90 μL) packed with 1.8 μm HSS-T3, 1.7 μm BEH-C18, 1.7 μm CSH-C18, 1.6 μm CORTECS-C18+, and 1.7 μm BEH-C4 particles was investigated. A rapid and non-invasive method based on the reduction of the system dispersion (to only 0.15 μL(2)) of an I-class Acquity system and on the corrected plate heights (for system dispersion) of five weakly retained n-alkanophenones in RPLC was proposed. Evidence for sample dispersion through the column hardware volume was also revealed from the experimental plot of the peak capacities for smooth linear gradients versus the corrected efficiency of a weakly retained alkanophenone (isocratic runs). The plot is built for a constant gradient steepness irrespective of the applied flow rates (0.01-0.30 mL/min) and column lengths (2, 3, 5, and 10 cm). The volume variance caused by column endfittings and frits was estimated in between 0.1 and 0.7 μL(2) depending on the applied flow rate. After correction for system and hardware dispersion, the minimum reduced plate heights of short (5 cm) and narrow-bore (2.1mm i.d.) beds packed with sub-2 μm fully and superficially porous particles were found close to 1.5 and 0.7, respectively, instead of the classical h values of 2.0 and 1.4 for the whole column assembly. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Li; Lurie, Ira S
2015-09-01
DESIGNER: phenethylamines (PEAs) and cathinones have been encountered worldwide. Complete characterization of these substances can be challenging due to their chirality and variably substituted phenyl rings. In this study, 24 PEAs and cathinones were analyzed by ultra high performance liquid chromatography with photo diode array detection (UHPLC-PDA) on a variety of stationary phases, and by capillary electrophoresis on a dynamically coated capillary with PDA detection (CE-PDA). In the UHPLC-PDA study, a BEH Phenyl column resolved 18 of the 24 regioisomers in 8min, with good discrimination of the PEAs. In contrast, capillary zone electrophoresis (CZE) on a dynamically coated capillary partially or baseline resolved only 10 of the 24 regioisomers, but with improved discrimination of mono-substituted cathinones. A second series of CE-PDA experiments using 80mM (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) in the run buffer resolved all 24 regioisomers and all but two sets of enantiomers within 18min. Five illicit samples were successfully analyzed using the described methods. Published by Elsevier Ireland Ltd.
FIELD ANALYTICAL SCREENING PROGRAM: PCP METHOD - INNOVATIVE TECHNOLOGY EVALUATION REPORT
The Field Analytical Screening Program (FASP) pentachlorophenol (PCP) method uses a gas chromatograph (GC) equipped with a megabore capillary column and flame ionization detector (FID) and electron capture detector (ECD) to identify and quantify PCP. The FASP PCP method is design...
Lestremau, François; Cooper, Andrew; Szucs, Roman; David, Frank; Sandra, Pat
2006-03-24
High plate numbers were obtained in conventional LC by coupling columns and by using temperature to reduce the viscosity of the mobile phase. At 80 degrees C up to eight columns of 25 cm x 4.6 mm I.D. packed with 5 microm ODS particles could be coupled generating 180,000 effective plates while the pressure drop was only 350bar. For routine work, a set of four columns is preferred. The analysis times on one column operated at 30 degrees C and 1 mL/min flow rate and on four columns at 80 degrees C and 2 mL/min flow rate are the same in isoeluotropic conditions while the resolution is doubled. Multicolumn systems were successfully applied in isocratic and gradient mode for the analysis of pharmaceutical and environmental samples.
Single molecule fluorescence burst detection of DNA fragments separated by capillary electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haab, B.B.; Mathies, R.A.
A method has been developed for detecting DNA separated by capillary gel electrophoresis (CGE) using single molecule photon burst counting. A confocal fluorescence microscope was used to observe the fluorescence bursts from single molecules of DNA multiply labeled with the thiazole orange derivative TO6 as they passed through the nearly 2-{mu}m diameter focused laser beam. Amplified photo-electron pulses from the photomultiplier are grouped into bins of 360-450 {mu}s in duration, and the resulting histogram is stored in a computer for analysis. Solutions of M13 DNA were first flowed through the capillary at various concentrations, and the resulting data were usedmore » to optimize the parameters for digital filtering using a low-pass Fourier filter, selecting a discriminator level for peak detection, and applying a peak-calling algorithm. The optimized single molecule counting method was then applied to an electrophoretic separation of M13 DNA and to a separation of pBR 322 DNA from pRL 277 DNA. Clusters of discreet fluorescence bursts were observed at the expected appearance time of each DNA band. The auto-correlation function of these data indicated transit times that were consistent with the observed electrophoretic velocity. These separations were easily detected when only 50-100 molecules of DNA per band traveled through the detection region. This new detection technology should lead to the routine analysis of DNA in capillary columns with an on-column sensitivity of nearly 100 DNA molecules/band or better. 45 refs., 10 figs.« less
Quasi-adiabatic vacuum-based column housing for very high-pressure liquid chromatography.
Gritti, Fabrice; Gilar, Martin; Jarrell, Joseph A
2016-07-22
A prototype vacuum-based (10(-6)Torr) column housing was built to thermally isolate the chromatographic column from the external air environment. The heat transfer mechanism is solely controlled by surface radiation, which was minimized by wrapping the column with low-emissivity aluminum tape. The adiabaticity of the column housing was quantitatively assessed from the measurement of the operational pressure and fluid temperature at the outlet of a 2.1mm×100mm column (sub-2 μm particles). The pressure drop along the column was raised up to 1kbar. The enthalpy balance of the eluent (water, acetonitrile, and one water/acetonitrile mixture, 70/30, v/v) showed that less than 1% of the viscous heat generated by friction of the fluid against the packed bed was lost to the external air environment. Such a vacuum-based column oven minimizes the amplitude of the radial temperature gradients across the column diameter and maximizes its resolving power. Copyright © 2016 Elsevier B.V. All rights reserved.
A Comparative Study of Inspection Techniques for Array Packages
NASA Technical Reports Server (NTRS)
Mohammed, Jelila; Green, Christopher
2008-01-01
This viewgraph presentation reviews the inspection techniques for Column Grid Array (CGA) packages. The CGA is a method of chip scale packaging using high temperature solder columns to attach part to board. It is becoming more popular over other techniques (i.e. quad flat pack (QFP) or ball grid array (BGA)). However there are environmental stresses and workmanship challenges that require good inspection techniques for these packages.
Measuring Trace Hydrocarbons in Silanes
NASA Technical Reports Server (NTRS)
Lesser, L. A.
1984-01-01
Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.
Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.
Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R
2008-09-01
Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.
Monitoring Anaerobic TCE Degradation by Evanite Cultre in Column Packed with TCE-Contaminated Soil
NASA Astrophysics Data System (ADS)
Ko, J.; Han, K.; Ahn, G.; Park, S.; Kim, N.; Ahn, H.; Kim, Y.
2011-12-01
Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, dehalococcoides spp., but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we examined two different types (i.e., Natural attenuation and bioaugmentation) of biological remediation process in anaerobic column packed with TCE-contaminated soil. A TCE degradation by indigenous microorganisms was confirmed by monitoring TCE and the metabolites (c-DCE, VC, ETH). However, TCE was transformed and stoichiometry amount of c-DCE was produced, and VC and ETH was not detected. To test bioaugmentation of Evanite culture containing dehalococcoides spp., Evanite culture was injected into the column and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the column by measuring TCE and VC reductases. In the result, the TCE was completely degraded to ETH using hydrogen as electron donor generate by hydrogen-production fermentation from formate.
Wery, Nathalie; Gerike, Ursula; Sharman, Ajay; Chaudhuri, Julian B.; Hough, David W.; Danson, Michael J.
2003-01-01
Seventy-five aerobic heterotrophs have been isolated from a packed-column bioreactor inoculated with soil from Antarctica. The column was maintained at 10°C and continuously fed with a casein-containing medium to enrich protease producers. Twenty-eight isolates were selected for further characterization on the basis of morphology and production of clearing zones on skim milk plates. Phenotypic tests indicated that the strains were mainly psychrotrophs and presented a high morphological and metabolical diversity. The extracellular protease activities tested were optimal at neutral pH and between 30 and 45°C. 16S ribosomal DNA sequence analyses showed that the bioreactor was colonized by a wide variety of taxons, belonging to various bacterial divisions: α-, β-, and γ-Proteobacteria; the Flexibacter-Cytophaga-Bacteroides group; and high G+C gram-positive bacteria and low G+C gram-positive bacteria. Some strains represent candidates for new species of the genera Chryseobacterium and Massilia. This diversity demonstrates that the bioreactor is an efficient enrichment tool compared to traditional isolation strategies. PMID:12620829
Capillary electrophoresis for drug analysis
NASA Astrophysics Data System (ADS)
Lurie, Ira S.
1999-02-01
Capillary electrophoresis (CE) is a high resolution separation technique which is amenable to a wide variety of solutes, including compounds which are thermally degradable, non-volatile and highly polar, and is therefore well suited for drug analysis. Techniques which have been used in our laboratory include electrokinetic chromatography (ECC), free zone electrophoresis (CZE) and capillary electrochromatography (CEC). ECC, which uses a charged run buffer additive which migrates counter to osmotic flow, is excellent for many applications, including, drug screening and analyses of heroin, cocaine and methamphetamine samples. ECC approaches include the use of micelles and charged cyclodextrins, which allow for the separation of complex mixtures. Simultaneous separation of acidic, neutral and basic solutes and the resolution of optical isomers and positional isomers are possible. CZE has been used for the analysis of small ions (cations and anions) in heroin exhibits. For the ECC and CZE experiments performed in our laboratory, uncoated capillaries were used. In contrast, CEC uses capillaries packed with high performance liquid chromatography stationary phases, and offers both high peak capacities and unique selectivities. Applications include the analysis of cannabinoids and drug screening. Although CE suffers from limited concentration sensitivity, it is still applicable to trace analysis of drug samples, especially when using injection techniques such as stacking, or detection schemes such as laser induced fluorescence and extended pathlength UV.
Flight contaminant trace analyser. Phase 1: Chromatographic input system
NASA Technical Reports Server (NTRS)
Zlatkis, A.
1976-01-01
The purpose of this investigation was to develop two chromatographic columns which would enable a mass spectral identification of 40 specified compounds. The columns are for use in a toxic gas analyzer, which incorporates an automated gas chromatograph-mass spectrometer. Different types of stationary phases were investigated. The columns used were of the open tubular capillary type and were made of nickel. Limitations of initial and final temperature of operation led to final development of a column which could resolve most of the compounds required. The few unresolved components are capable of resolution and identification by the mass spectrometer. The columns (182m Ni x 0.8m 0.D x 0.5mm I.D) coated with Witconal La 23, yielded in excess of 200,000 theoretical plates and completed the analysis in less than 90 minutes using a carrier gas flow rate of 4 cc/min hydrogen.
Separation of granulocytes from whole blood by leukoadhesion, phase 1
NASA Technical Reports Server (NTRS)
1976-01-01
Capillary glass tubes are investigated for the separation and retrieval of large quantities of viable granulocytes and monocytes from whole blood on a continuous basis from a single donor. This effort represented the feasibility demonstration of a three phase program for development of a capillary tube cell separation device. The activity included the analysis and parametric laboratory testing with subscale models required to design a prototype device. Capillary tubes 40 cm long with a nominal 0.030 cm internal diameter yielded the highest total process efficiency. Recovery efficiencies as high as 89% of the adhering cell population were obtained. Granulocyte phagocytosis of latex particles indicated approximately 90% viability. Monocytes recovered from the separation column retained their capability to stimulate human bone marrow colony growth, as demonstrated in an in vitro cell culture assay.
Hinsmann, P; Arce, L; Ríos, A; Valcárcel, M
2000-01-07
The separation of seven pesticides by micellar electrokinetic capillary chromatography in spiked water samples is described, allowing the analysis of pesticides mixtures down to a concentration of 50 microg l(-1) in less than 13 min. Calibration, pre-concentration, elution and injection into the sample vial was carried out automatically by a continuous flow system (CFS) coupled to a capillary electrophoresis system via a programmable arm. The whole system was electronically coupled by a micro-processor and completely controlled by a computer. A C18 solid-phase mini-column was used for the pre-concentration, allowing a 12-fold enrichment (as an average value) of the pesticides from fortified water samples. Under the optimal extraction conditions, recoveries between 90 and 114% for most of the pesticides were obtained.
Three-phase fracturing in granular material
NASA Astrophysics Data System (ADS)
Campbell, James; Sandnes, Bjornar
2015-04-01
There exist numerous geo-engineering scenarios involving the invasion of a gas into a water-saturated porous medium: in fracking, this may occur during the fracking process itself or during subsequent gas penetration into propant beds; the process is also at the heart of carbon dioxide sequestration. We use a bed of water-saturated glass beads confined within a Hele-Shaw cell as a model system to illuminate these processes. Depending on packing density, injection rate and other factors, air injected into this system may invade in a broad variety of patterns, including viscous fingering, capillary invasion, bubble formation and fracturing. Here we focus primarily on the latter case. Fracturing is observed when air is injected into a loosely packed bed of unconsolidated granular material. Our approach allows us to image the complete fracture pattern as it forms, and as such to study both the topographical properties of the resulting pattern (fracture density, braching frequency etc) and the dynamics of its growth. We present an overview of the fracturing phenomenon within the context of pattern formation in granular fluids as a whole. We discuss how fracturing arises from an interplay between frictional, capillary and viscous forces, and demonstrate the influence of various parameters on the result.
Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid
2018-03-30
Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.
Biological denitrification of high concentration nitrate waste
Francis, Chester W.; Brinkley, Frank S.
1977-01-01
Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.
Zeng, Annie Xu; Chin, Sung-Tong; Nolvachai, Yada; Kulsing, Chadin; Sidisky, Leonard M; Marriott, Philip J
2013-11-25
Due to their distinct chemical properties, the application of ionic liquid (IL) compounds as gas chromatography (GC) stationary phases offer unique GC separation especially in the analysis of geometric and positional fatty acid methyl ester (FAME) isomers. Elution behaviour of FAME on several commercialised IL capillary columns including phosphonium based SLB-IL59, SLB-IL60, SLB-IL61 and SLB-IL76 and imidazolium based SLB-IL82, SLB-IL100, and SLB-IL111 as well as a general purpose column SLB-5ms, were evaluated in gas chromatography-mass spectrometry (GC-MS) analysis. The phases were further characterised by using a linear solvation energy relationship (LSER) approach according to the equivalent chain length (ECL) index of FAME. Among all tested IL columns, elution temperatures of saturated FAME increased as their McReynolds' polarity value decreased, except for IL60. ECL values increased markedly as the stationary phase polarity increased, particularly for the polyunsaturated FAME. The LSER study indicated a lowest l/e value at 0.864 for IL111, displaying phase selectivity towards unsaturated FAME, with higher peak capacity within a carbon number isomer group. s and e descriptors calculated from LSER were validated by excellent correlation with dipole moments and lowest unoccupied molecular orbital (LUMO) energies, with R(2) values of 0.99 and 0.92 respectively, calculated using GAUSSIAN. Copyright © 2013 Elsevier B.V. All rights reserved.
Chen, Ming-Luan; Zhang, Jun; Zhang, Zheng; Yuan, Bi-Feng; Yu, Qiong-Wei; Feng, Yu-Qi
2013-04-05
In this work, a one-step approach to facile preparation of organic-inorganic hybrid monoliths was successfully developed. After vinyl-end organic monomers and azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS), the homogeneous mixture was introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the organic-silica hybrid monoliths. By employing this strategy, two types of organic-silica hybrid monoliths with positively charged quaternary ammonium and amide groups were prepared, respectively. The functional groups were successfully introduced onto the monoliths during the sol-gel process with "thiol-ene" click reaction, which was demonstrated by ζ-potential assessment, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectroscopy. The porous structure of the prepared monolithic columns was examined by scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, and mercury intrusion porosimetry. These results indicate the prepared organic-silica hybrid monoliths possess homogeneous column bed, large specific surface area, good mechanical stability, and excellent permeability. The prepared monolithic columns were then applied for anion-exchange/hydrophilic interaction liquid chromatography. Different types of analytes, including benzoic acids, inorganic ions, nucleosides, and nucleotides, were well separated with high column efficiency around 80,000-130,000 plates/m. Taken together, we present a facile and universal strategy to prepare organic-silica hybrid monoliths with a variety of organic monomers using one-step approach. Copyright © 2013 Elsevier B.V. All rights reserved.
Lin, Hui; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa
2015-01-30
A facile approach based on thiol-methacrylate Michael addition click reaction was developed for construction of porous hybrid monolithic materials. Three hybrid monoliths were prepared via thiol-methacrylate click polymerization by using methacrylate-polyhedral oligomeric silsesquioxane (POSS) (cage mixture, n=8, 10, 12, POSS-MA) and three multi-thiol crosslinkers, 1,6-hexanedithiol (HDT), trimethylolpropane tris(3-mercaptopropionate) (TPTM) and pentaerythritol tetrakis(3-mercaptopropionate) (PTM), respectively, in the presence of porogenic solvents (n-propanol and PEG 200) and a catalyst (dimethylphenylphosphine, DMPP). The obtained monoliths possessed high thermal and chemical stabilities. Besides, they all exhibited high column efficiencies and excellent separation abilities in capillary liquid chromatography (cLC). The highest column efficiency could reach ca. 195,000N/m for butylbenzene on the monolith prepared with POSS-MA and TPTM (monolith POSS-TPTM) in reversed-phase (RP) mode at 0.64mm/s. Good chromatographic performance were all achieved in the separations of polycyclic aromatic hydrocarbons (PAHs), phenols, anilines, EPA 610 as well as bovine serum albumin (BSA) digest. The high column efficiencies in the range of 51,400-117,000N/m (achieved on the monolith POSS-PTM in RP mode) convincingly demonstrated the high separation abilities of these thiol-methacrylate based hybrid monoliths. All the results demonstrated the feasibility of the phosphines catalyzed thiol-methacrylate Michael addition click reaction in fabrication of monolithic columns with high efficiency for cLC applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Biofiltration of air polluted with toluene under steady-state conditions: Experimental observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiared, K.; Fundenberger, B.; Brzezinski, R.
1997-11-01
In this study, the authors describe the removal of toluene vapors in a pilot scale biofilter. Biofiltration tests have been performed in a column fed upward with contaminated air at ambient conditions. The column was packed with a mixture of conditioned biomass and structuring agent on which a mixed microbial population of four selected strains was immobilized and then formed a biolayer. The biofilter was operated under various inlet-airstream toluene concentrations and flow rates of the contaminated airstream. Based on the present measurements, the biofilter proved effective in removing toluene at rates up to 165 g/h {center_dot} m{sup 3} ofmore » packing. The effect of some design and operation parameters (concentration of nutrients solution, presence of xylene, gas flow rate, pressure drop, temperature, etc.) are reported.« less
Organic liquids that are essentially immiscible with water migrate through the subsurface through the influence of capillary, viscous and buoyancy forces. our experimental methods were employed. irst, quantitative displacement experiments using short soil columns; second, additio...
Organic liquids that are essentially immiscible with water migrate through the subsurface through the influence of capillary, viscous and buoyancy forces. Four experimental methods were employed. First, quantitative displacement experiments using short soil columns; second, add...
Separation methods applicable to urinary creatine and creatinine.
Smith-Palmer, Truis
2002-12-05
Urinary creatinine has been analyzed for many years as an indicator of glomerular filtration rate. More recently, interest in studying the uptake of creatine as a result of creatine supplementation, a practice increasingly common among bodybuilders and athletes, has lead to a need to measure urinary creatine concentrations. Creatine levels are of the same order of magnitude as creatinine levels when subjects have recently ingested creatine, while somewhat elevated urinary creatine concentrations in non-supplementing subjects can be an indication of a degenerative disease of the muscle. Urinary creatine and creatinine can be analyzed by HPLC using a variety of columns. Detection methods include absorption, fluorescence after post-column derivatization, and mass spectrometry, and some methods have been automated. Capillary zone electrophoresis and micellar electrokinetic capillary chromatography have also been used to analyze urinary creatine and creatinine. Creatine and creatinine have also been analyzed in serum and tissue using HPLC and CE, and many of these separations could also be applicable to urinary analysis.