Sample records for capillary electropherogram profiles

  1. Automated enzyme-based diagonal capillary electrophoresis: application to phosphopeptide characterization

    PubMed Central

    Wojcik, Roza; Vannatta, Michael

    2010-01-01

    Diagonal capillary electrophoresis is a form of two-dimensional capillary electrophoresis that employs identical separation modes in each dimension. The distal end of the first capillary incorporates an enzyme-based microreactor. Analytes that are not modified by the reactor will have identical migration times in the two capillaries and will generate spots that fall on the diagonal in a reconstructed two-dimensional electropherogram. Analytes that undergo enzymatic modification in the reactor will have a different migration time in the second capillary and will generate spots that fall off the diagonal in the electropherogram. We demonstrate the system with immobilized alkaline phosphatase to monitor the phosphorylation status of a mixture of peptides. This enzyme-based diagonal capillary electrophoresis assay appears to be generalizable; any post-translational modification can be detected as long as an immobilized enzyme is available that reacts with the modification under electrophoretic conditions. PMID:20099889

  2. A microdestructive capillary electrophoresis method for the analysis of blue-pen-ink strokes on office paper.

    PubMed

    Calcerrada, Matías; González-Herráez, Miguel; Garcia-Ruiz, Carmen

    2015-06-26

    This manuscript describes the development of a capillary electrophoresis (CE) method for the detection of acid and basic dyes and its application to real samples, blue-pen-ink strokes on office paper. First, a capillary zone electrophoresis (CZE) method was developed for the separation of basic and acid dyes, by studying the separation medium (buffer nature, pH and relative amount of additive) and instrumental parameters (temperature, voltage and capillary dimensions). The method performance was evaluated in terms of selectivity, resolution (above 5 and 2 for acid dyes and basic dyes, respectively, except for two basic dye standards), LOD (lower than 0.4 mg/L) and precision as intraday and interday RSD values of peak migration times (lower than 0.6%). The developed method was then applied to 34 blue pens from different technologies (rollerball, ballpoint, markers) and with different ink composition (gel, water-based, oil-based). A microdestructive sample treatment using a scalpel to scratch 0.3mg of ink stroke was performed. The entire electropherogram profile allowed the visual discrimination between different types of ink and brands, being not necessary a statistical treatment. A 100% of discrimination was achieved between pen technologies, brands, and models, although non-reproducible zones in the electropherograms were found for blue gel pen samples. The two different batches of blue oil-based pens were also differentiated. Thus, this method provides a simple, microdestructive, and rapid analysis of different blue pen technologies which may complement the current analysis of questioned documents performed by forensic laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. An artificial neural network system to identify alleles in reference electropherograms.

    PubMed

    Taylor, Duncan; Harrison, Ash; Powers, David

    2017-09-01

    Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells them about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. This process of interpreting the electropherograms can be time consuming and is prone to subjective differences between analysts. Recently it was demonstrated that artificial neural networks could be used to classify information within an electropherogram as allelic (i.e. representative of a DNA fragment present in the DNA extract) or as one of several different categories of artefactual fluorescence that arise as a result of generating an electropherogram. We extend that work here to demonstrate a series of algorithms and artificial neural networks that can be used to identify peaks on an electropherogram and classify them. We demonstrate the functioning of the system on several profiles and compare the results to a leading commercial DNA profile reading system. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A ranking index for quality assessment of forensic DNA profiles forensic DNA profiles

    PubMed Central

    2010-01-01

    Background Assessment of DNA profile quality is vital in forensic DNA analysis, both in order to determine the evidentiary value of DNA results and to compare the performance of different DNA analysis protocols. Generally the quality assessment is performed through manual examination of the DNA profiles based on empirical knowledge, or by comparing the intensities (allelic peak heights) of the capillary electrophoresis electropherograms. Results We recently developed a ranking index for unbiased and quantitative quality assessment of forensic DNA profiles, the forensic DNA profile index (FI) (Hedman et al. Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modeling of DNA profiles, Biotechniques 47 (2009) 951-958). FI uses electropherogram data to combine the intensities of the allelic peaks with the balances within and between loci, using Principal Components Analysis. Here we present the construction of FI. We explain the mathematical and statistical methodologies used and present details about the applied data reduction method. Thereby we show how to adapt the ranking index for any Short Tandem Repeat-based forensic DNA typing system through validation against a manual grading scale and calibration against a specific set of DNA profiles. Conclusions The developed tool provides unbiased quality assessment of forensic DNA profiles. It can be applied for any DNA profiling system based on Short Tandem Repeat markers. Apart from crime related DNA analysis, FI can therefore be used as a quality tool in paternal or familial testing as well as in disaster victim identification. PMID:21062433

  5. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    EPA Science Inventory

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  6. Combined use of [TBA][L-ASP] and hydroxypropyl-β-cyclodextrin as selectors for separation of Cinchona alkaloids by capillary electrophoresis.

    PubMed

    Zhang, Yu; Yu, Haixia; Wu, Yujiao; Zhao, Wenyan; Yang, Min; Jing, Huanwang; Chen, Anjia

    2014-10-01

    In this paper, a new capillary electrophoresis (CE) separation and detection method was developed for the chiral separation of the four major Cinchona alkaloids (quinine/quinidine and cinchonine/cinchonidine) using hydroxypropyl-β-cyclodextrin (HP-β-CD) and chiral ionic liquid ([TBA][L-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, HP-β-CD and chiral ionic liquid concentrations, capillary temperature, and separation voltage were investigated. After optimization of separation conditions, baseline separation of the three analytes (cinchonidine, quinine, cinchonine) was achieved in fewer than 7 min in ammonium acetate background electrolyte (pH 5.0) with the addition of HP-β-CD in a concentration of 40 mM and [TBA][L-ASP] of 14 mM, while the baseline separation of cinchonine and quinidine was not obtained. Therefore, the first-order derivative electropherogram was applied for resolving overlapping peaks. Regression equations revealed a good linear relationship between peak areas in first-order derivative electropherograms and concentrations of the two diastereomer pairs. The results not only indicated that the first-order derivative electropherogram was effective in determination of a low content component and of those not fully separated from adjacent ones, but also showed that the ionic liquid appeared to be a very promising chiral selector in CE. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Determination of Nitrate Carry-Over on Bytac(registered) Strips Via Capillary Electrophoresis

    DTIC Science & Technology

    2012-01-19

    Beckman Coulter P/ ACE MDQ capillary electrophoresis instrument. A 60 cm long (10 cm effective length), 75 µm i.d. bare fused-silica capillary was used...the separation. Due to the high concentration of the BGE, electroosmotic flow (EOF) is significantly reduced allowing for the application of a...bromide) are not seen in the electropherogram due to the reversed polarity; electroosmotic flow suppression is sufficient to cause the ammonium and

  8. Haemoglobin J-Baltimore can be detected by HbA1c electropherogram but with underestimated HbA1c value.

    PubMed

    Brunel, Valéry; Lahary, Agnčs; Chagraoui, Abdeslam; Thuillez, Christian

    2016-01-01

    Glycated haemoglobin (HbA(1c)) is considered the gold standard for assessing diabetes compensation and treatment. In addition, fortuitous detection of haemoglobin variants during HbA1c measurement is not rare. Recently, two publications reported different conclusions on accuracy of HbA(1c) value using capillary electrophoresis method in presence of haemoglobin J-Baltimore (HbJ).
Here we describe the fortuitous detection of unknown HbJ using capillary electrophoresis for measurement of HbA(1c). A patient followed for gestational diabetes in our laboratory presented unknown haemoglobin on Capillarys 2 Flex Piercing analyser which was identified as HbJ. HbJ is not associated with haematological abnormalities. High Performance Liquid Chromatography methods are known to possibly underestimate HbA(1c) value in the presence of this variant. This variant and its glycated form are clearly distinguished on electropherogram but HbJ was responsible for underestimating the true area of HbA(1c).
 Capillary electrophoresis is a good method for detecting HbJ but does not seem suitable for evaluation of HbA(1C) value in patients in presence of HbJ variant.

  9. Cell cycle-dependent protein fingerprint from a single cancer cell: image cytometry coupled with single-cell capillary sieving electrophoresis.

    PubMed

    Hu, Shen; Le, Zhang; Krylov, Sergey; Dovichi, Norman J

    2003-07-15

    Study of cell cycle-dependent protein expression is important in oncology, stem cell research, and developmental biology. In this paper, we report the first protein fingerprint from a single cell with known phase in the cell cycle. To determine that phase, we treated HT-29 colon cancer cells with Hoescht 33342, a vital nuclear stain. A microscope was used to measure the fluorescence intensity from one treated cell; in this form of image cytometry, the fluorescence intensity is proportional to the cell's DNA content, which varies in a predictable fashion during the cell cycle. To generate the protein fingerprint, the cell was aspirated into the separation capillary and lysed. Proteins were fluorescently labeled with 3-(2-furoylquinoline-2-carboxaldehyde, separated by capillary sieving electrophoresis, and detected by laser-induced fluorescence. This form of electrophoresis is the capillary version of SDS-PAGE. The single-cell electropherogram partially resolved approximately 25 components in a 30-min separation, and the dynamic range of the detector exceeded 5000. There was a large cell-to-cell variation in protein expression, averaging 40% relative standard deviation across the electropherogram. The dominant source of variation was the phase of the cell in the cell cycle; on average, approximately 60% of the cell-to-cell variance in protein expression was associated with the cell cycle. Cells in the G1 and G2/M phases of the cell cycle had 27 and 21% relative standard deviations in protein expression, respectively. Cells in the G2/M phase generated signals that were twice the amplitude of the signals generated by G1 phase cells, as expected for cells that are soon to divide into two daughter cells. When electropherograms were normalized to total protein content, the expression of only one component was dependent on cell cycle at the 99% confidence limit. That protein is tentatively identified as cytokeratin 18 in a companion paper.

  10. Teaching artificial intelligence to read electropherograms.

    PubMed

    Taylor, Duncan; Powers, David

    2016-11-01

    Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells us about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. A technique that lends itself well to such a task of classification in the face of vast amounts of data is the use of artificial neural networks. These networks, inspired by the workings of the human brain, have been increasingly successful in analysing large datasets, performing medical diagnoses, identifying handwriting, playing games, or recognising images. In this work we demonstrate the use of an artificial neural network which we train to 'read' electropherograms and show that it can generalise to unseen profiles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Ultrafast quantitation of six quinolones in water samples by second-order capillary electrophoresis data modeling with multivariate curve resolution-alternating least squares.

    PubMed

    Alcaráz, Mirta R; Vera-Candioti, Luciana; Culzoni, María J; Goicoechea, Héctor C

    2014-04-01

    This paper presents the development of a capillary electrophoresis method with diode array detector coupled to multivariate curve resolution-alternating least squares (MCR-ALS) to conduct the resolution and quantitation of a mixture of six quinolones in the presence of several unexpected components. Overlapping of time profiles between analytes and water matrix interferences were mathematically solved by data modeling with the well-known MCR-ALS algorithm. With the aim of overcoming the drawback originated by two compounds with similar spectra, a special strategy was implemented to model the complete electropherogram instead of dividing the data in the region as usually performed in previous works. The method was first applied to quantitate analytes in standard mixtures which were randomly prepared in ultrapure water. Then, tap water samples spiked with several interferences were analyzed. Recoveries between 76.7 and 125 % and limits of detection between 5 and 18 μg L(-1) were achieved.

  12. Electropherogram of capillary zone electrophoresis with effective mobility axis as a transverse axis and its analytical utility. I. Transformation applying the hypothetical electroosmotic flow.

    PubMed

    Ikuta, N; Yamada, Y; Hirokawa, T

    2000-01-01

    For capillary zone electrophoresis, a new method of transformation from migration time to effective mobility was proposed, in which the mobility increase due to Joule heating and the relaxation effect of the potential gradient were eliminated successfully. The precision of the mobility evaluated by the proposed transformation was discussed in relation to the analysis of rare earth ions. By using the transformation, almost the same pherograms could be obtained even from the pherograms obtained originally at different applied voltages.

  13. High-Throughput Genetic Analysis and Combinatorial Chiral Separations Based on Capillary Electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Wenwan

    2003-01-01

    Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in thismore » manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.« less

  14. Quantitative twoplex glycan analysis using 12C6 and 13C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry.

    PubMed

    Váradi, Csaba; Mittermayr, Stefan; Millán-Martín, Silvia; Bones, Jonathan

    2016-12-01

    Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available 12/13 C 6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for 12 C 6 'light' and 13 C 6 'heavy' 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.

  15. Characterization of Nanoparticles by Capillary Electrophoresis and Trapping of Nanoparticles in Microfluidics Device

    DTIC Science & Technology

    2009-08-01

    tubular mode driven by electroosmotic flow and the inherent electrophoretic mobility of the analytes under the influence of an applied electric field...could be due to unlabeled beads. Figure 3 (C and D) also shows electropherogram of a neutral electroosmotic flow (EOF) marker dye BODIPY and...internal turbulent mixing . The current microfabricated electromagnets cannot produce sufficient fields to trap the NPs against a large flow forces

  16. Fingerprinting postblast explosive residues by portable capillary electrophoresis with contactless conductivity detection.

    PubMed

    Kobrin, Eeva-Gerda; Lees, Heidi; Fomitšenko, Maria; Kubáň, Petr; Kaljurand, Mihkel

    2014-04-01

    A portable capillary electrophoretic system with contactless conductivity detection was used for fingerprint analysis of postblast explosive residues from commercial organic and improvised inorganic explosives on various surfaces (sand, concrete, metal witness plates). Simple extraction methods were developed for each of the surfaces for subsequent simultaneous capillary electrophoretic analysis of anions and cations. Dual-opposite end injection principle was used for fast (<4 min) separation of 10 common anions and cations from postblast residues using an optimized separation electrolyte composed of 20 mM MES, 20 mM l-histidine, 30 μM CTAB and 2 mM 18-crown-6. The concentrations of all ions obtained from the electropherograms were subjected to principal component analysis to classify the tested explosives on all tested surfaces, resulting in distinct cluster formations that could be used to verify (each) type of the explosive. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Assessment of the capillary zone electrophoretic behavior of proteins in the presence of electroosmotic modifiers: protein-polyamine interaction studied using a polyacrylamide-coated capillary.

    PubMed

    Kubo, K; Hattori, A

    2001-10-01

    The use of polyamines as electroosmotic modifiers has been shown to be effective in enhancing resolution of protein glycoforms in capillary zone electrophoresis (CZE) using a bare capillary tube. In this study, effectiveness was evaluated by using a polyacrylamide-coated capillary tube instead of a bare capillary tube. Electropherograms obtained in the presence of polyamines were inferior to those obtained in their absence with respect to resolution. Electrophoretic mobility of the proteins decreased and their peaks were broadened by polyamines bound to them. This unfavorable effect was dependent on both the species of polyamines and the pH values of the electrolyte buffer. The reduction of resolution caused by polyamines was in the following order: spermidine (SPD) approximately spermidine-tri-hydrochloride (SPD-HCI) > putrescine (PUT) > hexamethonium chloride (HMC). The observed effect can be ascribed to the formation of complexes between the proteins and the polyamines. In addition, for the bare capillary tube the complexes showed interaction with the inner surface, resulting in local suppression of electroosmosis and poor resolution. The high resolution obtained in the coated capillary tube was reduced in the presence of the polyamines. Thus, the use of the polyamines has a negative effect on the analysis of protein microheterogeneity as a result of protein-polyamine interaction.

  18. Capillary sieving electrophoresis and micellar electrokinetic capillary chromatography produce highly correlated separation of tryptic digests

    PubMed Central

    Dickerson, Jane A.; Dovichi, Norman J.

    2011-01-01

    We perform two-dimensional capillary electrophoresis on fluorescently labeled proteins and peptides. Capillary sieving electrophoresis was performed in the first dimension and micellar electrokinetic capillary chromatography was performed in the second. A cellular homogenate was labeled with the fluorogenic reagent FQ and separated using the system. This homogenate generated a pair of ridges; the first had essentially constant migration time in the CSE dimension, while the second had essentially constant migration time in the MEKC dimension. In addition a few spots were scattered through the electropherogram. The same homogenate was digested using trypsin, and then labeled and subjected to the two dimensional separation. In this case, the two ridges observed from the original two-dimensional separation disappeared, and were replaced by a set of spots that fell along the diagonal. Those spots were identified using a local-maximum algorithm and each was fit using a two-dimensional Gaussian surface by an unsupervised nonlinear least squares regression algorithm. The migration times of the tryptic digest components were highly correlated (r = 0.862). When the slowest migrating components were eliminated from the analysis, the correlation coefficient improved to r = 0.956. PMID:20564272

  19. Determination of carbohydrates in honey and milk by capillary electrophoresis in combination with graphene-cobalt microsphere hybrid paste electrodes.

    PubMed

    Liang, Peipei; Sun, Motao; He, Peimin; Zhang, Luyan; Chen, Gang

    2016-01-01

    A graphene-cobalt microsphere (CoMS) hybrid paste electrode was developed for the determination of carbohydrates in honey and milk in combination with capillary electrophoresis (CE). The performance of the electrodes was demonstrated by detecting mannitol, sucrose, lactose, glucose, and fructose after CE separation. The five analytes were well separated within 9 min in a 40 cm long capillary at a separation voltage of 12 kV. The electrodes exhibited pronounced electrocatalytic activity, lower detection potentials, enhanced signal-to-noise characteristics, and higher reproducibility. The relation between peak current and analyte concentration was linear over about three orders of magnitude. The proposed method had been employed to determine lactose in bovine milk and glucose and fructose in honey with satisfactory results. Because only electroactive substances in the samples could be detected on the paste electrode, the electropherograms of both food samples were simplified to some extent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Interfacing Capillary-Based Separations to Mass Spectrometry Using Desorption Electrospray Ionization

    PubMed Central

    Barbula, Griffin K.; Safi, Samir; Chingin, Konstantin; Perry, Richard H.; Zare, Richard N.

    2014-01-01

    The powerful hybrid analysis method of capillary-based separations followed by mass spectrometric analysis gives substantial chemical identity and structural information. It is usually carried out using electrospray ionization. However, the salts and detergents used in the mobile phase for electrokinetic separations suppress ionization efficiencies and contaminate the inlet of the mass spectrometer. This report describes a new method that uses desorption electrospray ionization (DESI) to overcome these limitations. Effluent from capillary columns is deposited on a rotating Teflon disk that is covered with paper. As the surface rotates, the temporal separation of the eluting analytes (i.e., the electropherogram) is spatially encoded on the surface. Then, using DESI, surface-deposited analytes are preferentially ionized, reducing the effects of ion suppression and inlet contamination on signal. With the use of this novel approach, two capillary-based separations were performed: a mixture of the rhodamine dyes at milligram/milliliter levels in a 10 mM sodium borate solution was separated by capillary electrophoresis, and a mixture of three cardiac drugs at milligram/milliliter levels in a 12.5 mM sodium borate and 12.5 mM sodium dodecyl sulfate solution was separated by micellar electrokinetic chromatography. In both experiments, the negative effects of detergents and salts on the MS analyses were minimized. PMID:21319740

  1. The CE-Way of Thinking: "All Is Relative!".

    PubMed

    Schmitt-Kopplin, Philippe; Fekete, Agnes

    2016-01-01

    Over the last two decades the development of capillary electrophoresis instruments lead to systems with programmable sampler, separation column, separation buffer, and detection devices comparable visually in many aspects to the setup of classical chromatography.Two processes make capillary electrophoresis essentially different from chromatography and are the basis of the CE-way of thinking, namely, the injection type and the liquid flow within the capillary. (1) When the injection is made hydrodynamically (such as in most of the found applications in the literature), the injected volumes are directly dependent on the type and size of the separation capillary. (2) The buffer velocity is not pressure driven as in liquid chromatography but electrokinetically governed by the quality of the capillary surface (separation buffer dependant surface charge) inducing an electroosmotic flow (EOF). The EOF undergoes small variations and is not necessarily identical from one separation or day to the other. The direct consequence is an apparent nonreproducible migration time of the analytes, even though the own velocity of the ions is the same.The effective mobility (field strength normalized velocity) of the ions is a possible parameterization from acquired timescale to effective mobility-scale electropherograms leading to a reproducible visualization and better quantification with a direct relation to structural characters of the analytes (i.e., charge and size-see chapter on semiempirical modelization).

  2. An analytical model for enantioseparation process in capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Ranzuglia, G. A.; Manzi, S. J.; Gomez, M. R.; Belardinelli, R. E.; Pereyra, V. D.

    2017-12-01

    An analytical model to explain the mobilities of enantiomer binary mixture in capillary electrophoresis experiment is proposed. The model consists in a set of kinetic equations describing the evolution of the populations of molecules involved in the enantioseparation process in capillary electrophoresis (CE) is proposed. These equations take into account the asymmetric driven migration of enantiomer molecules, chiral selector and the temporary diastomeric complexes, which are the products of the reversible reaction between the enantiomers and the chiral selector. The solution of these equations gives the spatial and temporal distribution of each species in the capillary, reproducing a typical signal of the electropherogram. The mobility, μ, of each specie is obtained by the position of the maximum (main peak) of their respective distributions. Thereby, the apparent electrophoretic mobility difference, Δμ, as a function of chiral selector concentration, [ C ] , can be measured. The behaviour of Δμ versus [ C ] is compared with the phenomenological model introduced by Wren and Rowe in J. Chromatography 1992, 603, 235. To test the analytical model, a capillary electrophoresis experiment for the enantiomeric separation of the (±)-chlorpheniramine β-cyclodextrin (β-CD) system is used. These data, as well as, other obtained from literature are in closed agreement with those obtained by the model. All these results are also corroborate by kinetic Monte Carlo simulation.

  3. Integrated microfluidic chip for rapid DNA digestion and time-resolved capillary electrophoresis analysis

    PubMed Central

    Lin, Che-Hsin; Wang, Yao-Nan; Fu, Lung-Ming

    2012-01-01

    An integrated microfluidic chip is proposed for rapid DNA digestion and time-resolved capillary electrophoresis (CE) analysis. The chip comprises two gel-filled chambers for DNA enrichment and purification, respectively, a T-form micromixer for DNA/restriction enzyme mixing, a serpentine channel for DNA digestion reaction, and a CE channel for on-line capillary electrophoresis analysis. The DNA and restriction enzyme are mixed electroomostically using a pinched-switching DC field. The experimental and numerical results show that a mixing performance of 97% is achieved within a distance of 1 mm from the T-junction when a driving voltage of 90 V/cm and a switching frequency of 4 Hz are applied. Successive mixing digestion and capillary electrophoresis operation clearly present the changes on digesting φx-174 DNA in different CE runs. The time-resolved electropherograms show that the proposed device enables a φx-174 DNA sample comprising 11 fragments to be concentrated and analyzed within 24 min. Overall, the results presented in this study show that the proposed microfluidic chip provides a rapid and effective tool for DNA digestion and CE analysis applications. PMID:22662085

  4. [Improvement of reproducibility in capillary electrophoretic characterization of rhubarb by normalization of migration time].

    PubMed

    Zhang, Hongyi; Ge, Lijuan; Chen, Hui; Jing, Cong; Shi, Zhihong

    2009-07-01

    The principle of the normalization of migration time and its application on the traditional Chinese medicine (TCM) analysis by capillary electrophoresis (CE) are presented. It is the core of the normalization of migration time that the fluctuation of apparent migration velocity for each component at different runs is attributed to the difference of electroosmotic flow velocity. To transform migration time (t) to normalized migration time, one peak or two peaks in the original electropherogram are selected as internal peak. The normalization of migration time is therefore classified into two types based on the number of selected internal peaks, one-peak and two-peak approaches. The migration times processed by one-peak normalization and by two-peak normalization are conducted by the following equations, respectively: (t'(i))(j) = 1/ [1/(t(i))(j) - [1/(t(istd))(j) - 1/(t(istd))1

  5. Using long ssDNA polynucleotides to amplify STRs loci in degraded DNA samples

    PubMed Central

    Pérez Santángelo, Agustín; Corti Bielsa, Rodrigo M.; Sala, Andrea; Ginart, Santiago; Corach, Daniel

    2017-01-01

    Obtaining informative short tandem repeat (STR) profiles from degraded DNA samples is a challenging task usually undermined by locus or allele dropouts and peak-high imbalances observed in capillary electrophoresis (CE) electropherograms, especially for those markers with large amplicon sizes. We hereby show that the current STR assays may be greatly improved for the detection of genetic markers in degraded DNA samples by using long single stranded DNA polynucleotides (ssDNA polynucleotides) as surrogates for PCR primers. These long primers allow a closer annealing to the repeat sequences, thereby reducing the length of the template required for the amplification in fragmented DNA samples, while at the same time rendering amplicons of larger sizes suitable for multiplex assays. We also demonstrate that the annealing of long ssDNA polynucleotides does not need to be fully complementary in the 5’ region of the primers, thus allowing for the design of practically any long primer sequence for developing new multiplex assays. Furthermore, genotyping of intact DNA samples could also benefit from utilizing long primers since their close annealing to the target STR sequences may overcome wrong profiling generated by insertions/deletions present between the STR region and the annealing site of the primers. Additionally, long ssDNA polynucleotides might be utilized in multiplex PCR assays for other types of degraded or fragmented DNA, e.g. circulating, cell-free DNA (ccfDNA). PMID:29099837

  6. Illustration of a simple and versatile scheme for reversing enantiomeric elution order and facilitating enantiomeric impurity determination in capillary electrophoresis.

    PubMed

    Magnusson, Jeanette; Wan, Hong; Blomberg, Lars G

    2002-09-01

    Determination of enantiomeric purity is most often done under overload conditions, which leads to deformed peaks. In general, the best resolutions are obtained when the small peak appears before the large peak in the electropherogram. To be able to determine the R(+)-impurity in the S(-)-form as well as the S(-)-impurity in the R(+)-form the elution orders have to be reversed. The present paper describes reversal of enantiomeric elution order for the basic analyte propranolol and the acidic analyte ibuprofen. For propranolol, a charged heptakis-(6-sulfo)-beta-cyclodextrin (CD) is used in the background electrolyte. For ibuprofen, a mix of the charged heptakis-(6-sulfo)-beta-CD and the uncharged heptakis-(2,3,6-tri-O-methyl)-beta-CD is used in the background electrolyte. The use of a coated capillary and reversal of the polarity shift the elution order, buffer composition is unchanged in both cases. The enantiomers of propranolol and ibuprofen are well separated on both the coated and uncoated capillaries. Detection limits of enantiomer impurities are investigated using spiked samples of both propranolol and ibuprofen.

  7. Freeze-Drying as Sample Preparation for Micellar Electrokinetic Capillary Chromatography – Electrochemical Separations of Neurochemicals in Drosophila Brains

    PubMed Central

    Berglund, E. Carina; Kuklinski, Nicholas J.; Karagündüz, Ekin; Ucar, Kubra; Hanrieder, Jörg; Ewing, Andrew G.

    2013-01-01

    Micellar electrokinetic capillary chromatography with electrochemical detection has been used to quantify biogenic amines in freeze-dried Drosophila melanogaster brains. Freeze drying samples offers a way to preserve the biological sample while making dissection of these tiny samples easier and faster. Fly samples were extracted in cold acetone and dried in a rotary evaporator. Extraction and drying times were optimized in order to avoid contamination by red-pigment from the fly eyes and still have intact brain structures. Single freeze-dried fly-brain samples were found to produce representative electropherograms as a single hand-dissected brain sample. Utilizing the faster dissection time that freeze drying affords, the number of brains in a fixed homogenate volume can be increased to concentrate the sample. Thus, concentrated brain samples containing five or fifteen preserved brains were analyzed for their neurotransmitter content, and five analytes; dopamine N-acetyloctopamine, Nacetylserotonin, N-acetyltyramine, N-acetyldopamine were found to correspond well with previously reported values. PMID:23387977

  8. An integrated passive micromixer-magnetic separation-capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level.

    PubMed

    Jung, Jae Hwan; Kim, Gha-Young; Seo, Tae Seok

    2011-10-21

    Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (∼10(4)) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.

  9. Capillary Electrophoresis Sensitivity Enhancement Based on Adaptive Moving Average Method.

    PubMed

    Drevinskas, Tomas; Telksnys, Laimutis; Maruška, Audrius; Gorbatsova, Jelena; Kaljurand, Mihkel

    2018-06-05

    In the present work, we demonstrate a novel approach to improve the sensitivity of the "out of lab" portable capillary electrophoretic measurements. Nowadays, many signal enhancement methods are (i) underused (nonoptimal), (ii) overused (distorts the data), or (iii) inapplicable in field-portable instrumentation because of a lack of computational power. The described innovative migration velocity-adaptive moving average method uses an optimal averaging window size and can be easily implemented with a microcontroller. The contactless conductivity detection was used as a model for the development of a signal processing method and the demonstration of its impact on the sensitivity. The frequency characteristics of the recorded electropherograms and peaks were clarified. Higher electrophoretic mobility analytes exhibit higher-frequency peaks, whereas lower electrophoretic mobility analytes exhibit lower-frequency peaks. On the basis of the obtained data, a migration velocity-adaptive moving average algorithm was created, adapted, and programmed into capillary electrophoresis data-processing software. Employing the developed algorithm, each data point is processed depending on a certain migration time of the analyte. Because of the implemented migration velocity-adaptive moving average method, the signal-to-noise ratio improved up to 11 times for sampling frequency of 4.6 Hz and up to 22 times for sampling frequency of 25 Hz. This paper could potentially be used as a methodological guideline for the development of new smoothing algorithms that require adaptive conditions in capillary electrophoresis and other separation methods.

  10. The CE way of thinking: "all is relative!".

    PubMed

    Schmitt-Kopplin, Philippe; Fekete, Agnes

    2008-01-01

    Over the last two decades, the development of capillary electrophoresis (CE) instruments has lead to systems with programmable samplers, separation columns, separation buffers, and detection devices comparable visually in many aspects to the setup of classical chromatography. Two characteristics make CE essentially different from chromatography and are the basis of the CE way of thinking: first is the injection type and the liquid flow within the capillary. When the injection is made hydrodynamically (such as in most of the applications found in the literature), the injected volumes are directly dependent on the type and size of the separation capillary. The second characteristic is that in CE, buffer velocity is not pressure-driven, as in liquid chromatography, but is electrokinetically governed by the quality of the capillary surface (separation buffer dependent surface charge) inducing an electroosmotic flow (EOF). The EOF undergoes small variations and is not necessarily identical from one separation or day to the other. The direct consequence is that the migration time of the analytes apparently nonreproducible, although the velocity of the ions is the same. The effective mobility (field strength normalized velocity) of the ions is a possible parameterization from acquired time-scale to effective mobility-scale electropherograms leading to a reproducible visualization and better quantification with a direct relation to structural characters of the analytes (i.e., charge and size; see Chapter 23).

  11. Analysis and differentiation of paper samples by capillary electrophoresis and multivariate analysis.

    PubMed

    Fernández de la Ossa, Ma Ángeles; Ortega-Ojeda, Fernando; García-Ruiz, Carmen

    2014-11-01

    This work reports an investigation for the analysis of different paper samples using CE with laser-induced detection. Papers from four different manufactures (white-copy paper) and four different paper sources (white and recycled-copy papers, adhesive yellow paper notes and restaurant serviettes) were pulverized by scratching with a surgical scalpel prior to their derivatization with a fluorescent labeling agent, 8-aminopyrene-1,3,6-trisulfonic acid. Methodological conditions were evaluated, specifically the derivatization conditions with the aim to achieve the best S/N signals and the separation conditions in order to obtain optimum values of sensitivity and reproducibility. The best conditions, in terms of fastest, and easiest sample preparation procedure, minimal sample consumption, as well as the use of the simplest and fastest CE-procedure for obtaining the best analytical parameters, were applied to the analysis of the different paper samples. The registered electropherograms were pretreated (normalized and aligned) and subjected to multivariate analysis (principal component analysis). A successful discrimination among paper samples without entanglements was achieved. To the best of our knowledge, this work presents the first approach to achieve a successful differentiation among visually similar white-copy paper samples produced by different manufactures and paper from different paper sources through their direct analysis by CE-LIF and subsequent comparative study of the complete cellulose electropherogram by chemometric tools. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Classification of Spanish white wines using their electrophoretic profiles obtained by capillary zone electrophoresis with amperometric detection.

    PubMed

    Arribas, Alberto Sánchez; Martínez-Fernández, Marta; Moreno, Mónica; Bermejo, Esperanza; Zapardiel, Antonio; Chicharro, Manuel

    2014-06-01

    A method was developed for the simultaneous detection of eight polyphenols (t-resveratrol, (+)-catechin, quercetin and p-coumaric, caffeic, sinapic, ferulic, and gallic acids) by CZE with electrochemical detection. Separation of these polyphenols was achieved within 25 min using a 200 mM borate buffer (pH 9.4) containing 10% methanol as separation electrolyte. Amperometric detection of polyphenols was carried out with a glassy carbon electrode (GCE) modified with a multiwalled carbon nanotubes (CNT) layer obtained from a dispersion of CNT in polyethylenimine. The excellent electrochemical properties of this modified electrode allowed the detection and quantification of the selected polyphenols in white wines without any pretreatment step, showing remarkable signal stability despite the presence of potential fouling substances in wine. The electrophoretic profiles of white wines, obtained using this methodology, have proven to be useful for the classification of these wines by means of chemometric multivariate techniques. Principal component analysis and discriminant analysis allowed accurate classification of wine samples on the basis of their grape varietal (verdejo and airén) using the information contained in selected zones of the electropherogram. The utility of the proposed CZE methodology based on the electrochemical response of CNT-modified electrodes appears to be promising in the field of wine industry and it is expected to be successfully extended to classification of a wider range of wines made of other grape varietals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fast electrophoretic analysis of individual mitochondria using microchip capillary electrophoresis with laser induced fluorescence detection.

    PubMed

    Duffy, Ciarán F; MacCraith, Brian; Diamond, Dermot; O'Kennedy, Richard; Arriaga, Edgar A

    2006-08-01

    The analysis of mitochondria by capillary electrophoresis usually takes longer than 20 min per replicate which may compromise the quality of the mitochondria due to degradation. In addition, low sample consumption may be beneficial in the analysis of rare or difficult samples. In this report, we demonstrate the ability to analyze individual mitochondrial events in picoliter-volume samples (approximately 80 pL) taken from a bovine liver preparation using microchip capillary electrophoresis with laser-induced fluorescence detection (micro-chip CE-LIF). Using a commercial "double-T" glass microchip, the sample was electrokinetically loaded in the "double-T" intersection and then subjected to electrophoretic separation along the main separation channel. In order to decrease interactions of mitochondria with channel walls during the analysis, poly(vinyl alcohol) was used as a dynamic coating. This procedure eliminates the need for complicated covalent surface modifications within the channels that were previously used in capillary electrophoresis methods. For analysis, mitochondria, isolated from bovine liver tissue, were selectively labelled using 10-nonyl acridine orange (NAO). The results consist of electropherograms where each mitochondrial event is a narrow spike (240 +/- 44 ms). While the spike intensity is representative of its NAO content, its migration time is used to calculate and describe its electrophoretic mobility, which is a property still largely unexplored for intracellular organelles. The five-fold decrease in separation time (4 min for microchip versus 20 min for capillary electrophoresis) makes microchip electrophoretic separations of organelles a faster, sensitive, low-sample volume alternative for the characterization of individual organelle properties and for investigations of subcellular heterogeneity.

  14. Monitoring exocytosis and release from individual mast cells by capillary electrophoresis and UV imaging microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, E.S.; Lillard, S.J.; McCloskey, M.A.

    1997-12-31

    The complex temporal evolution of on-column exocytotic release of serotonin from individual peritoneal mast cells (RPMCs) was monitored by using capillary electrophoresis and UV imaging microscopy. Laser-induced native fluorescence detection with 275-nm excitation was used, and a detection limit of 1.7 amol (S/N = 3; rms) was obtained for serotonin. A physiological running buffer was used to ensure that the cell remained viable throughout. The secretagogue was polymyxin B sulfate (Pmx). Following the injection of a single mast cell into the capillary, electromigration of Pmx toward and past the cell induced degranulation and release of serotonin. The time course ofmore » release was registered in the electropherograms with subsecond resolution. Subsequent introduction of SDS caused the cell to lyse completely and allowed the residual serotonin to be quantified. The average amount of serotonin observed per RPMC was 1.6 {+-} 0.6 fmol; the average percentage of serotonin released was 28 {+-} 14%. Events that are consistent with released serontonin from single submicron granules (250 aL each) were evident, each of which contained an average amount of 5.9 {+-} 3 amol. Alternatively, UV movies can be taken of the entire event to provide temporal and spatial information.« less

  15. Capillary electrophoresis investigation on equilibrium between polymer-related and surfactant-related species in aqueous polymer-surfactant solutions.

    PubMed

    Wu, Yefan; Chen, Miaomiao; Fang, Yun; Zhu, Meng

    2017-03-17

    It was inferred from aqueous solution behavior of nonionic polymers and anionic surfactants that the formation of charged polymer-bound surfactant micelle above critical aggregation concentration (cac) and the formation of free surfactant micelle beyond polymer saturation point (psp), but there was still a lack of direct experimental evidence for the considered equilibrium chemical species. Three modes of capillary electrophoresis are applied in this paper to study the complexation between nonionic polymers, polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG), and sodium dodecylbenzenesulfonate (SDBS) by successfully distinguishing the imaginary charged polymer-bound SDBS micelle from nonionic polymer and SDBS molecule. Perhaps even more important, it is the action of SDBS as both a main surfactant and a UV probe that makes the free surfactant micelle emerged in electropherogram beyond psp, and thus makes it possible for the first time to provide the equilibrium relationship of the polymer-related and the surfactant-related species in the concentration regions divided into by cac and psp. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Separation of a chemically modified DNA oligomer bound by the carcinogen 2-Amino-1-methy-6-phenylimidazo [4,5-{beta}]pyridine using capillary gel electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, T.N.

    1994-05-06

    We have optimized the reaction conditions under which unactivated metabolite of the food borne carcinogen 2-amino-1-methyl-6-phenylimidazo [4,5-{beta}]pyridine (PhIP) is covalently bound to the oligodeoxynucleotide d(CCTACGCATCC). Capillary electrophoresis (CE) was used to separate and characterize this DNA oligomer bound by PhIP. We observed 2 major and several minor PhIP adduct species. The 2 major adducts had different absorbance maxima; the major adduct eluates with faster and slower mobilities had absorbance maxima of 360 and 340 nm, respectively. One of the two major PhIP adduct species was resolvable but the peak was broad. Using detection at 260 nm, the other major PhIPmore » adduct with fastest electrophoretic mobility was not resolvable, but coelute with the huge broad unmodified DNA oligomer peak. However, at higher wavelengths (>320 nm) where DNA does not absorb, electropherograms generated by detection at these higher wavelengths showed very heterogeneous binding by PhIP to the DNA oligomer with no interfering absorbance by the DNA.« less

  17. Capillary electrophoresis coupled with electrochemiluminescence for determination of atomoxetine hydrochloride and the study on its interactions with three proteins.

    PubMed

    Zeng, Hua-jin; Yang, Ran; Zhang, Ying; Li, Jian-jun; Qu, Ling-bo

    2015-03-01

    A simple, rapid and sensitive method for the determination of atomoxetine hydrochloride (AH) by capillary electrophoresis with electrochemiluminescence detection (CE-ECL) using tris(2,2'-bipyridyl) ruthenium (II) was developed. Under optimized conditions, the determinations of AH in capsules and rat plasmas and the study on its interactions with three plasma proteins, including bovine serum albumin, cytochrome c and myoglobin were performed successfully. Relative to some previous studies, in this paper the methodologies for the determination of AH in aqueous solution and spiked plasma systems were established, respectively. By comparing the difference between the two work curves of two systems, the matrix effect in plasma samples on the determination of AH by the CE-ECL method was discussed in detail. The results indicated that the effect of the matrix in plasma samples should not be ignored even if no obvious interference was found in the electropherograms and the establishment of method validation in complex samples by the CE-ECL method was necessary. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Extraction parameters and capillary electrophoresis analysis of limonin glucoside and phlorin in citrus byproducts.

    PubMed

    Braddock, R J; Bryan, C R

    2001-12-01

    Limonin glucoside (LG) and phlorin were extracted from citrus fruit tissues and assayed by capillary electrophoresis (CE). LG was determined in dried [1.20 +/- 0.10 mg of dry weight (dw)] and wet peel residues (1.16 +/- 0.04 mg of dw), orange juice finisher pulp (0.58 +/- 0.03 mg of dw), dried grapefruit seeds (2.70 +/- 0.15 mg of dw), and 50 degrees Brix molasses (2225 +/- 68 mg/L). Phlorin was purified from orange peel residue and grapefruit albedo, and concentrations were determined in some citrus products. Phlorin and LG were extracted from residues with water/pectinase or with water solutions of methanol and ethanol. Efficient LG extraction from grapefruit seeds (2.40 +/- 0.15 mg/g) was achieved with 50-65% methanol, solvent polarity P' approximately equal to 7-8. Extracts were purified and concentrated by adsorptive resins and HPLC to obtain 95% pure compounds of LG and phlorin. CE analysis did not require extract purification beyond filtration. LG and phlorin migrated as anions in electropherograms containing peaks representing other citrus flavonoids and limonoid glucosides.

  19. The characteristics of transferrin variants by carbohydrate-deficient transferrin tests using capillary zone electrophoresis.

    PubMed

    Yoo, Gilsung; Kim, Juwon; Yoon, Kap Joon; Lee, Jong-Han

    2018-04-17

    Transferrin is the major plasma transport protein for iron. We aimed to investigate the characteristics of transferrin variant by carbohydrate-deficient transferrin (CDT) test using capillary zone electrophoresis. We retrospectively analyzed the CDT tests of 2449 patients from March 2009 to May 2017 at a tertiary hospital in Korea. CDT was quantified using a Capillarys 2 system (Sebia, Lisses, France) by capillary zone electrophoresis. The characteristics of variant transferrin patterns using electropherogram of CDT tests were analyzed. Seventy-seven (3.1%) patients were classified as variant transferrin. Mean age of these patients was 51.8 years, and the male-to-female ratio was 3.5:1. The most common variants were the BC variants (n = 37), followed by the CD variants (n = 27), unclear patterns (n = 7), BD variants (n = 3), CC variants (n = 2), misclassification (n = 1). In the variant Tf group, the most common disease was alcoholic liver cirrhosis (n = 22, 28.6%), followed by the toxic effects of substances (n = 17, 22.1%), and mental and behavioral disorders attributable to alcohol (n = 11, 14.3%). Nonvariant group showed a predominance of the toxic substance effects (n = 880, 37.1%), a personal history of suicide attempts (n = 634, 26.7%), and mental and behavioral disorders due to alcohol (n = 336, 14.2%). We analyzed the basic characteristics of variant transferrin by CDT tests using capillary zone electrophoresis. The prevalence of variant transferrin was 3.1% of the study subjects. Male patients, alcohol abusers, and liver cirrhosis patients predominated in the variant transferrin population. Further prospective studies are warranted to elucidate variant transferrin in clinical practice. © 2018 Wiley Periodicals, Inc.

  20. SNPmplexViewer--toward a cost-effective traceability system

    PubMed Central

    2011-01-01

    Background Beef traceability has become mandatory in many regions of the world and is typically achieved through the use of unique numerical codes on ear tags and animal passports. DNA-based traceability uses the animal's own DNA code to identify it and the products derived from it. Using SNaPshot, a primer-extension-based method, a multiplex of 25 SNPs in a single reaction has been practiced for reducing the expense of genotyping a panel of SNPs useful for identity control. Findings To further decrease SNaPshot's cost, we introduced the Perl script SNPmplexViewer, which facilitates the analysis of trace files for reactions performed without the use of fluorescent size standards. SNPmplexViewer automatically aligns reference and target trace electropherograms, run with and without fluorescent size standards, respectively. SNPmplexViewer produces a modified target trace file containing a normalised trace in which the reference size standards are embedded. SNPmplexViewer also outputs aligned images of the two electropherograms together with a difference profile. Conclusions Modified trace files generated by SNPmplexViewer enable genotyping of SnaPshot reactions performed without fluorescent size standards, using common fragment-sizing software packages. SNPmplexViewer's normalised output may also improve the genotyping software's performance. Thus, SNPmplexViewer is a general free tool enabling the reduction of SNaPshot's cost as well as the fast viewing and comparing of trace electropherograms for fragment analysis. SNPmplexViewer is available at http://cowry.agri.huji.ac.il/cgi-bin/SNPmplexViewer.cgi. PMID:21600063

  1. Capillary zone electrophoresis for analysis of phytochelatins and other thiol peptides in complex biological samples derivatized with monobromobimane.

    PubMed

    Perez-Rama, Mónica; Torres Vaamonde, Enrique; Abalde Alonso, Julio

    2005-02-01

    A new method to improve the analysis of phytochelatins and their precursors (cysteine, gamma-Glu-Cys, and glutathione) derivatized with monobromobimane (mBrB) in complex biological samples by capillary zone electrophoresis is described. The effects of the background electrolyte pH, concentration, and different organic additives (acetonitrile, methanol, and trifluoroethanol) on the separation were studied to achieve optimum resolution and number of theoretical plates of the analyzed compounds in the electropherograms. Optimum separation of the thiol peptides was obtained with 150 mM phosphate buffer at pH 1.60. Separation efficiency was improved when 2.5% v/v methanol was added to the background electrolyte. The electrophoretic conditions were 13 kV and capillary dimensions with 30 cm length from the inlet to the detector (38 cm total length) and 50 microm inner diameter. The injection was by pressure at 50 mbar for 17 s. Under these conditions, the separation between desglycyl-peptides and phytochelatins was also achieved. We also describe the optimum conditions for the derivatization of biological samples with mBrB to increase electrophoretic sensitivity and number of theoretical plates. The improved method was shown to be simple, reproducible, selective, and accurate in measuring thiol peptides in complex biological samples, the detection limit being 2.5 microM glutathione at a wavelength of 390 nm.

  2. Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.

    PubMed

    Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan

    2017-01-01

    Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.

  3. Quality evaluation of Guan-Xin-Ning injection based on fingerprint analysis and simultaneous separation and determination of seven bioactive constituents by capillary electrophoresis.

    PubMed

    Xu, Liying; Chang, Ruimiao; Chen, Meng; Li, Lou; Huang, Yayun; Zhang, Hongfen; Chen, Anjia

    2017-12-01

    The purpose of this study was to develop a comprehensive, rapid and practical capillary electrophoresis (CE) method for quality control (QC) of Guan-Xin-Ning (GXN) injection based on fingerprint analysis and simultaneous separation and determination of seven constituents. In fingerprint analysis, a capillary zone electrophoresis (CZE) method with a running buffer of 30 mM borate solution (pH 9.3) was established. Meanwhile, ten batches of samples were used to establish the fingerprint electropherogram and 34 common peaks were obtained within 20 min. The RSD of relative migration times (RMT) and relative peak areas (RPA) were less than 5%. In order to further evaluate the quality of GXN injection, a micellar electrokinetic chromatography (MEKC) method was developed for simultaneous separation and determination of bioactive constituents. Seven components reached baseline separation with a running buffer containing 35 mM SDS and 45 mM borate solution (pH 9.3). A good linearity was obtained with correlation coefficients from 0.9906 to 0.9997. The LOD and LOQ ranged from 0.12 to 1.50 μg/mL and from 0.40 to 4.90 μg/mL, respectively. The recoveries ranged between 99.0 and 104.4%. Therefore, it was concluded that the proposed method can be used for full-scale quality analysis of GXN injection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Acupuncture injection for field amplified sample stacking and glass microchip-based capillary gel electrophoresis.

    PubMed

    Ha, Ji Won; Hahn, Jong Hoon

    2017-02-01

    Acupuncture sample injection is a simple method to deliver well-defined nanoliter-scale sample plugs in PDMS microfluidic channels. This acupuncture injection method in microchip CE has several advantages, including minimization of sample consumption, the capability of serial injections of different sample solutions into the same microchannel, and the capability of injecting sample plugs into any desired position of a microchannel. Herein, we demonstrate that the simple and cost-effective acupuncture sample injection method can be used for PDMS microchip-based field amplified sample stacking in the most simplified straight channel by applying a single potential. We achieved the increase in electropherogram signals for the case of sample stacking. Furthermore, we present that microchip CGE of ΦX174 DNA-HaeⅢ digest can be performed with the acupuncture injection method on a glass microchip while minimizing sample loss and voltage control hardware. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Capillary electrophoresis for aluminum ion speciation: Optimized separation conditions for complex polycation mixtures.

    PubMed

    Ouadah, Nesrine; Moire, Claudine; Brothier, Fabien; Kuntz, Jean-François; Deschaume, Olivier; Bartic, Carmen; Cottet, Hervé

    2018-06-01

    Aluminum chlorohydrates (ACH) are used in numerous applications and commercial products on a global scale including water treatment, catalysis or antiperspirants. They are complex mixtures of water soluble aluminum polycations of different degrees of polymerization, that are difficult to separate and quantify due to their susceptibility to depolymerize in solution when placed out of equilibrium, which is inherent to any separation process. We recently achieved the first capillary electrophoresis separation and characterization of ACH oligomers using 4-morpholineethanesulfonic acid (MES) as background electrolyte counter-ion. MES stabilizes the separated ACH oligomers during the electrophoretic process leading to highly repeatable and fast separations. In this work, the separation of ACH oligomers was further studied and perfected by varying the ionic strength, MES concentration and pH of the background electrolyte. Complex electrophoretic behavior is reported for the separation of Al 13 , Al 30 and Na + ions according to these experimental parameters. The transformation of the electropherograms in effective mobility scale and the use of the slope-plot approach are used to better understand the observed changes in selectivity/resolution. Optimal conditions (700 mM MES at 25 mM ionic strength containing 0.1 mM didodecyldimethylammonium bromide for dynamic capillary coating, pH 4.8) obtained for the separation of ACH oligomers are used for the baseline separation of samples difficult to analyze with other methods, including different molecular, aggregated and colloidal forms of aluminum from the Al 13 , Al 30 and Na + mixture, validating the rationale of the approach. Copyright © 2018. Published by Elsevier B.V.

  6. A simple and rapid electrophoretic method to characterize simple phenols, lignans, complex phenols, phenolic acids, and flavonoids in extra-virgin olive oil.

    PubMed

    Carrasco-Pancorbo, Alegria; Gómez-Caravaca, Ana Maria; Cerretani, Lorenzo; Bendini, Alessandra; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2006-09-01

    We have devised a simple and rapid capillary electrophoretic method which provides the analyst with a useful tool for the characterization of the polyphenolic fraction of extra-virgin olive oil. This method that uses a capillary with 50 microm id and a total length of 47 cm (40 cm to the detector) with a detection window of 100 x 200 microm, and a buffer solution containing 45 mM of sodium tetraborate pH 9.3 offers valuable information about all the families of compounds present in the polar fraction of the olive oil. The detection was carried out by UV absorption at 200, 240, 280, and 330 nm in order to facilitate the identification of the compounds. Concretely, the method permits the identification of simple phenols, lignans, complex phenols (isomeric forms of secoiridoids), phenolic acids, and flavonoids in the SPE-Diol extracts from extra-virgin olive oil in a short time (less than 10 min) and provides a satisfactory resolution. Peak identification was done by comparing both migration time and spectral data obtained from olive oil samples and standards (commercial or isolated (by HPLC-MS) standards), with spiked methanol-water extracts of olive oil with HPLC-collected compounds and commercially available standards at several concentration levels, studying the information of the electropherograms obtained at several wavelengths and also using the information previously reported.

  7. A new sample treatment for asialo-Tf determination with capillary electrophoresis: an added value to the analysis of CDT.

    PubMed

    Porpiglia, Nadia Maria; De Palo, Elio Franco; Savchuk, Sergey Alexandrovich; Appolonova, Svetlana Alexandrovna; Bortolotti, Federica; Tagliaro, Franco

    2018-05-10

    The non-glycosylated glycoform of transferrin (Tf), known as asialo-Tf, was not selected (in favor of disialo-Tf) as the measurand for the standardization of carbohydrate deficient transferrin (CDT) determination because of a lower diagnostic sensitivity provided with the currently available analytical procedures for sera. However, asialo-Tf could provide an additional value to disialo-Tf in the CDT analysis employed in forensic toxicology contexts. The present work aimed at developing an easy sample preparation based on PEG precipitation in order to improve the detectability of asialo-Tf in capillary electrophoresis (CE). Equal volumes (35 μL) of serum and of 30% PEG-8000 were mixed and briefly vortexed. After centrifugation, the supernatant was iron saturated with a ferric solution (1:1, v/v). The mixture was analyzed in CE for asialo-Tf and disialo-Tf determination. PEG-8000 precipitation allowed the improvement of the baseline in the electropherograms in terms of interferences reduction particularly in the asialo-Tf migration region. The detection of asialo-Tf was possible in 89% of samples with disialo-Tf above the cut-off limit, whereas only 16% of them showed asialo-Tf by employing the traditional sample preteatment. Asialo-Tf represents an additional value to disialo-Tf as a biomarker of alcohol abuse in forensic toxicology. Copyright © 2018. Published by Elsevier B.V.

  8. Complexation studies with lanthanides and humic acid analyzed by ultrafiltration and capillary electrophoresis-inductively coupled plasma mass spectrometry.

    PubMed

    Kautenburger, Ralf; Beck, Horst Philipp

    2007-08-03

    For the long-term storage of radioactive waste, detailed information about geo-chemical behavior of radioactive and toxic metal ions under environmental conditions is necessary. Humic acid (HA) can play an important role in the immobilisation or mobilisation of metal ions due to complexation and colloid formation. Therefore, we investigate the complexation behavior of HA and its influence on the migration or retardation of selected lanthanides (europium and gadolinium as homologues of the actinides americium and curium). Two independent speciation techniques, ultrafiltration and capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICP-MS) have been compared for the study of Eu and Gd interaction with (purified Aldrich) HA. The degree of complexation of Eu and Gd in 25 mg l(-1) Aldrich HA solutions was determined with a broad range of metal loading (Eu and Gd total concentration between 10(-6) and 10(-4) mol l(-1)), ionic strength of 10 mM (NaClO4) and different pH-values. From the CE-ICP-MS electropherograms, additional information on the charge of the Eu species was obtained by the use of 1-bromopropane as neutral marker. To detect HA in the ICP-MS and separate between HA complexed and non complexed metal ions in the CE-ICP-MS, we have halogenated the HA with iodine as ICP-MS marker.

  9. Cellular processing of gold nanoparticles: CE-ICP-MS evidence for the speciation changes in human cytosol.

    PubMed

    Legat, Joanna; Matczuk, Magdalena; Timerbaev, Andrei R; Jarosz, Maciej

    2018-01-01

    The cellular uptake of gold nanoparticles (AuNPs) may (or may not) affect their speciation, but information on the chemical forms in which the particles exist in the cell remains obscure. An analytical method based on the use of capillary electrophoresis hyphenated with inductively coupled plasma mass spectrometry (ICP-MS) has been proposed to shed light on the intracellular processing of AuNPs. It was observed that when being introduced into normal cytosol, the conjugates of 10-50 nm AuNPs with albumin evolved in human serum stayed intact. On the contrary, under simulated cancer cytosol conditions, the nanoconjugates underwent decomposition, the rate of which and the resulting metal speciation patterns were strongly influenced by particle size. The new peaks that appeared in ICP-MS electropherograms could be ascribed to nanosized species, as upon ultracentrifugation, they quantitatively precipitated whereas the supernatant showed only trace Au signals. Our present study is the first step to unravel a mystery of the cellular chemistry for metal-based nanomedicines.

  10. Comparison of ion-pair chromatography and capillary zone electrophoresis for the assay of organic acids as markers of abnormal metabolism.

    PubMed

    Wang, Shu-Ping; Liao, Chiou-Shyi

    2004-10-08

    The abnormal organic acids in urine are closely related with physiological metabolism. To determinate the low-molecular-mass metabolites in human biological fluids, although there were some previous reports by both of capillary electrophoresis and ion-exchange high-performance liquid chromatography, but it was rarely found by reverse phase of liquid chromatography using ion pair reagent. The objective of this study was aimed to suggest and compare two methods, an additional chromatographic method-ion-pair chromatography (IPC) and a sharp capillary zone electrophoresis (CZE), to determinate organic acids, acting as the abnormal metabolic markers, namely uric acid, orotic acid, pyruvic acid, alpha-ketoglutaric acid, fumaric acid, and hippuric acid. The proposed method of IPC possessed both the extreme stability for column and the good results of reproducibility, linearity and detection limit. The optimum mobile phase was 22% methanol and 10 mM tetra-n-butyl ammonium hydrogen sulfate (pH 4) by gradient elution. As well as the optimum condition of CZE was 5% acetonitrile and 0.5 mM CTAB in phosphate buffer. From the results, CZE showed better recovery and sharp lucid electropherogram. Finally, the two proposed analytical methods were applied to assay human urine with direct and spiked analysis. CZE showed good potency to overcome the sample-to sample variation with standard deviation less than 10%. By comparison results of urinary spiked analysis between IPC and CZE by statistical paired t-test, the results were evaluated no significant difference under P < 0.05. The quantitative linearity of both methods was fitted in application of clinical biological analysis even with 50-fold dilution.

  11. The selective determination of sulfates, sulfonates and phosphates in urine by CE-MS.

    PubMed

    Bunz, Svenja-Catharina; Weinmann, Wolfgang; Neusüss, Christian

    2010-04-01

    Metabolite identification and metabolite profiling are of major importance in the pharmaceutical and clinical context. However, highly polar and ionic substances are rarely included as analytical tools are missing. In this study, we present a new method for the determination of urinary sulfates, sulfonates, phosphates and other anions of strong acids. The method comprises a CE separation using an acidic BGE (pH

  12. Effect of Capillary Tube’s Shape on Capillary Rising Regime for Viscos Fluids

    NASA Astrophysics Data System (ADS)

    Soroush, F.; Moosavi, A.

    2018-05-01

    When properties of the displacing fluid are considered, the rising profile of the penetrating fluid in a capillary tube deviates from its classical Lucas-Washburn profile. Also, shape of capillary tube can affect the rising profile in different aspects. In this article, effect of capillary tube’s shape on the vertical capillary motion in presence of gravity is investigated by considering the properties of the displacing fluid. According to the fact that the differential equation of the capillary rising for a non-simple wall type is very difficult to solve analytically, a finite element simulation model is used for this study. After validation of the simulation model with an experiment that has been done with a simple capillary tube, shape of the capillary tube’s wall is changed in order to understand its effects on the capillary rising and different motion regimes that may appear according to different geometries. The main focus of this article is on the sinusoidal wall shapes and comparing them with a simple wall.

  13. Production of high-fidelity electropherograms results in improved and consistent DNA interpretation: Standardizing the forensic validation process.

    PubMed

    Peters, Kelsey C; Swaminathan, Harish; Sheehan, Jennifer; Duffy, Ken R; Lun, Desmond S; Grgicak, Catherine M

    2017-11-01

    Samples containing low-copy numbers of DNA are routinely encountered in casework. The signal acquired from these sample types can be difficult to interpret as they do not always contain all of the genotypic information from each contributor, where the loss of genetic information is associated with sampling and detection effects. The present work focuses on developing a validation scheme to aid in mitigating the effects of the latter. We establish a scheme designed to simultaneously improve signal resolution and detection rates without costly large-scale experimental validation studies by applying a combined simulation and experimental based approach. Specifically, we parameterize an in silico DNA pipeline with experimental data acquired from the laboratory and use this to evaluate multifarious scenarios in a cost-effective manner. Metrics such as signal 1copy -to-noise resolution, false positive and false negative signal detection rates are used to select tenable laboratory parameters that result in high-fidelity signal in the single-copy regime. We demonstrate that the metrics acquired from simulation are consistent with experimental data obtained from two capillary electrophoresis platforms and various injection parameters. Once good resolution is obtained, analytical thresholds can be determined using detection error tradeoff analysis, if necessary. Decreasing the limit of detection of the forensic process to one copy of DNA is a powerful mechanism by which to increase the information content on minor components of a mixture, which is particularly important for probabilistic system inference. If the forensic pipeline is engineered such that high-fidelity electropherogram signal is obtained, then the likelihood ratio (LR) of a true contributor increases and the probability that the LR of a randomly chosen person is greater than one decreases. This is, potentially, the first step towards standardization of the analytical pipeline across operational laboratories. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A simulation model of the oxygen alveolo-capillary exchange in normal and pathological conditions.

    PubMed

    Brighenti, Chiara; Gnudi, Gianni; Avanzolini, Guido

    2003-05-01

    This paper presents a mathematical model of the oxygen alveolo-capillary exchange to provide the capillary oxygen partial pressure profile in normal and pathological conditions. In fact, a thickening of the blood-gas barrier, heavy exercise or a low oxygen partial pressure (PO2) in the alveolar space can reduce the O2 alveolo-capillary exchange. Since the reversible binding between haemoglobin and oxygen makes it impossible to determine the closed form for the mathematical description of the PO2 profile along the pulmonary capillaries, an approximate analytical solution of the capillary PO2 profile is proposed. Simulation results are compared with the capillary PO2 profile obtained by numerical integration and by a piecewise linear interpolation of the oxyhaemoglobin dissociation curve. Finally, the proposed model is evaluated in a large range of physiopathological diffusive conditions. The good fit to numerical solutions in all experimental conditions seems to represent a substantial improvement with respect to the approach based on a linear approximation of the oxyhaemoglobin dissociation curve, and makes this model a candidate to be incorporated into the integrated descriptions of the entire respiratory system, where the datum of primary interest is the value of end capillary PO2.

  15. Capillary pressure curves for low permeability chalk obtained by NMR imaging of core saturation profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norgaard, J.V.; Olsen, D.; Springer, N.

    1995-12-31

    A new technique for obtaining water-oil capillary pressure curves, based on NMR imaging of the saturation distribution in flooded cores is presented. In this technique, a steady state fluid saturation profile is developed by flooding the core at a constant flow rate. At the steady state situation where the saturation distribution no longer changes, the local pressure difference between the wetting and non-wetting phases represents the capillary pressure. The saturation profile is measured using an NMR technique and for a drainage case, the pressure in the non-wetting phase is calculated numerically. The paper presents the NMR technique and the proceduremore » for calculating the pressure distribution in the sample. Inhomogeneous samples produce irregular saturation profiles, which may be interpreted in terms of variation in permeability, porosity, and capillary pressure. Capillary pressure curves for North Sea chalk obtained by the new technique show good agreement with capillary pressure curves obtained by traditional techniques.« less

  16. Cobalt complexes as internal standards for capillary zone electrophoresis-mass spectrometry studies in biological inorganic chemistry.

    PubMed

    Holtkamp, Hannah U; Morrow, Stuart J; Kubanik, Mario; Hartinger, Christian G

    2017-07-01

    Run-by-run variations are very common in capillary electrophoretic (CE) separations and cause imprecision in both the migration times and the peak areas. This makes peak and kinetic trend identification difficult and error prone. With the aim to identify suitable standards for CE separations which are compatible with the common detectors UV, ESI-MS, and ICP-MS, the Co III complexes [Co(en) 3 ]Cl 3 , [Co(acac) 3 ] and K[Co(EDTA)] were evaluated as internal standards in the reaction of the anticancer drug cisplatin and guanosine 5'-monophosphate as an example of a classical biological inorganic chemistry experiment. These Co III chelate complexes were considered for their stability, accessibility, and the low detection limit for Co in ICP-MS. Furthermore, the Co III complexes are positively and negatively charged as well as neutral, allowing the detection in different areas of the electropherograms. The background electrolytes were chosen to cover a wide pH range. The compatibility to the separation conditions was dependent on the ligands attached to the Co III centers, with only the acetylacetonato (acac) complex being applicable in the pH range 2.8-9.0. Furthermore, because of being charge neutral, this compound could be used as an electroosmotic flow (EOF) marker. In general, employing Co complexes resulted in improved data sets, particularly with regard to the migration times and peak areas, which resulted, for example, in higher linear ranges for the quantification of cisplatin.

  17. Triblock copolymer matrix-based capillary electrophoretic microdevice for high-resolution multiplex pathogen detection.

    PubMed

    Kim, Se Jin; Shin, Gi Won; Choi, Seok Jin; Hwang, Hee Sung; Jung, Gyoo Yeol; Seo, Tae Seok

    2010-03-01

    Rapid and simple analysis for the multiple target pathogens is critical for patient management. CE-SSCP analysis on a microchip provides high speed, high sensitivity, and a portable genetic analysis platform in molecular diagnostic fields. The capability of separating ssDNA molecules in a capillary electrophoretic microchannel with high resolution is a critical issue to perform the precise interpretation in the electropherogram. In this study, we explored the potential of poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) (PEO-PPO-PEO) triblock copolymer as a sieving matrix for CE-SSCP analysis on a microdevice. To demonstrate the superior resolving power of PEO-PPO-PEO copolymers, 255-bp PCR amplicons obtained from 16S ribosomal RNA genes of four bacterial species, namely Proteus mirabilis, Haemophilus ducreyi, Pseudomonas aeruginosa, and Neisseria meningitidis, were analyzed in the PEO-PPO-PEO matrix in comparison with 5% linear polyacrylamide and commercial GeneScan gel. Due to enhanced dynamic coating and sieving ability, PEO-PPO-PEO copolymer displayed fourfold enhancement of resolving power in the CE-SSCP to separate same-sized DNA molecules. Fivefold input of genomic DNA of P. aeruginosa and/or N. meningitidis produced proportionally increased corresponding amplicon peaks, enabling correct quantitative analysis in the pathogen detection. Besides the high-resolution sieving capability, a facile loading and replenishment of gel in the microchannel due to thermally reversible gelation property makes PEO-PPO-PEO triblock copolymer an excellent matrix in the CE-SSCP analysis on the microdevice.

  18. Introducing the concept of centergram. A new tool to squeeze data from separation techniques-mass spectrometry couplings.

    PubMed

    Erny, Guillaume L; Simó, Carolina; Cifuentes, Alejandro; Esteves, Valdemar I

    2014-02-21

    In separation techniques hyphenated to mass spectrometry (MS) the bulk from the separation step is continuously flowing into the mass spectrometer where the compounds, arriving at each separation time, are ionized and further separated based on their m/z ratio. An MS detector is recognized as being a universal detector, although it can also be a very selective instrument. In spite of these advantages, classical two dimensional representations from these hyphenated systems, such as those based on the base peak of electropherogram/chromatogram or on the total ion of electropherogram/chromatogram, usually hide a large number of features that if correctly assessed will show the presence of co-migrating species and/or the low abundant ones. The uses of peak picking algorithms to detect and measure as many peaks as possible from a dataset allow extracting much more information. However, a single migrating compound usually produces a multiplicity of ions, making difficult to differentiate peaks generated by the same compound from other peaks due e.g., to closely co-migrating/eluting species. In this work, a new representation is proposed and its usefulness demonstrated with experimental data from capillary electrophoresis-hyphenated to a time of flight mass spectrometer via an electrospray interface. This representation, called centergram, is obtained after using a peak picking methodology that detects electrophoretic peaks of single ions and measure their positions. The centergram is the histogram (i.e. the count of the number of observations that fall into each one of the intervals, known as bins, as determined by the user) of the measured positions. The intensity of the bars in this histogram will indicate the amount of peaks in the whole dataset whose centers are within each interval. As a compound that has been separated and has entered the MS instrument will produce multiple images at the same position along the m/z dimension, the centergram will exhibit a series of intense bars around the migration time. Those bars will allow defining a centergram peak whose area will be proportional to the number of different types of ions that have been generated in the ionization chamber, the position will be equal to the migration/retention time of the parent compounds and the width will depend on the precision in the measurement of the peak positions. The efficiency of this peak is determined to be up to thirty times higher than the equivalent peak in the classical base peak electropherogram allowing detecting easily co-migrating peaks or the presence of compounds at very low abundance. The number of peaks detected by using this new tool called centergram was increased by more than a factor of 3 compared to the standard representations. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. High-throughput STR analysis for DNA database using direct PCR.

    PubMed

    Sim, Jeong Eun; Park, Su Jeong; Lee, Han Chul; Kim, Se-Yong; Kim, Jong Yeol; Lee, Seung Hwan

    2013-07-01

    Since the Korean criminal DNA database was launched in 2010, we have focused on establishing an automated DNA database profiling system that analyzes short tandem repeat loci in a high-throughput and cost-effective manner. We established a DNA database profiling system without DNA purification using a direct PCR buffer system. The quality of direct PCR procedures was compared with that of conventional PCR system under their respective optimized conditions. The results revealed not only perfect concordance but also an excellent PCR success rate, good electropherogram quality, and an optimal intra/inter-loci peak height ratio. In particular, the proportion of DNA extraction required due to direct PCR failure could be minimized to <3%. In conclusion, the newly developed direct PCR system can be adopted for automated DNA database profiling systems to replace or supplement conventional PCR system in a time- and cost-saving manner. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  20. Computation of marginal distributions of peak-heights in electropherograms for analysing single source and mixture STR DNA samples.

    PubMed

    Cowell, Robert G

    2018-05-04

    Current models for single source and mixture samples, and probabilistic genotyping software based on them used for analysing STR electropherogram data, assume simple probability distributions, such as the gamma distribution, to model the allelic peak height variability given the initial amount of DNA prior to PCR amplification. Here we illustrate how amplicon number distributions, for a model of the process of sample DNA collection and PCR amplification, may be efficiently computed by evaluating probability generating functions using discrete Fourier transforms. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Integrative metabolomics for characterizing unknown low-abundance metabolites by capillary electrophoresis-mass spectrometry with computer simulations.

    PubMed

    Lee, Richard; Ptolemy, Adam S; Niewczas, Liliana; Britz-McKibbin, Philip

    2007-01-15

    Characterization of unknown low-abundance metabolites in biological samples is one the most significant challenges in metabolomic research. In this report, an integrative strategy based on capillary electrophoresis-electrospray ionization-ion trap mass spectrometry (CE-ESI-ITMS) with computer simulations is examined as a multiplexed approach for studying the selective nutrient uptake behavior of E. coli within a complex broth medium. On-line sample preconcentration with desalting by CE-ESI-ITMS was performed directly without off-line sample pretreatment in order to improve detector sensitivity over 50-fold for cationic metabolites with nanomolar detection limits. The migration behavior of charged metabolites were also modeled in CE as a qualitative tool to support MS characterization based on two fundamental analyte physicochemical properties, namely, absolute mobility (muo) and acid dissociation constant (pKa). Computer simulations using Simul 5.0 were used to better understand the dynamics of analyte electromigration, as well as aiding de novo identification of unknown nutrients. There was excellent agreement between computer-simulated and experimental electropherograms for several classes of cationic metabolites as reflected by their relative migration times with an average error of <2.0%. Our studies revealed differential uptake of specific amino acids and nucleoside nutrients associated with distinct stages of bacterial growth. Herein, we demonstrate that CE can serve as an effective preconcentrator, desalter, and separator prior to ESI-MS, while providing additional qualitative information for unambiguous identification among isobaric and isomeric metabolites. The proposed strategy is particularly relevant for characterizing unknown yet biologically relevant metabolites that are not readily synthesized or commercially available.

  2. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.

  3. A simple algorithm for quantifying DNA methylation levels on multiple independent CpG sites in bisulfite genomic sequencing electropherograms.

    PubMed

    Leakey, Tatiana I; Zielinski, Jerzy; Siegfried, Rachel N; Siegel, Eric R; Fan, Chun-Yang; Cooney, Craig A

    2008-06-01

    DNA methylation at cytosines is a widely studied epigenetic modification. Methylation is commonly detected using bisulfite modification of DNA followed by PCR and additional techniques such as restriction digestion or sequencing. These additional techniques are either laborious, require specialized equipment, or are not quantitative. Here we describe a simple algorithm that yields quantitative results from analysis of conventional four-dye-trace sequencing. We call this method Mquant and we compare it with the established laboratory method of combined bisulfite restriction assay (COBRA). This analysis of sequencing electropherograms provides a simple, easily applied method to quantify DNA methylation at specific CpG sites.

  4. Single bead-based electrochemical biosensor.

    PubMed

    Liu, Changchun; Schrlau, Michael G; Bau, Haim H

    2009-12-15

    A simple, robust, single bead-based electrochemical biosensor was fabricated and characterized. The sensor's working electrode consists of an electrochemically etched platinum wire, with a nominal diameter of 25 microm, hermetically heat-fusion sealed in a pulled glass capillary (micropipette). The sealing process does not require any epoxy or glue. A commercially available, densely functionalized agarose bead was mounted on the tip of the etched platinum wire. The use of a pre-functionalized bead eliminates the tedious and complicated surface functionalization process that is often the bottleneck in the development of electrochemical biosensors. We report on the use of a biotin agarose bead-based, micropipette, electrochemical (Bio-BMP) biosensor to monitor H(2)O(2) concentration and the use of a streptavidin bead-based, micropipette, electrochemical (SA-BMP) biosensor to detect DNA amplicons. The Bio-BMP biosensor's response increased linearly as the H(2)O(2) concentration increased in the range from 1 x 10(-6) to 1.2 x10(-4)M with a detection limit of 5 x 10(-7)M. The SA-BMP was able to detect the amplicons of 1pg DNA template of B. Cereus bacteria, thus providing better detection sensitivity than conventional gel-based electropherograms.

  5. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.

    PubMed

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-07-01

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high-performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single-chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality-enriched samples, and show the feasibility of applying CE for high-performance separation of nanomaterials based on differences in surface functional density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Early regimes of water capillary flow in slit silica nanochannels.

    PubMed

    Oyarzua, Elton; Walther, Jens H; Mejía, Andrés; Zambrano, Harvey A

    2015-06-14

    Molecular dynamics simulations are conducted to investigate the initial stages of spontaneous imbibition of water in slit silica nanochannels surrounded by air. An analysis is performed for the effects of nanoscopic confinement, initial conditions of liquid uptake and air pressurization on the dynamics of capillary filling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes: an initial regime where the capillary force is balanced only by the inertial drag and characterized by a constant velocity and a plug flow profile. In this regime, the meniscus formation process plays a central role in the imbibition rate. Thereafter, a transitional regime takes place, in which, the force balance has significant contributions from both inertia and viscous friction. Subsequently, a regime wherein viscous forces dominate the capillary force balance is attained. Flow velocity profiles identify the passage from an inviscid flow to a developing Poiseuille flow. Gas density profiles ahead of the capillary front indicate a transient accumulation of air on the advancing meniscus. Furthermore, slower capillary filling rates computed for higher air pressures reveal a significant retarding effect of the gas displaced by the advancing meniscus.

  7. Profile of capillary bridges between two vertically stacked cylindrical fibers under gravitational effect

    NASA Astrophysics Data System (ADS)

    Sun, Xiaohang; Lee, Hoon Joo; Michielsen, Stephen; Wilusz, Eugene

    2018-05-01

    Although profiles of axisymmetric capillary bridges between two cylindrical fibers have been extensively studied, little research has been reported on capillary bridges under external forces such as the gravitational force. This is because external forces add significant complications to the Laplace-Young equation, making it difficult to predict drop profiles based on analytical approaches. In this paper, simulations of capillary bridges between two vertically stacked cylindrical fibers with gravitational effect taken into consideration are studied. The asymmetrical structure of capillary bridges that are hard to predict based on analytical approaches was studied via a numerical approach based on Surface Evolver (SE). The axial and the circumferential spreading of liquids on two identical fibers in the presence of gravitational effects are predicted to determine when the gravitational effects are significant or can be neglected. The effect of liquid volume, equilibrium contact angle, the distance between two fibers and fiber radii. The simulation results were verified by comparing them with experimental measurements. Based on SE simulations, curves representing the spreading of capillary bridges along the two cylindrical fibers were obtained. The gravitational effect was scaled based on the difference of the spreading on upper and lower fibers.

  8. Using nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) for simultaneous determination of concentration and equilibrium constant.

    PubMed

    Kanoatov, Mirzo; Galievsky, Victor A; Krylova, Svetlana M; Cherney, Leonid T; Jankowski, Hanna K; Krylov, Sergey N

    2015-03-03

    Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) is a versatile tool for studying affinity binding. Here we describe a NECEEM-based approach for simultaneous determination of both the equilibrium constant, K(d), and the unknown concentration of a binder that we call a target, T. In essence, NECEEM is used to measure the unbound equilibrium fraction, R, for the binder with a known concentration that we call a ligand, L. The first set of experiments is performed at varying concentrations of T, prepared by serial dilution of the stock solution, but at a constant concentration of L, which is as low as its reliable quantitation allows. The value of R is plotted as a function of the dilution coefficient, and dilution corresponding to R = 0.5 is determined. This dilution of T is used in the second set of experiments in which the concentration of T is fixed but the concentration of L is varied. The experimental dependence of R on the concentration of L is fitted with a function describing their theoretical dependence. Both K(d) and the concentration of T are used as fitting parameters, and their sought values are determined as the ones that generate the best fit. We have fully validated this approach in silico by using computer-simulated NECEEM electropherograms and then applied it to experimental determination of the unknown concentration of MutS protein and K(d) of its interactions with a DNA aptamer. The general approach described here is applicable not only to NECEEM but also to any other method that can determine a fraction of unbound molecules at equilibrium.

  9. Characterization for capillary barriers effects in a sand box test using time-lapsed GPR measurements

    NASA Astrophysics Data System (ADS)

    Kuroda, S.; Ishii, N.; Morii, T.

    2017-12-01

    Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil.

  10. Symmetric and asymmetric capillary bridges between a rough surface and a parallel surface.

    PubMed

    Wang, Yongxin; Michielsen, Stephen; Lee, Hoon Joo

    2013-09-03

    Although the formation of a capillary bridge between two parallel surfaces has been extensively studied, the majority of research has described only symmetric capillary bridges between two smooth surfaces. In this work, an instrument was built to form a capillary bridge by squeezing a liquid drop on one surface with another surface. An analytical solution that describes the shape of symmetric capillary bridges joining two smooth surfaces has been extended to bridges that are asymmetric about the midplane and to rough surfaces. The solution, given by elliptical integrals of the first and second kind, is consistent with a constant Laplace pressure over the entire surface and has been verified for water, Kaydol, and dodecane drops forming symmetric and asymmetric bridges between parallel smooth surfaces. This solution has been applied to asymmetric capillary bridges between a smooth surface and a rough fabric surface as well as symmetric bridges between two rough surfaces. These solutions have been experimentally verified, and good agreement has been found between predicted and experimental profiles for small drops where the effect of gravity is negligible. Finally, a protocol for determining the profile from the volume and height of the capillary bridge has been developed and experimentally verified.

  11. Accurate determination of the diffusion coefficient of proteins by Fourier analysis with whole column imaging detection.

    PubMed

    Zarabadi, Atefeh S; Pawliszyn, Janusz

    2015-02-17

    Analysis in the frequency domain is considered a powerful tool to elicit precise information from spectroscopic signals. In this study, the Fourier transformation technique is employed to determine the diffusion coefficient (D) of a number of proteins in the frequency domain. Analytical approaches are investigated for determination of D from both experimental and data treatment viewpoints. The diffusion process is modeled to calculate diffusion coefficients based on the Fourier transformation solution to Fick's law equation, and its results are compared to time domain results. The simulations characterize optimum spatial and temporal conditions and demonstrate the noise tolerance of the method. The proposed model is validated by its application for the electropherograms from the diffusion path of a set of proteins. Real-time dynamic scanning is conducted to monitor dispersion by employing whole column imaging detection technology in combination with capillary isoelectric focusing (CIEF) and the imaging plug flow (iPF) experiment. These experimental techniques provide different peak shapes, which are utilized to demonstrate the Fourier transformation ability in extracting diffusion coefficients out of irregular shape signals. Experimental results confirmed that the Fourier transformation procedure substantially enhanced the accuracy of the determined values compared to those obtained in the time domain.

  12. Enhanced low-template DNA analysis conditions and investigation of allele dropout patterns.

    PubMed

    Hedell, Ronny; Dufva, Charlotte; Ansell, Ricky; Mostad, Petter; Hedman, Johannes

    2015-01-01

    Forensic DNA analysis applying PCR enables profiling of minute biological samples. Enhanced analysis conditions can be applied to further push the limit of detection, coming with the risk of visualising artefacts and allele imbalances. We have evaluated the consecutive increase of PCR cycles from 30 to 35 to investigate the limitations of low-template (LT) DNA analysis, applying the short tandem repeat (STR) analysis kit PowerPlex ESX 16. Mock crime scene DNA extracts of four different quantities (from around 8-84 pg) were tested. All PCR products were analysed using 5, 10 and 20 capillary electrophoresis (CE) injection seconds. Bayesian models describing allele dropout patterns, allele peak heights and heterozygote balance were developed to assess the overall improvements in EPG quality with altered PCR/CE settings. The models were also used to evaluate the impact of amplicon length, STR marker and fluorescent label on the risk for allele dropout. The allele dropout probability decreased for each PCR cycle increment from 30 to 33 PCR cycles. Irrespective of DNA amount, the dropout probability was not affected by further increasing the number of PCR cycles. For the 42 and 84 pg samples, mainly complete DNA profiles were generated applying 32 PCR cycles. For the 8 and 17 pg samples, the allele dropouts decreased from 100% using 30 cycles to about 75% and 20%, respectively. The results for 33, 34 and 35 PCR cycles indicated that heterozygote balance and stutter ratio were mainly affected by DNA amount, and not directly by PCR cycle number and CE injection settings. We found 32 and 33 PCR cycles with 10 CE injection seconds to be optimal, as 34 and 35 PCR cycles did not improve allele detection and also included CE saturation problems. We find allele dropout probability differences between several STR markers. Markers labelled with the fluorescent dyes CXR-ET (red in electropherogram) and TMR-ET (shown as black) generally have higher dropout risks compared with those labelled with JOE (green) and fluorescein (blue). Overall, the marker D10S1248 has the lowest allele dropout probability and D8S1179 the highest. The marker effect is mainly pronounced for 30-32 PCR cycles. Such effects would not be expected if the amplification efficiencies were identical for all markers. Understanding allele dropout risks and the variability in peak heights and balances is important for correct interpretation of forensic DNA profiles. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Comprehensive protein profiling by multiplexed capillary zone electrophoresis using cross-linked polyacrylamide coated capillaries.

    PubMed

    Liu, Shaorong; Gao, Lin; Pu, Qiaosheng; Lu, Joann J; Wang, Xingjia

    2006-02-01

    We have recently developed a new process to create cross-linked polyacrylamide (CPA) coatings on capillary walls to suppress protein-wall interactions. Here, we demonstrate CPA-coated capillaries for high-efficiency (>2 x 10(6) plates per meter) protein separations by capillary zone electrophoresis (CZE). Because CPA virtually eliminates electroosmotic flow, positive and negative proteins cannot be analyzed in a single run. A "one-sample-two-separation" approach is developed to achieve a comprehensive protein analysis. High throughput is achieved through a multiplexed CZE system.

  14. Dynamics and density distributions in a capillary-discharge waveguide with an embedded supersonic jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlis, N. H., E-mail: nmatlis@gmail.com; Gonsalves, A. J.; Steinke, S.

    We present an analysis of the gas dynamics and density distributions within a capillary-discharge waveguide with an embedded supersonic jet. This device provides a target for a laser plasma accelerator which uses longitudinal structuring of the gas-density profile to enable control of electron trapping and acceleration. The functionality of the device depends sensitively on the details of the density profile, which are determined by the interaction between the pulsed gas in the jet and the continuously-flowing gas in the capillary. These dynamics are captured by spatially resolving recombination light from several emission lines of the plasma as a function ofmore » the delay between the jet and the discharge. We provide a phenomenological description of the gas dynamics as well as a quantitative evaluation of the density evolution. In particular, we show that the pressure difference between the jet and the capillary defines three regimes of operation with qualitatively different longitudinal density profiles and show that jet timing provides a sensitive method for tuning between these regimes.« less

  15. Water movement in glass bead porous media: 1. Experiments of capillary rise and hysteresis

    NASA Astrophysics Data System (ADS)

    Lu, T. X.; Biggar, J. W.; Nielsen, D. R.

    1994-12-01

    Experimental observations of capillary rise and hysteresis of water or ethanol in glass beads are presented to improve our understanding of those physical processes in porous media. The results provide evidence that capillary rise into porous media cannot be fully explained by a model of cylinders. They further demonstrate that the "Ink bottle" model does not provide an adequate explanation of hysteresis. Glass beads serving as a model for ideal soil are enclosed in a rectangular glass chamber model. A TV camera associated with a microscope was used to record the processes of capillary rise and drainage. It is clearly shown during capillary rise that the fluid exhibits a "jump" behavior at the neck of the pores in an initially dry profile or at the bottom of the water film in an initially wet profile. Under an initially dry condition, the jump initiates at the particle with smallest diameter. The jump process continues to higher elevations until at equilibrium the surface tensile force is balanced by the hydrostatic force. The wetting front at that time is readily observed as flat and saturated. Under an initially wet condition, capillary rise occurs as a water film thickening process associated with the jump process. Trapped air behind the wetting front renders the wetting front irregular and unsaturated. The capillary rise into an initially wet porous medium can be higher than that into an initially dry profile. During the drying process, large surface areas associated with the gas-liquid interface develop, allowing the porous medium to retain more water than during the wetting process at the same pressure. That mechanism explains better the hysteresis phenomenon in porous media in contrast to other mechanisms that now prevail.

  16. Guiding of High Laser Intensities in Long Plasma Channels

    NASA Astrophysics Data System (ADS)

    Levin, M.; Eisenmann, S.; Palchan, T.; Zigler, A.; Sugiyama, K.; Nakajima, K.; Kaganovich, D.; Hubbard, R. F.; Ting, A.; Gordon, D. F.; Sprangle, P.; Fraenkel, M.; Maman, S.; Henis, Z.

    Plasma channels have been widely used to guide intense laser pulses over many Rayleigh lengths. Using optimized segmented capillary discharges, we demonstrated guided propagation of ultra short (100 fs) high intensity (1016 W/cm-2, limited by the laser system) pulses over distances up to 12.6 cm and intensities above 1018W/cm2 for 1.5cm boron nitride capillary. Both radial and longitudinal density profiles of plasma channels were studied under various discharge conditions. A new diagnostic technique is presented in which the transport of a guided laser pulse at different delay times from the initiation of the discharge is sampled on a single discharge shot. Using external, 10 nsec Nd YAG laser of several tenths of milijoules to ignite polyethylene capillaries we have demonstrated channels of various length in density range of 1017 - 1019 cm-3 and up to 25% deep. The longitudinal profiles were found to be remarkably uniform in both short and long capillaries. The Boron Nitride capillary has provided a guiding medium that can withstand more than 1000 shots. Using these capillaries we have guided laser intensities above 1018W/cm2. The laser ignition of capillary discharge provided reliable almost jitter free approach. The concerns related to influence of relatively high current density flow through capillary on the injected electrons were studied extensively by us both theoretically and experimentally using a simple injection method. The method is based on the interaction of a high intensity laser pulse with a thin wire placed near capillary entrance. The influence of magnetic fields was found to be insignificant. Using this method we have studied transport of electrons though capillary discharge.

  17. Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface

    NASA Astrophysics Data System (ADS)

    MacDowell, Luis G.

    2017-08-01

    In this paper we try to work out in detail the implications of a microscopic theory for capillary waves under the assumption that the density is given along lines normal to the interface. Within this approximation, which may be justified in terms of symmetry arguments, the Fisk-Widom scaling of the density profile holds for frozen realizations of the interface profile. Upon thermal averaging of capillary wave fluctuations, the resulting density profile yields results consistent with renormalization group calculations in the one-loop approximation. The thermal average over capillary waves may be expressed in terms of a modified convolution approximation where normals to the interface are Gaussian distributed. In the absence of an external field we show that the phenomenological density profile applied to the square-gradient free energy functional recovers the capillary wave Hamiltonian exactly. We extend the theory to the case of liquid films adsorbed on a substrate. For systems with short-range forces, we recover an effective interface Hamiltonian with a film height dependent surface tension that stems from the distortion of the liquid-vapor interface by the substrate, in agreement with the Fisher-Jin theory of short-range wetting. In the presence of long-range interactions, the surface tension picks up an explicit dependence on the external field and recovers the wave vector dependent logarithmic contribution observed by Napiorkowski and Dietrich. Using an error function for the intrinsic density profile, we obtain closed expressions for the surface tension and the interface width. We show the external field contribution to the surface tension may be given in terms of the film's disjoining pressure. From literature values of the Hamaker constant, it is found that the fluid-substrate forces may be able to double the surface tension for films in the nanometer range. The film height dependence of the surface tension described here is in full agreement with results of the capillary wave spectrum obtained recently in computer simulations, and the predicted translation mode of surface fluctuations reproduces to linear order in field strength an exact solution of the density correlation function for the Landau-Ginzburg-Wilson Hamiltonian in an external field.

  18. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements.

    PubMed

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-21

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  19. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-01

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  20. Low-cost and facile fabrication of a paper-based capillary electrophoresis microdevice for pathogen detection.

    PubMed

    Lee, Jee Won; Lee, Dohwan; Kim, Yong Tae; Lee, Eun Yeol; Kim, Do Hyun; Seo, Tae Seok

    2017-05-15

    This paper describes the development of a novel paper-based capillary electrophoresis (pCE) microdevice using mineral paper, which is durable, oil and tear resistant, and waterproof. The pCE device is inexpensive (~$1.6 per device for materials), simple to fabricate, lightweight, and disposable, so it is more adequate for point-of-care (POC) pathogen diagnostics than a conventional CE device made of glass, quartz, silicon or polymer. In addition, the entire fabrication process can be completed within 1h without using expensive clean room facilities and cumbersome photolithography procedures. A simple cross-designed pCE device was patterned on the mineral paper by using a plotter, and assembled with an OHP film via a double-sided adhesive film. After filling the microchannel with polyacrylamide gel, the injection, backbiasing, and separation steps were sequentially operated to differentiate single-stranded DNA (ssDNA) with 4 bp resolution in a 2.9cm-long CE separation channel. Furthermore, we successfully demonstrated the identification of the PCR amplicons of two target genes of Escherichia coli O157:H7 (rrsH gene, 121 bp) and Staphylococcus aureus (glnA gene, 225 bp). For accurate assignment of the peaks in the electropherogram, two bracket ladders (80 bp for the shortest and 326 bp for the longest) were employed, so the two amplicons of the pathogens were precisely identified on a pCE chip within 3min using the relative migration time ratio without effect of the CE environments. Thus, we believe that the pCE microdevice could be very useful for the separation of nucleic acids, amino acids, and ions as an analytical tool for use in the medical applications in the resource-limited environments as well as fundamental research fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Interfacial layering and capillary roughness in immiscible liquids.

    PubMed

    Geysermans, P; Pontikis, V

    2010-08-21

    The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.

  2. Ab initio study of intrinsic profiles of liquid metals and their reflectivity

    NASA Astrophysics Data System (ADS)

    del Rio, B. G.; Souto, J.; Alemany, M. M. G.; González, L. E.

    2017-08-01

    The free surfaces of liquid metals are known to exhibit a stratified profile that, in favourable cases, shows up in experiments as a peak in the ratio between the reflectivity function and that of an ideal step-like profile. This peak is located at a wave-vector related to the distance between the layers of the profile. In fact the surface roughness produced by thermally induced capillary waves causes a depletion of the previous so called intrinsic reflectivity by a damping factor that may hinder the observation of the peak. The behaviour of the intrinsic reflectivity below the layering peak is however far from being universal, with systems as Ga or In where the reflectiviy falls uniformly towards the q → 0 value, others like Sn or Bi where a shoulder appears at intermediate wavevectors, and others like Hg which show a minimum. We have performed extensive ab initio simulations of the free liquid surfaces of Bi, Pb and Hg, that yield direct information on the structure of the profiles and found that the macroscopic capillary wave theory usually employed in order to remove the capillary wave components fails badly in some cases for the typical sample sizes affordable in ab initio simulations. However, a microscopic method for the determination of the intrinsic profile is shown to be succesful in obtaining meaningful intrinsic profiles and corresponding reflectivities which reproduce correctly the qualitative behaviour observed experimentally.

  3. Monitoring the quality consistency of Weibizhi tablets by micellar electrokinetic chromatography fingerprints combined with multivariate statistical analyses, the simple quantified ratio fingerprint method, and the fingerprint-efficacy relationship.

    PubMed

    Liu, Yingchun; Sun, Guoxiang; Wang, Yan; Yang, Lanping; Yang, Fangliang

    2015-06-01

    Micellar electrokinetic chromatography fingerprinting combined with quantification was successfully developed and applied to monitor the quality consistency of Weibizhi tablets, which is a classical compound preparation used to treat gastric ulcers. A background electrolyte composed of 57 mmol/L sodium borate, 21 mmol/L sodium dodecylsulfate and 100 mmol/L sodium hydroxide was used to separate compounds. To optimize capillary electrophoresis conditions, multivariate statistical analyses were applied. First, the most important factors influencing sample electrophoretic behavior were identified as background electrolyte concentrations. Then, a Box-Benhnken design response surface strategy using resolution index RF as an integrated response was set up to correlate factors with response. RF reflects the effective signal amount, resolution, and signal homogenization in an electropherogram, thus, it was regarded as an excellent indicator. In fingerprint assessments, simple quantified ratio fingerprint method was established for comprehensive quality discrimination of traditional Chinese medicines/herbal medicines from qualitative and quantitative perspectives, by which the quality of 27 samples from the same manufacturer were well differentiated. In addition, the fingerprint-efficacy relationship between fingerprints and antioxidant activities was established using partial least squares regression, which provided important medicinal efficacy information for quality control. The present study offered an efficient means for monitoring Weibizhi tablet quality consistency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Capillary Electrophoresis Profiles and Fluorophore Components of Humic Acids in Nebraska Corn and Philippine Rice Soils

    USDA-ARS?s Scientific Manuscript database

    As humic substances represent relatively high molecular mass polyelectrolytes containing aromatic, aliphatic and heterocyclic subunits, capillary electrophoresis (CE) has become an attractive method for “finger-print” characterization of humic acids. In addition, fluorescence excitation-emission ma...

  5. Capacity building and predictors of success for HIV-1 drug resistance testing in the Asia-Pacific region and Africa

    PubMed Central

    Land, Sally; Zhou, Julian; Cunningham, Philip; Sohn, Annette H; Singtoroj, Thida; Katzenstein, David; Mann, Marita; Sayer, David; Kantor, Rami

    2013-01-01

    Background The TREAT Asia Quality Assessment Scheme (TAQAS) was developed as a quality assessment programme through expert education and training, for laboratories in the Asia-Pacific and Africa that perform HIV drug-resistance (HIVDR) genotyping. We evaluated the programme performance and factors associated with high-quality HIVDR genotyping. Methods Laboratories used their standard protocols to test panels of human immunodeficiency virus (HIV)-positive plasma samples or electropherograms. Protocols were documented and performance was evaluated according to a newly developed scoring system, agreement with panel-specific consensus sequence, and detection of drug-resistance mutations (DRMs) and mixtures of wild-type and resistant virus (mixtures). High-quality performance was defined as detection of ≥95% DRMs. Results Over 4.5 years, 23 participating laboratories in 13 countries tested 45 samples (30 HIV-1 subtype B; 15 non-B subtypes) in nine panels. Median detection of DRMs was 88–98% in plasma panels and 90–97% in electropherogram panels. Laboratories were supported to amend and improve their test outcomes as appropriate. Three laboratories that detected <80% DRMs in early panels demonstrated subsequent improvement. Sample complexity factors – number of DRMs (p<0.001) and number of DRMs as mixtures (p<0.001); and laboratory performance factors – detection of mixtures (p<0.001) and agreement with consensus sequence (p<0.001), were associated with high performance; sample format (plasma or electropherogram), subtype and genotyping protocol were not. Conclusion High-quality HIVDR genotyping was achieved in the TAQAS collaborative laboratory network. Sample complexity and detection of mixtures were associated with performance quality. Laboratories conducting HIVDR genotyping are encouraged to participate in quality assessment programmes. PMID:23845227

  6. A comparative analysis of human plasma and serum proteins by combining native PAGE, whole-gel slicing and quantitative LC-MS/MS: Utilizing native MS-electropherograms in proteomic analysis for discovering structure and interaction-correlated differences.

    PubMed

    Wen, Meiling; Jin, Ya; Manabe, Takashi; Chen, Shumin; Tan, Wen

    2017-12-01

    MS identification has long been used for PAGE-separated protein bands, but global and systematic quantitation utilizing MS after PAGE has remained rare and not been reported for native PAGE. Here we reported on a new method combining native PAGE, whole-gel slicing and quantitative LC-MS/MS, aiming at comparative analysis on not only abundance, but also structures and interactions of proteins. A pair of human plasma and serum samples were used as test samples and separated on a native PAGE gel. Six lanes of each sample were cut, each lane was further sliced into thirty-five 1.1 mm × 1.1 mm squares and all the squares were subjected to standardized procedures of in-gel digestion and quantitative LC-MS/MS. The results comprised 958 data rows that each contained abundance values of a protein detected in one square in eleven gel lanes (one plasma lane excluded). The data were evaluated to have satisfactory reproducibility of assignment and quantitation. Totally 315 proteins were assigned, with each protein assigned in 1-28 squares. The abundance distributions in the plasma and serum gel lanes were reconstructed for each protein, named as "native MS-electropherograms". Comparison of the electropherograms revealed significant plasma-versus-serum differences on 33 proteins in 87 squares (fold difference > 2 or < 0.5, p < 0.05). Many of the differences matched with accumulated knowledge on protein interactions and proteolysis involved in blood coagulation, complement and wound healing processes. We expect this method would be useful to provide more comprehensive information in comparative proteomic analysis, on both quantities and structures/interactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Implementation and validation of an improved allele specific stutter filtering method for electropherogram interpretation.

    PubMed

    Kalafut, Tim; Schuerman, Curt; Sutton, Joel; Faris, Tom; Armogida, Luigi; Bright, Jo-Anne; Buckleton, John; Taylor, Duncan

    2018-03-31

    Modern probabilistic genotyping (PG) software is capable of modeling stutter as part of the profile weighting statistic. This allows for peaks in stutter positions to be considered as allelic or stutter or both. However, prior to running any sample through a PG calculator, the examiner must first interpret the sample, considering such things as artifacts and number of contributors (NOC or N). Stutter can play a major role both during the assignment of the number of contributors, and the assessment of inclusion and exclusion. If stutter peaks are not filtered when they should be, it can lead to the assignment of an additional contributor, causing N contributors to be assigned as N + 1. If peaks in the stutter position of a major contributor are filtered using a threshold that is too high, true alleles of minor contributors can be lost. Until now, the software used to view the electropherogram stutter filters are based on a locus specific model. Combined stutter peaks occur when a peak could be the result of both back stutter (stutter one repeat shorter than the allele) and forward stutter (stutter one repeat unit larger than the allele). This can challenge existing filters. We present here a novel stutter filter model in the ArmedXpert™ software package that uses a linear model based on allele for back stutter and applies an additive filter for combined stutter. We term this the allele specific stutter model (AM). We compared AM with a traditional model based on locus specific stutter filters (termed LM). This improved stutter model has the benefit of: Instances of over filtering were reduced 78% from 101 for a traditional model (LM) to 22 for the allele specific model (AM) when scored against each other. Instances of under filtering were reduced 80% from 85 (LM) to 17 (AM) when scored against ground truth mixtures. Published by Elsevier B.V.

  8. Performance evaluation and accuracy of passive capillary samplers (PCAPs) for estimating real-time drainage water fluxes

    USDA-ARS?s Scientific Manuscript database

    Successful monitoring of pollutant transport through the soil profile requires accurate, reliable, and appropriate instrumentation to measure amount of drainage water or flux within the vadose layer. We evaluated the performance and accuracy of automated passive capillary wick samplers (PCAPs) for ...

  9. Cooperative suction by vertical capillary array pump for controlling flow profiles of microfluidic sensor chips.

    PubMed

    Horiuchi, Tsutomu; Hayashi, Katsuyoshi; Seyama, Michiko; Inoue, Suzuyo; Tamechika, Emi

    2012-10-18

    A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.

  10. Electroosmotic flow in capillary channels filled with nonconstant viscosity electrolytes: exact solution of the Navier-Stokes equation.

    PubMed

    Otevrel, Marek; Klepárník, Karel

    2002-10-01

    The partial differential equation describing unsteady velocity profile of electroosmotic flow (EOF) in a cylindrical capillary filled with a nonconstant viscosity electrolyte was derived. Analytical solution, based on the general Navier-Stokes equation, was found for constant viscosity electrolytes using the separation of variables (Fourier method). For the case of a nonconstant viscosity electrolyte, the steady-state velocity profile was calculated assuming that the viscosity decreases exponentially in the direction from the wall to the capillary center. Since the respective equations with nonconstant viscosity term are not solvable in general, the method of continuous binding conditions was used to solve this problem. In this method, an arbitrary viscosity profile can be modeled. The theoretical conclusions show that the relaxation times at which an EOF approaches the steady state are too short to have an impact on a separation process in any real systems. A viscous layer at the wall affects EOF significantly, if it is thicker than the Debye length of the electric double layer. The presented description of the EOF dynamics is applicable to any microfluidic systems.

  11. Some Experiments on Evaporation of High-TDS Phreatic Water in an Arid Area

    NASA Astrophysics Data System (ADS)

    Li, X.; Jin, M.; Zhou, J.; Liu, Y.; Zhao, Y.

    2012-12-01

    Most experiments that had been done on evaporation of phreatic water were limited to waters with fresh or low total dissolved solids (TDS, no more than 10g/L). The TDS of phreatic water is always dozens or even hundreds of grams per liter in extremely arid areas. Thus, experiments on phreatic water evaporation of different TDS (3g/L, 30g/L, 100g/L, 250g/L) were carried out in an arid plain of south Xinjiang, China. The results showed that there was significant linear positive correlation between TDS of phreatic water and cumulative salinity in soil profile. The variation of phreatic water evaporation was lag behind the change of surface water measured by E20 equipment, but both of them were more drastic at nighttime than the daytime. The research shows that the daytime evaporation capacity has significant effect on nighttime evaporation, and the soil water vapor condense at profile also is an important driving factor for the nighttime evaporation. Capillary rise is a significant contributor of soil salinity in extremely arid areas. Experiments about effects of different grains of sand soil and TDS of phreatic water (1, 30, 100, 250 g/L) on capillary rise showed that TDS had significant effects on capillary rise in later stage of experiments. For coarse sand, the higher TDS made the lower height of capillary rise. But for fine sand, the height of capillary rise of 1g/L was obviously larger than others. The sequence of height from larger to lower of capillary rise in silt was 30, 100, 250 and 1g/L. At the beginning of experiments on coarse sand, the higher TDS made the lower velocity of capillary rise, but other soil groups were not. Compared to high-TDS, the grain of sand soil was a more primary controlling factor of capillary rise. The research indicates that high-TDS not only changes the gravity of capillary water but also the pore size of soil during the processes of capillary rise in fine sand.

  12. A liquid chromatographic method for determination of theophylline in serum and capillary blood--a comparison.

    PubMed

    Gartzke, J; Jäger, H; Vins, I

    1991-01-01

    A simple, fast and reliable liquid chromatographic method for the determination of theophylline in serum and capillary blood after a solid phase extraction is described for therapeutic drug monitoring. The employment of capillary blood permits the determination of an individual drug profile and other pharmacokinetic studies in neonates and infants. There were no differences in venous- and capillary-blood levels but these values compared poorly with those in serum. An adjustment of the results by correction of the different volumes of serum and blood by haematocrit was unsuccessful. Differences in the binding of theophylline to erythrocytes could be an explanation for the differences in serum at blood levels of theophylline.

  13. Spontaneous Imbibition in Low Permeability Medium, SUPRI TR-114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovscek, Anthony R.; Schembre, Josephina

    1999-08-09

    A systematic experimental investigation of capillary pressure characteristics and fluid flow in diatomite was begun. Using an X-ray CT scanner and a specially constructed imbibition cell, we study spontaneous water imbibition processes in diatomite and, for reference, Berea sandstone and chalk. The mass of water imbibed as a function of time is also measured. Imbibition is restricted to concurrent flow. Despite a marked difference in rock properties such as permeability and porosity, we find similar trends in saturation profiles and weight gain versus time functions. Imbibition in diatomote is relatively rapid when initial water saturation is low due to largemore » capillary forces. Using a non-linear regression analysis together with the experimental data, the capillary pressure and water relative permeability curves are determined for the diatomite in the water-air system. The results given for displacement profiles by numerical simulation match the experimental results.« less

  14. Effects of increased inspired oxygen concentration on tissue oxygenation: theoretical considerations.

    PubMed

    Lumb, Andrew B; Nair, Sindhu

    2010-03-01

    Breathing increased fractional oxygen concentration (FiO2) is recommended for the treatment of tissue ischaemia. The theoretical benefits of increasing FiO2 on tissue oxygenation were evaluated using standard physiological equations. Assuming constant oxygen consumption by tissues throughout the length of a capillary, the oxygen content at 20 arbitrary points along a capillary was calculated. Using mathematical representations of the haemoglobin dissociation curve and an iterative approach to include the dissolved oxygen component of oxygen content, the oxygen partial pressure (PO2) profile along a capillary was estimated. High FiO2 concentrations cause large increases in PO2 at the arteriolar end of capillaries but these large PO2 values, caused by the extra dissolved oxygen, rapidly decline along the capillary. At the venular end of the capillary (the area of tissue most likely to be hypoxic), breathing oxygen causes only a modest improvement in PO2. Increasing FiO2 to treat tissue hypoxia has clear benefits, but a multimodal approach to management is required.

  15. Influence of capillary end effects on steady-state relative permeability estimates from direct pore-scale simulations

    NASA Astrophysics Data System (ADS)

    Guédon, Gaël Raymond; Hyman, Jeffrey De'Haven; Inzoli, Fabio; Riva, Monica; Guadagnini, Alberto

    2017-12-01

    We investigate and characterize the influence of capillary end effects on steady-state relative permeabilities obtained in pore-scale numerical simulations of two-phase flows. Our study is motivated by the observation that capillary end effects documented in two-phase laboratory-scale experiments can significantly influence permeability estimates. While numerical simulations of two-phase flows in reconstructed pore-spaces are increasingly employed to characterize relative permeabilities, a phenomenon which is akin to capillary end effects can also arise in such analyses due to the constraints applied at the boundaries of the computational domain. We profile the relative strength of these capillary end effects on the calculation of steady-state relative permeabilities obtained within randomly generated porous micro-structures using a finite volume-based two-phase flow solver. We suggest a procedure to estimate the extent of the regions influenced by these capillary end effects, which in turn allows for the alleviation of bias in the estimation of relative permeabilities.

  16. Potential of capillary zone electrophoresis for estimation of humate acid-base properties.

    PubMed

    Vanifatova, Natalia G; Zavarzina, Anna G; Spivakov, Boris Ya

    2008-03-07

    Capillary zone electrophoresis (CZE) has been applied for fractionation and characterization of soil-derived humic acids (HAs). Humic acids from soddy-podzolic (HA(s)) and chernozem (HA(ch)) soils were studied as well as hydrophobic high-molecular-weight (HMW) and hydrophilic low-molecular-weight (LMW) HA(s) fractions obtained by salting-out with ammonium sulfate at a saturation of 0-40% and >70%, respectively. The possibility of CZE partial fractionation of HAs has been demonstrated. The shape of "humic hump" was shown to depend on the pH of running electrolyte. Almost the whole peak overlapping occurred if alkaline solutions were used for fractionation, but the peak resolution was improved at pH 5-7. Under appropriate fractionation conditions (pH 7), at least three humic acid subfractions with different electrophoretic mobilities were distinguished in the electropherograms of initial HA and HA(s) fractions. Such a high peak resolution has never been achieved for humic acids before. The presence of three subfractions in the HA is in agreement with gel-filtration analysis and was confirmed by comparison of the electrophoretic behavior of HA(s) with those of its HMW (hydrophobic) and the LMW (hydrophilic) fractions. The potentiometric titration of HA and its fractions was performed and the pK(a) of the functional groups were calculated. An attempt was made for the first time to relate the variation of electrophoretic mobility values with acid-base properties of humic acids. It was shown that changes in the humate charge resulting from the variation of the ionization degree of its functional groups as a function of pH can be estimated on the basis of electrophoretic mobility values. Potential of CZE in estimation of HA isoelectric point was demonstrated. The pH value corresponding to the lowest absolute electrophoretic mobility value of about 20 x 10(-5) cm(2) V(-1) s(-1) can be used for approximate estimation of HA isoelectric point. The data were discussed and agreement with the random coil structural model has been shown.

  17. An Examination of Potential Causes of the Persistent Capillary Fringe Extension Observed During a Pumping Test in an Unconfined Aquifer

    NASA Astrophysics Data System (ADS)

    Bunn, M. I.; Jones, J.; Endres, A. L.

    2008-12-01

    Hydrogeologists quantify the properties of unconfined aquifers by analyzing the data from pumping tests. The most appropriate method of incorporating flow contributions from the vadose zone into these analyses has been the subject of debate for decades. Recently, a highly detailed data set was collected during a seven- day pumping test at CFB Borden, Ontario (Bevan et al., 2005) which has allowed a close examination of the vadose zone response to pumping. Water table drawdown was monitored using pressure transducers in 11 monitoring wells, while moisture profiles were collected 19 times during the 7-day test using neutron logging. The Borden aquifer system is quite homogeneous, and numerical simulations using the variably saturated model InHM resulted in excellent reproduction of the observed hydraulic head drawdowns. Conversely, the simulated moisture profiles correlated poorly with neutron-logging-derived observed profiles. Specifically, the field results show delayed drawdown in the vadose zone, resulting in a persistent and significant extension of the capillary fringe, with the shape of the moisture profile remaining constant through the transition zone. Numerical simulations using various forms of the capillary pressure-saturation relationship with reasonable parameter sets were unable produce the extension. Neutron moisture profiles were selected from three locations (3, 5, and 15 m radial distance from the pumping well) at which an adjacent shallow deep piezometer pair could be used to accurately estimate water table location. Using this data in conjunction with the inverse modeling tool PEST, a set of van Genuchten capillary pressure-saturation parameters was generated to match each observed moisture profile. Horizontal and vertical hydraulic gradients and flow rates at the water table were generated using model output and compared to the fitted parameters. The van Genuchten parameter n was found to have significant scatter in both profile location and observation time when compared to any of the modeled results. The van Genuchten parameter alpha was found to vary linearly as a function of horizontal hydraulic gradient; further the results from all observation locations and times were found to follow the same linear relationship. The likely effects of consolidation, entrapped air, heterogeneity, and hydraulic gradients on the observed moisture profile were also evaluated. Results indicate a need for further investigation into the applicability of laboratory derived steady-state water retention curves for field scale simulations.

  18. Capillary acquisition devices for high-performance vehicles: Executive summary. [evaluation of cryogenic propellant management techniques using the centaur launch vehicle

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Bradshaw, R. D.; Risberg, J. A.

    1980-01-01

    Technology areas critical to the development of cryogenic capillary devices were studied. Passive cooling of capillary devices was investigated with an analytical and experimental study of wicking flow. Capillary device refilling with settled fluid was studied using an analytical and experimental program that resulted in successful correlation of a versatile computer program with test data. The program was used to predict Centaur D-1S LO2 and LH2 start basket refilling. Comparisons were made between the baseline Centaur D-1S propellant feed system and feed system alternatives including systems using capillary devices. The preferred concepts from the Centaur D-1S study were examined for APOTV and POTV vehicles for delivery and round trip transfer of payloads between LEO and GEO. Mission profiles were determined to provide propellant usage timelines and the payload partials were defined.

  19. Analytical Glycobiology at High Sensitivity: Current Approaches and Directions

    PubMed Central

    Novotny, Milos V.; Alley, William R.; Mann, Benjamin F.

    2013-01-01

    This review summarizes the analytical advances made during the last several years in the structural and quantitative determinations of glycoproteins in complex biological mixtures. The main analytical techniques used in the fields of glycomics and glycoproteomics involve different modes of mass spectrometry and their combinations with capillary separation methods such as microcolumn liquid chromatography and capillary electrophoresis. The needs for high-sensitivity measurements have been emphasized in the oligosaccharide profiling used in the field of biomarker discovery through MALDI mass spectrometry. High-sensitivity profiling of both glycans and glycopeptides from biological fluids and tissue extracts has been aided significantly through lectin preconcentration and the uses of affinity chromatography. PMID:22945852

  20. Early changes in fiber profile and capillary density in long-term stimulated muscles.

    PubMed

    Hudlická, O; Dodd, L; Renkin, E M; Gray, S D

    1982-10-01

    Predominantly fast skeletal muscles of rabbits [tibialis anterior (TA), extensor digitorum longus (EDL)] were stimulated at a frequency naturally occurring in nerves to slow muscles (10 Hz continuously) for 8 h/day for 2--4 days. Such stimulation is known to convert all glycolytic fibers to oxidative and to increase capillary density. Our aim was to study early stages of conversion to investigate the factors responsible for the changes. Staining of quick-frozen sections for myosin ATPase, succinic dehydrogenase, and alkaline phosphatase was used to study the distribution of different fiber types and to measure fiber cross-sectional areas, capillaries per square millimeter, and capillary-to-fiber ratios in each fiber category. TA but not EDL showed conversion of fast glycolytic to fast oxidative fibers after 2 days, more after 4 days of stimulation. In both muscles, the largest fast glycolytic fibers were diminished in number after stimulation. There was significant increase in total capillaries per square millimeter after 4 days and some increase after 2 days of stimulation. The increase in capillaries per square millimeter exceeded the increase in the number of fibers per square millimeter, and since there was no change in mean fiber area, the increase is attributed to capillary growth. In EDL, there was an increase in the number of capillaries supplying both fast glycolytic and fast oxidative fibers, suggesting that capillary growth precedes fiber type conversion. In TA, the number of capillaries supplying fast oxidative fibers was increased but that to fast glycolytic fibers, was not. This is consistent with capillary growth simultaneous with or following fiber conversion. In both TA and EDL the number of capillaries perfused after contraction was higher in stimulated muscles, suggesting that increased capillary flow contributed to capillary growth.

  1. Scalable Emergency Response System for Oceangoing Assets Report on Defining Proposed Program

    DTIC Science & Technology

    2008-10-17

    electropherogram of RNA extracted from ocean water spiked with Salmonella sp ...meningoencephalitis Waterborne Balantidium coli Balantidosis (dysentery) Waterborne Cryptosporidium Cryptosporidiosis Waterborne Entamoeba histolytica Amoebic...extracted from ocean water spiked with Salmonella sp . The significance of bioanalyzer results lays in bands labeled as 23S rRNA in Figure 2 and 3. The

  2. Analytical Chemistry in Microenvironments: Single Nerve Cells.

    DTIC Science & Technology

    1992-03-16

    length of the capillary (34). Electroosmotic flow offers three key advantages for separation of small biological samples. First, this flow, if not...from microenvironments (ie. single cells). Indeed, volumes as low as 270 femtoliters have been injected using electroosmotic flow (15). Finally... electroosmotic flow provides a flat flow profile, since there is no stationary support between the origin of flow (capillary wall) and the bulk of solution

  3. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  4. Unsaturated flow characterization utilizing water content data collected within the capillary fringe

    USGS Publications Warehouse

    Baehr, Arthur; Reilly, Timothy J.

    2014-01-01

    An analysis is presented to determine unsaturated zone hydraulic parameters based on detailed water content profiles, which can be readily acquired during hydrological investigations. Core samples taken through the unsaturated zone allow for the acquisition of gravimetrically determined water content data as a function of elevation at 3 inch intervals. This dense spacing of data provides several measurements of the water content within the capillary fringe, which are utilized to determine capillary pressure function parameters via least-squares calibration. The water content data collected above the capillary fringe are used to calculate dimensionless flow as a function of elevation providing a snapshot characterization of flow through the unsaturated zone. The water content at a flow stagnation point provides an in situ estimate of specific yield. In situ determinations of capillary pressure function parameters utilizing this method, together with particle-size distributions, can provide a valuable supplement to data libraries of unsaturated zone hydraulic parameters. The method is illustrated using data collected from plots within an agricultural research facility in Wisconsin.

  5. A neuron-in-capillary platform for facile collection and mass spectrometric characterization of a secreted neuropeptide

    PubMed Central

    Lee, Chang Young; Fan, Yi; Rubakhin, Stanislav S.; Yoon, Sook; Sweedler, Jonathan V.

    2016-01-01

    The integration of microfluidic devices—which efficiently handle small liquid volumes—with separations/mass spectrometry (MS) is an effective approach for profiling the neurochemistry occurring in selected neurons. Interfacing the microfluidic cell culture to the mass spectrometer is challenging because of geometric and scaling issues. Here we demonstrate the hyphenation of a neuron-in-capillary platform to a solid phase extraction device and off-line MS. A primary neuronal culture of Aplysia californica neurons was established directly inside a cylindrical polyimide capillary. The approach also uses a particle-embedded monolith to condition neuropeptide releasates collected from several Aplysia neurons cultured in the capillary, with the subsequent characterization of released peptides via MS. This system presents a number of advances compared to more traditional microfluidic devices fabricated with polydimethylsiloxane. These include low cost, easy access to cell culture, rigidity, ease of transport, and minimal fluid handling. The cylindrical geometry of the platform allows convenient interface with a wide range of analytical tools that utilize capillary columns. PMID:27245782

  6. Determination of optimum fin profile for a zero-G capillary drained condenser

    NASA Technical Reports Server (NTRS)

    Mccormick, John A.; Valenzuela, Javier A.; Choudhury, Dipanker

    1990-01-01

    This paper presents the analytical formulation and numerical results for heat transfer in a high heat flux condenser that relies on capillary flow along shaped fins (Gregorig surfaces) and a drainage network embedded in the condenser walls. Results are shown for a variety of fin profile shapes in order to show the geometric trade-offs involved in seeking a maximum effective heat transfer coefficient for the fin. Predictions of the model show excellent agreement with previously reported measurements for steam. Based on this work, a profile has been selected for a 2 kW ammonia condenser currently under development for use in space. In that design the fin half width is 0.5 mm and the model predicts a heat transfer coefficient referred to the base of the fin of 9 W/sq cm deg C for a heat flux of 10/W sq cm at the base.

  7. Continuous-Flow Electrophoresis of DNA and Proteins in a Two-Dimensional Capillary-Well Sieve.

    PubMed

    Duan, Lian; Cao, Zhen; Yobas, Levent

    2017-09-19

    Continuous-flow electrophoresis of macromolecules is demonstrated using an integrated capillary-well sieve arranged into a two-dimensional anisotropic array on silicon. The periodic array features thousands of entropic barriers, each resulting from an abrupt interface between a 2 μm deep well (channel) and a 70 nm capillary. These entropic barriers owing to two-dimensional confinement within the capillaries are vastly steep in relation to those arising from slits featuring one-dimensional confinement. Thus, the sieving mechanisms can sustain relatively large electric field strengths over a relatively small array area. The sieve rapidly sorts anionic macromolecules, including DNA chains and proteins in native or denatured states, into distinct trajectories according to size or charge under electric field vectors orthogonally applied. The baseline separation is achieved in less than 1 min within a horizontal migration length of ∼1.5 mm. The capillaries are self-enclosed conduits in cylindrical profile featuring a uniform diameter and realized through an approach that avoids advanced patterning techniques. The approach exploits a thermal reflow of a layer of doped glass for shape transformation into cylindrical capillaries and for controllably shrinking the capillary diameter. Lastly, atomic layer deposition of alumina is introduced for the first time to fine-tune the capillary diameter as well as to neutralize the surface charge, thereby suppressing undesired electroosmotic flows.

  8. Influence of Selenium Content in the Culture Medium on Protein Profile of Yeast Cells Candida utilis ATCC 9950

    PubMed Central

    Kieliszek, Marek; Błażejak, Stanisław; Bzducha-Wróbel, Anna

    2015-01-01

    Selenium is an essential trace element for human health and it has been recognized as a component of several selenoproteins with crucial biological functions. It has been identified as a component of active centers of many enzymes, as well as integral part of biologically active complexes. The aim of the study was to evaluate the protein content and amino acid profile of the protein of fodder yeast Candida utilis ATCC 9950 cultured in media control and experimental enriched selenium. Protein analysis was performed using SDS-PAGE method consisting of polyacrylamide gel electrophoresis in the presence of SDS. The highest contents of soluble protein (49,5 mg/g) were found in yeast cells after 24-hour culture conducted in control (YPD) medium. In the presence of selenium there were determined small amounts of protein content. With increasing time of yeast culture (to 72 hours) the control and experimental media were reported to reduce soluble protein content. In electropherogram proteins from control cultures was observed the presence of 10 protein fractions, but in all the experimental cultures (containing 20, 30, and 40 mg/L selenium) of 14 protein fractions. On the basis of the molecular weights of proteins, it can be concluded that they were among others: selenoprotein 15 kDa and selenoprotein 18 kDa. PMID:26185592

  9. Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis.

    PubMed

    Ghosal, Sandip

    2004-01-01

    Electroosmotic flow (EOF) usually accompanies electrophoretic migration of charged species in capillary electrophoresis unless special precautions are taken to suppress it. The presence of the EOF provides certain advantages in separations. It is an alternative to mechanical pumps, which are inefficient and difficult to build at small scales, for transporting reagents and analytes on microfluidic chips. The downside is that any imperfection that distorts the EOF profile reduces the separation efficiency. In this paper, the basic facts about EOF are reviewed from the perspective of fluid mechanics and its effect on separations in free solution capillary zone electrophoresis is discussed in the light of recent advances.

  10. POWERFUL NEW TOOLS FOR ANALYZING ENVIRONMENTAL CONTAMINATION: MASS PEAK PROFILING FROM SELECTED-ION RECORDING DATA AND A PROFILE GENERATION MODEL

    EPA Science Inventory

    Capillary gas chromatography with mass spectrometric detection is the most commonly used technique for analyzing samples from Superfund sites. While the U.S. EPA has developed target lists of compounds for which library mass spectra are available on most mass spectrometer data s...

  11. Early detection of disease: The correlation of the volatile organic profiles from patients with upper respiratory infections with subjects of normal profiles

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1979-01-01

    A method is described whereby a transevaporator is used for sampling 60-100 microns of aqueous sample. Volatiles are stripped from the sample either by a stream of helium and collection on a porous polymer, Tenax, or by 0.8 ml of 2-chloropropane and collected on glass beads. The volatiles are thermally desorbed into a precolumn which is connected to a capillary gas chromatographic column for analysis. The technique is shown to be reproducible and suitable for determining chromatographic profiles for a wide variety of sample types. Using a transevaporator sampling technique, the volatile profiles from 70 microns of serum were obtained by capillary column gas chromatography. The complex chromatograms were interpreted by a combination of manual and computer techniques and a two peak ratio method devised for the classification of normal and virus infected sera. Using the K-Nearest Neighbor approach, 85.7 percent of the unknown samples were classified correctly. Some preliminary results indicate the possible use of the method for the assessment of virus susceptibility.

  12. Detection of soybean in soy-based meat substitutes.

    PubMed

    Abd Allah, M A; Foda, Y H; el-Dashlouty, S; el-Sanafiry, N Y; Abu Salem, F M

    1986-01-01

    The statistical analysis of the available data indicated that the straight line equations of protein, fat, fibre, calcium, methionine, and lysine could successively be used for forecasting the added soy percent in a given recipe. On the other hand, the areas of the identified bands in the electropherograms of the investigated samples were considered a reasonable tool for the quantitative determination of whole soybean in soy-based meat substitutes.

  13. Pleiotropic effects of mutations involved in the regulation of Escherichia coli K-12 alkaline phosphatase.

    PubMed

    Morris, H; Schlesinger, M J; Bracha, M; Yagil, E

    1974-08-01

    Induction of alkaline phosphatase in wild-type Escherichia coli K-12 leads to the appearance of three new proteins in addition to alkaline phosphatase in the periplasmic space of the bacteria. These proteins are detected in autoradiograms of sodium dodecyl sulfate-acrylamide gel electropherograms of extracts from cells labeled with [(35)S]methionine. Studies with constitutive mutants defective in the three genes phoS, phoT, and phoR that have been shown to regulate alkaline phosphatase synthesis indicate that the three periplasmic proteins are coregulated with alkaline phosphatase. A mutant that has a deletion in the alkaline phosphatase structural gene phoA produces the three proteins, but a newly discovered mutant phoB that has a defect in the expression of alkaline phosphatase fails to produce the three proteins. phoB mutants are shown here to be unable to make detectable amounts of alkaline phosphatase polypeptides, as measured by immunoprecipitins or acrylamide gel electropherograms. On the basis of these results we suggest a new model for the regulation of alkaline phosphatase biosynthesis. In this model, a ternary complex composed of phoB(+) and phoR(+) gene products and an internal metabolite functions as a positive control element to regulate the transcription of several cistrons coding for periplasmic proteins.

  14. Numerical investigations of two-phase flow with dynamic capillary pressure in porous media via a moving mesh method

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zegeling, Paul Andries

    2017-09-01

    Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow in porous media incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a traveling wave ansatz and efficient numerical methods. The traveling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behavior. Special attention is paid to the non-monotonic profiles. The traveling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.

  15. BIlateral juxtapapillary retinal capillary haemangioma: Usefulness of aflibercept in the management of its complications.

    PubMed

    Campos Polo, R; Rubio Sánchez, C; García Guisado, D M; Díaz Luque, M J

    2017-10-01

    A 45 year-old man with a history of adrenal phaeochromocytoma presented with a subretinal juxtapapillary haemorrhage on his left eye and a small asymptomatic vascular tumour in the contralateral eye. With the mentioned findings, the patient was diagnosed with bilateral retinal capillary haemangioma in the context of a von Hippel Lindau disease. Intravitreal aflibercept was prescribed, with a good outcome of the disease. Many treatments have been proposed for the management of juxtapapillary retinal capillary haemangioma with variable results. Intravitreal aflibercept can be a useful treatment with a good safety profile. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Analysis of nitrites and nitrates in hams and sausages by open-tubular capillary electrochromatography with a nanolatex-coated capillary column.

    PubMed

    Zhang, Yanhao; Tian, Xiangyu; Guo, Yaxiao; Li, Haibin; Yu, Ajuan; Deng, Zhifen; Sun, Barry Baoguo; Zhang, Shusheng

    2014-04-16

    In this work, a new open-tubular capillary electrochromatography (OT-CEC) method with the nanolatex-coated column was proposed for the determination of nitrites and nitrates in foodstuffs. The method was simple and repeatable as a result of avoiding the introduction of an electroosmotic flow reverse additive (such as cetyltrimethylammonium chloride) in electrophoretic buffer. The limits of quantitation were 0.89 and 1.05 mg kg⁻¹ for nitrate and nitrite, respectively, whereas the overall recoveries ranged from 94 to 103%. The developed OT-CEC method was successfully applied for 12 samples, and the residue profiles of nitrites and nitrates in hams and sausages were obtained and evaluated.

  17. Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.

    PubMed

    Keh, Huan J; Ding, Jau M

    2003-07-15

    An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.

  18. Transport of volatile organic compounds across the capillary fringe

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Johnson, Richard L.

    1993-01-01

    Physical experiments were conducted to investigate the transport of a dissolved volatile organic compound (trichloroethylene, TCE) from shallow groundwater to the unsaturated zone under a variety of conditions including changes in the soil moisture profile and water table position. Experimental data indicated that at moderate groundwater velocities (0.1 m/d), vertical mechanical dispersion was negligible and molecular diffusion was the dominant vertical transport mechanism. Under these conditions, TCE concentrations decreased nearly 3 orders of magnitude across the capillary fringe and soil gas concentrations remained low relative to those of underlying groundwater. Data collected during a water table drop showed a short-term increase in concentrations throughout most of the unsaturated zone, but these concentrations quickly declined and approached initial values after the water table was returned to its original level. In the deep part of the unsaturated zone, the water table drop resulted in a long-term decrease in concentrations, illustrating the effects of hysteresis in the soil moisture profile. A two-dimensional random walk advection-diffusion model was developed to simulate the experimental conditions, and numerical simulations agreed well with experimental data. A simpler, one-dimensional finite-difference diffusion-dispersion model was also developed. One-dimensional simulations based on molecular diffusion also agreed well with experimental data. Simulations which incorporated mechanical dispersion tended to overestimate flux across the capillary fringe. Good agreement between the one- and two-dimensional models suggested that a simple, one-dimensional approximation of vertical transport across the capillary fringe can be useful when conditions are appropriate.

  19. Modeling the Capillary Pressure for the Migration of the Liquid Phase in Granular Solid-Liquid-Vapor Systems: Application to the Control of the Composition Profile in W-Cu FGM Materials

    NASA Astrophysics Data System (ADS)

    Missiaen, Jean-Michel; Raharijaona, Jean-Joël; Delannay, Francis

    2016-11-01

    A model is developed to compute the capillary pressure for the migration of the liquid phase out or into a uniform solid-liquid-vapor system. The capillary pressure is defined as the reduction of the overall interface energy per volume increment of the transferred fluid phase. The model takes into account the particle size of the solid particle aggregate, the packing configuration (coordination number, porosity), the volume fractions of the different phases, and the values of the interface energies in the system. The model is used for analyzing the stability of the composition profile during processing of W-Cu functionally graded materials combining a composition gradient with a particle size gradient. The migration pressure is computed with the model in two stages: (1) just after the melting of copper, i.e., when sintering and shape accommodation of the W particle aggregate can still be neglected and (2) at high temperature, when the system is close to full density with equilibrium particle shape. The model predicts well the different stages of liquid-phase migration observed experimentally.

  20. Development of hemoglobin typing control materials for laboratory investigation of thalassemia and hemoglobinopathies.

    PubMed

    Pornprasert, Sakorn; Tookjai, Monthathip; Punyamung, Manoo; Pongpunyayuen, Panida; Jaiping, Kanokwan

    2016-01-01

    To date, the hemoglobin (Hb) typing control materials for laboratory investigation of thalassemia with low (1.8%-3.2%) and high (4%-6%) levels of HbA2 are available but there are no Hb typing quality control materials for analysis of thalassemia and hemoglobinopathies which are highly prevalent in South-East Asian countries. The main aim of the present study was to develop the lyophilized Hb typing control materials for laboratory investigation of thalassemia and hemoglobinopathies that are commonly found in South-East Asia. Erythrocytes of blood samples containing Hb Bart's, HbH, HbE, HbF, Hb Constant Spring (CS), Hb Hope, and Hb Q-Thailand were washed and dialysed with 0.85% saline solution. The erythrocytes were then lysed in 5% sucrose solution. The lyophilized Hb typing control materials were prepared by using a freeze drying (lyophilization) method. The high performance liquid chromatography (HPLC) analysis of lyophilized Hb was performed after the storage at -20 °C for 1 year and also after reconstitution and storage at 4 or -20 °C for 30 days. In addition, the Hb analysis was compared between the three different methods of HPLC, low pressure liquid chromatography (LPLC) and capillary electrophoresis (CE). Following a year of storage at -20 °C, the HPLC chromatograms of lyophilized Hb typing control materials showed similar patterns to the equivalent fresh whole blood. The stability of reconstituted Hb typing control materials was also observed through 30 days after reconstitution and storage at -20 °C. Moreover, the Hb typing control materials could be analyzed by three methods, HPLC, LPLC and CE. Even a degraded peak of HbCS was found on CE electropherogram. The lyophilized Hb typing control materials could be developed and used as control materials for investigation of thalassemia and hemoglobinopathies.

  1. Use of finger-prick dried blood spots (fpDBS) and capillary electrophoresis for carbohydrate deficient transferrin (CDT) screening in forensic toxicology.

    PubMed

    Bertaso, Anna; Sorio, Daniela; Vandoros, Anthula; De Palo, Elio F; Bortolotti, Federica; Tagliaro, Franco

    2016-10-01

    Continued progress in chronic alcohol abuse investigation requires the development of less invasive procedures for screening purposes. The application of finger-prick and related dried blood spots (fpDBS) for carbohydrate deficient transferrin (CDT) detection appears suitable for this aim. Therefore, the goal of this project was to develop a screening method for CDT using fpDBS with CZE analysis. Blood samples prepared by finger-prick were placed on DBS cards and left to air dry; each dried fpDBS disc was shredded into small pieces and suspended in acid solution (60 μL of HCl 120 mmol/L). After centrifugation (10 min at 1500 × g), the collected sample was adjusted to pH 3.5. After an overnight incubation, the pH was neutralised and an iron rich solution was added. After 1 h, CZE analysis was carried out. A group of 47 individuals was studied. Parallel serum samples were collected from each investigated subject and the %CDT for each sample was measured using HPLC and CZE techniques. The fpDBS transferrin sialo isoform electropherograms were similar to those obtained with serum. Moreover, fpDBS CZE CDT percentage levels demonstrated significant statistical correlation with those obtained from serum for both HPLC and CZE %CDT (p < 0.01; r 2 = 0.8913 and 0.8976, respectively), with %CDT from 0.8 to 13.7% for fpDBS and from 0.7 to 12.7% for serum. The newly developed fpDBS procedure for CDT analysis provides a simple and inexpensive tool for use in population screening. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Simultaneous separation of five major ribonucleic acids by capillary electrophoresis with laser-induced fluorescence in the presence of electroosmotic flow: application to the rapid screening of 5S rRNA from ovarian cancer cells.

    PubMed

    Shih, Ya-Chu; Liao, Ching-Ru; Chung, I-Che; Chang, Yu-Sun; Chang, Po-Ling

    2014-10-17

    RNA integrity is important in RNA studies because poor RNA quality may impact downstream methodologies. This study proposes a rapid and cost-effective method for the determination of RNA integrity based on CE-LIF in the presence of electroosmotic flow. The proposed method uses poly(ethylene) oxide (Mavg=4,000,000 Da) as a sieving matrix for total RNA separation. Ethidium bromide (μg mL(-1)) was dissolved in a polymer solution as an interchelating dye for on-column fluorescent labeling. The 28S rRNA, 18S rRNA, 5.8S rRNA, 5S rRNA and tRNA from the total human RNA extracted from the cells were fully separated using the proposed method. The lowest detectable concentration of total RNA achieved was 100 pg μL(-1) with a 6 min sample injection followed by on-column concentration. In addition, the temperature-induced degradation of total RNA was observed by CE-LIF. The electropherograms revealed more fragmentation of 28S and 18S rRNAs by temperature-induced hydrolysis compared with the 5.8S rRNA, 5S rRNA and tRNA. Therefore, the results indicated that RNA degradation should be considered for long-term, high-temperature incubations in RNA-related experiments involving RNA hybridization. The proposed method is furthermore, applied to the determination of 5S rRNA overexpressed in ovarian cancer cells as compared to the cervical cancer cells. Overall, CE-LIF is highly promising for rapid screening of ovarian cancers without tedious pre-amplification steps. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hui

    2001-01-01

    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, the author introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties ofmore » suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, they demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection. In the second part of this dissertation, the author used laser-induced native fluorescence coupled with capillary electrophoresis (LINF-CE) and microscope imaging to study the single cell degranulation. On the basis of good temporal correlation with events observed through an optical microscope, they have identified individual peaks in the fluorescence electropherograms as serotonin released from the granular core on contact with the surrounding fluid.« less

  4. Gas-filled capillaries for plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.

    2017-07-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.

  5. Surface tension determination using liquid sample micromirror property

    NASA Astrophysics Data System (ADS)

    Hošek, Jan

    2007-05-01

    This paper presents an application of adaptive optics principle onto small sample of liquid surface tension measurement. The principle of experimental method devised by Ferguson (1924) is based on measurement of pressure difference across a liquid sample placed into small diameter capillary on condition of one flat meniscus of the liquid sample. Planarity or curvature radius of the capillary tip meniscus has to be measured and controlled, in order to fulfill this condition during measurement. Two different optical set-ups using liquid meniscus micromirror property are presented and its suitability for meniscus profile determination is compared. Meniscus radius optical measurement, data processing and control algorithm of the adaptive micromirror profile set are presented too. The presented adaptive optics system can be used for focal length control of microsystems based on liquid micromirrors or microlenses with long focal distances especially.

  6. Covariance of bacterioplankton composition and environmental variables in a temperate delta system

    USGS Publications Warehouse

    Stepanauskas, R.; Moran, M.A.; Bergamaschi, B.A.; Hollibaugh, J.T.

    2003-01-01

    We examined seasonal and spatial variation in bacterioplankton composition in the Sacramento-San Joaquin River Delta (CA) using terminal restriction fragment length polymorphism (T-RFLP) analysis. Cloned 16S rRNA genes from this system were used for putative identification of taxa dominating the T-RFLP profiles. Both cloning and T-RFLP analysis indicated that Actinobacteria, Verrucomicrobia, Cytophaga-Flavobacterium and Proteobacteria were the most abundant bacterioplankton groups in the Delta. Despite the broad variety of sampled habitats (deep water channels, lakes, marshes, agricultural drains, freshwater and brackish areas), and the spatial and temporal differences in hydrology, temperature and water chemistry among the sampling campaigns, T-RFLP electropherograms from all samples were similar, indicating that the same bacterioplankton phylotypes dominated in the various habitats of the Delta throughout the year. However, principal component analysis (PCA) and partial least-squares regression (PLS) of T-RFLP profiles revealed consistent grouping of samples on a seasonal, but not a spatial, basis. ??-Proteobacteria related to Ralstonia, Actinobacteria related to Microthrix, and ??-Proteobacteria identical to the environmental Clone LD12 had the highest relative abundance in summer/fall T-RFLP profiles and were associated with low river flow, high pH, and a number of optical and chemical characteristics of dissolved organic carbon (DOC) indicative of an increased proportion of phytoplankton-produced organic material as opposed to allochthonous, terrestrially derived organic material. On the other hand, Geobacter-related ??-Proteobacteria showed a relative increase in abundance in T-RFLP analysis during winter/spring, and probably were washed out from watershed soils or sediment. Various phylotypes associated with the same phylogenetic division, based on tentative identification of T-RFLP fragments, exhibited diverse seasonal patterns, suggesting that ecological roles of Delta bacterioplankton were partitioned at the genus or species level.

  7. Multiple-locus variable-number tandem-repeats analysis of Listeria monocytogenes using multicolour capillary electrophoresis and comparison with pulsed-field gel electrophoresis typing.

    PubMed

    Lindstedt, Bjørn-Arne; Tham, Wilhelm; Danielsson-Tham, Marie-Louise; Vardund, Traute; Helmersson, Seved; Kapperud, Georg

    2008-02-01

    The multiple-locus variable-number tandem-repeats analysis (MLVA) method for genotyping has proven to be a fast and reliable typing tool in several bacterial species. MLVA is in our laboratory the routine typing method for Salmonella enterica subsp. enterica serovar Typhimurium and Escherichia coli O157. The gram-positive bacteria Listeria monocytogenes, while not isolated as frequent as S. Typhimurium and E. coli, causes severe illness with an overall mortality rate of 30%. Thus, it is important that any outbreak of this pathogen is detected early and a fast trace to the source can be performed. In view of this, we have used the information provided by two fully sequenced L. monocytogenes strains to develop a MLVA assay coupled with high-resolution capillary electrophoresis and compared it to pulsed-field gel electrophoresis (PFGE) in two sets of isolates, one Norwegian (79 isolates) and one Swedish (61 isolates) set. The MLVA assay could resolve all of the L. monocytogenes serotypes tested, and was slightly more discriminatory than PFGE for the Norwegian isolates (28 MLVA profiles and 24 PFGE profiles) and opposite for the Swedish isolates (42 MLVA profiles and 43 PFGE profiles).

  8. Influence of granulometry in the Hurst exponent of air liquid interfaces formed during capillary rising in a granular media

    NASA Astrophysics Data System (ADS)

    Gontijo, Guilherme L.; Souza, Flávia B.; Braga, Rafael M. L.; Silva, Pedro H. E.; Correia, Maury D.; Atman, A. P. F.

    2017-06-01

    We report results concerning the fractal dimension of a air/fluid interface formed during the capillary rising of a fluid into a dense granular media. The system consists in a modified Hele-Shaw cell filled with grains at different granulometries and confined in a narrow gap between the glass plates. The system is then placed onto a water reservoir, and the liquid penetrates the medium due to capillary forces. We measure the Hurst exponent of the liquid/air interface with help of image processing, and follow the temporal evolution of the profiles. We observe that the Hurst exponent can be related with the granulometry, but the range of values are odd to the predicted values from models or theory.

  9. Properties of pendular liquid bridges determined on Delaunay's roulettes

    NASA Astrophysics Data System (ADS)

    Mielniczuk, Boleslaw; Millet, Olivier; Gagneux, Gérard; El Youssoufi, Moulay Said

    2017-06-01

    This work addresses the study of capillary bridge properties between two grains, with use of recent analytical model, based on solutions of Young-Laplace equation from an inverse problem. A simple explicit criterion allows to classify the profile of capillary bridge as a surface of revolution with constant mean curvature (Delaunay roulette) using its measured geometrical parameters (gorge radius, contact angle, half-filling angle). Necessary data are obtained from experimental tests, realized on liquid bridges between two equal spherical grains. Sequences of images are recorded at several (fixed) volumes of liquid and different separations distances between the spheres (from contact to rupture), in laboratory and in micro-gravity conditions. For each configuration, an exact parametric representation of the meridian is revealed. Mean bridge curvature, internal pressure and intergranular capillary force are also determined.

  10. Probabilistic peak detection in CE-LIF for STR DNA typing.

    PubMed

    Woldegebriel, Michael; van Asten, Arian; Kloosterman, Ate; Vivó-Truyols, Gabriel

    2017-07-01

    In this work, we present a novel probabilistic peak detection algorithm based on a Bayesian framework for forensic DNA analysis. The proposed method aims at an exhaustive use of raw electropherogram data from a laser-induced fluorescence multi-CE system. As the raw data are informative up to a single data point, the conventional threshold-based approaches discard relevant forensic information early in the data analysis pipeline. Our proposed method assigns a posterior probability reflecting the data point's relevance with respect to peak detection criteria. Peaks of low intensity generated from a truly existing allele can thus constitute evidential value instead of fully discarding them and contemplating a potential allele drop-out. This way of working utilizes the information available within each individual data point and thus avoids making early (binary) decisions on the data analysis that can lead to error propagation. The proposed method was tested and compared to the application of a set threshold as is current practice in forensic STR DNA profiling. The new method was found to yield a significant improvement in the number of alleles identified, regardless of the peak heights and deviation from Gaussian shape. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Lysosomal Trapping Is Present in Retinal Capillary Endothelial Cells: Insight into Its Influence on Cationic Drug Transport at the Inner Blood-Retinal Barrier.

    PubMed

    Kubo, Yoshiyuki; Seko, Narumi; Usui, Takuya; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi

    2016-01-01

    Lysosomal trapping was investigated in the retinal capillary endothelial cells that are responsible for the inner blood-retinal barrier (BRB) using LysoTracker(®) Red (LTR). Using confocal microscopy on TR-iBRB2 cells, an in vitro model of the inner BRB, the presence of lysosomal trapping in retinal capillary endothelial cells was suggested since TR-iBRB2 cells exhibited punctuate intracellular localization of LTR that was attenuated by NH4Cl treatment. The study confirmed that LTR uptake by retinal capillary endothelial cells took place in a time- and temperature-dependent manner, and exhibited the 1.58-fold greater uptake at pH 8.4 than that at pH 7.4 while there was no change in uptake between pH 6.4 and pH 7.4, suggesting that passive diffusion is not enough to explain LTR uptake. The inhibition study showed the possible influence of lysosomal trapping on cationic drug transport by retinal capillary endothelial cells since LTR uptake was significantly inhibited by cationic amphiphilic drugs. Inhibition profiling and the estimation of IC50 suggested the influence of lysosomal trapping on propranolol and low-affinity pyrilamine transport while lysosomal trapping had only a partial effect on verapamil, clonidine, nicotine and high-affinity pyrilamine transport in retinal capillary endothelial cells.

  12. Natural Attenuation of Nonvolatile Contaminants in the Capillary Fringe.

    PubMed

    Kurt, Zohre; Mack, E Erin; Spain, Jim C

    2016-09-20

    When anoxic polluted groundwater encounters the overlying vadose zone an oxic/anoxic interface is created, often near the capillary fringe. Biodegradation of volatile contaminants in the capillary fringe can prevent vapor migration. In contrast, the biodegradation of nonvolatile contaminants in the vadose zone has received comparatively little attention. Nonvolatile compounds do not cause vapor intrusion, but they still move with the groundwater and are major contaminants. Aniline (AN) and diphenylamine (DPA) are examples of toxic nonvolatile contaminants found often at dye and munitions manufacturing sites. In this study, we tested the hypothesis that bacteria can aerobically biodegrade AN and DPA in the capillary fringe and decrease the contaminant concentrations in the anoxic plume beneath the vadose zone. Laboratory multiport columns that represented the unsaturated zone were used to evaluate degradation of AN or DPA in contaminated water. The biodegradation fluxes of the contaminants were estimated to be 113 ± 26 mg AN·m(-2)·h(-1) and 76 ± 18 mg DPA·m(-2)·h(-1) in the presence of bacteria known to degrade AN and DPA. Oxygen and contaminant profiles along with enumeration of bacterial populations indicated that most of the biodegradation took place within the lower part of the capillary fringe. The results indicate that bacteria capable of contaminant biodegradation in the capillary fringe can create a sink for nonvolatile contaminants.

  13. The relationship of photoreceptor degeneration to retinal vascular development and loss in mutant rhodopsin transgenic and RCS rats.

    PubMed

    Pennesi, Mark E; Nishikawa, Shimpei; Matthes, Michael T; Yasumura, Douglas; LaVail, Matthew M

    2008-12-01

    The early loss of photoreceptors in some retinal degenerations in mice has been shown to have a profound effect on vascular development of the retina. To better characterize this relationship, we have examined the formation of retinal blood vessels during the first month of life in 8 lines of transgenic rats with different ages of onset and rates of photoreceptor cell loss mediated by the expression of mutant rhodopsin (P23H and S334ter). The number of capillary profiles in the superficial plexus (SP) and deep capillary plexus (DCP) of the retina were quantified in retinal sections taken at postnatal day (P) 8, 10, 12, 15 and 30. In normal wild-type rats, the SP and DCP had mostly established mature, adult patterns by P15, as previously shown. In the transgenic rats, the loss of photoreceptors had relatively little effect on the SP. By contrast, the loss of photoreceptors during vascular development had a major impact on the DCP. In the two lines with early and most rapid photoreceptor loss, S334ter-7 and S334ter-3, where about 90% and 65%, respectively, of the photoreceptors were already lost by P15, the DCP either failed to form (S334ter-7) or the number of capillary profiles was less than 7% of controls (S334ter-3). In lines where almost all photoreceptors were still present at P15 (S334ter-4, S334ter-9, P23H-2 and P23H-3), the number of profiles in the DCP were the same as in wild-type controls at P30. In two lines with an intermediate rate of degeneration (S334ter-5 and P23H-1), where only about 25% of the photoreceptors were lost by P15, there was an intermediate number of vascular profiles in the DCP at P30. Thus, a very close relationship between the number of photoreceptors and vessel profiles in the DCP during its development exists in the transgenic rats, and the loss of photoreceptors results in the failure or inhibition of the DCP to develop. Several mechanisms may explain this relationship including changes in the level of physiological oxygen tension or alteration in the release of angiogenic factors that normally drive vessel development. Analysis of older transgenic retinas up to 1 year of age revealed that (1) vascular profiles are lost from the DCP in essentially all lines once fewer than about 30-33% of photoreceptors remain; (2) in those lines where the DCP essentially did not develop (S334ter-7 and S334ter-3), the effect of photoreceptor absence was permanent, and there was no late vascularization of the DCP; (3) the number of capillary profiles in the SP remained no different from controls in any of the lines, despite long-standing loss of photoreceptors; and (4) neovascularization of the RPE by retinal capillaries occurred with a latency of 60-180 days after the loss of photoreceptors, except in S334ter-7 rats, where neovascularization essentially did not occur. Analysis of RCS rats was carried out for comparison.

  14. Development and characterization of plasma targets for controlled injection of electrons into laser-driven wakefields

    NASA Astrophysics Data System (ADS)

    Kleinwaechter, Tobias; Goldberg, Lars; Palmer, Charlotte; Schaper, Lucas; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2012-10-01

    Laser-driven wakefield acceleration within capillary discharge waveguides has been used to generate high-quality electron bunches with GeV-scale energies. However, owing to fluctuations in laser and plasma conditions in combination with a difficult to control self-injection mechanism in the non-linear wakefield regime these bunches are often not reproducible and can feature large energy spreads. Specialized plasma targets with tailored density profiles offer the possibility to overcome these issues by controlling the injection and acceleration processes. This requires precise manipulation of the longitudinal density profile. Therefore our target concept is based on a capillary structure with multiple gas in- and outlets. Potential target designs are simulated using the fluid code OpenFOAM and those meeting the specified criteria are fabricated using femtosecond-laser machining of structures into sapphire plates. Density profiles are measured over a range of inlet pressures utilizing gas-density profilometry via Raman scattering and pressure calibration with longitudinal interferometry. In combination these allow absolute density mapping. Here we report the preliminary results.

  15. Numerical Analysis of Infiltration Into a Sand Profile Bounded by a Capillary Fringe

    NASA Astrophysics Data System (ADS)

    Curtis, Alan A.; Watson, Keith K.

    1980-04-01

    The rapid response sometimes observed in a tile drain system following surface ponding of water is discussed in terms of the air compressibility effect. An earlier numerical study describing water movement into a bounded profile with a lower boundary impermeable to the passage of both air and water is reviewed with particular reference to the validity of the time-dependent boundary condition transformation used in simulating the inhibiting effects of the air pressure increase on infiltration. The extension of the transformation approach to a profile bounded by a capillary fringe is then considered in detail, and the results of numerical analyses are presented for infiltration into two columns of a fine sand initially in hydraulic equilibrium from a prior gravity drainage regime. The shorter column develops a steady state flow condition at short times which is consistent with earlier experimental findings. In contrast, the pressure of the entrapped air in the longer column gradually increases as infiltration proceeds until the analysis is terminated when air escape through the lower boundary is imminent.

  16. Determination of Inorganic Ion Profiles of Illicit Drugs by Capillary Electrophoresis.

    PubMed

    Evans, Elizabeth; Costrino, Carolina; do Lago, Claudimir L; Garcia, Carlos D; Roux, Claude; Blanes, Lucas

    2016-11-01

    A portable capillary electrophoresis instrument with dual capacitively coupled contactless conductivity detection (C 4 D) was used to determine the inorganic ionic profiles of three pharmaceutical samples and precursors of two illicit drugs (contemporary samples of methylone and para-methoxymethamphetamine). The LODs ranged from 0.10 μmol/L to 1.25 μmol/L for the 10 selected cations, and from 0.13 μmol/L to 1.03 μmol/L for the eight selected anions. All separations were performed in less than 6 min with migration times and peak area RSD values ranging from 2 to 7%. The results demonstrate the potential of the analysis of inorganic ionic species to aid in the identification and/or differentiation of unknown tablets, and real samples found in illicit drug manufacture scenarios. From the resulting ionic fingerprint, the unknown tablets and samples can be further classified. © 2016 American Academy of Forensic Sciences.

  17. Towards point of care testing for C. difficile infection by volatile profiling, using the combination of a short multi-capillary gas chromatography column with metal oxide sensor detection

    NASA Astrophysics Data System (ADS)

    McGuire, N. D.; Ewen, R. J.; de Lacy Costello, B.; Garner, C. E.; Probert, C. S. J.; Vaughan, K.; Ratcliffe, N. M.

    2014-06-01

    Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor sensor and artificial neural network software. For direct analysis of biological samples this prototype offers alternatives to conventional gas chromatography (GC) detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenized in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 min compared to 30 min for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden.

  18. Towards point of care testing for C. difficile infection by volatile profiling, using the combination of a short multi-capillary gas chromatography column with metal oxide sensor detection

    PubMed Central

    McGuire, N D; Ewen, R J; de Lacy Costello, B; Garner, C E; Probert, C S J; Vaughan, K.; Ratcliffe, N M

    2016-01-01

    Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor (MOS) sensor and artificial neural network (ANN) software. For direct analysis of biological samples this prototype offers alternatives to conventional GC detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenised in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 minutes compared to 30 minutes for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden. PMID:27212803

  19. The Relationship Between Microscopic Grain Surface Structure and the Dynamic Capillary-Driven Advance of Water Films over Individual Dry Natural Sand Grains

    NASA Astrophysics Data System (ADS)

    Kibbey, T. C. G.; Adegbule, A.; Yan, S.

    2017-12-01

    The movement of nonvolatile solutes in unsaturated porous media at low water contents depends on transport in surface-associated water films. The focus of the work described here was on studying solute movement in water films advancing by capillary forces over initially-dry grain surfaces, to understand how microscopic surface roughness features influence the initial velocity of water film advance. For this work, water containing a non-adsorbing conservative tracer was used to track the movement of advancing water films. A stainless steel capillary tube connected to an external reservoir a fixed distance below the grain surface was used to transmit solution to the grain surface under negative pressure (positive capillary pressure), consistent with conditions that might be expected in the unsaturated zone. The small internal diameter of the capillary prevents solution from draining out of the capillary back into the reservoir. When the capillary is contacted with a grain surface, capillary forces that result from contact between the fluid and the rough grain surface cause water films to wick across the grain surface. Multiple experiments were conducted on the same grain, rotating the grain and varying the capillary contact point around the circumference of the grain. Imaging was conducted at fixed intervals using an automated Extended Depth of Field (EDF) imaging system, and images were analyzed to determine initial velocity. Grain surfaces were then characterized through scanning electron microscope (SEM) imaging, using a hybrid stereoscopic reconstruction method designed to extract maximum detail in creating elevation maps of geologic surfaces from tilted pairs of SEM images. The resulting elevation maps were used to relate surface roughness profiles around the grain with initial velocities. Results suggest that velocity varies significant with contact point around an individual grain, and correlates quantitatively with the local grain surface structure. Preliminary simulation results will also be discussed.

  20. Enrichment of Glycoproteins using Nano-scale Chelating Con A Monolithic Capillary Chromatography

    PubMed Central

    Feng, Shun; Yang, Na; Pennathur, Subramaniam; Goodison, Steve; Lubman, David M.

    2009-01-01

    Immobilized lectin chromatography can be employed for glycoprotein enrichment, but commonly used columns have limitations of yield and resolution. In order to improve efficiency and to make the technique applicable to minimal sample material, we have developed a nano-scale chelating Concanavalin A (Con A) monolithic capillary prepared using GMA-EDMA (glycidyl methacrylate–co-ethylene dimethacrylate) as polymeric support. Con A was immobilized on Cu(II)-charged iminodiacetic acid (IDA) regenerable sorbents by forming a IDA:Cu(II):Con A sandwich affinity structure that has high column capacity as well as stability. When compared with conventional Con A lectin chromatography, the monolithic capillary enabled the better reproducible detection of over double the number of unique N-glycoproteins in human urine samples. Utility for analysis of minimal biological samples was confirmed by the successful elucidation of glycoprotein profiles in mouse urine samples at the microliter scale. The improved efficiency of the nano-scale monolithic capillary will impact the analysis of glycoproteins in complex biological samples, especially where only limited material may be available. PMID:19366252

  1. Toward direct pore-scale modeling of three-phase displacements

    NASA Astrophysics Data System (ADS)

    Mohammadmoradi, Peyman; Kantzas, Apostolos

    2017-12-01

    A stable spreading film between water and gas can extract a significant amount of bypassed non-aqueous phase liquid (NAPL) through immiscible three-phase gas/water injection cycles. In this study, the pore-scale displacement mechanisms by which NAPL is mobilized are incorporated into a three-dimensional pore morphology-based model under water-wet and capillary equilibrium conditions. The approach is pixel-based and the sequence of invasions is determined by the fluids' connectivity and the threshold capillary pressure of the advancing interfaces. In addition to the determination of three-phase spatial saturation profiles, residuals, and capillary pressure curves, dynamic finite element simulations are utilized to predict the effective permeabilities of the rock microtomographic images as reasonable representations of the geological formations under study. All the influential features during immiscible fluid flow in pore-level domains including wetting and spreading films, saturation hysteresis, capillary trapping, connectivity, and interface development strategies are taken into account. The capabilities of the model are demonstrated by the successful prediction of saturation functions for Berea sandstone and the accurate reconstruction of three-phase fluid occupancies through a micromodel.

  2. Disposable pen-shaped capillary gel electrophoresis cartridge for fluorescence detection of bio-molecules

    NASA Astrophysics Data System (ADS)

    Amirkhanian, Varoujan; Tsai, Shou-Kuan

    2014-03-01

    We introduce a novel and cost-effective capillary gel electrophoresis (CGE) system utilizing disposable pen-shaped gelcartridges for highly efficient, high speed, high throughput fluorescence detection of bio-molecules. The CGE system has been integrated with dual excitation and emission optical-fibers with micro-ball end design for fluorescence detection of bio-molecules separated and detected in a disposable pen-shaped capillary gel electrophoresis cartridge. The high-performance capillary gel electrophoresis (CGE) analyzer has been optimized for glycoprotein analysis type applications. Using commercially available labeling agent such as ANTS (8-aminonapthalene-1,3,6- trisulfonate) as an indicator, the capillary gel electrophoresis-based glycan analyzer provides high detection sensitivity and high resolving power in 2-5 minutes of separations. The system can hold total of 96 samples, which can be automatically analyzed within 4-5 hours. This affordable fiber optic based fluorescence detection system provides fast run times (4 minutes vs. 20 minutes with other CE systems), provides improved peak resolution, good linear dynamic range and reproducible migration times, that can be used in laboratories for high speed glycan (N-glycan) profiling applications. The CGE-based glycan analyzer will significantly increase the pace at which glycoprotein research is performed in the labs, saving hours of preparation time and assuring accurate, consistent and economical results.

  3. Vacuum scanning capillary photoemission microscopy.

    PubMed

    Aseyev, S A; Cherkun, A P; Mironov, B N; Petrunin, V V; Chekalin, S V

    2017-08-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ, was measured by the conical probe operating in shear force mode. In shear force regime, the dielectric capillary has been used as a "classical" SPM tip, which provided images reflecting the surface topology. In a photoelectron regime photoelectrons passed through hollow tip and entered a detector. The spatial distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element resolution using the combination of a hollow-tip scanner with time-of-flight technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.

    PubMed

    Danov, Krassimir D; Georgiev, Mihail T; Kralchevsky, Peter A; Radulova, Gergana M; Gurkov, Theodor D; Stoyanov, Simeon D; Pelan, Eddie G

    2018-01-01

    Suspensions of colloid particles possess the remarkable property to solidify upon the addition of minimal amount of a second liquid that preferentially wets the particles. The hardening is due to the formation of capillary bridges (pendular rings), which connect the particles. Here, we review works on the mechanical properties of such suspensions and related works on the capillary-bridge force, and present new rheological data for the weakly studied concentration range 30-55 vol% particles. The mechanical strength of the solidified capillary suspensions, characterized by the yield stress Y, is measured at the elastic limit for various volume fractions of the particles and the preferentially wetting liquid. A quantitative theoretical model is developed, which relates Y with the maximum of the capillary-bridge force, projected on the shear plane. A semi-empirical expression for the mean number of capillary bridges per particle is proposed. The model agrees very well with the experimental data and gives a quantitative description of the yield stress, which increases with the rise of interfacial tension and with the volume fractions of particles and capillary bridges, but decreases with the rise of particle radius and contact angle. The quantitative description of capillary force is based on the exact theory and numerical calculation of the capillary bridge profile at various bridge volumes and contact angles. An analytical formula for Y is also derived. The comparison of the theoretical and experimental strain at the elastic limit reveals that the fluidization of the capillary suspension takes place only in a deformation zone of thickness up to several hundred particle diameters, which is adjacent to the rheometer's mobile plate. The reported experimental results refer to water-continuous suspension with hydrophobic particles and oily capillary bridges. The comparison of data for bridges from soybean oil and hexadecane surprisingly indicate that the yield strength is greater for the suspension with soybean oil despite its lower interfacial tension against water. The result can be explained with the different contact angles of the two oils in agreement with the theoretical predictions. The results could contribute for a better understanding, quantitative prediction and control of the mechanical properties of three-phase capillary suspensions solid/liquid/liquid. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Roles of saltcedar (Tamarix spp.) and capillary rise in salinizing a non-flooding terrace on a flow-regulated desert river

    USGS Publications Warehouse

    Glenn, E.P.; Morino, K.; Nagler, P.L.; Murray, R.S.; Pearlstein, S.; Hultine, K.R.

    2012-01-01

    Tamarix spp. (saltcedar) secretes salts and has been considered to be a major factor contributing to the salinization of river terraces in western US riparian zones. However, salinization can also occur from the capillary rise of salts from the aquifer into the vadose zone. We investigated the roles of saltcedar and physical factors in salinizing the soil profile of a non-flooding terrace at sites on the Cibola National Wildlife Refuge on the Lower Colorado River, USA. We placed salt traps under and between saltcedar shrubs and estimated the annual deposition rate of salts from saltcedar. These were then compared to the quantities and distribution on of salts in the soil profile. Dense stands of saltcedar deposited 0.159kgm -2yr -1 of salts to the soil surface. If this rate was constant since seasonal flooding ceased in 1938 and all of the salts were retained in the soil profile, they could account for 11.4kgm -2 of salt, about 30% of total salts in the profile today. Eliminating saltcedar would not necessarily reduce salts, because vegetation reduces the upward migration of salts in bulk flow from the aquifer. The densest saltcedar stand had the lowest salt levels in the vadose zone in this study. ?? 2011 Elsevier Ltd.

  6. Sequencing of real-world samples using a microfabricated hybrid device having unconstrained straight separation channels.

    PubMed

    Liu, Shaorong; Elkin, Christopher; Kapur, Hitesh

    2003-11-01

    We describe a microfabricated hybrid device that consists of a microfabricated chip containing multiple twin-T injectors attached to an array of capillaries that serve as the separation channels. A new fabrication process was employed to create two differently sized round channels in a chip. Twin-T injectors were formed by the smaller round channels that match the bore of the separation capillaries and separation capillaries were incorporated to the injectors through the larger round channels that match the outer diameter of the capillaries. This allows for a minimum dead volume and provides a robust chip/capillary interface. This hybrid design takes full advantage, such as sample stacking and purification and uniform signal intensity profile, of the unique chip injection scheme for DNA sequencing while employing long straight capillaries for the separations. In essence, the separation channel length is optimized for both speed and resolution since it is unconstrained by chip size. To demonstrate the reliability and practicality of this hybrid device, we sequenced over 1000 real-world samples from Human Chromosome 5 and Ciona intestinalis, prepared at Joint Genome Institute. We achieved average Phred20 read of 675 bases in about 70 min with a success rate of 91%. For the similar type of samples on MegaBACE 1000, the average Phred20 read is about 550-600 bases in 120 min separation time with a success rate of about 80-90%.

  7. RP-1 and JP-8 Thermal Stability Experiments

    NASA Technical Reports Server (NTRS)

    Brown, Sarah P.; Emens, Jessica M.; Frederick, Robert A., Jr.

    2005-01-01

    This work experimentally investigates the effect of fuel composition changes on jet and rocket fuel thermal stability. A High Reynolds Number Thermal Stability test device evaluated JP-8 and RP-1 fuels. The experiment consisted of an electrically heated, stainless steel capillary tube with a controlled fuel outlet temperature. An optical pyrometer monitored the increasing external temperature profiles of the capillary tube as deposits build inside during each test. Multiple runs of each fuel composition provided results on measurement repeatability. Testing a t two different facilities provided data on measurement reproducibility. The technique is able to distinguish between thermally stable and unstable compositions of JP-8 and intermediate blends made by combining each composition. The technique is also able to distinguish among standard RP-1 rocket fuels and those having reduced sulfur levels. Carbon burn off analysis of residue in the capillary tubes on the RP-1 fuels correlates with the external temperature results.

  8. Transversally periodic solitary gravity–capillary waves

    PubMed Central

    Milewski, Paul A.; Wang, Zhan

    2014-01-01

    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  9. Impact of Ischemia and Procurement Conditions on Gene Expression in Renal Cell Carcinoma

    PubMed Central

    Liu, Nick W.; Sanford, Thomas; Srinivasan, Ramaprasad; Liu, Jack L.; Khurana, Kiranpreet; Aprelikova, Olga; Valero, Vladimir; Bechert, Charles; Worrell, Robert; Pinto, Peter A.; Yang, Youfeng; Merino, Maria; Linehan, W. Marston; Bratslavsky, Gennady

    2013-01-01

    Purpose Previous studies have shown that ischemia alters gene expression in normal and malignant tissues. There are no studies that evaluated effects of ischemia in renal tumors. This study examines the impact of ischemia and tissue procurement conditions on RNA integrity and gene expression in renal cell carcinoma. Experimental Design Ten renal tumors were resected without renal hilar clamping from 10 patients with renal clear cell carcinoma. Immediately after tumor resection, a piece of tumor was snap frozen. Remaining tumor samples were stored at 4C, 22C and 37C and frozen at 5, 30, 60, 120, and 240 minutes. Histopathologic evaluation was performed on all tissue samples, and only those with greater than 80% tumor were selected for further analysis. RNA integrity was confirmed by electropherograms and quantitated using RIN index. Altered gene expression was assessed by paired, two-sample t-test between the zero time point and aliquots from various conditions obtained from the same tumor. Results One hundred and forty microarrays were performed. Some RNA degradation was observed 240 mins after resection at 37C. The expression of over 4,000 genes was significantly altered by ischemia times or storage conditions. The greatest gene expression changes were observed with longer ischemia time and warmer tissue procurement conditions. Conclusion RNA from kidney cancer remains intact for up to 4 hours post surgical resection regardless of storage conditions. Despite excellent RNA preservation, time after resection and procurement conditions significantly influence gene expression profiles. Meticulous attention to pre-acquisition variables is of paramount importance for accurate tumor profiling. PMID:23136194

  10. A reversed-phase capillary ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for comprehensive top-down/bottom-up lipid profiling

    PubMed Central

    Gao, Xiaoli; Zhang, Qibin; Meng, Da; Issac, Giorgis; Zhao, Rui; Fillmore, Thomas L.; Chu, Rosey K.; Zhou, Jianying; Tang, Keqi; Hu, Zeping; Moore, Ronald J.; Smith, Richard D.; Katze, Michael G.; Metz, Thomas O.

    2012-01-01

    Lipidomics is a critical part of metabolomics and aims to study all the lipids within a living system. We present here the development and evaluation of a sensitive capillary UPLC-MS method for comprehensive top-down/bottom-up lipid profiling. Three different stationary phases were evaluated in terms of peak capacity, linearity, reproducibility, and limit of quantification (LOQ) using a mixture of lipid standards representative of the lipidome. The relative standard deviations of the retention times and peak abundances of the lipid standards were 0.29% and 7.7%, respectively, when using the optimized method. The linearity was acceptable at >0.99 over 3 orders of magnitude, and the LOQs were sub-fmol. To demonstrate the performance of the method in the analysis of complex samples, we analyzed lipids extracted from a human cell line, rat plasma, and a model human skin tissue, identifying 446, 444, and 370 unique lipids, respectively. Overall, the method provided either higher coverage of the lipidome, greater measurement sensitivity, or both, when compared to other approaches of global, untargeted lipid profiling based on chromatography coupled with MS. PMID:22354571

  11. Gravity–capillary waves in finite depth on flows of constant vorticity

    PubMed Central

    Hsu, Hung-Chu; Francius, Marc; Kharif, Christian

    2016-01-01

    This paper considers two-dimensional periodic gravity–capillary waves propagating steadily in finite depth on a linear shear current (constant vorticity). A perturbation series solution for steady periodic waves, accurate up to the third order, is derived using a classical Stokes expansion procedure, which allows us to include surface tension effects in the analysis of wave–current interactions in the presence of constant vorticity. The analytical results are then compared with numerical computations with the full equations. The main results are (i) the phase velocity is strongly dependent on the value of the vorticity; (ii) the singularities (Wilton singularities) in the Stokes expansion in powers of wave amplitude that correspond to a Bond number of 1/2 and 1/3, which are the consequences of the non-uniformity in the ordering of the Fourier coefficients, are found to be influenced by vorticity; (iii) different surface profiles of capillary–gravity waves are computed and the effect of vorticity on those profiles is shown to be important, in particular that the solutions exhibit type-2-like wave features, characterized by a secondary maximum on the surface profile with a trough between the two maxima. PMID:27956873

  12. Surface modified capillary electrophoresis combined with in solution isoelectric focusing and MALDI-TOF/TOF MS: a gel-free multidimensional electrophoresis approach for proteomic profiling--exemplified on human follicular fluid.

    PubMed

    Hanrieder, Jörg; Zuberovic, Aida; Bergquist, Jonas

    2009-04-24

    Development of miniaturized analytical tools continues to be of great interest to face the challenges in proteomic analysis of complex biological samples such as human body fluids. In the light of these challenges, special emphasis is put on the speed and simplicity of newly designed technological approaches as well as the need for cost efficiency and low sample consumption. In this study, we present an alternative multidimensional bottom-up approach for proteomic profiling for fast, efficient and sensitive protein analysis in complex biological matrices. The presented setup was based on sample pre-fractionation using microscale in solution isoelectric focusing (IEF) followed by tryptic digestion and subsequent capillary electrophoresis (CE) coupled off-line to matrix assisted laser desorption/ionization time of flight tandem mass spectrometry (MALDI TOF MS/MS). For high performance CE-separation, PolyE-323 modified capillaries were applied to minimize analyte-wall interactions. The potential of the analytical setup was demonstrated on human follicular fluid (hFF) representing a typical complex human body fluid with clinical implication. The obtained results show significant identification of 73 unique proteins (identified at 95% significance level), including mostly acute phase proteins but also protein identities that are well known to be extensively involved in follicular development.

  13. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    PubMed

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  14. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis

    NASA Astrophysics Data System (ADS)

    Scherer, James R.; Liu, Peng; Mathies, Richard A.

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  15. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry.

    PubMed

    Soga, Tomoyoshi; Igarashi, Kaori; Ito, Chiharu; Mizobuchi, Katsuo; Zimmermann, Hans-Peter; Tomita, Masaru

    2009-08-01

    We describe a sheath flow capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) method in the negative mode using a platinum electrospray ionization (ESI) spray needle, which allows the comprehensive analysis of anionic metabolites. The material of the spray needle had significant effect on the measurement of anions. A stainless steel spray needle was oxidized and corroded at the anodic electrode due to electrolysis. The precipitation of iron oxides (rust) plugged the capillary outlet, resulting in shortened capillary lifetime. Many anionic metabolites also formed complexes with the iron oxides or migrating nickel ion, which was also generated by electrolysis and moved toward the cathode (the capillary inlet). The metal-anion complex formation significantly reduced detection sensitivity of the anionic compounds. The use of a platinum ESI needle prevented both oxidation of the metals and needle corrosion. Sensitivity using the platinum needle increased from several- to 63-fold, with the largest improvements for anions exhibiting high metal chelating properties such as carboxylic acids, nucleotides, and coenzyme A compounds. The detection limits for most anions were between 0.03 and 0.87 micromol/L (0.8 and 24 fmol) at a signal-to-noise ratio of 3. This method is quantitative, sensitive, and robust, and its utility was demonstrated by the analysis of the metabolites in the central metabolic pathways extracted from mouse liver.

  16. Determining the optimal forensic DNA analysis procedure following investigation of sample quality.

    PubMed

    Hedell, Ronny; Hedman, Johannes; Mostad, Petter

    2018-07-01

    Crime scene traces of various types are routinely sent to forensic laboratories for analysis, generally with the aim of addressing questions about the source of the trace. The laboratory may choose to analyse the samples in different ways depending on the type and quality of the sample, the importance of the case and the cost and performance of the available analysis methods. Theoretically well-founded guidelines for the choice of analysis method are, however, lacking in most situations. In this paper, it is shown how such guidelines can be created using Bayesian decision theory. The theory is applied to forensic DNA analysis, showing how the information from the initial qPCR analysis can be utilized. It is assumed the alternatives for analysis are using a standard short tandem repeat (STR) DNA analysis assay, using the standard assay and a complementary assay, or the analysis may be cancelled following quantification. The decision is based on information about the DNA amount and level of DNA degradation of the forensic sample, as well as case circumstances and the cost for analysis. Semi-continuous electropherogram models are used for simulation of DNA profiles and for computation of likelihood ratios. It is shown how tables and graphs, prepared beforehand, can be used to quickly find the optimal decision in forensic casework.

  17. Bcl2-low-expressing MCF7 cells undergo necrosis rather than apoptosis upon staurosporine treatment.

    PubMed Central

    Poliseno, Laura; Bianchi, Laura; Citti, Lorenzo; Liberatori, Sabrina; Mariani, Laura; Salvetti, Alessandra; Evangelista, Monica; Bini, Luca; Pallini, Vitaliano; Rainaldi, Giuseppe

    2004-01-01

    We present a ribozyme-based strategy for studying the effects of Bcl2 down-regulation. The anti-bcl2 hammerhead ribozyme Rz-bcl2 was stably transfected into MCF7 cancer cells and the cleavage of Bcl2 mRNA was demonstrated using a new assay for cleavage product detection, while Western blot analysis showed a concomitant depletion of Bcl2 protein. Rz-bcl2-expressing cells were more sensitive to staurosporine than control cells. Moreover, both molecular and cellular read-outs indicated that staurosporine-induced cell death was necrosis rather than apoptosis in these cells. The study of the effects of Bcl2 down-regulation was extended to the global MCF7 protein expression profile, exploiting a proteomic approach. Two reference electro-pherograms of Rz-bcl2-transfected cells, one with the ribozyme in a catalytically active form and the other with the ribozyme in a catalytically inactive form, were obtained. When comparing the two-dimensional maps, 53 differentially expressed spots were found, four of which were identified by MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS as calreticulin, nucleophosmin, phosphoglycerate kinase and pyruvate kinase. How the up-regulation of these proteins might help to explain the modification of Bcl2 activity is discussed. PMID:14748742

  18. Sodium nitroprusside affects the level of photosynthetic enzymes and glucose metabolism in Phaseolus aureus (mung bean).

    PubMed

    Lum, Hon-Kei; Lee, Chi-Ho; Butt, Yoki Kwok-Chu; Lo, Samuel Chun-Lap

    2005-06-01

    Nitric oxide (NO) is an important signaling molecule in plants. The present study aims to investigate the downstream signaling pathways of NO in plants using a proteomic approach. Phaseolus aureus (mung bean) leaf was treated with sodium nitroprusside (SNP), which releases nitric oxide in the form of nitrosonium cation (NO+) upon light irradiation. Changes in protein expression profiles of the SNP treated mung bean leaf were analyzed by two-dimensional gel electrophoresis (2-DE). Comparison of 2-DE electropherograms revealed seven down-regulated and two up-regulated proteins after treatment with 0.5 mM SNP for 6 h. The identities of these proteins were analyzed by a combination of peptide mass fingerprinting and post-source decay using a matrix-assisted-laser-desorption-ionisation-time-of-flight (MALDI-TOF) mass spectrometer. Six out of these nine proteins found are involved in either photosynthesis or cellular metabolism. We have taken our investigation further by studying the effect of NO+ on glucose contents in mung bean leaves. Our results clearly demonstrated that NO+ rapidly and drastically decrease the amount of glucose in mung bean leaves. Moreover, four out of nine of these proteins are chloroplastic isoforms. These results suggested that chloroplasts might be one of the main sub-cellular targets of NO in plants.

  19. Differential arrest and adhesion of tumor cells and microbeads in the microvasculature.

    PubMed

    Guo, Peng; Cai, Bin; Lei, Ming; Liu, Yang; Fu, Bingmei M

    2014-06-01

    To investigate the mechanical mechanisms behind tumor cell arrest in the microvasculature, we injected fluorescently labeled human breast carcinoma cells or similarly sized rigid beads into the systemic circulation of a rat. Their arrest patterns in the microvasculature of mesentery were recorded and quantified. We found that 93% of rigid beads were arrested either at arteriole-capillary intersections or in capillaries. Only 3% were at the capillary-postcapillary venule intersections and in postcapillary venules. In contrast, most of the flexible tumor cells were either entrapped in capillaries or arrested at capillary or postcapillary venule-postcapillary venule intersections and in postcapillary venules. Only 12% of tumor cells were arrested at the arteriole-capillary intersections. The differential arrest and adhesion of tumor cells and microbeads in the microvasculature was confirmed by a χ(2) test (p < 0.001). These results demonstrate that mechanical trapping was responsible for almost all the arrest of beads and half the arrest of tumor cells. Based on the measured geometry and blood flow velocities at the intersections, we also performed a numerical simulation using commercial software (ANSYS CFX 12.01) to depict the detailed distribution profiles of the velocity, shear rate, and vorticity at the intersections where tumor cells preferred to arrest and adhere. Simulation results reveal the presence of localized vorticity and shear rate regions at the turning points of the microvessel intersections, implying that hemodynamic factors play an important role in tumor cell arrest in the microcirculation. Our study helps elucidate long-debated issues related to the dominant factors in early-stage tumor hematogenous metastasis.

  20. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids.

    PubMed

    Hu, Bin; Kieweg, Sarah L

    2012-07-15

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.

  1. Fish species identification using PCR-RFLP analysis and lab-on-a-chip capillary electrophoresis: application to detect white fish species in food products and an interlaboratory study.

    PubMed

    Dooley, John J; Sage, Helen D; Clarke, Marie-Anne L; Brown, Helen M; Garrett, Stephen D

    2005-05-04

    Identification of 10 white fish species associated with U.K. food products was achieved using PCR-RFLP of the mitochondrial cytochrome b gene. Use of lab-on-a-chip capillary electrophoresis for end-point analysis enabled accurate sizing of DNA fragments and identification of fish species at a level of 5% (w/w) in a fish admixture. One restriction enzyme, DdeI, allowed discrimination of eight species. When combined with NlaIII and HaeIII, specific profiles for all 10 species were generated. The method was applied to a range of products and subjected to an interlaboratory study carried out by five U.K. food control laboratories. One hundred percent correct identification of single species samples and six of nine admixture samples was achieved by all laboratories. The results indicated that fish species identification could be carried out using a database of PCR-RFLP profiles without the need for reference materials.

  2. The effects of capillary forces on the axisymmetric propagation of two-phase, constant-flux gravity currents in porous media

    NASA Astrophysics Data System (ADS)

    Golding, Madeleine J.; Huppert, Herbert E.; Neufeld, Jerome A.

    2013-03-01

    The effects of capillary forces on the propagation of two-phase, constant-flux gravity currents in a porous medium are studied analytically and numerically in an axisymmetric geometry. The fluid within a two-phase current generally only partially saturates the pore space it invades. For long, thin currents, the saturation distribution is set by the vertical balance between gravitational and capillary forces. The capillary pressure and relative permeability of the fluid in the current depend on this saturation. The action of capillary forces reduces the average saturation, thereby decreasing the relative permeability throughout the current. This results in a thicker current, which provides a steeper gradient to drive flow, and a more blunt-nose profile. The relative strength of gravity and capillary forces remains constant within a two-phase gravity current fed by a constant flux and spreading radially, due to mass conservation. For this reason, we use an axisymmetric representation of the framework developed by Golding et al. ["Two-phase gravity currents in porous media," J. Fluid Mech. 678, 248-270 (2011)], 10.1017/jfm.2011.110, to investigate the effect on propagation of varying the magnitude of capillary forces and the pore-size distribution. Scaling analysis indicates that axisymmetric two-phase gravity currents fed by a constant flux propagate like t1/2, similar to their single-phase counterparts [S. Lyle, H. E. Huppert, M. Hallworth, M. Bickle, and A. Chadwick, "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)], 10.1017/S0022112005006713, with the effects of capillary forces encapsulated in the constant of proportionality. As a practical application of our new concepts and quantitative evaluations, we discuss the implications of our results for the process of carbon dioxide (CO2) sequestration, during which gravity currents consisting of supercritical CO2 propagate in rock saturated with aqueous brine. We apply our two-phase model including capillary forces to quantitatively assess seismic images of CO2 spreading at Sleipner underneath the North Sea.

  3. Capillary electrophoresis: Imaging of electroosmotic and pressure driven flow profiles in fused silica capillaries

    NASA Technical Reports Server (NTRS)

    Williams, George O., Jr.

    1996-01-01

    This study is a continuation of the summer of 1994 NASA/ASEE Summer Faculty Fellowship Program. This effort is a portion of the ongoing work by the Biophysics Branch of the Marshall Space Flight Center. The work has focused recently on the separation of macromolecules using capillary electrophoresis (CE). Two primary goals were established for the effort this summer. First, we wanted to use capillary electrophoresis to study the electrohydrodynamics of a sample stream. Secondly, there was a need to develop a methodology for using CE for separation of DNA molecules of various sizes. In order to achieve these goals we needed to establish a procedure for detection of a sample plug under the influence of an electric field Detection of the sample with the microscope and image analysis system would be helpful in studying the electrohydrodynamics of this stream under load. Videotaping this process under the influence of an electric field in real time would also be useful. Imaging and photography of the sample/background electrolyte interface would be vital to this study. Finally, detection and imaging of electroosmotic flow and pressure driven flow must be accomplished.

  4. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurementsmore » and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO 2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO 2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.« less

  5. Method development and qualification of capillary zone electrophoresis for investigation of therapeutic monoclonal antibody quality.

    PubMed

    Suba, Dávid; Urbányi, Zoltán; Salgó, András

    2016-10-01

    Capillary electrophoresis techniques are widely used in the analytical biotechnology. Different electrophoretic techniques are very adequate tools to monitor size-and charge heterogenities of protein drugs. Method descriptions and development studies of capillary zone electrophoresis (CZE) have been described in literature. Most of them are performed based on the classical one-factor-at-time (OFAT) approach. In this study a very simple method development approach is described for capillary zone electrophoresis: a "two-phase-four-step" approach is introduced which allows a rapid, iterative method development process and can be a good platform for CZE method. In every step the current analytical target profile and an appropriate control strategy were established to monitor the current stage of development. A very good platform was established to investigate intact and digested protein samples. Commercially available monoclonal antibody was chosen as model protein for the method development study. The CZE method was qualificated after the development process and the results were presented. The analytical system stability was represented by the calculated RSD% value of area percentage and migration time of the selected peaks (<0.8% and <5%) during the intermediate precision investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Distinct Retinal Capillary Plexuses in Normal Eyes as Observed in Optical Coherence Tomography Angiography Axial Profile Analysis.

    PubMed

    Hirano, Takao; Chanwimol, Karntida; Weichsel, Julian; Tepelus, Tudor; Sadda, Srinivas

    2018-06-20

    Optical coherence tomography angiography (OCTA) allows the retinal microvasculature to be visualized at various retinal depths. Previous studies introduced OCTA axial profile analysis and showed regional variations in the number and location of axially distinct vascular retinal plexuses. OCTA acquisition and processing approaches, however, vary in terms of their resulting transverse and axial resolutions, and especially the latter could potentially influence the profile analysis results. Our study imaged normal eyes using the Spectralis OCT2 with a full-spectrum, probabilistic OCTA algorithm, that, in marked contrast to split-spectrum approaches, preserves the original high OCT axial resolution also within the resulting OCTA signal. En face OCTA images are generally created by averaging flow signals over a finite axial depth window. However, we assessed regional OCTA signal profiles at each depth position at full axial resolution. All regions had two sharp vessel density peaks near the inner and outer boundaries of the inner nuclear layer, indicating separate intermediate and deep capillary plexuses. The superficial vascular plexus (SVP) separated into two distinct peaks within the ganglion cell layer in the parafoveal zone. The nasal, superior, and inferior perifovea had a deeper SVP peak that was shifted anteriorly compared to the parafoveal zone. Axial vascular density analysis with high-resolution, full spectrum OCTA thus allows healthy retinal vasculature to be precisely reconstructed and may be useful for clinically assessing retinal pathology.

  7. A new automated passive capillary lysimeter for logging real-time drainage water fluxes

    USDA-ARS?s Scientific Manuscript database

    Effective monitoring of chemical transport through the soil profile requires accurate and appropriate instrumentation to measure drainage water fluxes below the root zone of cropping system. The objectives of this study were to methodically describe in detail the construction and installation of a n...

  8. Alterations in the sarcoplasmic protein fraction of beef muscle with postmortem aging and hydrodynamic pressure processing

    USDA-ARS?s Scientific Manuscript database

    Capillary electrophoresis (CE) and reversed-phase high performance liquid chromatography (RP-HPLC) analysis were utilized to detect differences in the sarcoplasmic protein profiles of beef strip loins subjected to aging and hydrodynamic pressure processing (HDP) treatments. At 48 h postmortem, stri...

  9. Dating silk by capillary electrophoresis mass spectrometry.

    PubMed

    Moini, Mehdi; Klauenberg, Kathryn; Ballard, Mary

    2011-10-01

    A new capillary electrophoresis mass spectrometry (CE-MS) technique is introduced for age estimation of silk textiles based on amino acid racemization rates. With an L to D conversion half-life of ~2500 years for silk (B. mori) aspartic acid, the technique is capable of dating silk textiles ranging in age from several decades to a few-thousand-years-old. Analysis required only ~100 μg or less of silk fiber. Except for a 2 h acid hydrolysis at 110 °C, no other sample preparation is required. The CE-MS analysis takes ~20 min, consumes only nanoliters of the amino acid mixture, and provides both amino acid composition profiles and D/L ratios for ~11 amino acids.

  10. On-line identification of 3,4-methylenedioxymethamphetamine in human urine by non-aqueous capillary electrophoresis-fluorescence spectroscopy at 77 K.

    PubMed

    Chung, Y L; Liu, J T; Lin, C H

    2001-08-15

    The analytical profiles for 3,4-methylenedioxymethamphetamine (3,4-MDMA) and related amphetamines in urine samples are described for non-aqueous capillary electrophoresis-fluorescence spectroscopy. 3,4-MDMA was detected and identified on-line, using a cryogenic molecular fluorescence technique at 77 K. Under optimized conditions, baseline separation of the selected compounds was achieved in less than 12 min. Precision was evaluated by measuring the repeatability and intermediate precision of the migration times and corrected peak areas. The non-aqueous CE separation conditions and the spectral characteristics of 3,4-MDMA with respect to solvent and temperature effects are also discussed.

  11. Electrode configuration for extreme-UV electrical discharge source

    DOEpatents

    Spence, Paul Andrew; Fornaciari, Neal Robert; Chang, Jim Jihchyun

    2002-01-01

    It has been demonstrated that debris generation within an electric capillary discharge source, for generating extreme ultraviolet and soft x-ray, is dependent on the magnitude and profile of the electric field that is established along the surfaces of the electrodes. An electrode shape that results in uniform electric field strength along its surface has been developed to minimize sputtering and debris generation. The electric discharge plasma source includes: (a) a body that defines a circular capillary bore that has a proximal end and a distal end; (b) a back electrode positioned around and adjacent to the distal end of the capillary bore wherein the back electrode has a channel that is in communication with the distal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is concave, and a third region which is convex wherein the regions are viewed outwardly from the inner surface of the channel that is adjacent the distal end of the capillary bore so that the first region is closest to the distal end; (c) a front electrode positioned around and adjacent to the proximal end of the capillary bore wherein the front electrode has an opening that is communication with the proximal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is substantially linear, and third region which is convex wherein the regions are viewed outwardly from the inner surface of the opening that is adjacent the proximal end of the capillary bore so that the first region is closest to the proximal end; and (d) a source of electric potential that is connected across the front and back electrodes.

  12. Novel combination of non-aqueous capillary electrophoresis and multivariate curve resolution-alternating least squares to determine phenolic acids in virgin olive oil.

    PubMed

    Godoy-Caballero, María del Pilar; Culzoni, María Julia; Galeano-Díaz, Teresa; Acedo-Valenzuela, María Isabel

    2013-02-06

    This paper presents the development of a non-aqueous capillary electrophoresis method coupled to UV detection combined with multivariate curve resolution-alternating least-squares (MCR-ALS) to carry out the resolution and quantitation of a mixture of six phenolic acids in virgin olive oil samples. p-Coumaric, caffeic, ferulic, 3,4-dihydroxyphenylacetic, vanillic and 4-hydroxyphenilacetic acids have been the analytes under study. All of them present different absorption spectra and overlapped time profiles with the olive oil matrix interferences and between them. The modeling strategy involves the building of a single MCR-ALS model composed of matrices augmented in the temporal mode, namely spectra remain invariant while time profiles may change from sample to sample. So MCR-ALS was used to cope with the coeluting interferences, on accounting the second order advantage inherent to this algorithm which, in addition, is able to handle data sets deviating from trilinearity, like the data herein analyzed. The method was firstly applied to resolve standard mixtures of the analytes randomly prepared in 1-propanol and, secondly, in real virgin olive oil samples, getting recovery values near to 100% in all cases. The importance and novelty of this methodology relies on the combination of non-aqueous capillary electrophoresis second-order data and MCR-ALS algorithm which allows performing the resolution of these compounds simplifying the previous sample pretreatment stages. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. An integratable microfluidic cartridge for forensic swab samples lysis.

    PubMed

    Yang, Jianing; Brooks, Carla; Estes, Matthew D; Hurth, Cedric M; Zenhausern, Frederic

    2014-01-01

    Fully automated rapid forensic DNA analysis requires integrating several multistep processes onto a single microfluidic platform, including substrate lysis, extraction of DNA from the released lysate solution, multiplexed PCR amplification of STR loci, separation of PCR products by capillary electrophoresis, and analysis for allelic peak calling. Over the past several years, most of the rapid DNA analysis systems developed started with the reference swab sample lysate and involved an off-chip lysis of collected substrates. As a result of advancement in technology and chemistry, addition of a microfluidic module for swab sample lysis has been achieved in a few of the rapid DNA analysis systems. However, recent reports on integrated rapid DNA analysis systems with swab-in and answer-out capability lack any quantitative and qualitative characterization of the swab-in sample lysis module, which is important for downstream forensic sample processing. Maximal collection and subsequent recovery of the biological material from the crime scene is one of the first and critical steps in forensic DNA technology. Herein we present the design, fabrication and characterization of an integratable swab lysis cartridge module and the test results obtained from different types of commonly used forensic swab samples, including buccal, saliva, and blood swab samples, demonstrating the compatibility with different downstream DNA extraction chemistries. This swab lysis cartridge module is easy to operate, compatible with both forensic and microfluidic requirements, and ready to be integrated with our existing automated rapid forensic DNA analysis system. Following the characterization of the swab lysis module, an integrated run from buccal swab sample-in to the microchip CE electropherogram-out was demonstrated on the integrated prototype instrument. Therefore, in this study, we demonstrate that this swab lysis cartridge module is: (1) functionally, comparable with routine benchtop lysis, (2) compatible with various types of swab samples and chemistries, and (3) integratable to achieve a micro total analysis system (μTAS) for rapid DNA analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Developmental and internal validation of a novel 13 loci STR multiplex method for Cannabis sativa DNA profiling.

    PubMed

    Houston, Rachel; Birck, Matthew; Hughes-Stamm, Sheree; Gangitano, David

    2017-05-01

    Marijuana (Cannabis sativa L.) is a plant cultivated and trafficked worldwide as a source of fiber (hemp), medicine, and intoxicant. The development of a validated method using molecular techniques such as short tandem repeats (STRs) could serve as an intelligence tool to link multiple cases by means of genetic individualization or association of cannabis samples. For this purpose, a 13 loci STR multiplex method was developed, optimized, and validated according to relevant ISFG and SWGDAM guidelines. The STR multiplex consists of 13 previously described C. sativa STR loci: ANUCS501, 9269, 4910, 5159, ANUCS305, 9043, B05, 1528, 3735, CS1, D02, C11, and H06. A sequenced allelic ladder consisting of 56 alleles was designed to accurately genotype 101 C. sativa samples from three seizures provided by a U.S. Customs and Border Protection crime lab. Using an optimal range of DNA (0.5-1.0ng), validation studies revealed well-balanced electropherograms (inter-locus balance range: 0.500-1.296), relatively balanced heterozygous peaks (mean peak height ratio of 0.83 across all loci) with minimal artifacts and stutter ratio (mean stutter of 0.021 across all loci). This multi-locus system is relatively sensitive (0.13ng of template DNA) with a combined power of discrimination of 1 in 55 million. The 13 STR panel was found to be species specific for C. sativa; however, non-specific peaks were produced with Humulus lupulus. The results of this research demonstrate the robustness and applicability of this 13 loci STR system for forensic DNA profiling of marijuana samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Growth of arterioles in chronically stimulated adult rat skeletal muscle.

    PubMed

    Hansen-Smith, F; Egginton, S; Hudlicka, O

    1998-01-01

    The purpose of this study was to test the hypothesis that capillary growth induced by chronic electrical stimulation of skeletal muscle is accompanied by the growth of small arterioles. Lower limb flexor muscles of Sprague-Dawley rats were stimulated by electrodes implanted in the vicinity of the peroneal nerve at 10 Hz for 8 h/d for 2 and 7 days. Cryostat sections from the proximal, middle, and distal regions of the extensor digitorum longus muscle (EDL) were fluorescently immunolabeled with alpha-smooth muscle actin (alpha SMA) and myosin heavy chain (MHC) to identify mature (alpha SMA and MHC-positive) and immature (alpha SMA-positive, MHC-negative) arterioles. The fluorescent derivative of the lectin Griffonia simplicifolia I (GSI) was used to identify all microvessels, including arterioles, capillaries, and venules. The number of vessels positive for GSI or alpha SMA surrounding muscle fibers was similar in all three muscle regions (proximal, middle, distal). The mean values +/- SEM for GSI-positive vessels from all regions were similar in control (4.3 +/- 0.07) and 2-day stimulated (4.7 +/- 0.08) but higher in 7-day stimulated muscles (6.7 +/- 0.1, p < 0.05), thus confirming the previous findings on capillary growth. A similar increase was found in the number of alpha SMA positive vessels < or = 10 microns outer diameter (1.3 +/- 0.09 versus 0.4 +/- 0.03 around muscle fibers in controls). The density of terminal arterioles (< or = 10 microns) was slightly but not significantly higher after 2 days of stimulation (19.5 +/- 4 versus 15.6 +/- 2 profiles/mm2 in control muscles) and significantly higher after 7 days (33 +/- 7). While a similar increase was observed in the density of preterminal arterioles > 10 microns (17 +/- 3 control, 22 +/- 3 at 2 days and 40 +/- 5 at 7 days), the density of MHC-positive vessels muscles stimulated for 7 days was unchanged. Seven-day stimulated muscle also had a fivefold higher density of microvessel profiles < or = 10 microns that were only partially surrounded by alpha SMA. This considerably exceeds the relative increase in the number of capillaries and thus supports the concept of arteriolar growth by transformation from capillaries. Chronic electrical stimulation results in an early increase in the number of immature (MHG-negative), but not mature (MHC-positive) arterioles, a process that accompanies the increase in capillarization. The great increase in the number of microvessels only partially covered by alpha SMA suggests arteriolization of capillaries as a contributing mechanism in this growth.

  16. Fast separation and determination of tyrosol, hydroxytyrosol and other phenolic compounds in extra-virgin olive oil by capillary zone electrophoresis with ultraviolet-diode array detection.

    PubMed

    Bonoli, Matteo; Montanucci, Marina; Gallina Toschi, Tullia; Lercker, Giovanni

    2003-09-05

    Olive oil is the main source of fat in the Mediterranean diet, and its consumption has been related to a low incidence of coronary heart disease and certain cancers. Recent findings demonstrate that olive oil phenolics are powerful in vitro and in vivo antioxidants and display other biological activities that could partially account for the observed healthful effects of the Mediterranean diet. A detailed method optimization plan was carried out to separate the most popular phenols in olive oil for four separation parameters: buffer concentration, buffer pH, applied voltage and temperature. Consequently, an analytical method capable of separating 21 different phenols and polyphenols by capillary zone electrophoresis was developed; the separation was performed within 10 min, using a 40 cm x 50 microm capillary, with a 45 mM sodium tetraborate buffer (pH 9.60), at 27 kV and 30 degrees C. The optimized method was applied to methanolic extracts of several Italian extra-virgin olive oils obtained by different technologies in order to characterize and to compare their antioxidant profile. Positive correlations of phenolic compounds found by capillary zone electrophoresis (CZE) and two colorimetric indexes (total polyphenols and o-diphenols) were found and discussed.

  17. Microcrystallography using single-bounce monocapillary optics

    PubMed Central

    Gillilan, R. E.; Cook, M. J.; Cornaby, S. W.; Bilderback, D. H.

    2010-01-01

    X-ray microbeams have become increasingly valuable in protein crystallography. A number of synchrotron beamlines worldwide have adapted to handling smaller and more challenging samples by providing a combination of high-precision sample-positioning hardware, special visible-light optics for sample visualization, and small-diameter X-ray beams with low background scatter. Most commonly, X-ray microbeams with diameters ranging from 50 µm to 1 µm are produced by Kirkpatrick and Baez mirrors in combination with defining apertures and scatter guards. A simple alternative based on single-bounce glass monocapillary X-ray optics is presented. The basic capillary design considerations are discussed and a practical and robust implementation that capitalizes on existing beamline hardware is presented. A design for mounting the capillary is presented which eliminates parasitic scattering and reduces deformations of the optic to a degree suitable for use on next-generation X-ray sources. Comparison of diffraction data statistics for microcrystals using microbeam and conventional aperture-collimated beam shows that capillary-focused beam can deliver significant improvement. Statistics also confirm that the annular beam profile produced by the capillary optic does not impact data quality in an observable way. Examples are given of new structures recently solved using this technology. Single-bounce monocapillary optics can offer an attractive alternative for retrofitting existing beamlines for microcrystallography. PMID:20157276

  18. US-SOMO HPLC-SAXS module: dealing with capillary fouling and extraction of pure component patterns from poorly resolved SEC-SAXS data

    PubMed Central

    Brookes, Emre; Vachette, Patrice; Rocco, Mattia; Pérez, Javier

    2016-01-01

    Size-exclusion chromatography coupled with SAXS (small-angle X-ray scattering), often performed using a flow-through capillary, should allow direct collection of monodisperse sample data. However, capillary fouling issues and non-baseline-resolved peaks can hamper its efficacy. The UltraScan solution modeler (US-SOMO) HPLC-SAXS (high-performance liquid chromatography coupled with SAXS) module provides a comprehensive framework to analyze such data, starting with a simple linear baseline correction and symmetrical Gaussian decomposition tools [Brookes, Pérez, Cardinali, Profumo, Vachette & Rocco (2013 ▸). J. Appl. Cryst. 46, 1823–1833]. In addition to several new features, substantial improvements to both routines have now been implemented, comprising the evaluation of outcomes by advanced statistical tools. The novel integral baseline-correction procedure is based on the more sound assumption that the effect of capillary fouling on scattering increases monotonically with the intensity scattered by the material within the X-ray beam. Overlapping peaks, often skewed because of sample interaction with the column matrix, can now be accurately decomposed using non-symmetrical modified Gaussian functions. As an example, the case of a polydisperse solution of aldolase is analyzed: from heavily convoluted peaks, individual SAXS profiles of tetramers, octamers and dodecamers are extracted and reliably modeled. PMID:27738419

  19. Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry.

    PubMed

    von Roepenack-Lahaye, Edda; Degenkolb, Thomas; Zerjeski, Michael; Franz, Mathias; Roth, Udo; Wessjohann, Ludger; Schmidt, Jürgen; Scheel, Dierk; Clemens, Stephan

    2004-02-01

    Large-scale metabolic profiling is expected to develop into an integral part of functional genomics and systems biology. The metabolome of a cell or an organism is chemically highly complex. Therefore, comprehensive biochemical phenotyping requires a multitude of analytical techniques. Here, we describe a profiling approach that combines separation by capillary liquid chromatography with the high resolution, high sensitivity, and high mass accuracy of quadrupole time-of-flight mass spectrometry. About 2000 different mass signals can be detected in extracts of Arabidopsis roots and leaves. Many of these originate from Arabidopsis secondary metabolites. Detection based on retention times and exact masses is robust and reproducible. The dynamic range is sufficient for the quantification of metabolites. Assessment of the reproducibility of the analysis showed that biological variability exceeds technical variability. Tools were optimized or established for the automatic data deconvolution and data processing. Subtle differences between samples can be detected as tested with the chalcone synthase deficient tt4 mutant. The accuracy of time-of-flight mass analysis allows to calculate elemental compositions and to tentatively identify metabolites. In-source fragmentation and tandem mass spectrometry can be used to gain structural information. This approach has the potential to significantly contribute to establishing the metabolome of Arabidopsis and other model systems. The principles of separation and mass analysis of this technique, together with its sensitivity and resolving power, greatly expand the range of metabolic profiling.

  20. Influence of somatic cell count and breed on capillary electrophoretic protein profiles of ewes' milk: a chemometric study.

    PubMed

    Rodríguez-Nogales, J M; Vivar-Quintana, A M; Revilla, I

    2007-07-01

    Bulk tank ewe milk from the Assaf, Castellana, and Churra breeds categorized into 3 somatic cell count (SCC) groups (<500,000; 1,000,000 to 1,500,000; and >2,500,000 cells/mL) was used to investigate changes in chemical composition and capillary electrophoresis protein profiles. The results obtained indicated that breed affected fat, protein, and total solids levels, and differences were also observed for the following milk proteins: beta-, beta1-, beta2-, and alpha(s1)-III-casein, alpha-lactalbumin, and beta-lactoglobulin. High SCC affected fat and protein contents and bacterial counts. The level of beta1-, beta2-, and alpha(s1)-I-casein, and alpha-lactalbumin were significantly lower in milk with SCC scores >2,500,000 cells/mL. A preliminary study of the chemical, microbiological, and electrophoretic data was performed by cluster analysis and principal components analysis. Applying discriminant analysis, it was possible to group the milk samples according to breed and level of SCC, obtaining a prediction of 100 and 97% of the samples, respectively.

  1. Numerical simulation and stability analysis of solutocapillary effect in ultrathin films

    NASA Astrophysics Data System (ADS)

    Gordeeva, V. Yu.; Lyushnin, A. V.

    2017-04-01

    Polar fluids, like water or polydimethylsiloxane, are widely used in technical and medical applications. Capillary effects arising from surface tension gradients can be significant in thin liquid films. The present paper is dedicated to investigation of capillary flow due to a surfactant added to a polar liquid under conditions when intermolecular forces and disjoining pressure play an important role. Evolution equations are formulated for a film profile and the surfactant concentration. Stability analysis shows that the Marangoni effect destabilizes the film, and oscillatory modes appear at slow evaporation rates. We find that the film has four stability modes of at slow evaporation: monotonic stable, monotonic unstable, oscillatory stable, and oscillatory unstable, depending on the wave number of disturbances.

  2. Time-lapse cinematography of the capillary tube cell migration inhibition test.

    PubMed

    Bray, M A

    1980-01-01

    The kinetics of human and guinea pig cell migration inhibition have been studied using time-lapse cinematography of cells migrating from capillary tubes. Guinea pig and human cells exhibit markedly different kinetics in the absence of inhibitors. Specific antigen causes a dose-related inhibition of migration for up to 60 h using guinea pig cells and a peak of inhibition after 18 h using the human leucocyte system. The timing of measurement of maximum activity more critical for the latter test. The kinetics of lymphokine generation have been examined and the migration inhibitory activity of the plant mitogen (PHA), a Kurloff cell product and a continuous cell line supernatant have been compared with the inhibitory profiles of lymphokine preparations and specific antigen.

  3. Differential arrest and adhesion of tumor cells and microbeads in the microvasculature

    PubMed Central

    Guo, Peng; Cai, Bin; Lei, Ming; Liu, Yang

    2013-01-01

    To investigate the mechanical mechanisms behind tumor cell arrest in the microvasculature, we injected fluorescently labeled human breast carcinoma cells or similarly sized rigid beads into the systemic circulation of a rat. Their arrest patterns in the microvasculature of mesentery were recorded and quantified. We found that 93% of rigid beads were arrested either at arteriole–capillary intersections or in capillaries. Only 3% were at the capillary–postcapillary venule intersections and in postcapillary venules. In contrast, most of the flexible tumor cells were either entrapped in capillaries or arrested at capillary or postcapillary venule–postcapillary venule intersections and in postcapillary venules. Only 12% of tumor cells were arrested at the arteriole–capillary intersections. The differential arrest and adhesion of tumor cells and microbeads in the microvasculature was confirmed by a χ2 test (p < 0.001). These results demonstrate that mechanical trapping was responsible for almost all the arrest of beads and half the arrest of tumor cells. Based on the measured geometry and blood flow velocities at the intersections, we also performed a numerical simulation using commercial software (ANSYS CFX 12.01) to depict the detailed distribution profiles of the velocity, shear rate, and vorticity at the intersections where tumor cells preferred to arrest and adhere. Simulation results reveal the presence of localized vorticity and shear rate regions at the turning points of the microvessel intersections, implying that hemodynamic factors play an important role in tumor cell arrest in the microcirculation. Our study helps elucidate long-debated issues related to the dominant factors in early-stage tumor hematogenous metastasis. PMID:23880911

  4. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    PubMed

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-04

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  5. RCL2, a New Fixative, Preserves Morphology and Nucleic Acid Integrity in Paraffin-Embedded Breast Carcinoma and Microdissected Breast Tumor Cells

    PubMed Central

    Delfour, Christophe; Roger, Pascal; Bret, Caroline; Berthe, Marie-Laurence; Rochaix, Philippe; Kalfa, Nicolas; Raynaud, Pierre; Bibeau, Frédéric; Maudelonde, Thierry; Boulle, Nathalie

    2006-01-01

    Methacarn and RCL2, a new noncrosslinking fixative, were compared to formalin-fixed or frozen tissue samples of the same invasive breast carcinoma and were evaluated for their effects on tissue morphology and immunohistochemistry as well as DNA and RNA integrity. The histomorphology of methacarn- or RCL2-fixed paraffin-embedded tumors was similar to that observed with the matched formalin-fixed tissues. Immunohistochemistry using various antibodies showed comparable results with either fixative, leading to accurate breast tumor diagnosis and determination of estrogen and progesterone receptors, and HER2 status. Methacarn and RCL2 fixation preserved DNA integrity as demonstrated by successful amplification and sequencing of large DNA amplicons. Similarly, high-quality RNA could be extracted from methacarn- or RCL2-fixed paraffin-embedded MCF-7 cells, whole breast tumor tissues, or microdissected breast tumor cells, as assessed by electropherogram profiles and real-time reverse transcriptase-polymerase chain reaction quantification of various genes. Moreover, tissue morphology and RNA integrity were preserved after 8 months of storage. Altogether, these results indicate that methacarn, as previously shown, and RCL2, a promising new fixative, have great potential for performing both morphological and molecular analyses on the same fixed tissue sample, even after laser-capture microdissection, and can open new doors for investigating small target lesions such as premalignant breast lesions. PMID:16645201

  6. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Chen, Li; Wang, Wenke; Zhang, Zaiyong; Wang, Zhoufeng; Wang, Qiangmin; Zhao, Ming; Gong, Chengcheng

    2018-04-01

    Soil surface evaporation is a significant component of the hydrological cycle, occurring at the interface between the atmosphere and vadose zone, but it is affected by factors such as groundwater level, soil properties, solar radiation and others. In order to understand the soil evaporation characteristics in arid regions, a field experiment was conducted in the Ordos Basin, central China, and high accuracy sensors of soil moisture, moisture potential and temperature were installed in three field soil profiles with water-table depths (WTDs) of about 0.4, 1.4 and 2.2 m. Soil-surface-evaporation values were estimated by observed data combined with Darcy's law. Results showed that: (1) soil-surface-evaporation rate is linked to moisture content and it is also affected by air temperature. When there is sufficient moisture in the soil profile, soil evaporation increases with rising air temperature. For a WTD larger than the height of capillary rise, the soil evaporation is related to soil moisture content, and when air temperature is above 25 °C, the soil moisture content reduces quickly and the evaporation rate lowers; (2) phreatic water contributes to soil surface evaporation under conditions in which the WTD is within the capillary fringe. This indicates that phreatic water would not participate in soil evaporation for a WTD larger than the height of capillary rise. This finding developed further the understanding of phreatic evaporation, and this study provides valuable information on recognized soil evaporation processes in the arid environment.

  7. Capillary Ion Concentration Polarization for Power-Free Salt Purification

    NASA Astrophysics Data System (ADS)

    Park, Sungmin; Jung, Yeonsu; Cho, Inhee; Kim, Ho-Young; Kim, Sung Jae

    2014-11-01

    In this presentation, we experimentally and theoretically demonstrated the capillary based ion concentration polarization for power-free salt purification system. Traditional ion concentration polarization phenomenon has been studied for a decade for both fundamental nanoscale fluid dynamics and novel engineering applications such as desalination, preconcentration and energy harvesting devices. While the conventional system utilizes an external power source, the system based on capillary ion concentration polarization is capable of perm-selective ion transportation only by capillarity so that the same ion depletion zone can be formed without any external power sources. An ion concentration profile near the nanostructure was tracked using fluorescent probes and analyzed by solving the modified Nernst-Planck equation. As a result, the concentration in the vicinity of the nanostructure was at least 10 times lower than that of bulk electrolyte and thus, the liquid absorbed into the nanostructure had the low concentration. This mechanism can be used for the power free salt purification system which would be significantly useful in underdeveloped and remote area. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1301-02.

  8. Flow profiling of a surface-acoustic-wave nanopump.

    PubMed

    Guttenberg, Z; Rathgeber, A; Keller, S; Rädler, J O; Wixforth, A; Kostur, M; Schindler, M; Talkner, P

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  9. Flow profiling of a surface-acoustic-wave nanopump

    NASA Astrophysics Data System (ADS)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  10. Optimal leveling of flow over one-dimensional topography by Marangoni stresses

    NASA Astrophysics Data System (ADS)

    Gramlich, C. M.; Kalliadasis, Serafim; Homsy, G. M.; Messer, C.

    2002-06-01

    A thin viscous film flowing over a step down in topography exhibits a capillary ridge preceding the step. In applications, a planar liquid surface is often desired and hence there is a need to level the ridge. This paper investigates optimal leveling of the ridge by means of a Marangoni stress such as might be produced by a localized heater creating temperature variations at the film surface. The differential equation for the free surface based on lubrication theory and incorporating the effects of topography and temperature gradients is solved numerically for steps down in topography with different temperature profiles. Both rectangular "top-hat" and parabolic profiles, chosen to model physically realizable heaters, were found to be effective in reducing the height of the capillary ridge. Leveling the ridge is formulated as an optimization problem to minimize the maximum free-surface height by varying the heater strength, position, and width. With the optimized heaters, the variation in surface height is reduced by more than 50% compared to the original isothermal ridge. For more effective leveling, we consider an asymmetric n-step temperature distribution. The optimal n-step heater in this case results in (n+1) ridges of equal size; 2- and 3-step heaters reduce the variation in surface height by about 70% and 77%, respectively. Finally, we explore the potential of coolers and step temperature profiles for still more effective leveling.

  11. Wicking Performance of Profiled Fibre Part B: Assessment of Fabric

    NASA Astrophysics Data System (ADS)

    Datta Roy, M.; Chattopadhyay, R.; Sinha, S. K.

    2018-06-01

    For moisture regulation, careful selection of fibre, fibre packing in yarns and fabric structure are necessary. Introducing selective porosity in yarn can significantly influence moisture transport properties in fabrics made out of profiled fibre yarn. The arrangement of fibres in the yarn and that of yarn in fabric provide wide variability in the size and shape of the passage of liquid to flow. A change in the cross sectional diameter of the capillary leads to a change in interfacial speed for liquid. The mechanism of liquid transmission in fabric is expected to be different from that in yarn in isolated state. Generally, openness in fabric offers least resistance to flow. However, at each cross over points of threads the pressure exerted by one set of yarn on another can influence the capillary geometry affecting flow of liquid. The present work reports on the investigation made to study the wicking performance of five sets of fabrics made out of five homogeneous profiled fibre yarns as weft and respective double yarns as warp. It was observed that the wicking time and height in the weft direction were different than that in the corresponding yarns. Interestingly, wicking height attained in warp direction and individual yarn in isolation does not show any significant difference. It was observed that the points of interlacements between warps and wefts were constantly splitting the fluid flow both in horizontal and vertical directions.

  12. Vertical distribution of soil saturated hydraulic conductivity and its influencing factors in a small karst catchment in Southwest China.

    PubMed

    Fu, Tonggang; Chen, Hongsong; Zhang, Wei; Nie, Yunpeng; Wang, Kelin

    2015-03-01

    Saturated hydraulic conductivity (Ks) is one of the most important soil hydraulic parameters influencing hydrological processes. This paper aims to investigate the vertical distribution of Ks and to analyze its influencing factors in a small karst catchment in Southwest China. Ks was measured in 23 soil profiles for six soil horizons using a constant head method. These profiles were chosen in different topographical locations (upslope, downslope, and depression) and different land-use types (forestland, shrubland, shrub-grassland, and farmland). The influencing factors of Ks, including rock fragment content (RC), bulk density (BD), capillary porosity (CP), non-capillary porosity (NCP), and soil organic carbon (SOC), were analyzed by partial correlation analysis. The mean Ks value was higher in the entire profile in the upslope and downslope, but lower value, acting as a water-resisting layer, was found in the 10-20 cm soil depth in the depression. Higher mean Ks values were found in the soil profiles in the forestland, shrubland, and shrub-grassland, but lower in the farmland. These results indicated that saturation-excess runoff could occur primarily in the hillslopes but infiltration-excess runoff in the depression. Compared with other land-use types, surface runoff is more likely to occur in the farmlands. RC had higher correlation coefficients with Ks in all categories concerned except in the forestland and farmland with little or no rock fragments, indicating that RC was the dominant influencing factor of Ks. These results suggested that the vertical distributions of Ks and RC should be considered for hydrological modeling in karst areas.

  13. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media.

    PubMed

    Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina

    2017-02-01

    Experimental and modeling studies were performed to investigate bacteria deposition behavior in unsaturated porous media. The coupled effect of different forces, acting on bacteria at solid-air-water interfaces and their relative importance on bacteria deposition mechanisms was explored by calculating Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions such as hydrophobic, capillary and hydrodynamic forces. Negatively charged non-motile bacteria and quartz sands were used in packed column experiments. The breakthrough curves and retention profiles of bacteria were simulated using the modified Mobile-IMmobile (MIM) model, to identify physico-chemical attachment or physical straining mechanisms involved in bacteria retention. These results indicated that both mechanisms might occur in both sand. However, the attachment was found to be a reversible process, because attachment coefficients were similar to those of detachment. DLVO calculations supported these results: the primary minimum did not exist, suggesting no permanent retention of bacteria to solid-water and air-water interfaces. Calculated hydrodynamic and resisting torques predicted that bacteria detachment in the secondary minimum might occur. The capillary potential energy was greater than DLVO, hydrophobic and hydrodynamic potential energies, suggesting that film straining by capillary forces might largely govern bacteria deposition under unsaturated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities

    NASA Astrophysics Data System (ADS)

    Doster, F.; Celia, M. A.; Nordbotten, J. M.

    2012-12-01

    Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.

  15. Nailfold capillaroscopy changes in systemic lupus erythematosus: correlations with disease activity and autoantibody profile.

    PubMed

    Riccieri, V; Spadaro, A; Ceccarelli, F; Scrivo, R; Germano, V; Valesini, G

    2005-01-01

    In systemic lupus erythematosus (SLE) nailfold capillaroscopy (NC) studies have described many different nonspecific patterns. We decided to evaluate NC changes in 44 SLE patients, comparing them with the main clinical, demographic and laboratory parameters, thus to define the real role for NC and its abnormalities in the management of this disease. Fifteen patients (34%) complained of Raynaud's phenomenon; nine of them (20%) showed relevant capillaroscopic changes (capillaroscopic score >1). In details: three patients (6.8%) had loss of capillaries, while 18 (41%) had a capillary length variability, 16 (36.5%) showing shorter and two (4.5%) longer capillaries; tortuous, meandering, bizarre, ramified and/or bushy capillaries were found in 26 (59%), seven (16%), two (4.5%), three (7%) cases, respectively. An irregular distribution of the capillary array was present in six cases (14%) while microhaemorrhages were found in four cases (9%). 4 patients (9%) showed enlarged capillaries and changes of blood flow. A capillaroscopic score >1 was more frequently associated with higher ECLAM (P < 0.005) and SLEDAI (P < 0.01) activity scores, with the presence of anti-cardiolipin (P < 0.04) and anti-Sm (P < 0.04) antibodies, and also with the presence (P < 0.04) and higher titer (P < 0.001) of anti-dsDNA antibodies. No statistically significant correlation was found among the different capillaroscopy findings, age, disease duration, or treatment, nor with any clinical manifestation of the disease, such as cutaneous, renal or neurological. Our findings confirm the importance of the microvascular involvement in SLE. The NC abnormalities seem to be related to the disease activity and to the presence of many different antibodies, highly involved in the expression of SLE. NC proved to be an easy-to-perform noninvasive technique, able to achieve useful data to better evaluate such a pleomorphic disease as SLE.

  16. Soil-Moisture Retention Curves, Capillary Pressure Curves, and Mercury Porosimetry: A Theoretical and Computational Investigation of the Determination of the Geometric Properties of the Pore Space

    NASA Astrophysics Data System (ADS)

    Strand, T. E.; Wang, H. F.

    2003-12-01

    Immiscible displacement protocols have long been used to infer the geometric properties of the void space in granular porous media. The three most commonly used experimental techniques are the measurement of soil-moisture retention curves and relative permeability-capillary pressure-saturation relations, as well as mercury intrusion porosimetry experiments. A coupled theoretical and computational investigation was performed that provides insight into the limitations associated with each technique and quantifies the relationship between experimental observations and the geometric properties of the void space. It is demonstrated that the inference of the pore space geometry from both mercury porosimetry experiments and measurements of capillary pressure curves is influenced by trapping/mobilization phenomena and subject to scaling behavior. In addition, both techniques also assume that the capillary pressure at a location on the meniscus can be approximated by a pressure difference across a region or sample. For example, when performing capillary pressure measurements, the capillary pressure, taken to be the difference between the injected fluid pressure at the inlet and the defending fluid pressure at the outlet, is increased in a series of small steps and the fluid saturation is measured each time the system reaches steady. Regions of defending fluid that become entrapped by the invading fluid can be subsequently mobilized at higher flow rates (capillary pressures), contributing to a scale-dependence of the capillary pressure-saturation curve that complicates the determination of the properties of the pore space. This scale-dependence is particularly problematic for measurements performed at the core scale. Mercury porosimetry experiments are subject to similar limitations. Trapped regions of defending fluid are also present during the measurement of soil-moisture retention curves, but the effects of scaling behavior on the evaluation of the pore space properties from the immiscible displacement structure are much simpler to account for due to the control of mobilization phenomena. Some mobilization may occur due to film flow, but this can be limited by keeping time scales relatively small or exploited at longer time scales in order to quantify the rate of film flow. Computer simulations of gradient-stabilized drainage and imbibition to the (respective) equilibrium positions were performed using a pore-scale modified invasion percolation (MIP) model in order to quantify the relationship between the saturation profile and the geometric properties of the void space. These simulations are similar to the experimental measurement of soil-moisture retention curves. Results show that the equilibrium height and the width of the equilibrium fringe depend on two length scale distributions, one controlling the imbibition equilibrium structure and the other controlling the drainage structure. The equilibrium height is related to the mean value of the appropriate distribution as described by Jurin's law, and the width of the equilibrium fringe scales as a function of a combined parameter, the Bond number, Bo, divided by the coefficient of variation (cov). Simulations also demonstrate that the apparent radius distribution obtained from saturation profiles using direct inversion by Jurin's law is a subset of the actual distribution in the porous medium. The relationship between the apparent and actual radius distributions is quantified in terms of the combined parameter, Bo/cov, and the mean coordination number of the porous medium.

  17. Detection of mechanically recovered chicken meat using capillary gel electrophoresis.

    PubMed

    Day, L; Brown, H

    2001-05-01

    This study investigated the use of capillary gel electrophoresis (CGE) as a method for differentiating between raw mechanically recovered chicken meat (MRM) and hand deboned chicken breast meat (HDM). Twenty samples of MRM were obtained and twenty samples of HDM were prepared in the laboratory. They were extracted and analysed using Prosort™ SDS-protein analysis reagent. There were obvious differences in the relative peak areas within the profiles obtained which distinguished raw MRM from raw HDM; specifically, that of haemoglobin was higher in MRM. Using the peak area of haemoglobin and its ratio to other peaks, the technique was tested using composite MRM-HDM mixtures. The results suggest that it is possible to differentiate mixtures containing 7.5% MRM from that of 0% MRM using the CGE method.

  18. Generation of capillary instabilities by external disturbances in a liquid jet. Ph.D. Thesis - State Univ. of N.Y.

    NASA Technical Reports Server (NTRS)

    Leib, S. J.

    1985-01-01

    The receptivity problem in a circular liquid jet is considered. A time harmonic axial pressure gradient is imposed on the steady, parallel flow of a jet of liquid emerging from a circular duct. Using a technique developed in plasma physics a casual solution to the forced problem is obtained over certain ranges of Weber number for a number of mean velocity profiles. This solution contains a term which grows exponentially in the downstream direction and can be identified with a capillary instability wave. Hence, it is found that the externally imposed disturbances can indeed trigger instability waves in a liquid jet. The amplitude of the instability wave generated relative to the amplitude of the forcing is computed numerically for a number of cases.

  19. Coherent X-ray Scattering from Liquid-Air Interfaces

    NASA Astrophysics Data System (ADS)

    Shpyrko, Oleg

    Advances in synchrotron x-ray scattering techniques allow studies of structure and dynamics of liquid surfaces with unprecedented resolution. I will review x-ray scattering measurements of thermally excited capillary fluctuations in liquids, thin polymer liquid films and polymer surfaces in confined geometry. X-ray Diffuse scattering profile due to Debye-Waller like roughening of the surface allows to probe the distribution of capillary fluctuations over a wide range of length scales, while using X-ray Photon Correlation Spectroscopy (XPCS) one is able to directly couple to nanoscale dynamics of these surface fluctuations, over a wide range of temporal and spacial scales. I will also discuss recent XPCS measurements of lateral diffusion dynamics in Langmuir monolayers assembled at the liquid-air interface. This research was supported by NSF CAREER Grant 0956131.

  20. Analysis of electrolyte transport through charged nanopores.

    PubMed

    Peters, P B; van Roij, R; Bazant, M Z; Biesheuvel, P M

    2016-05-01

    We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relates fluxes (electrical current, salt flux, and fluid velocity) and driving forces (difference in electric potential, salt concentration, and pressure). We analyze the general case with overlapping electric double layers in the pore and a nonzero axial salt concentration gradient. The 3×3 matrix relating these quantities exhibits Onsager symmetry and we report a significant new simplification for the diagonal element relating axial salt flux to the gradient in chemical potential. We prove that Onsager symmetry is preserved under changes of variables, which we illustrate by transformation to a different flux-force matrix given by Gross and Osterle [J. Chem. Phys. 49, 228 (1968)JCPSA60021-960610.1063/1.1669814]. The capillary pore model is well suited to describe the nonlinear response of charged membranes or nanofluidic devices for electrokinetic energy conversion and water desalination, as long as the transverse ion profiles remain in local quasiequilibrium. As an example, we evaluate electrical power production from a salt concentration difference by reverse electrodialysis, using an efficiency versus power diagram. We show that since the capillary pore model allows for axial gradients in salt concentration, partial loops in current, salt flux, or fluid flow can develop in the pore. Predictions for macroscopic transport properties using a reduced model, where the potential and concentration are assumed to be invariant with radial coordinate ("uniform potential" or "fine capillary pore" model), are close to results of the full model.

  1. Potassium-induced cortical spreading depression bilaterally suppresses the electroencephalogram but only ipsilaterally affects red blood cell velocity in intraparenchymal capillaries.

    PubMed

    Unekawa, Miyuki; Tomita, Yutaka; Toriumi, Haruki; Masamoto, Kazuto; Kanno, Iwao; Suzuki, Norihiro

    2013-04-01

    Cortical spreading depression (CSD) is a repetitive, propagating profile of mass depolarization of neuronal and glial cells, followed by sustained suppression of spontaneous neuronal activity. We have reported a long-lasting suppressive effect on red blood cell (RBC) velocities in intraparenchymal capillaries. Here, to test the hypothesis that the prolonged decrease of RBC velocity in capillaries is due to suppression of neuronal activity, we measured CSD-elicited changes in the electroencephalogram (EEG) as an index of neuronal activity. In isoflurane-anesthetized rats, DC potential, EEG, partial pressure of oxygen (PO₂), and cerebral blood flow (CBF) were simultaneously recorded in the temporo-parietal region. The velocities of fluorescently labeled RBCs were evaluated by high-speed camera laser scanning confocal fluorescence microscopy with our original software, KEIO-IS2. Transient deflection of DC potential and PO₂ and increase of CBF were repeatedly detected only in the ipsilateral hemisphere following topical KCl application. On the other hand, the relative spectral power of EEG was reduced bilaterally, showing the lowest value at 5 min after KCl application, when the other parameters had already returned to the baseline after the passage of CSD. Mean RBC velocity in capillaries was slightly but significantly reduced during and after passage of CSD in the ipsilateral hemisphere but did not change in the contralateral hemisphere in the same rats. We suggest that mass depolarization of neuronal and glial cells might transiently decelerate RBCs in nearby capillaries, but the sustained reduction of ipsilateral RBC velocity might be a result of the prolonged effect of CSD, not of neuronal suppression alone. Copyright © 2013 Wiley Periodicals, Inc.

  2. Sensitive monitoring of iodine species in sea water using capillary electrophoresis: vertical profiles of dissolved iodine in the Pacific Ocean.

    PubMed

    Huang, Zhuo; Ito, Kazuaki; Morita, Isamu; Yokota, Kuriko; Fukushi, Keiichi; Timerbaev, Andrei R; Watanabe, Shuichi; Hirokawa, Takeshi

    2005-08-01

    Using a novel high-sensitivity capillary electrophoretic method, vertical distributions of iodate, iodide, total inorganic iodine, dissolved organic iodine and total iodine in the North Pacific Ocean (0-5500 m) were determined without any sample pre-treatment other than UV irradiation before total iodine analysis. An extensive set of data demonstrated that the iodine behaviour in the ocean water collected during a cruise in the North Pacific Ocean in February-March 2003 was not conservative but correlated with variations in concentrations of dissolved oxygen and nutrient elements such as silicon, nitrogen and phosphorus. This suggests that the vertical distribution of iodine is associated with biological activities. The dissolved organic iodine was found in the euphotic zone in accord with observations elsewhere in the oceans. The vertical profile of dissolved organic iodine also appears to be related to biogeochemical activity. The concentrations of all measured iodine species vary noticeably above 1000 m but only minor latitudinal changes occur below 1000 m and slight vertical alterations can be observed below 2400 m. These findings are thought to reflect the stratification of nutrients and iodine species with different biological activities in the water column.

  3. Analysis of metabolomic profile of fermented Orostachys japonicus A. Berger by capillary electrophoresis time of flight mass spectrometry

    PubMed Central

    Das, Gitishree; Patra, Jayanta Kumar; Lee, Sun-Young; Kim, Changgeon; Park, Jae Gyu

    2017-01-01

    Microbial cell performance in food biotechnological processes has become an important concern for improving human health worldwide. Lactobacillus plantarum, which is widely distributed in nature, is a lactic acid bacterium with many industrial applications for fermented foods or functional foods (e.g., probiotics). In the present study, using capillary electrophoresis time of flight mass spectrometry, the metabolomic profile of dried Orostachys japonicus A. Berger, a perennial medicinal herb with L. plantarum was compared with that of O. japonicus fermented with L. plantarum to elucidate the metabolomic changes induced by the fermentation process. The levels of several metabolites were changed by the fermentation process, indicating their involvement in microbial performance. For example, glycolysis, the pentose phosphate pathway, the TCA cycle, the urea cycle-related metabolism, nucleotide metabolism, and lipid and amino acid metabolism were altered significantly by the fermentation process. Although the fermented metabolites were not tested using in vivo studies to increase human health benefits, our findings provide an insight into the alteration of metabolites induced by fermentation, and indicated that the metabolomic analysis for the process should be accompanied by fermenting strains and conditions. PMID:28704842

  4. On-line capillary electrophoresis-based enzymatic methodology for the study of polymer-drug conjugates.

    PubMed

    Coussot, G; Ladner, Y; Bayart, C; Faye, C; Vigier, V; Perrin, C

    2015-01-09

    This work aims at studying the potentialities of an on-line capillary electrophoresis (CE)-based digestion methodology for evaluating polymer-drug conjugates degradability in the presence of free trypsin (in-solution digestion). A sandwich plugs injection scheme with transverse diffusion of laminar profile (TDLFP) mode was used to achieve on-line digestions. Electrophoretic separation conditions were established using poly-l-Lysine (PLL) as reference substrate. Comparison with off-line digestion was carried out to demonstrate the feasibility of the proposed methodology. The applicability of the on-line CE-based digestion methodology was evaluated for two PLL-drug conjugates and for the four first generations of dendrigraft of lysine (DGL). Different electrophoretic profiles presenting the formation of di, tri, and tetralysine were observed for PLL-drug and DGL. These findings are in good agreement with the nature of the linker used to link the drug to PLL structure and the predicted degradability of DGL. The present on-line methodology applicability was also successfully proven for protein conjugates hydrolysis. In summary, the described methodology provides a powerful tool for the rapid study of biodegradable polymers. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Analysis of metabolomic profile of fermented Orostachys japonicus A. Berger by capillary electrophoresis time of flight mass spectrometry.

    PubMed

    Das, Gitishree; Patra, Jayanta Kumar; Lee, Sun-Young; Kim, Changgeon; Park, Jae Gyu; Baek, Kwang-Hyun

    2017-01-01

    Microbial cell performance in food biotechnological processes has become an important concern for improving human health worldwide. Lactobacillus plantarum, which is widely distributed in nature, is a lactic acid bacterium with many industrial applications for fermented foods or functional foods (e.g., probiotics). In the present study, using capillary electrophoresis time of flight mass spectrometry, the metabolomic profile of dried Orostachys japonicus A. Berger, a perennial medicinal herb with L. plantarum was compared with that of O. japonicus fermented with L. plantarum to elucidate the metabolomic changes induced by the fermentation process. The levels of several metabolites were changed by the fermentation process, indicating their involvement in microbial performance. For example, glycolysis, the pentose phosphate pathway, the TCA cycle, the urea cycle-related metabolism, nucleotide metabolism, and lipid and amino acid metabolism were altered significantly by the fermentation process. Although the fermented metabolites were not tested using in vivo studies to increase human health benefits, our findings provide an insight into the alteration of metabolites induced by fermentation, and indicated that the metabolomic analysis for the process should be accompanied by fermenting strains and conditions.

  6. Comparative Glycoprofiling of HIV gp120 Immunogens by Capillary Electrophoresis and MALDI Mass Spectrometry

    PubMed Central

    Guttman, Miklós; Váradi, Csaba; Lee, Kelly K.; Guttman, András

    2015-01-01

    The Human Immunodeficiency Virus (HIV) envelope glycoprotein (Env) is the primary antigenic feature on the surface of the virus and is of key importance in HIV vaccinology. Vaccine trials with the gp120 subunit of Env are ongoing with the recent RV144 trial showing moderate efficacy. gp120 is densely covered with N-linked glycans that are thought to help evade the host's humoral immune response. To assess how the global glycosylation patterns vary between gp120 constructs, the glycan profiles of several gp120s were examined by capillary electrophoresis with laser induced fluorescence detection and MALDI-MS. The glycosylation profiles were found to be similar for chronic vs. transmitter/founder isolates and only varied moderately between gp120s from different clades. This study revealed that the addition of specific tags, such as the gD tag used in the RV144 trial, had significant effects on the overall glycosylation patterns. Such effects are likely to influence the immunogenicity of various Env immunogens and should be considered for future vaccine strategies, emphasizing the importance of the glycosylation analysis approach described in this paper. PMID:25809283

  7. Quantification of Transporter and Receptor Proteins in Dog Brain Capillaries and Choroid Plexus: Relevance for the Distribution in Brain and CSF of Selected BCRP and P-gp Substrates.

    PubMed

    Braun, Clemens; Sakamoto, Atsushi; Fuchs, Holger; Ishiguro, Naoki; Suzuki, Shinobu; Cui, Yunhai; Klinder, Klaus; Watanabe, Michitoshi; Terasaki, Tetsuya; Sauer, Achim

    2017-10-02

    Transporters at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) play a pivotal role as gatekeepers for efflux or uptake of endogenous and exogenous molecules. The protein expression of a number of them has already been determined in the brains of rodents, nonhuman primates, and humans using quantitative targeted absolute proteomics (QTAP). The dog is an important animal model for drug discovery and development, especially for safety evaluations. The purpose of the present study was to clarify the relevance of the transporter protein expression for drug distribution in the dog brain and CSF. We used QTAP to examine the protein expression of 17 selected transporters and receptors at the dog BBB and BCSFB. For the first time, we directly linked the expression of two efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), to regional brain and CSF distribution using specific substrates. Two cocktails, each containing one P-gp substrate (quinidine or apafant) and one BCRP substrate (dantrolene or daidzein) were infused intravenously prior to collection of the brain. Transporter expression varied only slightly between the capillaries of different brain regions and did not result in region-specific distribution of the investigated substrates. There were, however, distinct differences between brain capillaries and choroid plexus. Largest differences were observed for BCRP and P-gp: both were highly expressed in brain capillaries, but no BCRP and only low amounts of P-gp were detected in the choroid plexus. K p,uu,brain and K p,uu,CSF of both P-gp substrates were indicative of drug efflux. Also, K p,uu,brain for the BCRP substrates was low. In contrast, K p,uu,CSF for both BCRP substrates was close to unity, resulting in K p,uu,CSF /K p,uu,brain ratios of 7 and 8, respectively. We conclude that the drug transporter expression profiles differ between the BBB and BCSFB in dogs, that there are species differences in the expression profiles, and that CSF is not a suitable surrogate for unbound brain concentrations of BCRP substrates in dogs.

  8. Differentiation of modern and ancient varieties of common wheat by quantitative capillary electrophoretic profile of phenolic acids.

    PubMed

    Gotti, Roberto; Amadesi, Elisa; Fiori, Jessica; Bosi, Sara; Bregola, Valeria; Marotti, Ilaria; Dinelli, Giovanni

    2018-01-12

    Phenolic compounds have received great attention among the health promoting phytochemicals in common wheat (Triticum aestivum L.), mainly because of their strong antioxidant properties. In the present study a simple Capillary Zone Electrophoresis (CZE) method with UV detection was optimized and validated for the quantitation of six of the most important phenolic acids in whole grain i.e., sinapic, ferulic, syringic, p-coumaric, vanillic and p-hydroxybenzoic acid. The separation was achieved in a running buffer composed of sodium phosphate solution (50 mM) in water/methanol 80:20 (v/v) at pH 6.0 and using a fused-silica capillary at the temperature of 30 °C under application of 27 kV. By means of diode array detector, and made possible by the favorable characteristic UV spectra, the quantitation of the solutes was carried out at 200, 220 and 300 nm, in the complex matrices represented by the soluble and bound fractions of wheat flours. The validation parameters of the method i.e., linearity, sensitivity, precision, accuracy and robustness were in line with those obtained by consolidated separation techniques applied for the same purposes (e.g., HPLC-UV), with a significant advantage in term of analysis time (less than 12 min). Ten varieties of soft wheat (five modern Italian and five old Italian genotypes) were analysed and the data were subjected to Principal Components Analysis (PCA). Interestingly, significant differences of the quantitative phenolic acids profile were observed between the modern and the ancient genotypes, with the latter showing higher amount of the main represented phenolic acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Monitoring the ionic content of exhaled breath condensate in various respiratory diseases by capillary electrophoresis with contactless conductivity detection.

    PubMed

    Greguš, Michal; Foret, František; Kindlová, Dagmar; Pokojová, Eva; Plutinský, Marek; Doubková, Martina; Merta, Zdeněk; Binková, Ilona; Skřičková, Jana; Kubáň, Petr

    2015-05-06

    The analysis of an ionic profile of exhaled breath condensate (EBC) by capillary electrophoresis with contactless conductivity detection and double opposite end injection, is demonstrated. A miniature sampler made from a 2 ml syringe and an aluminium cooling cylinder was used for the fast collection of EBC (under one minute). Analysis of the collected EBC was performed in a 60 mM 2-(N-morpholino)ethanesulfonic acid, 60 mM L-histidine background electrolyte with 30 µM cetyltrimethylammonium bromide and 2 mM 18-crown-6 at pH 6, and excellent repeatability of migration times (RSD  <1.3% (n = 7)) and peak areas (RSD  <  7% (n = 7)) of 14 ions (inorganic anions, cations and organic acids) was obtained. It is demonstrated that the analysis of EBC samples obtained from patients with various respiratory diseases (chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, sarcoidosis, cystic fibrosis) is possible in less than five minutes and the ionic profile can be compared with the group of healthy individuals. The analysis of the ionic profile of EBC samples provides a set of data in which statistically significant differences among the groups of patients could be observed for several clinically relevant anions (nitrite, nitrate, acetate, lactate). The developed collection system and method provides a highly reproducible and fast way of collecting and analyzing EBC, with future applicability in point-of-care diagnostics.

  10. Living cell manipulation, manageable sampling, and shotgun picoliter electrospray mass spectrometry for profiling metabolites.

    PubMed

    Gholipour, Yousef; Erra-Balsells, Rosa; Hiraoka, Kenzo; Nonami, Hiroshi

    2013-02-01

    A modified cell pressure probe and an online Orbitrap mass spectrometer were used to sample in situ plant single cells without any additional manipulation. The cell pressure probe, a quartz capillary tip filled with an oil mixture, was penetrated to various depths into parenchyma cells of tulip bulb scale, followed by a hydraulic continuity test to determine the exact location of the tip inside target cells. The operation was conducted under a digital microscope, and the capillary tip was photographed to calculate the volume of the cell sap sucked. The cell sap sample was then directly nebulized/ionized under high-voltage conditions at the entrance of the mass spectrometer. Several sugars, amino acids, organic acids, vitamins, fatty acids, and secondary metabolites were detected. Because picoliter solutions can be accurately handled and measured, known volumes of standard solutions can be added to cell sap samples inside the capillary tip to be used as references for metabolite characterization and relative quantitation. The high precision and sensitivity of the cell pressure probe and Orbitrap mass spectrometer allow for the manipulation and analysis of both femtoliter cell sap samples and standard solutions. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Dynamics of the liquid film around elongated bubbles rising in vertical capillaries

    NASA Astrophysics Data System (ADS)

    Magnini, Mirco; Khodaparast, Sepideh; Matar, Omar K.; Stone, Howard A.; Thome, John R.

    2017-11-01

    We performed a theoretical, numerical and experimental study on elongated bubbles rising in vertical tubes in co-current liquid flows. The flow conditions were characterized by capillary, Reynolds and Bond numbers within the range of Ca = 0.005 - 0.1 , Re = 1 - 2000 and Bo = 0 - 20 . Direct numerical simulations of the two-phase flows are run with a self-improved version of OpenFOAM, implementing a coupled Level Set and Volume of Fluid method. A theoretical model based on an extension of the traditional Bretherton theory, accounting for inertia and the gravity force, is developed to obtain predictions of the profiles of the front and rear menisci of the bubble, liquid film thickness and bubble velocity. Different from the traditional theory for bubbles rising in a stagnant liquid, the gravity force impacts the flow already when Bo < 4 . Gravity effects speed up the bubble compared to the Bo = 0 case, making the liquid film thicker and reducing the amplitude of the undulation on the surface of the bubble near its tail. Gravity effects are more apparent in the visco-capillary regime, i.e. when the Reynolds number is below 1.

  12. Maximal liquid bridges between horizontal cylinders

    NASA Astrophysics Data System (ADS)

    Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.

    2016-08-01

    We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.

  13. Preparation of hydrophilic monolithic capillary column by in situ photo-polymerization of N-vinyl-2-pyrrolidinone and acrylamide for highly selective and sensitive enrichment of N-linked glycopeptides.

    PubMed

    Jiang, Hao; Yuan, Huiming; Qu, Yanyan; Liang, Yu; Jiang, Bo; Wu, Qi; Deng, Nan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-01-01

    In this study, a novel kind of amide functionalized hydrophilic monolith was synthesized by the in situ photo-polymerization of N-vinyl-2-pyrrolidinone (NVP), acrylamide (AM), and N, N'-methylenebisacrylamide (MBA) in a UV transparent capillary, and successfully applied for hydrophilic interaction chromatography (HILIC) based enrichment of N-linked glycopeptides. With 2 μg of the tryptic digests of IgG as the sample, after enrichment, 18 glycopeptides could be identified by MALDI-TOF/TOF MS analysis. Furthermore, with the mixture of BSA and IgG digests (10,000:1, m/m) as the sample, 6 N-linked glycopeptides were unambiguously identified after enrichment, indicating the high selectivity and good specificity of such material. Moreover, such a monolithic capillary column was also applied for the N-glycosylation sites profiling of 6 μg protein digests from HeLa cells and 1 μL human serum. In total, 530 and 262 unique N-glycosylated peptides were identified, respectively, corresponding to 282 and 124N-glycoproteins, demonstrating its great potential for the large scale glycoproteomics analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. "Inject-mix-react-separate-and-quantitate" (IMReSQ) method for screening enzyme inhibitors.

    PubMed

    Wong, Edmund; Okhonin, Victor; Berezovski, Maxim V; Nozaki, Tomoyoshi; Waldmann, Herbert; Alexandrov, Kirill; Krylov, Sergey N

    2008-09-10

    Many regulatory enzymes are considered attractive therapeutic targets, and their inhibitors are potential drug candidates. Screening combinatorial libraries for enzyme inhibitors is pivotal to identifying hit compounds for the development of drugs targeting regulatory enzymes. Here, we introduce the first inhibitor screening method that consumes only nanoliters of the reactant solutions and is applicable to regulatory enzymes. The method is termed inject-mix-react-separate-and-quantitate (IMReSQ) and includes five steps. First, nanoliter volumes of substrate, candidate inhibitor, and enzyme solutions are injected by pressure into a capillary as separate plugs. Second, the plugs are mixed inside this capillary microreactor by transverse diffusion of laminar flow profiles. Third, the reaction mixture is incubated to form the enzymatic product. Fourth, the product is separated from the substrate inside the capillary by electrophoresis. Fifth, the amounts of the product and substrate are quantitated. In this proof-of-principle work, we applied IMReSQ to study inhibition of recently cloned protein farnesyltransferase from parasite Entamoeba histolytica. This enzyme is a potential therapeutic target for antiparasitic drugs. We identified three previously unknown inhibitors of this enzyme and proved that IMReSQ could be used for quantitatively ranking the potencies of inhibitors.

  15. The effect of a shear boundary layer on the stability of a capillary jet

    NASA Astrophysics Data System (ADS)

    Ganan-Calvo, Alfonso; Montanero, Jose M.; Herrada, Miguel A.

    2014-11-01

    The generic stabilization effect of a shear boundary layer over the free surface of a capillary jet is here studied from analytical (asymptotic), numerical and experimental approaches. In first place, we show the consistency of the proposed asymptotic analysis by a linear stability (numerical) analysis of the Navier-Stokes equations for a finite boundary layer thickness. We show how the convective-to-absolute instability transition departs drastically from the flat velocity profile case as the axial coordinate becomes closer to the origin of the boundary layer development. For large enough axial distances from that origin, Rayleigh's dispersion relation is recovered. A collection of experimental observations is analyzed from the perspective provided by these results. We propose a systematic framework to the dynamics of capillary jets issued from a nozzle, either by direct injection into a quiescent atmosphere or in a co-flow (e.g. gas flow-focused jets), which exhibit peculiarities now definitely attributable in first order to the formation of shear boundary layers. Partial support from the Ministry of Economy and Competitiveness, Junta de Extremadura, and Junta de Andalucia (Spain) through Grant Nos. DPI2010-21103, GR10047, P08-TEP-04128, and TEP-7465, respectively, is gratefully acknowledged.

  16. The selective determination of sulfates, sulfonates, and phosphates in urine by capillary electrophoresis/mass spectrometry.

    PubMed

    Bunz, Svenja-Catharina; Neusüß, Christian

    2013-01-01

    Metabolite identification and metabolite profiling are of major importance in the pharmaceutical and clinical context. However, anions of biological relevance such as sulfates, sulfonates, and phosphates are rarely included in common techniques for metabolite studies. In this protocol, we demonstrate a unique method to selectively determine these anions. The method comprises a capillary electrophoresis separation using an acidic background electrolyte (pH ≤ 2) and anodic detection by mass spectrometry via negative electrospray ionization. In this way, only anions of strong acids like sulfates are determined. The selectivity for sulfur-containing species is proved based on the specific isotopic ratios. In conjunction with the accurate mass from the time-of-flight mass spectrometer, the presented method is well suited for clinical and pharmaceutical applications to identify possible metabolites and to quantify known metabolites.

  17. Investigation into stutter ratio variability between different laboratories.

    PubMed

    Bright, Jo-Anne; Curran, James M

    2014-11-01

    The determination of parameters such as stutter ratio is important to inform a laboratory's forensic DNA profile interpretation strategy. As part of a large data analysis project to implement a continuous model of DNA profile interpretation we analysed stutter ratio data from eight different forensic laboratories for the Promega PowerPlex(®) 21 multiplex. This allowed a comparison of inter laboratory variation. The maximum difference for any one laboratory from the average of the best fit determined by the model was 0.31%. These results indicate that stutter ratios calculated from samples analysed using the same profiling kit are not expected to differ between laboratories, even those using different capillary electrophoresis platforms. A common set of laboratory parameters are able to be generated and used for profile interpretation at all laboratories using the same multiplex and cycle number, potentially reducing the need for individual laboratories to determine stutter ratios. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Cox, Andrew R; Pelan, Eddie G

    2016-07-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in egg yolk solutions. The results reveal how the interfacial rigidity, as well as the bubble/wall and drop/wall adhesion forces, can be quantified and controlled in relation to optimizing the properties of foams and emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Euroforgen-NoE collaborative exercise on LRmix to demonstrate standardization of the interpretation of complex DNA profiles.

    PubMed

    Prieto, L; Haned, H; Mosquera, A; Crespillo, M; Alemañ, M; Aler, M; Alvarez, F; Baeza-Richer, C; Dominguez, A; Doutremepuich, C; Farfán, M J; Fenger-Grøn, M; García-Ganivet, J M; González-Moya, E; Hombreiro, L; Lareu, M V; Martínez-Jarreta, B; Merigioli, S; Milans Del Bosch, P; Morling, N; Muñoz-Nieto, M; Ortega-González, E; Pedrosa, S; Pérez, R; Solís, C; Yurrebaso, I; Gill, P

    2014-03-01

    There has been very little work published on the variation of reporting practices of mixtures between laboratories, but it has been previously demonstrated that there is little consistency. This is because there is no current uniformity of practice, so different laboratories will operate using different rules. The interpretation of mixtures is not solely a matter of using some software to provide 'an answer'. An assessment of a case will usually begin with a consideration of the circumstances of a crime. Assumptions made about the numbers of contributors follow from an examination of the electropherogram(s)--and these may differ between the prosecution and the defence hypotheses. There may be a necessity to evaluate several sets of hypotheses for any given case if the circumstances are uncertain. Once the hypotheses are formulated, the mathematical analysis is complex and can only be accomplished by the use of specialist software. In order to obtain meaningful results, it is essential that scientists are trained, not only in the use of the software, but also in the methodology to understand the likelihood ratio concept that is used. The Euroforgen-NoE initiative has developed a training course that utilizes the LRmix program to carry out the calculations. This software encompasses the recommendations of the ISFG DNA commissions on mixture interpretation and is able to interpret samples that may come from two or more contributors and may also be partial profiles. Recently, eighteen different laboratories were trained in the methodology. Afterwards they were asked to independently analyze two different cases with partial mixture DNA evidence and to write a statement court-report. We show that by introducing a structured training programme, it is possible to demonstrate, for the first time, that a high degree of standardization, leading to uniformity of results can be achieved by participating laboratories. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Incorporating high-pressure electroosmotic pump and a nano-flow gradient generator into a miniaturized liquid chromatographic system for peptide analysis.

    PubMed

    Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong

    2014-09-24

    We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.

  1. Capillary Viscometer for Fully Automated Measurement of the Concentration and Shear Dependence of the Viscosity of Macromolecular Solutions

    PubMed Central

    Grupi, Asaf; Minton, Allen P.

    2014-01-01

    The construction and operation of a novel viscometer/rheometer are described. The instrument is designed to measure the viscosity of a macromolecular solution while automatically varying both solute concentration and shear rate. Viscosity is calculated directly from Poiseuille's Law, given the measured difference in pressure between two ends of a capillary tube through which the solution is flowing at a known rate. The instrument requires as little as 0.75 ml of a solution to provide a full profile of viscosity as a function of concentration and shear rate, and can measure viscosities as high as 500 cP and as low as 1 cP, at shear rates between 10 and 2 × 103 s-1. The results of control experiments are presented to document the accuracy and precision of measurement at both low and high concentration of synthetic polymers and proteins. PMID:23130673

  2. Vacuum injection of hydrogen micro-sphere beams

    NASA Astrophysics Data System (ADS)

    Trostell, Bertil

    1995-02-01

    The design, construction and operation of a facility producing hydrogen micro-sphere beams in vacuum are summarized. A scheme is utilized, where a liquid hydrogen jet is broken up into droplets, which are injected into vacuum through a capillary at continuum gas flow conditions. In a typical beam, 40 μm diameter micro-spheres, generated at a frequency of 70 kHz, travel at free flight speeds of 60 m/s. The angular divergence of the beam amounts to ±0.04°. The intention is to use the micro-sphere beams as high luminosity internal targets in the WASA experimental station at the CELSIUS cooler storage ring in Uppsala. A time averaged target density profile, having a FWHM and peak density of 3.5 mm and 5 × 10 16 atoms/cm 2, respectively, is obtained 2.5 m downstream of the capillary exit.

  3. Rational design of capillary-driven flows for paper-based microfluidics.

    PubMed

    Elizalde, Emanuel; Urteaga, Raúl; Berli, Claudio L A

    2015-05-21

    The design of paper-based assays that integrate passive pumping requires a precise programming of the fluid transport, which has to be encoded in the geometrical shape of the substrate. This requirement becomes critical in multiple-step processes, where fluid handling must be accurate and reproducible for each operation. The present work theoretically investigates the capillary imbibition in paper-like substrates to better understand fluid transport in terms of the macroscopic geometry of the flow domain. A fluid dynamic model was derived for homogeneous porous substrates with arbitrary cross-sectional shapes, which allows one to determine the cross-sectional profile required for a prescribed fluid velocity or mass transport rate. An extension of the model to slit microchannels is also demonstrated. Calculations were validated by experiments with prototypes fabricated in our lab. The proposed method constitutes a valuable tool for the rational design of paper-based assays.

  4. Microvascular Branching as a Determinant of Blood Flow by Intravital Particle Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; McKay, Terri L.; Vickerman, Mary B.; Wernet, Mark P.; Myers, Jerry G.; Radhakrishnan, Krishnan

    2007-01-01

    The effects of microvascular branching on blood flow were investigated in vivo by microscopic particle imaging velocimetry (micro-PIV). We use micro-PIV to measure blood flow by tracking red blood cells (RBC) as the moving particles. Velocity flow fields, including flow pulsatility, were analyzed for the first four branching orders of capillaries, postcapillary venules and small veins of the microvascular network within the developing avian yolksac at embryonic day 5 (E5). Increasing volumetric flowrates were obtained from parabolic laminar flow profiles as a function of increasing vessel diameter and branching order. Maximum flow velocities increased approximately twenty-fold as the function of increasing vessel diameter and branching order compared to flow velocities of 100 - 150 micron/sec in the capillaries. Results from our study will be useful for the increased understanding of blood flow within anastomotic, heterogeneous microvascular networks.

  5. Adhesion of cellulose fibers in paper.

    PubMed

    Persson, Bo N J; Ganser, Christian; Schmied, Franz; Teichert, Christian; Schennach, Robert; Gilli, Eduard; Hirn, Ulrich

    2013-01-30

    The surface topography of paper fibers is studied using atomic force microscopy (AFM), and thus the surface roughness power spectrum is obtained. Using AFM we have performed indentation experiments and measured the effective elastic modulus and the penetration hardness as a function of humidity. The influence of water capillary adhesion on the fiber-fiber binding strength is studied. Cellulose fibers can absorb a significant amount of water, resulting in swelling and a strong reduction in the elastic modulus and the penetration hardness. This will lead to closer contact between the fibers during the drying process (the capillary bridges pull the fibers into closer contact without storing up a lot of elastic energy at the contacting interface). In order for the contact to remain good in the dry state, plastic flow must occur (in the wet state) so that the dry surface profiles conform to each other (forming a key-and-lock type of contact).

  6. Rapid capillary electrophoresis approach for the quantification of ewe milk adulteration with cow milk.

    PubMed

    Trimboli, Francesca; Morittu, Valeria Maria; Cicino, Caterina; Palmieri, Camillo; Britti, Domenico

    2017-10-13

    The substitution of ewe milk with more economic cow milk is a common fraud. Here we present a capillary electrophoresis method for the quantification of ewe milk in ovine/bovine milk mixtures, which allows for the rapid and inexpensive recognition of ewe milk adulteration with cow milk. We utilized a routine CE method for human blood and urine proteins analysis, which fulfilled the separation of skimmed milk proteins in alkaline buffer. Under this condition, ovine and bovine milk exhibited a recognizable and distinct CE protein profiles, with a specific ewe peak showing a reproducible migration zone in ovine/bovine mixtures. Based on ewe specific CE peak, we developed a method for ewe milk quantification in ovine/bovine skimmed milk mixtures, which showed good linearity, precision and accuracy, and a minimum amount of detectable fraudulent cow milk equal to 5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Development of a capillary electrophoresis method for the determination of the chiral purity of dextromethorphan by a dual selector system using quality by design methodology.

    PubMed

    Krait, Sulaiman; Heuermann, Matthias; Scriba, Gerhard K E

    2018-03-01

    Dextromethorphan is a centrally acting antitussive drug, while its enantiomer levomethorphan is an illicit drug with opioid analgesic effects. As capillary electrophoresis has been proven as an ideal technique for enantiomer analysis, the present study was conducted in order to develop a capillary electrophoresis-based limit test for levomethorphan. The analytical target profile was defined as a method that should be able to determine levomethorphan with acceptable precision and accuracy at the 0.1 % level. From initial scouting experiments, a dual selector system consisting of sulfated β-cyclodextrin and methyl-α-cyclodextrin was identified. The critical process parameters were evaluated in a fractional factorial resolution IV design followed by a central composite face-centered design and Monte Carlo simulations for defining the design space of the method. The selected working conditions consisted of a 30/40.2 cm, 50 μm id fused-silica capillary, 30 mM sodium phosphate buffer, pH 6.5, 16 mg/mL sulfated β-cyclodextrin, and 14 mg/mL methyl-α-cyclodextrin at 20°C and 20 kV. The method was validated according to ICH guideline Q2(R1) and applied to the analysis of a capsule formulation. Furthermore, the apparent binding constants between the enantiomers and the cyclodextrins as well as complex mobilities were determined to understand the migration behavior of the analytes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Pressure Profiles in a Loop Heat Pipe Under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  9. A capillary zone electrophoresis method for detection of Apolipoprotein C-III glycoforms and other related artifactually modified species.

    PubMed

    Ruel, Coralie; Morani, Marco; Bruneel, Arnaud; Junot, Christophe; Taverna, Myriam; Fenaille, François; Tran, Nguyet Thuy

    2018-01-12

    ApolipoproteinC-III (ApoC-III) is a human plasma glycoprotein whose O-glycosylation can be altered as a result of congenital disorders of glycosylation (CDG). ApoC-III exhibits three major glycoforms whose relative quantification is of utmost importance for the diagnosis of CDG patients. Considering the very close structures of these glycoforms and their tendency to adsorb on the capillary, a thorough optimization of capillary electrophoresis (CE) parameters including preconditioning and in-between rinsing procedures was required to efficiently separate all the ApoC-III glycoforms. Permanent coatings did not contribute to high resolution separations. A fast and reliable method based on a bare-silica capillary combining the effect of urea and diamine additives allowed to separate up to six different ApoC-III forms. We demonstrated by a combination of MALDI-TOF mass spectrometry (MS) analyses and CE of intact and neuraminidase-treated samples that this method well resolved glycoforms differing not only by their sialylation degree but also by carbamylation state, an undesired chemical modification of primary amines. This method allowed to demonstrate the carbamylation of ApoC-III glycoforms for the first time. Our CZE method proved robust and accurate with excellent intermediate precision regarding migration times (RSDs < 0.7%) while RSDs for peak areas were less than 5%. Finally, the quality of three distinct batches of commercial ApoC-III obtained from different suppliers was assessed and compared. Quite similar but highly structurally heterogeneous ApoC-III profiles were observed for these samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Pressure Profiles in a Loop Heat Pipe under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  11. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2015-02-15

    Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles facilitated the transport of ΦX174, while hindered the transport of MS2. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦX174, and the capillary potential energy of KGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water film is the same for each pair of particles. Moreover, the capillary potential energy is several orders of magnitude greater than the DLVO potential energy. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Optimization of ultrahigh-speed multiplex PCR for forensic analysis.

    PubMed

    Gibson-Daw, Georgiana; Crenshaw, Karin; McCord, Bruce

    2018-01-01

    In this paper, we demonstrate the design and optimization of an ultrafast PCR amplification technique, used with a seven-locus multiplex that is compatible with conventional capillary electrophoresis systems as well as newer microfluidic chip devices. The procedure involves the use of a high-speed polymerase and a rapid cycling protocol to permit multiplex PCR amplification of forensic short tandem repeat loci in 6.5 min. We describe the selection and optimization of master mix reagents such as enzyme, buffer, MgCl 2 , and dNTPs, as well as primer ratios, total volume, and cycle conditions, in order to get the best profile in the shortest time possible. Sensitivity and reproducibility studies are also described. The amplification process utilizes a small high-speed thermocycler and compact laptop, making it portable and potentially useful for rapid, inexpensive on-site genotyping. The seven loci of the multiplex were taken from conventional STR genotyping kits and selected for their size and lack of overlap. Analysis was performed using conventional capillary electrophoresis and microfluidics with fluorescent detection. Overall, this technique provides a more rapid method for rapid sample screening of suspects and victims. Graphical abstract Rapid amplification of forensic DNA using high speed thermal cycling followed by capillary or microfluidic electrophoresis.

  13. Erythrocyte membrane protein analysis by sodium dodecyl sulphate-capillary gel electrophoresis in the diagnosis of hereditary spherocytosis.

    PubMed

    Debaugnies, France; Cotton, Frédéric; Boutique, Charles; Gulbis, Béatrice

    2011-03-01

    Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is currently the reference method for detecting protein deficiencies related to hereditary spherocytosis. The aim of the study was to evaluate an automated capillary gel electrophoresis system, the Experion instrument from BioRad, for its ability to separate and quantify the erythrocyte membrane proteins. The major erythrocyte membrane proteins (actin, protein 4.2, protein 4.1, band 3, ankyrin, α- and β-spectrin) were extracted and purified from membrane ghosts by centrifugation, immunoprecipitation and electroelution. Analyses were performed using SDS-PAGE and sodium dodecyl sulphate capillary gel electrophoresis (SDS-CGE) to establish a separation profile of the total ghosts. Then, the samples from patients received for investigations of erythrocyte membrane defects were analysed. Five of the seven expected erythrocyte membrane proteins were finally separated and identified. In the 20 studied cases, taking into account the screening test results and the clinical and family histories, the SDS-CGE method allowed us to achieve the same conclusion as with SDS-PAGE, except for the patient with elliptocytosis. The new SDS-CGE method presents interesting features that could make this instrument a powerful diagnostic tool for detection of erythrocyte membrane protein abnormalities, and can be proposed as an automated alternative method to the labour intensive SDS-PAGE analysis.

  14. A capillary electrophoresis coupled to mass spectrometry pipeline for long term comparable assessment of the urinary metabolome.

    PubMed

    Boizard, Franck; Brunchault, Valérie; Moulos, Panagiotis; Breuil, Benjamin; Klein, Julie; Lounis, Nadia; Caubet, Cécile; Tellier, Stéphanie; Bascands, Jean-Loup; Decramer, Stéphane; Schanstra, Joost P; Buffin-Meyer, Bénédicte

    2016-10-03

    Although capillary electrophoresis coupled to mass spectrometry (CE-MS) has potential application in the field of metabolite profiling, very few studies actually used CE-MS to identify clinically useful body fluid metabolites. Here we present an optimized CE-MS setup and analysis pipeline to reproducibly explore the metabolite content of urine. We show that the use of a beveled tip capillary improves the sensitivity of detection over a flat tip. We also present a novel normalization procedure based on the use of endogenous stable urinary metabolites identified in the combined metabolome of 75 different urine samples from healthy and diseased individuals. This method allows a highly reproducible comparison of the same sample analyzed nearly 130 times over a range of 4 years. To demonstrate the use of this pipeline in clinical research we compared the urinary metabolome of 34 newborns with ureteropelvic junction (UPJ) obstruction and 15 healthy newborns. We identified 32 features with differential urinary abundance. Combination of the 32 compounds in a SVM classifier predicted with 76% sensitivity and 86% specificity UPJ obstruction in a separate validation cohort of 24 individuals. Thus, this study demonstrates the feasibility to use CE-MS as a tool for the identification of clinically relevant urinary metabolites.

  15. Evaluation of capillary zone electrophoresis for the quality control of complex biologic samples: Application to snake venoms.

    PubMed

    Kpaibe, André P S; Ben-Ameur, Randa; Coussot, Gaëlle; Ladner, Yoann; Montels, Jérôme; Ake, Michèle; Perrin, Catherine

    2017-08-01

    Snake venoms constitute a very promising resource for the development of new medicines. They are mainly composed of very complex peptide and protein mixtures, which composition may vary significantly from batch to batch. This latter consideration is a challenge for routine quality control (QC) in the pharmaceutical industry. In this paper, we report the use of capillary zone electrophoresis for the development of an analytical fingerprint methodology to assess the quality of snake venoms. The analytical fingerprint concept is being widely used for the QC of herbal drugs but rarely for venoms QC so far. CZE was chosen for its intrinsic efficiency in the separation of protein and peptide mixtures. The analytical fingerprint methodology was first developed and evaluated for a particular snake venom, Lachesis muta. Optimal analysis conditions required the use of PDADMAC capillary coating to avoid protein and peptide adsorption. Same analytical conditions were then applied to other snake venom species. Different electrophoretic profiles were obtained for each venom. Excellent repeatability and intermediate precision was observed for each batch. Analysis of different batches of the same species revealed inherent qualitative and quantitative composition variations of the venoms between individuals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Effects of Wind and Surfactants on Mechanically Generated Spilling Breakers

    NASA Astrophysics Data System (ADS)

    Liu, X.; Diorio, J. D.; Duncan, J. H.

    2007-11-01

    The effects of both wind and surfactants on mechanically generated weakly spilling breakers are explored in a wind wave tank that is 11.8 m long, 1.15 m wide and 1.8 m high (1.0 m of water). A wave maker, which resides at the upwind end of the tank, is used to generate the breakers via a dispersive focusing method with a central wave packet frequency of 1.15 Hz. Low wind speeds (less than 3.0 m/s) are used to minimize the effect of short-wavelength wind-generated waves on the breakers. The profiles of the spilling breakers along the center plane of the tank are measured with an LIF technique that utilizes a high-speed digital movie camera. Measurements are performed with clean water and water mixed with various concentrations of Triton X-100, a soluble surfactant. It is found that the capillary waves/bulge patterns found in the initial stages of spilling breakers are dramatically affected by wind and surfactants. The size of bulge increases with the wind speed while the capillary waves are kept nearly the same. In the presence of surfactants and wind, both the amplitude and number of capillary waves are reduced and the slope of the front face of the wave increases.

  17. Impact of Heterogeneity on Vadose Zone Drainage During Pumping: Numerical Simulations of the Borden Aquifer

    NASA Astrophysics Data System (ADS)

    Bunn, M. I.; Jones, J.; Endres, A. L.

    2009-05-01

    Unconfined aquifers are in direct contact with the earth's surface; hence, they are an important focus in groundwater recharge and contaminant transport studies. While pumping tests have long been used to quantify aquifer properties, the contribution of drainage from the vadose zone during pumping has been the subject of debate for decades. In 2001, a highly detailed data set was collected during a seven-day pumping test in the unconfined aquifer at CFB Borden, Ontario (Bevan et al., 2005). The frequent observation of moisture content profiles during the test has initiated a closer examination of the vadose zone response to pumping. The moisture profiles collected during the test were obtained using a neutron probe. The neutron data depicts a capillary fringe thickness that increases with both proximity to the pumping well and duration of pumping. This capillary fringe extension results in delayed drainage that persists to the end of the seven-day test with the shape of the transition zone remaining constant (Bevan et al., 2005). Simulations of the pumping test were conducted using Hydrogeosphere (Therrien et al., 2006). Initial simulations were completed based on the conceptual model of a homogeneous and slightly anisotropic aquifer. The simulation results replicated the observed piezometric response, but were unable to produce any change in the thickness of the capillary fringe. It was hypothesized that the discrepancy between observations and simulation results may be the result of assumptions such as the homogeneity of the hydraulic conductivity field. In an effort to replicate this potential mechanism for the observed extension, the conceptual model was updated to better reflect the mildly heterogeneous hydraulic conductivity field of the Borden aquifer. Conductivity fields were generated using the statistical description of the Borden aquifer given by Sudicky (1986) with an adjusted mean log conductivity to better approximate the observed piezometric response. The inclusion of heterogeneity appears to have little effect on the hydraulic head drawdown, or the thickness of the capillary fringe. Heterogeneity does lead to delayed drainage in the drier portion of the vadose zone, where volumetric water content is less than 0.13 m3/m3. This effect is more pronounced with proximity to the pumping well, and is negligible at 15 m from the well. The amount of excess moisture in the vadose zone does not appear to be a function of pumping duration.

  18. Measurements and modelling of beach groundwater flow in the swash-zone: a review

    NASA Astrophysics Data System (ADS)

    Horn, Diane P.

    2006-04-01

    This paper reviews research on beach groundwater dynamics and identifies research questions which will need to be answered before swash zone sediment transport and beach profile evolution can be successfully modelled. Beach groundwater hydrodynamics are a result of combined forcing from the tide and waves at a range of frequencies, and a large number of observations exist which describe the shape and elevation of the beach watertable in response to tidal forcing at diurnal, semi-diurnal and spring-neap tidal frequencies. Models of beach watertable response to tidal forcing have been successfully validated; however, models of watertable response to wave forcing are less well developed and require verification. Improved predictions of swash zone sediment transport and beach profile evolution cannot be achieved unless the complex fluid and sediment interactions between the surface flow and the beach groundwater are better understood, particularly the sensitivity of sediment transport processes to flow perpendicular to the permeable bed. The presence of a capillary fringe, particularly when it lies just below the sand surface, has influences on beach groundwater dynamics. The presence of a capillary fringe can have a significant effect on the exchange of water between the ocean and the coastal aquifer, particularly in terms of the storage capacity of the aquifer. Field and laboratory observations have also shown that natural groundwater waves usually propagate faster and decay more slowly in aquifers with a capillary fringe, and observations which suggest that horizontal flows may also occur in the capillary zone have been reported. The effects of infiltration and exfiltration are generally invoked to explain why beaches with a low watertable tend to accrete and beaches with a high watertable tend to erode. However, the relative importance of processes such as infiltration losses in the swash, changes in the effective weight of the sediment, and modified shear stress due to boundary layer thinning, are not yet clear. Experimental work on the influence of seepage flows within sediment beds provides conflicting results concerning the effect on bed stability. Both modelling and experimental work indicates that the hydraulic conductivity of the beach is a critical parameter. However, hydraulic conductivity varies both spatially and temporally on beaches, particularly on gravel and mixed sand and gravel beaches. Another important, but poorly understood, consideration in beach groundwater studies is the role of air encapsulation during the wetting of beach sand.

  19. Blood flow velocity measurements in chicken embryo vascular network via PIV approach

    NASA Astrophysics Data System (ADS)

    Kurochkin, Maxim A.; Stiukhina, Elena S.; Fedosov, Ivan V.; Tuchin, Valery V.

    2018-04-01

    A method for measuring of blood velocity in the native vasculature of a chick embryo by the method of micro anemometry from particle images (μPIV) is improved. A method for interrogation regions sorting by the mask of the vasculature is proposed. A method for sorting of the velocity field of capillary blood flow is implemented. The in vitro method was evaluated for accuracy in a glass phantom of a blood vessel with a diameter of 50 μm and in vivo on the bloodstream of a chicken embryo, by comparing the transverse profile of the blood velocity obtained by the PIV method with the theoretical Poiseuille laminar flow profile.

  20. Endurance Exercise Improves Molecular Pathways of Aerobic Metabolism in Patients With Myositis.

    PubMed

    Munters, Li Alemo; Loell, Ingela; Ossipova, Elena; Raouf, Joan; Dastmalchi, Maryam; Lindroos, Eva; Chen, Yi-Wen; Esbjörnsson, Mona; Korotkova, Marina; Alexanderson, Helene; Nagaraju, Kanneboyina; Crofford, Leslie J; Jakobsson, Per-Johan; Lundberg, Ingrid E

    2016-07-01

    Endurance exercise demonstrates beneficial effects in polymyositis/dermatomyositis (PM/DM); however, the molecular effects of exercise on skeletal muscle are incompletely understood. We undertook this controlled pilot study to investigate the effects of a 12-week endurance exercise training program on the molecular profile of skeletal muscle in patients with established PM/DM compared to a nonexercised control group of patients with established PM/DM. Fifteen patients (7 in the exercise group and 8 in the control group) with paired baseline and 12-week follow-up muscle biopsy samples were included. Messenger RNA expression profiling, mass spectrometry-based quantitative proteomics, and immunohistochemical analyses were performed on muscle biopsy samples to determine molecular adaptations associated with changes in clinical measurements induced by endurance exercise. Compared to the control group, the exercise group improved in minutes of cycling time (P < 0.01) and Vo2 max (P < 0.05). The exercise group also had reduced disease activity (P < 0.05) and reduced lactate levels at exhaustion (P < 0.05). Genes related to capillary growth, mitochondrial biogenesis, protein synthesis, cytoskeletal remodeling, and muscle hypertrophy were up-regulated in the exercise group, while genes related to inflammation/immune response and endoplasmic reticulum stress were down-regulated. Mitochondrial pathways including the oxidative phosphorylation metabolic pathway were most affected by the endurance exercise, as demonstrated by proteomics analysis. The exercise group also showed a higher number of capillaries per mm(2) in follow-up biopsy samples (P < 0.05). Our data indicate that endurance exercise in patients with established PM and DM may activate an aerobic phenotype and promote muscle growth and simultaneously suppress the inflammatory response in these patients' muscles, as supported by a combination of data on gene expression, proteomics, and capillary density in repeated muscle biopsies. © 2016, American College of Rheumatology.

  1. Molecular classification of fatty liver by high-throughput profiling of protein post-translational modifications.

    PubMed

    Urasaki, Yasuyo; Fiscus, Ronald R; Le, Thuc T

    2016-04-01

    We describe an alternative approach to classifying fatty liver by profiling protein post-translational modifications (PTMs) with high-throughput capillary isoelectric focusing (cIEF) immunoassays. Four strains of mice were studied, with fatty livers induced by different causes, such as ageing, genetic mutation, acute drug usage, and high-fat diet. Nutrient-sensitive PTMs of a panel of 12 liver metabolic and signalling proteins were simultaneously evaluated with cIEF immunoassays, using nanograms of total cellular protein per assay. Changes to liver protein acetylation, phosphorylation, and O-N-acetylglucosamine glycosylation were quantified and compared between normal and diseased states. Fatty liver tissues could be distinguished from one another by distinctive protein PTM profiles. Fatty liver is currently classified by morphological assessment of lipid droplets, without identifying the underlying molecular causes. In contrast, high-throughput profiling of protein PTMs has the potential to provide molecular classification of fatty liver. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Laboratory-based observations of capillary barriers and preferential flow in layered snow

    NASA Astrophysics Data System (ADS)

    Avanzi, F.; Hirashima, H.; Yamaguchi, S.; Katsushima, T.; De Michele, C.

    2015-12-01

    Several evidences are nowadays available that show how the effects of capillary gradients and preferential flow on water transmission in snow may play a more important role than expected. To observe these processes and to contribute in their characterization, we performed observations on the development of capillary barriers and preferential flow patterns in layered snow during cold laboratory experiments. We considered three different layering (all characterized by a finer-over-coarser texture in grain size) and three different water input rates. Nine samples of layered snow were sieved in a cold laboratory, and subjected to a constant supply of dyed tracer. By means of visual inspection, horizontal sectioning and liquid water content measurements, the processes of ponding and preferential flow were characterized as a function of texture and water input rate. The dynamics of each sample were replicated using the multi-layer physically-based SNOWPACK model. Results show that capillary barriers and preferential flow are relevant processes ruling the speed of liquid water in stratified snow. Ponding is associated with peaks in LWC at the boundary between the two layers equal to ~ 33-36 vol. % when the upper layer is composed by fine snow (grain size smaller than 0.5 mm). The thickness of the ponding layer at the textural boundary is between 0 and 3 cm, depending on sample stratigraphy. Heterogeneity in water transmission increases with grain size, while we do not observe any clear dependency on water input rate. The extensive comparison between observed and simulated LWC profiles by SNOWPACK (using an approximation of Richards Equation) shows high performances by the model in estimating the LWC peak over the boundary, while water speed in snow is underestimated by the chosen water transport scheme.

  3. Bathing in carbon dioxide-enriched water alters protein expression in keratinocytes of skin tissue in rats.

    PubMed

    Kälsch, Julia; Pott, Leona L; Takeda, Atsushi; Kumamoto, Hideo; Möllmann, Dorothe; Canbay, Ali; Sitek, Barbara; Baba, Hideo A

    2017-04-01

    Beneficial effects of balneotherapy using naturally occurring carbonated water (CO 2 enriched) have been known since the Middle Ages. Although this therapy is clinically applied for peripheral artery disease and skin disorder, the underlying mechanisms are not fully elucidated.Under controlled conditions, rats were bathed in either CO 2 -enriched water (CO 2 content 1200 mg/L) or tap water, both at 37 °C, for 10 min daily over 4 weeks. Proliferation activity was assessed by Ki67 immunohistochemistry of the epidermis of the abdomen. The capillary density was assessed by immunodetection of isolectin-positive cells. Using cryo-fixed abdominal skin epidermis, follicle cells and stroma tissue containing capillaries were separately isolated by means of laser microdissection and subjected to proteomic analysis using label-free technique. Differentially expressed proteins were validated by immunohistochemistry.Proliferation activity of keratinocytes was not significantly different in the epidermis after bathing in CO 2 -enriched water, and also, capillary density did not change. Proteomic analysis revealed up to 36 significantly regulated proteins in the analyzed tissue. Based on the best expression profiles, ten proteins were selected for immunohistochemical validation. Only one protein, far upstream element binding protein 2 (FUBP2), was similarly downregulated in the epidermis after bathing in CO 2 -enriched water with both techniques. Low FUBP2 expression was associated with low c-Myc immune-expression in keratinocytes.Long-term bathing in CO 2 -enriched water showed a cellular protein response of epithelial cells in the epidermis which was detectable by two different methods. However, differences in proliferation activity or capillary density were not detected in the normal skin.

  4. Metabolic profiling for the identification of Huntington biomarkers by on-line solid-phase extraction capillary electrophoresis mass spectrometry combined with advanced data analysis tools.

    PubMed

    Pont, Laura; Benavente, Fernando; Jaumot, Joaquim; Tauler, Romà; Alberch, Jordi; Ginés, Silvia; Barbosa, José; Sanz-Nebot, Victoria

    2016-03-01

    In this work, an untargeted metabolomic approach based on sensitive analysis by on-line solid-phase extraction capillary electrophoresis mass spectrometry (SPE-CE-MS) in combination with multivariate data analysis is proposed as an efficient method for the identification of biomarkers of Huntington's disease (HD) progression in plasma. For this purpose, plasma samples from wild-type (wt) and HD (R6/1) mice of different ages (8, 12, and 30 weeks), were analyzed by C18 -SPE-CE-MS in order to obtain the characteristic electrophoretic profiles of low molecular mass compounds. Then, multivariate curve resolution alternating least squares (MCR-ALS) was applied to the multiple full scan MS datasets. This strategy permitted the resolution of a large number of metabolites being characterized by their electrophoretic peaks and their corresponding mass spectra. A total number of 29 compounds were relevant to discriminate between wt and HD plasma samples, as well as to follow-up the HD progression. The intracellular signaling was found to be the most affected metabolic pathway in HD mice after 12 weeks of birth, when mice already showed motor coordination deficiencies and cognitive decline. This fact agreed with the atrophy and dysfunction of specific neurons, loss of several types of receptors, and changed expression of neurotransmitters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Oligosaccharide formation during commercial pear juice processing.

    PubMed

    Willems, Jamie L; Low, Nicholas H

    2016-08-01

    The effect of enzyme treatment and processing on the oligosaccharide profile of commercial pear juice samples was examined by high performance anion exchange chromatography with pulsed amperometric detection and capillary gas chromatography with flame ionization detection. Industrial samples representing the major stages of processing produced with various commercial enzyme preparations were studied. Through the use of commercially available standards and laboratory scale enzymatic hydrolysis of pectin, starch and xyloglucan; galacturonic acid oligomers, glucose oligomers (e.g., maltose and cellotriose) and isoprimeverose were identified as being formed during pear juice production. It was found that the majority of polysaccharide hydrolysis and oligosaccharide formation occurred during enzymatic treatment at the pear mashing stage and that the remaining processing steps had minimal impact on the carbohydrate-based chromatographic profile of pear juice. Also, all commercial enzyme preparations and conditions (time and temperature) studied produced similar carbohydrate-based chromatographic profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Purification of crime scene DNA extracts using centrifugal filter devices

    PubMed Central

    2013-01-01

    Background The success of forensic DNA analysis is limited by the size, quality and purity of biological evidence found at crime scenes. Sample impurities can inhibit PCR, resulting in partial or negative DNA profiles. Various DNA purification methods are applied to remove impurities, for example, employing centrifugal filter devices. However, irrespective of method, DNA purification leads to DNA loss. Here we evaluate the filter devices Amicon Ultra 30 K and Microsep 30 K with respect to recovery rate and general performance for various types of PCR-inhibitory crime scene samples. Methods Recovery rates for DNA purification using Amicon Ultra 30 K and Microsep 30 K were gathered using quantitative PCR. Mock crime scene DNA extracts were analyzed using quantitative PCR and short tandem repeat (STR) profiling to test the general performance and inhibitor-removal properties of the two filter devices. Additionally, the outcome of long-term routine casework DNA analysis applying each of the devices was evaluated. Results Applying Microsep 30 K, 14 to 32% of the input DNA was recovered, whereas Amicon Ultra 30 K retained 62 to 70% of the DNA. The improved purity following filter purification counteracted some of this DNA loss, leading to slightly increased electropherogram peak heights for blood on denim (Amicon Ultra 30 K and Microsep 30 K) and saliva on envelope (Amicon Ultra 30 K). Comparing Amicon Ultra 30 K and Microsep 30 K for purification of DNA extracts from mock crime scene samples, the former generated significantly higher peak heights for rape case samples (P-values <0.01) and for hairs (P-values <0.036). In long-term routine use of the two filter devices, DNA extracts purified with Amicon Ultra 30 K were considerably less PCR-inhibitory in Quantifiler Human qPCR analysis compared to Microsep 30 K. Conclusions Amicon Ultra 30 K performed better than Microsep 30 K due to higher DNA recovery and more efficient removal of PCR-inhibitory substances. The different performances of the filter devices are likely caused by the quality of the filters and plastic wares, for example, their DNA binding properties. DNA purification using centrifugal filter devices can be necessary for successful DNA profiling of impure crime scene samples and for consistency between different PCR-based analysis systems, such as quantification and STR analysis. In order to maximize the possibility to obtain complete STR DNA profiles and to create an efficient workflow, the level of DNA purification applied should be correlated to the inhibitor-tolerance of the STR analysis system used. PMID:23618387

  7. Meniscus on a shaped fibre: singularities and hodograph formulation.

    PubMed

    Alimov, Mars M; Kornev, Konstantin G

    2014-08-08

    Using the method of matched asymptotic expansions, the problem of the capillary rise of a meniscus on the complex-shaped fibres was reduced to a nonlinear problem of determination of a minimal surface. This surface has to satisfy a special boundary condition at infinity. The proposed formulation allows one to interpret the meniscus problem as a problem of flow of a fictitious non-Newtonian fluid through a porous medium. As an example, the shape of a meniscus on a fibre of an oval cross section was analysed employing Chaplygin's hodograph transformation. It was discovered that the contact line may form singularities even if the fibre has a smooth profile: this statement was illustrated with an oval fibre profile having infinite curvature at two endpoints.

  8. Meniscus on a shaped fibre: singularities and hodograph formulation

    PubMed Central

    Alimov, Mars M.; Kornev, Konstantin G.

    2014-01-01

    Using the method of matched asymptotic expansions, the problem of the capillary rise of a meniscus on the complex-shaped fibres was reduced to a nonlinear problem of determination of a minimal surface. This surface has to satisfy a special boundary condition at infinity. The proposed formulation allows one to interpret the meniscus problem as a problem of flow of a fictitious non-Newtonian fluid through a porous medium. As an example, the shape of a meniscus on a fibre of an oval cross section was analysed employing Chaplygin's hodograph transformation. It was discovered that the contact line may form singularities even if the fibre has a smooth profile: this statement was illustrated with an oval fibre profile having infinite curvature at two endpoints. PMID:25104910

  9. Sterol Profile for Natural Juices Authentification by GC-MS

    NASA Astrophysics Data System (ADS)

    Culea, M.

    2007-04-01

    A GC-MS analytical method is described for some natural juices analysis. The fingerprint of sterols was used to characterize the natural juice. A rapid liquid-liquid extraction method was used. The sterols were separated on a Rtx-5MS capillary column, 15m×0.25mm, 0.25μm film thickness, in a temperature program from 50°C for 1 min, then ramped at 15°C/min to 300°C and held for 15 min. Identification of sterols and their patterns were used for juice characterization. The sterol profile is a useful approach for confirming the presence of juices of orange, grapefruit, pineapple and passion fruit in compounded beverages and for detecting of adulteration of fruit juices.

  10. Analysis of volatile metabolites in biological fluids as indicators of prodromal disease condition

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1982-01-01

    The volatile profile cannot be defined as a single class of substances, rather it is a broad spectrum of materials of different polarities characterized by having a boiling-point in the low to medium range (up to approximately 300 C) and the fact that the compounds are suitable for gas chromatography without derivatization. The organic volatile profiles are very complex mixtures of metabolic byproducts, intermediates, and terminal products of enzymatic degradations composed mainly of alcohols, ketones, aldehydes, pyrazines, sulfides, isothiocyanates, pyrroles, and furans. The concentration of organic volatiles in biological fluids covers a wide range with many important components present at trace levels. The complexity of the organic volatile fraction requires the use of capillary columns for their separation.

  11. Improved separation and size characterization of gold nanoparticles through a novel capillary zone electrophoresis method using poly(sodium4-styrenesulfonate) as stabiliser and a stepwise field strength gradient.

    PubMed

    Ciriello, Rosanna; Iallorenzi, Pina Teresa; Laurita, Alessandro; Guerrieri, Antonio

    2017-03-01

    A novel capillary zone electrophoresis (CZE) method was developed for an improved separation and size characterization of pristine gold nanoparticles (AuNP) using uncoated fused-silica capillaries with UV-Vis detection at 520 nm. To avoid colloid aggregation and/or adsorption during runs, poly(sodium 4-styrenesulfonate) (PSS) was added (1%, w/v) in the running buffer (CAPS 10 mM, pH 11). This polyelectrolyte conferred an enhanced stabilization to AuNP, both steric and electrostatic, exalting at the same time their differences in electrophoretic mobility. Resolution was further and successfully improved through a stepwise field strength gradient by the application of 25 kV for the first 5 min and then 10 kV. Migration times varied linearly with particles diameters showing relative standard deviations better than 1% for daily experiments and 3% for interday experiments. A comparison with the size distribution obtained by transmission electron microscopy (TEM) allowed assessing that the electrophoretic profile can reasonably be considered as representative of the effective size heterogeneity of each colloid. Finally, the practical utility of the proposed method was demonstrated by measuring the core diameter of a gold colloid sample produced by chemical synthesis which was in good agreement with the value obtained by TEM measurements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Offline and online capillary electrophoresis enzyme assays of β-N-acetylhexosaminidase.

    PubMed

    Křížek, Tomáš; Doubnerová, Veronika; Ryšlavá, Helena; Coufal, Pavel; Bosáková, Zuzana

    2013-03-01

    Enzyme assays of β-N-acetylhexosaminidase from Aspergillus oryzae using capillary electrophoresis in the offline and online setup have been developed. The pH value and concentration of the borate-based background electrolyte were optimized in order to achieve baseline separation of N,N',N″-triacetylchitotriose, N,N'-diacetylchitobiose, and N-acetyl-D-glucosamine. The optimized method using 25 mM tetraborate buffer, pH 10.0, was evaluated in terms of repeatability, limits of detection, quantification, and linearity. The method was successfully applied to the offline enzyme assay of β-N-acetylhexosaminidase, which was demonstrated by monitoring the hydrolysis of N,N',N″-triacetylchitotriose. The presented method was also utilized to study the pH dependence of enzyme activity. An online assay with N,N'-diacetylchitobiose as a substrate was developed using the Transverse Diffusion of Laminar Flow Profiles model to optimize the injection sequence and in-capillary mixing of substrate and enzyme plugs. The experimental results were in good agreement with predictions of the model. The online assay was successfully used to observe the inhibition effect of N,N'-dimethylformamide on the activity of β-N-acetylhexosaminidase with nanoliter volumes of reagents used per run and a high degree of automation. After adjustment of background electrolyte pH, an online assay with N,N',N″-triacetylchitotriose as a substrate was also performed.

  13. Self-Similar Taylor Cone Formation in Conducting Viscous Films: Computational Study of the Influence of Reynolds Number

    NASA Astrophysics Data System (ADS)

    Albertson, Theodore; Troian, Sandra

    2017-11-01

    Previous studies by Zubarev (2001) and Suvorov and Zubarev (2004) have shown that above a critical field strength, an ideal (inviscid) conducting fluid film will deform into a singular profile characterized by a conic cusp. The governing equations for the electrohydrodynamic response beneath the cusp admit self-similar solutions leading to so-called blow-up behavior in the Maxwell pressure, capillary pressure and kinetic energy density. The runaway behavior in these variables reflects divergence in time characterized by an exponent of -2/3. Here we extend the physical system to include viscous effects and conduct a computational study of the cusp region as a function of increasing electrical Reynolds number ReE . We employ a finite element, moving mesh algorithm to examine the behavior of the film shape, Maxwell pressure and capillary pressure upon approach to the blow-up event. Our study indicates that self-similarity establishes at relatively low ReE despite the presence of vorticity, which is localized to the cusp surface region. With increasing ReE , the period of self-similiarity extends further in time as the exponent changes from about -4/5 to the ideal value of -2/3, with slightly different values distinguishing the Maxwell and capillary stresses. T. Albertson gratefully acknowledges support from a NASA Space Technology Research Fellowship.

  14. Modeling Subsurface Hydrology in Floodplains

    NASA Astrophysics Data System (ADS)

    Evans, Cristina M.; Dritschel, David G.; Singer, Michael B.

    2018-03-01

    Soil-moisture patterns in floodplains are highly dynamic, owing to the complex relationships between soil properties, climatic conditions at the surface, and the position of the water table. Given this complexity, along with climate change scenarios in many regions, there is a need for a model to investigate the implications of different conditions on water availability to riparian vegetation. We present a model, HaughFlow, which is able to predict coupled water movement in the vadose and phreatic zones of hydraulically connected floodplains. Model output was calibrated and evaluated at six sites in Australia to identify key patterns in subsurface hydrology. This study identifies the importance of the capillary fringe in vadose zone hydrology due to its water storage capacity and creation of conductive pathways. Following peaks in water table elevation, water can be stored in the capillary fringe for up to months (depending on the soil properties). This water can provide a critical resource for vegetation that is unable to access the water table. When water table peaks coincide with heavy rainfall events, the capillary fringe can support saturation of the entire soil profile. HaughFlow is used to investigate the water availability to riparian vegetation, producing daily output of water content in the soil over decadal time periods within different depth ranges. These outputs can be summarized to support scientific investigations of plant-water relations, as well as in management applications.

  15. Microvolume index of refraction determinations by interferometric backscatter

    NASA Astrophysics Data System (ADS)

    Bornhop, Darryl J.

    1995-06-01

    A new method has been applied to the determination of fluid bulk properties in small detection volumes. Through the use of an unfocused He-Ne laser beam and a cylindrical tube of capillary dimensions, relative refractive-index measurements are possible. The backscattered light from the illumination of a tube of capillary dimensions produces an interference pattern that is spatially defined and that contains information related to the bulk properties of the fluid contained in the tube. Positional changes in the intensity-modulated beam profile (interference fringes) are directly related to the refractive index of the fluid in the tube. The determination of dn/n at the 10-7 level is possible in probe volumes of 350 pL. The technique has been applied to tubes as small as 75 mu m inner diameter and as large as 1.0 mm inner diameter. No modification of the simple optical bench is required for facilitating the determination of refractive index for the complete range of tube diameters.

  16. Writing Bragg Gratings in Multicore Fibers.

    PubMed

    Lindley, Emma Y; Min, Seong-Sik; Leon-Saval, Sergio G; Cvetojevic, Nick; Lawrence, Jon; Ellis, Simon C; Bland-Hawthorn, Joss

    2016-04-20

    Fiber Bragg gratings in multicore fibers can be used as compact and robust filters in astronomical and other research and commercial applications. Strong suppression at a single wavelength requires that all cores have matching transmission profiles. These gratings cannot be inscribed using the same method as for single-core fibers because the curved surface of the cladding acts as a lens, focusing the incoming UV laser beam and causing variations in exposure between cores. Therefore we use an additional optical element to ensure that the beam shape does not change while passing through the cross-section of the multicore fiber. This consists of a glass capillary tube which has been polished flat on one side, which is then placed over the section of the fiber to be inscribed. The laser beam enters the fiber through the flat surface of the capillary tube and hence maintains its original dimensions. This paper demonstrates the improvements in core-to-core uniformity for a 7-core fiber using this method. The technique can be generalized to larger multicore fibers.

  17. Writing Bragg Gratings in Multicore Fibers

    PubMed Central

    Lindley, Emma Y.; Min, Seong-sik; Leon-Saval, Sergio G.; Cvetojevic, Nick; Lawrence, Jon; Ellis, Simon C.; Bland-Hawthorn, Joss

    2016-01-01

    Fiber Bragg gratings in multicore fibers can be used as compact and robust filters in astronomical and other research and commercial applications. Strong suppression at a single wavelength requires that all cores have matching transmission profiles. These gratings cannot be inscribed using the same method as for single-core fibers because the curved surface of the cladding acts as a lens, focusing the incoming UV laser beam and causing variations in exposure between cores. Therefore we use an additional optical element to ensure that the beam shape does not change while passing through the cross-section of the multicore fiber. This consists of a glass capillary tube which has been polished flat on one side, which is then placed over the section of the fiber to be inscribed. The laser beam enters the fiber through the flat surface of the capillary tube and hence maintains its original dimensions. This paper demonstrates the improvements in core-to-core uniformity for a 7-core fiber using this method. The technique can be generalized to larger multicore fibers. PMID:27167576

  18. A new CZE method for profiling human serum albumin and its related forms to assess the quality of biopharmaceuticals.

    PubMed

    Alahmad, Youssef; Tran, Nguyet Thuy; Le Potier, Isabelle; Forest, Eric; Jorieux, Sylvie; Taverna, Myriam

    2011-01-01

    We present a new CZE method, which uses a polyethylene oxide-coated capillary to separate native HSA from more than five of its structural variants. These variants include oxidized, truncated, and cysteinylated forms of HSA which can all be found in biopharmaceutical products. Both CE and MS confirmed the high degree of heterogeneity of HSA preparations. Recovery studies demonstrated that adsorption of HSA on the capillary was significantly reduced under the conditions we developed, which led to a satisfactory repeatability (RSD for migration times and relative peak areas were less than 0.2 and 7.0%, respectively). Assignment of the main peaks was attempted using in vitro degraded/stressed HSA. We used our method to test batch-to-batch comparability and detected slight quantitative differences in the proportion of native HSA in batches produced from different fractionation methods. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Characterization of recombinant monoclonal antibody variants detected by hydrophobic interaction chromatography and imaged capillary isoelectric focusing electrophoresis.

    PubMed

    King, Cory; Patel, Rekha; Ponniah, Gomathinayagam; Nowak, Christine; Neill, Alyssa; Gu, Zhenyu; Liu, Hongcheng

    2018-05-15

    In-depth characterization of the commonly observed variants is critical to the successful development of recombinant monoclonal antibody therapeutics. Multiple peaks of a recombinant monoclonal antibody were observed when analyzed by hydrophobic interaction chromatography and imaged capillary isoelectric focusing. The potential modification causing the heterogeneity was localized to F(ab')2 region by analyzing the antibody after IdeS digestion using hydrophobic interaction chromatography. LC-MS analysis identified asparagine deamidation as the root cause of the observed multiple variants. While the isoelectric focusing method is expected to separate deamidated species, the similar profile observed in hydrophobic interaction chromatography indicates that the single site deamidation caused differences in hydrophobicity. Forced degradation demonstrated that the susceptible asparagine residue is highly exposed, which is expected as it is located in the light chain complementarity determining region. Deamidation of this single site decreased the mAb binding affinity to its specific antigen. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Antibiotics from Pseudomonas reptilivora II. Isolation, Purification, and Properties1

    PubMed Central

    Del Rio, Luís A.; Gorgé, J. López; Olivares, J.; Mayor, F.

    1972-01-01

    Under well-established culture conditions, Pseudomonas reptilivora produced several antibiotics that have been purified by solvent extraction, chromatography in Sephadex G-25, electrophoresis, and paper chromatography in different solvent systems. Activity has been monitored at the different steps of isolation and purification by measurement of the inhibition of the growth of Staphylococcus aureus by the cylinder-plate method, as well as by bioautography of chromatograms and electropherograms. Three antibiotics have been isolated and named A, B1, and B2. The B1 and B2 activities were studied in greater detail than A. The B1 substance was crystallized, and its chemical properties were found to coincide with those of YC 73 or fluopsin C described by Egawa et al. and Itoh et al., respectively. Images PMID:4790558

  1. Uniform Laser Excitation And Detection In Capillary Array Electrophoresis System And Method.

    DOEpatents

    Li, Qingbo; Zhou, Songsan; Liu, Changsheng

    2003-10-07

    A capillary electrophoresis system comprises capillaries positioned in parallel to each other forming a plane. The capillaries are configured to allow samples to migrate. A light source is configured to illuminate the capillaries and the samples therein. This causes the samples to emit light. A lens is configured to receive the light emitted by the samples and positioned directly over a first group of the capillaries and obliquely over a second group of the capillaries. The light source is further configured to illuminate the second group of capillaries more than the first group of the capillaries such that amount of light received by the lens from the first group of capillaries is substantially identical to amount of light received from the second group of capillaries when an identical amount of the samples is migrating through the first and second group capillaries.

  2. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  3. Development and application of gravity-capillary wave fourier analysis for the study of air-sea interaction physics

    NASA Astrophysics Data System (ADS)

    MacKenzie Laxague, Nathan Jean

    Short ocean waves play a crucial role in the physical coupling between the ocean and the atmosphere. This is particularly true for gravity-capillary waves, waves of a scale (O(0.01-0.1) m) such that they are similarly restored to equilibrium by gravitational and interfacial tension (capillary) effects. These waves are inextricably linked to the turbulent boundary layer processes which characterize near-interfacial flows, acting as mediators of the momentum, gas, and heat fluxes which bear greatly on surface material transport, tropical storms, and climatic processes. The observation of these waves and the fluid mechanical phenomena which govern their behavior has long posed challenges to the would-be observer. This is due in no small part to the delicacy of centimeter-scale waves and the sensitivity of their properties to disruption via tactile measurement. With the ever-growing interest in satellite remote sensing, direct observations of short wave characteristics are needed along coastal margins. These zones are characterized by a diversity of physical processes which can affect the short-scale sea surface topography that is directly sensed via radar backscatter. In a related vein, these observations are needed to more fully understand the specific hydrodynamic relationship between young, wind-generated gravity-capillary waves and longer gravity waves. Furthermore, understanding of the full oceanic current profile is hampered by a lack of observations in the near-surface domain (z = O(0.01-0.1) m), where flows can differ greatly from those at depth. Here I present the development of analytical techniques for describing gravity-capillary ocean surface waves in order to better understand their role in the mechanical coupling between the atmosphere and ocean. This is divided amongst a number of research topics, each connecting short ocean surface waves to a physical forcing process via the transfer of momentum. One involves the examination of the sensitivity of short ocean surface waves to atmospheric forcing. Another is the exploration of long wave-short wave interactions and their effects on air-sea interaction vis-a-vis hydrodynamic modulation. The third and final topic is the characterization of the gravity-capillary regime of the wavenumber-frequency spectrum for the purpose of retrieving near-surface, wind-driven current. All of these fit as part of the desire to more fully describe the mechanism by which momentum is transferred across the air-sea interface and to discuss the consequences of this flux in the very near-surface layer of the ocean. Gravity-capillary waves are found to have an outsize share of ocean surface roughness, with short wave spectral peaks showing a connection to turbulent atmospheric stress. Short wave modulation is found to occur strongest at high wavenumbers at the lowest wind speeds, with peak modulation occurring immediately downwind of the long wave crest. Furthermore, short scale roughness enhancement is found to occur upwind of the long wave crest for increasing wind forcing magnitude. Observations of the near-surface current profile show that flows retrieved via this method agree well with the results of camera-tracked dye. Application of this method to data collected in the mouth of the Columbia River (MCR) indicates the presence of a near-surface current component that departs considerably from the tidal flow and orients into the wind stress direction. These observations demonstrate that wind speed-based parameterizations may not be sufficient to estimate wind drift and hold implications for the way in which surface material (e.g., debris or spilled oil) transport is estimated when atmospheric stress is of relatively high magnitude or is steered off the mean wind direction.

  4. Effect of masticatory stimulation on the quantity and quality of saliva and the salivary metabolomic profile.

    PubMed

    Okuma, Nobuyuki; Saita, Makiko; Hoshi, Noriyuki; Soga, Tomoyoshi; Tomita, Masaru; Sugimoto, Masahiro; Kimoto, Katsuhiko

    2017-01-01

    This study characterized the changes in quality and quantity of saliva, and changes in the salivary metabolomic profile, to understand the effects of masticatory stimulation. Stimulated and unstimulated saliva samples were collected from 55 subjects and salivary hydrophilic metabolites were comprehensively quantified using capillary electrophoresis-time-of-flight mass spectrometry. In total, 137 metabolites were identified and quantified. The concentrations of 44 metabolites in stimulated saliva were significantly higher than those in unstimulated saliva. Pathway analysis identified the upregulation of the urea cycle and synthesis and degradation pathways of glycine, serine, cysteine and threonine in stimulated saliva. A principal component analysis revealed that the effect of masticatory stimulation on salivary metabolomic profiles was less dependent on sample population sex, age, and smoking. The concentrations of only 1 metabolite in unstimulated saliva, and of 3 metabolites stimulated saliva, showed significant correlation with salivary secretion volume, indicating that the salivary metabolomic profile and salivary secretion volume were independent factors. Masticatory stimulation affected not only salivary secretion volume, but also metabolite concentration patterns. A low correlation between the secretion volume and these patterns supports the conclusion that the salivary metabolomic profile may be a new indicator to characterize masticatory stimulation.

  5. Profiling of Intracellular Metabolites: An Approach to Understanding the Characteristic Physiology of Mycobacterium leprae

    PubMed Central

    Miyamoto, Yuji; Mukai, Tetsu; Matsuoka, Masanori; Kai, Masanori; Maeda, Yumi; Makino, Masahiko

    2016-01-01

    Mycobacterium leprae is the causative agent of leprosy and also known to possess unique features such as inability to proliferate in vitro. Among the cellular components of M. leprae, various glycolipids present on the cell envelope are well characterized and some of them are identified to be pathogenic factors responsible for intracellular survival in host cells, while other intracellular metabolites, assumed to be associated with basic physiological feature, remain largely unknown. In the present study, to elucidate the comprehensive profile of intracellular metabolites, we performed the capillary electrophoresis-mass spectrometry (CE-MS) analysis on M. leprae and compared to that of M. bovis BCG. Interestingly, comparison of these two profiles showed that, in M. leprae, amino acids and their derivatives are significantly accumulated, but most of intermediates related to central carbon metabolism markedly decreased, implying that M. leprae possess unique metabolic features. The present study is the first report demonstrating the unique profiles of M. leprae metabolites and these insights might contribute to understanding undefined metabolism of M. leprae as well as pathogenic characteristics related to the manifestation of the disease. PMID:27479467

  6. Profiling of Intracellular Metabolites: An Approach to Understanding the Characteristic Physiology of Mycobacterium leprae.

    PubMed

    Miyamoto, Yuji; Mukai, Tetsu; Matsuoka, Masanori; Kai, Masanori; Maeda, Yumi; Makino, Masahiko

    2016-08-01

    Mycobacterium leprae is the causative agent of leprosy and also known to possess unique features such as inability to proliferate in vitro. Among the cellular components of M. leprae, various glycolipids present on the cell envelope are well characterized and some of them are identified to be pathogenic factors responsible for intracellular survival in host cells, while other intracellular metabolites, assumed to be associated with basic physiological feature, remain largely unknown. In the present study, to elucidate the comprehensive profile of intracellular metabolites, we performed the capillary electrophoresis-mass spectrometry (CE-MS) analysis on M. leprae and compared to that of M. bovis BCG. Interestingly, comparison of these two profiles showed that, in M. leprae, amino acids and their derivatives are significantly accumulated, but most of intermediates related to central carbon metabolism markedly decreased, implying that M. leprae possess unique metabolic features. The present study is the first report demonstrating the unique profiles of M. leprae metabolites and these insights might contribute to understanding undefined metabolism of M. leprae as well as pathogenic characteristics related to the manifestation of the disease.

  7. Profiling N-glycans of the egg jelly coat of the sea urchin Paracentrotus lividus by MALDI-TOF mass spectrometry and capillary liquid chromatography electrospray ionization-ion trap tandem mass spectrometry systems.

    PubMed

    Şahar, Umut; Deveci, Remziye

    2017-05-01

    Sea urchin eggs are surrounded by a carbohydrate-rich layer, termed the jelly coat, that consists of polysaccharides and glycoproteins. In the present study, we describe two mass spectrometric strategies to characterize the N-glycosylation of the Paracentrotus lividus egg jelly coat, which has an alecithal-type extracellular matrix like mammalian eggs. Egg jelly was isolated, lyophilized, and dialyzed, followed by peptide N-glycosidase F (PNGase-F) treatment to release N-glycans from their protein chain. These N-glycans were then derivatized by permethylation reaction, and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and capillary liquid chromatography electrospray ionization-ion trap tandem mass spectroscopy (CapLC ESI-Ion trap-MS/MS). N-glycans in the egg jelly coat glycoproteins were indicated by sodiated molecules at m/z 1579.8, 1783.9, 1988.0, 2192.0, and 2397.1 for permethylated oligosaccharides on MALDI-TOF MS. Fragmentation and structural characterization of these oligosaccharides were performed by ESI-Ion trap MS/MS. Then, MALDI-TOF-MS and ESI-Ion trap-MS/MS spectra were interpreted using the GlycoWorkbench software suite, a tool for building, displaying, and profiling glycan masses, to identify the original oligosaccharide structures. The oligosaccharides of the isolated egg jelly coat were mainly of the high mannose type. © 2017 Wiley Periodicals, Inc.

  8. Capillary electrophoresis-electrochemiluminescent detection of N,N-dimethyl ethanolamine and its application in impurity profiling and stability investigation of meclophenoxate.

    PubMed

    Fu, Zhifeng; Wang, Lin; Wang, Yonghong

    2009-04-13

    Numerous drugs are carboxylic acid derivatives containing amino group, and hydrolysis reaction of these agents often generates toxic amines. Thus, the detection of amine impurity is of great importance in drug quality control of these amino group-containing ester and amide. A capillary electrophoresis method coupled with end-column electrochemiluminescent detection based on tris(2,2'-bipyridyl)ruthenium(II) system was proposed for the analysis of N,N-dimethyl ethanolamine (DMEA, the degradation product of meclophenoxate) in the presence of its precursor. Baseline separation of DMEA and meclophenoxate can be easily achieved under the selected conditions. DMEA can be assayed within 3 min over the concentration range of 5.0x10(-8) to 3.0x10(-6) mol L(-1) with a detection limit of 2.0x10(-8) mol L(-1) at the signal-to-noise ratio of 3. The relative standard deviations of the signal intensity and the migration time were less than 5.3 and 2.5% for a standard sample containing 1.0x10(-7) mol L(-1) DMEA (n=5), respectively. The presented method has been successfully applied for the profiling of DMEA resulting from the hydrolysis of meclophenoxate in commercial formulations. A primary stability investigation of meclophenoxate in aqueous solution was also carried out at different temperatures, and the results showed that the degradation of meclophenoxate accelerated at the higher temperature.

  9. Physical reconstruction of packed beds and their morphological analysis: core-shell packings as an example.

    PubMed

    Bruns, Stefan; Tallarek, Ulrich

    2011-04-08

    We report a fast, nondestructive, and quantitative approach to characterize the morphology of packed beds of fine particles by their three-dimensional reconstruction from confocal laser scanning microscopy images, exemplarily shown for a 100μm i.d. fused-silica capillary packed with 2.6μm-sized core-shell particles. The presented method is generally applicable to silica-based capillary columns, monolithic or particulate, and comprises column pretreatment, image acquisition, image processing, and statistical analysis of the image data. It defines a unique platform for fundamental comparisons of particulate and monolithic supports using the statistical measures derived from their reconstructions. Received morphological data are column cross-sectional porosity profiles and chord length distributions from the interparticle macropore space, which are a descriptor of local density and can be characterized by a simplified k-gamma distribution. This distribution function provides a parameter of location and a parameter of dispersion which can be correlated to individual chromatographic band broadening processes (i.e., to transchannel and short-range interchannel contributions to eddy dispersion, respectively). Together with the transcolumn porosity profile the presented approach allows to analyze and quantify the packing microstructure from pore to column scale and therefore holds great promise in a comparative study of packing conditions and particle properties, particularly for characterizing and minimizing the packing process-specific heterogeneities in the final bed structure. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. The Stationary Condensation and Radial Outflow of a Liquid Film on a Horizontal Disk

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, Leonid; Frenkel, Alexander

    2008-01-01

    The application of capillary screen liquid acquisition devices to space-based cryogenic propulsion systems is expected to necessitate thermodynamic conditioning in order to stabilize surface tension retention characteristics. The present results have been obtained in the framework of the research of low gravity condensation-flow processes for conditioning cryogenic liquid acquisition devices. The following system is studied: On the top of a subcooled horizontal disk, a liquid film condenses from the ambient saturated vapor. The liquid is forcedly removed at the disk edge, and there is an outward radial flow of the film. Stationary regimes of the flow are uncovered such that (i) the gravity is negligible, being eclipsed by the capillary forces; (ii) the film thickness is everywhere much smaller than the disk radius; and (iii) the slow-flow lubrication approximation is valid. A nonlinear differential equation for the film thickness as a function of the radial coordinate is obtained. The (two-dimensional) fields of velocities, temperature and pressure in the film are explicitly determined by the radial profile of its thickness. The equilibrium is controlled by two parameters: (i) the vapor-disk difference of temperatures and (ii) the liquid exhaust rate. For the flow regimes with a nearly uniform film thickness, the governing equation linearizes, and the film interface is analytically predicted to have a concave-up quartic parabola profile. Thus, perhaps counter-intuitively, the liquid film is thicker at the edge and thinner at the center of the disk.

  11. Centimeter-scale characterization of biogeochemical gradients at a wetland-aquifer interface using capillary electrophoresis

    USGS Publications Warehouse

    Baez-Cazull, S.; McGuire, J.T.; Cozzarelli, I.M.; Raymond, A.; Welsh, L.

    2007-01-01

    Steep biogeochemical gradients were measured at mixing interfaces in a wetland-aquifer system impacted by landfill leachate in Norman, Oklahoma. The system lies within a reworked alluvial plain and is characterized by layered low hydraulic conductivity wetland sediments interbedded with sandy aquifer material. Using cm-scale passive diffusion samplers, "peepers", water samples were collected in a depth profile to span interfaces between surface water and a sequence of deeper sedimentary layers. Geochemical indicators including electron acceptors, low-molecular-weight organic acids, base cations, and NH4+ were analyzed by capillary electrophoresis (CE) and field techniques to maximize the small sample volumes available from the centimeter-scale peepers. Steep concentration gradients of biogeochemical indicators were observed at various interfaces including those created at sedimentary boundaries and boundaries created by heterogeneities in organic C and available electron acceptors. At the sediment-water interface, chemical profiles with depth suggest that SO42 - and Fe reduction dominate driven by inputs of organic C from the wetland and availability of electron acceptors. Deeper in the sediments (not associated with a lithologic boundary), a steep gradient of organic acids (acetate maximum 8.8 mM) and NH4+ (maximum 36 mM) is observed due to a localized source of organic matter coupled with the lack of electron acceptor inputs. These findings highlight the importance of quantifying the redox reactions occurring in small interface zones and assessing their role on biogeochemical cycling at the system scale. ?? 2007 Elsevier Ltd. All rights reserved.

  12. Sterol Profile for Natural Juices Authentification by GC-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culea, M.

    A GC-MS analytical method is described for some natural juices analysis. The fingerprint of sterols was used to characterize the natural juice. A rapid liquid-liquid extraction method was used. The sterols were separated on a Rtx-5MS capillary column, 15mx0.25mm, 0.25{mu}m film thickness, in a temperature program from 50 deg. C for 1 min, then ramped at 15 deg. C/min to 300 deg. C and held for 15 min. Identification of sterols and their patterns were used for juice characterization. The sterol profile is a useful approach for confirming the presence of juices of orange, grapefruit, pineapple and passion fruit inmore » compounded beverages and for detecting of adulteration of fruit juices.« less

  13. Laser illumination of multiple capillaries that form a waveguide

    DOEpatents

    Dhadwal, Harbans S.; Quesada, Mark A.; Studier, F. William

    1998-08-04

    A system and method are disclosed for efficient laser illumination of the interiors of multiple capillaries simultaneously, and collection of light emitted from them. Capillaries in a parallel array can form an optical waveguide wherein refraction at the cylindrical surfaces confines side-on illuminating light to the core of each successive capillary in the array. Methods are provided for determining conditions where capillaries will form a waveguide and for assessing and minimizing losses due to reflection. Light can be delivered to the arrayed capillaries through an integrated fiber optic transmitter or through a pair of such transmitters aligned coaxially at opposite sides of the array. Light emitted from materials within the capillaries can be carried to a detection system through optical fibers, each of which collects light from a single capillary, with little cross talk between the capillaries. The collection ends of the optical fibers can be in a parallel array with the same spacing as the capillary array, so that the collection fibers can all be aligned to the capillaries simultaneously. Applicability includes improving the efficiency of many analytical methods that use capillaries, including particularly high-throughput DNA sequencing and diagnostic methods based on capillary electrophoresis.

  14. Laser illumination of multiple capillaries that form a waveguide

    DOEpatents

    Dhadwal, H.S.; Quesada, M.A.; Studier, F.W.

    1998-08-04

    A system and method are disclosed for efficient laser illumination of the interiors of multiple capillaries simultaneously, and collection of light emitted from them. Capillaries in a parallel array can form an optical waveguide wherein refraction at the cylindrical surfaces confines side-on illuminating light to the core of each successive capillary in the array. Methods are provided for determining conditions where capillaries will form a waveguide and for assessing and minimizing losses due to reflection. Light can be delivered to the arrayed capillaries through an integrated fiber optic transmitter or through a pair of such transmitters aligned coaxially at opposite sides of the array. Light emitted from materials within the capillaries can be carried to a detection system through optical fibers, each of which collects light from a single capillary, with little cross talk between the capillaries. The collection ends of the optical fibers can be in a parallel array with the same spacing as the capillary array, so that the collection fibers can all be aligned to the capillaries simultaneously. Applicability includes improving the efficiency of many analytical methods that use capillaries, including particularly high-throughput DNA sequencing and diagnostic methods based on capillary electrophoresis. 35 figs.

  15. Device to improve detection in electro-chromatography

    DOEpatents

    Garguilo, Michael G.; Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    Apparatus and method for improving the resolution of non-pressure driven capillary chromatographic systems, and particularly for capillary electrochromatography (CEC) systems. By reducing the cross-sectional area of a packed capillary column by means of a second open capillary contiguous with the outlet end of a packed capillary column, where the packed capillary column has a cross sectional area of between about 2 and 5 times that of the open capillary column, the phenomenon of band broadening in the transition region between the open capillary and the packed capillary column, where the individual components of the mixture are analyzed, can be eliminated, thereby providing for a significant improvement in resolution and more accurate detection and analysis.

  16. Device to improve detection in electro-chromatography

    DOEpatents

    Garguilo, Michael G.; Paul, Phillip H.; Rakestraw, David J.

    2002-01-01

    Apparatus and method for improving the resolution of non-pressure driven capillary chromatographic systems, and particularly for capillary electrochromatography (CEC) systems. By reducing the cross-sectional area of a packed capillary column by means of a second open capillary contiguous with the outlet end of a packed capillary column, where the packed capillary column has a cross sectional area of between about 2 and 5 times that of the open capillary column, the phenomenon of band broadening in the transition region between the open capillary and the packed capillary column, where the individual components of the mixture are analyzed, can be eliminated, thereby providing for a significant improvement in resolution and more accurate detection and analysis.

  17. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    DOEpatents

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  18. Design of Capillary Flows with Spatially Graded Porous Films

    NASA Astrophysics Data System (ADS)

    Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen

    2013-11-01

    We have developed a new capillary tube model, consisting of multi-layered capillary tubes oriented in the direction of flow, to predict capillary speeds on spatially graded porous films. Capillary flows through thin porous media have been widely utilized for small size liquid transport systems. However, for most media it is challenging to realize arbitrary shapes and spatially functionalized micro-structures with variable flow properties. Therefore, conventional media can only be used for capillary flows obeying Washburn's equation and the modifications thereof. Given this background, we recently developed a method called breakdown anodization (BDA) to produce highly wetting porous films. The resulting surfaces show nearly zero contact angles and fast water spreading speed. Furthermore, capillary pressure and spreading diffusivity can be expressed as functions of capillary height when customized electric fields are used in BDA. From the capillary tube model, we derived a general capillary flow equation of motion in terms of capillary pressure and spreading diffusivity. The theoretical model shows good agreement with experimental capillary flows. The study will provide novel design methodologies for paper-based microfluidic devices.

  19. Angiotensin-converting enzyme inhibition studies by natural leech inhibitors by capillary electrophoresis and competition assay.

    PubMed

    Deloffre, Laurence; Sautiere, Pierre-Eric; Huybrechts, Roger; Hens, Korneel; Vieau, Didier; Salzet, Michel

    2004-06-01

    A protocol to follow the processing of angiotensin I into angiotensin II by rabbit angiotensin-converting enzyme (ACE) and its inhibition by a novel natural antagonist, the leech osmoregulator factor (LORF) using capillary zonal electrophoresis is described. The experiment was carried out using the Beckman PACE system and steps were taken to determine (a) the migration profiles of angiotensin and its yielded peptides, (b) the minimal amount of angiotensin II detected, (c) the use of different electrolytes and (d) the concentration of inhibitor. We demonstrated that LORF (IPEPYVWD), a neuropeptide previously found in leech brain, is able to inhibit rabbit ACE with an IC(50) of 19.8 micro m. Interestingly, its cleavage product, IPEP exhibits an IC(50) of 11.5 micro m. A competition assay using p-benzoylglycylglycylglycine and insect ACE established that LORF and IPEP fragments are natural inhibitors for invertebrate ACE. Fifty-four percent of insect ACE activity is inhibited with 50 micro m IPEP and 35% inhibition with LORF (25 mm). Extending the peptide at both N- and C-terminus (GWEIPEPYVWDES) and the cleavage of IPEP in IP abolished the inhibitory activity of both peptides. Immunocytochemical data obtained with antisera raised against LORF and leech ACE showed a colocalization between the enzyme and its inhibitor in the same neurons. These results showed that capillary zonal electrophoresis is a useful technique for following enzymatic processes with small amounts of products and constitutes the first evidence of a natural ACE inhibitor in invertebrates.

  20. [A new method for safety monitoring of natural dietary supplements--quality profile].

    PubMed

    Wang, Juan; Wang, Li-Ping; Yang, Da-Jin; Chen, Bo

    2008-07-01

    A new method for safety monitoring of natural dietary supplements--quality profile was proposed. It would convert passive monitoring of synthetic drug to active, and guarantee the security of natural dietary supplements. Preliminary research on quality profile was completed by high performance liquid chromatography (HPLC) and mass spectrometry (MS). HPLC was employed to analyze chemical constituent profiles of natural dietary supplements. The separation was completed on C18 column with acetonitrile and water (0.05% H3PO4) as mobile phase, the detection wavelength was 223 nm. Based on HPLC, stability of quality profile had been studied, and abnormal compounds in quality profile had been analyzed after addition of phenolphthalein, sibutramine, rosiglitazone, glibenclamide and gliclazide. And by MS, detector worked with ESI +, capillary voltage: 3.5 kV, cone voltage: 30 V, extractor voltage: 4 V, RF lens voltage: 0.5 V, source temperature: 105 degrees C, desolvation temperature: 300 degrees C, desolvation gas flow rate: 260 L/h, cone gas flow rate: 50 L/h, full scan mass spectra: m/z 100-600. Abnormal compound in quality profile had been analyzed after addition of N-mono-desmethyl sibutramine. Quality profile based on HPLC had good stability (Similarity > 0.877). Addition of phenolphthalein, sibutramine, rosiglitazone, glibenclamide and gliclazide in natural dietary supplements could be reflected by HPLC, and addition of N-mono-desmethyl sibutramine in natural dietary supplements could be reflected by MS. Quality profile might monitor adulteration of natural dietary supplements, and prevent addition of synthetic drug after "approval".

  1. In Vivo Microscopy Reveals Extensive Embedding of Capillaries within the Sarcolemma of Skeletal Muscle Fibers

    PubMed Central

    Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.

    2013-01-01

    Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425

  2. Improving N-Glycan Coverage using HPLC-MS with Electrospray Ionization at Subambient Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marginean, Ioan; Kronewitter, Scott R.; Moore, Ronald J.

    Human serum glycan profiling with mass spectrometry (MS) has been employed to study several disease conditions and is demonstrating promise for e.g. clinical biomarker discovery. However, the poor glycan ionization efficiency and the large dynamic range of glycan concentrations in human sera hinder comprehensive profiling. In particular, large glycans are problematic because they are present at low concentrations and prone to fragmentation. Here we show that the sub-ambient pressure ionization with nanoelectrospray (SPIN)-MS can expand the serum glycome profile when compared with the conventional atmospheric pressure electrospray ionization (ESI)-MS with a heated capillary inlet. Notably, the ions generated by themore » SPIN interface were observed at higher charge states for 50% of the annotated glycans. Out of a total of 130 detected glycans, 34 were only detected with the SPIN-MS, resulting in improved coverage of glycan families as well as of glycans with larger numbers of labile monosaccharides.« less

  3. CSE-MECC two-dimensional capillary electrophoresis analysis of proteins in the mouse tumor cell (AtT-20) homogenate

    PubMed Central

    Chen, Xingguo; Fazal, Md. Abul; Dovichi, Norman J.

    2007-01-01

    Two-dimensional capillary electrophoresis was used for the separation of proteins and biogenic amines from the mouse AtT-20 cell line. The first-dimension capillary contained a TRIS-CHES-SDS-dextran buffer to perform capillary sieving electrophoresis, which is based on molecular weight of proteins. The second-dimension capillary contained a TRIS-CHES-SDS buffer for micel1ar electrokinetic capillary chromatography. After a 61 seconds preliminary separation, fractions from the first-dimension capillary were successively transferred to the second-dimension capillary, where they further separated by MECC. The two-dimensional separation required 60 minutes. PMID:17637850

  4. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.

    PubMed

    Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai

    2017-02-14

    The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.

  5. Post-injection hybridization of complementary DNA strands on capillary electrophoresis platforms: a novel solution for dsDNA artifacts.

    PubMed

    McLaren, Robert S; Ensenberger, Martin G; Budowle, Bruce; Rabbach, Dawn; Fulmer, Patricia M; Sprecher, Cindy J; Bessetti, Joseph; Sundquist, Terri M; Storts, Douglas R

    2008-09-01

    Several laboratories have reported the occurrence of a split or n-1 peak at the vWA locus in PowerPlex 16 and PowerPlex ES amplification products separated on 4- and 16-capillary electrophoresis instruments. The root cause of this artifact is post-PCR reannealing of the unlabeled, unincorporated vWA primer to the 3'-end of the tetramethylrhodamine (TMR)-labeled strand of the vWA amplicon. This reannealing occurs in the capillary post-electrokinetic injection. The split peak is eliminated by incorporation into the loading cocktail of a sacrificial hybridization sequence (SHS) oligonucleotide that is complementary to the vWA primer. The SHS preferentially anneals to the primer instead of the TMR-labeled strand of the vWA amplicon. In addition, the n-10/n-18 artifact that may be seen at the vWA locus was determined to be due to double-stranded amplicon formed post-electrokinetic injection into the capillary. This was also eliminated by adding in two Complementary Oligo Targets (COT1 and COT2) in addition to the SHS oligonucleotide into the loading cocktail. These three oligonucleotides are complementary to the 33 bases at the 5'-end of the unlabeled vWA amplicon strand and the 60 bases at its 3'-end and therefore compete for hybridization to the TMR-labeled amplicon strand. Incorporation of these three oligonucleotides in the Internal Lane Standard 600 (ILS600) eliminate both the split peak and n-10/n-18 artifact in PowerPlex 16 and PowerPlex ES amplification products without affecting sizing of alleles at the vWA locus or any locus in the PowerPlex 16, PowerPlex Y, PowerPlex ES, AmpFlSTR Profiler Plus ID, AmpFlSTR Cofiler, and AmpFlSTR SGM Plus kits.

  6. Elevated blood pressure in preterm-born offspring associates with a distinct antiangiogenic state and microvascular abnormalities in adult life.

    PubMed

    Lewandowski, Adam J; Davis, Esther F; Yu, Grace; Digby, Janet E; Boardman, Henry; Whitworth, Polly; Singhal, Atul; Lucas, Alan; McCormick, Kenny; Shore, Angela C; Leeson, Paul

    2015-03-01

    Preterm-born individuals have elevated blood pressure. We tested the hypothesis that this associates with an enhanced antiangiogenic circulating profile and that this association is mediated by variations in capillary density. We studied 204 adults aged 25 years (range, 20-30 years), of which 102 had been followed up prospectively since very preterm birth (mean gestational age, 30.3±2.5 weeks) and 102 were born term to uncomplicated pregnancies. A panel of circulating biomarkers, including soluble endoglin and soluble fms-like tyrosine kinase-1, were compared between groups and related to perinatal history and adult cardiovascular risk. Associations with cardiovascular phenotype were studied in 90 individuals who had undergone detailed assessment of microvascular, macrovascular, and cardiac structure and function. Preterm-born individuals had elevations in soluble endoglin (5.64±1.03 versus 4.06±0.85 ng/mL; P<0.001) and soluble fms-like tyrosine kinase-1 (88.1±19.0 versus 73.0±15.3 pg/mL; P<0.001) compared with term-born individuals, proportional to elevations in resting and ambulatory blood pressure, as well as degree of prematurity (P<0.05). Maternal hypertensive pregnancy disorder was associated with additional increases in soluble fms-like tyrosine kinase-1 (P=0.002). Other circulating biomarkers, including those of inflammation and endothelial activation, were not related to blood pressure. There was a specific graded association between soluble endoglin and degree of functional and structural capillary rarefaction (P=0.002 and P<0.001), and in multivariable analysis, there were capillary density-mediated associations between soluble endoglin and blood pressure. Preterm-born individuals exhibit an enhanced antiangiogenic state in adult life that is specifically related to elevations in blood pressure. The association seems to be mediated through capillary rarefaction and is independent of other cardiovascular structural and functional differences in the offspring. © 2014 American Heart Association, Inc.

  7. Capillary Two-Phase Thermal Devices for Space Applications

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    This is the presentation file for an invited seminar for Department of Mechanical and Aerospace Engineering at the Case Western Reserve University. The seminar is scheduled for April 1, 2016.Description: This presentation will discuss operating principles and performance characteristics of heat pipes (HPs) and loop heat pipes (LHPs) and their application for spacecraft thermal control. Topics include: 1) HP operating principles; 2) HP performance characteristics; 3) LHP pressure profiles; 4) LHP operating temperature; 5) LHP operating temperature control; and 6) Examples of using HPs and LHPs on NASA flight projects.

  8. Recovery from Short Term Intense Exercise: Its Relation to Capillary Supply and Lactate Release,

    DTIC Science & Technology

    1982-01-01

    accumulate at a higher rate in fast twitch (FT or Type II) than in slow twitch (ST or Type I) fibers of exercised muscles . Lactate form- ed and accumulated...is made up by a high percentage of FT fibers than can be expected in a " slow twitch " muscle . Moreover, the over-all metabolic profile of the ST fiber...local muscular fatigue. Eur. J. Appl. Physiol. 38, 9-15 (1978b) Baldwin, K.M., Tipton, C.M.: Work and metabolic patterns of fast and slow twitch

  9. Insulin-induced changes in microvascular vasomotion and capillary recruitment are associated in humans.

    PubMed

    de Boer, Michiel P; Meijer, Rick I; Newman, John; Stehouwer, Coen D A; Eringa, Etto C; Smulders, Yvo M; Serné, Erik H

    2014-07-01

    Insulin-induced capillary recruitment is considered a significant regulator of overall insulin-stimulated glucose uptake. Insulin's action to recruit capillaries has been hypothesized to involve insulin-induced changes in vasomotion. Data directly linking vasomotion to capillary perfusion, however, are presently lacking. We, therefore, investigated whether insulin's actions on capillary recruitment and vasomotion were interrelated in a group of healthy individuals. We further assessed the role of capillary recruitment in the association between vasomotion and insulin-mediated glucose uptake. Changes in vasomotion and capillary density were determined by LDF and capillary videomicroscopy in skin, respectively, before and during a hyperinsulinemic euglycemic clamp in 19 healthy volunteers. Insulin-induced increase in the neurogenic vasomotion domain was positively related to insulin-augmented capillary recruitment (r = 0.51, p = 0.04), and both parameters were related to insulin-mediated glucose uptake (r = 0.47, p = 0.06 and r = 0.73, p = 0.001, respectively). The change in insulin-augmented capillary recruitment could, at least statistically, largely explain the association between the neurogenic domain and insulin-mediated glucose uptake. Insulin-induced changes in vasomotion and capillary recruitment are associated in healthy volunteers. These data suggest that insulin's action to recruit capillaries may in part involve action on the neurogenic vasomotion domain, thereby enhancing capillary perfusion and glucose uptake. © 2014 John Wiley & Sons Ltd.

  10. Modelling the Transport of Nanoparticles under Blood Flow using an Agent-based Approach.

    PubMed

    Fullstone, Gavin; Wood, Jonathan; Holcombe, Mike; Battaglia, Giuseppe

    2015-06-10

    Blood-mediated nanoparticle delivery is a new and growing field in the development of therapeutics and diagnostics. Nanoparticle properties such as size, shape and surface chemistry can be controlled to improve their performance in biological systems. This enables modulation of immune system interactions, blood clearance profile and interaction with target cells, thereby aiding effective delivery of cargo within cells or tissues. Their ability to target and enter tissues from the blood is highly dependent on their behaviour under blood flow. Here we have produced an agent-based model of nanoparticle behaviour under blood flow in capillaries. We demonstrate that red blood cells are highly important for effective nanoparticle distribution within capillaries. Furthermore, we use this model to demonstrate how nanoparticle size can selectively target tumour tissue over normal tissue. We demonstrate that the polydispersity of nanoparticle populations is an important consideration in achieving optimal specificity and to avoid off-target effects. In future this model could be used for informing new nanoparticle design and to predict general and specific uptake properties under blood flow.

  11. Investigation of transient dynamics of capillary assisted particle assembly yield

    NASA Astrophysics Data System (ADS)

    Virganavičius, D.; Juodėnas, M.; Tamulevičius, T.; Schift, H.; Tamulevičius, S.

    2017-06-01

    In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm2 square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.

  12. Observation of the thermal influenced quantum behaviour of water near a solid interface.

    PubMed

    Yoon, Hongkee; Yoon, Byoung Jip

    2018-05-03

    Water is essential for life. However, the structure and properties of water are still not well understood. It has been introduced that anomalies are in vicinal water near solid interfaces. We performed capillary flow experiments on water with a silica colloid sample using a high-performance liquid chromatography (HPLC) system by accurately varying the temperature and analysed the peak shape rigorously. We obtained a novel anomalous temperature spectrum from the peak-shape analysis. Here we report the observed distinct specific anomalous temperature (SAT) behaviour in vicinal water at silica interface. The anomaly appeared in the viscous force that was derived from a relationship between the shape of the HPLC peak and the velocity profile for the capillary flow. The observations were highly reproducible, and we conclude that the SAT is related to the quantum mechanical behaviour of water, in agreement of the characteristic acceptance of thermal displacement according to the Franck-Condon principle. We performed the same experiments using heavy water and water mixed with a small amount of methanol, and the results support the quantum phenomenological origin.

  13. OCT methods for capillary velocimetry

    PubMed Central

    Srinivasan, Vivek J.; Radhakrishnan, Harsha; Lo, Eng H.; Mandeville, Emiri T.; Jiang, James Y.; Barry, Scott; Cable, Alex E.

    2012-01-01

    To date, two main categories of OCT techniques have been described for imaging hemodynamics: Doppler OCT and OCT angiography. Doppler OCT can measure axial velocity profiles and flow in arteries and veins, while OCT angiography can determine vascular morphology, tone, and presence or absence of red blood cell (RBC) perfusion. However, neither method can quantify RBC velocity in capillaries, where RBC flow is typically transverse to the probe beam and single-file. Here, we describe new methods that potentially address these limitations. Firstly, we describe a complex-valued OCT signal in terms of a static scattering component, dynamic scattering component, and noise. Secondly, we propose that the time scale of random fluctuations in the dynamic scattering component are related to red blood cell velocity. Analysis was performed along the slow axis of repeated B-scans to parallelize measurements. We correlate our purported velocity measurements against two-photon microscopy measurements of RBC velocity, and investigate changes during hypercapnia. Finally, we image the ischemic stroke penumbra during distal middle cerebral artery occlusion (dMCAO), where OCT velocimetry methods provide additional insight that is not afforded by either Doppler OCT or OCT angiography. PMID:22435106

  14. Capillary zone electrophoresis for fatty acids with chemometrics for the determination of milk adulteration by whey addition.

    PubMed

    de Oliveira Mendes, Thiago; Porto, Brenda Lee Simas; Bell, Maria José Valenzuela; Perrone, Ítalo Tuler; de Oliveira, Marcone Augusto Leal

    2016-12-15

    Adulteration of milk with whey is difficult to detect because these two have similar physical and chemical characteristics. The traditional methodologies to monitor this fraud are based on the analysis of caseinomacropeptide. The present study proposes a new approach to detect and quantify this fraud using the fatty acid profiles of milk and whey. Fatty acids C14:0, C16:0, C18:0, C18:1, C18:2 and C18:3 were selected by gas chromatography associated with discriminant analysis to differentiate milk and whey, as they are present in quite different amounts. These six fatty acids were quantified within a short time by capillary zone electrophoresis in a set of adulterated milk samples. The correlation coefficient between the true values of whey addition and the experimental values obtained by this technique was 0.973. The technique is thus useful for the evaluation of milk adulteration with whey, contributing to the quality control of milk in the dairy industry. Copyright © 2016. Published by Elsevier Ltd.

  15. A snapshot of plasma metabolites in first-episode schizophrenia: a capillary electrophoresis time-of-flight mass spectrometry study.

    PubMed

    Koike, S; Bundo, M; Iwamoto, K; Suga, M; Kuwabara, H; Ohashi, Y; Shinoda, K; Takano, Y; Iwashiro, N; Satomura, Y; Nagai, T; Natsubori, T; Tada, M; Yamasue, H; Kasai, K

    2014-04-08

    Few biomarkers have been known that can easily measure clinical conditions in mental illnesses such as schizophrenia. Capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) is a new method that can measure ionized and low-molecular-weight metabolites. To explore global metabolomic alterations that characterize the onset of schizophrenia and identify biomarkers, we profiled the relative and absolute concentrations of the plasma metabolites from 30 patients with first-episode schizophrenia (FESZ, four drug-naïve samples), 38 healthy controls and 15 individuals with autism spectrum disorders using CE-TOFMS. Five metabolites had robust changes (increased creatine and decreased betaine, nonanoic acid, benzoic acid and perillic acid) in two independent sample sets. Altered levels of these metabolites are consistent with well-known hypotheses regarding abnormalities of the homocysteine metabolism, creatine kinase-emia and oxidative stress. Although it should be considered that most patients with FESZ received medication, these metabolites are candidate biomarkers to improve the determination of diagnosis, severity and clinical stages, especially for FESZ.

  16. A fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp.

    PubMed

    Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan

    2011-06-01

    The present study aimed to establish a fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp. Based on the sequences of the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA, we designed a set of genus-specific primers for the amplification of Fasciola ITS-2, with an estimated size of 140 bp. These primers were labelled by fluorescence dyes, and the PCR products were analyzed by capillary electrophoresis under non-denaturing conditions (F-PCR-SSCP). Capillary electrophoresis analysis of the fluorescence-labelled DNA fragments displayed three different peak profiles that allowed the accurate identification of Fasciola species: one single peak specific for either Fasciola hepatica or Fasciola gigantica and a doublet peak corresponding to the "intermediate" Fasciola. Validation of our novel method was performed using Fasciola specimens from different host animals from China, Spain, Nigeria, and Egypt. This F-PCR-SSCP assay provides a rapid, simple, and robust tool for the identification and differentiation between Fasciola spp.

  17. Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Sharma, Vivek

    Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.

  18. Heterogeneous porous media: Fronts and noise

    NASA Astrophysics Data System (ADS)

    Chaouchel, M.; Rakotomalala, N.; Salin, D.; Xu, B.; Yortsos, Y. C.

    Capillary effects can be important in immiscible flows in heterogeneous media, particularly at low capillary numbers (Ca). We present experiments and simulations of slow drainage in 3-D porous media, either homogeneous and in the presence of buoyancy or heterogeneous and in its absence. An acoustic technique allows for an accurate study of the 3-D fronts and the cross-over region. Our results suggest that both cases can be described by invasion percolation in a gradient. Both front tails scale with the corresponding Bond numbers as σft≈B-47 in agreement with the theory. An analogous scaling for viscous effects is also given. The noise of these fronts are found correlated in the form of a fractional Brownian motion (fBm) of a Hurst exponent H≈.5. At higher Ca, experiments performed in 3-D porous media with sharp changes in permeability, exhibit a saturation profile response closely linked to the permeability variations. This viscous response to heterogeneity provides an opportunity to investigate and determine correlated (even at all scales, i.e. fBm), permeability fields.

  19. Characterization of a single-isomer carboxymethyl-beta-cyclodextrin in chiral capillary electrophoresis.

    PubMed

    Fejős, Ida; Varga, Erzsébet; Benkovics, Gábor; Malanga, Milo; Sohajda, Tamás; Szemán, Julianna; Béni, Szabolcs

    2017-08-01

    In this work, the synthesis, characterization, and chiral capillary electrophoretic study of heptakis-(2,3-di-O-methyl-6-O-carboxymethyl)-β-CD (HDMCM), a single-isomer carboxymethylated CD, are presented. The pH-dependent and selector concentration-dependent enantiorecognition properties of HDMCM were investigated and discussed herein. The enantioseparation was assessed applying a structurally diverse set of noncharged, basic, and zwitterionic racemates. The increase in the selector concentration and gross negative charge of HDMCM improved the enantioseparation that could be observed in the majority of the cases. HDMCM was also successfully applied as BGE additive in NACE using a methanol-based system in order to prove the separation selectivity features and to highlight the broad applicability of HDMCM. Over 25 racemates showed partial or baseline separation with HDMCM under the conditions investigated, among which optimal enantiomer migration order was found for the four stereoisomers of tadalafil, tapentadol, and dapoxetine, offering the possibility of a chiral CE method development for chiral purity profiling of these drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edward S.; Kuhr, Werner G.

    1996-02-20

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  1. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edwards; Kuhr, Werner G.

    1991-04-09

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  2. Enhancing separation in short-capillary electrophoresis via pressure-driven backflow.

    PubMed

    Tian, Miaomiao; Wang, Yujia; Mohamed, Amara Camara; Guo, Liping; Yang, Li

    2015-07-01

    We present a novel easy-to-operate and efficient method to improve the separation efficiency in short-capillary electrophoresis by introducing steady backflow to counterbalance electro-osmotic flow without the use of any external pressure. The backflow was easily generated by tapering the capillary end, which was achieved by heating a straight capillary and stretching it with a constant force. We investigated the net fluidic transport rate under different tip lengths and separation voltages. Good run-to-run repeatability and capillary-to-capillary reproducibility of the present method were obtained with RSD less than 1.5%, indicating the stability of the fluid transport rate in the tapered capillary, which ensures the quantification and repeatability of capillary zone electrophoresis (CZE) analysis. Enhanced separation of the tapered short capillary electrophoresis was demonstrated by CZE analyzing amino acids and positional isomers. Baseline separations were achieved in less than 60 s using a tapered capillary with the effective length of 5 cm, while no separation was achieved using a normal capillary without a tapered tip. The present study provides a promising method to use pressure-driven backflow to enhance separation efficiency in short-capillary electrophoresis, which would be of potential value in a wide application for fast analysis of complex samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quantitative fine structure of capillaries in subregions of the rat subfornical organ.

    PubMed

    Shaver, S W; Sposito, N M; Gross, P M

    1990-04-01

    The differentiated cytology across subregions of the rat subfornical organ (SFO) prompted our hypothesis that ultrastructural features of capillary endothelial cells would vary topographically and quantitatively within this small nucleus. We used electron microscopic and computer-based morphometric methods to assess fine structural dimensions of the capillary endothelium in four distinct subregions of the SFO from Long-Evans and homozygous Brattleboro rats. Three types of capillary were present. Type III capillaries (resembling those of endocrine glands) had an average wall thickness of 0.17 microns, 54% thinner than those of Type I and II capillaries. Pericapillary spaces around Type III capillaries measured 56 microns2, 100% larger than for Type I vessels (resembling those of skeletal muscle). Only Type III capillaries contained fenestrations (9 per microns2 of endothelial cell) and were the predominant type of capillary in central and caudal subregions of the SFO. Type I capillaries, prevalent in the transitional subregion between the central and rostral parts of the SFO, had 10 cytoplasmic vesicles per micron2 of endothelial cell area, a number not different from that of Type III capillaries but 3x the frequency found in Type II vessels. Type II capillaries (those typical of "blood-brain barrier" endothelium) had low vesicular density (3 per microns2), no fenestrations, and no pericapillary spaces. Luminal diameters and the densities of mitochondria and intercellular junctions were not different among capillary types or subregions in the SFO. Furthermore, there were no morphometric differences for any capillary dimensions between Long-Evans and Brattleboro rats.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Measurement of Capillary Radius and Contact Angle within Porous Media.

    PubMed

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed

    2015-12-01

    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.

  5. Interesterified fat or palm oil as substitutes for partially hydrogenated fat during the perinatal period produces changes in the brain fatty acids profile and increases leukocyte-endothelial interactions in the cerebral microcirculation from the male offspring in adult life.

    PubMed

    Misan, Vanessa; Estato, Vanessa; de Velasco, Patricia Coelho; Spreafico, Flavia Brasil; Magri, Tatiana; Dos Santos, Raísa Magno de Araújo Ramos; Fragoso, Thaiza; Souza, Amanda S; Boldarine, Valter Tadeu; Bonomo, Isabela T; Sardinha, Fátima L C; Oyama, Lila M; Tibiriçá, Eduardo; Tavares do Carmo, Maria das Graças

    2015-08-07

    We investigated whether maternal intake of normolipidic diets with distinct fatty acid (FA) compositions alters the lipidic profile and influences the inflammatory status of the adult offsprings׳ brains. C57BL/6 female mice during pregnancy and lactation received diets containing either soybean oil (CG), partially hydrogenated vegetable fat rich in trans-fatty acids (TG), palm oil (PG), or interesterified fat (IG). After weaning, male offspring from all groups received control diet. The FA profile was measured in the offspring׳s brains at post-natal days 21 and 90. Brain functional capillary density as well as leukocyte-endothelial interactions in the cerebral post-capillary venules was assessed by intravital fluorescence microscopy at post-natal day 90. Inflammation signaling was evaluated through toll-like receptor 4 (TLR4) content in brain of the adult offspring. In the 21-day old offspring, the brains of the TG showed higher levels of trans FA and reduced levels of linoleic acid (LA) and total n-6 polyunsaturated fatty acids (PUFA). At post-natal day 90, TG and IG groups showed reduced levels of eicosapentaenoic acid (EPA) and total n-3 PUFA tended to be lower compared to CG. The offspring׳s brains exhibited an altered microcirculation with increased leukocyte rolling in groups TG, PG and IG and in TG group increased leukocyte adhesion. The TLR4 content of TG, IG and PG groups only tended to increase (23%; 20% and 35%, respectively). Maternal consumption of trans FA, palm oil or interesterified fat during pregnancy and lactation can trigger the initial steps of inflammatory pathways in the brain of offspring in adulthood. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorensen, Christina M.; Ding, Jie; Zhang, Qibin

    Objectives: To characterize the lipid profile of individuals with newly diagnosed type 1 diabetes mellitus using LC-MS-based lipidomics and the accurate mass and time (AMT) tag approach. Design and methods: Lipids were extracted from plasma and sera of 10 subjects from the Diabetes Antibody Standardization Program (years 2000-2005) and 10 non-diabetic subjects and analyzed by capillary liquid chromatography coupled with a hybrid ion-trap-Fourier transform ion cyclotron resonance mass spectrometer. Lipids were identified and quantified using the AMT tag approach. Results: Five hundred sixty lipid features differentiated (q < 0.05) diabetic from healthy individuals in a partial least-squares analysis, characterizing ofmore » individuals with recently diagnosed type 1 diabetes mellitus. Conclusions: A lipid profile associated with newly diagnosed type 1 diabetes may aid in further characterization of biochemical pathways involved in lipid regulation or mobilization and lipotoxicity of pancreatic beta-cells.« less

  7. Ion guiding in macro-size insulating capillaries: straight, tapered, and curved shapes

    NASA Astrophysics Data System (ADS)

    Kojima, Takao M.

    2018-02-01

    When keV energy ions are injected into a tilted insulating capillary, a certain fraction of the injected ions are transported through the tilt angle of the capillary. This ion guiding phenomenon is considered to be caused by a self-organizing charge distribution, where the inner wall of the capillary becomes charged by initial incoming ions. The charge distribution, which is formed, can guide following ions toward the exit of the capillary. Since the initial discovery of this effect, studies of ion guiding by insulating capillaries have been extended to various materials, and different sizes and shapes of capillaries. In recent years, some investigations of the guiding effect of macro-size curved capillaries have also been reported. In this review, relevant studies in a history of ion guiding in curved capillaries are discussed and future directions in this field are considered.

  8. High-speed video capillaroscopy method for imaging and evaluation of moving red blood cells

    NASA Astrophysics Data System (ADS)

    Gurov, Igor; Volkov, Mikhail; Margaryants, Nikita; Pimenov, Aleksei; Potemkin, Andrey

    2018-05-01

    The video capillaroscopy system with high image recording rate to resolve moving red blood cells with velocity up to 5 mm/s into a capillary is considered. Proposed procedures of the recorded video sequence processing allow evaluating spatial capillary area, capillary diameter and central line with high accuracy and reliability independently on properties of individual capillary. Two-dimensional inter frame procedure is applied to find lateral shift of neighbor images in the blood flow area with moving red blood cells and to measure directly the blood flow velocity along a capillary central line. The developed method opens new opportunities for biomedical diagnostics, particularly, due to long-time continuous monitoring of red blood cells velocity into capillary. Spatio-temporal representation of capillary blood flow is considered. Experimental results of direct measurement of blood flow velocity into separate capillary as well as capillary net are presented and discussed.

  9. Automated Parallel Capillary Electrophoretic System

    DOEpatents

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  10. Fluid Delivery System For Capillary Electrophoretic Applications.

    DOEpatents

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  11. Analysis of bovine milk caseins on organic monolithic columns: an integrated capillary liquid chromatography-high resolution mass spectrometry approach for the study of time-dependent casein degradation.

    PubMed

    Pierri, Giuseppe; Kotoni, Dorina; Simone, Patrizia; Villani, Claudio; Pepe, Giacomo; Campiglia, Pietro; Dugo, Paola; Gasparrini, Francesco

    2013-10-25

    Casein proteins constitute approximately 80% of the proteins present in bovine milk and account for many of its nutritional and technological properties. The analysis of the casein fraction in commercially available pasteurized milk and the study of its time-dependent degradation is of considerable interest in the agro-food industry. Here we present new analytical methods for the study of caseins in fresh and expired bovine milk, based on the use of lab-made capillary organic monolithic columns. An integrated capillary high performance liquid chromatography and high-resolution mass spectrometry (Cap-LC-HRMS) approach was developed, exploiting the excellent resolution, permeability and biocompatibility of organic monoliths, which is easily adaptable to the analysis of intact proteins. The resolution obtained on the lab-made Protein-Cap-RP-Lauryl-γ-Monolithic column (270 mm × 0.250 mm length × internal diameter, L × I.D.) in the analysis of commercial standard caseins (αS-CN, β-CN and κ-CN) through Cap-HPLC-UV was compared to the one observe using two packed capillary C4 columns, the ACE C4 (3 μm, 150 mm × 0.300 mm, L × I.D.) and the Jupiter C4 column (5 μm, 150 mm × 0.300 mm, L × I.D.). Thanks to the higher resolution observed, the monolithic capillary column was chosen for the successive degradation studies of casein fractions extracted from bovine milk 1-4 weeks after expiry date. The comparison of the UV chromatographic profiles of skim, semi-skim and whole milk showed a major stability of whole milk towards time-dependent degradation of caseins, which was further sustained by high-resolution analysis on a 50-cm long monolithic column using a 120-min time gradient. Contemporarily, the exact monoisotopic and average molecular masses of intact αS-CN and β-CN protein standards were obtained through high resolution mass spectrometry and used for casein identification in Cap-LC-HRMS analysis. Finally, the proteolytic degradation of β-CN in skim milk and the contemporary formation of low-molecular-weight proteose-peptones (PP) with exact monoisotopic Mr between 9444.0989 Da and 14098.9861 Da was confirmed through the deconvolution of high resolution mass spectra and literature data. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Quantitative analysis of nailfold capillary morphology in patients with fibromyalgia

    PubMed Central

    Choi, Dug-Hyun

    2015-01-01

    Background/Aims Nailfold capillaroscopy (NFC) has been used to examine morphological and functional microcirculation changes in connective tissue diseases. It has been demonstrated that NFC patterns reflect abnormal microvascular dynamics, which may play a role in fibromyalgia (FM) syndrome. The aim of this study was to determine NFC patterns in FM, and their association with clinical features of FM. Methods A total of 67 patients with FM, and 30 age- and sex-matched healthy controls, were included. Nailfold capillary patterns were quantitatively analyzed using computerized NFC. The parameters of interest were as follows: number of capillaries within the central 3 mm, deletion score, apical limb width, capillary width, and capillary dimension. Capillary dimension was determined by calculating the number of capillaries using the Adobe Photoshop version 7.0. Results FM patients had a lower number of capillaries and higher deletion scores on NFC compared to healthy controls (17.3 ± 1.7 vs. 21.8 ± 2.9, p < 0.05; 2.2 ± 0.9 vs. 0.7 ± 0.6, p < 0.05, respectively). Both apical limb width (µm) and capillary width (µm) were significantly decreased in FM patients (1.1 ± 0.2 vs. 3.7 ± 0.6; 5.4 ± 0.5 vs. 7.5 ± 1.4, respectively), indicating that FM patients have abnormally decreased digital capillary diameter and density. Interestingly, there was no difference in capillary dimension between the two groups, suggesting that the length or tortuosity of capillaries in FM patients is increased to compensate for diminished microcirculation. Conclusions FM patients had altered capillary density and diameter in the digits. Diminished microcirculation on NFC may alter capillary density and increase tortuosity. PMID:26161020

  13. How many taxa can be recognized within the complex Tillandsia capillaris (Bromeliaceae, Tillandsioideae)? Analysis of the available classifications using a multivariate approach.

    PubMed

    Castello, Lucía V; Galetto, Leonardo

    2013-01-01

    Tillandsia capillaris Ruiz & Pav., which belongs to the subgenus Diaphoranthema is distributed in Ecuador, Peru, Bolivia, northern and central Argentina, and Chile, and includes forms that are difficult to circumscribe, thus considered to form a complex. The entities of this complex are predominantly small-sized epiphytes, adapted to xeric environments. The most widely used classification defines 5 forms for this complex based on few morphological reproductive traits: Tillandsia capillaris Ruiz & Pav. f. capillaris, Tillandsia capillaris f. incana (Mez) L.B. Sm., Tillandsia capillaris f. cordobensis (Hieron.) L.B. Sm., Tillandsia capillaris f. hieronymi (Mez) L.B. Sm. and Tillandsia capillaris f. virescens (Ruiz & Pav.) L.B. Sm. In this study, 35 floral and vegetative characters were analyzed with a multivariate approach in order to assess and discuss different proposals for classification of the Tillandsia capillaris complex, which presents morphotypes that co-occur in central and northern Argentina. To accomplish this, data of quantitative and categorical morphological characters of flowers and leaves were collected from herbarium specimens and field collections and were analyzed with statistical multivariate techniques. The results suggest that the last classification for the complex seems more comprehensive and three taxa were delimited: Tillandsia capillaris (=Tillandsia capillaris f. incana-hieronymi), Tillandsia virescens s. str. (=Tillandsia capillaris f. cordobensis) and Tillandsia virescens s. l. (=Tillandsia capillaris f. virescens). While Tillandsia capillaris and Tillandsia virescens s. str. co-occur, Tillandsia virescens s. l. is restricted to altitudes above 2000 m in Argentina. Characters previously used for taxa delimitation showed continuous variation and therefore were not useful. New diagnostic characters are proposed and a key is provided for delimiting these three taxa within the complex.

  14. How many taxa can be recognized within the complex Tillandsia capillaris (Bromeliaceae, Tillandsioideae)? Analysis of the available classifications using a multivariate approach

    PubMed Central

    Castello, Lucía V.; Galetto, Leonardo

    2013-01-01

    Abstract Tillandsia capillaris Ruiz & Pav., which belongs to the subgenus Diaphoranthema is distributed in Ecuador, Peru, Bolivia, northern and central Argentina, and Chile, and includes forms that are difficult to circumscribe, thus considered to form a complex. The entities of this complex are predominantly small-sized epiphytes, adapted to xeric environments. The most widely used classification defines 5 forms for this complex based on few morphological reproductive traits: Tillandsia capillaris Ruiz & Pav. f. capillaris, Tillandsia capillaris f. incana (Mez) L.B. Sm., Tillandsia capillaris f. cordobensis (Hieron.) L.B. Sm., Tillandsia capillaris f. hieronymi (Mez) L.B. Sm. and Tillandsia capillaris f. virescens (Ruiz & Pav.) L.B. Sm. In this study, 35 floral and vegetative characters were analyzed with a multivariate approach in order to assess and discuss different proposals for classification of the Tillandsia capillaris complex, which presents morphotypes that co-occur in central and northern Argentina. To accomplish this, data of quantitative and categorical morphological characters of flowers and leaves were collected from herbarium specimens and field collections and were analyzed with statistical multivariate techniques. The results suggest that the last classification for the complex seems more comprehensive and three taxa were delimited: Tillandsia capillaris (=Tillandsia capillaris f. incana-hieronymi), Tillandsia virescens s. str. (=Tillandsia capillaris f. cordobensis) and Tillandsia virescens s. l. (=Tillandsia capillaris f. virescens). While Tillandsia capillaris and Tillandsia virescens s. str. co-occur, Tillandsia virescens s. l. is restricted to altitudes above 2000 m in Argentina. Characters previously used for taxa delimitation showed continuous variation and therefore were not useful. New diagnostic characters are proposed and a key is provided for delimiting these three taxa within the complex. PMID:23805053

  15. Capillary Structures for Exploration Life Support (Capillary Structures)

    NASA Image and Video Library

    2017-07-10

    iss052e013146 (July 10, 2017) --- Astronaut Jack Fischer is photographed during setup of hardware for the Capillary Structures for Exploration Life Support (Capillary Structures) two sorbent demonstrations. The Capillary Structures for Exploration Life Support (Capillary Structures) investigation studies a new method using structures of specific shapes to manage fluid and gas mixtures. The investigation studies water recycling and carbon dioxide removal, benefiting future efforts to design lightweight, more reliable life support systems for future space missions.

  16. New type of capillary for use as ion beam collimator and air-vacuum interface

    NASA Astrophysics Data System (ADS)

    Stoytschew, V.; Schulte-Borchers, M.; Božičević Mihalića, Iva; Perez, R. D.

    2016-08-01

    Glass capillaries offer a unique way to combine small diameter ion beam collimation with an air-vacuum interface for ambient pressure ion beam applications. Usually they have an opening diameter of a few microns, limiting the air inflow sufficiently to maintain stable conditions on the vacuum side. As the glass capillaries generally are quite thin and fragile, handling of the capillary in the experiment becomes difficult. They also introduce an X-ray background produced by the capillary wall material, which has to be shielded or subtracted from the data for Particle Induced X-ray Emission (PIXE) applications. To overcome both drawbacks, a new type of conical glass capillary has been developed. It has a higher wall thickness eliminating the low energy X-ray background produced by common capillaries and leading to a more robust lens. The results obtained in first tests show, that this new capillary is suitable for ion beam collimation and encourage further work on the capillary production process to provide thick wall capillaries with an outlet diameter in the single digit micro- or even nanometre range.

  17. Pore-scale modeling of Capillary Penetration of Wetting Liquid into 3D Fibrous Media: A Critical Examination of Equivalent Capillary Concept

    NASA Astrophysics Data System (ADS)

    Palakurthi, Nikhil Kumar; Ghia, Urmila; Comer, Ken

    2013-11-01

    Capillary penetration of liquid through fibrous porous media is important in many applications such as printing, drug delivery patches, sanitary wipes, and performance fabrics. Historically, capillary transport (with a distinct liquid propagating front) in porous media is modeled using capillary-bundle theory. However, it is not clear if the capillary model (Washburn equation) describes the fluid transport in porous media accurately, as it assumes uniformity of pore sizes in the porous medium. The present work investigates the limitations of the applicability of the capillary model by studying liquid penetration through virtual fibrous media with uniform and non-uniform pore-sizes. For the non-uniform-pore fibrous medium, the effective capillary radius of the fibrous medium was estimated from the pore-size distribution curve. Liquid penetration into the 3D virtual fibrous medium at micro-scale was simulated using OpenFOAM, and the numerical results were compared with the Washburn-equation capillary-model predictions. Preliminary results show that the Washburn equation over-predicts the height rise in the early stages (purely inertial and visco-inertial stages) of capillary transport.

  18. Two-dimensional capillary electrophoresis: capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection

    PubMed Central

    Dickerson, Jane A.; Ramsay, Lauren M.; Dada, Oluwatosin O.; Cermak, Nathan

    2011-01-01

    Capillary isoelectric focusing and capillary zone electrophoresis are coupled with laser-induced fluorescence detection to create an ultrasensitive two-dimensional separation method for proteins. In this method, two capillaries are joined through a buffer filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second dimension separation. A fraction was transferred to the second dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125. PMID:20603830

  19. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.

    PubMed

    Safavieh, Roozbeh; Juncker, David

    2013-11-07

    Microfluidic capillary systems employ surface tension effects to manipulate liquids, and are thus self-powered and self-regulated as liquid handling is structurally and chemically encoded in microscale conduits. However, capillary systems have been limited to perform simple fluidic operations. Here, we introduce complex capillary flow circuits that encode sequential flow of multiple liquids with distinct flow rates and flow reversal. We first introduce two novel microfluidic capillary elements including (i) retention burst valves and (ii) robust low aspect ratio trigger valves. These elements are combined with flow resistors, capillary retention valves, capillary pumps, and open and closed reservoirs to build a capillary circuit that, following sample addition, autonomously delivers a defined sequence of multiple chemicals according to a preprogrammed and predetermined flow rate and time. Such a circuit was used to measure the concentration of C-reactive protein. This work illustrates that as in electronics, complex capillary circuits may be built by combining simple capillary elements. We define such circuits as "capillarics", and introduce symbolic representations. We believe that more complex circuits will become possible by expanding the library of building elements and formulating abstract design rules.

  20. Development of SEM/STEM-WDX for highly sensitive detection of light elements

    NASA Astrophysics Data System (ADS)

    Anan, Y.; Koguchi, M.; Kimura, T.; Sekiguchi, T.

    2018-02-01

    In this study, to detect the light element lithium (Li) and to detect low dosed Boron (B) in the local area at nm order, we developed an analytical electron microscope equipped with an improved serial (S)-type WDX (wavelength dispersive X-ray spectroscopy) system. In detail, to detect Li, we developed a high-conductivity multi-capillary X-ray (MCX) lens, and a diffractor with a lattice spacing (d) of 15 nm, and with a spacing variation (δ d) of 0.8 nm. Moreover, to detect low dosed light element B, we designed a high-conductivity MCX lens based on the soft X-ray reflectivity in the capillary and calculation. We developed a large-solid-angle MCX lens whose conductivity of the characteristic X-rays of B became 20 times higher than that of an MCX lens with a 30-mm focal length. Our developed analytical electron microscope was applied to a LiAl specimen and a low B-doped Si substrate specimen, and the performance of this analytical electron microscope was evaluated. As a results, this analytical electron microscope could detect the characteristic X-rays of Li with a minimum mass fraction (MMF) of 8.4 atomic % (at. %). The energy resolution was 1 eV at 55 eV. From the results of measuring the line profile of B for the unpatterned B-implantation area on a B-doped Si substrate specimen, the measured line profile data were in good agreement with secondary ion mass spectrometry data up to a depth of 100 nm with a B concentration of 0.05 at. %.

  1. Capillary nano-immunoassays: advancing quantitative proteomics analysis, biomarker assessment, and molecular diagnostics.

    PubMed

    Chen, Jin-Qiu; Wakefield, Lalage M; Goldstein, David J

    2015-06-06

    There is an emerging demand for the use of molecular profiling to facilitate biomarker identification and development, and to stratify patients for more efficient treatment decisions with reduced adverse effects. In the past decade, great strides have been made to advance genomic, transcriptomic and proteomic approaches to address these demands. While there has been much progress with these large scale approaches, profiling at the protein level still faces challenges due to limitations in clinical sample size, poor reproducibility, unreliable quantitation, and lack of assay robustness. A novel automated capillary nano-immunoassay (CNIA) technology has been developed. This technology offers precise and accurate measurement of proteins and their post-translational modifications using either charge-based or size-based separation formats. The system not only uses ultralow nanogram levels of protein but also allows multi-analyte analysis using a parallel single-analyte format for increased sensitivity and specificity. The high sensitivity and excellent reproducibility of this technology make it particularly powerful for analysis of clinical samples. Furthermore, the system can distinguish and detect specific protein post-translational modifications that conventional Western blot and other immunoassays cannot easily capture. This review will summarize and evaluate the latest progress to optimize the CNIA system for comprehensive, quantitative protein and signaling event characterization. It will also discuss how the technology has been successfully applied in both discovery research and clinical studies, for signaling pathway dissection, proteomic biomarker assessment, targeted treatment evaluation and quantitative proteomic analysis. Lastly, a comparison of this novel system with other conventional immuno-assay platforms is performed.

  2. Installing artificial macropores in degraded soils to enhance vertical infiltration and increase soil carbon content

    NASA Astrophysics Data System (ADS)

    Mori, Yasushi; Fujihara, Atsushi; Yamagishi, Kazuto

    2014-12-01

    Of all terrestrial media (including vegetation and the atmosphere), soil is the largest store of carbon. Soils also have important functions such as water storage and plant support roles. However, at present, these characteristics do not fully function, because of, for example, climate-change-induced heavy rainfall would wash away the organic-rich surface soils. In this study, artificial macropores were introduced into exposed soil plots for the purpose of enhancing infiltration, and fibrous material was inserted to reinforce the macropore structure. As expected, the capillary force caused by the fibers drew surface water deeper into the soil profile before saturation. Additionally, the same capillary force promoted vertical transport, while micropores (matrix) enhanced horizontal flow. Our results show that infiltration was more effective in the fiber-containing macropores than in empty macropores. Additionally, our column experiments showed that artificial macropores reduced surface runoff when the rainfall intensities were 2, 4, and 20 mm · h-1 but not for 80 mm · h-1. In field experiments, soil moisture sensors installed at depths of 10, 30, and 50 cm responded well to rainfall, showing that artificial macropores were able to successfully introduce surface water into the soil profile. One year after the artificial macropores were installed, a field survey carried out to assess soil organic matter and plant growth showed that plant biomass had doubled and that there was a significant increase in soil carbon. This novel technique has many advantages as it mimics natural processes, is low cost, and has a simple structure.

  3. Particle sizer and DNA sequencer

    DOEpatents

    Olivares, Jose A.; Stark, Peter C.

    2005-09-13

    An electrophoretic device separates and detects particles such as DNA fragments, proteins, and the like. The device has a capillary which is coated with a coating with a low refractive index such as Teflon.RTM. AF. A sample of particles is fluorescently labeled and injected into the capillary. The capillary is filled with an electrolyte buffer solution. An electrical field is applied across the capillary causing the particles to migrate from a first end of the capillary to a second end of the capillary. A detector light beam is then scanned along the length of the capillary to detect the location of the separated particles. The device is amenable to a high throughput system by providing additional capillaries. The device can also be used to determine the actual size of the particles and for DNA sequencing.

  4. Fatty acid profiles of Vibrio parahaemolyticus and its changes with environment.

    PubMed

    Xu, Min; Wang, Jing; Mou, Haijin

    2015-01-01

    The fatty acid (FA) profiles of 15 strains representing four genera (Vibrio, Pseudomonas, Aeromonas, and Shewanella) and seven species were compared by capillary gas chromatography with flame ionization detection. FA fingerprints of Vibrio parahaemolyticus were established by similarity calculation and principle component analysis. This provided a simple measure for distinguishing V. parahaemolyticus from other bacteria. The similarity scores indicated by correlation coefficient and vector cosine were divided into three regions and suggested that the strains with scores higher than 0.980 probably belonged to V. parahaemolyticus. However, samples with low scores (<0.850) were classified under other genera. Furthermore, the alterations in FA profiles of V. parahaemolyticus in the presence of various environmental pressures were investigated. The production of saturated FA (SFA) increased gradually concomitant with a decreased proportion of unsaturated FA (UFA) with rising temperature. Similarly, the SFA tended to increase at the expense of UFA with prolonged culture time. In addition, V. parahaemolyticus changed its FA profiles to contain increased short-chained FA to resist an acidic environment, whereas alkaline conditions stimulated high production of long-chained FA. Analysis on FA profile is valuable for the physiological study of V. parahaemolyticus and its rapid identification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of masticatory stimulation on the quantity and quality of saliva and the salivary metabolomic profile

    PubMed Central

    Hoshi, Noriyuki; Soga, Tomoyoshi; Tomita, Masaru; Sugimoto, Masahiro; Kimoto, Katsuhiko

    2017-01-01

    Background This study characterized the changes in quality and quantity of saliva, and changes in the salivary metabolomic profile, to understand the effects of masticatory stimulation. Methods Stimulated and unstimulated saliva samples were collected from 55 subjects and salivary hydrophilic metabolites were comprehensively quantified using capillary electrophoresis-time-of-flight mass spectrometry. Results In total, 137 metabolites were identified and quantified. The concentrations of 44 metabolites in stimulated saliva were significantly higher than those in unstimulated saliva. Pathway analysis identified the upregulation of the urea cycle and synthesis and degradation pathways of glycine, serine, cysteine and threonine in stimulated saliva. A principal component analysis revealed that the effect of masticatory stimulation on salivary metabolomic profiles was less dependent on sample population sex, age, and smoking. The concentrations of only 1 metabolite in unstimulated saliva, and of 3 metabolites stimulated saliva, showed significant correlation with salivary secretion volume, indicating that the salivary metabolomic profile and salivary secretion volume were independent factors. Conclusions Masticatory stimulation affected not only salivary secretion volume, but also metabolite concentration patterns. A low correlation between the secretion volume and these patterns supports the conclusion that the salivary metabolomic profile may be a new indicator to characterize masticatory stimulation. PMID:28813487

  6. Multiple capillary biochemical analyzer

    DOEpatents

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  7. Progression of Diabetic Capillary Occlusion: A Model

    PubMed Central

    Gens, John Scott; Glazier, James A.; Burns, Stephen A.; Gast, Thomas J.

    2016-01-01

    An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions. PMID:27300722

  8. Multiple capillary biochemical analyzer

    DOEpatents

    Dovichi, Norman J.; Zhang, Jian Z.

    1995-01-01

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibres to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands.

  9. Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil.

    PubMed

    Kumar, S Naresh

    2011-12-28

    Coconut oil, the main product of coconut fruit, is the richest source of glycerol and lauric acid and hence is called lauric oil. This paper reports the fatty acid profile of oil from 60 Talls, 14 Dwarfs, and 34 hybrids. These include collections from 13 countries covering a large coconut-growing area of the world, apart from the indigenous ones. Capillary gas chromatography analysis of oil indicated a wider variation for the fatty acid profile than earlier reported. Apart from this, for the first time other fatty acids such as behenic and lignoceric acids were detected. Oil from cultivars and hybrids of coconut has significantly differed, particularly for commercially important fatty acids such as lauric acid and unsaturated fatty acids. However, coconut oil seems to have a conserved fatty acid profile, mainly because of low unsaturated fatty acids, indicating the possibility of grouping cultivars on the basis of their fatty acid profiles. The cluster analysis based on fatty acid profile indicated grouping together of geographically and typically closely related cultivars. Cultivars with high concentrations of specific fatty acids can be of potential use for industrial exploitation, whereas those with high concentrations of short- and medium-chain fatty acids and unsaturated fatty acids are more suitable for human consumption. Cultivars and hybrids with high and low values for each of the fatty acids are also identified.

  10. Combination of ICP-MS, capillary electrophoresis, and their hyphenation for probing Ru(III) metallodrug-DNA interactions.

    PubMed

    Foteeva, Lidia S; Matczuk, Magdalena; Pawlak, Katarzyna; Aleksenko, Svetlana S; Nosenko, Sergey V; Karandashev, Vasily K; Jarosz, Maciej; Timerbaev, Andrei R

    2017-03-01

    Determination of the DNA-binding reactivity and affinity is an important part of a successful program for the selection of metallodrug candidates. For such assaying, a range of complementary analytical techniques was proposed and tested here using one of few anticancer metal-based drugs that are currently in clinical trials, indazolium trans-[tetrachloridobis(1H-indazole)ruthenate(III), and a DNA oligonucleotide. A high reactivity of the Ru drug was confirmed in affinity capillary electrophoresis (CE) mode, where adduct formation takes place in situ (i.e., in the capillary filled with an oligonucleotide-containing electrolyte). To further characterize the binding kinetics, a drug-oligonucleotide mixture was incubated for a different period of time, followed by ultrafiltration separation into two different in molecular weight fractions (>3 and <3 kDa). The time-dependent distribution profiles of the Ru drug were then assessed by CE-inductively coupled plasma mass spectrometry (ICP-MS), revealing that at least two DNA adducts exist at equilibrium conditions. Using standalone ICP-MS, dominant equilibrium amount of the bound ruthenium was found to occur in a fraction of 5-10 kDa, which includes the oligonucleotide (ca. 6 kDa). Importantly, in all three assays, the drug was used for the first time in in-vitro studies, not in the intact form but as its active species released from the transferrin adduct at simulated cancer cytosolic conditions. This circumstance makes the established analytical platform promising to provide a detailed view on metallodrug targeting, including other possible biomolecules and ex vivo samples.

  11. On-line capillary electrophoresis/laser-induced fluorescence/mass spectrometry analysis of glycans labeled with Teal™ fluorescent dye using an electrokinetic sheath liquid pump-based nanospray ion source.

    PubMed

    Khan, Shaheer; Liu, Jenkuei; Szabo, Zoltan; Kunnummal, Baburaj; Han, Xiaorui; Ouyang, Yilan; Linhardt, Robert J; Xia, Qiangwei

    2018-06-15

    N-linked glycan analysis of recombinant therapeutic proteins, such as monoclonal antibodies, Fc-fusion proteins, and antibody-drug conjugates, provides valuable information regarding protein therapeutics glycosylation profile. Both qualitative identification and quantitative analysis of N-linked glycans on recombinant therapeutic proteins are critical analytical tasks in the biopharma industry during the development of a biotherapeutic. Currently, such analyses are mainly carried out using capillary electrophoresis/laser-induced fluorescence (CE/LIF), liquid chromatography/fluorescence (LC/FLR), and liquid chromatography/fluorescence/mass spectrometry (LC/FLR/MS) technologies. N-linked glycans are first released from glycoproteins by enzymatic digestion, then labeled with fluorescence dyes for subsequent CE or LC separation, and LIF or MS detection. Here we present an on-line CE/LIF/MS N-glycan analysis workflow that incorporates the fluorescent Teal™ dye and an electrokinetic pump-based nanospray sheath liquid capillary electrophoresis/mass spectrometry (CE/MS) ion source. Electrophoresis running buffer systems using ammonium acetate and ammonium hydroxide were developed for the negative ion mode CE/MS analysis of fluorescence-labeled N-linked glycans. Results show that on-line CE/LIF/MS analysis can be readily achieved using this versatile CE/MS ion source on common CE/MS instrument platforms. This on-line CE/LIF/MS method using Teal™ fluorescent dye and electrokinetic pump-based nanospray sheath liquid CE/MS coupling technology holds promise for on-line quantitation and identification of N-linked glycans on recombinant therapeutic proteins. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Injectable Solid Peptide Hydrogel as Cell Carrier: Effects of Shear Flow on Hydrogel and Cell Payload

    PubMed Central

    Yan, Congqi; Mackay, Michael E.; Czymmek, Kirk; Nagarkar, Radhika P.; Schneider, Joel P.; Pochan, Darrin J.

    2012-01-01

    β-hairpin peptide-based hydrogels are a class of injectable solid hydrogels that can deliver encapsulated cells or molecular therapies to a target site via syringe or catheter injection as a carrier material. These physical hydrogels can shear-thin and consequently flow as a low-viscosity material under a sufficient shear stress but immediately recover back into a solid upon removal of the stress, allowing them to be injected as preformed gel solids. Hydrogel behavior during flow was studied in a cylindrical capillary geometry that mimicked the actual situation of injection through a syringe needle in order to quantify effects of shear-thin injection delivery on hydrogel flow behavior and encapsulated cell payloads. It was observed that all β-hairpin peptide hydrogels investigated displayed a promising flow profile for injectable cell delivery: a central wide plug flow region where gel material and cell payloads experienced little or no shear rate and a narrow shear zone close to the capillary wall where gel and cells were subject to shear deformation. The width of the plug flow region was found to be weakly dependent on hydrogel rigidity and flow rate. Live-dead assays were performed on encapsulated MG63 cells three hours after injection flow and revealed that shear-thin delivery through the capillary had little impact on cell viability and the spatial distribution of encapsulated cell payloads. These observations help us to fundamentally understand how the gels flow during injection through a thin catheter and how they immediately restore mechanically and morphologically relative to pre-flow, static gels. PMID:22390812

  13. A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: Application and comparison to experiments of CO2 sequestration at pore scale

    NASA Astrophysics Data System (ADS)

    Fakhari, Abbas; Li, Yaofa; Bolster, Diogo; Christensen, Kenneth T.

    2018-04-01

    We implement a phase-field based lattice-Boltzmann (LB) method for numerical simulation of multiphase flows in heterogeneous porous media at pore scales with wettability effects. The present method can handle large density and viscosity ratios, pertinent to many practical problems. As a practical application, we study multiphase flow in a micromodel representative of CO2 invading a water-saturated porous medium at reservoir conditions, both numerically and experimentally. We focus on two flow cases with (i) a crossover from capillary fingering to viscous fingering at a relatively small capillary number, and (ii) viscous fingering at a relatively moderate capillary number. Qualitative and quantitative comparisons are made between numerical results and experimental data for temporal and spatial CO2 saturation profiles, and good agreement is found. In particular, a correlation analysis shows that any differences between simulations and results are comparable to intra-experimental differences from replicate experiments. A key conclusion of this work is that system behavior is highly sensitive to boundary conditions, particularly inlet and outlet ones. We finish with a discussion on small-scale flow features, such as the emergence of strong recirculation zones as well as flow in which the residual phase is trapped, including a close look at the detailed formation of a water cone. Overall, the proposed model yields useful information, such as the spatiotemporal evolution of the CO2 front and instantaneous velocity fields, which are valuable for understanding the mechanisms of CO2 infiltration at the pore scale.

  14. Effects of altitude and exercise on pulmonary capillary integrity: evidence for subclinical high-altitude pulmonary edema.

    PubMed

    Eldridge, Marlowe W; Braun, Ruedi K; Yoneda, Ken Y; Walby, William F

    2006-03-01

    Strenuous exercise may be a significant contributing factor for development of high-altitude pulmonary edema, particularly at low or moderate altitudes. Thus we investigated the effects of heavy cycle ergometer exercise (90% maximal effort) under hypoxic conditions in which the combined effects of a marked increase in pulmonary blood flow and nonuniform hypoxic pulmonary vasoconstriction could add significantly to augment the mechanical stress on the pulmonary microcirculation. We postulated that intense exercise at altitude would result in an augmented permeability edema. We recruited eight endurance athletes and examined their bronchoalveolar lavage fluid (BALF) for red blood cells (RBCs), protein, inflammatory cells, and soluble mediators at 2 and 26 h after intense exercise under normoxic and hypoxic conditions. After heavy exercise, under all conditions, the athletes developed a permeability edema with high BALF RBC and protein concentrations in the absence of inflammation. We found that exercise at altitude (3,810 m) caused significantly greater leakage of RBCs [9.2 (SD 3.1)x10(4) cells/ml] into the alveolar space than that seen with normoxic exercise [5.4 (SD 1.2)x10(4) cells/ml]. At altitude, the 26-h postexercise BALF revealed significantly higher RBC and protein concentrations, suggesting an ongoing capillary leak. Interestingly, the BALF profiles following exercise at altitude are similar to that of early high-altitude pulmonary edema. These findings suggest that pulmonary capillary disruption occurs with intense exercise in healthy humans and that hypoxia augments the mechanical stresses on the pulmonary microcirculation.

  15. Capillary reference half-cell

    DOEpatents

    Hall, Stephen H.

    1996-01-01

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods.

  16. Capillary reference half-cell

    DOEpatents

    Hall, S.H.

    1996-02-13

    The present invention is a reference half-cell electrode wherein intermingling of test fluid with reference fluid does not affect the performance of the reference half-cell over a long time. This intermingling reference half-cell may be used as a single or double junction submersible or surface reference electrode. The intermingling reference half-cell relies on a capillary tube having a first end open to reference fluid and a second end open to test fluid wherein the small diameter of the capillary tube limits free motion of fluid within the capillary to diffusion. The electrode is placed near the first end of the capillary in contact with the reference fluid. The method of operation of the present invention begins with filling the capillary tube with a reference solution. After closing the first end of the capillary, the capillary tube may be fully submerged or partially submerged with the second open end inserted into test fluid. Since the electrode is placed near the first end of the capillary, and since the test fluid may intermingle with the reference fluid through the second open end only by diffusion, this intermingling capillary reference half-cell provides a stable voltage potential for long time periods. 11 figs.

  17. Electrphoretic Sample Excitation Light Assembly.

    DOEpatents

    Li, Qingbo; Liu, Changsheng

    2002-04-02

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  18. Motorized Positioning Apparatus Having Coaxial Carrousels.

    DOEpatents

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2002-04-02

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  19. Measurement of the refractive index of microquantity liquid filled in a capillary and a capillary wall without destruction.

    PubMed

    Li, Qiang; Pu, Xiaoyun

    2013-07-20

    A method for measuring the refractive index (RI) of a small volume of liquid and a capillary wall is presented in this paper. A transparent capillary filled with liquid is used as a cylindrical positive lens; subsequently, the focal length of the lens is derived through the base of paraxial approximation, which is recorded as a function of the RIs of the liquid and capillary wall. With the RI of a capillary wall known, the RI of the liquid can be obtained by measuring the focal length of the lens, which is characterized by a microquantity liquid, spatial resolution, and easy operation. The RI of the capillary wall can be calculated without ruining the capillary if the capillary is filled with a standard liquid (RI is known), the deviation of which is less than 0.003 RIU. The factors affecting accuracy of the measurement, for instance, the depth of a field (DOF) in a reading microscope system and the outer and inner diameters of a capillary are analyzed, while illustrating that the effective DOF plays an essential role in accurate measurement.

  20. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability.

    PubMed

    Sarin, Hemant

    2010-08-11

    Much of our current understanding of microvascular permeability is based on the findings of classic experimental studies of blood capillary permeability to various-sized lipid-insoluble endogenous and non-endogenous macromolecules. According to the classic small pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the transcapillary flow rates of various-sized systemically or regionally perfused endogenous macromolecules, transcapillary exchange across the capillary wall takes place through a single population of small pores that are approximately 6 nm in diameter; whereas, according to the dual pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the accumulation of various-sized systemically or regionally perfused non-endogenous macromolecules in the locoregional tissue lymphatic drainages, transcapillary exchange across the capillary wall also takes place through a separate population of large pores, or capillary leaks, that are between 24 and 60 nm in diameter. The classification of blood capillary types on the basis of differences in the physiologic upper limits of pore size to transvascular flow highlights the differences in the transcapillary exchange routes for the transvascular transport of endogenous and non-endogenous macromolecules across the capillary walls of different blood capillary types. The findings and published data of studies on capillary wall ultrastructure and capillary microvascular permeability to lipid-insoluble endogenous and non-endogenous molecules from the 1950s to date were reviewed. In this study, the blood capillary types in different tissues and organs were classified on the basis of the physiologic upper limits of pore size to the transvascular flow of lipid-insoluble molecules. Blood capillaries were classified as non-sinusoidal or sinusoidal on the basis of capillary wall basement membrane layer continuity or lack thereof. Non-sinusoidal blood capillaries were further sub-classified as non-fenestrated or fenestrated based on the absence or presence of endothelial cells with fenestrations. The sinusoidal blood capillaries of the liver, myeloid (red) bone marrow, and spleen were sub-classified as reticuloendothelial or non-reticuloendothelial based on the phago-endocytic capacity of the endothelial cells. The physiologic upper limit of pore size for transvascular flow across capillary walls of non-sinusoidal non-fenestrated blood capillaries is less than 1 nm for those with interendothelial cell clefts lined with zona occludens junctions (i.e. brain and spinal cord), and approximately 5 nm for those with clefts lined with macula occludens junctions (i.e. skeletal muscle). The physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated blood capillaries with diaphragmed fenestrae ranges between 6 and 12 nm (i.e. exocrine and endocrine glands); whereas, the physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated capillaries with open 'non-diaphragmed' fenestrae is approximately 15 nm (kidney glomerulus). In the case of the sinusoidal reticuloendothelial blood capillaries of myeloid bone marrow, the transvascular transport of non-endogenous macromolecules larger than 5 nm into the bone marrow interstitial space takes place via reticuloendothelial cell-mediated phago-endocytosis and transvascular release, which is the case for systemic bone marrow imaging agents as large as 60 nm in diameter. The physiologic upper limit of pore size in the capillary walls of most non-sinusoidal blood capillaries to the transcapillary passage of lipid-insoluble endogenous and non-endogenous macromolecules ranges between 5 and 12 nm. Therefore, macromolecules larger than the physiologic upper limits of pore size in the non-sinusoidal blood capillary types generally do not accumulate within the respective tissue interstitial spaces and their lymphatic drainages. In the case of reticuloendothelial sinusoidal blood capillaries of myeloid bone marrow, however, non-endogenous macromolecules as large as 60 nm in diameter can distribute into the bone marrow interstitial space via the phago-endocytic route, and then subsequently accumulate in the locoregional lymphatic drainages of tissues following absorption into the lymphatic drainage of periosteal fibrous tissues, which is the lymphatic drainage of myeloid bone marrow. When the ultrastructural basis for transcapillary exchange across the capillary walls of different capillary types is viewed in this light, it becomes evident that the physiologic evidence for the existence of aqueous large pores ranging between 24 and 60 nm in diameter in the capillary walls of blood capillaries, is circumstantial, at best.

  1. High-throughput sequencing: a failure mode analysis.

    PubMed

    Yang, George S; Stott, Jeffery M; Smailus, Duane; Barber, Sarah A; Balasundaram, Miruna; Marra, Marco A; Holt, Robert A

    2005-01-04

    Basic manufacturing principles are becoming increasingly important in high-throughput sequencing facilities where there is a constant drive to increase quality, increase efficiency, and decrease operating costs. While high-throughput centres report failure rates typically on the order of 10%, the causes of sporadic sequencing failures are seldom analyzed in detail and have not, in the past, been formally reported. Here we report the results of a failure mode analysis of our production sequencing facility based on detailed evaluation of 9,216 ESTs generated from two cDNA libraries. Two categories of failures are described; process-related failures (failures due to equipment or sample handling) and template-related failures (failures that are revealed by close inspection of electropherograms and are likely due to properties of the template DNA sequence itself). Preventative action based on a detailed understanding of failure modes is likely to improve the performance of other production sequencing pipelines.

  2. Method of making tapered capillary tips with constant inner diameters

    DOEpatents

    Kelly, Ryan T [West Richland, WA; Page, Jason S [Kennewick, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2009-02-17

    Methods of forming electrospray ionization emitter tips are disclosed herein. In one embodiment, an end portion of a capillary tube can be immersed into an etchant, wherein the etchant forms a concave meniscus on the outer surface of the capillary. Variable etching rates in the meniscus can cause an external taper to form. While etching the outer surface of the capillary wall, a fluid can be flowed through the interior of the capillary tube. Etching continues until the immersed portion of the capillary tube is completely etched away.

  3. Chemical microreactor and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA

    2011-08-09

    A method for forming a chemical microreactor includes forming at least one capillary microchannel in a substrate having at least one inlet and at least one outlet, integrating at least one heater into the chemical microreactor, interfacing the capillary microchannel with a liquid chemical reservoir at the inlet of the capillary microchannel, and interfacing the capillary microchannel with a porous membrane near the outlet of the capillary microchannel, the porous membrane being positioned beyond the outlet of the capillary microchannel, wherein the porous membrane has at least one catalyst material imbedded therein.

  4. Impact of land management on soil structure and soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Jirku, Veronika; Nikodem, Antonin; Muhlhanselova, Marcela; Zigova, Anna

    2010-05-01

    Study is focused on a comparison of a soil structure and soil hydraulic properties within soil profiles of a same soil type under different land management. Study was performed in Haplic Luvisol in Hnevceves the Czech Republic. Two soil profiles, which were in close distance from each other, were chosen: 1. under the conventional tillage, 2. under the permanent (30 years) grass cover. Soil sampling and field experiments were carried out immediately after the harvest of winter barley in 2008. The micromorphological images were used to evaluate the soil structure of all Ap, Bt1, Bt2 and C diagnostic horizons. The hydraulic properties of the diagnostic horizons were studied in the laboratory using multistep outflow experiments performed on the undisturbed 100-cm3 soil samples. A tension disc infiltrometer (with a disc radius of 10 cm) and minidisc tension infiltrometers (with a disc radius of 2.2 cm) were used to measure cumulative water infiltration under unsaturated conditions created using a pressure head of -2 cm. Measurements were performed at a depths of 5, 45, 75 and 110 cm, which corresponded to the Ap, Bt1, Bt2 and C horizons of studied Haplic Luvisol at both locations. The Guelph permeameter was used to measure cumulative water flux under surface ponding conditions. The depth of the drilled well was 10, 50, 80 and 115 cm, the well radius was 3 cm, and the well ponding depth was 5 cm. Both tests were used to evaluate hydraulic conductivity (K for h=-2cm, and Ks) values. Results showed, that while properties in the Bt2 and C horizons of both soil profiles were relatively similar, properties in the Ap and Bt1 horizons were different. The fraction of gravitational pores (which may cause preferential flow) in the Ap and Bt1 horizons of the soil profile under the convectional tillage was large than those in the Ap and Bt1 horizons of the soil profile under the permanent grass. This influenced for instance the Ks values measured using the Guelph permeametr. The Ks values were higher and more variable in the soil profile under the convectional tillage than those in the soil profile under the permanent grass. On the other hand, due to the periodical tillage and consequent soil structure breakdown, the fraction of the large capillary pores were smaller in the Ap horizon of the soil profile under the convectional tillage than that in the Ap horizon of the soil profile under the permanent grass. As result the K (h=-2cm) values measured using the tension infiltrometer in the soil profile under the permanent grass was higher than those in the soil profile under the convectional tillage. However, the fraction of the large capillary pores and K (h=-2cm) values were similar in the Bt1 horizons of both soil profiles. Thus the land management impacted both macropores and matrix pores in the Ap horizon and macropores (prismatic structure and biopores) in the Bt1 horizon. Acknowledgement: Authors acknowledge the financial support of the Grant Agency of the Czech Republic (grant No. GA CR 526/08/0434) and the Ministry of Education, Youth and Sports of the Czech Republic (grant No. MSM 6046070901).

  5. Laws of physics help explain capillary non-perfusion in diabetic retinopathy.

    PubMed

    Stefánsson, E; Chan, Y K; Bek, T; Hardarson, S H; Wong, D; Wilson, D I

    2018-02-01

    The purpose is to use laws of physics to elucidate the mechanisms behind capillary non-perfusion in diabetic retinopathy. In diabetic retinopathy, loss of pericytes weakens capillary walls and the vessel dilates. A dilated capillary has reduced resistance to flow, therefore increased flow in that vessel and decreased in adjoining capillaries. A preferential shunt vessel is thus formed from the dilated capillary and the adjacent capillaries become non-perfused. We apply the laws of Laplace and Hagen-Poiseuille to better understand the phenomena that lead to capillary non-perfusion. These laws of physics can give a foundation for physical or mathematical models to further elucidate this field of study. The law of Laplace predicts that a weaker vessel wall will dilate, assuming constant transmural pressure. The Hagen-Poiseuille equation for flow and the Ostwald-de Waele relationship for viscosity predict that a dilated vessel will receive a higher portion of the fluid flow than the adjoining capillaries. Viscosity will decrease in the dilated vessel, furthering the imbalance and resulting in a patch of non-perfused capillaries next to the dilated 'preferential' shunt vessel. Physical principles support or inspire novel hypotheses to explain poorly understood phenomena in ophthalmology. This thesis of pericyte death and capillary remodelling, which was first proposed by Cogan and Kuwabara, already agrees with histological and angiographical observations in diabetic retinopathy. We have shown that it is also supported by classical laws of physics.

  6. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  7. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  8. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  9. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  10. The Texas horned lizard as model for robust capillary structures for passive directional transport of cooling lubricants

    NASA Astrophysics Data System (ADS)

    Comanns, Philipp; Winands, Kai; Pothen, Mario; Bott, Raya A.; Wagner, Hermann; Baumgartner, Werner

    2016-04-01

    Moisture-harvesting lizards, such as the Texas horned lizard Phrynosoma cornutum, have remarkable adaptations for inhabiting arid regions. Special skin structures, in particular capillary channels in between imbricate overlapping scales, enable the lizard to collect water by capillarity and to transport it to the snout for ingestion. This fluid transport is passive and directional towards the lizard's snout. The directionality is based on geometric principles, namely on a periodic pattern of interconnected half-open capillary channels that narrow and widen. Following a biomimetic approach, these principles were transferred to technical prototype design and manufacturing. Capillary structures, 50 μm to 300 μm wide and approx. 70 μm deep, were realized by use of a pulsed picosecond laser in hot working tool steel, hardened to 52 HRC. In order to achieve highest functionality, strategies were developed to minimize potential structural inaccuracies, which can occur at the bottom of the capillary structures caused by the laser process. Such inaccuracies are in the range of 10 μm to 15 μm and form sub-capillary structures with greater capillary forces than the main channels. Hence, an Acceleration Compensation Algorithm was developed for the laser process to minimize or even avoid these inaccuracies. The capillary design was also identified to have substantial influence; by a hexagonal capillary network of non-parallel capillaries potential influences of sub-capillaries on the functionality were reduced to realize a robust passive directional capillary transport. Such smart surface structures can lead to improvements of technical systems by decreasing energy consumption and increasing the resource efficiency.

  11. Nanoscale structure of the oil-water interface

    DOE PAGES

    Fukuto, M.; Ocko, B. M.; Bonthuis, D. J.; ...

    2016-12-15

    X-ray reflectivity (XR) and atomistic molecular dynamics (MD) simulations, carried out to determine the structure of the oil-water interface, provide new insight into the simplest liquid-liquid interface. For several oils (hexane, dodecane, and hexadecane) the XR shows very good agreement with a monotonic interface-normal electron density profile (EDP) broadened only by capillary waves. Similar agreement is also found for an EDP including a sub-Å thick electron depletion layer separating the oil and the water. As a result, the XR and MD derived depletions are much smaller than reported for the interface between solid-supported hydrophobic monolayers and water.

  12. Assessment of possibilities and conditions of irrigation in Hungary by digital soil map products

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Bakacsi, Zsófia; Takács, Katalin; Szatmári, Gábor; Szabó, József; Pásztor, László

    2016-04-01

    Sustaining proper soil moisture is essentially important in agricultural management. However, irrigation can be really worth only, if we lay sufficient emphasis on soil conservation. Nationwide planning of irrigation can be taken place, if we have spatially exhaustive maps and recommendations for the different areas. Soil moisture in the pores originate from 'above' (precipitation), or from 'beneath' (from groundwater by capillary lift). The level of groundwater depends on topography, climatic conditions and water regime of the nearby river. The thickness of capillary zone is basicly related to the physical and water management properties of the soil. Accordingly the capillary rise of sandy soils - with very high infiltration rate and very poor water retaining capacity - are far smaller than in the case of clay soils - with very poor infiltration rate and high water retaining capacity. Applying irrigation water can be considered as a reinforcement from 'above', and it affects the salinity and sodicity as well as the soil structure, nutrient supply and soil formation. We defined the possibilities of irrigation according to the average salt content of the soil profile. The nationwide mapping of soil salinity was based on legacy soil profile data, and it was carried out by regression kriging. This method allows that environmental factors with exhaustive spatial extension, such as climatic-, vegetation-, topographic-, soil- and geologic layers can be taken into consideration to the spatial extension of the reference data. According to soil salinity content categories, the areas were delineated as 1. to be irrigated, 2. to be irrigated conditionally, 3. not to be irrigated. The conditions of irrigation was determined by the comparison of the 'actual' and the 'critical' depth of the water table. Since, if the water rises above the critical level, undesirable processes, such as salinization and alkalinization can be developed. The critical depth of the water table was calculated according to the literature, and based on average soil content of the soil profile, the water regime category of soil, salt content of the groundwater, and soil pH. The water regime category map originated from legacy polygon-based map of physical soil properties. The soil content, and the actual level of groundwater as well as the soil pH map - similarly to the soil salinity map - was compiled by regression kriging. The conditions are classified into the following three categories: 1. level of groundwater have to be sinked, 2. rising of groundwater level have to be hindered, 3. level of groundwater have to be regularly controlled. The newly compiled maps can help decision makers to improve land use management, taking soil conservation into consideration. Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167) and the Research Institute of Agricultural Economics.

  13. Nailfold capillaroscopy in diabetes mellitus.

    PubMed

    Maldonado, G; Guerrero, R; Paredes, C; Ríos, C

    2017-07-01

    Diabetes mellitus (DM) is characterized by chronic hyperglycemia states and the development of specific microvascular disorders such as retinopathy and nephropathy. Conventional methods are used to study the vascular compromise of this entity, however, the use of capillaroscopy for the evaluation of capillary microarchitecture is not frequently used. Observational and descriptive study of 65 patients with an established diagnosis of DM and a control group that underwent an initial capillaroscopy examination. The parameters considered were: Capillary diameter (ectasia and giant capillaries), cross-linked, tortuous, arborified capillaries, avascular zones, haemorrhages, dominant morphology, visibility of the subpapillary venous plexus (SPVP), cuticulitis and SD pattern. Capillaroscopy was performed in 65 patients, the findings were: tortous capillaries (63%), crosslinked capillaries (59%), avascular areas (48%), ectasias (39%), giant capillaries (11%). The capillaroscopic findings were evident in the majority of the studied population, 83%, compared to 17% who did not have capillaroscopic alterations. Significant capillaroscopic changes were demonstrated in patients with DM, in turn, we described a specific pattern consisting of: capillary dilatation, avascular zones and tortuous capillaries. Patients with more comorbidities and evolution of the disease showed greater microvascular damage. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A Chip-Capillary Hybrid Device for Automated Transfer of Sample Pre-Separated by Capillary Isoelectric Focusing to Parallel Capillary Gel Electrophoresis for Two-Dimensional Protein Separation

    PubMed Central

    Lu, Joann J.; Wang, Shili; Li, Guanbin; Wang, Wei; Pu, Qiaosheng; Liu, Shaorong

    2012-01-01

    In this report, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to re-route the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed. PMID:22830584

  15. Dynamical behavior of surface tension on rotating fluids in low and microgravity environments

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.

    1989-01-01

    Consideration is given to the time-dependent evolutions of the free surface profile (bubble shapes) of a cylindrical container, partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry in low and microgravity environments. The dynamics of the bubble shapes are calculated for four cases: linear time-dependent functions of spin-up and spin-down in low and microgravity, linear time-dependent functions of increasing and decreasing gravity at high and low rotating cylinder speeds, time-dependent step functions of spin-up and spin-down in low gravity, and sinusoidal function oscillation of the gravity environment in high and low rotating cylinder speeds. It is shown that the computer algorithms developed by Hung et al. (1988) may be used to simulate the profile of time-dependent bubble shapes under variations of centrifugal, capillary, and gravity forces.

  16. Analysis of waterborne paints by gas chromatography-mass spectrometry with a temperature-programmable pyrolyzer.

    PubMed

    Nakamura, S; Takino, M; Daishima, S

    2001-04-06

    Gas chromatography-mass spectrometry (GC-MS) with a temperature-programmable pyrolyzer was used for the analysis of waterborne paints. Evolved gas analysis (EGA) profiles of the waterborne paints were obtained by this temperature-programmed pyrolysis directly coupled with MS via a deactivated metal capillary tube. The EGA profile suggested the optimal thermal desorption conditions for solvents and additives and the subsequent optimal pyrolysis temperature for the remaining polymeric material. Polymers were identified from pyrograms with the assistance of a new polymer library. The solvents were identified from the electron ionization mass spectra with the corresponding chemical ionization mass spectra. The additive was identified as zinc pyrithione by comparison with authentic standard. Zinc pyrithione cannot be analyzed by GC-MS as it is. However, the thermal decomposition products of zinc pyrithione could be detected. The information on the decomposition temperature and products was useful for the identification of the original compound.

  17. Optimal leveling of flow over one-dimensional topography by Marangoni stresses

    NASA Astrophysics Data System (ADS)

    Gramlich, C. M.; Homsy, G. M.; Kalliadasis, Serafim

    2001-11-01

    A thin viscous film flowing over a step down in topography exhibits a capillary ridge near the step, which may be undesirable in applications. This paper investigates optimal leveling of the ridge by means of a Marangoni stress such as might be produced by a localized heater creating temperature variations at the film surface. Lubrication theory results in a differential equation for the free surface, which can be solved numerically for any given topography and temperature profile. Leveling the ridge is then formulated as an optimization problem to minimize the maximum free-surface height by varying the heater strength, position, and width. Optimized heaters with 'top-hat' or parabolic temperature profiles replace the original ridge with two smaller ridges of equal size, achieving leveling of better than 50%. An optimized asymmetric n-step temperature distribution results in (n+1) ridges and reduces the variation in surface height by a factor of better than 1/(n+1).

  18. Capillary levelling as a probe of rheology in polymer thin films

    NASA Astrophysics Data System (ADS)

    McGraw, Joshua D.; Jago, Nick M.; Dalnoki-Veress, Kari

    2011-03-01

    While measuring the rheology of bulk polymer systems is routine, when the size of a system becomes comparable to the molecular size, flow properties are poorly understood and hard to measure. Here, we present the results of experiments that are easily performed and can probe the rheological properties of polymer films that are mere tens of nanometres in thickness. We prepare glassy bilayer polymer films with height profiles well approximated by a step function. Upon annealing above the glass transition, broadening of the height profiles due to gradients in the Laplace pressure is observed. By validating the technique as a probe of the rheology with a range of molecular weights, we will show that this robust technique can be used to investigate the effects of confinement and interfaces on the rheology of ultrathin polymer films. Financial support from NSERC of Canada is gratefully acknowledged.

  19. Accuracy of capillary blood 3-β-hydroxybutyrate determination for the detection and treatment of canine diabetic ketoacidosis.

    PubMed

    Bresciani, Francesca; Pietra, Marco; Corradini, Sara; Giunti, Massimo; Fracassi, Federico

    2014-01-01

    In human medicine, diagnosis of diabetic ketoacidosis (DKA) is usually based on measurement of capillary 3-β-hydroxybutyrate (3-HB) with a hand held ketone sensor. This study was conducted to determine if measurement of capillary 3-HB could be useful for the diagnosis and monitoring of canine DKA. Fifteen dogs with diabetic ketosis and 10 with DKA were evaluated. Paired measurements of 3-HB of capillary and venous blood samples were analysed by the electrochemical sensor and reference method. Use of capillary 3-HB measurement during DKA management was then evaluated through simultaneous measurements of capillary 3-HB, urinary AcAc and venous blood gas analysis. Good agreement between capillary and venous 3-HB measurement was detected by the electrochemical sensor and reference method. Monitoring treatment of DKA revealed a significant correlation between capillary 3-HB and acidosis markers, while no significant correlation was observed between AcAc and acidosis markers. A cut-off value of capillary blood 3-HB > 3.8 mmol/L for diagnosis of DKA resulted in 70% and 92% sensitivity and specificity. The electrochemical sensor accurately measures 3-HB concentration in both capillary and venous blood samples, is accurate in diagnosing canine DKA, and appears to reflect the patient's metabolic status during DKA treatment.

  20. Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil.

    PubMed

    Uncu, Ali Tevfik; Uncu, Ayse Ozgur; Frary, Anne; Doganlar, Sami

    2017-04-15

    The aim of this study was to compare the performance of a DNA-barcode assay with fatty acid profile analysis to authenticate the botanical origin of olive oil. To achieve this aim, we performed a PCR-capillary electrophoresis (PCR-CE) approach on olive oil: seed oil blends using the plastid trnL (UAA) intron barcode. In parallel to genomic analysis, we subjected the samples to gas chromatography analysis of fatty acid composition. While the PCR-CE assay proved equally efficient as gas chromatography analysis in detecting adulteration with soybean, palm, rapeseed, sunflower, sesame, cottonseed and peanut oils, it was superior to the widely utilized analytical chemistry approach in revealing the adulterant species and detecting small quantities of corn and safflower oils in olive oil. Moreover, the DNA-based test correctly identified all tested olive oil: hazelnut oil blends whereas it was not feasible to detect hazelnut oil adulteration through fatty acid profile analysis. Thus, the present research has shown the feasibility of a PCR-CE barcode assay to detect adulteration in olive oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Longitudinal gas-density profilometry for plasma-wakefield acceleration targets

    NASA Astrophysics Data System (ADS)

    Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2014-03-01

    Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 μm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.

  2. Capillary leak syndrome: etiologies, pathophysiology, and management.

    PubMed

    Siddall, Eric; Khatri, Minesh; Radhakrishnan, Jai

    2017-07-01

    In various human diseases, an increase in capillary permeability to proteins leads to the loss of protein-rich fluid from the intravascular to the interstitial space. Although sepsis is the disease most commonly associated with this phenomenon, many other diseases can lead to a "sepsis-like" syndrome with manifestations of diffuse pitting edema, exudative serous cavity effusions, noncardiogenic pulmonary edema, hypotension, and, in some cases, hypovolemic shock with multiple-organ failure. The term capillary leak syndrome has been used to describe this constellation of disease manifestations associated with an increased capillary permeability to proteins. Diseases other than sepsis that can result in capillary leak syndrome include the idiopathic systemic capillary leak syndrome or Clarkson's disease, engraftment syndrome, differentiation syndrome, the ovarian hyperstimulation syndrome, hemophagocytic lymphohistiocytosis, viral hemorrhagic fevers, autoimmune diseases, snakebite envenomation, and ricin poisoning. Drugs including some interleukins, some monoclonal antibodies, and gemcitabine can also cause capillary leak syndrome. Acute kidney injury is commonly seen in all of these diseases. In addition to hypotension, cytokines are likely to be important in the pathophysiology of acute kidney injury in capillary leak syndrome. Fluid management is a critical part of the treatment of capillary leak syndrome; hypovolemia and hypotension can cause organ injury, whereas capillary leakage of administered fluid can worsen organ edema leading to progressive organ injury. The purpose of this article is to discuss the diseases other than sepsis that produce capillary leak and review their collective pathophysiology and treatment. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  3. [The diagnostic significance of nailfold video-capillaroscopy in systemic sclerosis].

    PubMed

    Li, Lin-Guang; Zhang, Jiang-Lin; Liu, Xiu-Hua; Huang, Feng

    2012-05-01

    To observe nailfold capillary changes in a cohort of connective tissue disease (CTD) with Raynaud's phenomenon (RP) and to explore the diagnostic value of nailfold video-capillaroscopy (NVC) in systemic sclerosis (SSc). Sixty CTD patients with RP divided into SSc group (n = 36) and non-SSc group (n = 24) were referred to an experienced operator for NVC. The patients had decreased capillary loops in SSc group with the capillary diameter more enlarged in SSc group than non-SSc group. The number of patients in SSc group with giant capillaries was 14, while 3 in non-SSc group. There were 23 patients with haemorrhages in SSc group and 9 in non-SSc group. The number of patients with severe effusion was 15 in SSc group, while 2 in non-SSc group. By using the ROC curves, indexes with AUC at least 0.7 of the input capillary diameter, the output capillary diameter, the middle capillary diameter, blood color and effusion for the diagnostic cutoff points were 18.5 µm, 24.5 µm, 19.5µm, deep red and severe effusion. With at least 2 out of the top 3 indexes, the diagnostic sensitivity and specificity of SSc were higher. CTD Patients with RP of SSc have less capillary loops, more enlarged capillaries, more giant capillaries, more severe effusion and more haemorrhages than non-SSc patients. The characteristics of nailfold capillary changes in SSc patients with RP can be helpful for the diagnosis and the differential diagnosis of SSc.

  4. Capillary Flows Along Open Channel Conduits: The Open-Star Section

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark; Geile, John; Chen, Yongkang; Nguyen, Thanh Tung; Callahan, Michael

    2014-01-01

    Capillary rise in tubes, channels, and grooves has received significant attention in the literature for over 100 years. In yet another incremental extension of such work, a transient capillary rise problem is solved for spontaneous flow along an interconnected array of open channels forming what is referred to as an 'open-star' section. This geometry possesses several attractive characteristics including passive phase separations and high diffusive gas transport. Despite the complex geometry, novel and convenient approximations for capillary pressure and viscous resistance enable closed form predictions of the flow. As part of the solution, a combined scaling approach is applied that identifies unsteady-inertial-capillary, convective-inertial-capillary, and visco-capillary transient regimes in a single parameter. Drop tower experiments are performed employing 3-D printed conduits to corroborate all findings.

  5. Microfluidic PMMA interfaces for rectangular glass capillaries

    NASA Astrophysics Data System (ADS)

    Evander, Mikael; Tenje, Maria

    2014-02-01

    We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics.

  6. Capillary pumped loop body heat exchanger

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  7. Capillary density: An important parameter in nailfold capillaroscopy.

    PubMed

    Emrani, Zahra; Karbalaie, Abdolamir; Fatemi, Alimohammad; Etehadtavakol, Mahnaz; Erlandsson, Björn-Erik

    2017-01-01

    Nailfold capillaroscopy is one of the various noninvasive bioengineering methods used to investigate skin microcirculation. It is an effective examination for assessing microvascular changes in the peripheral circulation; hence it has a significant role for the diagnosis of Systemic sclerosis with the classic changes of giant capillaries as well as the decline in capillary density with capillary dropout. The decline in capillary density is one of microangiopathic features existing in connective tissue disease. It is detectable with nailfold capillaroscopy. This parameter is assessed by applying quantitative measurement. In this article, we reviewed a common method for calculating the capillary density and the relation between the number of capillaries as well as the existence of digital ulcers, pulmonary arterial hypertension, autoantibodies, scleroderma patterns and different scoring system. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. On the Asymmetric Focusing of Low-Emittance Electron Bunches via Active Lensing by Using Capillary Discharges

    NASA Astrophysics Data System (ADS)

    Bulanov, Stepan; Bagdasarov, Gennadiy; Bobrova, Nadezhda; Boldarev, Alexey; Olkhovskaya, Olga; Sasorov, Pavel; Gasilov, Vladimir; Barber, Samuel; Gonsalves, Anthony; Schroeder, Carl; van Tilborg, Jeroen; Esarey, Eric; Leemans, Wim; Levato, Tadzio; Margarone, Daniele; Korn, Georg; Kando, Masaki; Bulanov, Sergei

    2017-10-01

    A novel method for asymmetric focusing of electron beams is proposed. The scheme is based on the active lensing technique, which takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside a capillary discharge are described theoretically and modeled with dissipative MHD simulations to enable analysis of capillaries of oblong rectangle cross-sections implying that large aspect ratio rectangular capillaries can be used to form flat electron bunches. The effect of the capillary cross-section on the electron beam focusing properties were studied using the analytical methods and simulation- derived magnetic field map showing the range of the capillary discharge parameters required for producing the high quality flat electron beams.

  9. Demountable direct injection high efficiency nebulizer for inductively coupled plasma mass spectrometry

    DOEpatents

    Montaser, Akbar; Westphal, Craig S.; Kahen, Kaveh; Rutkowski, William F.; Acon, Billy W.

    2006-12-05

    A nebulizer adapted for adjusting a position of a capillary tube contained within the nebulizer is provided. The nebulizer includes an elongated tubular shell having a gas input port and a gas output port, a capillary adjustment adapter for displacing the capillary tube in a lateral direction via a rotational force, and a connector for connecting the elongated tubular shell, the capillary adjustment adapter and the capillary tube.

  10. A Zero Dimensional Time-Dependent Model of High-Pressure Ablative Capillary Discharge (Preprint)

    DTIC Science & Technology

    2008-06-01

    comprehensive model of capillary discharge is important to understand the physics and engineering aspects of the capillary discharge thruster. A schematic...investigators since the mid-1980s see 1-11 and references therein, satisfy both of these conditions well. These studies investigated the dynamics of high...is a comprehensive description of the radiative heat transfer in the capillary discharge. It is worth noting that in other types of capillary

  11. Geometry-induced phase transition in fluids: Capillary prewetting

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature Tcw. The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>Tcw, the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  12. Optimized Structures for Low-Profile Phase Change Thermal Spreaders

    NASA Astrophysics Data System (ADS)

    Sharratt, Stephen Andrew

    Thin, low-profile phase change thermal spreaders can provide cooling solutions for some of today's most pressing heat flux dissipation issues. These thermal issues are only expected to increase as future electronic circuitry requirements lead to denser and potentially 3D chip packaging. Phase change based heat spreaders, such as heat pipes or vapor chambers, can provide a practical solution for effectively dissipating large heat fluxes. This thesis reports a comprehensive study of state-of-the-art capillary pumped wick structures using computational modeling, micro wick fabrication, and experimental analysis. Modeling efforts focus on predicting the shape of the liquid meniscus inside a complicated 3D wick structure. It is shown that this liquid shape can drastically affect the wick's thermal resistance. In addition, knowledge of the liquid meniscus shape allows for the computation of key parameters such as permeability and capillary pressure which are necessary for predicting the maximum heat flux. After the model is validated by comparison to experimental results, the wick structure is optimized so as to decrease overall wick thermal resistance and increase the maximum capillary limited heat flux before dryout. The optimized structures are then fabricated out of both silicon and copper using both traditional and novel micro-fabrication techniques. The wicks are made super-hydrophilic using chemical and thermal oxidation schemes. A sintered monolayer of Cu particles is fabricated and analyzed as well. The fabricated wick structures are experimentally tested for their heat transfer performance inside a well controlled copper vacuum chamber. Heat fluxes as high as 170 W/cm2 are realized for Cu wicks with structure heights of 100 μm. The structures optimized for both minimized thermal resistance and high liquid supply ability perform much better than their non-optimized counterparts. The super-hydrophilic oxidation scheme is found to drastically increase the maximum heat flux and decrease thermal resistance. This research provides key insights as to how to optimize heat pipe structures to minimize thermal resistance and increase maximum heat flux. These thin wick structures can also be combined with a thicker liquid supply layer so that thin, low-resistance evaporator layers can be constructed and higher heat fluxes realized. The work presented in this thesis can be used to aid in the development of high-performance phase change thermal spreaders, allowing for temperature control of a variety of powerful electronic components.

  13. Noise suppressing capillary separation system

    DOEpatents

    Yeung, Edward S.; Xue, Yongjun

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans.

  14. Gas sampling system for a mass spectrometer

    DOEpatents

    Taylor, Charles E; Ladner, Edward P

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  15. Noise suppressing capillary separation system

    DOEpatents

    Yeung, E.S.; Xue, Y.

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans. 13 figs.

  16. DNA-directed trypsin immobilization on a polyamidoamine dendrimer-modified capillary to form a renewable immobilized enzyme microreactor.

    PubMed

    Wu, Nan; Wang, Siming; Yang, Ye; Song, Jiayi; Su, Ping; Yang, Yi

    2018-07-01

    A novel type of trypsin capillary microreactor was developed based on a DNA-directed immobilization (DDI) technique applied to a fused-silica capillary modified with polyamidoamine (PAMAM) dendrimers. Trypsin binding to the inner wall of the capillary was confirmed by confocal laser scanning microscopy. The properties of the trypsin-DNA conjugated, PAMAM-modified capillary microreactor were investigated by monitoring hydrolysis of Nα-benzoyl- L -arginine ethyl ester. Through the hybridization and dehybridization of the DNA, the inner wall of the capillary functionalized with trypsin can be regenerated, thus indicating the renewability of this enzyme microreactor. In addition, these results demonstrated that introduction of PAMAM enabled higher amounts of trypsin to be immobilized, markedly improving the enzymolysis efficiency, compared with traditional modified capillaries. The digestion performance of the trypsin capillary microreactor was further evaluated by digesting cytochrome C, and a peptide numbers of 8, and a sequence coverage of 59% were obtained. This renewable and efficient immobilized trypsin capillary microreactor combines advantages of both DDI technology and PAMAM, and is potentially adaptable to high-throughput enzyme assays in biochemical and clinical research. Copyright © 2018. Published by Elsevier B.V.

  17. Preparation and characterization of lysine-immobilized poly(glycidyl methacrylate) nanoparticle-coated capillary for the separation of amino acids by open tubular capillary electrochromatography.

    PubMed

    Xu, Liang; Cui, Pengfei; Wang, Dongmei; Tang, Cheng; Dong, Linyi; Zhang, Can; Duan, Hongquan; Yang, Victor C

    2014-01-03

    In this study, poly(glycidyl methacrylate) (PGMA) nanoparticles (NPs) were prepared and chemically immobilized for the first time onto a capillary inner wall for open tubular capillary electrochromatography (OTCEC). The immobilization of PGMA NPs onto the capillary was attained by a ring-opening reaction between the NPs and an amino-silylated fused capillary inner surface. Scanning electron micrographs clearly demonstrated that the NPs were bound to the capillary inner surface in a dense monolayer. The PGMA NP-coated column was then functionalized by lysine (Lys). After fuctionalization, the capillary can afford strong anodic electroosmotic flow, especially in acidic running buffers. Separations of three amino acids (including tryptophan, tyrosine and phenylalanine) were performed in NP-modified, monolayer Lys-functionalized and bare uncoated capillaries. Results indicated that the NP-coated column can provide more retention and higher resolution for analytes due to the hydrophobic interaction between analytes and the NP-coating. Run-to-run and column-to-column reproducibilities in the separation of the amino acids using the NP-modified column were also demonstrated. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Differentiation between primary and secondary Raynaud's phenomenon: a prospective study comparing nailfold capillaroscopy using an ophthalmoscope or stereomicroscope

    PubMed Central

    Anders, H; Sigl, T; Schattenkirchner, M

    2001-01-01

    BACKGROUND—Nailfold capillary microscopy is a routine procedure in the investigation of patients with Raynaud's phenomenon (RP). As a standard method, nailfold capillary morphology is inspected with a stereomicroscope to look for capillary abnormalities such as giant loops, avascular areas, and bushy capillaries, which have all been found to be associated with certain connective tissue diseases.
AIM—To investigate prospectively whether nailfold capillary inspection using an ophthalmoscope is of equivalent diagnostic value to standard nailfold capillary microscopy.
METHOD—All the fingers of 26 patients with RP were examined in a blinded fashion and compared with the final diagnosis one month later.
RESULTS—All giant loops, large avascular areas, and bushy capillaries were identified by both methods. The correlation for moderate avascular areas and crossed capillaries was 0.93 and 0.955 respectively. The correlation for minor abnormalities that do not contribute to the differentiation between primary and secondary RP was 0.837 and 0.861 respectively. All patients were classified identically by the two methods.
CONCLUSION—For the evaluation of patients with RP, nailfold capillary morphology can reliably be assessed with an ophthalmoscope.

 PMID:11247874

  19. Break-up dynamics of fluctuating liquid threads

    PubMed Central

    Petit, Julien; Rivière, David; Kellay, Hamid; Delville, Jean-Pierre

    2012-01-01

    The thinning dynamics of a liquid neck before break-up, as may happen when a drop detaches from a faucet or a capillary, follows different rules and dynamic scaling laws depending on the importance of inertia, viscous stresses, or capillary forces. If now the thinning neck reaches dimensions comparable to the thermally excited interfacial fluctuations, as for nanojet break-up or the fragmentation of thermally annealed nanowires, these fluctuations should play a dominant role according to recent theory and observations. Using near-critical interfaces, we here fully characterize the universal dynamics of this thermal fluctuation-dominated regime and demonstrate that the cross-over from the classical two-fluid pinch-off scenario of a liquid thread to the fluctuation-dominated regime occurs at a well-defined neck radius proportional to the thermal length scale. Investigating satellite drop formation, we also show that at the level of the cross-over between these two regimes it is more probable to produce monodisperse droplets because fluctuation-dominated pinch-off may allow the unique situation where satellite drop formation can be inhibited. Nonetheless, the interplay between the evolution of the neck profiles from the classical to the fluctuation-dominated regime and the satellites’ production remains to be clarified. PMID:23090994

  20. A laboratory based system for laue micro x-ray diffraction.

    PubMed

    Lynch, P A; Stevenson, A W; Liang, D; Parry, D; Wilkins, S; Tamura, N

    2007-02-01

    A laboratory diffraction system capable of illuminating individual grains in a polycrystalline matrix is described. Using a microfocus x-ray source equipped with a tungsten anode and prefigured monocapillary optic, a micro-x-ray diffraction system with a 10 microm beam was developed. The beam profile generated by the ellipsoidal capillary was determined using the "knife edge" approach. Measurement of the capillary performance, indicated a beam divergence of 14 mrad and a useable energy bandpass from 5.5 to 19 keV. Utilizing the polychromatic nature of the incident x-ray beam and application of the Laue indexing software package X-Ray Micro-Diffraction Analysis Software, the orientation and deviatoric strain of single grains in a polycrystalline material can be studied. To highlight the system potential the grain orientation and strain distribution of individual grains in a polycrystalline magnesium alloy (Mg 0.2 wt % Nd) was mapped before and after tensile loading. A basal (0002) orientation was identified in the as-rolled annealed alloy; after tensile loading some grains were observed to undergo an orientation change of 30 degrees with respect to (0002). The applied uniaxial load was measured as an increase in the deviatoric tensile strain parallel to the load axis.

  1. Electromigrative separation techniques in forensic science: combining selectivity, sensitivity, and robustness.

    PubMed

    Posch, Tjorben Nils; Pütz, Michael; Martin, Nathalie; Huhn, Carolin

    2015-01-01

    In this review we introduce the advantages and limitations of electromigrative separation techniques in forensic toxicology. We thus present a summary of illustrative studies and our own experience in the field together with established methods from the German Federal Criminal Police Office rather than a complete survey. We focus on the analytical aspects of analytes' physicochemical characteristics (e.g. polarity, stereoisomers) and analytical challenges including matrix tolerance, separation from compounds present in large excess, sample volumes, and orthogonality. For these aspects we want to reveal the specific advantages over more traditional methods. Both detailed studies and profiling and screening studies are taken into account. Care was taken to nearly exclusively document well-validated methods outstanding for the analytical challenge discussed. Special attention was paid to aspects exclusive to electromigrative separation techniques, including the use of the mobility axis, the potential for on-site instrumentation, and the capillary format for immunoassays. The review concludes with an introductory guide to method development for different separation modes, presenting typical buffer systems as starting points for different analyte classes. The objective of this review is to provide an orientation for users in separation science considering using capillary electrophoresis in their laboratory in the future.

  2. Fluid surface behavior in low gravity. Center discretionary fund no. 83-21

    NASA Technical Reports Server (NTRS)

    Leslie, F.; Gans, R. F.; Schafer, C.

    1985-01-01

    Measurements of rotating equilibrium bubble shapes in the low-gravity environment of a free-falling aircraft are presented. Emphasis is placed on bubbles which intersect the container boundaries. These data are compared with theoretical profiles derived from Laplace's formula and are in good agreement with the measurements. Two types of instability are explored. The first occurs when the baffle spacing is too large for the bubble to intersect both the top and bottom boundaries. The second occurs when the hydrostatic pressure beneath a displaced free surface does not compensate for pressure change due to capillary forces. The interface shape depends on the contact angle, the radius of intersection with container, and the parameter F which is a measure of the relative importance of centrifugal force to surface tension. For isolated bubbles, F has a maximum value of 1/2. A further increase in F causes the bubble to break contact with the axis of rotation. For large values of F, the bubble becomes more cylindrical and the capillary rise occurs over a thinner layer so that the small radius of curvature can generate enough pressure drop to balance the increased hydrostatic contribution.

  3. Loss of heterozygosity assay for molecular detection of cancer using energy-transfer primers and capillary array electrophoresis.

    PubMed

    Medintz, I L; Lee, C C; Wong, W W; Pirkola, K; Sidransky, D; Mathies, R A

    2000-08-01

    Microsatellite DNA loci are useful markers for the detection of loss of heterozygosity (LOH) and microsatellite instability (MI) associated with primary cancers. To carry out large-scale studies of LOH and MI in cancer progression, high-throughput instrumentation and assays with high accuracy and sensitivity need to be validated. DNA was extracted from 26 renal tumor and paired lymphocyte samples and amplified with two-color energy-transfer (ET) fluorescent primers specific for loci associated with cancer-induced chromosomal changes. PCR amplicons were separated on the MegaBACE-1000 96 capillary array electrophoresis (CAE) instrument and analyzed with MegaBACE Genetic Profiler v.1.0 software. Ninety-six separations were achieved in parallel in 75 minutes. Loss of heterozygosity was easily detected in tumor samples as was the gain/loss of microsatellite core repeats. Allelic ratios were determined with a precision of +/- 10% or better. Prior analysis of these samples with slab gel electrophoresis and radioisotope labeling had not detected these changes with as much sensitivity or precision. This study establishes the validity of this assay and the MegaBACE instrument for large-scale, high-throughput studies of the molecular genetic changes associated with cancer.

  4. Spectrometer capillary vessel and method of making same

    DOEpatents

    Linehan, John C.; Yonker, Clement R.; Zemanian, Thomas S.; Franz, James A.

    1995-01-01

    The present invention is an arrangement of a glass capillary tube for use in spectroscopy. In particular, the invention is a capillary arranged in a manner permitting a plurality or multiplicity of passes of a sample material through a spectroscopic measurement zone. In a preferred embodiment, the multi-pass capillary is insertable within a standard NMR sample tube. The present invention further includes a method of making the multi-pass capillary tube and an apparatus for spinning the tube.

  5. Minimized Capillary End Effect During CO2 Displacement in 2-D Micromodel by Manipulating Capillary Pressure at the Outlet Boundary in Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Kang, Dong Hun; Yun, Tae Sup

    2018-02-01

    We propose a new outflow boundary condition to minimize the capillary end effect for a pore-scale CO2 displacement simulation. The Rothman-Keller lattice Boltzmann method with multi-relaxation time is implemented to manipulate a nonflat wall and inflow-outflow boundaries with physically acceptable fluid properties in 2-D microfluidic chip domain. Introducing a mean capillary pressure acting at CO2-water interface to the nonwetting fluid at the outlet effectively prevents CO2 injection pressure from suddenly dropping upon CO2 breakthrough such that the continuous CO2 invasion and the increase of CO2 saturation are allowed. This phenomenon becomes most pronounced at capillary number of logCa = -5.5, while capillary fingering and massive displacement of CO2 prevail at low and high capillary numbers, respectively. Simulations with different domain length in homogeneous and heterogeneous domains reveal that capillary pressure and CO2 saturation near the inlet are reproducible compared with those with a proposed boundary condition. The residual CO2 saturation uniquely follows the increasing tendency with increasing capillary number, corroborated by experimental evidences. The determination of the mean capillary pressure and its sensitivity are also discussed. The proposed boundary condition is commonly applicable to other pore-scale simulations to accurately capture the spatial distribution of nonwetting fluid and corresponding displacement ratio.

  6. Impairment of Skin Capillary Recruitment Precedes Chronic Complications in Patients with Type 1 Diabetes

    PubMed Central

    Tibirica, Eduardo; Rodrigues, Elba; Cobas, Roberta; Gomes, Marilia B.

    2007-01-01

    Microvascular function in patients with type 1 diabetes without chronic complications was assessed using skin capillary recruitment during post-occlusive reactive hyperemia (PORH). Structural (maximal) capillary density was evaluated during venous occlusion. The study included 48 consecutive outpatients aged 26.3 ± 10.8 years with type 1 diabetes (duration of 9.5 years) without chronic complications and 34 control subjects. Intravital capillary video-microscopy was used in the dynamic study of skin capillaries in the dorsum of the fingers and toes. Capillary recruitment during PORH (% increase in mean capillary density, MCD) was significantly higher in the controls than the patients in both the fingers (p < 0.001) and toes (p < 0.001). During venous occlusion, MCD increase was also higher in the controls than the patients in both the fingers (p < 0.05) and toes (p < 0.0001). In patients, no difference was found between MCD at baseline and after venous occlusion in the fingers but a decrease was observed in the toes (p < 0.001). It is concluded that skin capillary function is significantly impaired in both fingers and toes of patients with type 1 diabetes without chronic complications. Moreover, capillary density during venous occlusion did not increase in either extremity in the patients, suggesting that their capillaries at rest are already maximally recruited. PMID:17823692

  7. Quantitative nailfold capillaroscopy findings in a population with connective tissue disease and in normal healthy controls.

    PubMed Central

    Kabasakal, Y; Elvins, D M; Ring, E F; McHugh, N J

    1996-01-01

    OBJECTIVE: To describe and quantify the morphological characteristics of nailfold capillaries that distinguish different forms of connective tissue disease from healthy controls. METHODS: A CCD video microscope with fibreoptic illumination and PC based image processing was used to visualise nailfold capillaries and to quantify findings in 23 patients with systemic sclerosis (SSc), 22 patients with systemic lupus erythematosus (SLE), 21 patients with undifferentiated connective tissue disease (UCTD), and 38 healthy controls. RESULTS: Capillary density was reduced in SSc (5.2 (SD 1.3) capillaries/mm) compared with other patient groups and controls. The average number of enlarged capillaries/finger was high in all disease groups (5.5-6.6) compared with controls (2). However, giant capillaries were most frequent in SSc (43%) and were not present in controls. Mild and moderate avascular areas were present in all groups (35%-68%), but severe avascularity was most frequent in SSc (44%) compared with other patients (18%-19%) and controls (0%). The greatest frequency of extensive haemorrhage was in SSc (35%). CONCLUSIONS: There is a range of abnormal capillary findings in patients with connective tissue disease and healthy controls. However, certain abnormalities such as a reduced number of capillaries, severe avascularity, giant capillaries, and haemorrhage are most commonly associated with SSc. Videomicroscopy with image processing offers many technical advantages that can be exploited in further studies of nailfold capillaries. Images PMID:8774177

  8. Surface sampling concentration and reaction probe

    DOEpatents

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  9. Surface sampling concentration and reaction probe with controller to adjust sampling position

    DOEpatents

    Van Berkel, Gary J.; ElNaggar, Mariam S.

    2016-07-19

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  10. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol-gel modified inner capillary wall.

    PubMed

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan

    2017-09-29

    The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [Lombosacral epidural capillary hemangioma mimicking a dumbbell-shaped neurinoma: A case report and review of the literature].

    PubMed

    Egu, K; Kinata-Bambino, S; Mounadi, M; Rachid El Maaqili, M; El Abbadi, N

    2016-04-01

    Capillary hemangiomas are benign endothelial cell neoplasms that are believed to be hamartomatous proliferations of vascular endothelial cells. The occurrence of spinal epidural capillary hemangiomas is exceedingly rare. Only 8 epidurally located cases of capillary hemangiomas in the spinal canal have been reported in the literature. We report for the first time, to our knowledge, a case of lumbosacral epidural capillary hemangioma revealed by S1 back pain and radicular pain in a 60-year-old patient, caused by an L5-S1 epidural capillary hemangioma. The neurological symptoms of the patient improved after surgery. Spinal epidural capillary hemangioma is exceedingly rare. These lesions are benign and can mimic dumbbell-shaped neurinoma. Total removal by surgery is curative. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Structure of Particle Networks in Capillary Suspensions with Wetting and Nonwetting Fluids

    PubMed Central

    2016-01-01

    The mechanical properties of a suspension can be dramatically altered by adding a small amount of a secondary fluid that is immiscible with the bulk phase. The substantial changes in the strength of these capillary suspensions arise due to the capillary force inducing a percolating particle network. Spatial information on the structure of the particle networks is obtained using confocal microscopy. It is possible, for the first time, to visualize the different types of percolating structures of capillary suspensions in situ. These capillary networks are unique from other types of particulate networks due to the nature of the capillary attraction. We investigate the influence of the three-phase contact angle on the structure of an oil-based capillary suspension with silica microspheres. Contact angles smaller than 90° lead to pendular networks of particles connected with single capillary bridges or clusters comparable to the funicular state in wet granular matter, whereas a different clustered structure, the capillary state, forms for angles larger than 90°. Particle pair distribution functions are obtained by image analysis, which demonstrate differences in the network microstructures. When porous particles are used, the pendular conformation also appears for apparent contact angles larger than 90°. The complex shear modulus can be correlated to these microstructural changes. When the percolating structure is formed, the complex shear modulus increases by nearly three decades. Pendular bridges lead to stronger networks than the capillary state network conformations, but the capillary state clusters are nevertheless much stronger than pure suspensions without the added liquid. PMID:26807651

  13. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles.

    PubMed

    Sugimoto, Masahiro; Wong, David T; Hirayama, Akiyoshi; Soga, Tomoyoshi; Tomita, Masaru

    2010-03-01

    Saliva is a readily accessible and informative biofluid, making it ideal for the early detection of a wide range of diseases including cardiovascular, renal, and autoimmune diseases, viral and bacterial infections and, importantly, cancers. Saliva-based diagnostics, particularly those based on metabolomics technology, are emerging and offer a promising clinical strategy, characterizing the association between salivary analytes and a particular disease. Here, we conducted a comprehensive metabolite analysis of saliva samples obtained from 215 individuals (69 oral, 18 pancreatic and 30 breast cancer patients, 11 periodontal disease patients and 87 healthy controls) using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). We identified 57 principal metabolites that can be used to accurately predict the probability of being affected by each individual disease. Although small but significant correlations were found between the known patient characteristics and the quantified metabolites, the profiles manifested relatively higher concentrations of most of the metabolites detected in all three cancers in comparison with those in people with periodontal disease and control subjects. This suggests that cancer-specific signatures are embedded in saliva metabolites. Multiple logistic regression models yielded high area under the receiver-operating characteristic curves (AUCs) to discriminate healthy controls from each disease. The AUCs were 0.865 for oral cancer, 0.973 for breast cancer, 0.993 for pancreatic cancer, and 0.969 for periodontal diseases. The accuracy of the models was also high, with cross-validation AUCs of 0.810, 0.881, 0.994, and 0.954, respectively. Quantitative information for these 57 metabolites and their combinations enable us to predict disease susceptibility. These metabolites are promising biomarkers for medical screening. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-009-0178-y) contains supplementary material, which is available to authorized users.

  14. Common genes regulate food and ethanol intake in Drosophila.

    PubMed

    Sekhon, Morgan L; Lamina, Omoteniola; Hogan, Kerry E; Kliethermes, Christopher L

    2016-06-01

    The abuse liability of alcohol (ethanol) is believed to result in part from its actions on neurobiological substrates that underlie the motivation toward food and other natural reinforcers, and a growing body of evidence indicates that these substrates are broadly conserved among animal phyla. Understanding the extent to which the substrates regulating ethanol and food intake overlap is an important step toward developing therapeutics that selectively reduce ethanol intake. In the current experiments, we measured food and ethanol intake in Recombinant Inbred (RI) lines of Drosophila melanogaster using several assays, and then calculated genetic correlations to estimate the degree to which common genes might underlie behavior in these assays. We found that food intake and ethanol intake as measured in the capillary assay are genetically correlated traits in D. melanogaster, as well as in a panel of 11 Drosophila species that we tested subsequently. RI line differences in food intake in a dyed food assay were genetically unrelated to ethanol intake in the capillary assay or to ethanol preference measured using an olfactory trap apparatus. Using publicly available gene expression data, we found that expression profiles across the RI lines of a number of genes (including the D2-like dopamine receptor, DOPA decarboxylase, and fruitless) correlated with the RI line differences in food and ethanol intake we measured, while the expression profiles of other genes, including NPF, and the NPF and 5-HT2 receptors, correlated only with ethanol intake or preference. Our results suggest that food and ethanol intake are regulated by some common genes in Drosophila, but that other genes regulate ethanol intake independently of food intake. These results have implications toward the development of therapeutics that preferentially reduce ethanol intake. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. New methodology for capillary electrophoresis with ESI-MS detection: Electrophoretic focusing on inverse electromigration dispersion gradient. High-sensitivity analysis of sulfonamides in waters.

    PubMed

    Malá, Zdena; Gebauer, Petr; Boček, Petr

    2016-09-07

    This article describes for the first time the combination of electrophoretic focusing on inverse electromigration dispersion (EMD) gradient, a new separation principle described in 2010, with electrospray-ionization (ESI) mass spectrometric detection. The separation of analytes along the electromigrating EMD profile proceeds so that each analyte is focused and concentrated within the profile at a particular position given by its pKa and ionic mobility. The proposed methodology combines this principle with the transport of the focused zones to the capillary end by superimposed electromigration, electroosmotic flow and ESI suction, and their detection by the MS detector. The designed electrolyte system based on maleic acid and 2,6-lutidine is suitable to create an inverse EMD gradient of required properties and its components are volatile enough to be compatible with the ESI interface. The characteristic properties of the proposed electrolyte system and of the formed inverse gradient are discussed in detail using calculated diagrams and computer simulations. It is shown that the system is surprisingly robust and allows sensitive analyses of trace amounts of weak acids in the pKa range between approx. 6 and 9. As a first practical application of electrophoretic focusing on inverse EMD gradient, the analysis of several sulfonamides in waters is reported. It demonstrates the potential of the developed methodology for fast and high-sensitivity analyses of ionic trace analytes, with reached LODs around 3 × 10(-9) M (0.8 ng mL(-1)) of sulfonamides in spiked drinking water without any sample pretreatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Key endothelial cell angiogenic mechanisms are stimulated by the circulating milieu in sickle cell disease and attenuated by hydroxyurea

    PubMed Central

    Lopes, Flavia C. M.; Traina, Fabiola; Almeida, Camila B.; Leonardo, Flavia C.; Franco-Penteado, Carla F.; Garrido, Vanessa T.; Colella, Marina P.; Soares, Raquel; Olalla-Saad, Sara T.; Costa, Fernando F.; Conran, Nicola

    2015-01-01

    As hypoxia-induced inflammatory angiogenesis may contribute to the manifestations of sickle cell disease, we compared the angiogenic molecular profiles of plasma from sickle cell disease individuals and correlated these with in vitro endothelial cell-mediated angiogenesis-stimulating activity and in vivo neovascularization. Bioplex demonstrated that plasma from patients with steady-state sickle cell anemia contained elevated concentrations of pro-angiogenic factors (angiopoietin-1, basic fibroblast growth factor, vascular endothelial growth factor, vascular endothelial growth factor-D and placental growth factor) and displayed potent pro-angiogenic activity, significantly increasing endothelial cell proliferation, migration and capillary-like structure formation. In vivo neovascularization of Matrigel plugs was significantly greater in sickle cell disease mice than in non-sickle cell disease mice, consistent with an up-regulation of angiogenesis in the disease. In plasma from patients with hemoglobin SC disease without proliferative retinopathy, anti-angiogenic endostatin and thrombospondin-2 were significantly elevated. In contrast, plasma from hemoglobin SC individuals with proliferative retinopathy had a pro-angiogenic profile and more significant effects on endothelial cell proliferation and capillary formation than plasma from patients without retinopathy. Hydroxyurea therapy was associated with significant reductions in plasma angiogenic factors and inhibition of endothelial cell-mediated angiogenic mechanisms and neovascularization. Thus, individuals with sickle cell anemia or hemoglobin SC disease with retinopathy present a highly angiogenic circulating milieu, capable of stimulating key endothelial cell-mediated angiogenic mechanisms. Combination anti-angiogenic therapy to prevent the progression of unregulated neovascularization and associated manifestations in sickle cell disease, such as pulmonary hypertension, may be indicated; furthermore, the benefits and drawbacks of the potent anti-angiogenic effects of hydroxyurea should be clarified. PMID:25769545

  17. Comparison of Two Capillary Gel Electrophoresis Systems for Clostridium difficile Ribotyping, Using a Panel of Ribotype 027 Isolates and Whole-Genome Sequences as a Reference Standard

    PubMed Central

    Xiao, Meng; Kong, Fanrong; Jin, Ping; Wang, Qinning; Xiao, Kelin; Jeoffreys, Neisha; James, Gregory

    2012-01-01

    PCR ribotyping is the most commonly used Clostridium difficile genotyping method, but its utility is limited by lack of standardization. In this study, we analyzed four published whole genomes and tested an international collection of 21 well-characterized C. difficile ribotype 027 isolates as the basis for comparison of two capillary gel electrophoresis (CGE)-based ribotyping methods. There were unexpected differences between the 16S-23S rRNA intergenic spacer region (ISR) allelic profiles of the four ribotype 027 genomes, but six bands were identified in all four and a seventh in three genomes. All seven bands and another, not identified in any of the whole genomes, were found in all 21 isolates. We compared sequencer-based CGE (SCGE) with three different primer pairs to the Qiagen QIAxcel CGE (QCGE) platform. Deviations from individual reference/consensus band sizes were smaller for SCGE (0 to 0.2 bp) than for QCGE (4.2 to 9.5 bp). Compared with QCGE, SCGE more readily distinguished bands of similar length (more discriminatory), detected bands of larger size and lower intensity (more sensitive), and assigned band sizes more accurately and reproducibly, making it more suitable for standardization. Specifically, QCGE failed to identify the largest ISR amplicon. Based on several criteria, we recommend the primer set 16S-USA/23S-USA for use in a proposed standard SCGE method. Similar differences between SCGE and QCGE were found on testing of 14 isolates of four other C. difficile ribotypes. Based on our results, ISR profiles based on accurate sequencer-based band lengths would be preferable to agarose gel-based banding patterns for the assignment of ribotypes. PMID:22692737

  18. 21 CFR 864.6150 - Capillary blood collection tube.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Capillary blood collection tube. 864.6150 Section... blood collection tube. (a) Identification. A capillary blood collection tube is a plain or heparinized glass tube of very small diameter used to collect blood by capillary action. (b) Classification. Class I...

  19. 21 CFR 864.6150 - Capillary blood collection tube.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Capillary blood collection tube. 864.6150 Section... blood collection tube. (a) Identification. A capillary blood collection tube is a plain or heparinized glass tube of very small diameter used to collect blood by capillary action. (b) Classification. Class I...

  20. 21 CFR 864.6150 - Capillary blood collection tube.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Capillary blood collection tube. 864.6150 Section... blood collection tube. (a) Identification. A capillary blood collection tube is a plain or heparinized glass tube of very small diameter used to collect blood by capillary action. (b) Classification. Class I...

  1. 21 CFR 864.6150 - Capillary blood collection tube.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Capillary blood collection tube. 864.6150 Section... blood collection tube. (a) Identification. A capillary blood collection tube is a plain or heparinized glass tube of very small diameter used to collect blood by capillary action. (b) Classification. Class I...

  2. 21 CFR 864.6150 - Capillary blood collection tube.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Capillary blood collection tube. 864.6150 Section... blood collection tube. (a) Identification. A capillary blood collection tube is a plain or heparinized glass tube of very small diameter used to collect blood by capillary action. (b) Classification. Class I...

  3. Spectrometer capillary vessel and method of making same

    DOEpatents

    Linehan, J.C.; Yonker, C.R.; Zemanian, T.S.; Franz, J.A.

    1995-11-21

    The present invention is an arrangement of a glass capillary tube for use in spectroscopy. In particular, the invention is a capillary arranged in a manner permitting a plurality or multiplicity of passes of a sample material through a spectroscopic measurement zone. In a preferred embodiment, the multi-pass capillary is insertable within a standard NMR sample tube. The present invention further includes a method of making the multi-pass capillary tube and an apparatus for spinning the tube. 13 figs.

  4. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  5. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  6. Capillary-Condenser-Pumped Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  7. Light propagation in the micro-size capillary injected by high temperature liquid

    NASA Astrophysics Data System (ADS)

    Li, Yan-jun; Li, Edward; Xiao, Hai

    2016-11-01

    The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperature liquid tin into the micro-size capillary by using a high pressure difference system. After pumping, a single mode fiber (SMF) connected with the optical carrier based microwave interferometry (OCMI) system is used to measure different liquid tin levels in the micro-size capillary. The second method can pump the room temperature engine oil into the capillary by using a syringe pump. This method can avoid the air bubbles when the liquids are pumped into the capillary.

  8. Transmission in situ and operando high temperature X-ray powder diffraction in variable gaseous environments

    NASA Astrophysics Data System (ADS)

    Schlicker, Lukas; Doran, Andrew; Schneppmüller, Peter; Gili, Albert; Czasny, Mathias; Penner, Simon; Gurlo, Aleksander

    2018-03-01

    This work describes a device for time-resolved synchrotron-based in situ and operando X-ray powder diffraction measurements at elevated temperatures under controllable gaseous environments. The respective gaseous sample environment is realized via a gas-tight capillary-in-capillary design, where the gas flow is achieved through an open-end 0.5 mm capillary located inside a 0.7 mm capillary filled with a sample powder. Thermal mass flow controllers provide appropriate gas flows and computer-controlled on-the-fly gas mixing capabilities. The capillary system is centered inside an infrared heated, proportional integral differential-controlled capillary furnace allowing access to temperatures up to 1000 °C.

  9. Paper Capillary Enables Effective Sampling for Microfluidic Paper Analytical Devices.

    PubMed

    Shangguan, Jin-Wen; Liu, Yu; Wang, Sha; Hou, Yun-Xuan; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-06-06

    Paper capillary is introduced to enable effective sampling on microfluidic paper analytical devices. By coupling mac-roscale capillary force of paper capillary and microscale capillary forces of native paper, fluid transport can be flexibly tailored with proper design. Subsequently, a hybrid-fluid-mode paper capillary device was proposed, which enables fast and reliable sampling in an arrayed form, with less surface adsorption and bias for different components. The resulting device thus well supports high throughput, quantitative, and repeatable assays all by hands operation. With all these merits, multiplex analysis of ions, proteins, and microbe have all been realized on this platform, which has paved the way to level-up analysis on μPADs.

  10. Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Wang, An; Wang, Shuang; Dai, Dejun

    2018-05-01

    The cavity and central jet generated by the impact of a single water drop on a deep-water surface in a wind field are experimentally studied. Different experiments are performed by varying the impacting drop diameter and wind speed. The contour profile histories of the cavity (also called crater) and central jet (also called stalk) are measured in detail with a backlit cinematic shadowgraph technique. The results show that shortly after the drop hits the water surface an asymmetrical cavity appears along the wind direction, with a train of capillary waves on the cavity wall. This is followed by the formation of an inclined central jet at the location of the drop impact. It is found that the wind has little effect on the penetration depth of the cavity at the early stage of the cavity expansion, but markedly changes the capillary waves during the retraction of the cavity. The capillary waves in turn shift the position of the central jet formation leeward. The dynamics of the central jet are dominated by two mechanisms: (i) the oblique drop impact produced by the wind and (ii) the wind drag force directly acting on the jet. The maximum height of the central jet, called the stalk height, is drastically affected by the wind, and the nondimensional stalk height H /D decreases with increasing θ Re-1 , where D is the drop diameter, θ is the impingement angle of drop impact, and Re=ρaUwD /μa is the Reynolds number with air density ρa, wind speed Uw, and air viscosity μa.

  11. High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA.

    PubMed

    De Barba, M; Miquel, C; Lobréaux, S; Quenette, P Y; Swenson, J E; Taberlet, P

    2017-05-01

    Microsatellite markers have played a major role in ecological, evolutionary and conservation research during the past 20 years. However, technical constrains related to the use of capillary electrophoresis and a recent technological revolution that has impacted other marker types have brought to question the continued use of microsatellites for certain applications. We present a study for improving microsatellite genotyping in ecology using high-throughput sequencing (HTS). This approach entails selection of short markers suitable for HTS, sequencing PCR-amplified microsatellites on an Illumina platform and bioinformatic treatment of the sequence data to obtain multilocus genotypes. It takes advantage of the fact that HTS gives direct access to microsatellite sequences, allowing unambiguous allele identification and enabling automation of the genotyping process through bioinformatics. In addition, the massive parallel sequencing abilities expand the information content of single experimental runs far beyond capillary electrophoresis. We illustrated the method by genotyping brown bear samples amplified with a multiplex PCR of 13 new microsatellite markers and a sex marker. HTS of microsatellites provided accurate individual identification and parentage assignment and resulted in a significant improvement of genotyping success (84%) of faecal degraded DNA and costs reduction compared to capillary electrophoresis. The HTS approach holds vast potential for improving success, accuracy, efficiency and standardization of microsatellite genotyping in ecological and conservation applications, especially those that rely on profiling of low-quantity/quality DNA and on the construction of genetic databases. We discuss and give perspectives for the implementation of the method in the light of the challenges encountered in wildlife studies. © 2016 John Wiley & Sons Ltd.

  12. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy.

    PubMed

    de Theije, C C; Langen, R C J; Lamers, W H; Gosker, H R; Schols, A M W J; Köhler, S E

    2015-01-15

    Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers. Copyright © 2015 the American Physiological Society.

  13. Discrimination of non-explosive and explosive samples through nitrocellulose fingerprints obtained by capillary electrophoresis.

    PubMed

    Fernández de la Ossa, Ma Ángeles; Ortega-Ojeda, Fernando; García-Ruiz, Carmen

    2013-08-09

    This work is focused on a novel procedure to discriminate nitrocellulose-based samples with non-explosive and explosive properties. The nitrocellulose study has been scarcely approached in the literature due to its special polymeric properties such as its high molar mass and complex chemical and structural characteristics. These properties require the nitrocellulose analysis to be performed by using a few organic solvents and in consequence, they limit the number of adequate analytical techniques for its study. In terms of identification of pre-blast explosives, mass spectrometry is one of the most preferred technique because it allows to obtain structural information. However, it has never been used to analyze polymeric nitrocellulose. In this study, the differentiation of non-explosive and explosive samples through nitrocellulose fingerprints obtained by capillary electrophoresis was investigated. A batch of 30 different smokeless gunpowders and 23 different everyday products were pulverized, derivatized with a fluorescent agent and analyzed by capillary electrophoresis with laser-induced fluorescence detection. Since this methodology is specific to d-glucopyranose derivatives (cellulosic and related compounds), and paper samples could be easily found in explosion scenes, 11 different paper samples were also included in the study as potential interference samples. In order to discriminate among samples, multivariate analysis (principal component analysis and soft independent modeling of class analogy) was applied to the obtained electrophoretic profiles. To the best of our knowledge, this represents the first study that achieve a successful discrimination between non-explosive and explosive nitrocellulose-based samples, as well as potential cellulose interference samples, and posterior classification of unknown samples into their corresponding groups using CE-LIF and chemometric tools. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Canceling buoyancy of gaseous fuel flames in a gravitational environment using an ion-driven wind.

    PubMed

    Papac, M J; Dunn-Rankin, D

    2006-09-01

    Electric fields applied to combustion plasmas can be used to manipulate the thermofluid flow field to reduce buoyant forces and, hence, convection in locations near and within the flame. The resulting flow field is similar to that which is obtained in microgravity. Previous work has shown that buoyancy is modified in a non-premixed methane-air capillary flame when it burns in a capillary-to-plane configuration and an electric field is applied, and that regions of neutral or microbuoyancy exist, as indicated by the examined temperature and oxidizer profiles. The aim of this article is to examine in more detail this microbuoyancy condition and the coupling between the ion wind and resulting thermofluid flow field. To this end, the voltage-current characteristics (VCC) of CH4, C2H2, C2H4, C2H6, and C3H8 are measured and compared. Soot generated in the C2H(X) and propane flames lead to a hysteresis in the VCC curve whereby increased sooting leads to lower ion currents at constant flow rates and applied potentials. Buoyancy regimes for these flames in this configuration are determined. Methane can achieve the highest flow rate without sooting at the microbuoyant condition, and does not exhibit hysteresis in the VCC for the flow rates examined here. Furthermore, in this geometry, the microbuoyant condition for methane is found to coincide with ion current saturation when the capillary-to-plane distance is varied. These results allow for several simplifications to be made when modeling the flame at these conditions: the imposition of a spherical flame boundary with known ion current, and negligible recombination in the domain.

  15. Fibromyalgia is Associated With Altered Skeletal Muscle Characteristics Which May Contribute to Post-Exertional Fatigue in Post-Menopausal Women

    PubMed Central

    Srikuea, Ratchakrit; Symons, T. Brock; Long, Douglas E.; Lee, Jonah D.; Shang, Yu; Chomentowski, Peter J.; Yu, Guoqiang; Crofford, Leslie J.; Peterson, Charlotte A.

    2012-01-01

    Objective To identify muscle physiological properties that may contribute to post-exertional fatigue and malaise in women with fibromyalgia (FM). Methods Healthy postmenopausal women with (n=11) and without (n=11) fibromyalgia, age 51–70 years, participated in this study. Physical characteristics along with self-reported questionnaires were evaluated. Strength loss and tissue oxygenation in response to a fatiguing exercise protocol were used to quantify fatigability and the local muscle hemodynamic profile. Muscle biopsies were obtained to assess between-group differences in baseline muscle properties using histochemical, immunohistochemical and electron microscopic analyses. Results No significant difference in muscle fatigue in response to exercise was apparent between healthy controls and subjects with FM. However, self-reported fatigue and pain were correlated to prolonged loss of strength following 12-min of recovery in subjects with FM. Although there was no difference in percent SDH positive (type I) and SDH negative (type II) fibers or in mean fiber cross-sectional area between groups, subjects with FM showed greater size variability and altered fiber size distribution. Only in healthy controls, fatigue-resistance was strongly correlated with the size of SDH positive fibers and hemoglobin oxygenation. By contrast, subjects with FM with the highest percentage of SDH positive fibers recovered strength most effectively, which was correlated to capillary density. However, overall, capillary density was lower in subjects with FM. Conclusion Peripheral mechanisms i.e. altered muscle fiber size distribution and decreased capillary density may contribute to post-exertional fatigue in subjects with FM. Understanding these defects in fibromyalgic muscle may provide valuable insight for treatment. PMID:23124535

  16. Numerical analysis of flows of rarefied gases in long channels with octagonal cross section shapes

    NASA Astrophysics Data System (ADS)

    Szalmas, L.

    2014-12-01

    Isothermal, pressure driven rarefied gas flows through long channels with octagonal cross section shapes are analyzed computationally. The capillary is between inlet and outlet reservoirs. The cross section is constant along the axial direction. The boundary condition at the solid-gas interface is assumed to be diffuse reflection. Since the channel is long, the gaseous velocity is small compared to the average molecular speed. Consequently, a linearized description can be used. The flow is described by the linearized Bhatnagar-Gross-Krook kinetic model. The solution of the problem is divided into two stages. First, the local flow field is determined by assuming the local pressure gradient. Secondly, the global flow behavior is deduced by the consideration of the conservation of the mass along the axis of the capillary. The kinetic equation is solved by the discrete velocity method on the cross section. Both spatial and velocity spaces are discretized. A body fitted rectangular grid is used for the spatial space. Near the boundary, first-order, while in the interior part of the flow domain, second-order finite-differences are applied to approximate the spatial derivatives. This combination results into an efficient and straightforward numerical treatment. The velocity space is represented by a Gauss-Legendre quadrature. The kinetic equation is solved in an iterative manner. The local dimensionless flow rate is calculated and tabulated for a wide range of the gaseous rarefaction for octagonal cross sections with various geometrical parameters. It exhibits the Knudsen minimum phenomenon. The flow rates in the octagonal channel are compared to those through capillaries with circular and square cross sections. Typical velocity profiles are also shown. The mass flow rate and the distribution of the pressure are determined and presented for global pressure driven flows.

  17. Blood flow vs. venous pressure effects on filtration coefficient in oleic acid-injured lung.

    PubMed

    Anglade, D; Corboz, M; Menaouar, A; Parker, J C; Sanou, S; Bayat, S; Benchetrit, G; Grimbert, F A

    1998-03-01

    On the basis of changes in capillary filtration coefficient (Kfc) in 24 rabbit lungs, we determined whether elevations in pulmonary venous pressure (Ppv) or blood flow (BF) produced differences in filtration surface area in oleic acid-injured (OA) or control (Con) lungs. Lungs were cyclically ventilated and perfused under zone 3 conditions by using blood and 5% albumin with no pharmacological modulation of vascular tone. Pulmonary arterial, venous, and capillary pressures were measured by using arterial, venous, and double occlusion. Before and during each Kfc-measurement maneuver, microvascular/total vascular compliance was measured by using venous occlusion. Kfc was measured before and 30 min after injury, by using a Ppv elevation of 7 cmH2O or a BF elevation from 1 to 2 l . min-1 . 100 g-1 to obtain a similar double occlusion pressure. Pulmonary arterial pressure increased more with BF than with Ppv in both Con and OA lungs [29 +/- 2 vs. 19 +/- 0.7 (means +/- SE) cmH2O; P < 0. 001]. In OA lungs compared with Con lungs, values of Kfc (200 +/- 40 vs. 83 +/- 14%, respectively; P < 0.01) and microvascular/total vascular compliance ratio (86 +/- 4 vs. 68 +/- 5%, respectively; P < 0.01) increased more with BF than with Ppv. In conclusion, for a given OA-induced increase in hydraulic conductivity, BF elevation increased filtration surface area more than did Ppv elevation. The steep pulmonary pressure profile induced by increased BF could result in the recruitment of injured capillaries and could also shift downstream the compression point of blind (zone 1) and open injured vessels (zone 2).

  18. Polyamidoamine dendrimer as a spacer for the immobilization of glucose oxidase in capillary enzyme microreactor.

    PubMed

    Wang, Siming; Su, Ping; Hongjun, E; Yang, Yi

    2010-10-15

    Polyamidoamine dendrimer (PAMAM) is one of a number of dendritic polymers with precise molecular structure, highly geometric symmetry, and a large number of terminal groups. In this study, different generations of PAMAM (G0-G4) were introduced onto the inner wall of fused-silica capillaries by microwave irradiation and a new type of glucose oxidase (GOx) capillary enzyme microreactor was developed based on enzyme immobilization in the prepared PAMAM-grafted fused-silica capillaries. The optimal enzymolysis conditions for beta-d-glucose in the microreactor were evaluated by capillary zone electrophoresis. In addition, the enzymolysis efficiencies of different generations of PAMAM-GOx capillary enzyme microreactor were compared. The results indicate that enzymolysis efficiency increased with increasing generations of PAMAM. The experimental results provide the possibility for the development and application of an online immobilized capillary enzyme microreactor. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  19. Swept-Source Optical Coherence Tomography Angiography in West Nile Virus Chorioretinitis and Associated Occlusive Retinal Vasculitis.

    PubMed

    Khairallah, Moncef; Kahloun, Rim; Gargouri, Salma; Jelliti, Bechir; Sellami, Dorra; Ben Yahia, Salim; Feki, Jamel

    2017-08-01

    A 65-year-old man with diabetes and a history of fever of unknown origin 2 weeks earlier complained of sudden decreased vision in the left eye. The patient was diagnosed with bilateral West Nile virus (WNV) chorioretinitis associated with occlusive retinal vasculitis in the left eye. Swept-source optical coherence tomography angiography (SS-OCTA) of the left eye showed extensive, well-delineated, hypointense non-perfusion areas and perifoveal capillary arcade disruption in the superficial capillary plexus, as well as larger non-perfusion areas, capillary rarefaction, and diffuse capillary network attenuation and disorganization in the deep capillary plexus. OCTA may be a valuable tool for noninvasively assessing occlusive retinal vasculitis associated with WNV infection. It allows an accurate detection and precise delineation of areas of retinal capillary nonperfusion in both the superficial and deep capillary plexuses. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:672-675.]. Copyright 2017, SLACK Incorporated.

  20. Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection.

    PubMed

    Alarcon-Martinez, Luis; Yilmaz-Ozcan, Sinem; Yemisci, Muge; Schallek, Jesse; Kılıç, Kıvılcım; Can, Alp; Di Polo, Adriana; Dalkara, Turgay

    2018-03-21

    Recent evidence suggests that capillary pericytes are contractile and play a crucial role in the regulation of microcirculation. However, failure to detect components of the contractile apparatus in capillary pericytes, most notably α-smooth muscle actin (α-SMA), has questioned these findings. Using strategies that allow rapid filamentous-actin (F-actin) fixation (i.e. snap freeze fixation with methanol at -20°C) or prevent F-actin depolymerization (i.e. with F-actin stabilizing agents), we demonstrate that pericytes on mouse retinal capillaries, including those in intermediate and deeper plexus, express α-SMA. Junctional pericytes were more frequently α-SMA-positive relative to pericytes on linear capillary segments. Intravitreal administration of short interfering RNA (α-SMA-siRNA) suppressed α-SMA expression preferentially in high order branch capillary pericytes, confirming the existence of a smaller pool of α-SMA in distal capillary pericytes that is quickly lost by depolymerization. We conclude that capillary pericytes do express α-SMA, which rapidly depolymerizes during tissue fixation thus evading detection by immunolabeling. © 2018, Alarcon-Martinez et al.

  1. Modeling capillary bridge dynamics and crack healing between surfaces of nanoscale roughness

    NASA Astrophysics Data System (ADS)

    Soylemez, Emrecan; de Boer, Maarten P.

    2017-12-01

    Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. It strongly influences tribological performance with respect to adhesion, friction and wear. Only a few studies, however, assess effects due to capillary dynamics. Here we focus on how capillary bridge evolution influences crack healing rates. Experimental results indicated a logarithmic decrease in average crack healing velocity as the energy release rate increases. Our objective is to model that trend. We assume that capillary dynamics involve two mechanisms: capillary bridge growth and subsequently nucleation followed by growth. We show that by incorporating interface roughness details and the presence of an adsorbed water layer, the behavior of capillary force dynamics can be understood quantitatively. We identify three important regimes that control the healing process, namely bridge growth, combined bridge growth and nucleation, and finally bridge nucleation. To fully capture the results, however, the theoretical model for nucleation time required an empirical modification. Our model enables significant insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  2. An experimental study of the flow of LPG as refrigerant inside an adiabatic helical coiled capillary tube in vapour compression refrigeration system

    NASA Astrophysics Data System (ADS)

    Punia, Sanjeev Singh; Singh, Jagdev

    2015-11-01

    This paper presents an experimental investigation for the flow of liquefied petroleum gas (LPG) as a refrigerant inside an adiabatic helically coiled capillary tube in vapour compression refrigeration system. The effect of various geometric parameters and operating conditions like capillary tube inner diameter, length of capillary tube, coil diameter and different inlet subcoolings on the mass flow rate of LPG through the helical coiled capillary tube geometry has been investigated. It has been established that the coil diameter significantly influences the mass flow rate of LPG through the adiabatic helical capillary tube. It has been concluded that the effect of coiling of capillary tube reduces the mass flow rate by 5-12 % as compared to those of the straight capillary tube operating under similar conditions. The data obtained from the experiments are analyzed and a dimensionless correlation has been developed. The proposed correlation predicts that more than 90 % of experimental data which is in agreement with measured data in an error band of ±10 %.

  3. Utility of capillary microsampling for rat pharmacokinetic studies: Comparison of tail-vein bleed to jugular vein cannula sampling.

    PubMed

    Korfmacher, Walter; Luo, Yongyi; Ho, Stacy; Sun, Wei; Shen, Liduo; Wang, Jie; Wu, Zhongtao; Guo, Yang; Snow, Gregory; O'Shea, Thomas

    2015-01-01

    Serial sampling methods have been used for rat pharmacokinetic (PK) studies for over 20 years. Currently, it is still common to take 200-250 μL of blood at each timepoint when performing a PK study in rats and using serial sampling. While several techniques have been employed for collecting blood samples from rats, there is only limited published data to compare these methods. Recently, microsampling (≤ 50 μL) techniques have been reported as an alternative process for collecting blood samples from rats. In this report, five compounds were dosed orally into rats. For three proprietary compounds, jugular vein cannula (JVC) sampling was used to collect whole blood and plasma samples and capillary microsampling (CMS) was used to collect blood samples from the tail vein of the same animal. For the two other compounds, marketed drugs fluoxetine and glipizide, JVC sampling was used to collect both whole blood and blood CMS samples while tail-vein sampling from the same rats was also used to collect both whole blood and blood CMS samples. For the three proprietary compounds, the blood AUC as well as the blood concentration-time profile that were obtained from the tail vein were different from those obtained via JVC sampling. For fluoxetine, the blood total exposure (AUC) was not statistically different when comparing tail-vein sampling to JVC sampling, however the blood concentration-time profile that was obtained from the tail vein was different than the one obtained from JVC sampling. For glipizide, the blood AUC and concentration-time profile were not statistically different when comparing the tail-vein sampling to the JVC sampling. For both fluoxetine and glipizide, the blood concentration profiles obtained from CMS were equivalent to the blood concentration profiles obtained from the standard whole blood sampling, collected at the same sampling site. The data in this report provide strong evidence that blood CMS is a valuable small volume blood sampling approach for rats and that it provides results for test compound concentrations that are equivalent to those obtained from traditional whole blood sampling. The data also suggest that for some compounds, the concentration-time profile that is obtained for a test compound based on sampling from a rat tail vein may be different from that obtained from rat JVC sampling. In some cases, this shift in the concentration-time profile will result in different PK parameters for the test compound. Based on these observations, it is recommended that a consistent blood sampling method should be used for serial microsampling in discovery rat PK studies when testing multiple new chemical entities. If the rat tail vein sampling method is selected for PK screening, then conducting a bridging study on the lead compound is recommended to confirm that the rat PK obtained from JVC sampling is comparable to the tail-vein sampling. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Pore-level influence of micro-fracture parameters on visco-capillary behavior of two-phase displacements in porous media

    NASA Astrophysics Data System (ADS)

    Rokhforouz, M. R.; Akhlaghi Amiri, H. A.

    2018-03-01

    In this work, coupled Cahn-Hilliard phase field and Navier-Stokes equations were solved using finite element method to address the effects of micro-fracture and its characterizations on water-oil displacements in a heterogeneous porous medium. Sensitivity studies at a wide range of viscosity ratios (M) and capillary numbers (Ca), and the resultant log Ca-log M stability phase diagram, revealed that in both media, with/without fracture, the three regimes of viscous fingering, capillary fingering and stable displacement similarly occur. However, presence of the fracture caused water channeling phenomenon which resulted in reduction of the number of active fingers and hence the final oil recovery factor. At high Ca (especially in the stable regime, with log Ca ≥ -2.5 and log M ≥ 0), recovery factor for the fractured medium was relatively identical with the non-fractured one. At log M ≥ 0, the fracture was fully swept, but flow instabilities were observed inside the fracture at lower M values, especially for log Ca > -4.6. In the case of the fractured medium at log Ca = -4.6 and log M = 0 (capillary dominant flow), it is observed that the primary breakthrough took place by a finger progressed through the matrix, not those channeled through the fracture. Geometrical properties of the fracture, including length, aperture and orientation, highly affected both displacement profile and efficiency. The fracture length inversely influenced the oil recovery factor. It was observed that there is a critical fracture width (almost half of the medium average pore diameter) at which the recovery factor of the medium during displacement is minimum, compared to the media having thinner and thicker fractures. Minor channeling effect in the media with thinner fracture and larger fracture swept volume as well as high fracture/matrix cross flow in the media with thicker fracture were detected as the main cause of this non-monotonic behavior. In the models with thick fractures (with the thickness higher than the average pore diameter), considerable trapped oil volumes were observed inside the fracture at low M values. The fracture orientation had the most impressive effect on oil recovery compared to the other studied parameters; where the oil recovery factor incremented more than 20% as the fracture rotated 90° from flow direction. Due to the dominant effect of the channeling phenomenon, the change in the medium wettability from slightly oil-wet to slightly water-wet, did not considerably affect the displacement profile in the fractured medium. However, oil recovery factor increased as the medium became more water-wet. The fracture area was fully swept by the injected water in the oil-wet and neutral-wet media. However, flow instabilities were observed inside the fracture of the water-wet medium due to counter-current imbibition between fracture/matrix. Micro-scale mechanisms of pore doublet effect, interface coalesce, snap-off and reverse movements were captured during the studied unstable displacements.

  5. Two classes of capillary optical fibers: refractive and photonic

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2008-11-01

    This paper is a digest tutorial on some properties of capillary optical fibers (COF). Two basic types of capillary optical fibers are clearly distinguished. The classification is based on propagation mechanism of optical wave. The refractive, singlemode COF guides a dark hollow beam of light (DHB) with zero intensity on fiber axis. The photonic, singlemode COF carries nearly a perfect axial Gaussian beam with maximum intensity on fiber axis. A subject of the paper are these two basic kinds of capillary optical fibers of pure refractive and pure photonic mechanism of guided wave transmission. In a real capillary the wave may be transmitted by a mixed mechanism, refractive and photonic, with strong interaction of photonic and refractive guided wave modes. Refractive capillary optical fibers are used widely for photonic instrumentation applications, while photonic capillary optical fibers are considered for trunk optical communications. Replacement of classical, single mode, dispersion shifted, 1550nm optimized optical fibers for communications with photonic capillaries would potentially cause a next serious revolution in optical communications. The predictions say that such a revolution may happen within this decade. This dream is however not fulfilled yet. The paper compares guided modes in both kinds of optical fiber capillaries: refractive and photonic. The differences are emphasized indicating prospective application areas of these fibers.

  6. Modeling oxygen transport in human placental terminal villi.

    PubMed

    Gill, J S; Salafia, C M; Grebenkov, D; Vvedensky, D D

    2011-12-21

    Oxygen transport from maternal blood to fetal blood is a primary function of the placenta. Quantifying the effectiveness of this exchange remains key in identifying healthy placentas because of the great variability in capillary number, caliber and position within the villus-even in placentas deemed clinically "normal". By considering villous membrane to capillary membrane transport, stationary oxygen diffusion can be numerically solved in terminal villi represented by digital photomicrographs. We aim to provide a method to determine whether and if so to what extent diffusional screening may operate in placental villi. Segmented digital photomicrographs of terminal villi from the Pregnancy, Infection and Nutrition study in North Carolina 2002 are used as a geometric basis for solving the stationary diffusion equation. Constant maternal villous oxygen concentration and perfect fetal capillary membrane absorption are assumed. System efficiency is defined as the ratio of oxygen flux into a villus and the sum of the capillary areas contained within. Diffusion screening is quantified by comparing numerical and theoretical maximum oxygen fluxes. A strong link between various measures of villous oxygen transport efficiency and the number of capillaries within a villus is established. The strength of diffusional screening is also related to the number of capillaries within a villus. Our measures of diffusional efficiency are shown to decrease as a function of the number of capillaries per villus. This low efficiency, high capillary number relationship supports our hypothesis that diffusional screening is present in this system. Oxygen transport per capillary is reduced when multiple capillaries compete for diffusing oxygen. A complete picture of oxygen fluxes, capillary and villus areas is obtainable and presents an opportunity for future work. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Irradiation of orderly multiline spectra from linear plasma formed by vacuum discharge capillary

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki

    2005-03-01

    The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments are primarily performed in order to generate intense soft x rays. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbomolecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -11.5 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 μm aluminum filter were less than 30 μs. In the spectrum measurement, we observed orderly multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. The line number decreased with corresponding decreases in the capillary length.

  8. Urea functionalized surface-bonded sol-gel coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    PubMed

    Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid

    2018-03-30

    Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A comparison of capillary hydraulic conductivities in postural and locomotor muscle.

    PubMed

    McDonagh, P F; Gore, R W

    1982-09-01

    In a comparative skeletal muscle study Folkow and Halicka (Microvasc. Res. 1: 1-14, 1968) reported that the capillary filtration coefficient (CFC) of postural (red) muscle was two times the CFC of locomotor (white) muscle. It was concluded that the twofold difference in CFC was due solely to a difference in the perfused capillary surface areas (Sf) of red vs. white muscle. However, CFC is the product of capillary hydraulic conductivity (LP) and Sf. Hence their conclusion assumed that the average LP of red muscle capillaries is exactly equal to the average LP of white muscle capillaries. The following study was undertaken to test the validity of this assumption. The microocclusion procedures and analytical model described by Lee et al. (Circ. Res. 28: 358-370, 1971) and Gore [Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H268-H287, 1982] were used to determine LP. Independent measurements of LP were recorded from single capillaries in red, anterior latissimus dorsi (ALD) and white, posterior latissimus dorsi (PLD) muscles of chickens anesthetized with L.A. Thesia. We found that the mean capillary hydraulic conductivity in postural muscle [(LP)ALD = 0.20 +/- 0.06 (SE) micrometers . s-1 . cmH2O-1 (n = 11)] was significantly different from the mean capillary hydraulic conductivity in locomotor muscle [(LP)PLD = 0.061 +/- 0.01 micrometers . s-1 . cmH2O-1 (n = 14)] (P less than 0.05). These results provide direct evidence that observed differences in red vs. white muscle CFC's may not be due solely to different perfused capillary surface areas but may also be due to differences in capillary hydraulic conductivity.

  10. Comparisons Between Histology and Optical Coherence Tomography Angiography of the Periarterial Capillary-Free Zone.

    PubMed

    Balaratnasingam, Chandrakumar; An, Dong; Sakurada, Yoichi; Lee, Cecilia S; Lee, Aaron Y; McAllister, Ian L; Freund, K Bailey; Sarunic, Marinko; Yu, Dao-Yi

    2018-05-01

    To use the capillary-free zone along retinal arteries, a physiologic area of superficial avascularization, as an anatomic paradigm to investigate the reliability of optical coherence tomography angiography (OCTA) for visualizing the deep retinal circulation. Validity analysis and laboratory investigation. Five normal human donor eyes (mean age 69.8 years) were perfusion-labeled with endothelial antibodies and the capillary networks of the perifovea were visualized using confocal scanning laser microscopy. Regions of the capillary-free zone along the retinal artery were imaged using OCTA in 16 normal subjects (age range 24-51 years). Then, 3 × 3-mm scans were acquired using the RTVue XR Avanti (ver. 2016.1.0.26; Optovue, Inc, Fremont, California, USA), PLEX Elite 9000 (ver. 1.5.0.15909; Zeiss Meditec, Inc, Dublin, California, USA), Heidelberg Spectralis OCT2 (Family acquisition module 6.7.21.0; Heidelberg Engineering, Heidelberg, Germany), and DRI-OCT Triton (Ver. 1.1.1; Topcon Corp, Tokyo, Japan). Images of the superficial plexus, deep vascular plexus, and a slab containing all vascular plexuses were generated using manufacturer-recommended default settings. Comparisons between histology and OCTA were performed. Histologic analysis revealed that the capillary-free zone along the retinal artery was confined to the plane of the superficial capillary plexus and did not include the intermediate and deep capillary plexuses. Images derived from OCTA instruments demonstrated a prominent capillary-free zone along the retinal artery in slabs of the superficial plexus, deep plexus, and all capillary plexuses. The number of deep retinal capillaries seen in the capillary-free zone was significantly greater on histology than on OCTA (P < .001). Using the capillary-free zone as an anatomic paradigm, we show that the deep vascular beds of the retina are not completely visualized using OCTA. This may be a limitation of current OCTA techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. A star-shaped poly(2-methyl-2-oxazoline)-based antifouling coating: Application in investigation of the interaction between acetaminophen and bovine serum albumin by frontal analysis capillary electrophoresis.

    PubMed

    Du, Haiqin; Zhang, Chong; Mao, Ke; Wang, Yanmei

    2017-08-01

    In this work, an antifouling capillary modified with star-shaped poly(2-methyl-2-oxazoline)-based copolymer was used to study the interaction between acetaminophen (APAP) and bovine serum albumin (BSA) by frontal analysis capillary electrophoresis (FACE). The star-shaped copolymer, poly(ethylene imine)-graft-poly(2-methyl-2-oxazoline) (PEI-g-PMOXA), was immobilized onto the fused-silica capillary inner wall via dopamine-assisted co-deposition strategy, yielding a PEI-g-PMOXA/polydopamine (PDA)-coated antifouling capillary, i.e., an antifouling capillary coated with the PEI-g-PMOXA/PDA co-deposited film. Electroosmotic flow (EOF) mobility of the PEI-g-PMOXA/PDA-coated capillary was almost zero in a wide pH range (3.0-10.0), while the EOF mobility of bare capillary was much larger and increased significantly with pH increasing. When the PEI-g-PMOXA/PDA-coated capillary was exploited to separate a protein mixture including cytochrome c, lysozyme, ribonuclease A and α-chymotrypsinogen A, the theoretical plate numbers were of five orders of magnitude which were about ten-fold higher over those obtained with bare capillary; in addition, the RSD values of migration time were mostly less than 0.7% (30 consecutive runs) which were much smaller than those of bare capillary (c.a. 5.7%). The protein-resistant PEI-g-PMOXA/PDA-coated capillary was then used to investigate the interaction between APAP and BSA by FACE, the binding constant and number of binding sites at 25°C and pH 7.4 (Tris/HCl buffer of 25mM) were 1.39×10 4 M -1 and 1.08, respectively, which were comparable to the results determined by fluorescence spectroscopic measurement (3.18×10 4 M -1 and 1.19, respectively). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A novel imaging technique to measure capillary-refill time: improving diagnostic accuracy for dehydration in young children with gastroenteritis.

    PubMed

    Shavit, Itai; Brant, Rollin; Nijssen-Jordan, Cheri; Galbraith, Roger; Johnson, David W

    2006-12-01

    Assessment of dehydration in young children currently depends on clinical judgment, which is relatively inaccurate. By using digital videography, we developed a way to assess capillary-refill time more objectively. Our goal was to determine whether digitally measured capillary-refill time assesses the presence of significant dehydration (> or = 5%) in young children with gastroenteritis more accurately than conventional capillary refill and overall clinical assessment. We prospectively enrolled children with gastroenteritis, 1 month to 5 years of age, who were evaluated in a tertiary-care pediatric emergency department and judged by a triage nurse to be at least mildly dehydrated. Before any treatment, we measured the weight and digitally measured capillary-refill time of these children. Pediatric emergency physicians determined capillary-refill time by using conventional methods and degree of dehydration by overall clinical assessment by using a 7-point Likert scale. Postillness weight gain was used to estimate fluid deficit; beginning 48 hours after assessment, children were reweighed every 24 hours until 2 sequential weights differed by no more than 2%. We compared the accuracy of digitally measured capillary-refill time with conventional capillary refill and overall clinical assessment by determining sensitivities, specificities, likelihood ratios, and area under the receiver operator characteristic curves. A total of 83 patients were enrolled and had complete follow-up; 13 of these patients had significant dehydration (> or = 5% of body weight). The area under the receiver operator characteristic curves for digitally measured capillary-refill time and overall clinical assessment relative to fluid deficit (< 5% vs > or = 5%) were 0.99 and 0.88, respectively. Positive likelihood ratios were 11.7 for digitally measured capillary-refill time, 4.5 for conventional capillary refill, and 4.1 for overall clinical assessment. Results of this prospective cohort study suggest that digitally measured capillary-refill time more accurately predicts significant dehydration (> or = 5%) in young children with gastroenteritis than overall clinical assessment.

  13. Migration And Entrapment Of Mercury In The Subsurface

    NASA Astrophysics Data System (ADS)

    M, D.; Nambi, I. M.

    2009-12-01

    Elemental mercury is an immiscible liquid with high density and high surface tension. The movement of mercury in the saturated subsurface region is therefore considered a case of two phase flow involving mercury and water and is expected to be governed by gravity, viscous and capillary forces. Fundamental investigation into the migration and capillary entrapment of mercury in the subsurface was done by controlled laboratory capillary pressure saturation experiments using mercury and water as non wetting and wetting fluid respectively. Residual mercury saturation and van Genuchten’s capillary entrapment parameters were determined independently for different sizes of porous media. Based on the experimental data, theoretical investigations were done on the role of the three predominant forces and their influence on mercury migration and entrapment. The effects of fluid density and interfacial tension and the influence of Capillary and Bond number on mercury entrapment were analyzed with the help of similar capillary pressure - saturation experiments using Tetrachloroethylene (PCE)-water fluid pair. Mercury-water systems exhibited a low residual saturation of 0.02 and 0.07 as compared to 0.16 and 0.27 for PCE-water systems. Less residual mercury saturation, lack of apparent hysteresis in capillary pressure saturation curves and large variation in van Genuchten’s parameters 'α'(inverse of displacement pressure) and ‘n’ (pore size distribution index) for mercury-water systems compared to PCE-water systems were observed. These anomalies between the two systems elucidate that the capillary trapping is equally dependent on the fluid characteristics especially for high density immiscible fluids. Gravity force nevertheless a predominant controlling factor in the migration of highly dense mercury, is counteracted by not less trivial capillary force which was 1.22x104 times higher than gravity force. The capillary forces thus surmount the gravity forces and cause entrapment of mercury in the soil pores even in homogeneous porous medium system. Bond number (Bond number relates gravity and capillary forces) for mercury-water system was found to 2.5 times higher than PCE-water systems. Large density differences between mercury and water lead to high Bond number and thus less residual saturation. Capillary number (Capillary number relates viscous and capillary forces) was found to be less for mercury-water systems. Literature review unveils that low Capillary number does not influence non wetting residual saturation. But for high density mercury with natural infiltration, even low Capillary number influences residual saturation. With the alarming increase in number of mercury spill sites, results of this study showed a better understanding of the capillary entrapment phenomena and the extent of influence of each predominant force during displacement of highly dense mercury. The fundamental inputs to NAPL entrapment models were generated in this study for mercury for the first time. This data will be used to assess the distribution of mercury in contaminated sites and design suitable remedial alternatives.

  14. Capillary Structures for Exploration Life Support (Capillary Structures)

    NASA Image and Video Library

    2017-07-10

    iss052e013081 (7/10/2017) --- The Capillary Structures for Exploration Life Support (Capillary Structures) investigation studies a new method using structures of specific shapes to manage fluid and gas mixtures. The investigation studies water recycling and carbon dioxide removal, benefiting future efforts to design lightweight, more reliable life support systems for future space missions.

  15. Thermal modulation for gas chromatography

    NASA Technical Reports Server (NTRS)

    Waite, J. Hunter (Inventor); Libardoni, Mark (Inventor); Stewart, Kristine (Inventor); Block, Bruce P. (Inventor); Sacks, Richard D. (Inventor); Hasselbrink, Ernest F. (Inventor)

    2007-01-01

    A thermal modulator device for gas chromatography and associated methods. The thermal modulator device includes a recirculating fluid cooling member, an electrically conductive capillary in direct thermal contact with the cooling member, and a power supply electrically coupled to the capillary and operable for controlled resistive heating of the capillary. The capillary can include more than one separate thermally modulated sections.

  16. Construction of stable capillary networks using a microfluidic device.

    PubMed

    Sudo, Ryo

    2015-01-01

    Construction of stable capillary networks is required to provide sufficient oxygen and nutrients to the deep region of thick tissues, which is important in the context of 3D tissue engineering. Although conventional in vitro culture models have been used to investigate the mechanism of capillary formation, recent advances in microfluidics technologies allowed us to control biophysical and biochemical culture environments more precisely, which led to the construction of functional and stable capillary networks. In this study, endothelial cells and mesenchymal stem cells were co-cultured in microfluidic devices to construct stable capillary networks, which resulted in the construction of luminal structures covered by pericytes. Interactions between endothelial cells and mesenchymal stem cells are also discussed in the context of capillary formation.

  17. Extreme-UV electrical discharge source

    DOEpatents

    Fornaciari, Neal R.; Nygren, Richard E.; Ulrickson, Michael A.

    2002-01-01

    An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

  18. Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays.

    PubMed

    Weng, Kuo-Yao; Chou, Nien-Jen; Cheng, Jya-Wei

    2008-07-01

    An innovative vacuum capillary pneumatic actuation concept that can be used for point-of-care testing has been investigated. The vacuum glass capillaries are encapsulated within a laminated pouch and incorporated into the fluidic card. Vacuum glass capillaries broken by external force such as finger pressure, generate the pneumatic forces to induce liquid flow in the fluidic system. The sizes of vacuum capillary play a vital role in the pumping and metering functions of the system. The luteinizing hormone (LH) chromatographic immunoassay performances in the fluidic cards show consistency comparable to that obtained by manual micropipetting. The vacuum capillary pneumatic actuation will be applied in other complex handling step bioassays and lab-on-a-chip devices.

  19. Computational Material Processing in Microgravity

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Working with Professor David Matthiesen at Case Western Reserve University (CWRU) a computer model of the DPIMS (Diffusion Processes in Molten Semiconductors) space experiment was developed that is able to predict the thermal field, flow field and concentration profile within a molten germanium capillary under both ground-based and microgravity conditions as illustrated. These models are coupled with a novel nonlinear statistical methodology for estimating the diffusion coefficient from measured concentration values after a given time that yields a more accurate estimate than traditional methods. This code was integrated into a web-based application that has become a standard tool used by engineers in the Materials Science Department at CWRU.

  20. Quality of original and biosimilar epoetin products.

    PubMed

    Brinks, Vera; Hawe, Andrea; Basmeleh, Abdul H H; Joachin-Rodriguez, Liliana; Haselberg, Rob; Somsen, Govert W; Jiskoot, Wim; Schellekens, Huub

    2011-02-01

    To compare the quality of therapeutic erythropoietin (EPO) products, including two biosimilars, with respect to content, aggregation, isoform profile and potency. Two original products, Eprex (epoetin alpha) and Dynepo (epoetin delta), and two biosimilar products, Binocrit (epoetin alpha) and Retacrit (epoetin zeta), were compared using (1) high performance size exclusion chromatography, (2) ELISA, (3) SDS-PAGE, (4) capillary zone electrophoresis and (5) in-vivo potency. Tested EPO products differed in content, isoform composition, and potency. Of the tested products, the biosimilars have the same or even better quality as the originals. Especially, the potency of originals may significantly differ from the value on the label.

  1. Liquid Droplets Act as "Compass Needles" for the Stresses in a Deformable Membrane.

    PubMed

    Schulman, Rafael D; Ledesma-Alonso, René; Salez, Thomas; Raphaël, Elie; Dalnoki-Veress, Kari

    2017-05-12

    We examine the shape of droplets atop deformable thin elastomeric films prepared with an anisotropic tension. As the droplets generate a deformation in the taut film through capillary forces, they assume a shape that is elongated along the high tension direction. By measuring the contact line profile, the tension in the membrane can be completely determined. Minimal theoretical arguments lead to predictions for the droplet shape and membrane deformation that are in excellent agreement with the data. On the whole, the results demonstrate that droplets can be used as probes to map out the stress field in a membrane.

  2. Universality in the nonlinear leveling of capillary films

    NASA Astrophysics Data System (ADS)

    Zheng, Zhong; Fontelos, Marco A.; Shin, Sangwoo; Stone, Howard A.

    2018-03-01

    Many material science, coating, and manufacturing problems involve liquid films where defects that span the film thickness must be removed. Here, we study the surface-tension-driven leveling dynamics of a thin viscous film following closure of an initial hole. The dynamics of the film shape is described by a nonlinear evolution equation, for which we obtain a self-similar solution. The analytical results are verified using time-dependent numerical and experimental results for the profile shapes and the minimum film thickness at the center. The universal behavior we identify can be useful for characterizing the time evolution of the leveling process and estimating material properties from experiments.

  3. Stability of a jet in confined pressure-driven biphasic flows at low reynolds numbers.

    PubMed

    Guillot, Pierre; Colin, Annie; Utada, Andrew S; Ajdari, Armand

    2007-09-07

    Motivated by its importance for microfluidic applications, we study the stability of jets formed by pressure-driven concentric biphasic flows in cylindrical capillaries. The specificity of this variant of the classical Rayleigh-Plateau instability is the role of the geometry which imposes confinement and Poiseuille flow profiles. We experimentally evidence a transition between situations where the flow takes the form of a jet and regimes where drops are produced. We describe this as the transition from convective to absolute instability, within a simple linear analysis using lubrication theory for flows at low Reynolds number, and reach remarkable agreement with the data.

  4. In vivo vascular flow profiling combined with optical tweezers based blood routing

    NASA Astrophysics Data System (ADS)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2017-07-01

    In vivo wall shear rate is quantified during zebrafish development using particle image velocimetry for biomedical diagnosis and modeling of artificial vessels. By using brightfield microscopy based high speed video tracking we can resolve single heart-beat cycles of blood flow in both space and time. Maximum blood flow velocities and wall shear rates are presented for zebrafish at two and three days post fertilization. By applying biocompatible optical tweezers as an Optical rail we present rerouting of red blood cells in vivo. With purely light-driven means we are able to compensate the lack of proper red blood cell blood flow in so far unperfused capillaries.

  5. Fast filtration sampling protocol for mammalian suspension cells tailored for phosphometabolome profiling by capillary ion chromatography - tandem mass spectrometry.

    PubMed

    Kvitvang, Hans F N; Bruheim, Per

    2015-08-15

    Capillary ion chromatography (capIC) is the premium separation technology for low molecular phosphometabolites and nucleotides in biological extracts. Removal of excessive amounts of salt during sample preparation stages is a prerequisite to enable high quality capIC separation in combination with reproducible and sensitive MS detection. Existing sampling protocols for mammalian cells used for GC-MS and LC-MS metabolic profiling can therefore not be directly applied to capIC separations. Here, the development of a fast filtration sampling protocol for mammalian suspension cells tailored for quantitative profiling of the phosphometabolome on capIC-MS/MS is presented. The whole procedure from sampling the culture to transfer of filter to quenching and extraction solution takes less than 10s. To prevent leakage it is critical that a low vacuum pressure is applied, and satisfactorily reproducibility was only obtained by usage of a vacuum pressure controlling device. A vacuum of 60mbar was optimal for filtration of multiple myeloma Jjn-3 cell cultures through 5μm polyvinylidene (PVDF) filters. A quick deionized water (DI-water) rinse step prior to extraction was tested, and significantly higher metabolite yields were obtained during capIC-MS/MS analyses in this extract compared to extracts prepared by saline and reduced saline (25%) washing steps only. In addition, chromatographic performance was dramatically improved. Thus, it was verified that a quick DI-water rinse is tolerated by the cells and can be included as the final stage during filtration. Over 30 metabolites were quantitated in JJN-3 cell extracts by using the optimized sampling protocol with subsequent capIC-MS/MS analysis, and up to 2 million cells can be used in a single filtration step for the chosen filter and vacuum pressure. The technical set-up is also highly advantageous for microbial metabolome filtration protocols after optimization of vacuum pressure and washing solutions, and the reduced salt content of the extract will also improve the quality of LC-MS analysis due to lower salt adduct ion formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring System

    PubMed Central

    Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter; Devesse, Wim; De Graeve, Iris; Terryn, Herman; Guillaume, Patrick

    2017-01-01

    Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the reference specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored. PMID:28841186

  7. Microvascular remodelling in preeclampsia: quantifying capillary rarefaction accurately and independently predicts preeclampsia.

    PubMed

    Antonios, Tarek F T; Nama, Vivek; Wang, Duolao; Manyonda, Isaac T

    2013-09-01

    Preeclampsia is a major cause of maternal and neonatal mortality and morbidity. The incidence of preeclampsia seems to be rising because of increased prevalence of predisposing disorders, such as essential hypertension, diabetes, and obesity, and there is increasing evidence to suggest widespread microcirculatory abnormalities before the onset of preeclampsia. We hypothesized that quantifying capillary rarefaction could be helpful in the clinical prediction of preeclampsia. We measured skin capillary density according to a well-validated protocol at 5 consecutive predetermined visits in 322 consecutive white women, of whom 16 subjects developed preeclampsia. We found that structural capillary rarefaction at 20-24 weeks of gestation yielded a sensitivity of 0.87 with a specificity of 0.50 at the cutoff of 2 capillaries/field with the area under the curve of the receiver operating characteristic value of 0.70, whereas capillary rarefaction at 27-32 weeks of gestation yielded a sensitivity of 0.75 and a higher specificity of 0.77 at the cutoff of 8 capillaries/field with area under the curve of the receiver operating characteristic value of 0.82. Combining capillary rarefaction with uterine artery Doppler pulsatility index increased the sensitivity and specificity of the prediction. Multivariable analysis shows that the odds of preeclampsia are increased in women with previous history of preeclampsia or chronic hypertension and in those with increased uterine artery Doppler pulsatility index, but the most powerful and independent predictor of preeclampsia was capillary rarefaction at 27-32 weeks. Quantifying structural rarefaction of skin capillaries in pregnancy is a potentially useful clinical marker for the prediction of preeclampsia.

  8. Nerve injury affects the capillary supply in rat slow and fast muscles differently.

    PubMed

    Cebasek, Vita; Radochová, Barbora; Ribaric, Samo; Kubínová, Lucie; Erzen, Ida

    2006-02-01

    The goal of this study was to determine the acute effects of permanent denervation on the length density of the capillary network in rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles and the effect of short-lasting reinnervation in slow muscle only. Denervation was performed by cutting the sciatic nerve. Both muscles were excised 2 weeks later. Reinnervation was studied 4 weeks after nerve crush in SOL muscle only. Capillaries and muscle fibres were visualised by triple immunofluorescent staining with antibodies against CD31 and laminin and with fluorescein-labelled Griffonia (Bandeira) simplicifolia lectin. A recently developed stereological approach allowing the estimation of the length of capillaries adjacent to each individual fibre (Lcap/Lfib) was employed. Three-dimensional virtual test grids were applied to stacks of optical images captured with a confocal microscope and their intersections with capillaries and muscle fibres were counted. Interrelationships among capillaries and muscle fibres were demonstrated with maximum intensity projection of the acquired stacks of optical images. The course of capillaries in EDL seemed to be parallel to the fibre axes, whereas in SOL, their preferential direction deviated from the fibre axes and formed more cross-connections among neighbouring capillaries. Lcap/Lfib was clearly reduced in denervated SOL but remained unchanged in EDL, although the muscle fibres significantly atrophied in both muscle types. When soleus muscle was reinnervated, capillary length per unit fibre length was completely restored. The physiological background for the different responses of the capillary network in slow and fast muscle is discussed.

  9. Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter

    Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the referencemore » specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.« less

  10. Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring System

    DOE PAGES

    Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter; ...

    2017-08-25

    Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the referencemore » specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.« less

  11. Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics.

    PubMed

    Popovic, Zoran; Knutsson, Per; Thaung, Jörgen; Owner-Petersen, Mette; Sjöstrand, Johan

    2011-04-22

    To demonstrate noninvasive imaging of human foveal capillary networks with a high-resolution, wide-field, dual-conjugate adaptive optics (DCAO) imaging instrument. The foveal capillary networks of five healthy subjects with no previous history of ocular or neurologic disease or surgery were imaged with a novel high-resolution, wide-field DCAO instrument. The foveal avascular zone (FAZ) in each image was defined using a manual procedure. An automated algorithm based on publicly available and custom-written software was used to identify vessels and extract morphologic FAZ and vessel parameters. Capillary densities were calculated in two annular regions of interest (ROIs) outside the FAZ (500 μm and 750 μm outer radius from the foveal center) and in the superior, inferior, temporal, and nasal quadrants within the two ROIs. Mean FAZ area was 0.302 ± 0.100 mm(2), and mean capillary density (length/area) in the inner ROI was 38.0 ± 4.0 mm(-1) and 36.4 ± 4.0 mm(-1) in the outer ROI. The difference in ROI capillary density was not significant. There was no significant difference in quadrant capillary density within the two ROIs or between quadrants irrespective of ROI. The authors have demonstrated a technique for noninvasive imaging and semiautomated detection and analysis of foveal capillaries. In comparison with other studies, their method yielded lower capillary densities than histology but similar results to the current clinical gold standard, fluorescein angiography. The increased field of view of the DCAO instrument opens up new possibilities for high-resolution noninvasive clinical imaging of foveal capillaries.

  12. The Relation Between Capillary Transit Times and Hemoglobin Saturation Heterogeneity. Part 1: Theoretical Models

    PubMed Central

    Lücker, Adrien; Secomb, Timothy W.; Weber, Bruno; Jenny, Patrick

    2018-01-01

    Capillary dysfunction impairs oxygen supply to parenchymal cells and often occurs in Alzheimer's disease, diabetes and aging. Disturbed capillary flow patterns have been shown to limit the efficacy of oxygen extraction and can be quantified using capillary transit time heterogeneity (CTH). However, the transit time of red blood cells (RBCs) through the microvasculature is not a direct measure of their capacity for oxygen delivery. Here we examine the relation between CTH and capillary outflow saturation heterogeneity (COSH), which is the heterogeneity of blood oxygen content at the venous end of capillaries. Models for the evolution of hemoglobin saturation heterogeneity (HSH) in capillary networks were developed and validated using a computational model with moving RBCs. Two representative situations were selected: a Krogh cylinder geometry with heterogeneous hemoglobin saturation (HS) at the inflow, and a parallel array of four capillaries. The heterogeneity of HS after converging capillary bifurcations was found to exponentially decrease with a time scale of 0.15–0.21 s due to diffusive interaction between RBCs. Similarly, the HS difference between parallel capillaries also drops exponentially with a time scale of 0.12–0.19 s. These decay times are substantially smaller than measured RBC transit times and only weakly depend on the distance between microvessels. This work shows that diffusive interaction strongly reduces COSH on a small spatial scale. Therefore, we conclude that CTH influences COSH yet does not determine it. The second part of this study will focus on simulations in microvascular networks from the rodent cerebral cortex. Actual estimates of COSH and CTH will then be given. PMID:29755365

  13. Compliance with dietary guidelines affects capillary recruitment in healthy middle-aged men and women.

    PubMed

    Govoni, Virginia; Sanders, Thomas A B; Reidlinger, Dianne P; Darzi, Julia; Berry, Sarah E E; Goff, Louise M; Seed, Paul T; Chowienczyk, Philip J; Hall, Wendy L

    2017-04-01

    Healthy microcirculation is important to maintain the health of tissues and organs, most notably the heart, kidney and retina. Single components of the diet such as salt, lipids and polyphenols may influence microcirculation, but the effects of dietary patterns that are consistent with current dietary guidelines are uncertain. It was hypothesized that compliance to UK dietary guidelines would have a favourable effect on skin capillary density/recruitment compared with a traditional British diet (control diet). A 12-week randomized controlled trial in men and women aged 40-70 years was used to test whether skin microcirculation, measured by skin video-capillaroscopy on the dorsum of the finger, influenced functional capillary density (number of capillaries perfused under basal conditions), structural capillary density (number of anatomical capillaries perfused during finger cuff inflation) and capillary recruitment (percentage difference between structural and functional capillary density). Microvascular measures were available for 137 subjects out of the 165 participants randomized to treatment. There was evidence of compliance to the dietary intervention, and participants randomized to follow dietary guidelines showed significant falls in resting supine systolic, diastolic and mean arterial pressure of 3.5, 2.6 and 2.9 mmHg compared to the control diet. There was no evidence of differences in capillary density, but capillary recruitment was 3.5 % (95 % CI 0.2, 6.9) greater (P = 0.04) on dietary guidelines compared with control. Adherence to dietary guidelines may help maintain a healthy microcirculation in middle-aged men and women. This study is registered at www.isrctn.com as ISRCTN92382106.

  14. Capillary Rise: Validity of the Dynamic Contact Angle Models.

    PubMed

    Wu, Pingkeng; Nikolov, Alex D; Wasan, Darsh T

    2017-08-15

    The classical Lucas-Washburn-Rideal (LWR) equation, using the equilibrium contact angle, predicts a faster capillary rise process than experiments in many cases. The major contributor to the faster prediction is believed to be the velocity dependent dynamic contact angle. In this work, we investigated the dynamic contact angle models for their ability to correct the dynamic contact angle effect in the capillary rise process. We conducted capillary rise experiments of various wetting liquids in borosilicate glass capillaries and compared the model predictions with our experimental data. The results show that the LWR equations modified by the molecular kinetic theory and hydrodynamic model provide good predictions on the capillary rise of all the testing liquids with fitting parameters, while the one modified by Joos' empirical equation works for specific liquids, such as silicone oils. The LWR equation modified by molecular self-layering model predicts well the capillary rise of carbon tetrachloride, octamethylcyclotetrasiloxane, and n-alkanes with the molecular diameter or measured solvation force data. The molecular self-layering model modified LWR equation also has good predictions on the capillary rise of silicone oils covering a wide range of bulk viscosities with the same key parameter W(0), which results from the molecular self-layering. The advantage of the molecular self-layering model over the other models reveals the importance of the layered molecularly thin wetting film ahead of the main meniscus in the energy dissipation associated with dynamic contact angle. The analysis of the capillary rise of silicone oils with a wide range of bulk viscosities provides new insights into the capillary dynamics of polymer melts.

  15. Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring System.

    PubMed

    Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter; Devesse, Wim; De Graeve, Iris; Terryn, Herman; Guillaume, Patrick

    2017-08-25

    Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the reference specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.

  16. The Relation Between Capillary Transit Times and Hemoglobin Saturation Heterogeneity. Part 1: Theoretical Models.

    PubMed

    Lücker, Adrien; Secomb, Timothy W; Weber, Bruno; Jenny, Patrick

    2018-01-01

    Capillary dysfunction impairs oxygen supply to parenchymal cells and often occurs in Alzheimer's disease, diabetes and aging. Disturbed capillary flow patterns have been shown to limit the efficacy of oxygen extraction and can be quantified using capillary transit time heterogeneity (CTH). However, the transit time of red blood cells (RBCs) through the microvasculature is not a direct measure of their capacity for oxygen delivery. Here we examine the relation between CTH and capillary outflow saturation heterogeneity (COSH), which is the heterogeneity of blood oxygen content at the venous end of capillaries. Models for the evolution of hemoglobin saturation heterogeneity (HSH) in capillary networks were developed and validated using a computational model with moving RBCs. Two representative situations were selected: a Krogh cylinder geometry with heterogeneous hemoglobin saturation (HS) at the inflow, and a parallel array of four capillaries. The heterogeneity of HS after converging capillary bifurcations was found to exponentially decrease with a time scale of 0.15-0.21 s due to diffusive interaction between RBCs. Similarly, the HS difference between parallel capillaries also drops exponentially with a time scale of 0.12-0.19 s. These decay times are substantially smaller than measured RBC transit times and only weakly depend on the distance between microvessels. This work shows that diffusive interaction strongly reduces COSH on a small spatial scale. Therefore, we conclude that CTH influences COSH yet does not determine it. The second part of this study will focus on simulations in microvascular networks from the rodent cerebral cortex. Actual estimates of COSH and CTH will then be given.

  17. A many-body dissipative particle dynamics study of forced water-oil displacement in capillary.

    PubMed

    Chen, Chen; Zhuang, Lin; Li, Xuefeng; Dong, Jinfeng; Lu, Juntao

    2012-01-17

    The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications. © 2011 American Chemical Society

  18. Capillary flow enhancement in rectangular polymer microchannels with a deformable wall.

    PubMed

    Anoop, R; Sen, A K

    2015-07-01

    We report the capillary flow enhancement in rectangular polymer microchannels, when one of the channel walls is a deformable polymer membrane. We provide detailed insight into the physics of elastocapillary interaction between the capillary flow and elastic membrane, which leads to significant improvements in capillary flow performance. As liquid flows by capillary action in such channels, the deformable wall deflects inwards due to the Young-Laplace pressure drop across the liquid meniscus. This, in turn, decreases the radius of curvature of the meniscus and increases the driving capillary pressure. A theoretical model is proposed to predict the resultant increase in filling speed and rise height, respectively, in deformable horizontal and vertical microchannels having large aspect ratios. A non-dimensional parameter J, which represents the ratio of the capillary force to the mechanical restoring force, is identified to quantify the elastocapillary effects in terms of the improvement in filling speed (for J>0.238) and the condition for channel collapse (J>1). The theoretical predictions show good agreement with experimental data obtained using deformable rectangular poly(dimethylsiloxane) microchannels. Both model predictions and experimental data show that over 15% improvement in the Washburn coefficient in horizontal channels, and over 30% improvement in capillary rise height in vertical channels, are possible prior to channel collapse. The proposed technique of using deformable membranes as channel walls is a viable method for capillary flow enhancement in microfluidic devices.

  19. Stress failure of pulmonary capillaries: role in lung and heart disease

    NASA Technical Reports Server (NTRS)

    West, J. B.; Mathieu-Costello, O.

    1992-01-01

    Pulmonary capillaries have extremely thin walls to allow rapid exchange of respiratory gases across them. Recently it has been shown that the wall stresses become very large when the capillary pressure is raised, and in anaesthetised rabbits, ultrastructural damage to the walls is seen at pressures of 40 mm Hg and above. The changes include breaks in the capillary endothelial layer, alveolar epithelial layer, and sometimes all layers of the wall. The strength of the thin part of the capillary wall can be attributed to the type IV collagen in the extracellular matrix. Stress failure of pulmonary capillaries results in a high-permeability form of oedema, or even frank haemorrhage, and is apparently the mechanism of neurogenic pulmonary oedema and high-altitude pulmonary oedema. It also explains the exercise-induced pulmonary haemorrhage that occurs in all racehorses. Several features of mitral stenosis are consistent with stress failure. Overinflation of the lung also leads to stress failure, a common cause of increased capillary permeability in the intensive care environment. Stress failure also occurs if the type IV collagen of the capillary wall is weakened by autoantibodies as in Goodpasture's syndrome. Neutrophil elastase degrades type IV collagen and this may be the starting point of the breakdown of alveolar walls that is characteristic of emphysema. Stress failure of pulmonary capillaries is a hitherto overlooked and potentially important factor in lung and heart disease.

  20. A novel in situ strategy for the preparation of a β-cyclodextrin/polydopamine-coated capillary column for capillary electrochromatography enantioseparations.

    PubMed

    Guo, Heying; Niu, Xiaoying; Pan, Congjie; Yi, Tao; Chen, Hongli; Chen, Xingguo

    2017-06-01

    Inspired by the chiral recognition ability of β-cyclodextrin and the natural adhesive properties of polydopamine under alkaline conditions, in this study, a rapid and in situ modification strategy was developed to fabricate β-cyclodextrin/polydopamine composite material coated-capillary columns for open tubular capillary electrochromatography. The results of scanning electron microscopy, FTIR spectroscopy, streaming potential, and electro-osmotic flow studies indicated that β-cyclodextrin/polydopamine was successfully fixed on the inner wall of the capillary column. This coating can be achieved within 1 h affording a greatly reduced capillary preparation time. The performance of the β-cyclodextrin/polydopamine-coated capillary was validated by the analysis of seven pairs of chiral analytes, namely epinephrine, norepinephrine, isoprenaline, terbutaline, verapamil, tryptophane, carvedilol. Good enantioseparation efficiencies were achieved for all. For three consecutive runs, the relative standard deviations for the migration times of the analytes for intraday, interday, and column-to-column repeatability were in the range of 0.41-1.74, 1.03-4.18, and 1.66-8.24%, respectively. Moreover, the separation efficiency of the β-cyclodextrin/polydopamine-coated capillary column did not decrease obviously over 90 runs. The strategy should also be feasible to introduce and immobilize other chiral selectors on the inner walls surface of capillary columns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography.

    PubMed

    Bao, Tao; Zhang, Juan; Zhang, Wenpeng; Chen, Zilin

    2015-02-13

    Much attention is being paid to applying metal-organic frameworks (MOFs) as stationary phases in chromatography because of their fascinating properties, such as large surface-to-volume ratios, high levels of porosity, and selective adsorption. HKUST-1 is one of the best-studied face-centered-cubic MOF containing nano-sized channels and side pockets for film growth. However, growth of HKUST-1 framework inside capillary column as stationary phase for capillary electrochromatography is a challenge work. In this work, we carry out the growth of HKUST-1 on the inner wall of capillary by using liquid-phase epitaxy process at room temperature. The fabricated HKUST-1@capillary can be successfully used for the separation of substituted benzene including methylbenzene, ethylbenzene, styrene, chlorobenzene, bromobenzene, o-dichlorobenzene, benzene series, phenolic acids, and benzoic acids derivates. High column efficiency of 1.5×10(5) N/m for methylbenzene was achieved. The formation of HKUST-1 grown in the capillary was confirmed and characterized by scanning electron microscopy images, Fourier transform infrared spectra and X-ray diffraction. The column showed long lifetime and excellent stability. The relative standard deviations for intra-day and inter-day repeatability of the HKUST-1@capillary were lower than 7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Application of CHESS single-bounce capillaries at synchrotron beamlines

    NASA Astrophysics Data System (ADS)

    Huang, R.; Szebenyi, T.; Pfeifer, M.; Woll, A.; Smilgies, D.-M.; Finkelstein, K.; Dale, D.; Wang, Y.; Vila-Comamala, J.; Gillilan, R.; Cook, M.; Bilderback, D. H.

    2014-03-01

    Single-bounce capillaries are achromatic X-ray focusing optics that can provide efficient and high demagnification focusing with large numerical apertures. Capillary fabrication at CHESS can be customized according to specific application requirements. Exemplary applications are reviewed in this paper, as well as recent progress on condensers for high-resolution transmission X-ray microscopy and small focal size capillaries.

  3. Cerebral capillary velocimetry based on temporal OCT speckle contrast.

    PubMed

    Choi, Woo June; Li, Yuandong; Qin, Wan; Wang, Ruikang K

    2016-12-01

    We propose a new optical coherence tomography (OCT) based method to measure red blood cell (RBC) velocities of single capillaries in the cortex of rodent brain. This OCT capillary velocimetry exploits quantitative laser speckle contrast analysis to estimate speckle decorrelation rate from the measured temporal OCT speckle signals, which is related to microcirculatory flow velocity. We hypothesize that OCT signal due to sub-surface capillary flow can be treated as the speckle signal in the single scattering regime and thus its time scale of speckle fluctuations can be subjected to single scattering laser speckle contrast analysis to derive characteristic decorrelation time. To validate this hypothesis, OCT measurements are conducted on a single capillary flow phantom operating at preset velocities, in which M-mode B-frames are acquired using a high-speed OCT system. Analysis is then performed on the time-varying OCT signals extracted at the capillary flow, exhibiting a typical inverse relationship between the estimated decorrelation time and absolute RBC velocity, which is then used to deduce the capillary velocities. We apply the method to in vivo measurements of mouse brain, demonstrating that the proposed approach provides additional useful information in the quantitative assessment of capillary hemodynamics, complementary to that of OCT angiography.

  4. Capillary Versus Aspiration Biopsy: Effect of Needle Size and Length on the Cytopathological Specimen Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopper, Kenneth D.; Grenko, Ronald T.; Fisher, Alicia I.

    1996-09-15

    Purpose: To test the value of the nonaspiration, or capillary, biopsy technique by experimental comparison with the conventional fine-needle aspiration technique using various needle gauges and lengths. Methods: On fresh hepatic and renal tissue from five autopsies, multiple biopsy specimens were taken with 20, 22, and 23-gauge Chiba needles of 5, 10, 15, and 20-cm length, using the aspiration technique and the capillary technique. The resultant specimens were graded on the basis of a grading scheme by a cytopathologist who was blinded to the biopsy technique. Results: The capillary technique obtained less background blood or clot which could obscure diagnosticmore » tissue, although not significantly different from the aspiration technique (p= 0.2). However, for the amount of cellular material obtained, retention of appropriate architecture, and mean score, the capillary technique performed statistically worse than aspiration biopsy (p < 0.01). In addition, with decreasing needle caliber (increasing needle gauge) and increasing length, the capillary biopsy was inferior to the aspiration biopsy. Conclusion: The capillary biopsy technique is inferior to the aspiration technique according to our study. When the capillary technique is to be applied, preference should be given to larger caliber, shorter needles.« less

  5. Capillary electrophoresis: principles and applications in illicit drug analysis.

    PubMed

    Tagliaro, F; Turrina, S; Smith, F P

    1996-02-09

    Capillary electrophoresis, which appeared in the early 1980s, is now rapidly expanding into many scientific disciplines, including analytical chemistry, biotechnology and biomedical and pharmaceutical sciences. In capillary electrophoresis,electrokinetic separations are carried out in tiny capillaries at high voltages (10-30 kV), thus obtaining high efficiencies (N > 10(5)) and excellent mass sensitivities (down to 10(-18)-10(-20) moles). The main features of capillary electrophoresis are: versatility of application (from inorganic ions to large DNA fragments), use of different separation modes with different selectivity, extremely low demands on sample volume, negligible running costs, possibility of interfacing with different detection systems, ruggedness and simplicity of instrumentation. Capillary electrophoresis applications in forensic sciences have appeared only recently, but are now rapidly growing, particularly in forensic toxicology. The present paper briefly describes the basic principles of capillary electrophoresis, from both the instrumental and analytical points of view. Furthermore, the main applications in the analysis of illicit/controlled drugs in both illicit preparations and biological samples are presented and discussed (43 references). It is concluded that the particular separation mechanism and the high complementarity of this technique to chromatography makes capillary electrophoresis a new powerful tool of investigation in the hands of forensic toxicologists.

  6. [Structure of newly formed capillaries of the rabbit cornea (electron microscopic study)].

    PubMed

    Gurina, O Iu; Karaganov, Ia L

    1984-08-01

    Owing to a complex application of topical analysis and tracer technique, it is possible to carry out a light optic and electron microscopic investigation of newly formed capillaries growing in the rabbit cornea after its chemical burn. The ultrastructural analysis demonstrates certain polymorphism of morphological organization of endotheliocyte in the newly formed capillaries. There is a rather elevated amount of free ribosomes, mitochondria, microtubules and microfilaments in cytoplasm. The granular endoplasmic reticulum and Golgi complex are hypertrophied. Weibel--Palade bodies appear. Taking into account certain morpho-functional peculiarities of endothelial cells along the course of the growing capillaries, on the 8th day of growth three zone are distinguished: 1--area of nondifferentiated endothelium (apex of the capillary), 2--transitional zone, 3--zone of relatively differentiated endothelium situating in the place where the capillary gets off the parental vessel. According to the zones distinguished, the ways of trans-endothelial transport of molecules are investigated. In formation of the capillary barrier-transport function an important role belongs to polymorphism of the endothelial cells along the course of the growing capillary which is determined by differentiation degree of these cells depending on their participation in permeability.

  7. Instability of the capillary bridge

    NASA Astrophysics Data System (ADS)

    Pare, Gounseti; Hoepffner, Jerome

    2014-11-01

    Capillary adhesion is a physical mechanism that maintains two bodies in contact by capillarity through a liquid ligament. The capillary bridge is an idealization of this capillary adhesion. In this study we first focus on the classical case of the stability of the capillary bridge. Secondly we study a slightly more complex configuration, imagining a flow in the capillary bridge as in the case of the dynamics of the neck of a liquid ligament, in its withdrawal under the effect of capillarity. Inspired by the experiments on soap films of Plateau, the configuration analyzed consists of an initially axisymmetric, mass of fluid held by surface tension forces between two parallel, coaxial, solid pipes of the same diameter. The results presented are obtained by numerical simulations using the free software, Gerris Flow Solver. We first focus on the capillary Venturi. In the static configuration the stability diagram of the capillary bridge obtained is in perfect agreement with the results of Lev A. Slobozhanin. In the dynamic case we develop a matlab code based on the one dimensional equations of Eggers and Dupont. The comparison of the bifurcation diagram obtained and the numerical simulations shows a good agreement.

  8. Influence of the capillary on the ignition of the transient spark discharge

    NASA Astrophysics Data System (ADS)

    Gerling, T.; Hoder, T.; Brandenburg, R.; Bussiahn, R.; Weltmann, K.-D.

    2013-04-01

    A self-pulsing negative dc discharge in argon generated in a needle-to-plane geometry at open atmosphere is investigated. Additionally, the needle electrode can be surrounded by a quartz capillary. It is shown that the relative position of the capillary end to the needle tip strongly influences the discharge inception and its spatio-temporal dynamics. Without the capillary for the selected working parameters a streamer corona is ignited, but when the capillary surrounds the needle, the transient spark (TS) discharge is ignited after a pre-streamer (PS) occurs. The time between PS and TS discharge depends on the relative capillary end position. The existence of the PS is confirmed by electro-optical characterization. Furthermore, spectrally and spatio-temporally resolved cross-correlation spectroscopy is applied to show the most active region of pre-phase emission activity as indicators for high local electric field strength. The results indicate that with a capillary in place, the necessary energy input of the pre-phase into the system is mainly reduced by additional electrical fields at the capillary edge. Even such a small change as a shift of dielectric surface close to the plasma largely changes the energy balance in the system.

  9. Capillary Contact Angle in a Completely Wet Groove

    NASA Astrophysics Data System (ADS)

    Parry, A. O.; Malijevský, A.; Rascón, C.

    2014-10-01

    We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θcap(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θcap>0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θcap(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.

  10. A model for capillary rise in micro-tube restrained by a sticky layer

    NASA Astrophysics Data System (ADS)

    Shen, Anqi; Xu, Yun; Liu, Yikun; Cai, Bo; Liang, Shuang; Wang, Fengjiao

    2018-06-01

    Fluid transport in a microscopic capillary under the effects of a sticky layer was theoretically investigated. A model based on the classical Lucas-Washburn (LW) model is proposed for the meniscus rise with the sticky layer present. The sticky layer consists of two parts: a fixed (located at the wall) and a movable part (located on the inside of the capillary), affecting the micro-capillary flow in different ways. Within our model, the movable layer is defined by the capillary radius and pressure gradient. From the model it follows that the fixed sticky layer leads to a decrease of capillary radius, while the movable sticky layer increases flow resistance. The movable layer thickness varies with the pressure gradient, which in turn varies with the rising of the meniscus. The results of our theoretical calculation also prove that the capillary radius has a greater effect on the meniscus height, rather than the additional resistance caused by the movable layer. Moreover, the fixed sticky layer, which affects the capillary radius, has a greater influence than the movable sticky layer. We conclude that the sticky layer causes a lower imbibition height than the LW model predicts.

  11. Capillary test specimen, system, and methods for in-situ visualization of capillary flow and fillet formation

    DOEpatents

    Hall, Aaron C.; Hosking, F. Michael ,; Reece, Mark

    2003-06-24

    A capillary test specimen, method, and system for visualizing and quantifying capillary flow of liquids under realistic conditions, including polymer underfilling, injection molding, soldering, brazing, and casting. The capillary test specimen simulates complex joint geometries and has an open cross-section to permit easy visual access from the side. A high-speed, high-magnification camera system records the location and shape of the moving liquid front in real-time, in-situ as it flows out of a source cavity, through an open capillary channel between two surfaces having a controlled capillary gap, and into an open fillet cavity, where it subsequently forms a fillet on free surfaces that have been configured to simulate realistic joint geometries. Electric resistance heating rapidly heats the test specimen, without using a furnace. Image-processing software analyzes the recorded images and calculates the velocity of the moving liquid front, fillet contact angles, and shape of the fillet's meniscus, among other parameters.

  12. Determining bruise etiology in muscle tissue using finite element analysis.

    PubMed

    Tang, Kevin; Sharpe, Wyatt; Schulz, Alexandra; Tam, Edric; Grosse, Ian; Tis, John; Cullinane, Dennis

    2014-03-01

    Bruising, the result of capillary failure, is a common physical exam finding due to blunt trauma and, depending on location and severity, a potential indicator of abuse. Despite its clinical relevance, few studies have investigated the etiology of capillary failure. The goal of this study was to determine whether capillaries primarily fail under shear stress or hydraulic-induced tensile stress. An arteriole bifurcating into four capillaries was modeled using ANSYS 14.0 (®) . The capillaries were embedded in muscle tissue and a pressure of 20.4 kPa was applied. Any tensile stress exceeding 8.4 × 10(4)  Pa was considered failure. Results showed that failure occurred directly under the impact zone and where capillaries bifurcated, rather than along the line of greatest shear stress, indicating that internal tensile stress is likely the primary mode of capillary failure in bruising. These results are supported by the concept that bruising can occur via blunt trauma in which no shearing lacerations occur. © 2013 American Academy of Forensic Sciences.

  13. Capillary electrochromatography and capillary electrochromatography-electrospray mass spectrometry for the separation of non-steroidal anti-inflammatory drugs.

    PubMed

    Desiderio, C; Fanali, S

    2000-10-20

    In this study capillary electrochromatography (CEC) was utilized for the separation of ten non-steroidal anti-inflammatory drugs (NSAIDs). Experiments were carried out in a commercially available CE instrument using a packed capillary with RP-18 silica particles where the stationary phase completely filled the capillary. The mobile phase consisted of a mixture of ammonium formate buffer pH 2.5 and acetonitrile. Selectivity and resolution were studied changing the pH and the concentration of the buffer, the acetonitrile content mobile phase and the capillary temperature. The optimum experimental conditions for CEC separation of the studied drug mixture were found using 50 mM ammonium formate pH 2.5-acetonitrile (40:60) at 25 degrees C. The CEC capillary was coupled to an electrospray mass spectrometer for the characterization of the NSAIDs. A mobile phase composed by the same buffer but with a higher concentration of acetonitrile (90%) was used in order to speed up the separation of analytes.

  14. Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications

    NASA Astrophysics Data System (ADS)

    Bagdasarov, G. A.; Sasorov, P. V.; Gasilov, V. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Benedetti, C.; Bulanov, S. S.; Gonsalves, A.; Mao, H.-S.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.

    2017-08-01

    One of the most robust methods, demonstrated to date, of accelerating electron beams by laser-plasma sources is the utilization of plasma channels generated by the capillary discharges. Although the spatial structure of the installation is simple in principle, there may be some important effects caused by the open ends of the capillary, by the supplying channels etc., which require a detailed 3D modeling of the processes. In the present work, such simulations are performed using the code MARPLE. First, the process of capillary filling with cold hydrogen before the discharge is fired, through the side supply channels is simulated. Second, the simulation of the capillary discharge is performed with the goal to obtain a time-dependent spatial distribution of the electron density near the open ends of the capillary as well as inside the capillary. Finally, to evaluate the effectiveness of the beam coupling with the channeling plasma wave guide and of the electron acceleration, modeling of the laser-plasma interaction was performed with the code INF&RNO.

  15. Hysteresis of the Contact Angle of a Meniscus Inside a Capillary with Smooth, Homogeneous Solid Walls.

    PubMed

    Kuchin, Igor V; Starov, Victor M

    2016-05-31

    A theory of contact angle hysteresis of a meniscus inside thin capillaries with smooth, homogeneous solid walls is developed in terms of surface forces (disjoining/conjoining pressure isotherm) using a quasi-equilibrium approach. The disjoining/conjoining pressure isotherm includes electrostatic, intermolecular, and structural components. The values of the static receding θr, advancing θa, and equilibrium θe contact angles in thin capillaries were calculated on the basis of the shape of the disjoining/conjoining pressure isotherm. It was shown that both advancing and receding contact angles depend on the capillary radius. The suggested mechanism of the contact angle hysteresis has a direct experimental confirmation: the process of receding is accompanied by the formation of thick β-films on the capillary walls. The effect of the transition from partial to complete wetting in thin capillaries is predicted and analyzed. This effect takes place in very thin capillaries, when the receding contact angle decreases to zero.

  16. Effects of anesthesia on the cerebral capillary blood flow in young and old mice

    NASA Astrophysics Data System (ADS)

    Moeini, Mohammad; Tabatabaei, Maryam S.; Bélanger, Samuel; Avti, Pramod; Castonguay, Alexandre; Pouliot, Philippe; Lesage, Frédéric

    2015-03-01

    Despite recent findings on the possible role of age-related cerebral microvasculature changes in cognition decline, previous studies of capillary blood flow in aging (using animal models) are scarce and limited to anesthetized conditions. Since anesthesia can have different effects in young and old animals, it may introduce a confounding effect in aging studies. The present study aimed to eliminate the potential confound introduced by anesthesia by measuring capillary blood flow parameters in both awake conditions and under isoflurane anesthesia. We used 2-photon laser scanning fluorescence microscopy to measure capillary diameter, red blood cell velocity and flux, hematocrit and capillary volumetric flow in individual capillaries in the barrel cortex of 6- and 24-month old C57Bl/6 mice. It was observed that microvascular properties are significantly affected by anesthesia leading to different trends in capillary blood flow parameters with aging when measured under awake or anesthetized conditions. The findings in this study suggest taking extra care in interpreting aging studies from anesthetized animals.

  17. Capillary electrochromatography of inorganic cations in open tubular columns with a controllable capacity multilayered stationary phase architecture.

    PubMed

    Kubán, Pavel; Kubán, Petr; Kubán, Vlastimil; Hauser, Peter C; Bocek, Petr

    2008-05-09

    In this paper capillary electrochromatography of alkali and alkaline-earth metal cations in open tubular capillary columns is described. Capillary columns are prepared by coating fused silica capillaries of 75 microm I.D. with poly(butadiene-maleic acid) copolymer (PBMA) in multiple layers. Thermally initiated radical polymerization is used to crosslink the stationary phase. Capillary columns with different number of stationary phase layers can be prepared and allow for the adjustment of separation selectivity in the electrochromatographic mode. Fast and sensitive separations of common inorganic cations are achieved in less than 6 min in a 60 cm capillary column with on-column capacitively coupled contactless conductivity detector. Limits of detection (S/N=3) for the determination of alkali and alkaline-earth metal cations range from 0.3 to 2.5 microM and repeatability is better than 0.5, 4.5 and 6.1% for migration times, peak heights and peak areas, respectively.

  18. Fatal Primary Capillary Leak Syndrome in a Late Preterm Newborn.

    PubMed

    Kulihova, Katarina; Prochazkova, Martina; Semberova, Jana; Janota, Jan

    2016-10-01

    Primary capillary leak syndrome is a rare disease of unknown etiology, characterized by episodes of vascular collapse and plasma extravasation, which may lead to multiple organ failure. Primary capillary leak is extremely rare in children. The authors report a case of a late preterm newborn with fatal capillary leak syndrome of unknown etiology, manifesting as hypotension unresponsive to treatment, extravasation leading to generalised edema, disseminated intravascular coagulation and finally, multiple organ dysfunction syndrome. Aggressive volumotherapy and a combination of inotropes and high doses of terlipressin did not influence systemic vascular collapse and plasma extravasation. The newborn developed multiple organ failure and died on day 27 of life. Investigations performed failed to reveal any specific cause of capillary leak. This is the first report of a fatal primary capillary leak syndrome in a newborn.

  19. Intradural Extramedullary Capillary Hemangioma in the Upper Cervical Spine: First Report.

    PubMed

    Bouali, Sofiene; Maatar, Nidhal; Bouhoula, Asma; Abderrahmen, Khansa; Kallel, Jalel; Jemel, Hafedh

    2016-08-01

    The occurrence of intradural extramedullary capillary hemangiomas is exceedingly rare. To date, only 39 cases of intradural extramedullary capillary hemangiomas have been reported in the English literature, and all of these cases have been described at the lumbar and thoracic spinal levels. To our knowledge, this report is the first case of capillary hemangiomas of the cervical spine in the literature. In general, this entity is misdiagnosed preoperatively as a neoplasm. A 29-year-old man presented with neck pain and progressive gait disturbance, and was diagnosed with an intradural extramedullary capillary hemangioma in the cervical region. Although rare, our case demonstrates that capillary hemangioma should be considered in the differential diagnosis of intradural extramedullary tumor of the cervical spine. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Managment of superficial infantile capillary hemangiomas with topical timolol maleate solution.

    PubMed

    Rizvi, Syed Ali Raza; Yusuf, Faraz; Sharma, Rajeev; Rizvi, Syed Wajahat Ali

    2015-01-01

    Capillary hemangioma is the most common benign tumor of eyelids and orbit in children. Recently, a topical beta blocker has been reported as an effective treatment for superficial capillary hemangiomas. We present a case report of two children having large capillary hemangiomas who responded well to topical treatment by 0.5% timolol maleate solution. After 12 months of treatment, the lesion has significantly reduced in size, thickness, and color in both cases. Thus, we conclude that long-term use of topical 0.5% timolol maleate solution is safe and effective in treating superficial capillary hemangiomas.

  1. Capillary descent.

    PubMed

    Delannoy, Joachim; de Maleprade, Hélène; Clanet, Christophe; Quéré, David

    2018-05-31

    A superhydrophobic capillary tube immersed in water and brought in contact with the bath surface will be invaded by air, owing to its aerophilicity. We discuss this phenomenon where the ingredients of classical capillary rise are inverted, which leads to noticeable dynamical features. (1) The main regime of air invasion is linear in time, due to the viscous resistance of water. (2) Menisci in tubes with millimetre-size radii strongly oscillate before reaching their equilibrium depth, a consequence of inertia. On the whole, capillary descent provides a broad variety of dynamics where capillary effects, viscous friction and liquid inertia all play a role.

  2. Development of a Specific Impulse Balance for a Pulsed Capillary Discharge (Preprint)

    DTIC Science & Technology

    2008-06-13

    thrust stand [rad/s] I. Introduction A capillary discharge based coaxial , electrothermal pulsed plasma thruster (PPT) is currently under...20-23 July 2008. 14. ABSTRACT A capillary discharge based pulsed plasma thruster is currently under development at the Air Force Research...Edwards AFB, CA 93524 A capillary discharge based pulsed plasma thruster is currently under development at the Air Force Research Laboratory. A

  3. Characteristics of a capillary-discharge flash x-ray generator

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Usuki, Tatsumi; Sato, Koetsu; Takayama, Kazuyoshi; Ido, Hideaki

    2002-11-01

    The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments are primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 0.2 μF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damp oscillations. The peak values of the voltage and current increased when the charging voltage was increased and their maximum values were -10.8 kV and 4.7 kV, respectively. The x-ray durations observed by a 1.6 μm aluminum filter were less than 30 μs, and we detected the aluminum characteristic x-ray intensity using a 6.8 μm aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in teh condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted greatly after pass through two slits.

  4. Coupling between skeletal muscle fiber size and capillarization is maintained during healthy aging.

    PubMed

    Barnouin, Yoann; McPhee, Jamie S; Butler-Browne, Gillian; Bosutti, Alessandra; De Vito, Giuseppe; Jones, David A; Narici, Marco; Behin, Anthony; Hogrel, Jean-Yves; Degens, Hans

    2017-08-01

    As muscle capillarization is related to the oxidative capacity of the muscle and the size of muscle fibres, capillary rarefaction may contribute to sarcopenia and functional impairment in older adults. Therefore, it is important to assess how ageing affects muscle capillarization and the interrelationship between fibre capillary supply with the oxidative capacity and size of the fibres. Muscle biopsies from healthy recreationally active young (22 years; 14 men and 5 women) and older (74 years; 22 men and 6 women) people were assessed for muscle capillarization and the distribution of capillaries with the method of capillary domains. Oxidative capacity of muscle fibres was assessed with quantitative histochemistry for succinate dehydrogenase (SDH) activity. There was no significant age-related reduction in muscle fibre oxidative capacity. Despite 18% type II fibre atrophy (P = 0.019) and 23% fewer capillaries per fibre (P < 0.002) in the old people, there was no significant difference in capillary distribution between young and old people, irrespective of sex. The capillary supply to a fibre was primarily determined by fibre size and only to a small extent by oxidative capacity, irrespective of age and sex. Based on SDH, the maximal oxygen consumption supported by a capillary did not differ significantly between young and old people. The similar quantitative and qualitative distribution of capillaries within muscle from healthy recreationally active older people and young adults indicates that the age-related capillary rarefaction, which does occur, nevertheless maintains the coupling between skeletal muscle fibre size and capillarization during healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  5. Hybrid Phospholipid Bilayer Coatings for Separations of Cationic Proteins in Capillary Zone Electrophoresis

    PubMed Central

    Gallagher, Elyssia S.; Adem, Seid M.; Bright, Leonard K.; Calderon, Isen A. C.; Mansfield, Elisabeth; Aspinwall, Craig A.

    2014-01-01

    Protein separations in capillary zone electrophoresis (CZE) suffer from non-specific adsorption of analytes to the capillary surface. Semi-permanent phospholipid bilayers (PLBs) have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self-assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3-cyanopropyldimethylchlorosilane (CPDCS) or n-octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m−2, respectively, compared to 17 ± 1 mJ m−2 for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine to CPDCS- or ODCS-modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3 – 1.9 × 10−4 cm2 V−1s−1) compared to CPDCS- and ODCS-modified or bare capillaries (3.6 ± 0.2 × 10−4 cm2 V−1s−1, 4.8 ± 0.4 × 10−4 cm2 V−1s−1, and 6.0 ± 0.2 × 10−4 cm2 V−1s−1, respectively), with increased stability compared to PLB coatings. HPB-coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6 %, n ≥ 6) with separation efficiencies as high as 200,000 plates m−1. PMID:24459085

  6. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity

    PubMed Central

    Lohman, Gregory J. S.; Bauer, Robert J.; Nichols, Nicole M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C.

    2016-01-01

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. PMID:26365241

  7. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.

    PubMed

    Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C

    2016-01-29

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Metabolome Profiling of Partial and Fully Reprogrammed Induced Pluripotent Stem Cells.

    PubMed

    Park, Soon-Jung; Lee, Sang A; Prasain, Nutan; Bae, Daekyeong; Kang, Hyunsu; Ha, Taewon; Kim, Jong Soo; Hong, Ki-Sung; Mantel, Charlie; Moon, Sung-Hwan; Broxmeyer, Hal E; Lee, Man Ryul

    2017-05-15

    Acquisition of proper metabolomic fate is required to convert somatic cells toward fully reprogrammed pluripotent stem cells. The majority of induced pluripotent stem cells (iPSCs) are partially reprogrammed and have a transcriptome different from that of the pluripotent stem cells. The metabolomic profile and mitochondrial metabolic functions required to achieve full reprogramming of somatic cells to iPSC status have not yet been elucidated. Clarification of the metabolites underlying reprogramming mechanisms should enable further optimization to enhance the efficiency of obtaining fully reprogrammed iPSCs. In this study, we characterized the metabolites of human fully reprogrammed iPSCs, partially reprogrammed iPSCs, and embryonic stem cells (ESCs). Using capillary electrophoresis time-of-flight mass spectrometry-based metabolomics, we found that 89% of analyzed metabolites were similarly expressed in fully reprogrammed iPSCs and human ESCs (hESCs), whereas partially reprogrammed iPSCs shared only 74% similarly expressed metabolites with hESCs. Metabolomic profiling analysis suggested that converting mitochondrial respiration to glycolytic flux is critical for reprogramming of somatic cells into fully reprogrammed iPSCs. This characterization of metabolic reprogramming in iPSCs may enable the development of new reprogramming parameters for enhancing the generation of fully reprogrammed human iPSCs.

  9. Flow Analysis of Isobutane (R-600A) Inside AN Adiabatic Capillary Tube

    NASA Astrophysics Data System (ADS)

    Alok, Praveen; Sahu, Debjyoti

    2018-02-01

    Capillary tubes are simple narrow tubes but the phase change which occurs inside the capillary tubes is complex to analyze. In the present investigation, an attempt is made to analyze the flow of Isobutane (R-600a) inside the coiled capillary tubes for different load conditions by Homogeneous Equilibrium Model. The Length and diameter of the capillary tube not only depend on the pressure and temperature of the condenser and evaporator but also on the cooling load. The present paper investigates the change in dimensions of the coil capillary tube with respect to the change in cooling load on the system for the constant condenser and evaporator conditions. ANSYS CFX (Central Florida Expressway) software is used to study the flow characteristics of the refrigerant. Appropriate helical coil is selected for this analysis.

  10. [Examples for using capillary gas chromatography with wide bore columns in occupational health].

    PubMed

    Frank, H; Senf, L; Welsch, T

    1990-12-01

    Wide bore capillary columns (0.4-0.75 mm ID) can be easily and inexpensively installed in packed column GCs. The analytical advantages cause an expanding market for such capillaries and interconverting hardware kits. It is illustrated with some examples that often individual exposition levels can be determined exactly only by using capillary columns: ethylbenzene may be separated from the C8-isomers also in complex mixtures, the marker PBN for rubber smoke expositions can be determined with 30 min sampling time, the detection sensitivity of the FID is sufficient also for chlorinated pesticides and the analyses of high-boiling compounds profit by the high phase ratio of wide bore capillary columns. A single capillary column substitutes a variety of different packed columns, so saving time and money and protecting the analyst from failures and frustrating compromises.

  11. Nailfold capillaroscopic changes in Kindler syndrome.

    PubMed

    Dobrev, Hristo P; Vutova, Nina I

    2015-11-01

    Kindler syndrome (KS), the fourth major type of hereditary epidermolysis bullosa (HEB), is a rare, autosomal recessive disorder characterized by skin fragility and blistering at birth followed by development of marked photosensitivity and progressive poikilodermatous skin changes in later years. We reported here the case of a 54-year-old woman, who fulfills the diagnostic criteria of KS type of HEB, putting accent on the nailfold capillaroscopic changes. Using videocapillaroscopy we observed pronounced alterations in finger nail capillaries including reduction in capillary density, features of neoangiogenesis (architectural derangement, elongated loops, extremely tortuous, bushy or branching capillaries, thin, branching and interconnected capillaries), enlarged and giant capillaries. We consider the changes observed as an adaptive mechanism that compensate the loss of capillaries due to chronic periungual trauma. Further studies with larger number of patients are needed to confirm the significance of capillaroscopy findings for patients with HEB.

  12. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends onmore » the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.« less

  13. A portable dermatoscope for easy, rapid examination of periungual nailfold capillary changes in patients with systemic sclerosis.

    PubMed

    Muroi, Eiji; Hara, Toshihide; Yanaba, Koichi; Ogawa, Fumihide; Yoshizaki, Ayumi; Takenaka, Motoi; Shimizu, Kazuhiro; Sato, Shinichi

    2011-12-01

    Microvascular lesions are a predominant feature in systemic sclerosis (SSc) and seem to play a central pathogenic role. The presence of nailfold capillary abnormalities is useful in diagnosing SSc. Capillaroscopy, however, usually requires special equipment and may be time consuming. Dermatoscope has been presented as a new diagnostic tool for quick and efficient examination of nailfold capillaries for circumstances when standard microscope equipment is not available. To assess the practical utility of dermatoscope for assessment of capillary morphology in patients with SSc, 83 Japanese patients with SSc (68 women, 15 men) and 68 healthy controls were examined in the study. Twenty-one patients (16 women, 5 men) had diffuse cutaneous SSc and 62 (52 women, 10 men) had limited cutaneous SSc. Enlarged capillaries and hemorrhages were evaluated in all 10 fingers with either naked eyes or DermLite(®) DL100 dermatoscope. Enlarged capillaries and hemorrhages were significantly more frequently detected with dermatoscope than without it. These findings were observed most frequently in the fourth finger. The presence of two or more enlarged capillaries in one or more fingers showed 83.1% sensitivity and 100% specificity for SSc. Among patients with SSc with anti-topoisomerase I antibody, the disease duration correlated negatively with the dermatoscopic number of enlarged capillaries and hemorrhages. Dermatoscope allows the easy and rapid identification of capillary nailfold morphological changes in SSc and should be routinely used for diagnosing SSc.

  14. Qualitative and quantitative assessment of nailfold capillaries by capillaroscopy in healthy volunteers.

    PubMed

    Hoerth, Christian; Kundi, Michael; Katzenschlager, Reinhold; Hirschl, Mirko

    2012-01-01

    Nailfold capillaroscopy (NVC) is a diagnostic tool particularly useful in the differential diagnosis of rheumatic and connective tissue diseases. Although successfully applied since many years, little is known about prevalence and distribution of NVC changes in healthy individuals. NVC was performed in 120 individuals (57 men and 63 women; age 18 to 70 years) randomly selected according to predefined age and sex strata. Diseases associated with NVC changes were excluded. The nailfolds of eight fingers were assessed according to standardized procedures. A scoring system was developed based on the distribution of the number of morphologically deviating capillaries, microhaemorrhages, and capillary density. Only 18 individuals (15 %) had no deviation in morphology, haemorrhages, or capillary density on any finger. Overall 67 % had morphological changes, 48 % had microhaemorrhages, and 40 % of volunteers below 40 years of age and 18 % above age 40 had less than 8 capillaries/mm. Among morphological changes tortous (43 %), ramified (47 %), and bushy capillaries (27 %) were the most frequently altered capillary types. A semiquantitative scoring system was developed in such a way that a score above 1 indicates an extreme position (above the 90th percentile) in the distribution of scores among healthy individuals. Altered capillaries occur frequently among healthy individuals and should be interpreted as normal unless a suspicious increase in their frequency is determined by reference to the scoring system. Megacapillaries and diffuse loss of capillaries were not found and seem to be of specific diagnostic value.

  15. Capillary Hemangioma of Thoracic Spinal Cord: PET/CT and MR Findings.

    PubMed

    Shen, Guohua; Su, Minggang; Zhao, Junyi; Liu, Bin; Kuang, Anren

    2017-05-01

    Capillary hemangiomas are frequently encountered superficially in the cutaneous, subcutaneous, or mucosal tissues during the childhood and early adulthood, but the occurrence of spinal intradural capillary hemangioma is relatively rare. Herein, we report a case with capillary hemangioma of the thoracic spine. MR and PET/CT features of this lesion are presented, and awareness of this entity may help differentiate it from other spinal intradural tumors.

  16. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tang, Jianbo; Erdener, Sefik Evren; Fu, Buyin; Boas, David A.

    2018-02-01

    Quantitative measurement of blood flow velocity in capillaries is challenging due to their small size (around 5-10 μm), and the discontinuity and single-file feature of RBCs flowing in a capillary. In this work, we present a phase-resolved Optical Coherence Tomography (OCT) method for accurate measurement of the red blood cell (RBC) speed in cerebral capillaries. To account for the discontinuity of RBCs flowing in capillaries, we applied an M-mode scanning strategy that repeated A-scans at each scanning position for an extended time. As the capillary size is comparable to the OCT resolution size (3.5×3.5×3.5μm), we applied a high pass filter to remove the stationary signal component so that the phase information of the dynamic component (i.e. from the moving RBC) could be enhanced to provide an accurate estimate of the RBC axial speed. The phase-resolved OCT method accurately quantifies the axial velocity of RBC's from the phase shift of the dynamic component of the signal. We validated our measurements by RBC passage velocimetry using the signal magnitude of the same OCT time series data. These proposed method of capillary velocimetry proved to be a robust method of mapping capillary RBC speeds across the micro-vascular network.

  17. Application of Partial Internal Transcribed Spacer Sequences for the Discrimination of Artemisia capillaris from Other Artemisia Species

    PubMed Central

    Doh, Eui Jeong; Paek, Seung-Ho; Lee, Guemsan; Lee, Mi-Young; Oh, Seung-Eun

    2016-01-01

    Several Artemisia species are used as herbal medicines including the dried aerial parts of Artemisia capillaris, which are used as Artemisiae Capillaris Herba (known as “Injinho” in Korean medicinal terminology and “Yin Chen Hao” in Chinese). In this study, we developed tools for distinguishing between A. capillaris and 11 other Artemisia species that grow and/or are cultured in China, Japan, and Korea. Based on partial nucleotide sequences in the internal transcribed spacer (ITS) that differ between the species, we designed primers to amplify a DNA marker for A. capillaris. In addition, to detect other Artemisia species that are contaminants of A. capillaris, we designed primers to amplify DNA markers of A. japonica, A. annua, A. apiacea, and A. anomala. Moreover, based on random amplified polymorphic DNA analysis, we confirmed that primers developed in a previous study could be used to identify Artemisia species that are sources of Artemisiae Argyi Folium and Artemisiae Iwayomogii Herba. By using these primers, we found that multiplex polymerase chain reaction (PCR) was a reliable tool to distinguish between A. capillaris and other Artemisia species and to identify other Artemisia species as contaminants of A. capillaris in a single PCR. PMID:27313651

  18. MULTILEVEL ISCHEMIA IN DISORGANIZATION OF THE RETINAL INNER LAYERS ON PROJECTION-RESOLVED OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    PubMed

    Onishi, Alex C; Ashraf, Mohammed; Soetikno, Brian T; Fawzi, Amani A

    2018-04-10

    To examine the relationship between ischemia and disorganization of the retinal inner layers (DRIL). Cross-sectional retrospective study of 20 patients (22 eyes) with diabetic retinopathy presenting to a tertiary academic referral center, who had DRIL on structural optical coherence tomography (OCT) using Spectralis HRA + OCT (Heidelberg Engineering, Heidelberg, Germany) and OCT angiography with XR Avanti (Optovue Inc, Fremont, CA) on the same day. Optical coherence tomography angiography images were further processed to remove flow signal projection artifacts using a software algorithm adapted from recent studies. Retinal capillary perfusion in the superficial capillary plexuses, middle capillary plexuses, and deep capillary plexuses, as well as integrity of the photoreceptor lines on OCT was compared in areas with DRIL to control areas without DRIL in the same eye. Qualitative assessment of projection-resolved OCT angiography of eyes with DRIL on structural OCT demonstrated significant perfusion deficits compared with adjacent control areas (P < 0.001). Most lesions (85.7%) showed superimposed superficial capillary plexus and/or middle capillary plexus nonperfusion in addition to deep capillary plexus nonflow. Areas of DRIL were significantly associated with photoreceptor disruption (P = 0.035) compared with adjacent DRIL-free areas. We found that DRIL is associated with multilevel retinal capillary nonperfusion, suggesting an important role for ischemia in this OCT phenotype.

  19. On/off switching of capillary vessel flow controls mitochondrial and glycolysis pathways for energy production.

    PubMed

    Abo, Toru; Watanabe, Mayumi; Tomiyama, Chikako; Kanda, Yasuhiro

    2014-07-01

    Capillary vessel flow in the base of the fingernail can be observed by microscopy. This flow is switched off under some conditions, such as coldness, surprise, and anger and is switched on again under other conditions, such as warming, relaxation, and mild exercise. In other words, capillary vessels perform two functions: switching flow on and off. It is speculated that the switch-off function is necessary to direct energy production to the glycolysis pathway, while the switch-on function is necessary for the mitochondrial pathway. This is because glycolysis takes place under anaerobic conditions, while oxidative phosphorylation in the mitochondria proceeds under aerobic conditions in the body. To switch off circulation, the negative electric charges on the surface of erythrocytes and the capillary wall may be decreased by stimulation of the sympathetic nerves and secretion of steroid hormones. Negative charge usually acts as repulsive force between erythrocytes and between erythrocytes and the capillary wall. By decreasing the negative charge, erythrocytes can aggregate and also adhere to the capillary wall. These behaviors may be related to the capillary flow switch-off function. Here, it is emphasized that the capillary vessels possess not only a switch-on function but also a switch-off function for circulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Assessing vitamin D nutritional status: Is capillary blood adequate?

    PubMed

    Jensen, M E; Ducharme, F M; Théorêt, Y; Bélanger, A-S; Delvin, E

    2016-06-01

    Venous blood is the usual sample for measuring various biomarkers, including 25-hydroxyvitamin D (25OHD). However, it can prove challenging in infants and young children. Hence the finger-prick capillary collection is an alternative, being a relatively simple procedure perceived to be less invasive. We elected to validate the use of capillary blood sampling for 25OHD quantification by liquid chromatography tandem-mass spectrometry (LC/MS-MS). Venous and capillary blood samples were simultaneously collected from 15 preschool-aged children with asthma 10days after receiving 100,000IU of vitamin-D3 or placebo and 20 apparently healthy adult volunteers. 25OHD was measured by an in-house LC/MS-MS method. The venous 25OHD values varied between 23 and 255nmol/l. The venous and capillary blood total 25OHD concentrations highly correlated (r(2)=0.9963). The mean difference (bias) of capillary blood 25OHD compared to venous blood was 2.0 (95% CI: -7.5, 11.5) nmol/l. Our study demonstrates excellent agreement with no evidence of a clinically important bias between venous and capillary serum 25OHD concentrations measured by LC/MS-MS over a wide range of values. Under those conditions, capillary blood is therefore adequate for the measurement of 25OHD. Copyright © 2016 Elsevier B.V. All rights reserved.

Top