Science.gov

Sample records for capillary electrophoresis method

  1. Capillary electrophoresis systems and methods

    DOEpatents

    Dorairaj, Rathissh [Hillsboro, OR; Keynton, Robert S [Louisville, KY; Roussel, Thomas J [Louisville, KY; Crain, Mark M [Georgetown, IN; Jackson, Douglas J [New Albany, IN; Walsh, Kevin M [Louisville, KY; Naber, John F [Goshen, KY; Baldwin, Richard P [Louisville, KY; Franco, Danielle B [Mount Washington, KY

    2011-08-02

    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  2. Microfabricated capillary array electrophoresis device and method

    DOEpatents

    Simpson, Peter C.; Mathies, Richard A.; Woolley, Adam T.

    2004-06-15

    A capillary array electrophoresis (CAE) micro-plate with an array of separation channels connected to an array of sample reservoirs on the plate. The sample reservoirs are organized into one or more sample injectors. One or more waste reservoirs are provided to collect wastes from reservoirs in each of the sample injectors. Additionally, a cathode reservoir is also multiplexed with one or more separation channels. To complete the electrical path, an anode reservoir which is common to some or all separation channels is also provided on the micro-plate. Moreover, the channel layout keeps the distance from the anode to each of the cathodes approximately constant.

  3. Microfabricated capillary array electrophoresis device and method

    DOEpatents

    Simpson, Peter C.; Mathies, Richard A.; Woolley, Adam T.

    2000-01-01

    A capillary array electrophoresis (CAE) micro-plate with an array of separation channels connected to an array of sample reservoirs on the plate. The sample reservoirs are organized into one or more sample injectors. One or more waste reservoirs are provided to collect wastes from reservoirs in each of the sample injectors. Additionally, a cathode reservoir is also multiplexed with one or more separation channels. To complete the electrical path, an anode reservoir which is common to some or all separation channels is also provided on the micro-plate. Moreover, the channel layout keeps the distance from the anode to each of the cathodes approximately constant.

  4. Capillary electrophoresis.

    PubMed

    Compton, S W; Brownlee, R G

    1988-05-01

    While capillary electrophoresis, or historically related techniques, have been used for over a century, and recognition of the value of this separation methodology has certainly grown rapidly in the past few years, the technique has generally been used by analytical chemists, particularly in Europe and Japan, and small groups of researchers in the United States. Many of the basic instrumentation problems have been solved only relatively recently, and researchers using capillary electrophoresis are now turning their attention to studying specific applications which demonstrate the potential versatility of this electrophoretic technique. The appearance of standardized commercial instrumentation is imminent. With the availability of such technology, capillary electrophoresis will no longer be an academic curiosity, but rather a tool with the potential for routine separations of diverse samples of interest to analyst, researcher, and clinician.

  5. Selection of smart aptamers by methods of kinetic capillary electrophoresis.

    PubMed

    Drabovich, Andrei P; Berezovski, Maxim; Okhonin, Victor; Krylov, Sergey N

    2006-05-01

    We coin the term "smart aptamers" -- aptamers with predefined binding parameters (k(on), k(off), Kd) of aptamer-target interaction. Aptamers, in general, are oligonucleotides, which are capable of binding target molecules with high affinity and selectivity. They are considered as potential therapeutic targets and also thought to rival antibodies in immunoassay-like analyses. Aptamers are selected from combinatorial libraries of oligonucleotides by affinity methods. Until now, technological limitations have precluded the development of smart aptamers. Here, we report on two kinetic capillary electrophoresis techniques applicable to the selection of smart aptamers. Equilibrium capillary electrophoresis of equilibrium mixtures was used to develop aptamers with predefined equilibrium dissociation constants (Kd), while nonequilibrium capillary electrophoresis of equilibrium mixtures facilitated selection of aptamers with different dissociation rate constants (k(off)). Selections were made for MutS protein, for which aptamers have never been previously developed. Both theoretical and practical aspects of smart aptamer development are presented, and the advantages of this new type of affinity probes are described.

  6. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edward S.; Kuhr, Werner G.

    1996-02-20

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  7. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edwards; Kuhr, Werner G.

    1991-04-09

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  8. Capillary electrophoresis as a method to study DNA reassociation.

    PubMed

    Li, Y; White, J; Stokes, D; Sayler, G; Sepaniak, M

    2001-01-01

    To develop analytical methodology to assess the genetic complexity of a DNA sample, capillary electrophoresis with laser-induced fluorescence detection is used to monitor the annealing process of DNA samples. Coated columns are filled with an entangled polymer solution shown to optimally separate DNA through size-selective capillary electrophoresis. DNA samples are denatured by heating in a boiling water bath for approximately 10 min and then cooled to approximately 25 degrees C below the melting point of the DNA sample to initiate the reassociation process. The DNA is detected by means of the laser-induced fluorescence of intercalated ethidium bromide, which produces a substantially greater signal for double- versus single-stranded DNA. The rate of reassociation is dependent upon the rate at which complimentary strands of DNA encounter each other and the degree of repeating base sequences in the sample (hence, the diversity of the DNA). Experimental parameters also influence the reassociation rate. The effects of salt concentration and incubation temperature are presented. Traditional plots of C(o)t (C(o) = DNA concentration and t = reassociation time) versus % recovery of double-stranded DNA signal are generated for PhiX 174 Hae III digest and 50 bp stepladder DNA, individually and combined, to calculate the reassociation rate constants for these samples. Because reassociation of individual fragments is observed by the CE-LIF method, more information about the samples is available than with less specific and time-consuming traditional methods of investigating DNA reassociation.

  9. Kinetic methods in capillary electrophoresis and their applications

    NASA Astrophysics Data System (ADS)

    Berezovski, Maxim V.; Okhonin, Victor; Petrov, Alex; Krylov, Sergey N.

    2005-09-01

    In recent years, capillary electrophoresis (CE) has been one of rapidly growing analytical techniques to study affinity interactions. Quick analysis, high efficiency, high resolving power, low sample consumption, and wide range of possible analytes make CE an indispensable tool for studies of biomolecules and, in particular, studies of their interactions. In the article, we discuss kinetic methods in CE. The spectrum of proven applications of kinetic CE methods includes: (i) measuring equilibrium and rate constants of protein-ligand interaction from a single experiment, (ii) quantitative affinity analyses of proteins, (iii) measuring temperature in CE, (iv) studying thermochemistry of affinity interactions, and (v) kinetic selection of ligands from combinatorial libraries. We demonstrate that new kinetic CE method can serve as a "Swiss army knife" in the development and utilization of oligonucleotide aptamers. Uniquely, they can facilitate selection of smart aptamers - aptamers with pre-defined binding parameters. We believe that further development of kinetic CE methods will provide a variety of methodological schemes for high-throughput screening of combinatorial libraries for affinity probes and drug candidates using CE as a universal instrumental platform.

  10. Electrochemical methods in conjunction with capillary and microchip electrophoresis.

    PubMed

    Mark, Jonas J P; Scholz, Rebekka; Matysik, Frank-Michael

    2012-12-07

    Electromigrative techniques such as capillary and microchip electrophoresis (CE and MCE) are inherently associated with various electrochemical phenomena. The electrolytic processes occurring in the buffer reservoirs have to be considered for a proper design of miniaturized electrophoretic systems and a suitable selection of buffer composition. In addition, the control of the electroosmotic flow plays a crucial role for the optimization of CE/MCE separations. Electroanalytical methods have significant importance in the field of detection in conjunction with CE/MCE. At present, amperometric detection and contactless conductivity detection are the predominating electrochemical detection methods for CE/MCE. This paper reviews the most recent trends in the field of electrochemical detection coupled to CE/MCE. The emphasis is on methodical developments and new applications that have been published over the past five years. A rather new way for the implementation of electrochemical methods into CE systems is the concept of electrochemically assisted injection which involves the electrochemical conversions of analytes during the injection step. This approach is particularly attractive in hyphenation to mass spectrometry (MS) as it widens the range of CE-MS applications. An overview of recent developments of electrochemically assisted injection coupled to CE is presented.

  11. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Li, Qingbo; Lu, Xiandan

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  12. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  13. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Li, Q.; Lu, X.

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  14. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  15. Microfabricated capillary electrophoresis chip and method for simultaneously detecting multiple redox labels

    DOEpatents

    Mathies, Richard A.; Singhal, Pankaj; Xie, Jin; Glazer, Alexander N.

    2002-01-01

    This invention relates to a microfabricated capillary electrophoresis chip for detecting multiple redox-active labels simultaneously using a matrix coding scheme and to a method of selectively labeling analytes for simultaneous electrochemical detection of multiple label-analyte conjugates after electrophoretic or chromatographic separation.

  16. Integrated multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  17. Derivatization in Capillary Electrophoresis.

    PubMed

    Marina, M Luisa; Castro-Puyana, María

    2016-01-01

    Capillary electrophoresis is a well-established separation technique in analytical research laboratories worldwide. Its interesting advantages make CE an efficient and potent alternative to other chromatographic techniques. However, it is also recognized that its main drawback is the relatively poor sensitivity when using optical detection. One way to overcome this limitation is to perform a derivatization reaction which is intended to provide the analyte more suitable analytical characteristics enabling a high sensitive detection. Based on the analytical step where the CE derivatization takes place, it can be classified as precapillary (before separation), in-capillary (during separation), or postcapillary (after separation). This chapter describes the application of four different derivatization protocols (in-capillary and precapillary modes) to carry out the achiral and chiral analysis of different compounds in food and biological samples with three different detection modes (UV, LIF, and MS).

  18. Capillary electrophoresis of DNA.

    PubMed

    Smith, Alan; Nelson, Robert J

    2003-08-01

    Capillary electrophoresis (CE) is an alternative to conventional slab gel electrophoresis for the separation of DNA fragments. CE offers a number of advantages over slab gel separations in terms of speed, resolution, sensitivity, and data handling. Separation times are generally only a few minutes and the DNA is detected either by UV absorption or by fluorescent labeling. The quantity of DNA required for separation is in the nanogram range. Single-base resolution can be obtained on fragments up to several hundred base pairs. In the presence of appropriate standards, fragments can be accurately sized based on relative electrophoretic mobility. A protocol for the analysis of synthetic oligonucleotides in a flowable matrix is described in this unit.

  19. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  20. Triple-Internal Standard Based Glycan Structural Assignment Method for Capillary Electrophoresis Analysis of Carbohydrates.

    PubMed

    Jarvas, Gabor; Szigeti, Marton; Chapman, Jeff; Guttman, Andras

    2016-12-06

    Despite the ever growing use of capillary electrophoresis in biomedical research and the biopharmaceutical industry, the development of data interpretation methods is lagging behind. In this paper we report the design and implementation of a coinjected triple-internal standard method to alleviate the need of an accompanying run of the maltooligosaccharide ladder for glucose unit (GU) calculation. Based on the migration times of the coinjected standards of maltose, maltotriose, and maltopentadecaose (bracketing the peaks of interest), a data processing approach was designed and developed to set up a virtual ladder that was used for GU calculation. The data processing was tested in terms of the calculated GU values of human IgG glycans, and the resulting relative standard deviation was ≤1.07%. This approach readily supports high-throughput capillary electrophoresis systems by significantly speeding up the processing time for glycan structural assignment.

  1. Instrumental development of novel detection and separation methods for capillary electrophoresis

    SciTech Connect

    Garner, T.

    1993-07-01

    After a general introduction, this thesis is divided into 3 parts: indirect fluorescence detection of sugars separated by capillary zone electrophoresis with visible laser excitation, absorption detection in capillary electrophoresis by fluorescence energy transfer, and increased selectivity for electrochromatography by dynamic ion exchange.

  2. Multivariate optimization of capillary electrophoresis methods: a critical review.

    PubMed

    Orlandini, Serena; Gotti, Roberto; Furlanetto, Sandra

    2014-01-01

    In this article a review on the recent applications of multivariate techniques for optimization of electromigration methods, is presented. Papers published in the period from August 2007 to February 2013, have been taken into consideration. Upon a brief description of each of the involved CE operative modes, the characteristics of the chemometric strategies (type of design, factors and responses) applied to face a number of analytical challenges, are presented. Finally, a critical discussion, giving some practical advices and pointing out the most common issues involved in multivariate set-up of CE methods, is provided.

  3. Capillary electrophoresis of carbohydrates.

    PubMed

    Oefner, P J; Chiesa, C

    1994-08-01

    Capillary electrophoresis has emerged as a highly promising technique for the analysis of mono- and oligosaccharides. The approaches developed for overcoming the lack of chromophoric and fluorophoric functions in most carbohydrates involve the use of indirect photometric detection, amperometry, mass spectrometry, and precolumn derivatization with various tags. The merits and drawbacks of the derivatizing agents, including 2-aminopyridine, 4-amino-benzoic acid and its analogues, which for the first time permitted the reproducible determination of aldoses, uronic acids and even ketoses in the low femtomole range by means of readily available UV detection, and other agents such as 8-aminonaphthalene-1,3,6-trisulphonic acid, 1-phenyl-3-methyl-5-pyrazolone and 3-(4-carboxybenzoyl)-2-quinoline-carboxaldehyde, are discussed in detail. Means to secure electromigration of the usually neutral carbohydrates are: (i) ionization of hydroxyl groups at high pH; (ii) complexation of vicinal or alternate hydroxyl groups with borate or other charged compounds such as alkaline earth metal ions; (iii) derivatization with a reagent possessing ionizable functions; and (iv) partitioning into a pseudostationary phase such as sodium dodecyl sulphate micelles. Each alternative has its own analytical rewards, and combinations of the above mechanisms allow the two-dimensional and perhaps even three-dimensional mapping of oligosaccharides. Pyridylaminated oligosaccharides, for instance, have been separated both according to size by exploiting differences in the charge-to-mass ratio, with the charge being identical for each oligomer under acidic conditions due to protonation of the imino group incorporated by precolumn derivatization, as well as on the basis of structural differences, as a consequence of differences in the ease of borate complexation of the peripheral monosaccharide residues. It is also shown that the 4-aminobenzonitrile derivatives of mono- and disaccharides can be separated

  4. Uniform Laser Excitation And Detection In Capillary Array Electrophoresis System And Method.

    DOEpatents

    Li, Qingbo; Zhou, Songsan; Liu, Changsheng

    2003-10-07

    A capillary electrophoresis system comprises capillaries positioned in parallel to each other forming a plane. The capillaries are configured to allow samples to migrate. A light source is configured to illuminate the capillaries and the samples therein. This causes the samples to emit light. A lens is configured to receive the light emitted by the samples and positioned directly over a first group of the capillaries and obliquely over a second group of the capillaries. The light source is further configured to illuminate the second group of capillaries more than the first group of the capillaries such that amount of light received by the lens from the first group of capillaries is substantially identical to amount of light received from the second group of capillaries when an identical amount of the samples is migrating through the first and second group capillaries.

  5. Capillary Electrophoresis - Optical Detection Systems

    SciTech Connect

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  6. Method for the sequential online analysis of enzyme reactions based on capillary electrophoresis.

    PubMed

    Chen, Yuanfang; Xu, Liangliang; Zhao, Wenwen; Guo, Liping; Yang, Li

    2012-03-20

    We have developed an easy-to-operate and effective method for performing the sequential online analysis of enzyme reactions based on capillary electrophoresis (CE). The system was constructed by passing two capillaries through a sample vial at a distance of 5 μm between the capillary ends. Direct online sample injection and sequential CE analysis were achieved by periodically switching the high-voltage power supply off and on, without any physical disturbance of the capillary inlet. The sample was injected via concentration diffusion with in-column derivatization of the amino acids occurring at the interface of the capillaries. High reproducibility of the sequential injections was demonstrated with relative standard deviation values (n = 20) of 1.01%, 1.25%, and 0.80% for peak height, peak area, and migration time, respectively. Sequential online CE enzyme assay of a glutamate pyruvate transaminase catalyzed enzyme reaction was carried out by simultaneously monitoring the substrate consumption and the product formation every 30 s from the beginning to the end of the reaction. The Michaelis constants for the reaction were obtained and were found to be in good agreement with the results of traditional off-line enzyme assays. Our method has great potential for usage in sequential online CE analysis of chemical reactions with in-column chemical derivatization of the analytes for ultraviolet or laser-induced fluorescence detection.

  7. Biomedical applications of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Kartsova, L. A.; Bessonova, E. A.

    2015-08-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references.

  8. Validation of a capillary electrophoresis method for analysis of rabeprazole sodium in a pharmaceutical dosage form.

    PubMed

    Garcia, Cássia V; Sippel, Juliana; Sfair, Leticia L; Garcia, Silvia S; Jablonski, André; Steppe, Martin; Schapoval, Elfrides E S

    2005-01-01

    Rabeprazole sodium is an antisecretory agent that inhibits the enzyme H+/K+ ATPase present in the stomach parietal cells. There are few data about its quantitative determinations in laboratorial routines. Capillary electrophoresis is a method being used increasingly for analysis of pharmaceutical compounds, the main advantages of which are the simplicity of instrumentation, low consumption of sample and reagents, and fast analysis. The aim of this study was to develop and validate a capillary electrophoresis method for determination of rabeprazole sodium in coated tablets. The conditions used were a bare fused silica capillary with 48.0 cm length (39.5 cm effective) and 75 microm id; a 10mM, pH 9.0, sodium tetraborate run buffer; a diode array detector set at 291 nm; hydrodynamic injection (50 mbar/5 s); and a voltage of 20 kV. HP Chemstation CE rev. A.06.03 software was used for system control, data acquisition, and analysis. The method was demonstrated to be linear in the concentration range of 5.0-40.0 microg/mL (r = 0.9993), precise (interday relative standard deviation = 0.49), accurate (mean recovery = 103.1%), and specific. The limits of detection and quantitation were 1.29 and 3.91 microg/mL, respectively.

  9. A new injection method for soil nutrient analysis in capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Smolka, M.; Puchberger-Enengl, D.; Bipoun, M.; Fercher, G.; Klasa, A.; Krutzler, C.; Keplinger, F.; Vellekoop, M. J.

    2013-05-01

    We present a new method for the direct injection of liquid sample into a capillary electrophoresis (CE) device. Instead of a double-T injection mechanism, a single inlet provided with a membrane filter is used. From a reservoir on top of this inlet, the liquid directly enters the separation channel through the membrane. The driving force is a short electrical pulse. This avoids an additional sample channel, so that the chip needs only three microfluidic connects and no mechanical sample pumping is demanded. The high injection reproducibility and the comparatively simple setup open up the way for mobile application of soil analysis.

  10. DNA typing by capillary electrophoresis

    SciTech Connect

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  11. Multidimensional capillary electrophoresis.

    PubMed

    Grochocki, Wojciech; Markuszewski, Michał J; Quirino, Joselito P

    2015-01-01

    Multidimensional separation where two or more orthogonal displacement mechanisms are combined is a promising approach to increase peak capacity in CE. The combinations allow dramatic improvement of analytical performance since the total peak capacity is given by a product of the peak capacities of all methods. The initial reports were concentrated on the construction of effective connections between capillaries for 2D analysis. Today, 2D and 3D CE systems are now able to separate real complex biological or environmental mixtures with good repeatability, improved resolution with minimal loss of sample. This review will present the developments in the field of multidimensional CE during the last 15 years. The endeavors in this specific field were on the development of interfaces, interface-free techniques including integrated separations, microdevices, and on-line sample concentration techniques to improve detection sensitivity.

  12. DNA Sequencing by Capillary Electrophoresis

    PubMed Central

    Karger, Barry L.; Guttman, Andras

    2009-01-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496

  13. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species.

    PubMed

    Jernigan, Alice; Hestekin, Christa

    2015-01-01

    Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP) was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green) and eukaryotic (green and brown) algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis), five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata), and one brown algae (Ectocarpus sp.) were examined and CE-SSCP electropherogram "fingerprints" were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred.

  14. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species

    PubMed Central

    Jernigan, Alice; Hestekin, Christa

    2015-01-01

    Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP) was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green) and eukaryotic (green and brown) algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis), five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata), and one brown algae (Ectocarpus sp.) were examined and CE-SSCP electropherogram “fingerprints” were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred. PMID:26101693

  15. DNA Sequencing Using capillary Electrophoresis

    SciTech Connect

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  16. A robust method for iodine status determination in epidemiological studies by capillary electrophoresis.

    PubMed

    de Macedo, Adriana Nori; Teo, Koon; Mente, Andrew; McQueen, Matthew J; Zeidler, Johannes; Poirier, Paul; Lear, Scott A; Wielgosz, Andy; Britz-McKibbin, Philip

    2014-10-21

    Iodine deficiency is the most common preventable cause of intellectual disabilities in children. Global health initiatives to ensure optimum nutrition thus require continuous monitoring of population-wide iodine intake as determined by urinary excretion of iodide. Current methods to analyze urinary iodide are limited by complicated sample pretreatment, costly infrastructure, and/or poor selectivity, posing restrictions to large-scale epidemiological studies. We describe a simple yet selective method to analyze iodide in volume-restricted human urine specimens stored in biorepositories by capillary electrophoresis (CE) with UV detection. Excellent selectivity is achieved when using an acidic background electrolyte in conjunction with dynamic complexation via α-cyclodextrin in an unmodified fused-silica capillary under reversed polarity. Sample self-stacking is developed as a novel online sample preconcentration method to boost sensitivity with submicromolar detection limits for iodide (S/N ≈ 3, 0.06 μM) directly in urine. This assay also allows for simultaneous analysis of environmental iodide uptake inhibitors, including thiocyanate and nitrate. Rigorous method validation confirmed good linearity (R(2) = 0.9998), dynamic range (0.20 to 4.0 μM), accuracy (average recovery of 93% at three concentration levels) and precision for reliable iodide determination in pooled urine specimens over 29 days of analysis (RSD = 11%, n = 87).

  17. A capillary zone electrophoresis method to detect conformers and dimers of antithrombin in therapeutic preparations.

    PubMed

    Marie, Anne-Lise; Tran, Nguyet Thuy; Saller, François; Abdou, Youmna Mohamed; Zeau, Pascal; Plantier, Jean-Luc; Urbain, Rémi; Borgel, Delphine; Taverna, Myriam

    2016-07-01

    Antithrombin (AT) is a human plasma glycoprotein that possesses anticoagulant and anti-inflammatory properties. However, the native (active) form of AT is unstable and undergoes conformational changes, leading to latent, cleaved, and heterodimeric forms. The presence of these alternative forms mostly inactive can highly impact the quality and therapeutic activity of pharmaceutical AT preparations. We developed a capillary zone electrophoresis method, based on a neutral polyethylene oxide-coated capillary and a buffer close to physiological conditions, enabling the separation of more than eight forms of AT. Several peaks were identified as native, latent, and heterodimeric forms. The CZE method was reproducible with intraday relative standard deviations less than 0.5 and 2% for migration times and peak areas, respectively. The method was applied to the comparison of AT preparations produced by five competitive pharmaceutical companies, and statistical tests were performed. Important differences in the proportion of each form were highlighted. In particular, one AT preparation was shown to contain a high quantity of heterodimer, and two preparations contained high quantities of latent form. In addition, one AT preparation exhibited additional forms, not yet identified. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. New capillary electrophoresis method for the determination of furosine in dairy products.

    PubMed

    Vallejo-Cordoba, Belinda; Mazorra-Manzano, Miguel A; González-Córdova, Aarón F

    2004-09-22

    A new capillary electrophoresis (CE) method was established for the quantitative determination of furosine in dairy products. Sample preparation and suitable electrophoretic conditions allowed accurate and reproducible quantitation of furosine in dairy products. Sample preparation consisted of drying hydrolyzed samples, redissolving them in 0.2 M NaOH, and purifying them by solid-phase extraction. The electrophoretic separation was carried out in an uncoated capillary maintained at 30 degrees C using 0.1 M phosphate buffer containing the additive hexadecyl trimethylammonium bromide (HDTAB, 1.2 mM) (pH 7.0) under 10 kV voltage and reverse polarity. Coefficients of variation of less than 2.25% for migration time and 5.80% for peak areas indicated that the technique was reproducible. The calibration curve followed a linear relationship with a highly significant (p < 0.01) coefficient of multiple determination (R (2) = 0.997). The limit of quantitation was 0.5 ppm, a concentration that corresponds to 4.5 mg/100 g of protein in milk samples. Furosine concentration (mg/100 g of protein) ranges of different dairy products (raw, pasteurized, UHT, and evaporated milks and yogurt) agreed with ranges previously reported. Therefore, the CE method presented is a suitable technique for the routine assessment of furosine in dairy products.

  19. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    PubMed

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Selection of back-ground electrolyte in capillary zone electrophoresis by triangle and tetrahedron optimization methods].

    PubMed

    Sun, Guoxiang; Song, Wenjing; Lin, Ting

    2008-03-01

    The triangle and tetrahedron optimization methods were developed for the selection of back-ground electrolyte (BGE) in capillary zone electrophoresis (CZE). Chromatographic fingerprint index F and chromatographic fingerprint relative index F(r) were used as the objective functions for the evaluation, and the extract of Saussurea involucrate by water was used as the sample. The BGE was composed of borax, boric acid, dibasic sodium phosphate and sodium dihydrogen phosphate solution with different concentrations using triangle and tetrahedron optimization methods. Re-optimization was carried out by adding organic modifier to the BGE and adjusting the pH value. In triangle method, when 50 mmol/L borax-150 mmol/L sodium dihydrogen phosphate (containing 3% acetonitrile) (1 : 1, v/v) was used as BGE, the isolation was considered to be satisfactory. In tetrahedron method, the best BGE was 50 mmol/L borax-150 mmol/L sodium dihydrogen phosphate-200 mmol/L boric acid (1 : 1 : 2, v/v/v; adjusting the pH value to 8.55 by 0.1 mol/L sodium hydroxide). There were 28 peaks and 25 peaks under the different conditions respectively. The results showed that the methods could be applied to the selection of BGE in CZE of the extract of traditional Chinese medicine by water or ethanol.

  1. Multicenter validation of fully automated capillary electrophoresis method for diagnosis of thalassemias and hemoglobinopathies in Thailand.

    PubMed

    Sangkitporn, Somchai; Sangkitporn, Siripakorn K; Tanjatham, Sansanee; Suwannakan, Boonnipa; Rithapirom, Suthatip; Yodtup, Chonlada; Yowang, Amara; Duangruang, Sawitree

    2011-09-01

    Thalassemias and hemoglobinopathies are highly prevalent in Thailand and other Southeast Asian countries. Accurate and precise separation of hemoglobin types, together with reliable quantitation, are essential for differential diagnosis of these diseases. Presented in this study is a multicenter validation of a fully automated capillary electrophoresis (CE) method for hemoglobin separation and quantitation involving four reference laboratories in Thailand. Analytical performance characteristics, including precision and accuracy were compared with existing validated HPLC and LPLC methods using 412 blood samples from unrelated subjects. Coefficient of variance of Hb A2 quantitation was 1.80-2.86, 1.26-5.13 and 1.08-6.66% for within run, between run and interlaboratory comparison, respectively. Results of Hb A2 and Hb F quantitated by the CE method correlates well with those of the two comparative methods (r = 0.98-0.99). The CE method correctly determined the genotypes (thalassemias and hemoglobin variants) of all blood samples tested. The major advantage of the CE system is its ability to separate and quantitate Hb A2, Hb E, Hb F, Hb H and Hb Bart's, which are important parameters required for diagnosis of thalassemias and hemoglobinopathies.

  2. Fast analysis of glibenclamide and its impurities: quality by design framework in capillary electrophoresis method development.

    PubMed

    Furlanetto, Sandra; Orlandini, Serena; Pasquini, Benedetta; Caprini, Claudia; Mura, Paola; Pinzauti, Sergio

    2015-10-01

    A fast capillary zone electrophoresis method for the simultaneous analysis of glibenclamide and its impurities (I(A) and I(B)) in pharmaceutical dosage forms was fully developed within a quality by design framework. Critical quality attributes were represented by I(A) peak efficiency, critical resolution between glibenclamide and I(B), and analysis time. Experimental design was efficiently used for rapid and systematic method optimization. A 3(5)//16 symmetric screening matrix was chosen for investigation of the five selected critical process parameters throughout the knowledge space, and the results obtained were the basis for the planning of the subsequent response surface study. A Box-Behnken design for three factors allowed the contour plots to be drawn and the design space to be identified by introduction of the concept of probability. The design space corresponded to the multidimensional region where all the critical quality attributes reached the desired values with a degree of probability π ≥ 90%. Under the selected working conditions, the full separation of the analytes was obtained in less than 2 min. A full factorial design simultaneously allowed the design space to be validated and method robustness to be tested. A control strategy was finally implemented by means of a system suitability test. The method was fully validated and was applied to real samples of glibenclamide tablets.

  3. A direct and rapid method to determine cyanide in urine by capillary electrophoresis.

    PubMed

    Zhang, Qiyang; Maddukuri, Naveen; Gong, Maojun

    2015-10-02

    Cyanides are poisonous chemicals that widely exist in nature and industrial processes as well as accidental fires. Rapid and accurate determination of cyanide exposure would facilitate forensic investigation, medical diagnosis, and chronic cyanide monitoring. Here, a rapid and direct method was developed for the determination of cyanide ions in urinary samples. This technique was based on an integrated capillary electrophoresis system coupled with laser-induced fluorescence (LIF) detection. Cyanide ions were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) and a primary amine (glycine) for LIF detection. Three separate reagents, NDA, glycine, and cyanide sample, were mixed online, which secured uniform conditions between samples for cyanide derivatization and reduced the risk of precipitation formation of mixtures. Conditions were optimized; the derivatization was completed in 2-4min, and the separation was observed in 25s. The limit of detection (LOD) was 4.0nM at 3-fold signal-to-noise ratio for standard cyanide in buffer. The cyanide levels in urine samples from smokers and non-smokers were determined by using the method of standard addition, which demonstrated significant difference of cyanide levels in urinary samples from the two groups of people. The developed method was rapid and accurate, and is anticipated to be applicable to cyanide detection in waste water with appropriate modification.

  4. Capillary electrophoresis method with UV-detection for analysis of free amino acids concentrations in food.

    PubMed

    Omar, Mei Musa Ali; Elbashir, Abdalla Ahmed; Schmitz, Oliver J

    2017-01-01

    Simple and inexpensive capillary electrophoresis with UV-detection method (CE-UV) was optimized and validated for determination of six amino acids namely (alanine, asparagine, glutamine, proline, serine and valine) for Sudanese food. Amino acids in the samples were derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) prior to CE-UV analysis. Labeling reaction conditions (100mM borate buffer at pH 8.5, labeling reaction time 60min, temperature 70°C and NBD-Cl concentration 40mM) were systematically investigated. The optimal conditions for the separation were 100mM borate buffer at pH 9.7 and detected at 475nm. The method was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision (repeatability) (RSD%) and accuracy (recovery). Good linearity was achieved for all amino acids (r(2)>0.9981) in the concentration range of 2.5-40mg/L. The LODs in the range of 0.32-0.56mg/L were obtained. Recoveries of amino acids ranging from 85% to 108%, (n=3) were obtained. The validated method was successfully applied for the determination of amino acids for Sudanese food samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Direct and Rapid Method to Determine Cyanide in Urine by Capillary Electrophoresis

    PubMed Central

    Zhang, Qiyang; Maddukuri, Naveen; Gong, Maojun

    2015-01-01

    Cyanides are poisonous chemicals that widely exist in nature and industrial processes as well as accidental fires. Rapid and accurate determination of cyanide exposure would facilitate forensic investigation, medical diagnosis, and chronic cyanide monitoring. Here, a rapid and direct method was developed for the determination of cyanide ions in urinary samples. This technique was based on an integrated capillary electrophoresis system coupled with laser-induced fluorescence (LIF) detection. Cyanide ions were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) and a primary amine (glycine) for LIF detection. Three separate reagents, NDA, glycine, and cyanide sample, were mixed online, which secured uniform conditions between samples for cyanide derivatization and reduced the risk of precipitation formation of mixtures. Conditions were optimized; the derivatization was completed in 2-4 minutes, and the separation was observed in 25 s. The limit of detection (LOD) was 4.0 nM at 3-fold signal-to-noise ratio for standard cyanide in buffer. The cyanide levels in urine samples from smokers and non-smokers were determined by using the method of standard addition, which demonstrated significant difference of cyanide levels in urinary samples from the two groups of people. The developed method was rapid and accurate, and is anticipated to be applicable to cyanide detection in waste water with appropriate modification. PMID:26342870

  6. A capillary electrophoresis method for studying apo, holo, recombinant, and subunit dissociated ferritins.

    PubMed

    Zhao, Z; Malik, A; Lee, M L; Watt, G D

    1994-04-01

    A capillary electrophoresis (CE) method is described for detecting and quantitating apo and holo ferritins from horse spleen (HoSF), rat liver (RLF), recombinant human light chain (rLF), recombinant human heavy chain (rHF), site-directed variants of human light chain, and Azotobacter vinelandii bacterial ferritin (AVBF). This procedure is carried out at pH 8.2, where the ferritin molecules are associated into their 24-mers. Protein mobilities as expressed as elution times were clearly resolved and could be used to distinguish one ferritin type from another, providing a means for detecting and quantitating various ferritin species in purified or partially purified states. Measurements of these and other ferritins were also conducted at pH 2.0, where dissociation into their respective subunits occurs. For HoSF and RLF, the individual L and H subunits were resolved and their relative concentrations were determined by integrating the areas of the elution peaks. HoSF gave 89.8% L and 10.2% H and RLF gave 70.7% L and 29.3% H, while rLF, rHF, and AVBF gave only a single subunit, all in agreement with reported values obtained by polyacrylamide gel electrophoresis. CE of HoSF, containing increasing amounts of iron in the interior, in general, showed that protein mobilities increased, reached a plateau, and then slowly decreased with increasing core size, although buffer effects altered this CE behavior to some extent. Such results indicate that species formed early during core formation have individual iron atoms present and differ from those formed later in which the oligomeric iron core has formed.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. A rapid sample screening method for authenticity control of whiskey using capillary electrophoresis with online preconcentration.

    PubMed

    Heller, Melina; Vitali, Luciano; Oliveira, Marcone Augusto Leal; Costa, Ana Carolina O; Micke, Gustavo Amadeu

    2011-07-13

    The present study aimed to develop a methodology using capillary electrophoresis for the determination of sinapaldehyde, syringaldehyde, coniferaldehyde, and vanillin in whiskey samples. The main objective was to obtain a screening method to differentiate authentic samples from seized samples suspected of being false using the phenolic aldehydes as chemical markers. The optimized background electrolyte was composed of 20 mmol L(-1) sodium tetraborate with 10% MeOH at pH 9.3. The study examined two kinds of sample stacking, using a long-end injection mode: normal sample stacking (NSM) and sample stacking with matrix removal (SWMR). In SWMR, the optimized injection time of the samples was 42 s (SWMR42); at this time, no matrix effects were observed. Values of r were >0.99 for the both methods. The LOD and LOQ were better than 100 and 330 mg mL(-1) for NSM and better than 22 and 73 mg L(-1) for SWMR. The CE-UV reliability in the aldehyde analysis in the real sample was compared statistically with LC-MS/MS methodology, and no significant differences were found, with a 95% confidence interval between the methodologies.

  8. Capillary electrophoresis for drug analysis

    NASA Astrophysics Data System (ADS)

    Lurie, Ira S.

    1999-02-01

    Capillary electrophoresis (CE) is a high resolution separation technique which is amenable to a wide variety of solutes, including compounds which are thermally degradable, non-volatile and highly polar, and is therefore well suited for drug analysis. Techniques which have been used in our laboratory include electrokinetic chromatography (ECC), free zone electrophoresis (CZE) and capillary electrochromatography (CEC). ECC, which uses a charged run buffer additive which migrates counter to osmotic flow, is excellent for many applications, including, drug screening and analyses of heroin, cocaine and methamphetamine samples. ECC approaches include the use of micelles and charged cyclodextrins, which allow for the separation of complex mixtures. Simultaneous separation of acidic, neutral and basic solutes and the resolution of optical isomers and positional isomers are possible. CZE has been used for the analysis of small ions (cations and anions) in heroin exhibits. For the ECC and CZE experiments performed in our laboratory, uncoated capillaries were used. In contrast, CEC uses capillaries packed with high performance liquid chromatography stationary phases, and offers both high peak capacities and unique selectivities. Applications include the analysis of cannabinoids and drug screening. Although CE suffers from limited concentration sensitivity, it is still applicable to trace analysis of drug samples, especially when using injection techniques such as stacking, or detection schemes such as laser induced fluorescence and extended pathlength UV.

  9. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  10. Microchip capillary electrophoresis/electrochemistry.

    PubMed

    Lacher, N A; Garrison, K E; Martin, R S; Lunte, S M

    2001-08-01

    Microfabricated fluidic devices have generated considerable interest over the past ten years due to the fact that sample preparation, injection, separation, derivatization, and detection can be integrated into one miniaturized device. This review reports progress in the development of microfabricated analytical systems based on microchip capillary electrophoresis (CE) with electrochemical (EC) detection. Electrochemical detection has several advantages for use with microchip electrophoresis systems, for example, ease of miniaturization, sensitivity, and selectivity. In this review, the basic components necessary for microchip CEEC are described, including several examples of different detector configurations. Lastly, details of the application of this technique to the determination of catechols and phenols, amino acids, peptides, carbohydrates, nitroaromatics, polymerase chain reaction (PCR) products, organophosphates, and hydrazines are described.

  11. Analysis of fetal blood using capillary electrophoresis system: a simple method for prenatal diagnosis of severe thalassemia diseases.

    PubMed

    Srivorakun, Hataichanok; Fucharoen, Goonnapa; Sae-Ung, Nattaya; Sanchaisuriya, Kanokwan; Ratanasiri, Thawalwong; Fucharoen, Supan

    2009-07-01

    Prenatal diagnosis of severe alpha- and beta-thalasssemia diseases is usually performed by DNA analysis. To establish a simple method, we have evaluated the reliability of prenatal diagnosis by fetal blood analysis using automated capillary electrophoresis system. Forty-seven fetal blood specimens collected by cordocentesis at 18-28 wk of gestation were analyzed by the capillary electrophoresis system (Sebia). Fetal DNA was analyzed for respective thalassemia alleles by PCR. Among 47 fetuses, 20 were at risk for the Hb Bart's hydrops fetalis. DNA analysis identified four cases of homozygous alpha degrees -thalassemia (SEA type). Hb analysis by the capillary electrophoresis demonstrated a major peak of Hb Bart's (78.4-81.3%), Hb H (0.8-1.4%) and minor peaks of presumably embryonic Hbs. No Hb F and Hb A was observed. The level of Hb Bart's was found to be 3.4-5.8% in unaffected heterozygote whereas normal fetus had no Hb Bart's. Among the remaining 27 fetuses at risk for Hb E-beta-thalassemia, DNA analysis identified 12 affected fetuses. Hb analysis showed Hb F (94.9-98.9%) and Hb E (1.1-1.8%) without Hb A in all cases. The levels of Hb A were found to be (4.3-7.2%), (1.0-5.5%) and (2.1-3.9%) in normal, heterozygous Hb E and heterozygous beta-thalassemia fetuses, respectively. Affected and unaffected fetuses could be easily distinguished. Capillary electrophoresis system is a simple and automated procedure for accurate prenatal diagnosis of severe thalassemia diseases which could readily be performed in routine setting.

  12. Cycloaliphatic epoxy resin coating for capillary electrophoresis.

    PubMed

    Shah, Roopa S; Wang, Qinggang; Lee, Milton L

    2002-04-05

    Coating the interior surface of a fused-silica capillary with a polymeric material has long been used in capillary electrophoresis (CE) to reduce or eliminate electroosmotic flow and suppress adsorption. A cycloaliphatic epoxide-based resin was bonded to silane treated capillaries and crosslinked with a curing agent. The epoxy resin coating significantly reduced electroosmotic flow over a pH range of 3-10. This coating was sufficiently hydrophilic to suppress protein adsorption. The epoxy resin coated capillary was used to separate several acidic and basic proteins and peptides. Separation efficiencies greater than 400,000 theoretical plates were achieved. The relative standard deviations in migration times for proteins were <0.8%. Speed and simplicity are important advantages of the coating procedure compared to other published coating methods.

  13. Ketoprofen analysis in serum by capillary electrophoresis.

    PubMed

    Friedberg, M; Shihabi, Z K

    1997-07-18

    A method for the quantification of ketoprofen, a new non-prescription non-steroidal anti-inflammatory drug, in serum, by capillary zone electrophoresis for therapeutic monitoring and emergency toxicology is described. Serum is deproteinized with acetonitrile in the presence of an internal standard, to remove serum proteins and to induce sample stacking. The migration time was about 10 min. The assay was linear between 1-10 mg/l without any interferences. The method compared well to an HPLC assay. The HPLC afforded a better detection limit, but the CE was less expensive to operate. This method demonstrates that capillary electrophoresis is a simple and effective method for determination of ketoprofen as well as other drugs in human serum at levels close to 1 mg/l.

  14. Microfluidic flow counterbalanced capillary electrophoresis.

    PubMed

    Xia, Ling; Dutta, Debashis

    2013-04-07

    Flow counterbalanced capillary electrophoresis (FCCE) offers a powerful approach to realizing difficult charge based separations in compact microchip devices with application of relatively small electrical voltages. The need for dynamically controlling the pressure-gradient in the FCCE column however presents a significant challenge in implementing this technique on the microchip platform. In this article, we report the use of a simple on-chip pumping unit that allows precise introduction of a periodic pressure-driven backflow into a microfluidic separation channel enabling an FCCE analysis. The backflow in our device was produced by fabricating a shallow segment (0.5 μm deep) downstream of the analysis column (5 μm deep) and applying an electric field across it. A mismatch in the electroosmotic transport rate at the interface of this segment was shown to yield a pressure-gradient that could reverse the flow of the analyte bands without inverting the direction of the electric field. Although such a pressure-gradient also led to additional band broadening in the system, overall, the separation resolution of our device was observed to improve with an increasing number of back-and-forth sample passes through the analysis channel. For our current design, the corresponding improvement in the effective separation length was as much as 52% of the actual distance travelled by the chosen FITC-labeled amino acid samples. The reported device is well suited for further miniaturization of the FCCE method to the nanofluidic length scale which likely would improve its performance, and is easily integrable to other analytical procedures on the microchip platform for lab-on-a-chip applications.

  15. Thermal lens detector system for capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Seidel, Bernd S.; Faubel, Werner N.; Ache, Hans-Joachim

    1997-07-01

    The characteristics and the performance of a thermal lens detector, which uses a double-beam absorption scheme, were studied in a capillary electrophoresis system with various types of toxic pollutants, e.g., pesticides. The setup of the detector system was miniaturized using the smallest diverging path lengths between the cell and the pinhole (4 mm). The probe laser beam (He:Ne laser, 633 nm) and the excitation beam (Ar+ ion laser, 364, 457, 488, and 514 nm) with a crossed setup were directed by mirrors into two microscope objectives that focused the beam to a 5-micrometers waist inside the capillary. The detection volume was on the order of 75 nl when a 75-micrometers capillary was employed. The change in intensity of the probe beam was detected by a photodiode behind a pinhole, which was protected with different band-pass interference filters. The excitation laser can be used in the multiline order. Micellar electrokinetic methods are used for pesticide separation. The performance of the detector in capillary electrophoresis was assessed with various types of capillaries and compared with a conventional absorption detector. The limit of detection is at least one order of magnitude better than it is with the absorption detector.

  16. Validated Method for the Determination of Piroxicam by Capillary Zone Electrophoresis and Its Application to Tablets

    PubMed Central

    Dal, Arın Gül; Oktayer, Zeynep; Doğrukol-Ak, Dilek

    2014-01-01

    Simple and rapid capillary zone electrophoretic method was developed and validated in this study for the determination of piroxicam in tablets. The separation of piroxicam was conducted in a fused-silica capillary by using 10 mM borate buffer (pH 9.0) containing 10% (v/v) methanol as background electrolyte. The optimum conditions determined were 25 kV for separation voltage and 1 s for injection time. Analysis was carried out with UV detection at 204 nm. Naproxen sodium was used as an internal standard. The method was linear over the range of 0.23–28.79 µg/mL. The accuracy and precision were found to be satisfied within the acceptable limits (<2%). The LOD and LOQ were found to be 0.07 and 0.19 µg/mL, respectively. The method described here was applied to tablet dosage forms and the content of a tablet was found in the limits of USP-24 suggestions. To compare the results of capillary electrophoretic method, UV spectrophotometric method was developed and the difference between two methods was found to be insignificant. The capillary zone electrophoretic method developed in this study is rapid, simple, and suitable for routine analysis of piroxicam in pharmaceutical tablets. PMID:25295220

  17. Development and validation of non-aqueous capillary electrophoresis methods to analyze boronic esters and acids.

    PubMed

    Forst, Mindy B; Warner, Anne M

    2012-05-01

    Boronic esters and acids are potential intermediates in the manufacture of many active pharmaceutical ingredients (API). Accurate quantitation of the intermediate is necessary to assure the stoichiometry of the reaction. The analysis of these compounds is challenging due to their labile nature. For example, the boronic ester can hydrolyze to the acid during storage, when exposed to moisture in the air, during sample preparation and analysis, and thus give erroneous ester results. Traditional analytical techniques like gas chromatography (GC), normal phase chromatography (NPLC), hydrophilic interaction chromatography (HILIC), and reversed phase liquid chromatography (RPLC) have been utilized but with noted limitations such as poor peak shape, variation in retention times, and evidence of hydrolysis. All of these limitations impact accurate quantitation needed for selected situations. For the proprietary boronic ester evaluated here, these traditional techniques were insufficient for the accurate determination of assay and residual boronic acid. Non-aqueous capillary electrophoresis (NACE) is an accurate quantitative technique that can be used to analyze boronic esters and their corresponding acids without the limitations noted for traditional analytical techniques. The present study describes the development of methodology for the determination of the potency of a proprietary boronic ester as well as methodology for the determination of residual boronic acid in the ester. In addition, nine model boronic ester and acid pairs with a range in polarity, based on the electronic properties of the attached side group, were tested to evaluate and demonstrate the general applicability of these conditions. Under the conditions used for potency, all ten pairs had a resolution between the boronic ester and acid of greater than 1.5, acceptable peak shape for the boronic ester (tailing factor of less than 2.0), and a run time of less than 3 min. In addition, this work describes

  18. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Yongjun

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the μM level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  19. Atomic Force Controlled Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham

    2010-03-01

    Lithography based on scanning probe microscopic techniques has considerable potential for accurate & localized deposition of material on the nanometer scale. Controlled deposition of metallic features with high purity and spatial accuracy is of great interest for circuit edit applications in the semiconductor industry, for plasmonics & nanophotonics and for basic research in surface enhanced Raman scattering & nanobiophysics. Within the context of metal deposition we will review the development of fountain pen nanochemistry and its most recent emulation Atomic Force Controlled Capillary Electrophoresis (ACCE). Using this latter development we will demonstrate achievement of unprecedented control of nanoparticle deposition using a three-electrode geometry. Three electrodes are attached: one on the outside of a metal coated glass probe, one on the inside of a hollow probe in a solution containing Au nanoparticles in the capillary, and a third on the surface where the writing takes place. The three electrodes provide electrical pulses for accurate control of deposition and retraction of the liquid from the surface overcoming the lack of control seen in both dip pen lithography & fountain pen nanochemistry when the tip contacts the surface. With this development, we demonstrate depositing a single 1.3 nm Au nanoparticle onto surfaces such as semiconductors.

  20. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes

    PubMed Central

    Greenough, Lucia; Schermerhorn, Kelly M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E.; Gardner, Andrew F.

    2016-01-01

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3′-5′ exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. PMID:26365239

  1. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes.

    PubMed

    Greenough, Lucia; Schermerhorn, Kelly M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E; Gardner, Andrew F

    2016-01-29

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3'-5' exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner.

  2. Physico-chemical characterization of polymeric micelles loaded with platinum derivatives by capillary electrophoresis and related methods.

    PubMed

    Oukacine, Farid; Bernard, Stephane; Bobe, Iulian; Cottet, Hervé

    2014-12-28

    (1,2-diamino-cyclohexane)Platinum(II) ((DACH)Pt) loaded polymeric micelles of poly(ethylene glycol-b-sodium glutamate) (PEG-b-PGlu) are currently studied as a potential candidate to replace oxaliplatin in the treatment of cancers with the aim to reduce side effects like cumulative peripheral distal neurotoxicity and acute dysesthesias. As for all synthetic polymeric drug delivery systems, the characterization of the (co)polymer precursors and of the final drug delivery system (polymeric micelles) is crucial to control the repeatability of the different batches and to get correlation between physico-chemical structure and biological activity. In this work, the use of capillary electrophoresis (CE) and related methods for the characterization of (DACH)Pt-loaded polymeric micelles and their precursor (PEG-b-PGlu copolymer) has been investigated in detail. The separation and quantification of residual PGlu homopolymer in the PEG-b-PGlu sample were performed by free solution capillary zone electrophoresis mode. This mode brought also information on the PEG-b-PGlu copolymer composition and polydispersity. It also permitted to monitor the decomposition of polymeric micelles in the presence of NaCl at room temperature. Interactions between PEG-b-PGlu unimers, on one hand, and polymeric micelles or surfactants, on the other hand, were studied by using the Micellar Electrokinetic Chromatography and Frontal Analysis Capillary Electrophoresis modes. Finally, weight-average hydrodynamic radii of the loaded polymeric micelles and of the PEG-b-PGlu unimers were determined by Taylor Dispersion Analysis (an absolute size determination method that can be easily implemented on CE apparatus). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  4. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  5. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  6. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  7. A robust method for determining DNA binding constants using capillary zone electrophoresis.

    PubMed

    Li, C; Martin, L M

    1998-10-01

    Capillary zone electrophoresis (CZE or CE) with on-line UV detection was utilized to measure the binding constants between purified calf thymus DNA and a library of designed tetrapeptides which had been constructed using unnatural amino acids with thiazole ring side chains. Mixtures containing a constant amount of a tetrapeptide, the neutral marker (mesityl oxide), and varying concentrations of DNA were prepared and equilibrated at 8 degreesC for 12 h. CE was then utilized to separate unbound tetrapeptides from the DNA-peptide complex. The UV absorbance of the peak representing unbound tetrapeptide decreased incrementally as a result of increasing the concentration of DNA in the equilibrium mixture. The absorbance of the peak corresponding to the unbound tetrapeptide was obtained directly from the electropherogram and used in the calculation of the DNA-peptide binding constants. The binding constant for each tetrapeptide to calf thymus DNA was obtained from the negative slope of a Scatchard plot and a comparison of the binding constants for different peptides showed that the tetrapeptides in the library have DNA-binding affinities ranging from 10(2) to 10(6) M-1.

  8. An experimental design based strategy to optimize a capillary electrophoresis method for the separation of 19 polycyclic aromatic hydrocarbons.

    PubMed

    Ferey, Ludivine; Delaunay, Nathalie; Rutledge, Douglas N; Huertas, Alain; Raoul, Yann; Gareil, Pierre; Vial, Jérôme; Rivals, Isabelle

    2014-04-11

    Because of their high toxicity, international regulatory institutions recommend monitoring specific polycyclic aromatic hydrocarbons (PAHs) in environmental and food samples. A fast, selective and sensitive method is therefore required for their quantitation in such complex samples. This article deals with the optimization, based on an experimental design strategy, of a cyclodextrin (CD) modified capillary zone electrophoresis separation method for the simultaneous separation of 19 PAHs listed as priority pollutants. First, using a central composite design, the normalized peak-start and peak-end times were modelled as functions of the factors that most affect PAH electrophoretic behavior: the concentrations of the anionic sulfobutylether-β-CD and neutral methyl-β-CD, and the percentage of MeOH in the background electrolyte. Then, to circumvent computational difficulties resulting from the changes in migration order likely to occur while varying experimental conditions, an original approach based on the systematic evaluation of the time intervals between all the possible pairs of peaks was used. Finally, a desirability analysis based on the smallest time interval between two consecutive peaks and on the overall analysis time, allowed us to achieve, for the first time in CE, full resolution of all 19 PAHs in less than 18 min. Using this optimized capillary electrophoresis method, a vegetable oil was successfully analyzed, proving its suitability for real complex sample analysis.

  9. Determination of nitrate and nitrite in Hanford defense waste(HDW) by reverse polarity capillary zone electrophoresis (RPCE)method

    SciTech Connect

    Metcalf, S.G.

    1998-06-10

    This paper describes the first application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in Hanford Defense Waste (HDW). The method development was carried out by using Synthetic Hanford Waste (SHW), followed by the analysis of 4 real HDW samples. Hexamethonium bromide (HMB) was used as electroosmotic flow modifier in borate buffer at pH 9.2 to decrease the electroosmotic flow (EOF) in order to enhance the speed of analysis and the resolution of nitrate and nitrite in high ionic strength HDW samples. The application of this capillary zone electrophoresis method, when compared with ion chromatography for two major components of HDW, nitrate and nitrite slightly reduced analysis time, eliminated most pre-analysis handling of the highly radioactive sample, and cut analysis wastes by more than 2 orders of magnitude. The analysis of real HDW samples that were validated by using sample spikes showed a concentration range of 1.03 to 1.42 M for both nitrate. The migration times of the real HDW and the spiked HDW samples were within a precision of less than 3% relative standard deviation. The selectivity ratio test used for peak confirmation of the spiked samples was within 96% of the real sample. Method reliability was tested by spiking the matrix with 72.4 mM nitrate and nitrite. Recoveries for these spiked samples were 93-103%.

  10. Development of a fast and selective separation method to determine histamine in tuna fish samples using capillary zone electrophoresis.

    PubMed

    Vitali, Luciano; Valese, Andressa Camargo; Azevedo, Mônia Stremel; Gonzaga, Luciano Valdemiro; Costa, Ana Carolina Oliveira; Piovezan, Marcel; Vistuba, Jacqueline Pereira; Micke, Gustavo A

    2013-03-15

    This paper reports on the development of a fast and selective separation method by capillary zone electrophoresis (CZE) for the determination of histamine in tuna fish samples. The background electrolyte was composed of 60 mmol L(-1) hydroxyisobutyric acid and 10 mmol L(-1) sodium hydroxide at pH 3.3. The internal standard used was imidazole. Separations were performed in a fused uncoated silica capillary (32 cm total length, 8.5 cm effective length and 50 μm internal diameter) with direct UV detection at 210 nm. The samples and standards were injected hydrodynamically (50 mbar, 3s) from the outlet capillary end (nearest to the detector) and the electrophoretic system was operated under normal polarity and constant voltage conditions of 30 kV (positive polarity on the injection side). The migration time of histamine in the proposed method was only 0.34 min. The method was then validated and different tuna fish samples were analyzed. Good linearity (R(2)>0.999), a limit of detection 0.14 mg L(-1), intra-day precision better than 3.5% (peak area of sample), and recovery in the range of 94-108% were obtained. The results of the histamine concentration determined in the samples by the CZE method were compared with the LC-MS/MS method.

  11. A microdestructive capillary electrophoresis method for the analysis of blue-pen-ink strokes on office paper.

    PubMed

    Calcerrada, Matías; González-Herráez, Miguel; Garcia-Ruiz, Carmen

    2015-06-26

    This manuscript describes the development of a capillary electrophoresis (CE) method for the detection of acid and basic dyes and its application to real samples, blue-pen-ink strokes on office paper. First, a capillary zone electrophoresis (CZE) method was developed for the separation of basic and acid dyes, by studying the separation medium (buffer nature, pH and relative amount of additive) and instrumental parameters (temperature, voltage and capillary dimensions). The method performance was evaluated in terms of selectivity, resolution (above 5 and 2 for acid dyes and basic dyes, respectively, except for two basic dye standards), LOD (lower than 0.4 mg/L) and precision as intraday and interday RSD values of peak migration times (lower than 0.6%). The developed method was then applied to 34 blue pens from different technologies (rollerball, ballpoint, markers) and with different ink composition (gel, water-based, oil-based). A microdestructive sample treatment using a scalpel to scratch 0.3mg of ink stroke was performed. The entire electropherogram profile allowed the visual discrimination between different types of ink and brands, being not necessary a statistical treatment. A 100% of discrimination was achieved between pen technologies, brands, and models, although non-reproducible zones in the electropherograms were found for blue gel pen samples. The two different batches of blue oil-based pens were also differentiated. Thus, this method provides a simple, microdestructive, and rapid analysis of different blue pen technologies which may complement the current analysis of questioned documents performed by forensic laboratories.

  12. Chiral Resolution of Racemic Environmental Pollutants by Capillary Electrophoresis.

    PubMed

    Ali, Imran; Gupta, Vinod K; Aboul-Enein, Hassan Y

    2008-01-01

    The chiral resolution of environmental pollutants is an urgent need of today. Therefore, the chiral resolution of the environmental pollutants by capillary electrophoresis was reviewed. Various aspects of the chiral resolution by capillary electrophoresis such as chiral selectors, optimization of capillary electrophoresis conditions [composition of the back ground electrolyte (BGE), pH of the BGE, ionic strength of the BGE, structures and types of the chiral selectors, applied voltage, temperature, structures of the chiral pollutants, use of organic modifiers and other parameters, optimization by dependent variables], detection, sample treatment, validation of the methods and the chiral recognition mechanisms have been discussed.

  13. Chiral capillary electrophoresis in food analysis.

    PubMed

    Herrero, Miguel; Simó, Carolina; García-Cañas, Virginia; Fanali, Salvatore; Cifuentes, Alejandro

    2010-07-01

    This review article addresses the different chiral capillary electrophoretic methods used to study and characterize foods and beverages through the enantiomeric separation of different food compounds such as amino acids, pesticides, polyphenols, etc. This work intends to provide an updated overview on the main applications of such enantioselective procedures together with their main advantages and drawbacks in food analysis. Some foreseeable applications and developments of these chiral CZE, CEC and MEKC methods for food characterization are also discussed. Papers that were published within the period January 2003 to October 2009 are included, following the previous review on this topic by Simo et al. (Electrophoresis 2003, 24, 2431-2441).

  14. Electrophoretic Behavior of Anionic Triazine and PAMAM Dendrimers: Methods for Improving Resolution and Assessing Purity Using Capillary Electrophoresis

    PubMed Central

    Lalwani, Sanjiv; Venditto, Vincent J.; Chouai, Abdellatif; Rivera, Gregory E.; Shaunak, Sunil; Simanek, Eric E.

    2009-01-01

    The synthesis and characterization of second- and third-generation triazine dendrimers bearing carboxylic acid groups on the periphery are reported. These materials were synthesized by exhaustive succinylation of amine-terminated dendrimers. 1H and 13C NMR spectra are consistent with the desired products, but these techniques are limited by degeneracy in signals. MALDI-TOF mass spectrometry confirms the presence of the desired material. These materials display pH-dependent solubility in water. Capillary electrophoresis proves to be valuable in multiple elements of this work, and general protocols emerge that appear to be useful for the characterization of lower-generation anionic dendrimers. Specifically, capillary electrophoresis provides a convenient method for monitoring the removal of excess succinic anhydride/succinic acid and offers additional clues to the chemical nature of the impurities in these samples. Optimization of the background electrolyte and instrumental parameters allows for the assessment of the purity of these triazine targets as well as comparison with two sets of commercially available anionic poly(amidoamine) (PAMAM) dendrimers. Corroborative information from the different orthogonal analytical techniques employed supports the hypothesis that triazine dendrimers exist as very narrowly disperse mixtures of macromolecules approaching, in some cases, single chemical entities. PMID:20725528

  15. Optimization of capillary electrophoresis method with contactless conductivity detection for the analysis of tobramycin and its related substances.

    PubMed

    El-Attug, Mohamed Nouri; Hoogmartens, Jos; Adams, Erwin; Van Schepdael, Ann

    2012-01-25

    A method was validated and optimized to determine tobramycin (TOB) and its related substances. TOB is an aminoglycoside antibiotic which lacks a strong UV absorbing chromophore or fluorophore. Due to the physicochemical properties of TOB, capillary electrophoresis (CE) in combination with Capacitively Coupled Contactless Conductivity Detection (C(4)D) was chosen. The optimized separation method uses a background electrolyte (BGE) composed of 25 mM morpholinoethane-sulphonic acid (MES) adjusted to pH 6.4 by L-histidine (l-His). 0.3 mM cetyltrimethyl ammonium bromide (CTAB) was added as electroosmotic flow modifier in a concentration below the critical micellar concentration (CMC). Ammonium acetate 50 mg L(-1) was used as internal standard (IS). 30 kV was applied in reverse polarity (cathode at the injection capillary end) on a fused silica capillary (65/43 cm; 75 μm id). The optimized separation was obtained in less than 7 min with good linearity (R(2)=0.9995) for tobramycin. It shows a good precision expressed as RSD on relative peak areas equal to 0.2% and 0.7% for intraday and interday respectively. The LOD and LOQ are 0.4 and 1.3 mg L(-1) corresponding to 9 pg and 31 pg respectively.

  16. Capillary electrophoresis-mass spectrometry of carbohydrates

    PubMed Central

    Zaia, Joseph

    2014-01-01

    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This review summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications. PMID:23386333

  17. Capillary electrophoresis-mass spectrometry of carbohydrates.

    PubMed

    Zaia, Joseph

    2013-01-01

    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust, and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This chapter summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins, and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications.

  18. Internal standard capillary electrophoresis as a high-throughput method for pKa determination in drug discovery and development.

    PubMed

    Cabot, Joan M; Fuguet, Elisabet; Rosés, Martí

    2014-10-13

    A novel high-throughput method for determining acidity constants (pKa) by capillary electrophoresis (CE) is developed. The method, based on the use of an internal standard (IS-CE), is implemented as a routine method for accurate experimental pKa determination of drugs undergoing physicochemical measurements in drug discovery laboratories. Just two electropherograms at 2 different pH values are needed to calculate an acidity constant. Several ISs can be used in the same buffer and run to enhance precision. With 3 ISs, for example, the pKa of the test compound (TC) can be obtained in triplicate in less than 3 min of electrophoresis. It has been demonstrated that the IS-CE method eliminates some systematic errors, maintaining, or even increasing the precision of the results compared with other methods. Furthermore, pH buffer instability during electrophoretic runs is not a problem in the IS-CE method. It is also proved that after 16 h of electroseparation using the same buffer vial, pH may change by around one unit; but the pKa calculated by the IS-CE method remains constant. Thus, IS-CE is a powerful high-throughput method for pKa determination in drug discovery and development.

  19. Analytical biotechnology: Capillary electrophoresis and chromatography

    SciTech Connect

    Horvath, C.; Nikelly, J.G.

    1990-01-01

    The papers describe the separation, characterization, and equipment required for the electrophoresis or chromatography of cyclic nucleotides, pharmaceuticals, therapeutic proteins, recombinant DNA products, pheromones, peptides, and other biological materials. One paper, On-column radioisotope detection for capillary electrophoresis, has been indexed separately for inclusion on the data base.

  20. Fast high-throughput method for the determination of acidity constants by capillary electrophoresis: I. Monoprotic weak acids and bases.

    PubMed

    Fuguet, Elisabet; Ràfols, Clara; Bosch, Elisabeth; Rosés, Martí

    2009-04-24

    A new and fast method to determine acidity constants of monoprotic weak acids and bases by capillary zone electrophoresis based on the use of an internal standard (compound of similar nature and acidity constant as the analyte) has been developed. This method requires only two electrophoretic runs for the determination of an acidity constant: a first one at a pH where both analyte and internal standard are totally ionized, and a second one at another pH where both are partially ionized. Furthermore, the method is not pH dependent, so an accurate measure of the pH of the buffer solutions is not needed. The acidity constants of several phenols and amines have been measured using internal standards of known pK(a), obtaining a mean deviation of 0.05 pH units compared to the literature values.

  1. A simple capillary electrophoresis method for the rapid separation and determination of intact low molecular weight and unfractionated heparins.

    PubMed

    Patel, Rahul P; Narkowicz, Christian; Hutchinson, Joseph P; Hilder, Emily F; Jacobson, Glenn A

    2008-01-07

    A simple, selective and accurate capillary electrophoresis (CE) method has been developed for the rapid separation and identification of various low molecular weight heparins (LMWHs) and unfractionated heparin. Separation and operational parameters were investigated using dalteparin sodium as the test LMWH. The developed method used a 70 cm fused silica capillary (50 microm i.d.) with a detection window 8.5 cm from the distal end. Phosphate electrolyte (pH 3.5; 50 mM), an applied voltage of -30 k V, UV detection at 230 nm and sample injection at 20 mbar for 5s were used. The method performance was assessed in terms of linearity, selectivity, intra- and inter-day precision and accuracy. The method was successfully applied to the European Pharmacopeia LMWH standard, dalteparin sodium, enoxaparin sodium and heparin sodium with a significant reduction in the run time and increased resolution compared with previously reported CE methods. Different CE separation profiles were obtained for various LMWHs and unfractionated heparin showing significant structural diversity. The current methodology was sensitive enough to reveal minor constituent differences between two different batches of enoxaparin sodium. This CE method also clearly showed chemical changes that occurred to LMWHs under different stress conditions. The sensitivity, selectivity and simplicity of the developed method allow its application in research or manufacturing for the identification, stability analysis, characterization and monitoring of batch-to-batch consistency of different low molecular weight and unfractionated heparins.

  2. Optimization and qualification of capillary zone electrophoresis method for glycoprotein isoform distribution of erythropoietin for quality control laboratory.

    PubMed

    Zhang, Junge; Chakraborty, Utpal; Villalobos, Annabelle P; Brown, John M; Foley, Joe P

    2009-10-15

    The European Pharmacopoeia (Ph. Eur.) monograph for Erythropoietin Concentrated Solution describes a capillary zone electrophoresis method for identification of recombinant human erythropoietin. However, this method has shown poor reproducibility due to inadequate capillary conditioning. We have modified the Ph. Eur. method to make it more robust and suitable for the quality control laboratory for the analysis of epoetin alfa and epoetin alfa after formulation with polysorbate 80. This study qualified the modified method by showing improved robustness and reproducibility. The study also characterized and qualified a secondary standard of epoetin alfa as a substitute for the primary standard, Ph. Eur. erythropoietin Biological Reference Preparation, which is available in limited supply. Four sets of analyses were performed to assess repeatability, intermediate precision, and the secondary standard. The results showed that the modified method is suitable for its intended purpose to test epoetin alfa and formulated epoetin alfa samples. The epoetin alfa secondary standard is a suitable substitute for the primary standard. Further, we developed a procedure for the removal of polysorbate 80 from formulated epoetin alfa, allowing the material to be analyzed by the modified Ph. Eur. method.

  3. Monitoring the enrichment of virgin olive oil with natural antioxidants by using a new capillary electrophoresis method.

    PubMed

    Nevado, Juan José Berzas; Robledo, Virginia Rodríguez; Callado, Carolina Sánchez-Carnerero

    2012-07-15

    The enrichment of virgin olive oil (VOO) with natural antioxidants contained in various herbs (rosemary, thyme and oregano) was studied. Three different enrichment procedures were used for the solid-liquid extraction of antioxidants present in the herbs to VOO. One involved simply bringing the herbs into contact with the VOO for 190 days; another keeping the herb-VOO mixture under stirring at room temperature (25°C) for 11 days; and the third stirring at temperatures above room level (35-40°C). The efficiency of each procedure was assessed by using a reproducible, efficient, reliable analytical capillary zone electrophoresis (CZE) method to separate and determine selected phenolic compounds (rosmarinic and caffeic acid) in the oil. Prior to electrophoretic separation, the studied antioxidants were isolated from the VOO matrix by using an optimised preconcentration procedure based on solid phase extraction (SPE). The CZE method was optimised and validated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Determination of somatropin charged variants by capillary zone electrophoresis - optimisation, verification and implementation of the European pharmacopoeia method.

    PubMed

    Storms, S M; Feltus, A; Barker, A R; Joly, M-A; Girard, M

    2009-03-01

    Measurement of somatropin charged variants by isoelectric focusing was replaced with capillary zone electrophoresis in the January 2006 European Pharmacopoeia Supplement 5.3, based on results from an interlaboratory collaborative study. Due to incompatibilities and method-robustness issues encountered prior to verification, a number of method parameters required optimisation. As the use of a diode array detector at 195 nm or 200 nm led to a loss of resolution, a variable wavelength detector using a 200 nm filter was employed. Improved injection repeatability was obtained by increasing the injection time and pressure, and changing the sample diluent from water to running buffer. Finally, definition of capillary pre-treatment and rinse procedures resulted in more consistent separations over time. Method verification data are presented demonstrating linearity, specificity, repeatability, intermediate precision, limit of quantitation, sample stability, solution stability, and robustness. Based on these experiments, several modifications to the current method have been recommended and incorporated into the European Pharmacopoeia to help improve method performance across laboratories globally.

  5. An on-line stacking capillary electrophoresis method for the analysis of Δ(9)-tetrahydrocannabinol and its metabolites.

    PubMed

    Cheng, Hui-Ling; Tsai, Yi-Hsuan; Hsu, Wan-Ling; Lin, Yi-Hui

    2015-12-24

    The objective of this study was to establish a practical and reliable analytical method for monitoring trace amounts of Δ(9)-tetrahydrocannabinol (THC) and its metabolites in biological samples. A novel on-line preconcentration capillary electrophoresis method combining large volume sample injection, anion selective exhaustive injection and sweeping was developed to enhance analytical sensitivity. A background buffer composed with 30mM phosphate buffer (pH 2.5) containing 40% methanol and 100mM SDS was used to suppress the electroosmotic flow of the uncoated fused silica capillary (40cm×50μm i.d.). High conductivity buffer (200mM phosphate, pH 2.5) was injected for analyte accumulation. The samples, prepared in phosphate buffer or Tris buffer, were introduced by hydrodynamic injection and electrokinetic injection. After sweeping, the separation was performed in micellar electrokinetic chromatography (MEKC) mode at -15kV. During the method validation, the coefficient of determination of the regression curve was measured at greater than 0.993, and the relative standard deviation and relative error were lower than 11.06% and 9.24%, respectively. Under optimized conditions, an improvement of up to 2000-fold higher sensitivity was achieved. This method was applied to the analysis of urine samples, indicating that it could be satisfactorily utilized in the toxicological and clinical monitoring of cannabis.

  6. Application of a capillary electrophoresis method for simultaneous determination of preservatives in pharmaceutical formulations.

    PubMed

    Jaworska, Małgorzata; Szulińska, Zofia; Wilk, Małgorzata

    2005-02-01

    Preservatives are used to protect pharmaceutical formulations from microbial attack during the period of administration to the patient. Because of their biological activity, preservatives have to be identified and assayed according to the same rules as apply to active components. A number of methods for separation of preservatives are reported, to account for the heterogeneity of their chemical structures. A capillary electrophoretic method was devised for simple and simultaneous qualification and quantification of the preservatives most often included in pharmaceuticals, such as benzyl alcohol, parabens, phenol, m-cresol, chlorobutanol, thimerosal. After systematic method development, the electrophoretic conditions were defined as: 50 mM borate buffer pH 9.0 containing 20 mM SDS. Separations were performed at a temperature of 20 degrees C and with detection at 214 nm. Preservatives under examination can be analyzed within a 10 min run. The method was successfully validated and applied to the determination of preservatives in a number of pharmaceuticals. Results from the CE method were compared with those from reference methods.

  7. Development and validation of a capillary electrophoresis method for the enantiomeric purity determination of RS86017 using experimental design.

    PubMed

    Liu, Meixia; Zheng, Yan; Ji, Yibing; Zhang, Can

    2011-04-28

    A selective capillary electrophoresis method for determination of enantiomeric purity of RS86017, a new antiarrhythmic agent with two chiral centers, was developed and validated using sulfobutyl ether-β-cyclodextrin as chiral selector. The concentration of the chiral selector and organic modifier, pH of background electrolyte (BGE), capillary temperature, and applied voltage were systematically optimized by using orthogonal design and concentration of chiral selector was further optimized. The optimal conditions included 25mM phosphate buffer at pH 8.0, containing 28mg/mL sulfobutyl ether-β-cyclodextrin and 20% acetonitrile as running buffer, an applied voltage of 22kV, and a temperature of 20°C. The detection wavelength was 206nm. The obtained method was capable of separating RS86017 from its potential chiral impurities, the S,R-enantiomer, the R,R-diastereomer and the S,S-diastereomer with a short analysis time of 10min. The separation was validated with respect to its selectivity, repeatability, linearity, precision, accuracy, limits of detection (LOD), limits of quantitation (LOQ) and robustness testing. The LODs and LOQs were 0.8μg/mL and 2.5μg/mL for all isomers of RS86017, respectively. Finally, the method was used to investigate the chiral purity of RS86017 in bulk samples.

  8. Using capillary electrophoresis to characterize polymeric particles.

    PubMed

    Riley, Kathryn R; Liu, Sophia; Yu, Guo; Libby, Kara; Cubicciotti, Roger; Colyer, Christa L

    2016-09-09

    Capillary electrophoresis (CE) was used for the characterization of a variety of polymeric micron and sub-micron particles based on size, surface functionality, and binding properties. First, a robust capillary zone electrophoresis (CZE) method was developed for the baseline separation and quantitation of commercially available polystyrene particles with various surface modifications (including amino, carboxylate, and sulfate functional groups) and various sizes (0.2, 0.5, 1.0, and 3.0μm). The separation of DNA-templated polyacrylamide particles from untemplated particles (as used for the Ion Torrent Personal Genome Machine) was demonstrated. Finally, using the 29-base thrombin aptamer and thrombin protein as a model system, a study was undertaken to determine dissociation constants for the aptamer and protein in free solution and when the aptamer was conjugated to a particle, with the goal of better understanding how the use of solid substrates, like particles, affects selection and binding processes. Dissociation constants were determined and were found to be approximately 5-fold higher for the aptamer conjugated to a particle relative to that in free solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Separation of Recombinant Therapeutic Proteins Using Capillary Gel Electrophoresis and Capillary Isoelectric Focusing.

    PubMed

    De Jong, Caitlyn A G; Risley, Jessica; Lee, Alexis K; Zhao, Shuai Sherry; Chen, David D Y

    2016-01-01

    Detailed step-by-step methods for protein separation techniques based on capillary electrophoresis (CE) are described in this chapter. Focus is placed on two techniques, capillary gel electrophoresis (CGE) and capillary isoelectric focusing (cIEF). CGE is essentially gel electrophoresis, performed in a capillary, where a hydrogel is used as a sieving matrix to separate proteins or peptides based on size. cIEF separates proteins or peptides based on their isoelectric point (pI), the pH at which the protein or peptide bears no charges. Detailed protocols and steps (including capillary preparation, sample preparation, CE separation conditions, and detection) for both CGE and cIEF presented so that readers can follow the described methods in their own labs.

  10. Combined capillary electrophoresis and electrospray ionization mass spectrometry

    SciTech Connect

    Smith, R.D.; Loo, J.A.; Edmonds, C.G.; Udseth, H.R.

    1990-07-01

    The development of new capillary electrophoresis (CE) methods provides a basis for the efficient manipulation and separation of subpicomole quantities of polypeptides and proteins. Recent advances in microscale methods, such as the demonstration of the tryptic digestion of low picomole quantities of proteins using the immobilized enzyme in small diameter packed reactor column, provide the basis for such further developments. The use of capillary (free solution) zone electrophoresis (CZE) for separation of proteins, and recent demonstrations of restriction mapping of large deoxyribonucleotides, has propelled potential CE applications into the realm of conventional electrophoresis, while adding the attributes of speed, relatively simple on-line detection, automation, and reduced sample requirements (10{sup {minus}17} {minus} 10 {sup {minus}13} mole). A literal explosion of ancillary methods for sample manipulation, derivatization, and detection as well as new methods of obtaining separation selectivity are being reported. Additionally, other CE formats are attracting increased interest, with the aim of exploiting the unique features of capillary isotachophoresis (CITP), capillary isoelectric focusing (CIEF), capillary electrokinetic chromatograpgy (CEC), and most recently, capillary polyacrylamide gel electrophoresis (CGE). As a result, there are concomitant and increasing demands upon detector sensitivity and information density.

  11. In-vial liquid-liquid microextraction-capillary electrophoresis method for the determination of phenolic acids in vegetable oils.

    PubMed

    Abu Bakar, Nur Bahiyah; Makahleh, Ahmad; Saad, Bahruddin

    2012-09-12

    An in-vial liquid-liquid microextraction method was developed for the selective extraction of the phenolic acids (caffeic, gallic, cinnamic, ferulic, chlorogenic, syringic, vanillic, benzoic, p-hydroxybenzoic, 2,4-dihydroxybenzoic, o-coumaric, m-coumaric and p-coumaric) in vegetable oil samples. The optimised extraction conditions for 20 g sample were: volume of diluent (n-hexane), 2 mL; extractant, methanol: 5 mM sodium hydroxide (60:40; v/v); volume of extractant, 300 μL (twice); vortex, 1 min; centrifugation, 5 min. Recoveries for the studied phenolic acids were 80.1-119.5%. The simultaneous determination of the phenolic acid extracts was investigated by capillary electrophoresis (CE). Separations were carried out on a bare fused-silica capillary (50 μm i.d.× 40 cm length) involving 25 mM sodium tetraborate (pH 9.15) and 5% methanol as CE background electrolyte in the normal polarity mode, voltage of 30 kV, temperature of 25°C, injection time of 4s (50 mbar) and electropherograms were recorded at 200 nm. The phenolic acids were successfully separated in less than 10 min. The validated in-vial LLME-CE method was applied to the determination of phenolic acids in vegetable oil samples (extra virgin olive oil, virgin olive oil, pure olive oil, walnut oil and grapeseed oil). The developed method shows significant advantages over the current methods as lengthy evaporation step is not required. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Capillary electrophoresis with indirect amperometric detection.

    PubMed

    Olefirowicz, T M; Ewing, A G

    1990-01-19

    The use of indirect amperometric detection with capillary electrophoresis is demonstrated. The system consists of a porous glass coupler which allows amperometric detection at a carbon fiber electrode placed in the end of the capillary. 3,4-Dihydroxybenzylamine is added to the buffer system as a continuously eluting electrophore. Indirect amperometric detection in 9-mumol I.D. capillaries provides detection limits as low as 380 attomole for the amino acid arginine. Finally, both direct and indirect amperometric detection can be accomplished simultaneously.

  13. Capillary array electrophoresis with confocal fluorescence rotary scanner.

    PubMed

    Wang, Jun; Sun, Guangming; Bai, Jiling; Wang, Li

    2003-12-01

    A capillary array electrophoresis system with a rotary confocal fluorescence scanner is reported. A high speed direct current rotary motor, combined with a rotary encoder and a reflection mirror, has been designed to direct the excitation laser beam precisely to a round array of capillaries which are symmetrically distributed around the motor. The rotary encoder is introduced to accurately orientate the position of each capillary and its output signal triggers the data acquisition system to record the fluorescence signal corresponding to each capillary. Separation of enantiomers of glutamic acid, methionine and tryptophan with different additives are demonstrated by this system. The experimental results indicate that this setup can be used to optimize separation methods for capillary electrophoresis as quickly as possible.

  14. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  15. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  16. Planetary In Situ Capillary Electrophoresis System (PISCES)

    NASA Astrophysics Data System (ADS)

    Willis, P. A.; Stockton, A. M.; Mora, M. F.; Cable, M. L.; Bramall, N. E.; Jensen, E. C.; Jiao, H.; Lynch, E.; Mathies, R. A.

    2012-10-01

    We propose to develop PISCES, a 3-kg, 2W, flight-capable microfluidic lab-on-a-chip capillary electrophoresis analyzer capable of ingesting solid, liquid, or gas samples and performing a suite of chemical analyses with parts per trillion sensitivity.

  17. Determination of fumaric and maleic acids with stacking analytes by transient moving chemical reaction boundary method in capillary electrophoresis.

    PubMed

    He, Jian-Feng; Yang, Wei-Ying; Yao, Fu-Jun; Zhao, Hong; Li, Xiang-Jun; Yuan, Zhuo-Bin

    2011-06-17

    The paper presents an on-line transient moving chemical reaction boundary (MCRB) method for simply but efficiently stacking analytes in capillary electrophoresis (CE). The CE technique was developed for a rapid determination of fumaric and maleic acid. Based on the theory of MCRB, Effects of several important factors such as the pH and concentration of running buffer and the conditions of stacking analytes were investigated to acquire the optimum conditions. The optimized separations were carried out in a 20 mmol/L sulphate neutralized with ethylenediamine to pH 6.0 electrolytes using a capillary coated with poly (diallyldimethylammonium chloride) and direct UV detection at 214 nm. The optimized preconcentrations were carried out in 50 mmol/L borax (pH 9.0). The calibration curves were linear in the concentration range of 1.0×10⁻⁷-1.0×10⁻⁴ mol/L and 5.0×10⁻⁷-1.0×10⁻⁴ mol/L for fumaric and maleic acid with correlation coefficients higher than 0.9991. The detection limits were 5.34×10⁻⁸ mol/L for fumaric acid and 1.92×10⁻⁷ mol/L for maleic acid. This method was applied for determination of fumaric acid in apple juice and of fumaric and maleic acid in dl-malic, the recovery tests established for real samples were within the range 95-105%. This work provided a valid and simple approach to detect fumaric and maleic acid. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Capillary electrophoresis with UV detection and mass spectrometry in method development for profiling metabolites of steroid hormone metabolism.

    PubMed

    Sirén, Heli; Seppänen-Laakso, Tuulikki; Oresic, Matej

    2008-08-15

    The aim of this study was to develop a method for comprehensive profiling of metabolites involved in mammalian steroid metabolism. The study was performed using the partial filling micellar electrokinetic chromatography (PF-MEKC) technique for determination of endogenous low-hydrophilic steroids. The detection techniques in capillary electrophoresis were UV absorption and electrospray mass spectrometry (ESI-MS). Thirteen steroids were included in the method development, and the selected were metabolites involved in major pathways of steroid biosynthesis. Although only eight of them could be separated and detected with UV, they could be identified by ESI-MS using selected ion monitoring (SIM) technique. Tandem MS spectra were also collected. UV detection was more sensitive than MS due to better separation of compounds and the selective signal sensitivity. The lowest limits of detection were 10-100 ng/mL for cortisone, corticosterone, hydrocortisone and testosterone. The other steroids could be detected at 500-1000 ng/mL. The identification of cortisone, corticosterone, hydrocortisone, estrogen and testosterone were made in patient urine samples and their concentrations were 1-40 microg/L.

  19. Factorial design applied to a non-aqueous capillary electrophoresis method for the separation of beta-agonists.

    PubMed

    Anurukvorakun, Oraphan; Suntornsuk, Worapot; Suntornsuk, Leena

    2006-11-17

    The aim of this work was to study the effects of both chemical and instrumental parameters on the separation of beta-agonists (clenbuterol (CLE), salbutamol (SAL) and terbutaline (TER)) by non-aqueous capillary electrophoresis (NACE) method. Due to the number of parameters involved and their interactions, factorial experimental designs (EDs) at two levels was applied to investigate the influence of experimental factors (ionic strength of the background electrolyte (BGE), organic solvent, injection time, voltage and temperature) in sets of several CE responses (resolution, (RS), number of theoretical plate (N), tailing factor (TF) and migration time (tm)). As a compromise between the four responses, the optimum condition was obtained in 18 mM ammonium acetate in methanol (MeOH):acetonitrile (ACN):glacial acetic acid (66:33:1%, v/v/v) using an injection time of 4 s, the voltage and the temperature of 28 kV and 24 degrees C, respectively. The proposed NACE permitted the baseline separation of the three beta-agonists within 10.5 min with good repeatability (%RSD < 3.5%) and linearity (r2 > 0.99). The developed method was applicable for the analysis of the beta-agonists in syrup and tablets and the NACE condition was compatible with a mass spectrometer detector.

  20. Development and validation of a capillary electrophoresis method for the determination of codeine, diphenhydramine, ephedrine and noscapine in pharmaceuticals.

    PubMed

    Gomez, María R; Sombra, Lorena; Olsina, Roberto A; Martínez, Luis D; Silva, María F

    2005-01-01

    The present work describes a simple, accurate and rapid method for the separation and simultaneous determination of codeine, diphenhydramine, ephedrine and noscapine present in cough-cold syrup formulations by capillary zone electrophoresis. Factors affecting the separation were the buffer pH and concentration, applied voltage, and presence of additives. Separations were carried out in less than 10 min with a 20 mM sodium tetraborate buffer, pH 8.50. The carrier electrolyte gave baseline separation with good resolution, great reproducibility and accuracy. Calibration plots were linear over at least three orders of magnitude of analyte concentrations, the lower limits of detection being within the range 0.42-1.33 microg ml(-1). Detection was performed by UV absorbance at wavelengths of 205 and 250 nm. Quantification of the components in actual syrup formulations was calculated against the responses of freshly prepared external standard solutions. The method was validated and met all analysis requirements of quality assurance and quality control. The procedure was fast and reliable and commercial pharmaceuticals could be analyzed without prior sample clean-up procedure.

  1. Measurement of electroosmotic flow in capillary and microchip electrophoresis.

    PubMed

    Wang, Wei; Zhou, Fang; Zhao, Liang; Zhang, Jian-Rong; Zhu, Jun-Jie

    2007-11-02

    Microfluidics is the science and technology of systems that process or manipulate small amounts of fluids, using channels with dimensions of tens of micrometers. Electroosmotic flow (EOF) is an important characteristic of fluids in microchannels. In this paper, EOF generation, effects on separation and definition of EOF are introduced. And EOF measurement methods on capillary electrophoresis (CE) and microchip CE are systematically reviewed based on detection principle, hallmarks of EOF measurement methods are presented, the devices and signals are also schematically described. This paper offers researchers a guidance to obtain an estimate of EOF mobility in capillary and microchip electrophoresis.

  2. A highly sensitive capillary electrophoresis method using p-nitrophenyl 5'-thymidine monophosphate as a substrate for the monitoring of nucleotide pyrophosphatase/phosphodiesterase activities.

    PubMed

    Lee, Sang-Yong; Lévesque, Sébastien A; Sévigny, Jean; Müller, Christa E

    2012-12-12

    A highly sensitive capillary electrophoresis method has been developed to monitor the activity of nucleotide pyrophosphatases/phosphodiesterases (NPPs) and screen for NPP inhibitors. In this method, p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP) was used as an artificial substrate, and separation of reaction products was performed on a dynamically coated capillary. We found that the optimal capillary electrophoresis (CE) conditions were as follows: fused-silica capillary (20cm effective length×75.5μm (id)), electrokinetic injection for 60s, 70mM phosphate buffer containing polybrene 0.002%, pH 9.2, constant current of -80μA, constant capillary temperature of 15°C and detection at 400nm. To allow precise quantification, 2-methyl-4,6-dinitrophenol (dinitrocresol) was applied as an internal standard. The limit of detection (LOD) and the limit of quantification (LOQ) were 137 and 415nM, respectively. This new method was shown to be over 8-fold more sensitive than the conventional spectrophotometric assays and 16-fold more than the previously reported CE procedure, and the results (K(m) values for NPP1 and NPP3, K(i) values for standard inhibitors) obtained were in accordance with previous literature data. Therefore, this new method is an improvement of actual techniques and could be used as a quick and standard analytical technique for the identification and characterization of NPP inhibitors.

  3. A method for high-throughput, sensitive analysis of IgG Fc and Fab glycosylation by capillary electrophoresis.

    PubMed

    Mahan, Alison E; Tedesco, Jacquelynne; Dionne, Kendall; Baruah, Kavitha; Cheng, Hao D; De Jager, Philip L; Barouch, Dan H; Suscovich, Todd; Ackerman, Margaret; Crispin, Max; Alter, Galit

    2015-02-01

    The N-glycan of the IgG constant region (Fc) plays a central role in tuning and directing multiple antibody functions in vivo, including antibody-dependent cellular cytotoxicity, complement deposition, and the regulation of inflammation, among others. However, traditional methods of N-glycan analysis, including HPLC and mass spectrometry, are technically challenging and ill suited to handle the large numbers of low concentration samples analyzed in clinical or animal studies of the N-glycosylation of polyclonal IgG. Here we describe a capillary electrophoresis-based technique to analyze plasma-derived polyclonal IgG-glycosylation quickly and accurately in a cost-effective, sensitive manner that is well suited for high-throughput analyses. Additionally, because a significant fraction of polyclonal IgG is glycosylated on both Fc and Fab domains, we developed an approach to separate and analyze domain-specific glycosylation in polyclonal human, rhesus and mouse IgGs. Overall, this protocol allows for the rapid, accurate, and sensitive analysis of Fc-specific IgG glycosylation, which is critical for population-level studies of how antibody glycosylation may vary in response to vaccination or infection, and across disease states ranging from autoimmunity to cancer in both clinical and animal studies.

  4. A Simple Method of VNTR D1S80 Locus Allelic Ladder Construction for Capillary Electrophoresis-based Genotyping.

    PubMed

    Jung, Ju Yeon; Kim, Su-Ji; Oh, Yu-Li; Lim, Si-Keun; Lee, Yang Han; Hwang, Jung Ho

    2017-07-10

    VNTR D1S80 locus genotyping has been largely replaced in forensics by STR. As the statute of limitations on murder cases was abolished in the Republic of Korea in July 2015, the demand for re-analysis of DNA from unresolved murder cases has increased. The National Forensic Service includes several recorded D1S80 genotypes as crucial clues. Here, we re-established the D1S80 analysis system using capillary electrophoresis and confirmed the reproducibility of the system by comparison with the genotypes of eight DNA samples that had been analyzed using PAGE in 2006. In addition, we created an allelic ladder via new methodology using flanking region sequences. A single DNA sample (K562) and seven primers were used for the new ladder, which contains 12 alleles. Although artificial owing to the use of the flanking region rather than repeat unit reduction, the method is rapid and simple, and could be applicable in any laboratory. © 2017 American Academy of Forensic Sciences.

  5. Establishment and validation of a microfluidic capillary gel electrophoresis platform method for purity analysis of therapeutic monoclonal antibodies.

    PubMed

    Smith, Michael T; Zhang, Shu; Adams, Troy; DiPaolo, Byron; Dally, Jennifer

    2017-05-01

    Capillary and microfluidic chip electrophoresis technologies are heavily utilized for development, characterization, release, and stability testing of biopharmaceuticals. Within the biopharmaceutical industry, CE-SDS and M-CGE are commonly used for purity determination by separation and quantitation of size-based variants. M-CGE is used primarily as an R&D tool for product and process development, while cGMP release and stability testing applications are commonly reserved for CE-SDS. This paper describes the establishment of an M-CGE platform method to be used for R&D and cGMP applications, including release and stability testing, for monoclonal antibodies. The M-CGE platform method enables testing for product development support and cGMP release and stability using the same method, and utilization of one CE technology for the entire lifecycle of a biopharmaceutical product. Critical method parameters were identified, and the analytical design space of those critical parameters was defined using design of experiments (DOE) studies. Once defined through DOE studies, the method design space was validated according to ICH Q2 (R1) guidelines. Additional molecules of the same validated class were verified for use in the method by experimental confirmation of accuracy, specificity, and stability indicating capabilities. The platform method model facilitates rapid utilization of the method in development and GMP testing environments, and eliminates the need for individual validations for assets of the same class entering early stage development. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Monitoring nitrotyrosinylation of a synthetic peptide by capillary zone electrophoresis.

    PubMed

    Bakhøj, A; Heegaard, N H

    1999-09-01

    Proteins may be nitrated on tyrosyl residues (nitrotyrosinylated) by the action of reactive nitrogen species in inflamed tissues. Capillary electrophoresis was used to monitor this reaction in a model system with tetranitromethane as the nitrotyrosinylating reagent and a synthetic pentapeptide containing one tyrosine as the target molecule. The reaction was readily followed by capillary electrophoresis performed at pH 8 and, using an absorption wavelength of 436 nm, the signature spectral characteristics of the nitrotyrosinylated peptide were verified on-line. The peak appearance time for the nitrotyrosinylated peptide was more than 1 min longer than that of the starting material and a single main product was observed in contrast to the case when peroxynitrite was used as the nitrotyrosinylating reagent. Capillary electrophoresis appears to be a convenient method for the optimization of nitrotyrosinylation, examination of reaction inhibitors, and for studies of the consequences of nitrotyrosinylation, e.g., for antibody binding and for the function of the target protein or peptide.

  7. Optimization and validation of a rapid method to determine citrate and inorganic phosphate in milk by capillary electrophoresis.

    PubMed

    Izco, J M; Tormo, M; Harris, A; Tong, P S; Jimenez-Flores, R

    2003-01-01

    Quantification of phosphate and citrate compounds is very important because their distribution between soluble and colloidal phases of milk and their interactions with milk proteins influence the stability and some functional properties of dairy products. The aim of this work was to optimize and validate a capillary electrophoresis method for the rapid determination of these compounds in milk. Various parameters affecting analysis have been optimized, including type, composition, and pH of the electrolyte, and sample extraction. Ethanol, acetonitrile, sulfuric acid, water at 50 degrees C or at room temperature were tested as sample buffers (SB). Water at room temperature yielded the best overall results and was chosen for further validation. The extraction time was checked and could be shortened to less than 1 min. Also, sample preparation was simplified to pipet 12 microl of milk into 1 ml of water containing 20 ppm of tartaric acid as an internal standard. The linearity of the method was excellent (R2 > 0.999) with CV values of response factors <3%. The detection limits for phosphate and citrate were 5.1 and 2.4 nM, respectively. The accuracy of the method was calculated for each compound (103.2 and 100.3%). In addition, citrate and phosphate content of several commercial milk samples were analyzed by this method, and the results deviated less than 5% from values obtained when analyzing the samples by official methods. To study the versatility of the technique, other dairy productssuch as cream cheese, yogurt, or Cheddar cheese were analyzed and accuracy was similar to milk in all products tested. The procedure is rapid and offers a very fast and simple sample preparation. Once the sample has arrived at the laboratory, less than 5 min (including handling, preparation, running, integration, and quantification) are necessary to determine the concentration of citric acid and inorganic phosphate. Because of the speed and accuracy of this method, it is promising as an

  8. Micro-injector for capillary electrophoresis.

    PubMed

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C

    2015-08-01

    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 μm diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 μM) and linear ranges (between about 10 and 1000 μM). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core.

  9. Rapid detection of bacteria in urine samples by the "three-plug-injection" method using capillary electrophoresis.

    PubMed

    Song, Lin; Li, Wanchen; Li, Guoxia; Wei, Dianjun; Ge, Peng; Li, Guizhen; Zheng, Fang; Sun, Xuguo

    2013-09-15

    This study explored a method that can rapidly detect bacteria in urine samples for the auxiliary determination of urinary tract infections (UTIs). Urine samples from patients with UTIs (230 cases) were obtained using aseptic technique. The urine biochemical assay was then carried out using an automated urine analyzer for all the urine samples. Bacterial species were identified by a combination of bacterial culture technique, morphological observation and the BACT-IST microbial identification/susceptibility analysis system. The most common seven species of bacteria in the study included Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter cloacae, Enterococcus faecalis, Staphylococcus aureus and Staphylococcus epidermidis. Bacterial samples were suspended in sample buffer solutions and separated by the "three-plug-injection" method using capillary electrophoresis (CE). Each species of bacteria appeared as a bacterial peak. The mixture of the seven species also provided only one peak. Further analysis showed that the concentration limit for the "three-plug-injection" method is 10(6) colony forming units (CFU)/mL, and there is a good linear relationship between the peak height and bacterial concentration (R(2)=0.99). The effect of urine composition on CE results was also investigated. The results showed that urine composition, i.e., proteins, white blood cells (WBCs) and red blood cells (RBCs), affected the peak retention time but could not affect the separation of bacteria. The results demonstrated that the bacteria in urine samples can be detected within 10min by the "three-plug-injection" method using CE. The "three-plug-injection" method is therefore suitable for the rapid detection of organisms in clinical urine samples from UTIs.

  10. Electrokinetic Flow and Dispersion in Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Ghosal, Sandip

    2006-01-01

    Electrophoretic separation of a mixture of chemical species is a fundamental technique of great usefulness in biology, health care, and forensics. In capillary electrophoresis (which has evolved from its predecessor, slab-gel electrophoresis), the sample migrates through a single microcapillary instead of through the network of pores in a gel. A fundamental design problem is to minimize dispersion in the separation direction. Molecular diffusion is inevitable and sets a theoretical limit on the best separation that can be achieved. But in practice, there are a number of effects arising out of the interplay between fluid flow, chemistry, thermal effects, and electric fields that result in enhanced dispersion. This paper reviews the subject of fluid flow in such capillary microchannels and examines the various causes of enhanced dispersion that limit the efficiency of separation.

  11. Capillary zone electrophoresis-mass spectrometer interface

    DOEpatents

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  12. Capillary zone electrophoresis-mass spectrometer interface

    DOEpatents

    D'Silva, Arthur

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.

  13. Analytical instrument qualification in capillary electrophoresis.

    PubMed

    Cianciulli, Claudia; Wätzig, Hermann

    2012-06-01

    Capillary electrophoresis (CE) is a well-established and frequently used technique in the pharmaceutical industry. Therefore an appropriate analytical instrument qualification (AIQ) is required for quality assurance. AIQ forms the basis of a quality management followed by analytical method validation, system suitability tests (SSTs) and quality control checks. Two parts of the AIQ, namely the operational qualification (OQ) and the performance qualification (PQ) are of particular interest in the daily routine of the laboratory. A new concept for OQ and PQ was developed to assure the correct function of a CE system. The significance of each parameter, possible test methods as well as acceptance criteria will be presented and discussed in detail. Especially temperature adjustment by the cooling system and the voltage supply must be tested for accurate and precise operation. The detector noise, wavelength accuracy and detector linearity have to be checked as well. Finally, the injection linearity, accuracy and precision need to be qualified. The proposed set of qualification procedures is easy to implement and was already tested on five CE instruments from three different manufacturers. A time- and cost-saving continuous PQ was derived, using results from method-specific SSTs and some additional experiments. This holistic concept continuously surveys the most relevant parameters, hence assuring the suitability of the used instruments and decreasing their downtimes.

  14. Capillary electrophoresis for meat species differentiation.

    PubMed

    Cota-Rivas, M; Vallejo-Cordoba, B V

    1997-01-01

    A sodium dodecyl sulfate (SDS) polymer-filled capillary gel electrophoresis (CE-SDS) method was developed and optimized for the determination of meat proteins for species differentiation. Sarcoplasmic proteins were extracted with cold bidistilled deionized water and myofibrillar proteins with 0.6 M NaCl/0.01 M phosphate buffer with 0.5% polyphosphates at pH 6 from raw beef, turkey, and pork muscles. Samples were prepared for CE-SDS and the experimental conditions, including sample size, applied voltage, reducing agent, and its concentration, were obtained after a univariate optimization process. Separation of the sarcoplasmic and myofibrillar meat proteins was achieved with the optimized conditions of the CE-SDS method developed. The coefficient of variation was less than 1.15% in migration time for all peaks and less than 8.5% in area percentage. The CE-SDS sarcoplasmic protein profiles that resulted were specific for each species both qualitatively and quantitatively and could be employed for differentiation and identification purposes. This CE-SDS method can be used by regulatory agencies for rapid analysis of meat proteins to identify meat species. Automation, fast separation, and on-line data analysis are major advantages of this technique.

  15. Recent applications of nanomaterials in capillary electrophoresis.

    PubMed

    González-Curbelo, Miguel Ángel; Varela-Martínez, Diana Angélica; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier

    2017-10-01

    Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal-organic frameworks, magnetic and non-magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010-2017). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Development of a capillary electrophoresis method for the characterization of "palo azul" (Eysenhardtia polystachya).

    PubMed

    Salinas-Hernández, Pastora; López-Bermúdez, Francisco J; Rodríguez-Barrientos, Damaris; Ramírez-Silva, María Teresa; Romero-Romo, Mario A; Morales-Anzures, Fernando; Rojas-Hernández, Alberto

    2008-03-01

    The tree Eysenhardtia polystachya (Ortega) Sarg. has quite a wide popular use within the traditional Mexican medicine as herbal remedy. Popular practices constitute a relevant enough basis to design optimum analytical methods in order to determine basic principles of diverse medicinal plants. This has become one of the essentials needed to characterize such products, for which it is fundamentally important to develop an efficient and reliable separation method. This work presents the results concerning the development and optimization of a novel CE method for the separation of components from water/etanol (1:1) extracts of E. polystachya, using the following conditions, considered the best obtained: phosphate buffer 10 mM, 20 kV voltage, and pH 8.1 at 214 nm and 50 mM, 12.5 kV voltage with pH 8.1 at 426 nm. The optimization takes into account the parameters associated in the resulting electropherograms, such as number of peaks, migration times, and the Deltat(m) of the neighboring peaks. Under optimal conditions the separation intended was attained within 15 and 20 min for 214 and 426 nm, respectively. The characterization method developed was applied to the analysis of diverse extracts of E. polystachya.

  17. An automated method of on-line extraction coupled with flow injection and capillary electrophoresis for phytochemical analysis.

    PubMed

    Chen, Hongli; Ding, Xiuping; Wang, Min; Chen, Xingguo

    2010-11-01

    In this study, an automated system for phytochemical analysis was successfully fabricated for the first time in our laboratory. The system included on-line decocting, filtering, cooling, sample introducing, separation, and detection, which greatly simplified the sample preparation and shortened the analysis time. Samples from the decoction extract were drawn every 5 min through an on-line filter and a condenser pipe to the sample loop from which 20-μL samples were injected into the running buffer and transported into a split-flow interface coupling the flow injection and capillary electrophoresis systems. The separation of glycyrrhetinic acid (GTA) and glycyrrhizic acid (GA) took less than 5 min by using a 10 mM borate buffer (adjusted pH to 8.8) and +10 kV voltage. Calibration curves showed good linearity with correlation coefficients (R) more than 0.9991. The intra-day repeatabilities (n = 5, expressed as relative standard deviation) of the proposed system, obtained using GTA and GA standards, were 1.1% and 0.8% for migration time and 0.7% and 0.9% for peak area, respectively. The mean recoveries of GTA and GA in the off-line extract of Glycyrrhiza uralensis Fisch root were better than 99.0%. The limits of detection (signal-to-noise ratio = 3) of the proposed method were 6.2 μg/mL and 6.9 μg/mL for GTA and GA, respectively. The dynamic changes of GTA and GA on the decoction time were obtained during the on-line decoction process of Glycyrrhiza uralensis Fisch root.

  18. Comparison of three methods for analyzing loureirin B and human serum albumin interaction using capillary electrophoresis.

    PubMed

    Zhang, Yuelin; Sha, Yijie; Qian, Kai; Chen, Xu; Chen, Qin

    2017-04-01

    Loureirin B (LB), a bioactive drug, is widely used in the treatment of biological diseases. However, due to its poor solution in water, it is important to find the approach which helps LB to specific biological targets. As the most abundant protein in plasma, HSA plays the role of a carrier of numerous drug ligand. Thus, the interaction between LB and HSA was explored by ACE, CE frontal analysis, and pressure-mediated ACE under simulated physiological conditions (pH 7.4). The binding constants were calculated as 13.14 × 10(4) L/mol, 7.00 × 10(4) L/mol, and 2.78 × 10(4) L/mol for each method, respectively. At the same time, the binding site number (n = 1.429) could be only calculated by the CE frontal analysis method. Furthermore, good experimental repeatability was obtained by pressure-mediated ACE with RSDs for retention times and peak areas within 2.149 and 1.228, respectively.

  19. Capillary electrophoresis for screening of adenylosuccinate lyase deficiency.

    PubMed

    Gross, M; Gathof, B S; Kölle, P; Gresser, U

    1995-10-01

    We report a new screening method for adenylosuccinate lyase (ASase) deficiency using capillary electrophoresis (CE). This enzyme defect causes secondary autism and psychomotor retardation in early childhood. In all body fluids of these patients, two succinylpurine metabolites can be found that are normally not detectable: succinyladenosine and succinylaminoimidazole carboxamide (SAICA) riboside. A Beckman P/ACE 2050 capillary electrophoresis system was used with a 47.1 cm capillary, 75 microns ID, and the P/ACE Beckman UV absorbance detector. Untreated urine, injected for 1 s, was separated in a pH 8.63 borate buffer at 20 kV. The two succinylpurines (migration times 13.36 and 13.60 min) were detected at 254 nm only in urine of patients with ASase deficiency but not in control samples.

  20. Analytical potential of enzyme-coated capillary reactors in capillary zone electrophoresis.

    PubMed

    Simonet, Bartolomé M; Ríos, Angel; Valcárcel, Miguel

    2004-01-01

    Enzymes immobilized on the inner surface of an electrophoretic capillary were used to increase sensitivity and resolution in capillary zone electrophoresis (CZE). Sensitivity is enhanced by inserting a piece of capillary containing the immobilized enzyme into the main capillary, located before the detector, in order to transform the analyte into a product with a higher absorptivity. This approach was used to determine ethanol. In order to improve resolution, capillary pieces containing immobilized enzymes were inserted at various strategic positions along the electrophoretic capillary. On reaching the enzyme, the analyte was converted into a product with a high electrophoretic mobility, the migration time for which was a function of the position of the enzyme reactor. This approach was applied to the separation and determination of acetaldehyde and pyruvate. Finally, the proposed method was validated with the determination of ethanol, acetaldehyde, and pyruvate in beer and wine samples.

  1. Van de Graaff generator for capillary electrophoresis.

    PubMed

    Lee, Seung Jae; Castro, Eric R; Guijt, Rosanne M; Tarn, Mark D; Manz, Andreas

    2017-09-29

    A new approach for high voltage capillary electrophoresis (CE) is proposed, which replaces the standard high voltage power supply with a Van de Graaff generator, a low current power source. Because the Van de Graaff generator is a current-limited source (10μA), potentials exceeding 100kV can be generated for CE when the electrical resistance of the capillary is maximized. This was achieved by decreasing the capillary diameter and reducing the buffer ionic strength. Using 2mM borate buffer and a 5μm i.d. capillary, fluorescently labeled amino acids were separated with efficiencies up to 3.5 million plates; a 5.7 fold improvement in separation efficiency compared to a normal power supply (NPS) typically used in CE. This separation efficiency was realized using a simple set-up without significant Joule heating, making the Van de Graaff generator a promising alternative for applying the high potentials required for enhancing resolution in the separation and analysis of highly complex samples, for example mixtures of glycans. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Characterization of galactomannans by capillary electrophoresis.

    PubMed

    Flurer, C L

    2000-09-01

    Capillary electrophoresis (CE) was utilized in the characterization of various galactomannans. Standards of gums were extracted with 50% CH3CN to remove the residual proteins from the gum matrix. Separation buffers were optimized with respect to pH, buffer concentration and presence of sodium dodecyl sulphate, yielding protein profiles from which the desired information could be obtained. Examples are given of the profiles generated by various gums and gum blends to aid in the verification of component presence, and to demonstrate levels of adulteration detectable under the buffer conditions used.

  3. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    DOEpatents

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  4. Pressure-assisted electrokinetic injection for on-line enrichment in capillary electrophoresis-mass spectrometry: a sensitive method for measurement of ten haloacetic acids in drinking water.

    PubMed

    Zhang, Huijuan; Zhu, Jiping; Aranda-Rodriguez, Rocio; Feng, Yong-Lai

    2011-11-07

    Haloacetic acids (HAAs) are by-products of the chlorination of drinking water containing natural organic matter and bromide. A simple and sensitive method has been developed for determination of ten HAAs in drinking water. The pressure-assisted electrokinetic injection (PAEKI), an on-line enrichment technique, was employed to introduce the sample into a capillary electrophoresis (CE)-electrospray ionization-tandem mass spectrometry system (ESI-MS/MS). HAAs were monitored in selected reaction monitoring mode. With 3 min of PAEKI time, the ten major HAAs (HAA10) in drinking water were enriched up to 20,000-fold into the capillary without compromising resolution. A simple solid phase clean-up method has been developed to eliminate the influence of ionic matrices from drinking water on PAEKI. Under conditions optimized for mass spectrometry, PAEKI and capillary electrophoresis, detection limits defined as three times ratio of signal to noise have been achieved in a range of 0.013-0.12 μg L(-1) for ten HAAs in water sample. The overall recoveries for all ten HAAs in drinking water samples were between 76 and 125%. Six HAAs including monochloro- (MCAA), dichloro- (DCAA), trichloro- (TCAA), monobromo- (MBAA), bromochloro- (BCAA), and bromodichloroacetic acids (BDCAA) were found in tap water samples collected. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  5. Capillary Electrophoresis coupled with Automated Fraction Collection

    PubMed Central

    Huge, Bonnie Jaskowski; Flaherty, Ryan; Dada, Oluwatosin O.; Dovichi, Norman J.

    2014-01-01

    A fraction collector based on a drop-on-demand ink-jet printer was developed to interface capillary zone electrophoresis with a 96 well microtiter plate. We first evaluated the performance of the collector by using capillary zone electrophoresis to analyze a 1 mM solution of tetramethylrhodamine; a fluorescent microtiter plate reader was then used to detect the analyte and characterize fraction carryover between wells. Relative standard deviation in peak height was 20% and the relative standard deviation in migration time was 1%. The mean and standard deviation of the tetramethylrhodamine peak width was 5 ± 1 s and likely limited by the 4-s period between droplet deposition. We next injected a complex mixture of DNA fragments and used real-time PCR to quantify the product in a CE-SELEX experiment. The reconstructed electrophoretic peak was 27 s in duration. Finally, we repeated the experiment in the presence of a 30-μM thrombin solution under CE-SELEX conditions; fractions were collected and next-generation sequencing was used to characterize the DNA binders. Over 25,000 sequences were identified with close matches to known thrombin binding aptamers. PMID:25159411

  6. Capillary electrophoresis coupled with automated fraction collection.

    PubMed

    Huge, Bonnie Jaskowski; Flaherty, Ryan J; Dada, Oluwatosin O; Dovichi, Norman J

    2014-12-01

    A fraction collector based on a drop-on-demand ink-jet printer was developed to interface capillary zone electrophoresis with a 96 well microtiter plate. We first evaluated the performance of the collector by using capillary zone electrophoresis to analyze a 1mM solution of tetramethylrhodamine; a fluorescent microtiter plate reader was then used to detect the analyte and characterize fraction carryover between wells. Relative standard deviation in peak height was 20% and the relative standard deviation in migration time was 1%. The mean and standard deviation of the tetramethylrhodamine peak width was 5 ± 1 s and likely limited by the 4-s period between droplet deposition. We next injected a complex mixture of DNA fragments and used real-time PCR to quantify the product in a CE-SELEX experiment. The reconstructed electrophoretic peak was 27 s in duration. Finally, we repeated the experiment in the presence of a 30-µM thrombin solution under CE-SELEX conditions; fractions were collected and next-generation sequencing was used to characterize the DNA binders. Over 25,000 sequences were identified with close matches to known thrombin binding aptamers. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Enantiomer migration order in chiral capillary electrophoresis.

    PubMed

    Chankvetadze, Bezhan

    2002-11-01

    Enantiomer migration order (EMO) in chiral capillary electrophoresis (CE) represents a challenging issue, referred to in less than 20% of the articles on CE enantioseparations. This review article will (i) illustrate the actuality of the topic, (ii) discuss some technical problems related to EMO in CE enantioseparations, (iii) examine the principal differences between CE and other separation techniques from the viewpoint of enantiomer elution order, (iv) demonstrate the potential for a designed reversal of EMO in CE, and (v) emphasize the importance of studying EMO for better understanding of chiral CE as well as its more effective application. Along with CE, the results obtained by other instrumental techniques such as nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), X-ray crystallography, as well as molecular modeling calculations will be shortly discussed. Rather than referring to all published examples of the opposite migration order of enantiomers in CE, the emphasis will be on general aspects. Recently, the reversal of the EMO was described in detail in a book chapter (Chankvetadze, B., Capillary Electrophoresis in Chiral Analysis, Wiley & Sons, Chichester, UK 1997, Chapter 12) as well as in three review articles.

  8. Gene analysis of multiple oral bacteria by the polymerase chain reaction coupled with capillary polymer electrophoresis.

    PubMed

    Liu, Chenchen; Yamaguchi, Yoshinori; Sekine, Shinichi; Ni, Yi; Li, Zhenqing; Zhu, Xifang; Dou, Xiaoming

    2016-03-01

    Capillary polymer electrophoresis is identified as a promising technology for the analysis of DNA from bacteria, virus and cell samples. In this paper, we propose an innovative capillary polymer electrophoresis protocol for the quantification of polymerase chain reaction products. The internal standard method was modified and applied to capillary polymer electrophoresis. The precision of our modified internal standard protocol was evaluated by measuring the relative standard deviation of intermediate capillary polymer electrophoresis experiments. Results showed that the relative standard deviation was reduced from 12.4-15.1 to 0.6-2.3%. Linear regression tests were also implemented to validate our protocol. The modified internal standard method showed good linearity and robust properties. Finally, the ease of our method was illustrated by analyzing a real clinical oral sample using a one-run capillary polymer electrophoresis experiment.

  9. Application of capillary nongel sieving electrophoresis for gene analysis.

    PubMed

    Shen, Y; Xu, Q; Han, F; Ding, K; Song, F; Fan, Y; Zhu, N; Wu, G; Lin, B

    1999-07-01

    Capillary electrophoresis (CE) has proved to be a strong tool for DNA analysis and has found abundant applications in the fields of restriction fragment sizing, mutation screening, polymerase chain reaction (PCR) product characterizing and forensic identifying. CE may be the main alternative to slab gel electrophoresis. Capillary nongel electrophoresis is the most favorable mode when aiming for this purpose because of its advantages of long lifetime, easy operation, good reproducibility, and low expense. In this paper, a new kind of sieving matrix, with mannitol as the additive for capillary electrophoresis, as well as related methods and their application for gene analysis were reported. Nine DNA fragments amplified by multiplex PCR from a normal dystrophin gene were well separated by this system. Three different deletions were found in Duchenne muscular dystrophy (DMD) patients. Three to four copies of the sex-determination region of the Y chromosome (SRY) gene, as well as the phenylalanine hydroxylase (PAH) gene, could be detected in mixed samples. The frequencies of short tandem repeats (STR) in PAH genes was analyzed in 61 normal Chinese individuals and 6 phenylketonuria families. One case of prenatal gene diagnosis was performed. By using this matrix, CE coupled with reverse transcription PCR (RT-PCR), the analysis of the alternative splicing expression pattern of the fragile X mental retardation 1 (FMR1) gene in adult lung tissue was achieved.

  10. Robust and High-Throughput Method for Anionic Metabolite Profiling: Preventing Polyimide Aminolysis and Capillary Breakages under Alkaline Conditions in Capillary Electrophoresis-Mass Spectrometry.

    PubMed

    Yamamoto, Mai; Ly, Ritchie; Gill, Biban; Zhu, Yujie; Moran-Mirabal, Jose; Britz-McKibbin, Philip

    2016-11-01

    Capillary electrophoresis-mass spectrometry (CE-MS) represents a high efficiency microscale separation platform for untargeted profiling of polar/ionic metabolites that is ideal for volume-restricted biological specimens with minimal sample workup. Despite these advantages, the long-term stability of CE-MS remains a major obstacle hampering its widespread application in metabolomics notably for routine analysis of anionic metabolites under negative ion mode conditions. Herein, we report for the first time that commonly used ammonia containing buffers compatible with electrospray ionization (ESI)-MS can compromise the integrity of fused-silica capillaries via aminolysis of their outer polyimide coating. Unlike organic solvent swelling effects, this chemical process occurs under aqueous conditions that is dependent on ammonia concentration, buffer pH, and exposure time resulting in a higher incidence of capillary fractures and current errors during extended operation. Prevention of polyimide aminolysis is achieved by using weakly alkaline ammonia containing buffers (pH < 9) in order to preserve the tensile strength of the polyimide coated fused-silica capillary. Alternatively, less nucleophilic primary/secondary amines can be used as electrolytes without polyimide degradation, whereas chemically resistant polytetrafluoroethylene coating materials offer higher pH tolerance in ammonia. In this work, multisegment injection (MSI)-CE-MS was used as multiplexed separation platform for high throughput profiling of anionic metabolites when using optimized buffer conditions to prevent polyimide degradation. A diverse range of acidic metabolites in human urine were reliably measured by MSI-CE-MS via serial injection of seven urine samples within a single run, including organic acids, food-specific markers, microbial-derived compounds and over-the-counter drugs as their sulfate and glucuronide conjugates. This approach offers excellent throughput (<5 min/sample) and acceptable

  11. Microfab-less Microfluidic Capillary Electrophoresis Devices

    PubMed Central

    Segato, Thiago P.; Bhakta, Samir A.; Gordon, Matthew; Carrilho, Emanuel; Willis, Peter A.; Jiao, Hong; Garcia, Carlos D.

    2013-01-01

    Compared to conventional bench-top instruments, microfluidic devices possess advantageous characteristics including great portability potential, reduced analysis time (minutes), and relatively inexpensive production, putting them on the forefront of modern analytical chemistry. Fabrication of these devices, however, often involves polymeric materials with less-than-ideal surface properties, specific instrumentation, and cumbersome fabrication procedures. In order to overcome such drawbacks, a new hybrid platform is proposed. The platform is centered on the use of 5 interconnecting microfluidic components that serve as the injector or reservoirs. These plastic units are interconnected using standard capillary tubing, enabling in-channel detection by a wide variety of standard techniques, including capacitively-coupled contactless conductivity detection (C4D). Due to the minimum impact on the separation efficiency, the plastic microfluidic components used for the experiments discussed herein were fabricated using an inexpensive engraving tool and standard Plexiglas. The presented approach (named 52-platform) offers a previously unseen versatility: enabling the assembly of the platform within minutes using capillary tubing that differs in length, diameter, or material. The advantages of the proposed design are demonstrated by performing the analysis of inorganic cations by capillary electrophoresis on soil samples from the Atacama Desert. PMID:23585815

  12. Microfab-less Microfluidic Capillary Electrophoresis Devices.

    PubMed

    Segato, Thiago P; Bhakta, Samir A; Gordon, Matthew; Carrilho, Emanuel; Willis, Peter A; Jiao, Hong; Garcia, Carlos D

    2013-04-07

    Compared to conventional bench-top instruments, microfluidic devices possess advantageous characteristics including great portability potential, reduced analysis time (minutes), and relatively inexpensive production, putting them on the forefront of modern analytical chemistry. Fabrication of these devices, however, often involves polymeric materials with less-than-ideal surface properties, specific instrumentation, and cumbersome fabrication procedures. In order to overcome such drawbacks, a new hybrid platform is proposed. The platform is centered on the use of 5 interconnecting microfluidic components that serve as the injector or reservoirs. These plastic units are interconnected using standard capillary tubing, enabling in-channel detection by a wide variety of standard techniques, including capacitively-coupled contactless conductivity detection (C(4)D). Due to the minimum impact on the separation efficiency, the plastic microfluidic components used for the experiments discussed herein were fabricated using an inexpensive engraving tool and standard Plexiglas. The presented approach (named 5(2)-platform) offers a previously unseen versatility: enabling the assembly of the platform within minutes using capillary tubing that differs in length, diameter, or material. The advantages of the proposed design are demonstrated by performing the analysis of inorganic cations by capillary electrophoresis on soil samples from the Atacama Desert.

  13. High speed and reproducible analysis of nitrosamines by capillary electrophoresis with a sulfonated capillary.

    PubMed

    Taga, Atsushi; Nishi, Tomoko; Honda, Yoshitaka; Sato, Atsushi; Terashima, Hiroyuki; Suzuki, Kentaro; Kodama, Shuji; Boki, Keito

    2007-01-01

    Recently environmental control is regarded as important for good human health conditions, and toxic substances, including carcinogens and endocrine disruptors should be eliminated from our living environment. Hence easy quantitative methods are expected for a high level of environmental control. Our previous paper describes an easy quantitative analysis of nitrosamines (NAs) by capillary electrophoresis with an untreated fused silica capillary installed in an ordinary apparatus. In this paper, utilizing a novel type capillary column having sulfonated inner wall was investigated for improvements of separation performance and reproducibility. A sulfonated capillary causes fast and stabile electroosmotic flow because its inner wall is strongly negative charged. On a performance comparison of a sulfonated capillary with an untreated fused silica, analysis time reduction of c.a. forty percent was achieved, and relative standard deviations of migration times and peak responses were less than one third. In addition sample concentrations giving detection and quantitation limits were also reduced to a half.

  14. Fast methods for analysis of neurotransmitters from single cell and monitoring their releases in central nervous system by capillary electrophoresis, fluorescence microscopy and luminescence imaging

    SciTech Connect

    Wang, Ziqiang

    1999-12-10

    Fast methods for separation and detection of important neurotransmitters and the releases in central nervous system (CNS) were developed. Enzyme based immunoassay combined with capillary electrophoresis was used to analyze the contents of amino acid neurotransmitters from single neuron cells. The release of amino acid neurotransmitters from neuron cultures was monitored by laser induced fluorescence imaging method. The release and signal transduction of adenosine triphosphate (ATP) in CNS was studied with sensitive luminescence imaging method. A new dual-enzyme on-column reaction method combined with capillary electrophoresis has been developed for determining the glutamate content in single cells. Detection was based on monitoring the laser-induced fluorescence of the reaction product NADH, and the measured fluorescence intensity was related to the concentration of glutamate in each cell. The detection limit of glutamate is down to 10-8 M level, which is 1 order of magnitude lower than the previously reported detection limit based on similar detection methods. The mass detection limit of a few attomoles is far superior to that of any other reports. Selectivity for glutamate is excellent over most of amino acids. The glutamate content in single human erythrocyte and baby rat brain neurons were determined with this method and results agreed well with literature values.

  15. High-throughput capillary electrophoresis frontal analysis method for the study of drug interactions with human serum albumin at near-physiological conditions.

    PubMed

    Martínez-Pla, Juan J; Martínez-Gómez, María A; Martín-Biosca, Yolanda; Sagrado, Salvador; Villanueva-Camañas, Rosa M; Medina-Hernández, Maria J

    2004-10-01

    The application of the short-end capillary injection to capillary electrophoresis frontal analysis (CE-FA) to study the interaction between basic, neutral and acid drugs towards human serum albumin (HSA) at near-physiological conditions is presented. The compounds selected display a wide range of binding affinities and the results obtained were in good agreement with those reported in the literature. An equation for the estimation of the number of primary binding sites and their corresponding affinity constants is developed isolating the experimentally measured variables in just one axis. The proposed CE-FA method to screen drug interactions with HSA under physiological conditions is simple, rapid and cost-effective what may facilitate its implementation in the drug discovery process.

  16. Method development and validation for the simultaneous determination of four coumarins in Saussurea superba by capillary zone electrophoresis.

    PubMed

    Chen, Juan; Chen, Li; Zhang, Hong-Li; Shi, Yan-Ping

    2010-01-01

    A capillary zone electrophoretic method has been developed for the determination of four coumarins--skimmin, scopolin, scopoletin, and umbelliferone-in Saussurea superba with UV detection at 254 nm. The capillary temperature was kept constant at 25 degrees C. Effects of buffer pH, electrolyte concentration, organic modifier, and applied voltage on migration behavior were studied systematically. The optimum conditions for separation were achieved by using 30 mM borate buffer at pH 9.02 containing 15% (v/v) methanol as the electrolyte and 25 kV as the applied voltage. For all analytes a good linear regression relationship (r > 0.999) was obtained between peak area and concentration over a relatively wide range. The method was validated for repeatability, precision, and accuracy. The validated method was successfully applied to the simultaneous determination of the four analytes in S. superba.

  17. Inkjet Printing Based Separation of Mammalian Cells by Capillary Electrophoresis.

    PubMed

    Zhang, Weifei; Li, Nan; Zeng, Hulie; Nakajima, Hizuru; Lin, Jin-Ming; Uchiyama, Katsumi

    2017-09-05

    This study describes a method to investigate the separation of cells by capillary electrophoresis (CE) coupled with inkjet printing system. The results validated the feasibility of inkjet printing for mammalian cells to achieve the drop-on-demand and convenient sampling into capillary then zone electrophoresis was applied to separate different cells according to their electrophoretic mobility, finally the peak signal were measured by UV detector. Linear relationship between the peak area and the droplet number was obtained within the range of 25-400 drops (R(2) = 0.996) at a fixed cell concentration 10(6)/mL, indicating that this system could be used for rapid and accurate quantification of cells.

  18. Capillary Electrophoresis of Mono- and Oligosaccharides.

    PubMed

    Toppazzini, Mila; Coslovi, Anna; Rossi, Marco; Flamigni, Anna; Baiutti, Edi; Campa, Cristiana

    2016-01-01

    This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.

  19. High resolution detection system of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Li Qiang; Shi, Yan; Zheng, Hua; Lu, Zu Kang

    2007-12-01

    The capillary electrophoresis (CE) with laser induced fluorescence detection (LIFD) system was founded according to confocal theory. The 3-D adjustment of the exciting and collecting optical paths was realized. The photomultiplier tube (PMT) is used and the signals are processed by a software designed by ourselves. Under computer control, high voltage is applied to appropriate reservoirs and to inject and separate DNA samples respectively. Two fluorescent dyes Thiazole Orange (TO) and SYBR Green I were contrasted. With both of the dyes, high signals-to-noise images were obtained with the CE-LIFD system. The single-bases can be distinguished from the electrophoretogram and high resolution of DNA sample separation was obtained.

  20. Dating silk by capillary electrophoresis mass spectrometry.

    PubMed

    Moini, Mehdi; Klauenberg, Kathryn; Ballard, Mary

    2011-10-01

    A new capillary electrophoresis mass spectrometry (CE-MS) technique is introduced for age estimation of silk textiles based on amino acid racemization rates. With an L to D conversion half-life of ~2500 years for silk (B. mori) aspartic acid, the technique is capable of dating silk textiles ranging in age from several decades to a few-thousand-years-old. Analysis required only ~100 μg or less of silk fiber. Except for a 2 h acid hydrolysis at 110 °C, no other sample preparation is required. The CE-MS analysis takes ~20 min, consumes only nanoliters of the amino acid mixture, and provides both amino acid composition profiles and D/L ratios for ~11 amino acids.

  1. Optimisation and validation of a capillary electrophoresis method for the simultaneous determination of diazepam and otilonium bromide.

    PubMed

    Furlanetto, S; Orlandini, S; Massolini, G; Faucci, M T; La Porta, E; Pinzauti, S

    2001-10-01

    A simultaneous assay of diazepam and otilonium bromide in coated tablets by capillary zone electrophoresis (CZE) was developed. The influence of various parameters (voltage, temperature, buffer concentration and pH, ethanol percentage) on analysis time and on the theoretical plates of the two peaks was investigated by means of experimental design. A response surface study was carried out by means of a 27-run D-optimal matrix. The best background electrolyte was found to be 0.13 M, pH 2.9 Britton-Robinson buffer, containing 10% v/v ethanol. Other optimised parameters were voltage (30 kV) and temperature (30 degrees C). The UV detector for quantitation of otilonium bromide and diazepam was set at 280 nm and 230 nm, respectively. Procaine hydrochloride was used as internal standard and run time was less than five minutes. Validation was performed, for drug substance and drug product, according to ICH3 guidelines. For drug product the recovery for otilonium bromide and diazepam ranged from 98.3% to 101.2% and from 97.1% to 99.0%, respectively; the RSD values found for otilonium bromide and diazepam ranged from 2.4% to 3.0% and from 1.1% to 4.5%, respectively.

  2. Attempt to run urinary protein electrophoresis using capillary technique.

    PubMed

    Falcone, Michele

    2014-10-01

    The study of urinary protein has a predominant place in the diagnosis of kidney disease. The most common technique is agarose gel electrophoresis (AGE). For several years, the technique of choice applied to the analysis of serum proteins has been CE, a system that uses capillary fused silica, subjected to high voltage to separate and measure serum proteins. The purpose of this paper was to perform capillary electrophoresis on urinary proteins which, at present, are not interpretable due to the many nonspecific peaks visible when using gel electrophoresis. In order to carry out our research, we used a capillary V8 analyzer together with an agarose gel system from the same company. AGE was taken as the reference method, for which urine was used without any pretreatment. For the V8 system, urine was subjected to purification on granular-activated carbon and then inserted into the V8 analyzer, selecting a program suitable for liquids with low protein content. We examined 19 urine samples collected over 24 hrs from both hospitalized and external patients with different types of proteinuria plus a serum diluted 1/61 considered as a control to recognize the bands. Both methods showed the same protein fractions and classified the proteinuria in a similar way.

  3. A microwave-assisted fluorescent labeling method for the separation and detection of amphetamine-like designer drugs by capillary electrophoresis.

    PubMed

    Chen, Kuan-Fu; Lee, Hsun; Liu, Ju-Tsung; Lee, Huan-An; Lin, Cheng-Huang

    2013-05-10

    A microwave-assisted fluorescence labeling method for use in CE-LIF (capillary electrophoresis-laser induced fluorescence) is described. Six amphetamine-like designer drugs, namely, o-, m-, p-chloro- and o-, m-, p-fluoro-amphetamine derivatives, were synthesized and used as model compounds. FITC (fluorescein isothiocyanate isomer I) and a blue-laser were used as the fluorescent labeling reagent and excitation source, respectively. When a microwave oven was used, the reaction was complete within ∼5 min, while the classical method required at least 20 h (usually, an overnight reaction). A mimic oral fluid sample was obtained by spiking oral fluid from a volunteer with the six standards, and after liquid-liquid extraction and microwave-derivatization, it was possible to process the analytes by CE-LIF within a period of ∼10 min; the wavelength of the blue-laser used was 473 nm. For comparison, data obtained using classical methods, including CZE-UV (capillary zone electrophoresis-UV absorbance detection), sweeping-MEKC-UV (micellar electrokinetic chromatography-UV absorbance detection) and LC-Q-TOFMS (liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry) are also reported. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Coaxial flow-gating interface for capillary electrophoresis.

    PubMed

    Opekar, František; Tůma, Petr

    2017-08-01

    A coaxial flow-gating interface is described in which the separation capillary passes through the sampling capillary. Continuous flow of the sample solution flowing out of the sampling capillary is directed away from the injection end of the separation capillary by counter-current flow of the gating solution. During the injection, the flow of the gating solution is interrupted, so that a plug of solution is formed at the inlet into the separation capillary, from which the sample is hydrodynamically injected. Flow-gating interfaces are originally designed for on-line connection of capillary electrophoresis with analytical flow-through methods. The basic properties of the described coaxial flow-gating interface were obtained in a simplified arrangement in which a syringe pump with sample solution has substituted analytical flow-through method. Under the optimized conditions, the properties of the tested interface were determined by separation of K(+) , Ba(2+) , Na(+) , Mg(2+) and Li(+) ions in aqueous solution at equimolar concentrations of 50 μM. The repeatability of the migration times and peak areas evaluated for K(+) , Ba(2+) and Li(+) ions and expressed as relative standard deviation did not exceed 1.4%. The interface was used to determine lithium in mineral water and taurine in an energy drink. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nicked-sleeve interface for two-dimensional capillary electrophoresis.

    PubMed

    Flaherty, Ryan J; Huge, Bonnie J; Bruce, Spencer M; Dada, Oluwatosin O; Dovichi, Norman J

    2013-07-07

    We report an improved interface for two-dimensional capillary electrophoresis. This interface is based on capillary tubing and a Plexiglas chip, both of which were milled using a micro-dicing saw. The interface was evaluated and compared to a traditional interface design for both pseudo one-dimensional and two-dimensional capillary electrophoresis. We observe less than 70% transfer efficiency for the traditional design and greater than 90% transfer efficiency with this new interface.

  6. Nicked-sleeve interface for two-dimensional capillary electrophoresis

    PubMed Central

    Flaherty, Ryan J.; Huge, Bonnie J.; Bruce, Spencer M.; Dada, Oluwatosin O.; Dovichi, Norman J.

    2013-01-01

    We report an improved interface for two-dimensional capillary electrophoresis. This interface is based on capillary tubing and a Plexiglas chip, both of which were milled using a micro-dicing saw. The interface was evaluated and compared to a traditional interface design for both pseudo one-dimensional and two-dimensional capillary electrophoresis. We observe less than 70% transfer efficiency for the traditional design and greater than 90% transfer efficiency with this new interface. PMID:23702824

  7. Quantitation of mRNA levels of steroid 5alpha-reductase isozymes: a novel method that combines quantitative RT-PCR and capillary electrophoresis.

    PubMed

    Torres, Jesús M; Ortega, Esperanza

    2004-01-01

    A novel, accurate, rapid and modestly labor-intensive method has been developed to quantitate specific mRNA species by reverse transcription-polymerase chain reaction (RT-PCR). This strategy combines the high degree of specificity of competitive PCR with the sensitivity of laser-induced fluorescence capillary electrophoresis (LIF-CE). The specific target mRNA and a mimic DNA fragment, used as an internal standard (IS), were co-amplified in a single reaction in which the same primers are used. The amount of mRNA was then quantitated by extrapolation from the standard curve generated with the internal standard. PCR primers were designed to amplify both a 185 bp fragment of the target cDNA for steroid 5alpha-reductase 1 (5alpha-R1) and a 192 bp fragment of the target cDNA for steroid 5alpha-reductase type 2 (5alpha-R2). The 5' forward primers were end-labeled with 6-carboxy-fluorescein (6-FAM). Two synthetic internal standard DNAs of 300 bp were synthesized from the sequence of plasmid pEGFP-C1. The ratio of fluorescence intensity between amplified products of the target cDNA (185 or 192 bp fragments) and the competitive DNA (300 bp fragment) was determined quantitatively after separation by capillary electrophoresis and fluorescence analysis. The accurate quantitation of low-abundance mRNAs by the present method allows low-level gene expression to be characterized.

  8. Validation of STR typing by capillary electrophoresis.

    PubMed

    Moretti, T R; Baumstark, A L; Defenbaugh, D A; Keys, K M; Brown, A L; Budowle, B

    2001-05-01

    With the use of capillary electrophoresis (CE), high-resolution electrophoretic separation of short tandem repeat (STR) loci can be achieved in a semiautomated fashion. Laser-induced detection of fluorescently labeled PCR products and multicolor analysis enable the rapid generation of multilocus DNA profiles. In this study, conditions for typing PCR-amplified STR loci by capillary electrophoresis were investigated using the ABI Prism 310 Genetic Analyzer (Applied Biosystems). An internal size standard was used with each run to effectively normalize mobility differences among injections. Alleles were designated by comparison to allelic ladders that were run with each sample set. Multiple runs of allelic ladders and of amplified samples demonstrate that allele sizes were reproducible, with standard deviations typically less than 0.12 bases for fragments up to 317 bases in length (largest allele analyzed) separated in a 47 cm capillary. Therefore, 99.7% of all alleles that are the same length should fall within the measurement error window of +/- 0.36 bases. Microvariants of the tetranucleotide repeats were also accurately typed by the analytical software. Alleles differing in size by one base could be resolved in two-donor DNA mixtures in which the minor component comprised > or = 5% of the total DNA. Furthermore, the quantitative data format (i.e., peak amplitude) can in some instances assist in determining individual STR profiles in mixed samples. DNA samples from previously typed cases (typed for RFLP, AmpliType PM+DQA1, and/or D1S80) were amplified using AmpFlSTR Profiler Plus and COfiler and were evaluated using the ABI Prism 310. Most samples yielded typable results. Compared with previously determined results for other loci, there were no discrepancies as to the inclusion or exclusion of suspects or victims. CE thus provides efficient separation, resolution, sensitivity and precision, and the analytical software provides reliable genotyping of STR loci. The

  9. Enhancing separation in short-capillary electrophoresis via pressure-driven backflow.

    PubMed

    Tian, Miaomiao; Wang, Yujia; Mohamed, Amara Camara; Guo, Liping; Yang, Li

    2015-07-01

    We present a novel easy-to-operate and efficient method to improve the separation efficiency in short-capillary electrophoresis by introducing steady backflow to counterbalance electro-osmotic flow without the use of any external pressure. The backflow was easily generated by tapering the capillary end, which was achieved by heating a straight capillary and stretching it with a constant force. We investigated the net fluidic transport rate under different tip lengths and separation voltages. Good run-to-run repeatability and capillary-to-capillary reproducibility of the present method were obtained with RSD less than 1.5%, indicating the stability of the fluid transport rate in the tapered capillary, which ensures the quantification and repeatability of capillary zone electrophoresis (CZE) analysis. Enhanced separation of the tapered short capillary electrophoresis was demonstrated by CZE analyzing amino acids and positional isomers. Baseline separations were achieved in less than 60 s using a tapered capillary with the effective length of 5 cm, while no separation was achieved using a normal capillary without a tapered tip. The present study provides a promising method to use pressure-driven backflow to enhance separation efficiency in short-capillary electrophoresis, which would be of potential value in a wide application for fast analysis of complex samples.

  10. Determination of benzylpenicillin in pharmaceuticals by capillary zone electrophoresis

    SciTech Connect

    Hoyt, A.M. Jr. ); Sepaniak, M.J. )

    1989-04-01

    A rapid and direct method is described for the determination of benzylpenicillin (penicillin G) in pharmaceutical preparations. The method involves very little sample preparation and total analysis time for duplicate results is less 30 minutes per sample. The method takes advantage of the speed and separating power of capillary zone electrophoresis (CZE). Detection of penicillin is by absorption at 228 nm. An internal standard is employed to reduce sample injection error. The method was applied successfully to both tablets and injectable preparations. 14 refs., 5 figs., 3 tabs.

  11. Comparison of a non-aqueous capillary electrophoresis method with high performance liquid chromatography for the determination of herbicides and metabolites in water samples.

    PubMed

    Carabias-Martínez, R; Rodríguez-Gonzalo, E; Miranda-Cruz, E; Domínguez-Alvarez, J; Hernández-Méndez, J

    2006-07-28

    A method of capillary electrophoresis (CE) for the determination of triazine herbicides and some of their main metabolites in water samples has been developed. The proposed CE method includes an off-line solid-phase extraction (SPE) procedure with LiChrolut EN sorbent coupled to a non-aqueous capillary electrophoresis (NACE) separation with UV detection. The target compounds were the chloro-s-triazines simazine, atrazine, propazine; the methyltio-s-triazines ametryn and prometryn and three main derivatives from the atrazine degradation products; namely, deethylatrazine, deethylhydroxyatrazine and deisopropylhydroxyatrazine. The analytical characteristics of the CE method are reported. The repeatability of the method was studied considering the different steps of the method separately in order to determine the contributions of each step to the total variability of the method. The NACE-UV results are compared with those obtained with a high performance liquid chromatography with UV detection (HPLC-UV) method. The same off-line SPE procedure was applied to both techniques. The results obtained show that both methods afford the same results in the analysis of surface and drinking water samples, with a level of significance regarding the F- and t-tests greater than 0.05 in all the cases. The detection limits in surface water samples were in the 0.04-0.32 microg l(-1) and 0.11-1.2 microg l(-1) ranges for the NACE-UV and HPLC-UV methods, respectively. The recoveries (spiked/found) were significantly 100% in all cases.

  12. Comparison between agarose gel electrophoresis and capillary electrophoresis for variable numbers of tandem repeat typing of Mycobacterium tuberculosis.

    PubMed

    Yokoyama, Eiji; Kishida, Kazunori; Uchimura, Masako; Ichinohe, Sadato

    2006-06-01

    Variable numbers of tandem repeat (VNTR) typing of Mycobacterium tuberculosis was performed on 54 strains including 23 strains derived from 9 outbreaks. PCR amplicon sizes of 12 mycobacterial interspersed repetitive unit tandem repeat loci were measured using both agarose gel electrophoresis and capillary electrophoresis. Similarities using agarose gel electrophoresis of Euclidian distances among the 23 strains derived from the 9 outbreaks were significantly lower than that using capillary electrophoresis (Wilcoxon signed ranks test, P < 0.01). By clustering analysis using unweighted pair group method using arithmetic averages, all of the 23 strains derived from the 9 outbreaks were each clustered with more than 90% similarities based on the distance using capillary electrophoresis. In contrast, differential clusters with more than 90% similarity were observed with only 7 strains derived from 3 outbreaks when analyzed by agarose gel electrophoresis. These results indicated that measurement of PCR amplicon size of tandem repeat loci should be carried out using capillary electrophoresis and that agarose gel electrophoresis is not suitable for clustering analysis of M. tuberculosis VNTR typing.

  13. Pharmaceutical and biomedical applications of chiral capillary electrophoresis and capillary electrochromatography: an update.

    PubMed

    Scriba, Gerhard K E

    2003-08-01

    Capillary electrophoresis is often considered an ideal method for the chiral analysis of compounds due to the high separation power of the technique and has therefore found widespread acceptance for the analysis of drugs and pharmaceuticals. In contrast, capillary electrochromatography is still more or less in an infancy state searching for its place among the analytical separation techniques although interesting applications have been published. The present review summarizes recent developments and applications of chiral pharmaceutical analysis by electromigration techniques published in 2002 and early 2003.

  14. Development of a polymerase chain reaction and capillary gel electrophoresis method for the detection of chicken or turkey meat in heat-treated pork meat mixtures.

    PubMed

    Hernández-Chávez, Juan F; González-Córdova, Aarón F; Rodríguez-Ramírez, Roberto; Vallejo-Cordoba, Belinda

    2011-12-05

    A polymerase chain reaction and capillary gel electrophoresis (PCR-CGE) method with ultraviolet (UV) or laser induced fluorescence detection (LIF) was established for the detection of chicken or turkey in heat-treated pork meat mixtures. Mitochondrial DNA samples extracted from heat treated meat were amplified with their corresponding specific primers yielding PCR products between 200 and 300 bp. LIF detection was superior than UV detection in terms of precision and sensitivity for the study of DNA fragments. The CGE-LIF method was highly reproducible and accurate for determining DNA fragment size. The PCR-CGE-LIF was sensitive since a significant fluorescent signal was obtained at the minimum admixture level employed of 1% in meat mixtures. Thus, the PCR-CGE-LIF method established was useful for the detection of chicken or turkey in heat treated meat mixtures and may prove to be useful for the detection of poultry meat in pork processed products.

  15. A green capillary zone electrophoresis method for the simultaneous determination of piperacillin, tazobactam and cefepime in pharmaceutical formulations and human plasma.

    PubMed

    Al-Attas, Amirah; Nasr, Jenny Jeehan; El-Enany, Nahed; Belal, Fathalla

    2015-12-01

    A green, novel, rapid, accurate and reliable capillary zone electrophoresis method was developed and validated for the simultaneous determination of piperacillin, tazobactam and cefepime in pharmaceutical preparations. Separation was carried out using fused silica capillary (50 µm i.d. × 48.6 cm and 40.2 cm detection length) and applied potential of 20 kV (positive polarity) and a running buffer containing 15 m m sodium borate buffer adjusted to pH 9.3 with UV detection at 215 nm. Amoxicillin was used as an internal standard. The method was suitably validated according to International Conference on Harmonization guidelines. The method showed good linearity in the ranges of 10-100, 20-400 and 10-400 µg/mL with limits of quantitation of 1.87, 3.17 and 6.97 µg/mL and limits of detection of 0.56, 0.95 and 2.09 µg/mL for tazobactam, piperacillin and cefepime, respectively. The proposed method was successfully applied for the analysis of these drugs in their synthetic mixtures and co-formulated injection vials. The method was extended to the in vitro determination of the two drugs in spiked human plasma. It is considered a 'green' method as it consumes no organic solvents.

  16. Photosensitive diazotized poly(ethylene glycol) covalent capillary coatings for analysis of proteins by capillary electrophoresis.

    PubMed

    Yu, Bing; Chen, Xin; Cong, Hailin; Shu, Xi; Peng, Qiaohong

    2016-09-01

    A new method for the fabrication of covalently cross-linked capillary coatings of poly(ethylene glycol) (PEG) is described using diazotized PEG (diazo-PEG) as a new photosensitive coating agent. The film of diazo-PEG depends on ionic bonding and was first prepared on the inner surface of capillary by self-assembly, and ionic bonding was converted into covalent bonding after reaction of ultraviolet light with diazo groups through unique photochemical reaction. The covalently bonded coating impedance adsorption of protein on the central surface of capillary and hence the four proteins ribonuclease A, cytochrome c, bovine serum albumin, and lysosome can be baseline separated by using capillary electrophoresis (CE). The covalently cross-linked diazo-PEG capillary column coatings not only improved the CE separation performance for proteins compared to non-covalently cross-linked coatings or bare capillary but also showed a remarkable chemical solidity and repeatability. Because photosensitive diazo-PEG took the place of the highly noxious and silane moisture-sensitive coating reagents in the fabrication of covalent coating, this technique shows the advantage of being environment-friendly and having a high efficiency for CE to make the covalently bonded capillaries.

  17. Nitromethane as solvent in capillary electrophoresis.

    PubMed

    Subirats, Xavier; Porras, Simo P; Rosés, Martí; Kenndler, Ernst

    2005-06-24

    Nitromethane has several properties that make it an interesting solvent for capillary electrophoresis especially for lipophilic analytes that are not sufficiently soluble in water: freezing and boiling points are suitable for laboratory conditions, low viscosity leads to favourable electrophoretic mobilities, or an intermediate dielectric constant enables dissolution of electrolytes. In the present work we investigate the change of electrophoretically relevant analyte properties - mobilities and pKa values - in nitromethane in dependence on the most important experimental conditions determined by the background electrolyte: the ionic strength, I, and the pH. It was found that the mobility decreases with increasing ionic strength (by, e.g. up to 30% from I = 0 to 50 mmol/L) according to theory. An appropriate pH scale is established by the aid of applying different concentration ratios of a buffer acid with known pKa and its conjugate base. The mobility of the anionic analytes (from weak neutral acids) depends on the pH with the typical sigmoidal curve in accordance with theory. The pKa of neutral acids derived from these curves is shifted by as much as 14 pK units in nitromethane compared to water. Both findings confirm the agreement of the electrophoretic behaviour of the analytes with theories of electrolyte solutions. Separation of several neutral analytes was demonstrated upon formation of charged complexes due to heteroconjugation with chloride as ionic constituent of the background electrolyte.

  18. Fabricating PFPE Membranes for Capillary Electrophoresis

    NASA Technical Reports Server (NTRS)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).

  19. Capillary electrophoresis analysis of orange juice pectinesterases.

    PubMed

    Braddock, R J; Bryan, C R; Burns, J K

    2001-02-01

    Pectinesterase (PE) was extracted from orange juice and pulp with 1 M NaCl, desalted, and separated using capillary electrophoresis (CE) gel procedures (CE-SDS-CGE) and isoelectric focusing (CE-IEF). PE resolved as a single peak using noncoated fused silica columns with CE-SDS-CGE. CE-IEF separation of PE required acryloylaminoethoxyethanol-coated columns, which had limited stability. Thermal stability of PE extracts before and after heating at 75 degrees C for 30 min and at 95 degrees C for 5 min established heat labile and heat stabile fractions with identical PE migration times by CE-SDS-CGE or CE-IEF. Peak magnitude decreased to a constant value as heating time increased at 75 degrees C. Regression analysis of CE-SDS-CGE peak migration times of molecular weight (MW) standards estimated both heat labile and heat stable PE at MW approximately 36 900. Traditional SDS-PAGE gel separation of MW standards and active PE isolated by IEF allowed estimation of MW approximately 36 000. CE-SDS-CGE allowed presumptive, but not quantitative, detection of active PE in fresh juice.

  20. ANALYSIS OF THE ENANTIOMERS OF CHIRAL PESTICIDES AND OTHER POLLUTANTS IN ENVIRONMENTAL SAMPLES BY CAPILLARY ELECTROPHORESIS

    EPA Science Inventory

    The generic method described here involves typical capillary electrophoresis (CE) techniques, with the addition of cyclodextrin chiral selectors to the electrolyte for enantiomer separation and also, in the case of neutral analytes, the further addition of a micelle forming comp...

  1. ANALYSIS OF THE ENANTIOMERS OF CHIRAL PESTICIDES AND OTHER POLLUTANTS IN ENVIRONMENTAL SAMPLES BY CAPILLARY ELECTROPHORESIS

    EPA Science Inventory

    The generic method described here involves typical capillary electrophoresis (CE) techniques, with the addition of cyclodextrin chiral selectors to the electrolyte for enantiomer separation and also, in the case of neutral analytes, the further addition of a micelle forming comp...

  2. Capillary Electrophoresis Profiles and Fluorophore Components of Humic Acids in Nebraska Corn and Philippine Rice Soils

    USDA-ARS?s Scientific Manuscript database

    As humic substances represent relatively high molecular mass polyelectrolytes containing aromatic, aliphatic and heterocyclic subunits, capillary electrophoresis (CE) has become an attractive method for “finger-print” characterization of humic acids. In addition, fluorescence excitation-emission ma...

  3. Determination of antazoline and tetrahydrozoline in ophthalmic solutions by capillary electrophoresis and stability-indicating HPLC methods.

    PubMed

    Gumustas, Mehmet; Alshana, Usama; Ertas, Nusret; Goger, Nilgun Gunden; Ozkan, Sibel A; Uslu, Bengi

    2016-05-30

    Capillary electrophoretic (CE) and high performance liquid chromatographic (HPLC) methods were developed and optimized for the determination of antazoline (ANT) and tetrahydrozoline (TET) in ophthalmic formulations. Optimum electrophoretic conditions were achieved using a background electrolyte of 20mM phosphate buffer at pH 7.0, a capillary temperature of 25°C, a separation voltage of 22 kV and a pressure injection of the sample at 50 mbar for 17s. HPLC analysis was performed with Kinetex (150 × 4.6mm ID × 5 μm) (Phenomenex, USA) analytical column with 1 mL min(-1) flow rate of mobile phase which consisted of 0.05% TFA in bidistilled water (pH adjusted to 3.0 with 5M NaOH) and acetonitrile/buffer in the ratio of 63:37 (v/v) at room temperature. Injection volume of the samples was 10 μL and the wavelength of the detector was set at 215 nm for monitoring both analytes. Calibration graphs showed a good linearity with a coefficient of determination (R(2)) of at least 0.998 for both methods. Intraday and interday precision (expressed as RSD%) were lower than 2.8% for CE and 0.92% for HPLC. The developed methods were demonstrated to be simple and rapid for the determination of ANT and TET in ophthalmic solutions providing recoveries in the range between 97.9 and 102.70% for CE and HPLC. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Automated N-Glycosylation Sequencing Of Biopharmaceuticals By Capillary Electrophoresis.

    PubMed

    Szigeti, Marton; Guttman, Andras

    2017-09-15

    Comprehensive analysis of the N-linked carbohydrates of glycoproteins is gaining high recent interest in both the biopharmaceutical and biomedical fields. In addition to high resolution glycosylation profiling, sugar residue and linkage specific enzymes are also routinely used for exoglycosidase digestion based carbohydrate sequencing. This latter one, albeit introduced decades ago, still mostly practiced by following tedious and time consuming manual processes. In this paper we introduce an automated carbohydrate sequencing approach using the appropriate exoglycosidase enzymes in conjunction with the utilization of some of the features of a capillary electrophoresis (CE) instrument to speed up the process. The enzymatic reactions were accomplished within the temperature controlled sample storage compartment of a capillary electrophoresis unit and the separation capillary was also utilized for accurate delivery of the exoglycosidase enzymes. CE analysis was conducted after each digestion step obtaining in this way the sequence information of N-glycans in 60 and 128 minutes using the semi- and the fully-automated methods, respectively.

  5. Capillary zone electrophoresis-mass spectrometry of peptides and proteins

    SciTech Connect

    Loo, J.A.; Udseth, H.R.; Smith, R.D.

    1989-05-01

    Capillary zone electrophoresis (CZE) is attracting extensive attention as a fast, high resolution analytical and micro-preparative separations technique for systems of biological interest. In zone electrophoresis, a column is filled with a single electrolyte having a specific conductivity. The mixture of substances to be separated is applied as a narrow band to the head of a buffer filled column in a band whose width is much less than the length of the column and at a concentration too low to affect the buffer conductivity. An electric field is then applied across the length of the column and the individual substances migrate and separate according to their net electrophoretic velocities. Zone electrophoresis carried out in small diameter (<100 ..mu..m) fused silica capillaries is a relatively new approach to the high resolution separation of aqueous samples. Very small volume samples (picoliter range) with separation efficiencies on the order of 10/sup 6/ theoretical plates for amino acids have been achieved. The method can be further enhanced by the dynamic combination of detection sensitivity and selectivity offered by mass spectrometry (MS). The on-line marriage of mass spectrometry to CZE is accomplished by an atmospheric pressure electrospray ionization source interface. Our research efforts have demonstrated that proteins with MW's greater than 100 kDa can be analyzed using a conventional quadrupole mass spectrometer with an upper m/z limit of only 1700. 6 refs.

  6. Capillary array electrophoresis using laser-excited confocal fluorescence detection

    SciTech Connect

    Huang, X.C.; Quesada, M.A.; Mathies, R.A.

    1992-04-15

    Capillary electrophoresis (CE) has found widespread application in analytical and biomedical research, and the scope and sophistication of CE is still rapidly advancing. Gel-filled capillaries have been employed for the rapid separation and analysis of synthetic polynucleotides, DNA sequencing fragments, and DNA restriction fragments. Open-tube capillary electrophoresis has attained subattomole detection levels in amino acid separations 14 and proven its utility for the separation of proteins, viruses, and bacteria. Separation of the optical isomers of dansyl amino acids has also been successfully demonstrated. Micellar electrokinetic capillary chromatography, isoelectric focusing, and on-column derivatization can all be performed on CE columns, demonstrating the utility of capillary electrophoresis as an analytical and micropreparative tool. 29 refs., 6 figs., 1 tab.

  7. Direct methods for dynamic monitoring of secretions from single cells by capillary electrophoresis and microscopy with laser-induced native fluorescence detection

    SciTech Connect

    Tong, Wei

    1997-10-08

    Microscale separation and detection methods for real-time monitoring of dynamic cellular processes (e.g., secretion) by capillary electrophoresis (CE) and microscopic imaging were developed. Ultraviolet laser-induced native fluorescence (LINF) provides simple, sensitive and direct detection of neurotransmitters and proteins without any derivatization. An on-column CE-LINF protocol for quantification of the release from single cell was demonstrated. Quantitative measurements of both the amount of insulin released from and the amount remaining in the cell (βTC3) were achieved simultaneously. Secretion of catecholamines (norepinephrine (NE) and epinephrine (E)) from individual bovine adrenal chromaffin cells was determined using the on-column CE-LINF. Direct visualization of the secretion process of individual bovine adrenal chromaffin cells was achieved by LINF imaging microscopy with high temporal and spatial resolution. The secretion of serotonin from individual leech Retzius neurons was directly characterized by LINF microscopy with high spatial resolution.

  8. Development and validation of a capillary electrophoresis method for the measurement of short-chain organic acids in natural rubber latex.

    PubMed

    Galli, V; Olmo, N; Barbas, C

    2000-10-13

    Short-chain organic acid contents in serum of natural latex are interesting to measure and capillary electrophoresis (CE) has proved to be a good tool for their study. In the present work a method has been developed to identify the short-chain organic acids present in sera of natural rubber latex (oxalic, formic, fumaric, aconitic, succinic, malic, glutaric, citric, acetic, glycollic, propionic and quinic acids), the separation was optimised and the quantification method validated. The separation was performed on a CE system with UV detection at 200 nm. The separation was carried out with an uncoated fused-silica capillary (57 cm x 50 microm I.D.) and was operated at -10 kV potential. The separation buffers were prepared with 0.5 M H3PO4, 0.5 mM cetyltrimethylammonium bromide and pH adjusted by adding NaOH to 6.25 except for propionic acid which was better measured at pH 7.00. Validation parameters are adequate and limits of detection range from 0.005 mM to 1.6 mM. Short-chain organic acids were measured with this method in sera of three different types of latex.

  9. Characterization of a liposome-based formulation of oxaliplatin using capillary electrophoresis: encapsulation and leakage.

    PubMed

    Franzen, Ulrik; Nguyen, Tam T T N; Vermehren, Charlotte; Gammelgaard, Bente; Ostergaard, Jesper

    2011-04-28

    A capillary electrophoresis-based method to characterize a PEGylated liposomal drug formulation of the anti-cancer agent oxaliplatin was developed. Pharmaceutical characterization in terms of determination of the free and total oxaliplatin concentrations in the liposomal formulation was successfully performed allowing calculation of the percentage of encapsulated drug and encapsulation efficiency. The trapping efficiency was likewise calculated. The capillary electrophoresis method allowed liposome characterization in the intended formulation media (sucrose solution with low electrolyte concentration), and the attained results were consistent with inductively coupled plasma mass spectrometry measurements. Accelerated drug leakage studies were initiated by the sonication of the PEGylated formulation, using an ultrasound probe, subsequently the drug leakage was determined by capillary electrophoresis. The results obtained with the PEGylated liposomes demonstrate that capillary electrophoresis may be a useful tool for the characterization of liposomal drug formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors.

    PubMed

    Fanali, S

    2000-04-14

    This review surveys the separation of enantiomers by capillary electrophoresis using cyclodextrins as chiral selector. Cyclodextrins or their derivatives have been widely employed for the direct chiral resolution of a wide number of enantiomers, mainly of pharmaceutical interest, selected examples are reported in the tables. For method optimisation, several parameters influencing the enantioresolution, e.g., cyclodextrin type and concentration, buffer pH and composition, presence of organic solvents or complexing additives in the buffer were considered and discussed. Finally, selected applications to real samples such as pharmaceutical formulations, biological and medical samples are also discussed.

  11. PNEUMATIC MICROVALVE FOR ELECTROKINETIC SAMPLE PRECONCENTRATION AND CAPILLARY ELECTROPHORESIS INJECTION

    SciTech Connect

    Cong, Yongzheng; Rausch, Sarah J.; Geng, Tao; Jambovane, Sachin R.; Kelly, Ryan T.

    2014-10-27

    Here we show that a closed pneumatic microvalve on a PDMS chip can serve as a semipermeable membrane under an applied potential, enabling current to pass through while blocking the passage of charged analytes. Enrichment of both anionic and cationic species has been demonstrated, and concentration factors of ~70 have been achieved in just 8 s. Once analytes are concentrated, the valve is briefly opened and the sample is hydrodynamically injected onto an integrated microchip or capillary electrophoresis (CE) column. In contrast to existing preconcentration approaches, the membrane-based method described here enables both rapid analyte concentration as well as high resolution separations.

  12. Flow counterbalanced capillary electrophoresis using packed capillary columns: resolution of enantiomers and isotopomers.

    PubMed

    Henley, W Hampton; Wilburn, Richard T; Crouch, Andrew M; Jorgenson, James W

    2005-11-01

    A method with the ability to increase greatly both the resolution and efficiency of a given capillary electrophoretic system is described. This method differs from traditional capillary electrophoresis (CE) in that a counterflow is induced in the direction opposite to the electrokinetic migration of the analyte. This has the effect of extending not only the time the analytes migrate in the electric field but also the effective length and the effective applied voltage of the system. Previous work in our group with flow counterbalanced capillary electrophoresis has utilized an open tube of small inner diameter to reduce peak broadening caused by hydrodynamic flow. Narrow-diameter capillaries (5-10 microm) restricted analysis to fluorescent analytes and laser-induced fluorescence detection. The method described here uses a capillary of much larger inner diameter (75 microm) that has been packed with nonporous silica particles. The packing material reduces the amount of band broadening caused by pressure-induced flow relative to that experienced in an open tube. A larger diameter capillary allows the detection of analytes by UV absorption, not only eliminating the need to tag analytes with fluorescent tags but also allowing for the detection of a much broader range of analytes. The system was evaluated by studying the separations of several enantiomers using only beta-cyclodextrin as the chiral selector. The system was also used to resolve the two naturally occurring isotopes of bromine and to resolve phenylalanine from phenylalanine-d8. Relative to traditional CE, large improvements in resolution and separation efficiency have been achieved with this method.

  13. Optimization of a simple method for the chiral separation of methamphetamine and related compounds in clandestine tablets and urine samples by beta-cyclodextrine modified capillary electrophoresis: a complementary method to GC-MS.

    PubMed

    Liau, An-Shu; Liu, Ju-Tsung; Lin, Li-Chan; Chiu, Yu-Chih; Shu, You-Ren; Tsai, Chung-Chen; Lin, Cheng-Huang

    2003-06-24

    The chiral separation of (+/-)-methamphetamine, (+/-)-methcathinone, (+/-)-ephedrine and (+/-)-pseudoephedrine by means of beta-cyclodextrine modified capillary electrophoresis is described. The distribution of enantiomers in clandestine tablets and urine samples were identified. Several electrophoretic parameters such as the concentration of beta-cyclodextrin, temperature, the applied voltage and the amount of organic solvent required for successful separation were optimized. The method, as described herein, represents a good complementary method to GC-MS for use in forensic and clinical analysis.

  14. Methods for determination of milt protein and epsilon-polylysine in food additive preparations and processed foods by capillary zone electrophoresis.

    PubMed

    Hirokado, M; Shimamura, Y; Nakajima, K; Ozawa, H; Kimura, K; Yasuda, K; Nishijima, M

    2001-04-01

    A simple and rapid method using capillary zone electrophoresis (CZE) for the determination of milt protein (MP), which contains mainly protamine, and polylysine (PL) in food additive preparations and processed foods was developed. CZE separation was performed on poly(vinyl alcohol)-coated capillaries at a column temperature of 20 degrees C with 120 mmol/L phosphate buffer (pH 2.5) as the running buffer. The influence of various components in food additive preparations on CZE analysis of MP and PL was examined. Egg white lysozyme, glycine, sodium acetate, glycerol, fumaric acid, calcium carbonate, dextrin, emulsifiers and sodium polyphosphate and pyrophosphate had no effect. No peak of protamine was detected in preparations containing metaphosphate. The analysis method for processed foods was composed of extraction with 4% formic acid, precipitation of macromolecular compounds with ethanol, concentration in a water bath and determination by CZE. The average recoveries were 108.4% for protamine sulfate (PS) in red bean sticky rice, and 81.3% for PL in white rice, 118% in egg sandwiches, and 115% in shiraae. The limits of detection of PS in red bean sticky rice and PL in white rice were both 50 ppm.

  15. An online field-amplification sample stacking method for the determination of diuretics in urine by capillary electrophoresis-amperometric detection.

    PubMed

    Zheng, Xinyu; Lu, Minghua; Zhang, Lan; Chi, Yuwu; Zheng, Lihui; Chen, Guonan

    2008-06-30

    A simple and sensitive online field-amplification sample stacking (FASS) pre-enrichment method following by capillary electrophoresis with amperometric detection has been developed for the determination of diuretics, such as indapamide (IDP), hydrochlorothiazide (HCT) and bumetanide (BMTN) in urine. Under the optimum conditions, it was found that the low concentration buffer solution could be used as the diluents for simultaneous field-amplification injection of three diuretics after electrokinetically injecting a short water plug (15 kV, 3 s). Three analytes could be well separated within 10 min in an uncoated fused-silica capillary with H(3)BO(3)-Na(2)B(4)O(7) (BB) buffer solution (pH 8.98). The detection limits (S/N=3) were 9.0 ng/mL for IDP, 20 ng/mL for HCT and 1.5 ng/mL for BMTN, respectively. The detection limits of three diuretics were much lower by FASS than that by conventional sample injection, of which the detection limits were 340, 890 and 330 ng/mL for IDP, HCT and BMTN, respectively. Especially, for bumetanide the detection limit was 220-time lower by FASS. The linear ranges of three diuretics were all over three orders of magnitude. The proposed method has been successfully applied to analyze the diuretics in human urine samples without off-column sample pre-concentration.

  16. Sub-minute method for simultaneous determination of aspartame, cyclamate, acesulfame-K and saccharin in food and pharmaceutical samples by capillary zone electrophoresis.

    PubMed

    Vistuba, Jacqueline Pereira; Dolzan, Maressa Danielli; Vitali, Luciano; de Oliveira, Marcone Augusto Leal; Micke, Gustavo Amadeu

    2015-05-29

    This paper reports the development of a sub-minute separation method by capillary zone electrophoresis for the determination of aspartame, cyclamate, acesulfame-K and saccharin in food products and pharmaceutical samples. Separations were performed in a fused uncoated silica capillary with UV detection at 220nm. Samples and standards were injected hydrodynamically using the short-end injection procedure. The electrophoretic system was operated under constant voltage of -30kV. The background electrolyte was composed of 45mmolL(-1) 2-amino-2-(hydroxymethyl)-1,3-propanediol and 15mmolL(-1) benzoic acid at pH 8.4. The separation time for all analytes was less than 1min. Evaluation of analytical parameters of the method showed good linearity (r(2)>0.9972), limit of detection of 3.3-6.4mgL(-1), intermediate precision better than 9.75% (peak area of sample) and recovery in the range of 91-117%. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Monitoring of chemotherapy-induced proteinuria using capillary zone electrophoresis.

    PubMed

    Gysler, J; Schunack, W; Jaehde, U

    1999-01-22

    Capillary zone electrophoresis (CZE) was investigated for its suitability to monitor proteinuria occurring during nephrotoxic drug therapy. Urine samples of tumor patients receiving chemotherapy consisting of carboplatin, etoposide, and ifosfamide were concentrated and desalted in microconcentrators and analyzed in two different alkaline CZE buffer systems. Reduction of electroosmotic flow (EOF) by the addition of putrescine increased the number of resolved protein peaks. Both CZE methods were linear between 2.5 and 50 microg/ml, exhibited satisfactory precision (relative standard deviation <10%) and were suitable for monitor the time course of proteinuria after chemotherapy administration. In contrast to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), CZE detected interindividual differences in protein patterns. Whereas these differences hampered a direct quantification of proteins in urine, they may contain information on the type or extent of kidney damage.

  18. Affinity capillary electrophoresis: the theory of electromigration.

    PubMed

    Dubský, Pavel; Dvořák, Martin; Ansorge, Martin

    2016-12-01

    We focus on the state-of-the-art theory of electromigration under single and multiple complexation equilibrium. Only 1:1 complexation stoichiometry is discussed because of its unique status in the field of affinity capillary electrophoresis (ACE). First, we summarize the formulas for the effective mobility in various ACE systems as they appeared since the pioneering days in 1992 up to the most recent theories till 2015. Disturbing phenomena that do not alter the mobility of the analyte directly but cause an unexpected peak broadening have been studied only recently and are also discussed in this paper. Second, we turn our attention to the viscosity effects in ACE. Change in the background electrolyte viscosity is unavoidable in ACE but numerous observations scattered throughout the literature have not been reviewed previously. This leads to an uncritical employment of correction factors that may or may not be appropriate in practice. Finally, we consider the ionic strength effects in ACE, too. Limitations of the current theories are also discussed and the tasks identified where open problems still prevail. Graphical Abstract A weak base (A) undergoes an acidic-basic equilibria (in blue) and migrates with an electrophoretic mobility of [Formula: see text]. Simultaneously, it interacts with a selector (sel) while the analyte-selector complex migrates with an electrophoretic mobility of [Formula: see text]. The strength of the interaction (in orange) is governed by the binding constant, K A , and the concentration of the selector, c sel . This all gives the analyte an effective mobility of [Formula: see text] and moves it out of the zero position (EOF; right top insert). The interaction of the positively charged analyte with the neutral selector slows down the analyte with increasing selector concentration (right bottom insert).

  19. Monitoring Insulin Aggregation via Capillary Electrophoresis

    PubMed Central

    Pryor, Elizabeth; Kotarek, Joseph A.; Moss, Melissa A.; Hestekin, Christa N.

    2011-01-01

    Early stages of insulin aggregation, which involve the transient formation of oligomeric aggregates, are an important aspect in the progression of Type II diabetes and in the quality control of pharmaceutical insulin production. This study is the first to utilize capillary electrophoresis (CE) with ultraviolet (UV) detection to monitor insulin oligomer formation at pH 8.0 and physiological ionic strength. The lag time to formation of the first detected species in the aggregation process was evaluated by UV-CE and thioflavin T (ThT) binding for salt concentrations from 100 mM to 250 mM. UV-CE had a significantly shorter (5–8 h) lag time than ThT binding (15–19 h). In addition, the lag time to detection of the first aggregated species via UV-CE was unaffected by salt concentration, while a trend toward an increased lag time with increased salt concentration was observed with ThT binding. This result indicates that solution ionic strength impacts early stages of aggregation and β-sheet aggregate formation differently. To observe whether CE may be applied for the analysis of biological samples containing low insulin concentrations, the limit of detection using UV and laser induced fluorescence (LIF) detection modes was determined. The limit of detection using LIF-CE, 48.4 pM, was lower than the physiological insulin concentration, verifying the utility of this technique for monitoring biological samples. LIF-CE was subsequently used to analyze the time course for fluorescein isothiocyanate (FITC)-labeled insulin oligomer formation. This study is the first to report that the FITC label prevented incorporation of insulin into oligomers, cautioning against the use of this fluorescent label as a tag for following early stages of insulin aggregation. PMID:22272138

  20. Stability-indicating capillary zone electrophoresis method for the assessment of recombinant human interleukin-11 and its correlation with reversed-phase liquid chromatography and biossay.

    PubMed

    Souto, Ricardo Bizogne; Stamm, Fernanda Pavani; Schumacher, Jéssica Barbieri; Cardoso, Clovis Dervil Appratto; de Freitas, Guilherme Weber; Perobelli, Rafaela Ferreira; Dalmora, Sérgio Luiz

    2014-06-01

    A stability-indicating capillary zone electrophoresis (CZE) method was validated for the analysis of recombinant human interleukin-11(rhIL-11) using rupatadine fumarate, as internal standard (IS). A fused-silica capillary, (50 µm i.d.; effective length, 40 cm) was used at 25°C; the applied voltage was 20 kV. The background electrolyte solution consisted of 50 mmol L(-1) sodium dihydrogen phosphate solution at pH 3.0. Injections were performed using a pressure mode at 50 mbar for 45 s, with detection by photodiode array detector set at 196 nm. Specificity and stability-indicating capability were established in degradation studies, which also showed that there was no interference of the excipients. The method was linear over the concentration range of 1.0-300 µg mL(-1) (r(2)=0.9992) and the limit of detection (LOD) and limit of quantitation (LOQ) were 0.2 µg mL(-1) and 1.0 µg mL(-1), respectively. The accuracy was 100.4% with bias lower than 1.1%. Moreover, the in vitro cytotoxicity test of the degraded products showed significant differences (p<0.05). The method was applied for the content/potency assessment of rhIL-11 in biopharmaceutical formulations, and the results were correlated to those of a validated reversed-phase LC method (RP-LC) and an TF-1 cell culture assay, showing non-significant differences (p>0.05). In addition the CZE and RP-LC methods were applied for the analysis of rhIL-11 in human plasma. Therefore, the proposed alternative method can be applied to monitor stability, to assure the batch-to-batch consistency and quality of the bulk and finished biotechnology-derived medicine.

  1. Characterization of copolymer latexes by capillary electrophoresis.

    PubMed

    Anik, Nadia; Airiau, Marc; Labeau, Marie-Pierre; Bzducha, Wojciech; Cottet, Hervé

    2010-02-02

    Latexes are widely used for industrial applications, including decorative paints, binders for the papermaking industry, and drilling fluids for oil-field applications. In this work, the interest of capillary zone electrophoresis (CE) for the characterization of hydrophobic block copolymer latexes obtained by the conventional emulsion polymerization technique consisting of a core of polystyrene (PS) surrounded by a layer of poly(ethyl acrylate) (PEA) has been investigated. The PEA part of the copolymer can be partially hydrolyzed in poly(acrylic acid) (PAA) leading to PS-PEA-AA water-soluble amphiphilic copolymer having high viscosifying properties. The main purpose of this work was to evaluate the potential of CE for the characterization of the latexes at the different stages of the synthesis (PS core, PS-PEA diblock latex, and hydrolyzed PS-PEA-AA gel). The main analytical issues were to state (i) if there was free PS or PEA homopolymer latexes in the PS-PEA latex sample and (ii) if there was free PS, PEA, PS-PEA latexes, or free PAA chains in the PS-PEA-AA gel. Within this scope, this work describes the optimization of the selectivity of the separation between the different species (PS, PEA particles in the not hydrolyzed diblock latex and PS, PEA, PS-PEA particles as well as the polymer PAA chains in the PS-PEA-AA diblock gel sample obtained by latter latex hydrolysis). For that purpose, several experimental parameters were investigated such as pH and ionic strength of the background electrolyte (BGE) or the concentration of neutral surfactant added in the BGE. A challenging issue was to overcome the high viscosity of the PS-PEA-AA gel. This was resolved by the addition of 10 mM neutral surfactant in the gel sample and in the BGE. Finally, it is demonstrated that, within the detection limits, CE is a suitable analytical tool for controlling and monitoring the syntheses of these latexes and for intrinsically characterizing the distribution in charge density of

  2. A novel capillary electrophoresis method with pressure assisted field amplified sample injection in determination of thiol collectors in flotation process waters.

    PubMed

    Sihvonen, T; Aaltonen, A; Leppinen, J; Hiltunen, S; Sirén, H

    2014-01-17

    A new capillary electrophoresis method was developed for the quantification of diisobutyldithiophosphate (DTP), diisobutyldithiophosphinate (DTPI) and ethyl and isobutyl xanthates (EX, IBX) all of which are used as thiol collectors in froth flotation. This method uses pressure assisted field amplified sample injection (PA-FASI) to concentrate the analytes at the capillary inlet. The background electrolyte in electrophoretic separation was 60millimolar (mM) from 3-(cyclohexylamino)propane-1-sulfonic acid (CAPS) in 40mM NaOH solution. The similar CAPS electrolyte solution has earlier been used for screening for diuretics that contained sulphonamide and/or carboxylic groups. In this study, the functional groups are xanthate, phosphate and phosphinate. The method was developed using actual flotation process waters. The results showed that the water delivered from the plant did not contain significant amount of collectors; therefore, method development was accomplished by spiking analytes in these waters. Separation of analytes was achieved in 15min. The range of quantification was 0.27-66.6mg/L (R(2) 0.9991-0.9999) for all analytes other than ethyl xanthate, for which the range was 0.09-66.6mg/L (R(2) 0.9999). LOD (S/N=3) and LOQ (S/N=10) values for DTP, DTPI, IBX and EX were 0.05, 0.07, 0.06 and 0.01mg/L and 0.16, 0.25, 0.21 and 0.04mg/L, respectively. No interference from the matrices was observed, when the method was tested at a gold concentrator plant.

  3. Fast and sensitive method to determine parabens by capillary electrophoresis using automatic reverse electrode polarity stacking mode: application to hair samples.

    PubMed

    Sako, Alysson V F; Dolzan, Maressa D; Micke, Gustavo Amadeu

    2015-09-01

    This paper describes a fast and sensitive method for the determination of methyl, ethyl, propyl, and butylparaben in hair samples by capillary electrophoresis using automatic reverse electrode polarity stacking mode. In the proposed method, solutions are injected using the flush command of the analysis software (940 mbar) and the polarity switching is carried out automatically immediately after the sample injection. The advantages compared with conventional stacking methods are the increased analytical frequency, repeatability, and inter-day precision. All analyses were performed in a fused silica capillary (50 cm, 41.5 cm in effective length, 50 μm i.d.), and the background electrolyte was composed of 20 mmol L(-1) sodium tetraborate in 10 % of methanol, pH 9.3. For the reverse polarity, -25 kV/35 s was applied followed by application of +30 kV for the electrophoretic run. Temperature was set at 20 °C, and all analytes were monitored at 297 nm. The method showed acceptable linearity (r (2) > 0.997) in the studied range of 0.1-5.0 mg L(-1), limits of detection below 0.017 mg L(-1), and inter-day, intra-day, and instrumental precision better than 6.2, 3.6, and 4.6 %, respectively. Considering parabens is widely used as a preservative in many products and the reported possibility of damage to the hair and also to human health caused by these compounds, the proposed method was applied to evaluate the adsorption of parabens in hair samples. The results indicate that there is a greater adsorption of methylparaben compared to the other parabens tested and also dyed hairs had a greater adsorption capacity for parabens than natural hairs.

  4. Recent Developments in Instrumentation for Capillary Electrophoresis and Microchip-Capillary Electrophoresis

    PubMed Central

    Felhofer, Jessica L.; Blanes, Lucas; Garcia, Carlos D.

    2010-01-01

    Over the last years there has been an explosion in the number of developments and applications of capillary electrophoresis (CE) and microchip-CE. In part, this growth has been the direct consequence of recent developments in instrumentation associated with CE. This review, which is focused on contributions published in the last five years, is intended to complement the papers presented in this special issue dedicated to Instrumentation and to provide an overview on the general trend and some of the most remarkable developments published in the areas of high voltage power supplies, detectors, auxiliary components, and compact systems. It also includes few examples of alternative uses of and modifications to traditional CE instruments. PMID:20665910

  5. On-column conductivity detection in capillary-chip electrophoresis.

    PubMed

    Wu, Zhi-Yong; Fang, Fang; Josserand, Jacques; Girault, Hubert H

    2007-12-01

    On-column conductivity detection in capillary-chip electrophoresis was achieved by actively coupling the high electric field with two sensing electrodes connected to the main capillary channel through two side detection channels. The principle of this concept was demonstrated by using a glass chip with a separation channel incorporating two double-Ts. One double-T was used for sample introduction, and the other for detection. The two electrophoresis electrodes apply the high voltage and provide the current, and the two sensing electrodes connected to the separation channel through the second double-T and probe a potential difference. This potential difference is directly related to the local resistance or the conductivity of the solution defined by the two side channels on the main separation channel. A detection limit of 15 microM (600 ppb or 900 fg) was achieved for potassium ion in a 2 mM Tris-HCl buffer (pH 8.7) with a linear range of 2 orders of magnitude without any stacking. The proposed detection method avoids integrating the sensing electrodes directly within the separation channel and prevents any direct contact of the electrodes with the sample. The baseline signal can also be used for online monitoring of the electric field strength and electroosmosis mobility characterization in the separation channel.

  6. Hb A1c Determination by Capillary Electrophoresis is an Efficient Method for Detecting β-Thalassemias and Hemoglobin Variants.

    PubMed

    Orts, Juan A; Zúñiga, Ángel; Bello, Yanis; Fabregat, Aleix B; Vicente, Ana I

    2016-09-01

    Glycated hemoglobin (Hb A1c) determination by multicapillary zone electrophoresis (MZE) can additionally be used to detect Hb A2, Hb F and most common hemoglobin (Hb) variants. We assessed the effectiveness of this method for detecting β-thalassemia (β-thal), δβ-thalassemia (δβ-thal) and most common Hb variants. Moreover, Hb F/Hb A2 is evaluated as an index for discriminating between β- and δβ-thal traits. The theoretical β-thalassemia major (β-TM) birth rate in our healthcare area is calculated and contrasted with real data. A MZE technique was used for Hb A1c measurements in 27,724 patients. Previous criteria for carrier detection were established and subsequently confirmed by molecular biology techniques. Positive predictive value (PPV) was 100.0%. The prevalence of β-thal trait (including δβ-thal) was 0.34%. The most prevalent mutations (estimated per 100,000 population) were HBB: c.118C > T (57.7%), HBB: c.93-21G>A (50.5%), HBB: c.92 + 1G > A (43.3%), HBB: c.92 + 6T > C (32.5%) and HBB: c.20delA (18.0%) for β-thalassemias, and Hb S (HBB: c.20A > T) (32.5%) and Hb J-Baltimore (HBB:c.3880T>A) (28.9%) for Hb variants. We found a paradoxical result between the theoretical β-TM birth rate and real data. We calculated an optimal Hb F/Hb A2 index cutoff of 0.71 for discriminating between β- and δβ-thal traits. This method is highly cost-effective for detecting β-thalassemias and common Hb variants. Prevalence results match previous data for the Spanish population. Heterogeneity of mutations in Spain has markedly increased as a consequence of migration. The Hb F/Hb A2 index cutoff could be used to predict δβ-thal trait.

  7. Fluorescence detection for gel and capillary electrophoresis

    SciTech Connect

    Hogan, B.

    1992-07-21

    First, an indirect fluorescence detection system for the separation of proteins via gel electrophoresis. Quantities as low as 50 nanograms of bovine serum albumin and soybean trypsin inhibitor are separated and detected visually without the need for staining of the analytes. This is very similar to levels of protein commonly separated with gel electrophoresis.

  8. On-line cation-exchange preconcentration and capillary electrophoresis coupled by tee joint interface.

    PubMed

    Zhang, Zhao-Xiang; He, You-Zhao

    2005-02-25

    An on-line preconcentration method based on ion exchange solid phase extraction was developed for the determination of cationic analytes in capillary electrophoresis (CE). The preconcentration-separation system consisted of a preconcentration capillary bonded with carboxyl cation-exchange stationary phase, a separation capillary for zone electrophoresis and a tee joint interface of the capillaries. Two capillaries were connected closely inside a 0.3 mm i.d. polytetrafluoroethylene tube with a side opening and fixed together by the interface. The preparations of the preconcentration capillaries and interface were described in detail in this paper. The on-line preconcentration and separation procedure of the analysis system included washing and conditioning the capillaries, loading analytes, filling with buffer solution, eluting analytes and separating by capillary zone electrophoresis (CZE). Several analysis parameters, including sample loading flow rate and time, eluting solution and volume, inner diameter and length of preconcentration capillary etc., were investigated. The proposed method enhanced the detection sensitivity of CE-UV about 5000 times for propranolol and metoprolol compared with normally electrokinetic injection. The detection limits of propranolol and metoprolol were 0.02 and 0.1 microg/L with the proposed method respectively, whereas those were 0.1 and 0.5 mg/L with conventional electrokinetic injection. The experiment results demonstrate that the proposed technique can increase the preconcentration factor evidently.

  9. A study on biomimetic immunoassay-capillary electrophoresis method based on molecularly imprinted polymer for determination of trace trichlorfon residue in vegetables.

    PubMed

    Li, Jie; Lu, Juxiu; Qiao, Xuguang; Xu, Zhixiang

    2017-04-15

    Pesticide residue in vegetables is a serious problem that has adverse effects on human health. In our study, we designed and synthesized a molecularly imprinted polymer that can selectively recognize trichlorfon. Using the polymer material as biomimetic antibody, we developed a biomimetic immunoassay-capillary electrophoresis method with improved sensitivity for the detection of trichlorfon. We evaluated the competitive reactions between HRP labeled trichlorfon hapten and free trichlorfon with the biomimetic antibody. Factors that affected the sensitivity of our method were tested in detail. Under optimal conditions, the limit of detection (LOD, IC15) and the sensitivity (IC50) of this method were 0.16mgL(-1) and 0.13μgL(-1) for trichlorfon. We used this method to determine the trichlorfon spiked in the kidney bean and cucumber samples with recoveries ranging from 78.8% to 103%. We also detected residual trichlorfons in the leek samples, and these results were verified by gas chromatography method.

  10. A capillary electrophoresis-mass spectrometry based method for the screening of β-secretase inhibitors as potential Alzheimer's disease therapeutics.

    PubMed

    Schejbal, Jan; Slezáčková, Lucie; Řemínek, Roman; Glatz, Zdeněk

    2017-03-03

    In this work a novel capillary electrophoresis-mass spectrometry (CE-MS) based method was developed and validated for the assay of β-secretase (BACE1) activity as a potential target for Alzheimer's disease (AD) treatment. In contrast with the typically used Förster resonance energy transfer (FRET) assays, an unlabelled decapeptide derived from the amyloid precursor protein BACE1 site with the "Swedish mutation" was used as the substrate. The CE usage enabled the enzymatic reaction to be carried out in as small a volume as 100μL in 60min with sufficient yields of proteolytic product, which was subsequently separated in a bare fused silica capillary using 12.5% acetic acid as a background electrolyte and detected by MS. The limits of detection and quantitation were estimated using the signal to noise ratio to be 5nM (S/N=3) and 15nM (S/N=10), respectively, both being well below the working range for kinetic and inhibition studies. Its applicability for the kinetic study of BACE1 was demonstrated using optimized enzyme assay conditions and the estimated kinetic parameter values were confirmed by classic CE-UV analyses. The method was finally used for the main purpose for which it was developed - to screen BACE1 inhibitors as potential AD therapeutics. The resulting kinetic and inhibition parameters values were compared to those published in the literature, which were almost exclusively obtained by FRET based assays. These comparisons brought up several issues that are further discussed below and favour the application of an unlabelled substrate. The proposed CE-MS based method offers a high-throughput capability for new drug development.

  11. Development of a method for the analysis of drugs of abuse in vitreous humor by capillary electrophoresis with diode array detection (CE-DAD).

    PubMed

    Costa, Jose Luiz; Morrone, Andre Ribeiro; Resende, Rodrigo Ribeiro; Chasin, Alice Aparecida da Matta; Tavares, Marina Franco Maggi

    2014-01-15

    This work presents the development of an analytical method based on capillary electrophoresis with diode array detection for the analysis of drugs of abuse and biotransformation products in vitreous humor. Composition of the background electrolyte, implementation of an online pre-concentration strategy and sample preparation procedures were objects of study. The complete electrophoretic separation of 12 analytes (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyethylamphetamine (MDEA), ketamine, cocaine, cocaethylene, lidocaine, morphine, 6-monoacetylmorphine and heroin) and the internal standard N-methyl-1-(3,4-methylenedioxyphenyl)-2-butamine (MBDB) was obtained within 13min of run. The method was validated presenting good linearity (r(2)>0.99), recovery ≥90%, precision better than 12% RSD and acceptable accuracy in the range of 86-118% at three concentration levels (50, 100 and 500ng/mL). LODs and LOQs in the order of 1-5ng/mL and 5-10ng/mL, respectively, were obtained. After validation, the method was applied to eighty-seven vitreous humor samples and the results were compared to those obtained by a liquid chromatography tandem mass spectrometry (LC-MS/MS) screening method, routinely used by the forensic toxicology laboratory of the Sao Paulo State Police, Brazil. Cocaine was detected in 7.1%, cocaethylene in 3.6%, lidocaine in 2.4% and ketamine in 1.2% of the total number of analyzed samples.

  12. Analysis of Common Household Cleaner-Disinfectants by Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Gardner, William P.; Girard, James E.

    2000-10-01

    The use of capillary electrophoresis (CE) as an analytical technique in research, industrial, and commercial laboratories is growing rapidly. It is therefore very important to expose undergraduate instrumental analysis students to capillary electrophoresis. In this report we describe the CE analysis for benzalkonium compounds in common household cleaners and disinfectants. The surfactant nature of the benzalkonium compounds is the key consideration in performing the analysis, and modifications to the CE running buffer must be performed in order to successfully analyze the products. This experiment also illustrates the importance of (i) using peak areas corrected for variations in migration time to improve accuracy and (ii) using internal standards to improve the precision of capillary electrophoresis results.

  13. Interlaboratory study to evaluate the robustness of capillary electrophoresis-mass spectrometry for peptide mapping.

    PubMed

    Wenz, Christian; Barbas, Coral; López-Gonzálvez, Ángeles; Garcia, Antonia; Benavente, Fernando; Sanz-Nebot, Victoria; Blanc, Tim; Freckleton, Gordon; Britz-McKibbin, Philip; Shanmuganathan, Meera; de l'Escaille, Francois; Far, Johann; Haselberg, Rob; Huang, Sean; Huhn, Carolin; Pattky, Martin; Michels, David; Mou, Si; Yang, Feng; Neusuess, Christian; Tromsdorf, Nora; Baidoo, Edward E K; Keasling, Jay D; Park, SungAe Suhr

    2015-07-06

    A collaborative study on the robustness and portability of a capillary electrophoresis-mass spectrometry method for peptide mapping was performed by an international team, consisting of 13 independent laboratories from academia and industry. All participants used the same batch of samples, reagents and coated capillaries to run their assays, whereas they utilized the capillary electrophoresis-mass spectrometry equipment available in their laboratories. The equipment used varied in model, type and instrument manufacturer. Furthermore, different types of sheath-flow capillary electrophoresis-mass spectrometry interfaces were used. Migration time, peak height and peak area of ten representative target peptides of trypsin-digested bovine serum albumin were determined by every laboratory on two consecutive days. The data were critically evaluated to identify outliers and final values for means, repeatability (precision within a laboratory) and reproducibility (precision between laboratories) were established. For relative migration time the repeatability was between 0.05 and 0.18% RSD and the reproducibility between 0.14 and 1.3% RSD. For relative peak area repeatability and reproducibility values obtained were 3-12 and 9-29% RSD, respectively. These results demonstrate that capillary electrophoresis-mass spectrometry is robust enough to allow a method transfer across multiple laboratories and should promote a more widespread use of peptide mapping and other capillary electrophoresis-mass spectrometry applications in biopharmaceutical analysis and related fields.

  14. Experimental design-based development and single laboratory validation of a capillary zone electrophoresis method for the determination of the artificial sweetener sucralose in food matrices.

    PubMed

    McCourt, Josephine; Stroka, Joerg; Anklam, Elke

    2005-07-01

    A capillary zone electrophoresis (CZE) method, optimised chemometrically, underwent a complete in-house validation protocol for the qualification and quantification of sucralose in various foodstuffs. Separation from matrix components was obtained in a dinitrobenzoic acid (3 mM)/sodium hydroxide (20 mM) background electrolyte with a pH of 12.1, a potential of 0.11 kV cm(-1) and a temperature of 22 degrees C. Detection was achieved at 238 nm by indirect UV. Screening, optimisation and robustness testing were all carried out with the aid of experimental design. Using standard addition calibration, the CZE method has been applied to still, carbonated and alcoholic beverages, yoghurts and hard-boiled candy. The method allows the detection of sucralose at >30 mg kg(-1), with a linearity range of 50-500 mg kg(-1), making it suitable for implementation of the recently amended "Sweeteners for use in foodstuffs" Directive (European Parliament and Council (2003) Off J L237:3-12), which set maximum usable doses of sucralose for many foodstuffs, most ranging from 200 mg kg(-1) to 450 mg kg(-1).

  15. Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles.

    PubMed

    Qu, Haiou; Mudalige, Thilak K; Linder, Sean W

    2016-01-15

    Speciation and accurate quantification of ionic silver and metallic silver nanoparticles are critical to investigate silver toxicity and to determine the shelf-life of products that contain nano silver under various storage conditions. We developed a rapid method for quantification of silver ions and silver nanoparticles using capillary electrophoresis (CE) interfaced with inductively-coupled plasma mass spectrometry (ICPMS). The addition of 2-mercaptopropionylglycine (tiopronin) to the background electrolyte was used to facilitate the chromatographic separation of ionic silver and maintain the oxidation state of silver. The obtained limits of detection were 0.05 μg kg(-1) of silver nanoparticles and 0.03 μg kg(-1) of ionic silver. Nanoparticles of varied sizes (10-110 nm) with different surface coating, including citrate acid, lipoic acid, polyvinylpyrrolidone and bovine serum albumin (BSA) were successfully analyzed. Particularly good recoveries (>93%) were obtained for both ionic silver and silver nanoparticle in the presence of excess amount of BSA. The method was further tested with six commercially available dietary supplements which varied in concentration and matrix components. The summed values of silver ions and silver nanoparticles correlated well with the total silver concentration determined by ICPMS after acid digestion. This method can serve as an alternative to cloud point extraction technique when the extraction efficiency for protein coated nanoparticles is low.

  16. A simple method for determination of erythritol, maltitol, xylitol, and sorbitol in sugar-free chocolates by capillary electrophoresis with capacitively coupled contactless conductivity detection.

    PubMed

    Coelho, Aline Guadalupe; de Jesus, Dosil Pereira

    2016-11-01

    In this work, a novel and simple analytical method using capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C(4) D) is proposed for the determination of the polyols erythritol, maltitol, xylitol, and sorbitol in sugar-free chocolate. CE separation of the polyols was achieved in less than 6 min, and it was mediated by the interaction between the polyols and the borate ions in the background electrolyte, forming negatively charged borate esters. The extraction of the polyols from the samples was simply obtained using ultra-pure water and ultrasonic energy. Linearity was assessed by calibration curves that showed R(2) varying from 0.9920 to 0.9976. The LOQs were 12.4, 15.9, 9.0, and 9.0 μg/g for erythritol, maltitol, xylitol, and sorbitol, respectively. The accuracy of the method was evaluated by recovery tests, and the obtained recoveries varied from 70 to 116% with standard deviations ranging from 0.2 to 19%. The CE-C(4) D method was successfully applied for the determination of the studied polyols in commercial samples of sugar-free chocolate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development of a fast capillary electrophoresis-time-of-flight mass spectrometry method for the speciation of organotin compounds under separation conditions of high electrical field strengths.

    PubMed

    Malik, Ashok Kumar; Grundmann, Marco; Matysik, Frank-Michael

    2013-11-15

    A novel approach has been developed for the separation of organotin species with capillary electrophoresis hyphenated to time-of-flight mass spectrometry. It has been applied to the development of a method for the determination and speciation of organotin compounds namely, dibutyltin (DBT), tributyltin (TBT), diphenyltin (DPT) and triphenyltin (TPT) in water samples. Experiments were made with a special laboratory constructed CE instrument. A non-aqueous buffer system compatible with TOF-MS has been developed using ammonium acetate-acetic acid (50 mM and 1 M) in acetonitrile: methanol (80:20). The total analysis time is less than 3 min for these compounds under the conditions developed. The method has been applied successfully to the determination of these compounds in river water samples. Detection limits of the CE-TOF-MS method were between 1 and 8×10(-7) M, and between 2 and 11×10(-9) M (0.46 to 3.2 µg L(-1)) when used in conjunction with solid phase extraction. The short analysis time as well as good sensitivity and selectivity make it a useful approach for the fast screening of organotin compounds.

  18. Development and Validation of a Micellar Capillary Electrophoresis Method for Determination of IFNβ-1b in Lyophilized Formulation of a Biosimilar Product.

    PubMed

    Dadgarnejad, Manuchehr; Rastegar, Hosein; Ilka, Hooshmand; Shekarchi, Maryam; Adib, Nooshin; Alebouyeh, Mahmood; Keypour, Nadia; Shoeibi, Shahram; Kobarfard, Farzad; Fazeli, Mohammad Reza

    2015-01-01

    Human interferons (IFNs) are key cytokines secreted by immune system. They have several effects such as antiviral and anti tumors activity, activating immune cells and healing of multiple sclerosis. The type IFNs present in humans are α ,β and Υ. IFN β is a polypeptide, normally produced by fibroblasts and seems to be more species-specific than IFN. Structural properties of IFNs are important for their biologic effects. There are a few analytical techniques for separation, identification and determination of IFNs in its formulations such as mass spectroscopy, RP-HPLC and capillary electrophoresis (CE). In this study we used Micellar Electrokinetic Chromatography (MEKC) as a unique mode of CE because of its capability to separate neutral as well as charged solutes. We used sodium tetraborate (Borax) as buffer without any modifier and sodium dodecyl sulfate (SDS) as surfactant. The optimum MECK running buffer consisted of Borate 50 Mm; SDS 20 mM pH =9.6. The validated method was used for determination of the IFN β-1b formulation which is manufactured in Iran. From 9 collected different batches, all of them had acceptable potency as claimed on their label with average 102.25 ±10.030 %. This is the first time that a MEKC method is introduced for quantification of IFN β-1b in its pharmaceutical dosage forms. The method is reliable safe, rapid and accurate.

  19. Bundled capillary electrophoresis using microstructured fibres.

    PubMed

    Rogers, Benjamin; Gibson, Graham T T; Oleschuk, Richard D

    2011-01-01

    Joule heating, arising from the electric current passing through the capillary, causes many undesired effects in CE that ultimately result in band broadening. The use of narrow-bore capillaries helps to solve this problem as smaller cross-sectional area results in decreased Joule heating and the rate of heat dissipation is increased by the larger surface-to-volume ratio. Issues arising from such small capillaries, such as poor detection sensitivity, low loading capacity and high flow-induced backpressure (complicating capillary loading) can be avoided by using a bundle of small capillaries operating simultaneously that share buffer reservoirs. Microstructured fibres, originally designed as waveguides in the telecommunication industry, are essentially a bundle of parallel ∼5 μm id channels that extend the length of a fibre having otherwise similar dimensions to conventional CE capillaries. This work presents the use of microstructured fibres for CZE, taking advantage of their relatively high surface-to-volume ratio and the small individual size of each channel to effect highly efficient separations, particularly for dye-labelled peptides.

  20. [Application of coating technology in capillary electrophoresis for chiral separation].

    PubMed

    Wang, Bingxiang; Chai, Weibo; Tang, Anna; Ding, Guosheng

    2015-04-01

    Chirality is one of the intrinsic attributes of the nature. Chiral separation and analysis are of great importance in many research fields, such as life science, environmental science, biological engineering and pharmaceutical engineering. Currently, chiral capillary electrophoresis technique used for the enantioselective resolution of different kinds of racemates has become one of the most distinctive research and application fields. However, the adsorption of the analytes (or chiral selectors) on the inner wall of the capillary is a common problem in capillary electrophoresis chiral separation. Coating technology, namely modification of the inner wall of the capillary, is the simplest and most effective way to suppress disadvantageous adsorption, and to improve the separation efficiency and analysis repeatability. In this review, the recent applications of different coating procedures in chiral analysis are presented, and the future developments in this field are also prospected.

  1. Laser-based ultraviolet absorption detection in capillary electrophoresis

    SciTech Connect

    Xue, Y.; Yeung, E.S. )

    1994-04-01

    Laser-based UV absorption in capillary electrophoresis is demonstrated. The use of vacuum photodiodes and an all-electronic noise canceller provides adequate baseline stability despite the large inherent intensity noise in UV lasers. A 4-fold improvement in the detection limit is achieved in comparison to that of commercial instruments. The main advantage here is the better optical coupling with small capillary tubes, maximizing the available optical pathlength for absorption.

  2. A novel clean-up method for urine analysis of low-molecular mass aldehydes by capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Baños, Clara Eugenia; Silva, Manuel

    2011-05-15

    A rapid clean-up method using ultra-filtration was developed to remove sample matrix in the determination of low-molecular mass aldehydes in human urine. The ensuing filtrate was derivatized with fluorescein 5-thiosemicarbazide and the labelled aldehydes determined by capillary zone electrophoresis with laser-induced fluorescence detection. Practical aspects related to the effect of the urine sample matrix on the label chemistry and the electrophoretic separation showed that the urine samples must be diluted 20-fold after their ultra-filtration. By using synthetic urine, linear ranges were established in the range of 15-5000 μg/l with limits of detection between 4.5 and 9 μg/l. The intra- and inter-assay precision (relative standard deviation, %) of the aldehydes ranged from 4.1% to 8.4% and 6.1%-9.6%, respectively, and the average specific uncertainty was 149±12 ng. The average recoveries performed on two levels by enriching synthetic urine samples ranged between 94% and 100%. Finally, the proposed method was applied to check low-molecular mass aldehydes in the human urine of a female volunteer to obtain information about the risk in her exposure to these chemicals in the workplace. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Internal standard method for the measurement of doxorubicin and daunorubicin by capillary electrophoresis with in-column double optical-fiber LED-induced fluorescence detection.

    PubMed

    Yang, Xiupei; Gao, Huanhuan; Qian, Fan; Zhao, Chuan; Liao, Xiangjun

    2016-01-05

    An internal standard method has been developed for the simultaneous determination of anthracycline antibiotics, doxorubicin (DOX) and daunorubicin (DAN), in rabbit plasma using capillary electrophoresis (CE) with in-column double optical-fiber LED-induced fluorescence detection (CE-ICDOF-LED-FLD). Rhodamine B (RhB) was selected as an internal standard because its emission wavelength is similar to that of the anthracycline antibiotics. Parameters including buffer pH, buffer concentration, organic solvents and separation voltage have been investigated to explore the sensitivity and separation efficiency of DOX and DAN. The optimal electrophoretic separation conditions were a borate buffer (15 mM, pH 9.0) containing 50% acetonitrile (v/v), 10 s hydrodynamic injection at a height of 20 cm and a separation voltage of 15 kV. The developed CE-ICDOF-LED-FLD method provides limits of detection of 18 and 13 ng/mL for DOX and DAN in rabbit plasma samples, respectively. The recoveries ranging from 93.7 to 104.8% and the relative standard deviations at 1.1-1.7% were achieved for DOX and DAN in spiked rabbit plasma samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Validation of a capillary zone electrophoresis method for determination of rimantadine hydrochloride in Rimantadin100 tablets and the method application to dissolution test monitoring.

    PubMed

    Pazourek, J; Revilla, A L; Gajdosová, D; Havel, J

    2004-02-01

    A capillary zone electrophoretic method with indirect UV-detection for determination of rimantadine, an antiviral drug against influenza A, in tablets was validated. Instrumental precision, the method precision, accuracy, calibration curve linearity, selectivity, robustness, and time stability of the sample and the standard were tested. The method was also applied to monitor dissolution tests of the tablets. The possibility of addition of an internal standard for improvement of the method precision was discussed.

  5. Nanomaterial surface chemistry design for advancements in capillary electrophoresis modes.

    PubMed

    Ivanov, Michael R; Haes, Amanda J

    2011-01-07

    Tailored surface chemistry impacts nanomaterial function and stability in applications including in various capillary electrophoresis (CE) modes. Although colloidal nanoparticles were first integrated as colouring agents in artwork and pottery over 2000 years ago, recent developments in nanoparticle synthesis and surface modification increased their usefulness and incorporation in separation science. For instance, precise control of surface chemistry is critically important in modulating nanoparticle functionality and stability in dynamic environments. Herein, recent developments in nanomaterial pseudostationary and stationary phases will be summarized. First, nanomaterial core and surface chemistry compositions will be classified. Next, characterization methods will be described and related to nanomaterial function in various CE modes. Third, methods and implications of nanomaterial incorporation into CE will be discussed. Finally, nanoparticle-specific mechanisms likely involved in CE will be related to nanomaterial surface chemistry. Better understanding of surface chemistry will improve nanoparticle design for the integration into separation techniques.

  6. Use of capillary electrophoresis for monitoring citrus juice composition.

    PubMed

    Cancalon, P F; Bryan, C R

    1993-10-22

    New trends in adulteration monitoring, favor the development of methods analyzing simultaneously as many compounds as possible. Capillary electrophoresis has been applied to the examination of a broad spectrum of citrus juice molecules that absorb in the UV and in the visible light. Depending on the conditions up to thirty compounds could be separated. The identified molecules included phenolic amines, amino acids, flavonoids, polyphenols and vitamin C. Samples can be analyzed without specific preparation and the best separations were obtained with diluted solutions due to a stacking effect. This method has been applied to the comparison of pure orange juice and pulpwash, a major adulterant of orange juice. Several significant quantitative differences were seen and it is hoped that this procedure will provide a more precise way of estimating pulpwash in orange juice.

  7. Determination of thioglycolic acid in cosmetics by capillary electrophoresis.

    PubMed

    Xie, Na; Ding, Xiaojing; Wang, Xinyu; Wang, Ping; Zhao, Shan; Wang, Zhi

    2014-01-01

    A new and simple method for the accurate determination of thioglycolic acid (TGA) in cosmetics was developed using capillary electrophoresis (CE) with diode array detection at 236nm. The CE separation was performed on an uncoated fused silica capillary with a separation buffer solution containing 300mmolL(-1) tri-sodium phosphate and 0.5mmolL(-1) cetyltrimethylammonium bromide at a voltage of -5kV. Both the intra- and inter-day precisions of the method were 1.4%. The calibration curve between the corrected peak areas and the concentrations of the TGA was linear within the concentration range of 0.006-1.0mgmL(-1) with a correlation coefficient (r) of 0.9998. The limit of detection and limit of quantitation were 0.002mgmL(-1) (S/N=3) and 0.006mgmL(-1) (S/N=10), respectively. The average recoveries at the spiked levels of 0.125, 0.250 and 0.500mgmL(-1) were 96.9%, 102.3% and 94.0% with the relative standard derivations of 2.1%, 3.9% and 2.2%, respectively. The method was cross-validated by both high performance liquid chromatographic and ion chromatographic method. Eighty-five commercial depilatory creams and hair-treatment products were analyzed with satisfactory results. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  8. Comparative Study of Three Methods for Affinity Measurements: Capillary Electrophoresis Coupled with UV Detection and Mass Spectrometry, and Direct Infusion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mironov, Gleb G.; Logie, Jennifer; Okhonin, Victor; Renaud, Justin B.; Mayer, Paul M.; Berezovski, Maxim V.

    2012-07-01

    We present affinity capillary electrophoresis and mass spectrometry (ACE-MS) as a comprehensive separation technique for label-free solution-based affinity analysis. The application of ACE-MS for measuring affinity constants between eight small molecule drugs [ibuprofen, s-flurbiprofen, diclofenac, phenylbutazone, naproxen, folic acid, resveratrol, and 4,4'-(propane-1,3-diyl) dibenzoic acid] and β-cyclodextrin is described. We couple on-line ACE with MS to combine the separation and kinetic capability of ACE together with the molecular weight and structural elucidation of MS in one system. To understand the full potential of ACE-MS, we compare it with two other methods: Direct infusion mass spectrometry (DIMS) and ACE with UV detection (ACE-UV). After the evaluation, DIMS provides less reliable equilibrium dissociation constants than separation-based ACE-UV and ACE-MS, and cannot be used solely for the study of noncovalent interactions. ACE-MS determines apparent dissociation constants for all reacting small molecules in a mixture, even in cases when drugs overlap with each other during separation. The ability of ACE-MS to interact, separate, and rapidly scan through m/z can facilitate the simultaneous affinity analysis of multiple interacting pairs, potentially leading to the high-throughput screening of drug candidates.

  9. Screening method of carbohydrate-binding proteins in biological sources by capillary affinity electrophoresis and its application to determination of Tulipa gesneriana agglutinin in tulip bulbs.

    PubMed

    Nakajima, Kazuki; Kinoshita, Mitsuhiro; Oda, Yasuo; Masuko, Takashi; Kaku, Hanae; Shibuya, Naoto; Kakehi, Kazuaki

    2004-09-01

    We developed capillary affinity electrophoresis (CAE) to analyze the molecular interaction between carbohydrate chains and proteins in solution state. A mixture of oligosaccharides derived from a glycoprotein was labeled with 8-aminopyrene-1,3,6-trisulfonate (APTS), and used as glycan library without isolation. Interaction of a carbohydrate-binding protein with each oligosaccharide in the mixture could be simultaneously observed, and relative affinities of oligosaccharides toward the protein were accurately determined. In this study, we applied CAE to detect the presence of lectins in some plants (Japanese elderberry bark and tulip bulb). In the crude extract of the elderberry bark, binding activity toward sialo-carbohydrate chains could be easily detected. We also examined the presence of lectins in the crude extract of tulip bulbs and determined the detailed carbohydrate-binding specificity of Tulipa gesneriana agglutinin (TGA), one of the lectins from tulip bulbs. Kinetic studies demonstrated that TGA showed novel carbohydrate-binding specificity and preferentially recognized triantennary oligosaccharides with Gal residues at nonreducing termini and a Fuc residue linked through alpha(1-6) linkage at chitobiose portion of the reducing termini but not tetraantennary carbohydrates. The results described here indicate that CAE will be a valuable method for both screening of lectins in natural sources and determination of their detailed carbohydrate-binding specificities.

  10. Multivariate optimization and validation of a capillary electrophoresis method for the simultaneous determination of dextromethorphan hydrobromur, phenylephrine hydrochloride, paracetamol and chlorpheniramine maleate in a pharmaceutical preparation using response surface methodology.

    PubMed

    Palabiyik, I Murat; Onur, Feyyaz

    2010-01-01

    A fast, accurate, precise and sensitive capillary electrophoresis method for the simultaneous determination of dextromethorphan hydrobromide, phenylephrine hydrochloride, paracetamol and chlorpheniramine maleate has been developed. Response surface methodology with a central composite design was used for optimization of the concentration of the buffer, pH of the buffer and applied voltage. Therefore, working with Na(2)HPO(4) buffer (pH 8.00, 0.01 M) at 20 kV as an applied voltage in the capillary electrophoresis method were found to be suitable; under these optimal conditions, these four active ingredients were separated in about 7 min. This developed method was validated and successfully applied to a pharmaceutical preparation, sugar-coated tablet, and the results were compared with a high-performance liquid chromatographic method developed by us.

  11. Analysis of Anions in Ambient Aerosols by Microchip Capillary Electrophoresis

    SciTech Connect

    Liu, Yan; MacDonald, David A.; Yu, Xiao-Ying; Hering, Susanne V.; Collett, Jeffrey L.; Henry, Charles S.

    2006-10-01

    We describe a microchip capillary electrophoresis method for the analysis of nitrate and sulfate in ambient aerosols. Investigating the chemical composition of ambient aerosol particles is essential for understanding their sources and effects. Significant progress has been made towards developing mass spectrometry-based instrumentation for rapid qualitative analysis of aerosols. Alternative methods for rapid quantification of selected high abundance compounds are needed to augment the capacity for widespread routine analysis. Such methods could provide much higher temporal and spatial resolution than can be achieved currently. Inorganic anions comprise a large percentage of particulate mass with nitrate and sulfate among the most abundant species. While ion chromatography has proven very useful for analyzing extracts of time-integrated ambient aerosol samples collected on filters and for semi-continuous, on-line particle composition measurements, there is a growing need for development of new compact, inexpensive approaches to routine on-line aerosol ion analysis for deployment in spatially dense, atmospheric measurement networks. Microchip capillary electrophoresis provides the necessary speed and portability to address this need. In this report, on-column contact conductivity detection is used with hydrodynamic injection to create a simple microchip instrument for analysis of nitrate and sulfate. On-column contact conductivity detection was achieved using a Pd decoupler placed upstream from the working electrodes. Microchips containing two Au or Pd working electrodes showed a good linear range (5-500 µM) and low limits-of-detection for sulfate and nitrate with Au providing the lowest detection limits (1 µM) for both ions. The completed microchip system was used to analyze ambient aerosol filter samples. Nitrate and sulfate concentrations measured by the microchip matched the concentrations measured by ion chromatography.

  12. Analysis of anions in ambient aerosols by microchip capillary electrophoresis.

    PubMed

    Liu, Yan; MacDonald, David A; Yu, Xiao-Ying; Hering, Susanne V; Collett, Jeffrey L; Henry, Charles S

    2006-11-01

    We describe a microchip capillary electrophoresis method for the analysis of nitrate and sulfate in ambient aerosols. Investigating the chemical composition of ambient aerosol particles is essential for understanding their sources and effects. Significant progress has been made towards developing mass spectrometry-based instrumentation for rapid qualitative analysis of aerosols. Alternative methods for rapid quantification of selected high abundance compounds are needed to augment the capacity for widespread routine analysis. Such methods could provide much higher temporal and spatial resolution than can be achieved currently. Inorganic anions comprise a large percentage of particulate mass, with nitrate and sulfate among the most abundant species. While ion chromatography has proven very useful for analyzing extracts of time-integrated ambient aerosol samples collected on filters and for semi-continuous, on-line particle composition measurements, there is a growing need for development of new compact, inexpensive approaches to routine on-line aerosol ion analysis for deployment in spatially dense, atmospheric measurement networks. Microchip capillary electrophoresis provides the necessary speed and portability to address this need. In this report, on-column contact conductivity detection is used with hydrodynamic injection to create a simple microchip instrument for analysis of nitrate and sulfate. On-column contact conductivity detection was achieved using a Pd decoupler placed upstream from the working electrodes. Microchips containing two Au or Pd working electrodes showed a good linear range (5-500 microM) and low limits-of-detection for sulfate and nitrate, with Au providing the lowest detection limits (1 microM) for both ions. The completed microchip system was used to analyze ambient aerosol filter samples. Nitrate and sulfate concentrations measured by the microchip matched the concentrations measured by ion chromatography.

  13. Determination of phytohormones of environmental impact by capillary zone electrophoresis.

    PubMed

    Segura Carretero, A; Cruces-Blanco, C; Soriano Peña, M; Cortacero Ramírez, S; Fernández Gutiérrez, A

    2004-03-24

    A test mixture of five phytohormones [naphthaleneacetic acid (NAA), naphthoxyacetic acid (NOA), indoleacetic acid (IAA), indolebutyric acid (IBA), and indolepropionic acid (IPA)] was investigated. These compounds were cleanly separated with good resolution by capillary zone electrophoresis with a UV diode array detector using 20 mM sodium phosphate buffer (pH 7.25). The lowest detection limit was obtained for IPA (0.45 mg L(-)(1) or 0.005 mg kg(-)(1)) and the highest for NAA (1.04 mg L(-)(1) or 0.014 mg kg(-)(1)). The method has been applied for tomato samples fortified with the five phytohormones using a liquid-liquid extraction procedure, obtaining recovery percentages ranging from 91 to 109.0%.

  14. Chiral separation of metalaxyl by capillary zone electrophoresis using cyclodextrins.

    PubMed

    Santilio, Angela; D'Amato, Marilena; Cataldi, Lucilla; Sorbo, Angela; Dommarco, Roberto

    2006-01-01

    A simple and reliable analytical procedure using capillary electrophoresis with UV absorbance detection for the direct enantiomeric resolution and quantitation of chiral fungicide metalaxyl is described. Several native cyclodextrins and modified beta-cyclodextrins were investigated as chiral additives to 50 mM sodium tetraborate buffer pH 9.3. The effect of their concentration on the resolution of metalaxyl enantiomeric forms was studied. The best results were achieved when 55 mM succynyl-beta-cyclodextrin in 50 mM sodium tetraborate buffer pH 9.3 was used. The optimized method showed satisfactory intraday repeatability as far as relative migration times and relative peak areas are concerned, with a detection limit of 0.1 mM for both enantiomers, and has been successfully applied to the analysis of a real plant protection product containing metalaxyl-M (metalaxyl R-form) as active ingredient.

  15. GUcal: An integrated application for capillary electrophoresis based glycan analysis.

    PubMed

    Jarvas, Gabor; Szigeti, Marton; Guttman, Andras

    2015-12-01

    Recent emergence in the use of monoclonal antibody therapeutics and other glycoprotein biopharmaceuticals requires high-throughput, robust, and automated techniques for their glycosylation analysis. Capillary electrophoresis is one of the high-performance methods of choice; however, while the necessary instrumentation is well developed, the related bioinformatics tools are lacked behind. In this paper, we introduce an integrated toolset dubbed as GUcal, to automatically calculate the glucose unit (GU) values for all sample components of interest in an electropherogram with a concomitant database search for structural assignment. The database comprises CE GUs and suggested structures of N-glycans released from human IgG. The app is freely available online (www.lendulet.uni-pannon.hu/gucal) and readily facilitates CE-based glycan analysis.

  16. [Determination of glutamic acid in biological material by capillary electrophoresis].

    PubMed

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A

    2015-01-01

    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  17. Separation of ions in acidic solution by capillary electrophoresis

    SciTech Connect

    Thornton, Michelle

    1997-10-08

    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  18. Determination of grepafloxacin and clinafloxacin by capillary zone electrophoresis.

    PubMed

    Navalón, Alberto; Araujo, Lilia; Prieto, Avismelsi; Vílchez, José Luis

    2002-05-25

    A simple and rapid capillary zone electrophoresis determination method with UV detection of grepafloxacin and clinafloxacin has been developed. The separation was performed in 35 mM borate-35 mM phosphate buffer solution (pH 8.6), containing 6% (v/v) of acetonitrile. Analyses were realised using fused-silica capillaries (57 cm length x 75 microm I.D.) and the operating conditions were: 15 kV applied voltage, 30 degrees C and detection at 279 nm. Piromidic acid was used as an internal standard. The linear concentration range of application was 1.0-120.0 microg ml(-1) for both compounds, with a detection limit of 0.2 microg ml(-1) for grepafloxacin and 0.3 microg ml(-1) for clinafloxacin. The analysis yielded good reproducibility (RSD between 3.37 and 1.74%). It was applied to the determination of grepafloxacin and clinafloxacin in human and rat urine samples. The method was validated using HPLC as a reference method. Recovery levels were between 94.5 and 103%.

  19. Capillary electrophoresis determination of loratadine and related impurities.

    PubMed

    Fernández, H; Rupérez, F J; Barbas, C

    2003-03-10

    While HPLC has traditionally been the method of choice for purity determination of pharmaceutical substances, capillary electrophoresis (CE) offers a different selectivity and hence it is a complementary technique to HPLC. Loratadine, an antihistamine, could include in its raw material seven impurities that ought to be separated, identified and quantified for drug development and quality control. As a complementary tool for undoubtful identification, a CE method has been developed. The separation was carried out with an uncoated fused-silica capillary (57 cm x 50 microm ID) and was operated at 20 kV potential. Temperature was maintained at 25 degrees C. The final separation buffer was prepared with 100 mM H(3)PO(4) made up to pH 2.5 with NaOH and with 10% acetonitrile added (v/v). Impurities can be detected at the 0.1% level of the active and validation parameters for linearity accuracy and precision are adequate for all the analytes and that permits to consider the method reliable and suitable for application to long-term stability and purity studies.

  20. Capillary electrophoresis of conidia from cultivated microscopic filamentous fungi.

    PubMed

    Horká, Marie; Růzicka, Filip; Kubesová, Anna; Holá, Veronika; Slais, Karel

    2009-05-15

    In immunocompromised people fungal agents are able to cause serious infections with high mortality rate. An early diagnosis can increase the chances of survival of the affected patients. Simultaneously, the fungi produce toxins and they are frequent cause of allergy. Currently, various methods are used for detection and identification of these pathogens. They use microscopic examination and growth characteristic of the fungi. New methods are based on the analysis of structural elements of the target microorganisms such as proteins, polysaccharides, glycoproteins, nucleic acids, etc. for the construction of antibodies, probes, and primers for detection. The above-mentioned methods are time-consuming and elaborate. Here hydrophobic conidia from the cultures of different strains of the filamentous fungi were focused and separated by capillary zone electrophoresis and capillary isoelectric focusing. The detection was optimized by dynamic modifying of conidia by the nonionogenic tenside on the basis of pyrenebutanoate. Down to 10 labeled conidia of the fungal strains were fluorometrically detected, and isoelectric points of conidia were determined. The observed isoelectric points were compared with those obtained from the separation of the cultured clinical samples, and they were found to be not host-specific.

  1. Analysis of methylene blue in human urine by capillary electrophoresis.

    PubMed

    Borwitzky, Holger; Haefeli, Walter E; Burhenne, Jürgen

    2005-11-05

    A capillary electrophoresis method for the determination of the dye methylene blue (tetramethylthionine, MB) in human urine depending on liquid/liquid-extraction and diode array detection has been developed, validated, and applied to samples of healthy individuals, who had been dosed with methylene blue within clinical studies. After extraction with dichloromethane and sodium hexanesulfonate, sample extracts were measured on an extended light path capillary. The dye was detected simultaneously at 292 and 592 nm using methylene violet 3 RAX as internal standard. The limit of quantification was 1.0 microg/ml. The accuracy of the method varied between -15.2 and +0.8% and the precision ranged from 2.0 to 12.0%. The method was linear at least within 1.0 and 60 microg/ml. In contrast to earlier indirect determinations no leuco methylene blue (LMB) was directly detected in urine, whereas in aqueous test solutions containing surplus amounts of ascorbic acid leuco methylene blue was well separated from MB in a single run.

  2. CAPILLARY ELECTROPHORESIS IMMUNOASSAY FOR 2,4-DICHLOROPHENOXYACETIC ACID

    EPA Science Inventory

    A capillary electrophoresis (CE) immunoassay format for 2,4-dichlorophenoxyacetic acid (2,4-D) is demonstrated. A fluorescent labeled 2,4-D analog competes with the analyte of interest for a finite number of binding sites provided by anti-2,4-D monoclonal antibodies. CE then pr...

  3. An aluminum heat sink and radiator for electrophoresis capillaries.

    PubMed

    Rapp, T L; Morris, M D

    1996-12-15

    An aluminum heat sink and radiator are used with forced air cooling of an electrophoresis capillary. Theoretical analyses of the operating limits and heat dissipation characteristics are presented. A system designed for power dissipation as high as 5 W is shown to dissipate heat efficiently and to operate without arcing at voltages higher than 30 kV.

  4. An Inexpensive Device for Capillary Electrophoresis with Fluorescence Detection

    ERIC Educational Resources Information Center

    Anderson, Greg; Thompson, Jonathan E.; Shurrush, Khriesto

    2006-01-01

    We describe an inexpensive device for performing capillary electrophoresis (CE) separations with fluorescence detection. As a demonstration of the device's utility we have determined the mass of riboflavin in a commercially available dietary supplement. The device allows for separation of riboflavin in [asymptotically equivalent to] 100 s with a…

  5. Capillary electrophoresis application in metal speciation and complexation characterization

    USDA-ARS?s Scientific Manuscript database

    Capillary electrophoresis is amenable to the separation of metal ionic species and the characterization of metal-ligand interactions. This book chapter reviews and discusses three representative case studies in applications of CE technology in speciation and reactions of metal with organic molecules...

  6. CAPILLARY ELECTROPHORESIS IMMUNOASSAY FOR 2,4-DICHLOROPHENOXYACETIC ACID

    EPA Science Inventory

    A capillary electrophoresis (CE) immunoassay format for 2,4-dichlorophenoxyacetic acid (2,4-D) is demonstrated. A fluorescent labeled 2,4-D analog competes with the analyte of interest for a finite number of binding sites provided by anti-2,4-D monoclonal antibodies. CE then pr...

  7. An Inexpensive Device for Capillary Electrophoresis with Fluorescence Detection

    ERIC Educational Resources Information Center

    Anderson, Greg; Thompson, Jonathan E.; Shurrush, Khriesto

    2006-01-01

    We describe an inexpensive device for performing capillary electrophoresis (CE) separations with fluorescence detection. As a demonstration of the device's utility we have determined the mass of riboflavin in a commercially available dietary supplement. The device allows for separation of riboflavin in [asymptotically equivalent to] 100 s with a…

  8. Capillary electrophoresis determination of antihistamines in serum and pharmaceuticals.

    PubMed

    Rambla-Alegre, Maria; Peris-Vicente, Juan; Esteve-Romero, Josep; Capella-Peiró, Maria-Elisa; Bose, Devasish

    2010-05-07

    A capillary electrophoresis (CE) procedure combined with UV detection has proved useful for the quantification of the most frequently prescribed antihistamines corresponding to the ethylendiamine, ethanolamine, propylamine, piperazine and other derivative groups in serum samples and pharmaceuticals. Discussions have focused primarily on the optimisation of the separation conditions by considering the following experimental parameters: pH, pressure injection and voltage; under the criteria of maximum resolution and minimum analysis time. The optimised parameters for the determination of antihistamines were a 24 cm capillary (effective length), UV detection at 214 nm, 20 mM phosphate running buffer at pH 2.0, 2 psi s(-1) injection pressure and 5 kV applied voltage. Under these conditions, the analysis time was below 10 min. The proposed method was validated according to the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines. The limits of detection and quantification were in the ranges of 4-28 and 40-250 ng L(-1), respectively. Intra- and inter-day precision were tested at three different concentrations of the drugs, obtaining RSD values lower than 3% in most cases. The method was robust (RSD<5.6%), simple, specific and suitable for the practical determination of antihistamines in serum samples and pharmaceuticals with high recoveries (95.7-102.9%) without interferences.

  9. Capillary electrophoresis for the analysis of tropane alkaloids: pharmaceutical and phytochemical applications.

    PubMed

    Mateus, L; Cherkaoui, S; Christen, P; Veuthey, J L

    1998-12-01

    Three capillary electrophoresis methods, using UV detection, were developed for the simultaneous determination of several tropane alkaloids, including atropine, scopolamine and synthetic derivatives. After optimization, the validated capillary zone electrophoresis methods were applied to the determination of these compounds in various pharmaceutical forms, such as ophthalmic and injection solutions, tablets, suppositories and aerosols. Capillary electrophoresis in the micellar mode was found to be more appropriate for the analysis of hyoscyamine and scopolamine in plant material. These two compounds are generally found together with other tropane alkaloids which present similar structures and charge to mass ratio. Furthermore, the separation of positional isomers, such as hyoscyamine and littorine generally encountered in plant extracts, was also considered. The developed method was applied to the analysis of hairy root extracts of Datura candida x Datura aurea, Datura quercifolia and Hyoscyamus albus.

  10. Determination of preservatives in soft drinks by capillary electrophoresis with ionic liquids as the electrolyte additives.

    PubMed

    Sun, Bingbing; Qi, Li; Wang, Minglin

    2014-08-01

    A capillary electrophoresis method for separating preservatives with various ionic liquids as the electrolyte additives has been developed. The performances for separation of the preservatives using five ionic liquids with different anions and different substituted group numbers on imidazole ring were studied. After investigating the influence of the key parameters on the separation (the concentration of ionic liquids, pH, and the concentration of borax), it has been found that the separation efficiency could be improved obviously using the ionic liquids as the electrolyte additives and tested preservatives were baseline separated. The proposed capillary electrophoresis method exhibited favorable quantitative analysis property of the preservatives with good linearity (r(2) = 0.998), repeatability (relative standard deviations ≤ 3.3%) and high recovery (79.4-117.5%). Furthermore, this feasible and efficient capillary electrophoresis method was applied in detecting the preservatives in soft drinks, introducing a new way for assaying the preservatives in food products.

  11. An integrated quality by design and mixture-process variable approach in the development of a capillary electrophoresis method for the analysis of almotriptan and its impurities.

    PubMed

    Orlandini, S; Pasquini, B; Stocchero, M; Pinzauti, S; Furlanetto, S

    2014-04-25

    The development of a capillary electrophoresis (CE) method for the assay of almotriptan (ALM) and its main impurities using an integrated Quality by Design and mixture-process variable (MPV) approach is described. A scouting phase was initially carried out by evaluating different CE operative modes, including the addition of pseudostationary phases and additives to the background electrolyte, in order to approach the analytical target profile. This step made it possible to select normal polarity microemulsion electrokinetic chromatography (MEEKC) as operative mode, which allowed a good selectivity to be achieved in a low analysis time. On the basis of a general Ishikawa diagram for MEEKC methods, a screening asymmetric matrix was applied in order to screen the effects of the process variables (PVs) voltage, temperature, buffer concentration and buffer pH, on critical quality attributes (CQAs), represented by critical separation values and analysis time. A response surface study was then carried out considering all the critical process parameters, including both the PVs and the mixture components (MCs) of the microemulsion (borate buffer, n-heptane as oil, sodium dodecyl sulphate/n-butanol as surfactant/cosurfactant). The values of PVs and MCs were simultaneously changed in a MPV study, making it possible to find significant interaction effects. The design space (DS) was defined as the multidimensional combination of PVs and MCs where the probability for the different considered CQAs to be acceptable was higher than a quality level π=90%. DS was identified by risk of failure maps, which were drawn on the basis of Monte-Carlo simulations, and verification points spanning the design space were tested. Robustness testing of the method, performed by a D-optimal design, and system suitability criteria allowed a control strategy to be designed. The optimized method was validated following ICH Guideline Q2(R1) and was applied to a real sample of ALM coated tablets.

  12. Imaging Catalytic Surfaces by Multiplexed Capillary Electrophoresis With Absorption Detection

    SciTech Connect

    Christodoulou, Michael

    2002-01-01

    A new technique for in situ imaging and screening heterogeneous catalysts by using multiplexed capillary electrophoresis with absorption detection was developed. By bundling the inlets of a large number of capillaries, an imaging probe can be created that can be used to sample products formed directly from a catalytic surface with high spatial resolution. In this work, they used surfaces made of platinum, iron or gold wires as model catalytic surfaces for imaging. Various shapes were recorded including squares and triangles. Model catalytic surfaces consisting of both iron and platinum wires in the shape of a cross were also imaged successfully. Each of the two wires produced a different electrochemical product that was separated by capillary electrophoresis. Based on the collected data they were able to distinguish the products from each wire in the reconstructed image.

  13. Temperature profiles and heat dissipation in capillary electrophoresis.

    PubMed

    Evenhuis, Christopher J; Guijt, Rosanne M; Macka, Miroslav; Marriott, Philip J; Haddad, Paul R

    2006-04-15

    While temperature control is usually employed in capillary electrophoresis (CE) to aid heat dissipation and provide acceptable precision, internal electrolyte temperatures are almost never measured. In principle, this limits the accuracy, repeatability, and method robustness. This work presents a fundamental study that combines the development of new equations characterizing temperature profiles in CE with a new method of temperature determination. New equations were derived from first principles relating the mean, axial, and inner wall electrolyte temperatures (T(Mean), T(Axis), T(Wall)). T(Mean) was shown to occur at a distance 1/ radical3 times the internal radius of the capillary from the center of the capillary and to be a weighted average of (2/3)T(Axis) and (1/3)T(Wall). Conductance (G) and electroosmotic mobility (mu(EOF)) can be used to determine T(Mean) and T(Wall), respectively. Extrapolation of curves of mu(EOF) versus power per unit length (P/L) at different temperatures was used to calibrate the variation of mu(EOF) with temperature (T), free from Joule heating effects. mu(EOF) increased at 2.22%/ degrees C. The experimentally determined temperatures using mu(EOF) agreed to within 0.2 degrees C with those determined using G. The accuracy of G measurements was confirmed independently by measuring the electrical conductivity (kappa) of the bulk electrolyte over a range of temperatures and by calculating the variation of G with T from the Debye-Hückel-Onsager equation. T(Mean) was found to be up to 20 degrees C higher than the external temperature under typical conditions using active air-cooling and a 74.0-microm-internal diameter (di) fused-silica capillary. A combination of experimentally determined and calculated temperatures enables a complete temperature profile for a fused-silica capillary to be drawn and the thickness of the stationary air layer to be determined. As an example, at P/L = 1.00 Wm(-1), the determined radial temperature difference

  14. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol-gel modified inner capillary wall.

    PubMed

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan

    2017-09-29

    The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Examination of colour inkjet printing inks by capillary electrophoresis.

    PubMed

    Szafarska, Małgorzata; Wietecha-Posłuszny, Renata; Woźniakiewicz, Michał; Kościelniak, Paweł

    2011-06-15

    The possibility of comparing inkjet printing inks by micellar electrokinetic capillary electrophoresis (MECC) with diode array detection was studied. An analytical procedure was designed and successfully applied to discriminate between the electrophoretic profiles of inks (extracted from paper) produced by five well-known manufacturers. The separation process was conducted in a polyimide-coated fused silica capillary (ID 50 μm, 60 cm total/50 cm effective length) with +30 kV high voltage applied. Background electrolyte was used of the following optimum composition: 40 mM sodium borate buffer, 20mM sodium dodecyl sulphate(IV) (SDS) and 10% (v/v) acetonitrile (pH 9.56). The experimental conditions were adjusted in terms of resolution and analysis time. The best results were obtained at 10 and 25°C storage and capillary temperature, respectively, using 25 dots (ø 0.8mm) cut from printouts as the sample and BGE diluted with water (1:99, v/v) as the injecting solution. The MECC separation of main printing ink components by the proposed method showed excellent precision - the RSD value of the migration time calculated for each of the investigated peaks did not exceed 3.3%. The optimized method was applied to group identification and differentiation of: (a) three colours of printing inks, (b) inks from different manufacturers (Hewlett-Packard, Epson, Brother, Lexmark and Canon) and (c) inks from different printer models. In all these cases, inks were successfully differentiated on the basis of position (migration time) and shape of their characteristic peaks.

  16. Portable microcoil NMR detection coupled to capillary electrophoresis.

    PubMed

    Diekmann, Joana; Adams, Kristl L; Klunder, Gregory L; Evans, Lee; Steele, Paul; Vogt, Carla; Herberg, Julie L

    2011-02-15

    High-efficiency separation techniques, such as capillary electrophoresis (CE), coupled to a nondestructive nuclear magnetic resonance (NMR) spectrometer offer the ability to separate, chemically identify, and provide structural information on analytes in small sample volumes. Previous CE-NMR coupled systems utilized laboratory-scale NMR magnets and spectrometers, which require very long separation capillaries. New technological developments in electronics have reduced the size of the NMR system, and small 1-2 T permanent magnets provide the possibilities of a truly portable NMR. The microcoils used in portable and laboratory-scale NMR may offer the advantage of improved mass sensitivity because the limit of detection (LOD) is proportional to the coil diameter. In this work, CE is coupled with a portable, briefcase-sized NMR system that incorporates a microcoil probe and a 1.8 T permanent magnet to measure (19)F NMR spectra. Separations of fluorinated molecules are demonstrated with stopped- and continuous-flow NMR detection. The results demonstrate that coupling CE to a portable NMR instrument is feasible and can provide a low-cost method to obtain structural information on microliter samples. An LOD of 31.8 nmol for perfluorotributylamine with a resolution of 4 ppm has been achieved with this system.

  17. On-column liquid-liquid-liquid microextraction coupled with base stacking as a dual preconcentration method for capillary zone electrophoresis.

    PubMed

    Xie, Hai-Yang; He, You-Zhao; Gan, Wu-Er; Fu, Guo-Ni; Li, Lian; Han, Fang; Gao, Yong

    2009-04-10

    A simple and efficient dual preconcentration method of on-column liquid-liquid-liquid microextraction (LLLME) coupled with base stacking was developed for capillary zone electrophoresis (CZE) in this paper. Four N-methyl carbamates were used as target compounds to evaluate the enrichment means. The carbamates in sample solutions (donor phase) were extracted into a dodecanol phase immobilized on a porous hollow fiber, hydrolyzed and back extracted into 0.20 microL running buffer (acceptor phase) of 30 mmol/L methylamine hydrochloride (pH 11.6) containing 0.5 mmol/L tetradecyltrimethylammonium bromide inside the hollow fiber, stacked further with 0.5 mol/L NaOH injected at -10 kV for 60s, and separated by CZE. Analytical parameters affecting the LLLME, base stacking and CZE were investigated, including sample solution volume, pH and temperature, extraction time, stirring rate, buffer component, buffer pH, NaOH concentration, stacking time, etc. The enrichment factors of the carbamates were higher than 1100. The relative standard deviation (RSD) of peak height and limits of detection (LODs) were 4.5-5.5% (n=6) and 2-4 ng/mL (S/N=3) for standard solutions, respectively. The proposed method was applied to the analysis of vegetable and fruit samples with the RSD less than 6.0% (n=3) and LODs of 6-10 ng/g (S/N=3). The calibration solutions were prepared by diluting the stock solutions with blank sample solutions, and the calibration concentrations ranged from 0.012 to 1.0 microg/mL (r>0.9951). The analytical results demonstrated that the LLLME coupled with base stacking was a simple, convenient and reliable on-column sample pretreatment method for the analysis of anionic analytes in CZE.

  18. Capillary Zone Electrophoresis for the Analysis of Peptides: Fostering Students' Problem-Solving and Discovery Learning in an Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Albright, Jessica C.; Beussman, Douglas J.

    2017-01-01

    Capillary electrophoresis is an important analytical separation method used to study a wide variety of samples, including those of biological origin. Capillary electrophoresis may be covered in the classroom, especially in advanced analytical courses, and while many students are exposed to gel electrophoresis in biology or biochemistry…

  19. Determination of terbinafine in pharmaceuticals and dialyzates by capillary electrophoresis.

    PubMed

    Mikus, Peter; Valásková, Iva; Havránek, Emil

    2005-02-28

    A capillary electrophoresis method has been developed for the separation and determination of terbinafine (TER) in various pharmaceutically relevant matrices. Capillary zone electrophoresis (CZE) separation and UV absorbance photometric detection were carried out in a 160mm capillary tube with a 300mum i.d., hydrodynamically (membrane) closed. The influences of pH, carrier cation and counterion on migration parameters of TER were studied and the following conditions were selected: a 20mmoll(-1) glycine running buffer adjusted to pH 2.7 with acetic acid, 0.2% (w/v) methylhydroxyethylcellulose (m-HEC) as an electro-osmotic flow (EOF) suppressor, a 250muA driving current, and 20 degrees C. The optimized separation conditions were convenient for the determination of TER in commercial tablets and spray and in dialyzates. Here, the dialysis was used to investigate in vitro permeation of TER through the skin from the gel. The samples of dialyzates were examined with and without simple extraction procedure and the results were compared. A permeation profile of the drug present in the gel of given composition was obtained analyzing pretreated samples. The proposed electrophoretic method was successfully validated. It was suitable for the simple, sensitive, rapid and highly reproducible assay of TER. CZE analysis was completed within 5.5min. The detection limit of TER was 1.73mumoll(-1) at a 224nm detection wavelength. The intra- and inter-laboratory precisions over the concentration range 6.0-60.0mumoll(-1) were between 0.32-0.69% and 1.04-1.44% including R.S.D. of migration times and peak areas, respectively. The mean absolute recoveries of drugs from samples were found to be 98.34 (tablets) and 99.47% (spray). It is suggested that there are potentialities to determine TER present in unpretreated complex samples, as CZE in a hydrodynamically closed separation system may be easily on-line combinable with purification and preconcentration CE modes (e.g., isotachophoresis

  20. A rapid method for total Β-escin analysis in dry, hydroalcoholic and hydroglycolic extracts of Aesculus hippocastanum L. by capillary zone electrophoresis.

    PubMed

    Dutra, Lidiane S; Leite, Magda N; Brandão, Marcos A F; de Almeida, Priscila Aparecida; Vaz, Fernando A S; de Oliveira, Marcone A L

    2013-01-01

    Seeds of Aesculus hippocastanum L. are used in European phytotherapy to treat inflammatory and vascular problems, and also to help in the regulation of the microcirculation. Thus, the quality control of herbal medicines using this species is important. To develop and to optimise a capillary zone electrophoresis method to determine total β-escin in different extracts of A. hippocastanum L. The optimal condition found through chemometric approach was: 25 mmol/L of bicarbonate-carbonate buffer, pH 10.3; +20 kV of voltage; 20°C of cartridge temperature; direct ultraviolet detection at 226 nm; 13 mbar injection for 5 s and analysis time within 6 min. Repeatability, coefficient of variation (CV; %) = 3.19, 3.07 and 1.89 (n = 12), and intermediate precision, CV (%) = 3.05, 3.53 and 2.99 (n = 24) for dry, hydroalcoholic and hydroglycolic extracts, respectively were achieved. The accuracy was evaluated through recovery tests in concentration levels of 100, 150 and 200 g/L, ranging from 98.17 to 104.68%. The proposed method exhibited linearity (r = 0.9983) in the concentration range from 101.4 to 907.2 g/L and limits of detection and quantification equal to 11.63 and 38.76 g/L respectively. A fast and reliable methodology for determination of total β-escin was successfully validated and applied on extracts of A. hippocastanum L. demonstrating its usefulness to quality control of medicines containing this plant species. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Method development and validation for the simultaneous determination of cinnarizine and co-formulated drugs in pharmaceutical preparations by capillary electrophoresis.

    PubMed

    Abdelal, A A; Kitagawa, S; Ohtani, H; El-Enany, N; Belal, F; Walash, M I

    2008-02-13

    Rapid and simple capillary electrophoresis (CE) methods were developed for the simultaneous determinations of cinnarizine and domperidone (CN/DOM) and cinnarizine and nicergoline (CN/NIC) in their co-formulated tablets. The optimized CE conditions were as follows: running buffer, methanol-acetate buffer (pH 3.0, 10 mM) (80:20 and 85:15 (v/v) for CN/DOM and CN/NIC, respectively); applied voltage, 20 kV; UV detection wavelengths, 215 and 227 nm for CN/DOM and CN/NIC, respectively; hydrodynamic injection was performed at a height of 25 mm for 30 s. Quinine hydrochloride and nicardipine hydrochloride were used as internal standards for the determination of CN/DOM and CN/NIC, respectively. Calibration curves were linear over the ranges 0.25-20/0.375-15 microg/ml (CN/DOM) and 0.25-25/0.4-10 microg/ml (CN/NIC) in each optimized condition. Detection limits were 0.074/0.119 microg/ml and 0.072/0.116 microg/ml for CN/DOM and CN/NIC, respectively. The proposed methods were successfully applied for the simultaneous determination of both CN/DOM and CN/NIC in their co-formulated tablets without interfering peaks due to the excipients present in the pharmaceutical tablets. The estimated amounts of CN/DOM and CN/NIC were almost identical with the certified values, and their percentage relative standard deviation values (%R.S.D.) were found to be < or =2.34% (n=3).

  2. Development and validation of a capillary electrophoresis method for determination of enantiomeric purity and related substances of esomeprazole in raw material and pellets.

    PubMed

    Estevez, Pablo; Flor, Sabrina; Boscolo, Oriana; Tripodi, Valeria; Lucangioli, Silvia

    2014-03-01

    A capillary electrophoresis method using CDs for quality control of esomeprazole (ESO) in terms of enantiomeric purity and related substances in raw material and pellets was developed. ESO is the S-enantiomer of omeprazole (OMZ). Several parameters were evaluated, including type and concentration of buffer and CD, concentration of additives and electrolyte pH. Resolution between the enantiomers of OMZ obtained for each parameter tested was calculated and the presence of the main related substance such as OMZ sulfone was carefully monitored. The optimized system consisted of 100 mM Tris-phosphate buffer pH 2.5 with 20 mM 2-hydroxypropyl-β-CD, 1 mM sodium dithionite, temperature at 15°C, voltage at 28 kV, and UV detection at 301 nm. Once optimized, the electrophoretic system was validated according to ICH guidelines. The limits of detection and quantification for R-OMZ were 0.6 μg/mL (0.06% w/w of ESO) and 2.0 μg/mL (0.2% w/w of ESO), respectively. A mean concentration of R-OMZ <0.2% limit established by the United States Pharmacopeia (USP) was found in the raw material and six-pellet samples of ESO. No other impurities were found in the samples under these conditions. Therefore, the developed method was found to be appropriate not only for enantiomeric quality control of ESO but also for the analysis of ESO and the main related substance in raw material and pharmaceutical formulations as well as for stability indicating studies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Development and validation of a capillary zone electrophoresis method for the determination of ephedrine and related compounds in urine without extraction.

    PubMed

    Mateus-Avois, Lidia; Mangin, Patrice; Saugy, Martial

    2003-07-05

    A capillary zone electrophoresis (CZE) method, with UV detection and in the presence of dimethyl-beta-CD, was optimized by means of an experimental design for the separation and the simultaneous quantitation of ephedrine, pseudoephedrine, norephedrine (phenylpropanolamine) and norpseudoephedrine (cathine) in urine without any extraction. In this application, the optimization of the analytical conditions with an experimental design was preferred to a univariate study. Therefore, a central composite design was used and the following factors were investigated and varied simultaneously: buffer concentration, buffer pH and dimethyl-beta-CD concentration. In order to evaluate the influence of each experimental parameter on the analytical separation, the resolutions between the four compounds, as well as the separation time and generated current were observed and established as responses of the experimental design. A model was obtained for each response by linear multiple regression of a second-degree mathematical expression. After acceptance of the mathematical models, the most favorable conditions were determined by maximizing the resolutions between the four compounds and by setting the other responses at threshold values. Successful results were obtained with a 260 mM Tris-phosphate buffer at pH 3.5 in the presence of 13.3 mM dimethyl-beta-CD at 25 degrees C and with an applied voltage of 30 kV. Under these optimized conditions, a baseline separation of the four compounds was achieved in less than 6 min. The method was validated in terms of precision, linearity, accuracy and successfully applied for the determination of these compounds in urine samples without any extraction as well as in nutritional supplements.

  4. Performance comparison of capillary and agarose gel electrophoresis for the identification and characterization of monoclonal immunoglobulins.

    PubMed

    McCudden, Christopher R; Mathews, Stephanie P; Hainsworth, Shirley A; Chapman, John F; Hammett-Stabler, Catherine A; Willis, Monte S; Grenache, David G

    2008-03-01

    The objective of this study was to compare gel- and capillary-based serum protein electrophoresis methods to identify and characterize monoclonal immunoglobulins (M proteins). Five reviewers interpreted 149 consecutively ordered serum specimens following agarose gel electrophoresis (AGE), capillary electrophoresis (CE), immunofixation electrophoresis (IFE), and subtraction immunotyping (IT). As a screening test for detecting M proteins, AGE and CE displayed similar sensitivity (91% and 92%, respectively). CE was less specific (74%) than AGE (81%). An analysis of interinterpreter agreement revealed that interpretations were more consistent using gel-based methods than capillary-based methods, with 80% of the gel interpretations being in complete (5/5) agreement compared with 67% of the capillary interpretations. After implementing the capillary-based methods, the number of tests per reportable result increased (from 1.58 to 1.73). CE is an analytically suitable alternative to AGE, but laboratories implementing it will need to continue IFE testing to characterize all M proteins detected by CE.

  5. Interactions between isoprenaline hydrochloride and bovine serum albumin (BSA) in capillary zone electrophoresis and affinity capillary electrophoresis.

    PubMed

    Liu, Chunye; Wei, Yinmao; Miao, Yanqing; Zhang, Yinyin

    2012-10-01

    Capillary zone electrophoresis (CZE) and affinity capillary electrophoresis (ACE) were developed to investigate the interactions between isoprenaline hydrochloride (IH) and bovine serum albumin (BSA). In CZE, the binding constant (Kb) was 4.07 x 10(4) M(-1) (298 K) and 4.76 x 10(4) M(-1) (310K) using the Scatchard analysis. The number of binding sites (n) in this interaction was approximately one (n approximately equal 1). Furthermore, thermodynamic parameters, such as changes in Gibbs free energy (deltaG), enthalpy (deltaH), and entropy (deltaS) of the binding procedure were also obtained. At 298 K, deltaG, deltaH, and deltaS were -26.30 kJ x mol(-1), 10.02 kJ x mol(-1), and 0.12 kJ x mol(-) x K(-1), respectively. The deltaG at 310K was -27.76 kJ x mol(-1), whereas the deltaH and deltaS at 310 K were identical with that at 298 K. In ACE, a more reliable parameter, mobility ratio (M), was applied in the calculation of Kb. Kb (310K) obtained through this method was 9.80 x 10(4) and 9.24 x 10(4) M(-1) when IH and BSA were added to the buffer in varying concentrations, respectively. The obtained Kb may help in gaining some insights on the possible drug/protein interactions and in the early evaluation of the pharmacokinetic profile of the drug during cardiovascular drug screening.

  6. Implementation of USP antibody standard for system suitability in capillary electrophoresis sodium dodecyl sulfate (CE-SDS) for release and stability methods.

    PubMed

    Esterman, Abbie L; Katiyar, Amit; Krishnamurthy, Girija

    2016-09-05

    Capillary electrophoresis sodium dodecyl sulfate (CE-SDS) is widely used for purity analysis of monoclonal antibody therapeutics for release and stability to demonstrate product consistency and shelf life during the manufacturing and life cycle of the product. CE-SDS method development is focused on exploring the method capability to provide the information about the product purity and product related degradants (fragmentation, aggregation etc.). In order to establish the functionality of the instrumentation, software, and sample preparation; system suitability criteria need to be defined for analytical methods using a well characterized reference standard run under the same protocol and analysis as the test articles. Typically the reference standard is produced using a manufacturing process representative of the clinical material. The qualification, control, and maintenance of in-house reference standards are established through rigorous quality and regulatory guidelines. The U.S. Pharmacopeia (USP) has developed a monoclonal IgG System Suitability Reference Standard to be utilized for assessment of system suitability in CE-SDS methods. In this communication, we evaluate the system suitability acceptance criteria performance of the USP IgG standard using two methods, the recommended USP protocol provided in monograph <129> and a molecule specific Bristol-Myers Squibb (BMS) CE-SDS method. The results from USP IgG standard were compared with two in-house monoclonal antibody reference standards. The data suggest that the USP CE-SDS method may not be suitable for CE-SDS analysis for release and stability of monoclonal antibody therapeutics due to the high level of method induced partial reduction observed for all molecules tested. This high level of fragmentation observed utilizing the USP method will result in reporting lower purity levels, which will impact the overall quality assessment of the molecule. The system suitability criteria recommended by the USP method

  7. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda

    PubMed Central

    2010-01-01

    Background Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure) or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Methods Samples were genotyped using both gel and capillary electrophoresis from randomized trials of artemether-lumefantrine (AL) vs. dihydroartemisinin-piperaquine (DP) performed in two areas of Uganda: Kanungu, where transmission is moderate, and Apac, where transmission is very high. Both gel and capillary methods evaluated polymorphic regions of the merozoite surface protein 1 and 2 and glutamine rich protein genes. Results Capillary electrophoresis detected more alleles and provided higher discriminatory power than agarose gel electrophoresis at both study sites. There was only moderate agreement between classification of outcomes with the two methods in Kanungu (kappa = 0.66) and poor agreement in Apac (kappa = 0.24). Overall efficacy results were similar when using gel vs. capillary methods in Kanungu (42-day risk of treatment failure for AL: 6.9% vs. 5.5%, p = 0.4; DP 2.4% vs. 2.9%, p = 0.5). However, the measured risk of recrudescence was significantly higher when using gel vs. capillary electrophoresis in Apac (risk of treatment failure for AL: 17.0% vs. 10.7%, p = 0.02; DP: 8.5% vs. 3.4%, p = 0.03). Risk differences between AL and DP were not significantly different whether gel or capillary methods were used. Conclusions Genotyping with gel electrophoresis overestimates the risk of recrudescence in anti-malarial trials performed in areas of high transmission intensity. Capillary electrophoresis provides more accurate outcomes for such trials and should be performed when possible. In areas of moderate transmission, gel electrophoresis

  8. Determination of acidity constants of sparingly soluble drugs in aqueous solution by the internal standard capillary electrophoresis method.

    PubMed

    Cabot, Joan Marc; Fuguet, Elisabet; Rosés, Martí

    2014-12-01

    A set of 33 drugs with different solubilities, ranging from soluble to very insoluble, has been chosen in order to evaluate the performance of the internal standard CE method to determine acidity constants of compounds with limited solubility. The set of drugs tested in this work has been chosen as a function of their intrinsic solubility. For the most insoluble compounds, several analytical conditions to overcome the insolubility in aqueous buffers have been tested. This paper assesses the compound solubility limits for the IS-CE method in aqueous pKa determinations, and also compares the determined pKa s with the results from the literature data obtained by other methods. It is proved that IS-CE method determines acidity constants of sparingly soluble drugs in aqueous media (compounds with logS down to around -6), whereas other reference methods require the use of aqueous-organic solvent buffers and extrapolation procedures to obtain the aqueous pKa for the same compounds.

  9. Capillary-based lectin affinity electrophoresis for interaction analysis between lectins and glycans.

    PubMed

    Kinoshita, Mitsuhiro; Kakehi, Kazuaki

    2014-01-01

    Capillary affinity electrophoresis (CAE) is a powerful technique for glycan analysis, and one of the analytical approaches for analyzing the interaction between lectins and glycans. The method is based on the high-resolution separation of fluorescently labeled glycans by capillary electrophoresis (CE) with laser-induced fluorescence detection (LIF) in the presence of lectins (or glycan binding proteins). CAE allows simultaneous determination of glycan structures in a complex mixture of glycans. In addition, we can calculate the binding kinetics on a specific glycan in the complex mixture of glycans with a lectin. Here, we show detailed procedures for capillary affinity electrophoresis of fluorescently labeled glycans with lectins using CE-LIF apparatus. Its application to screening a sialic acid binding protein in plant barks is also shown.

  10. Capillary zone electrophoresis and ion-exchange capillary electrochromatography: analytical tools for probing the Hanford nuclear site environment.

    PubMed

    Li, D; Knobel, H H; Remcho, V T

    1997-07-18

    Ion-exchange capillary electrochromatography (IE-CEC) is a relatively new separation technique based on the combination of ion-exchange chromatographic and electrophoretic separation mechanisms. IE-CEC offers both the efficiency of capillary electrophoresis and the selectivity and sample capacity of ion-exchange chromatography. The utility of the method was examined with I- and IO3-, which are common constituents of nuclear wastes at Hanford, Washington and other U.S. Department of Energy (DoE) sites, and ReO4-, a surrogate for TcO4-. The advantages and limitations of IE-CEC relative to capillary zone electrophoresis (CZE) are explored. The chief advantages are increased loading capacity and an alternative selectivity to that of CZE, in addition to increased efficiency (relative to conventional ion-exchange chromatography). The run-to-run reproducibility of IE-CEC, however, was found to be a limitation of the technique.

  11. Liquid chromatographic method for determination of water in soils and the optimization of anion separations by capillary zone electrophoresis

    SciTech Connect

    Benz, Nancy

    1994-01-01

    A liquid chromatographic method for the determination of water in soil or clay samples is presented. In a separate study, the optimization of electrophoretic separation of alkylated phenolate ions was optimized by varying the pH and acetonitrile concentration of the buffer solutions.

  12. Recent progress in DNA analysis by capillary electrophoresis.

    PubMed

    Righetti, Pier Giorgio; Gelfi, Cecilia; D'Acunto, Maria Rosa

    2002-05-01

    A number of recent developments in DNA analysis by capillary electrophoresis are here reviewed. They include capillary arrays for fast, parallel DNA sequencing as well as microfabricated capillary arrays. Microfluidic chips for DNA sizing and quantitation are also covered, as well as microdevices containing arrays of regular obstacles acting as size-separators during DNA migration. Screening of DNA point mutations by two much improved techniques is also reported: in one case, such mutations are detected (but only on relative short, ca. 60-70 base-long fragments) by free electrophoresis in rather acidic (pH ca. 3) buffers; in the case of single-strand chain polymorphism, an improved technique is described based on near-neutral pH buffers with mixtures of Tris/MES cations/zwitterions. When studying the behavior of inorganic and organic cations in the Debye-Hückel layer of DNA, it was found that the latter (especially a large number of Good's buffers and other zwitterions, such as His) would bind to the DNA filament not only via charge interaction, but also via additional bonds, notably hydrogen bonds, thus altering the electrophoretic (and possibly the biological) behavior of DNA molecules. However, whether or not borate ions would bind to DNA remains still an unsettled question. Finally, capillary electrophoresis was found to be instrumental in measuring fine physicochemical parameters pertaining to DNA polyelectrolytes, such as their free mobility and their translational diffusion coefficients.

  13. Detection of moniliformin in maize using capillary zone electrophoresis.

    PubMed

    Maragos, C M

    2004-08-01

    Moniliformin is a mycotoxin produced by certain fungi pathogenic to maize. It is capable of causing disease in domestic animals, possibly through inhibition of pyruvate dehydrogenase. Testing for MON commonly involves extraction of maize, isolation of moniliformin using solid-phase extraction columns and detection with high-performance liquid chromatography (HPLC) or gas chromatography. A capillary zone electrophoresis-diode array detection (CZE-DAD) method for determination of moniliformin in maize is reported. The extraction and isolation procedures are similar to those of a commonly used HPLC method, while the detection step requires only 10 min. Sixty-three samples of maize were tested by an established HPLC method using absorbance at 229 nm (HPLC-ultraviolet light) and by the CZE-DAD method. The limit of detection of the CZE-DAD method was 0.1 microg MON g(-1) maize compared with 0.05 microg g(-1) for the HPLC-ultraviolet light method. The CZE-DAD method gave good agreement with the HPLC-ultraviolet light method for samples tested at levels up to 1500 microg g(-1), with a linear regression of r(2) = 0.996.

  14. Capillary electrophoresis method for speciation of iron (II) and iron (III) in pharmaceuticals by dual precapillary complexation.

    PubMed

    Gotti, Roberto; Fiori, Jessica; Liverani, Lino; Spelta, Franco

    2015-07-20

    Pharmaceutical iron sucrose is an iron (III) replacement for the treatment of iron deficiency anemia in patients with chronic kidney disease. The drug product (injection) is a colloidal solution of ferric hydroxide in complex with sucrose, containing 20 mg/mL elemental iron; according to United States pharmacopoeia (USP), the limit of iron (II) is 0.4% w/v. A selective CE method for the simultaneous determination of iron (III) and its potential impurity iron (II), was developed by applying a dual precapillary complexation. In particular, 1,10-phenanthroline and 1,2-diaminocyclohexanetetraacetic acid were used for complexation of iron (II) and iron (III), respectively. Sample preparation was optimized to achieve mineralization of pharmaceuticals using HCl 6 M, by avoiding perturbation of the oxidation status of both iron species. Simple CZE conditions, involving a 60 mM (pH 9.3) tetraborate buffer at the constant voltage of 25 KV and 25°C, allowed fast separation of iron (II) and iron (III) complexes that were detected at 265 nm. Sensitivity for iron (II) determination was found to be 4.80 μM (LOQ) corresponding to 0.15% w/w with respect to the total iron test level. The method was validated by following International Conference on Harmonization guidelines for specificity, linearity, precision, accuracy, and robustness and it was applied to real pharmaceutical samples. The obtained results suggested that the method can be a useful alternative to the official USP and British pharmacopoeia polarographic method.

  15. Separation of 20 coumarin derivatives using the capillary electrophoresis method optimized by a series of Doehlert experimental designs.

    PubMed

    Woźniakiewicz, Michał; Gładysz, Marta; Nowak, Paweł M; Kędzior, Justyna; Kościelniak, Paweł

    2017-05-15

    The aim of this study was to develop the first CE-based method enabling separation of 20 structurally similar coumarin derivatives. To facilitate method optimization a series of three consequent Doehlert experimental designs with the response surface methodology was employed, using number of peaks and the adjusted time of analysis as the selected responses. Initially, three variables were examined: buffer pH, ionic strength and temperature (No. 1 Doehlert design). The optimal conditions provided only partial separation, on that account, several buffer additives were examined at the next step: organic cosolvents and cyclodextrin (No. 2 Doehlert design). The optimal cyclodextrin type was also selected experimentally. The most promising results were obtained for the buffers fortified with methanol, acetonitrile and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin. Since these additives may potentially affect acid-base equilibrium and ionization state of analytes, the third Doehlert design (No. 3) was used to reconcile concentration of these additives with optimal pH. Ultimately, the total separation of all 20 compounds was achieved using the borate buffer at basic pH 9.5 in the presence of 10mM cyclodextrin, 9% (v/v) acetonitrile and 36% (v/v) methanol. Identity of all compounds was confirmed using the in-lab build UV-VIS spectra library. The developed method succeeded in identification of coumarin derivatives in three real samples. It demonstrates a huge resolving power of CE assisted by addition of cyclodextrins and organic cosolvents. Our unique optimization approach, based on the three Doehlert designs, seems to be prospective for future applications of this technique.

  16. "Getting the best sensitivity from on-capillary fluorescence detection in capillary electrophoresis" - A tutorial.

    PubMed

    Galievsky, Victor A; Stasheuski, Alexander S; Krylov, Sergey N

    2016-09-07

    Capillary electrophoresis with Laser-Induced Fluorescence (CE-LIF) detection is being applied to new analytical problems which challenge both the power of CE separation and the sensitivity of LIF detection. On-capillary LIF detection is much more practical than post-capillary detection in a sheath-flow cell. Therefore, commercial CE instruments utilize solely on-capillary CE-LIF detection with a Limit of Detection (LOD) in the nM range, while there are multiple applications of CE-LIF that require pM or lower LODs. This tutorial analyzes all aspects of on-capillary LIF detection in CE in an attempt to identify means for improving LOD of CE-LIF with on-capillary detection. We consider principles of signal enhancement and noise reduction, as well as relevant areas of fluorophore photochemistry and fluorescent microscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis

    USDA-ARS?s Scientific Manuscript database

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4’-sulfonyl derivative of L-methionine (dabsyl Met), the ...

  18. Microchip Non-Aqueous Capillary Electrophoresis (MicronNACE) Method to Analyze Long-Chain Primary Amines

    NASA Technical Reports Server (NTRS)

    Willis, Peter A.; Mora, Maria; Cable, Morgan L.; Stockton, Amanda M.

    2012-01-01

    A protocol was developed as a first step in analyzing the complex organic aerosols present on Saturn's moon Titan, as well as the analogues of these aerosols (tholins) made on Earth. Labeling of primary amines using Pacific Blue succinimidyl ester is effected in ethanol with 25 mM triethylamine to maintain basic conditions. This reaction is allowed to equilibrate for at least one hour. Separation of the labeled primary amines is performed in ethanol with 1.05 M acetic acid, and 50 mM ammonium acetate in a commercial two-layer glass device with a standard crossmicrochannel measuring 50 microns wide by 20 microns deep. Injection potentials are optimized at 2 kV from the sample (negative) to the waste well (positive), with slight bias applied to the other two wells ( 0.4 and 0.8 V) to pinch the injection plug for the 30-s injection. Separation is performed at a potential of 5 kV along the channel, which has an effective separation distance of 7 cm. The use of ethanol in this method means that long-chain primary amines can be dissolved. Due to the low pH of the separation buffer, electro-osmotic flow (EOF) is minimized to allow for separation of both short-chain and longchain amines. As the freezing point of ethanol is much lower than water, this protocol can perform separations at temperatures lower than 0 C, which would not be possible in aqueous phase. This is of particular importance when considering in situ sampling of Titan aerosols, where unnecessary heating of the sample (even to room temperature) would lead to decomposition or unpredictable side reactions, which would make it difficult to characterize the sample appropriately.

  19. Comparison of the separation of nine tryptamine standards based on gas chromatography, high performance liquid chromatography and capillary electrophoresis methods.

    PubMed

    Wang, Man-Juing; Liu, Ju-Tsung; Chen, Hung-Ming; Lin, Jian-Jhih; Lin, Cheng-Huang

    2008-02-15

    Nine tryptamines, including alpha-methyltryptamine (AMT), N,N-dimethyltryptamine (DMT), 5-methoxy-alpha-methyltryptamine (5-MeO-AMT), N,N-diethyltryptamine (DET), N,N-dipropyltryptamine (DPT), N,N-dibutyltryptamine (DBT), N,N-diisopropyltryptamine (DIPT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), and 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) were selected as model compounds. Comparisons of their sensitivity, selectivity, time, cost and the order of migration are described based on different separation techniques (GC, HPLC and CE, respectively). As a result, the limit of detection (S/N=3) obtained by GC/MS and LC/UV-absorption ranged from 0.5 to 15 microg/mL and 0.3 to 1.0 microg/mL, respectively. In contrast to this, based on the CZE/UV-absorption method, the limit of detection (S/N=3) was determined to 0.5-1 microg/mL. However, when the sweeping-MEKC mode was applied, it dramatically improved to 2-10 ng/mL. In the case of GC, HPLC and CE, migration times of the nine standards ranged from 11 to 15 min and 8 to 23 min by GC and HPLC, respectively; ranged from 20 to 26 min by sweeping-MEKC. The order of migration of DMT, DET, DPT and DBT follows the molecular weight, whereas the order of migration of AMT and 5-MeO-AMT (primary amines), DIPT (an isomer of DPT) and 5-methoxy-tryptamines (5-MeO-AMT, 5-MeO-DMT and 5-MeO-DIPT) can be altered by changing the separation conditions.

  20. Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography.

    PubMed

    Tang, Sheng; Liu, Shujuan; Guo, Yong; Liu, Xia; Jiang, Shengxiang

    2014-08-29

    Ionic liquids (ILs) and polymeric ionic liquids (PILs) with unique and fascinating properties have drawn considerable interest for their use in separation science, especially in chromatographic techniques. In this article, significant contributions of ILs and PILs in the improvement of capillary electrophoresis and capillary electrochromatography are described, and a specific overview of the most relevant examples of their applications in the last five years is also given. Accordingly, some general conclusions and future perspectives in these areas are discussed.

  1. Development of a capillary electrophoresis method for the analysis in alkaline media as polyoxoanions of two strategic metals: Niobium and tantalum.

    PubMed

    Deblonde, Gauthier J-P; Chagnes, Alexandre; Cote, Gérard; Vial, Jérôme; Rivals, Isabelle; Delaunay, Nathalie

    2016-03-11

    Tantalum (Ta) and niobium (Nb) are two strategic metals essential to several key sectors, like the aerospace, gas and oil, nuclear and electronic industries, but their separation is really difficult due to their almost identical chemical properties. Whereas they are currently produced by hydrometallurgical processes using fluoride-based solutions, efforts are being made to develop cleaner processes by replacing the fluoride media by alkaline ones. However, methods to analyze Nb and Ta simultaneously in alkaline samples are lacking. In this work, we developed a capillary zone electrophoresis (CE) method able to separate and quantify Nb and Ta directly in alkaline media. This method takes advantage of the hexaniobate and hexatantalate ions which are naturally formed at pH>9 and absorb in the UV domain. First, the detection conditions, the background electrolyte (BGE) pH, the nature of the BGE co-ion and the internal standard (IS) were optimized by a systematic approach. As the BGE counter-ion nature modified the speciation of both ions, sodium- and lithium-based BGE were tested. For each alkaline cation, the BGE ionic strength and separation temperature were optimized using experimental designs. Since changes in the migration order of IS, Nb and Ta were observed within the experimental domain, the resolution was not a monotonic function of ionic strength and separation temperature. This forced us to develop an original data treatment for the prediction of the optimum separation conditions. Depending on the consideration of either peak widths or peak symmetries, with or without additional robustness constraints, four optima were predicted for each tested alkaline cation. The eight predicted optima were tested experimentally and the best experimental optimum was selected considering analysis time, resolution and robustness. The best separation was obtained at 31.0°C and in a BGE containing 10mM LiOH and 35mM LiCH3COO.The separation voltage was finally optimized

  2. Contactless conductivity detector for microchip capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelinek, Ivan; Feldman, Jason; Lowe, Holger; Hardt, Steffen; Svehla, D. (Principal Investigator)

    2002-01-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  3. Contactless conductivity detector for microchip capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelinek, Ivan; Feldman, Jason; Lowe, Holger; Hardt, Steffen; Svehla, D. (Principal Investigator)

    2002-01-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  4. Contactless conductivity detector for microchip capillary electrophoresis.

    PubMed

    Pumera, Martin; Wang, Joseph; Opekar, Frantisek; Jelínek, Ivan; Feldman, Jason; Löwe, Holger; Hardt, Steffen

    2002-05-01

    A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation channel. The contactless route obviates problems (e.g., fouling, unwanted reactions) associated with the electrode-solution contact, offers isolation of the detection system from high separation fields, does not compromise the separation efficiency, and greatly simplifies the detector fabrication. Relevant experimental variables, such as the frequency and amplitude of the applied ac voltage or the separation voltage, were examined and optimized. The detector performance was illustrated by the separation of potassium, sodium, barium, and lithium cations and the chloride, sulfate, fluoride, acetate, and phosphate anions. The response was linear (over the 20 microM-7 mM range) and reproducible (RSD = 3.4-4.9%; n = 10), with detection limits of 2.8 and 6.4 microM (for potassium and chloride, respectively). The advantages associated with the contactless conductivity detection, along with the low cost of the integrated PMMA chip/detection system, should enhance the power and scope of microfluidic analytical devices.

  5. Capillary electrophoresis in pharmaceutical analysis: a survey on recent applications.

    PubMed

    Suntornsuk, Leena

    2007-10-01

    Capillary electrophoresis (CE) has a significant role in drug discovery and manufacturing processes and has a potential to grow further, due to new developments that can provide highly sensitive and high throughput analysis. This review illustrates recent applications of CE in pharmaceutical analysis (2005-present). The history, principles, instruments, and conventional modes of CE are briefly described. Applications for drug analysis by various techniques of CE are presented in six tables: capillary zone electrophoresis (CZE) (Table I), micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) (Table II), non-aqueous CE (NACE) (Table III), chiral CE (Table IV), CE-mass spectrometry (MS) microchip CE (Table V), and multiplexed CE (MCE) (Table VI).

  6. Development of a hollow fibre liquid-phase micro extraction method coupled with capillary electrophoresis/mass spectrometry for determining nitrophenolic compounds from atmospheric particles

    NASA Astrophysics Data System (ADS)

    Teich, Monique; van Pinxteren, Dominik; Herrmann, Hartmut

    2014-05-01

    Nitrophenolic compounds present in the atmosphere gained a lot of attention as they are known for their negative effect on human health as well as for their phytotoxity being a cause for forest decline. Moreover, nitrophenols have the ability to absorb light in the range of near ultra violet to visible light, thus they are also contributing to the so-called brown carbon. Most of the available methods for determining nitrophenols in particulate matter are using organic solvents for extraction. Those methods are not applicable if one wants to focus only on the water-soluble fraction. Therefore, a method using a three-phase hollow fibre liquid-phase micro extraction (HF-LPME) was developed to enrich nine nitrophenolic compounds (2-Nitrophenol, 3-Nitrophenol, 4-Nitrophenol, 2-Methyl-4-nitrophenol, 3-Methyl-4-nitrophenol, 4-Nitrocatechol, 2,6-Dimethyl-4-nitrophenol, 2,4-Dinitrophenol, 3,4-Dinitrophenol) from aqueous extracts of atmospheric particles. Analysis was performed by capillary electrophoresis coupled with electrospray ionisation mass spectrometry (CE-ESI-MS). The background electrolyte composition was optimised to a 20 mM ammonium acetate buffer at pH 9.7 containing 15% methanol (v/v). Persistent peak tailing during electrophoretic separation was observed for 4-Nitrocatechol. Flushing the capillary with Ethylenediaminetetraacetic acid (EDTA) prior sample injection strongly improved the peak shape. Four extraction parameters (composition of organic liquid membrane, pH of acceptor phase, salting out effect, extraction time) and their effect on the analyte recoveries were examined. The HF-LPME consisted of 1.8 mL sample solution kept at pH 2 as donor phase and 15 µl 100 mM aqueous ammonia solution as acceptor phase inserted into a hollow fibre. Dihexyl ether was used to form a supported liquid membrane inside the pores of the hollow fibre. As a result low detection limits in the range of nmol L-1 were achieved and the developed method was found to be competitive

  7. Isoelectric focusing sample injection for capillary electrophoresis of proteins.

    PubMed

    Wu, Xing-Zheng; Zhang, Luo-Hong; Onoda, Koji

    2005-02-01

    Carrier ampholyte-free isoelectric focusing (IEF) sample injection (concentration) for capillary electrophoresis (CE) is realized in a single capillary. A short section of porous capillary wall was made near the injection end of a capillary by HF etching. In the etching process, an electric voltage was applied across the etching capillary wall and electric current was monitored. When an electric current through the etching capillary was observed, the capillary wall became porous. The etched part was fixed in a vial, where NaOH solution with a certain concentration was added during the sample injection. The whole capillary was filled with pH 3.0 running buffer. The inlet end vial was filled with protein sample dissolved in the running buffer. An electric voltage was applied across the inlet end vial and etched porous wall. A neutralization reaction occurs at the boundary (interface) of the fronts of H+ and OH-. A pH step or sharp pH gradient exists across the boundary. When positive protein ions electromigrate to the boundary from the sample vial, they are isoelectricelly focused at points corresponding to their pH. After a certain period of concentration, a high voltage is applied across the whole capillary and a conventional CE is followed. An over 100-fold concentration factor has been easily obtained for three model proteins (bovine serum albumin, lysozyme, ribonuclease A). Furthermore, the IEF sample concentration and its dynamics have been visually observed with the whole-column imaging technique. Its merits and remaining problem have been discussed, too.

  8. Microchip Capillary Electrophoresis with Electrochemical Detection for Monitoring Environmental Pollutants

    SciTech Connect

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This invited paper reviews recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, sample pretreatments, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creation of truly portable devices.

  9. Determination of egg white lysozyme by on-line coupled capillary isotachophoresis with capillary zone electrophoresis.

    PubMed

    Kvasnicka, Frantisek

    2003-03-01

    An on-line coupled capillary isotachophoresis - capillary zone electrophoresis method for the determination of lysozyme in selected food products is described. The optimized electrolyte system consisted of 10 mM NH(4)OH + 20 mM acetic acid (leading electrolyte), 5 mM epsilon -aminocaproic acid +5 mM acetic acid (terminating electrolyte), and 20 mM epsilon -aminocaproic acid +5 mM acetic acid +0.1% m/v hydroxypropylmethylcellulose (background electrolyte). A clear separation of lysozyme from other components of acidic sample extract was achieved within 15 min. Method characteristics, i.e., linearity (0-50 micrograms/mL), accuracy (recovery 96+/-5%), intra-assay (3.8%), quantification limit (1 microgram/ml), and detection limit (0.25 microgram/mL) were determined. Low laboriousness, sufficient sensitivity and low running costs are important attributes of this method. The developed method is suitable for the quantification of the egg content in egg pasta.

  10. Hybridization thermodynamics of DNA oligonucleotides during microchip capillary electrophoresis.

    PubMed

    Wynne, Thomas M; McCallum, Christopher; Del Bonis-O'Donnell, Jackson Travis; Crisalli, Pete; Pennathur, Sumita

    2015-03-03

    Capillary electrophoresis (CE) is a powerful analytical tool for performing separations and characterizing properties of charged species. For reacting species during a CE separation, local concentrations change leading to nonequilibrium conditions. Interpreting experimental data with such nonequilibrium reactive species is nontrivial due to the large number of variables involved in the system. In this work we develop a COMSOL multiphysics-based numerical model to simulate the electrokinetic mass transport of short interacting ssDNAs in microchip capillary electrophoresis. We probe the importance of the dissociation constant, K(D), and the concentration of DNA on the resulting observed mobility of the dsDNA peak, μ(w), by using a full sweep of parametric simulations. We find that the observed mobility is strongly dependent on the DNA concentration and K(D), as well as ssDNA concentration, and develop a relation with which to understand this dependence. Furthermore, we present experimental microchip capillary electrophoresis measurements of interacting 10 base ssDNA and its complement with changes in buffer ionic strength, DNA concentration, and DNA sequence to vary the system equilibria. We then compare our results to thermodynamically calculated K(D) values.

  11. Separation of structurally related synthetic peptides by capillary zone electrophoresis.

    PubMed

    Yang, Yuanzhong; Boysen, Reinhard I; Chen, Jenny I-Chen; Keah, Hooi Hong; Hearn, Milton T W

    2003-08-15

    The separation of two different sets of synthetic peptides has been investigated by high-performance capillary zone electrophoresis utilising naked, fused silica capillaries. The effects of electrolyte pH, buffer concentration, capillary length and electric field strength on the separation efficiency and selectivity were systematically varied, with the highest resolution achieved with buffer electrolytes of low pH and relatively high ionic strength. Under optimised separation conditions utilising the "short end injection" separation approach with negative electric field polarity, a series of eight structurally-related synthetic peptides were baseline resolved within 4 min without addition of any modifier of the background electrolyte with separation efficiencies in the vicinity of 600000 theoretical plates/m. Further significant enhancement of separation efficiencies could be achieved by taking advantage of the "long end injection" approach with positive electric field polarity. The outcome of these experimental variations parallels the "sweeping" effect that has been observed in the capillary electrochromatographic and micellar electrokinetic separations of polar molecules and permits rapid resolution of peptides with focusing effects. In addition, small changes in the electrolyte buffer pH and concentration were found to have a significant impact on the selectivity of synthetic peptides of similar intrinsic charge. These observations indicate that multi-modal separation mechanisms operated under these conditions with the unmodified fused silica capillaries. This study, moreover, documents additional examples of peptide-specific multi-zoning behaviour in the high-performance capillary zone electrophoretic separation of synthetic peptides.

  12. SIMULTANEOUS DTERMINATION OF CHROMATE AND AROMATIC HYDROCARBONS IN ENVIRONMENTAL SAMPLES BY CAPILLARY ELECTROPHORESIS

    EPA Science Inventory

    An analytical method was developed to determine simultaneously, the inorganic anion CrO2-4, and organic aromatic compounds including benzoate, 2-Cl-benzoate, phenol, m-cresol and o-/p-cresol by capillary electrophoresis (CE). Chromate and the aromatics were separated in a relativ...

  13. Capillary Electrophoresis and Fluorescence Excitation-Emission Matrix Characterization of Soil Mobile and Calcium Humates

    USDA-ARS?s Scientific Manuscript database

    Capillary electrophoresis (CE) and Excitation-emission matrix (EEM) fluorescence spectroscopy have been used in natural organic matter (NOM) studies. The mutual relevance of data collected from each of the two methods provides novel insight into the correlation of complex NOM fluorescence spectra to...

  14. SIMULTANEOUS DTERMINATION OF CHROMATE AND AROMATIC HYDROCARBONS IN ENVIRONMENTAL SAMPLES BY CAPILLARY ELECTROPHORESIS

    EPA Science Inventory

    An analytical method was developed to determine simultaneously, the inorganic anion CrO2-4, and organic aromatic compounds including benzoate, 2-Cl-benzoate, phenol, m-cresol and o-/p-cresol by capillary electrophoresis (CE). Chromate and the aromatics were separated in a relativ...

  15. Capillary electrophoresis screening of poisonous anions extracted from biological samples.

    PubMed

    Gillette, Robert; Doyle, Janet M; Miller, Mark L; Montgomery, Madeline A; Mushrush, George W

    2006-02-02

    A method was developed for screening human biological samples for poisonous anions using capillary electrophoresis (CE) employing indirect UV detection. The run buffer consisted of 2.25 mM pyromellitic acid, 1.6 mM triethanolamine, 0.75 mM hexamethonium hydroxide and 6.5mM NaOH at pH 7.7. Biological samples were pretreated using solid phase extraction. The method was applied to the analysis of human blood, plasma, urine, and intestinal contents. Twenty-nine different anions were detectable at aqueous concentrations of 1 part per million (ppm) with a typical analysis time less than 20 min. Intraday migration time R.S.D. and peak area R.S.D. for blood samples were less than 1.1% and 6.3%, respectively. Interday migration time R.S.D. for plasma samples ranged from 7.5% to 10.4%. The new method produced efficient separations of various target anions extracted from complex biological matrices.

  16. Simultaneous quantification of sialyloligosaccharides from human milk by capillary electrophoresis

    PubMed Central

    Bao, Yuanwu; Zhu, Libin; Newburg, David S.

    2007-01-01

    The acidic oligosaccharides of human milk are predominantly sialyloligosaccharides. Pathogens that bind sialic acid-containing glycans on their host mucosal surfaces may be inhibited by human milk sialyloligosaccharides, but testing this hypothesis requires their reliable quantification in milk. Sialyloligosaccharides have been quantified by anion exchange HPLC, reverse or normal phase HPLC, and capillary electrophoresis (CE) of fluorescent derivatives; in milk, these oligosaccharides have been analyzed by high pH anion exchange chromatography with pulsed amperometric detection, and, in our laboratory, by CE with detection at 205 nm. The novel method described herein uses a running buffer of aqueous 200 mM NaH2PO4 at pH 7.05 containing 100 mM SDS made 45% (v/v) with methanol to baseline resolve five oligosaccharides, and separate all 12. This allows automated simultaneous quantification of the 12 major sialyloligosaccharides of human milk in a single 35-minute run. This method revealed differences in sialyloligosaccharide concentrations between less and more mature milk from the same donors. Individual donors also varied in expression of sialyloligosaccharides in their milk. Thus, the facile quantification of sialyloligosaccharides by this method is suitable for measuring variation in expression of specific sialyloligosaccharides in milk and their relationship to decreased risk of specific diseases in infants. PMID:17761135

  17. Novel separation scheme for capillary electrophoresis of enantiomers.

    PubMed

    Guttman, A

    1995-10-01

    A systematic approach is described for methods development of chiral separations of weak acidic and basic compounds by capillary electrophoresis, using several natural and derivatized neutral cyclodextrins as chiral selectors. Following the methods development scheme suggested here, the appropriate pH of the running buffer as well as the type and concentration of the cyclodextrin is established for the separation of enantiomers. Preselected chiral selectors of beta-cyclodextrin, gamma-cyclodextrin, hydroxypropyl-beta-cyclodextrin and dimethyl-beta-cyclodextrin in low and high concentrations, dissolved in low pH, high pH or pH = pK buffers, are employed during the separation method development and optimization. Depending on the type of separation, introduced by Vigh (desionoselective: only the nondissociated; ionoselective: only the dissociated; duo-selective: both enantiomers complex selectively), in most instances at least one of the pH/cyclodextrin combinations results in acceptable separation of the solute enantiomers. The viability of the approach is demonstrated through step by step development of chiral separation for several basic and acidic enantiomers.

  18. Determination of counter-ions in synthetic peptides by ion chromatography, capillary isotachophoresis and capillary electrophoresis.

    PubMed

    Mrozik, Wojciech; Markowska, Aleksandra; Guzik, Lukasz; Kraska, Bartłomiej; Kamysz, Wojciech

    2012-03-01

    The utility of three various analytical techniques [ion chromatography (IC), capillary electrophoresis (CE) and isotachophoresis (ITP)] was tested in the determination of counter-ions in synthetic peptides. The analyzed ions were acetates, trifluoroacetates and chlorides. IC provided the best results; CE, except limit of detection and limit of quantification, exhibited the comparable results. ITP was classified as the less useful because of the problem with the determination of the chloride ions. Nevertheless, all the three techniques were able to analyze trifluoroacetates and acetates ions with satisfactory results. Except analytical methods, three procedures using hydrochloric acid (HCl) (at two different concentrations) and acetic acid as sample solvents processed by lyophilization were tested. It has been found that the lyophilization not only by HCl but also by acetic acid is a simple and cheap procedure for removal of toxic trifluoroacetic counter-ions from peptides on satisfactory levels.

  19. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, R.D.; Udseth, H.R.; Olivares, J.A.

    1994-10-18

    A system and method for analyzing molecular constituents of a composition sample include: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g.,{+-}2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit. 21 figs.

  20. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, R.P.; Udseth, H.R.; Olivares, J.A.

    1989-12-05

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit. 21 figs.

  1. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, Richard D.; Udseth, Harold R.; Olivares, Jose A.

    1994-10-18

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit.

  2. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, Richard P.; Udseth, Harold R.; Olivares, Jose A.

    1989-01-01

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit.

  3. Joule heating and determination of temperature in capillary electrophoresis and capillary electrochromatography columns.

    PubMed

    Rathore, Anurag S

    2004-05-28

    This article reviews the progress that has taken place in the past decade on the topic of estimation of Joule heating and temperature inside an open or packed capillary in electro-driven separation techniques of capillary electrophoresis (CE) and capillary electrochromatography (CEC), respectively. Developments in theoretical modeling of the heat transfer in the capillary systems have focused on attempts to apply the existing models on newer techniques such as CEC and chip-based CE. However, the advent of novel analytical tools such as pulsed magnetic field gradient nuclear magnetic resonance (NMR), NMR thermometry, and Raman spectroscopy, have led to a revolution in the area of experimental estimation of Joule heating and temperature inside the capillary via the various noninvasive techniques. This review attempts to capture the major findings that have been reported in the past decade.

  4. Capillary electrophoresis for the monitoring of phenolic compounds in bioprocesses.

    PubMed

    Turkia, Heidi; Sirén, Heli; Penttilä, Merja; Pitkänen, Juha-Pekka

    2013-02-22

    Hydrolysates of lignocellulosic biomass, used as substrates for the sustainable production of fuels and chemicals often contain high amounts of phenolic compounds inhibiting the production microbiota. Quantification of these inhibitor compounds may help to understand possible difficulties in bioprocessing and further the development of more efficient, robust and tolerable processes. A separation method based on capillary electrophoresis with UV detection was developed for the simultaneous quantification of 10 phenolic compounds that may have inhibitor properties. Intraday relative standard deviations were less than 0.7% for migration times and between 2.6% and 6.4% for peak areas. Interday relative standard deviations were less than 3.0% for migration times and between 5.0% and 7.2% for peak areas. The method was applied to demonstrate that Saccharomyces cerevisiae was able to decrease the concentrations of vanillin, coniferyl aldehyde, syringaldehyde, acetoguaiacone and cinnamic acid during the cultivation, whereas the concentrations of phenols increased. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. GRAMA: genetic mapping analysis of temperature gradient capillary electrophoresis data.

    PubMed

    Maher, Philip M; Chou, Hui-Hsien; Hahn, Elizabeth; Wen, Tsui-Jung; Schnable, Patrick S

    2006-06-01

    Temperature gradient capillary electrophoresis (TGCE) is a high-throughput method to detect segregating single nucleotide polymorphisms and InDel polymorphisms in genetic mapping populations. Existing software that analyzes TGCE data was, however, designed for mutation analysis rather than genetic mapping. Genetic recombinant analysis and mapping assistant (GRAMA) is a new tool that automates TGCE data analysis for the purpose of genetic mapping. Data from multiple TGCE runs are analyzed, integrated, and displayed in an intuitive visual format. GRAMA includes an algorithm to detect peaks in electropherograms and can automatically compare its peak calls with those produced by another software package. Consequently, GRAMA provides highly accurate results with a low false positive rate of 5.9% and an even lower false negative rate of 1.3%. Because of its accuracy and intuitive interface, GRAMA boosts user productivity more than twofold relative to previous manual methods of scoring TGCE data. GRAMA is written in Java and is freely available at http://www.complex.iastate.edu .

  6. Clinical Applications of Capillary Electrophoresis-Based Immunoassays

    PubMed Central

    Moser, Annette C.; Willicott, Corey W.; Hage, David S.

    2014-01-01

    Immunoassays have long been an important set of tools in clinical laboratories for the detection, diagnosis and treatment of disease. Over the last two decades there has been growing interest in utilizing capillary electrophoresis (CE) as a means for conducting immunoassays with clinical samples. The resulting method is known as a CE immunoassay. This approach makes use of the selective and strong binding of antibodies for their targets, as is employed in a traditional immunoassay, and combines this with the speed, efficiency, and small sample requirements of CE. This review discusses the variety of ways in which CE immunoassays have been employed with clinical samples. An overview of the formats and detection modes that have been employed in these applications is first presented. A more detailed discussion is then given on the type of clinical targets and samples that have been measured or studied by using CE immunoassays. Particular attention is given to the use of this method in the fields of endocrinology, pharmaceutical measurements, protein and peptide analysis, immunology, infectious disease detection, and oncology. Representative applications in each of these areas are described, with these examples involving work with both traditional and microanalytical CE systems. PMID:24132682

  7. Quantification of carbamylated albumin in serum based on capillary electrophoresis.

    PubMed

    Delanghe, Sigurd; Moerman, Alena; Pletinck, Anneleen; Schepers, Eva; Glorieux, Griet; Van Biesen, Wim; Delanghe, Joris R; Speeckaert, Marijn M

    2017-09-01

    Protein carbamylation, a nonenzymatic posttranslational modification promoted during uremia, is linked to a poor prognosis. In the present study, carbamylation of serum albumin was assayed using the symmetry factor on a capillary electrophoresis instrument (Helena V8). The symmetry factor has been defined as the distance from the center line of the peak to the back slope, divided by the distance from the center line of the peak to the front slope, with all measurements made at 10% of the maximum peak height. Serum albumin, creatinine, and urea concentrations were assayed using routine methods, whereas uremic toxins were determined using HPLC. In vitro carbamylation induced a marked albumin peak asymmetry. Reference values for the albumin symmetry factor were 0.69-0.92. In kidney patients, albumin peak asymmetry corresponded to the chronic kidney disease stage (p < 0.0001). The symmetry factor correlated well with serum urea (r = -0.5595, p < 0.0001) and creatinine (r = -0.5986, p < 0.0001) concentrations. Several protein-bound uremic toxins showed a significant negative correlation with the symmetry factor. Morphology of the albumin fraction was not affected by presence of glycated albumin and protein-bound antibiotics. In conclusion, the presented method provides a simple, practical way for monitoring protein carbamylation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [Applications of microchip electrophoresis and capillary electrophoresis for screening FLT3-ITD gene mutation in acute myeloid leukemia].

    PubMed

    Leng, Xin; Li, Ling-Di; Li, Jin-Lan; Huang, Xiao-Jun; Ruan, Guo-Rui

    2014-02-01

    The purpose of the present study was to compare the reliability of microchip electrophoresis and capillary electrophoresis for screening FLT3-ITD gene mutation in acute myeloid leukemia. The FLT3-ITD mutation in the genomic DNA samples from 214 untreated AML patients were separately detected by PCR-microchip electrophoresis and PCR-capillary electrophoresis, then the DNA direct sequencing analysis was carried out. The results from PCR-microchip electrophoresis showed that there were 151 FLT3-ITD mutation negative, 58 FLT3-ITD mutation positive (58/214, 27.1%) and 5 FLT3-ITD mutation doubtful positive (5/214, 2.3%), while the outcomes from PCR-capillary electrophoresis displayed that there were 147 FLT3-ITD mutation negative and 67 FLT3-ITD mutation positive (67/214, 31.3%) without doubtful positive. In the 67 FLT3-ITD mutation positive samples detected by using PCR-capillary electrophoresis, 4 samples were detected as the negative while 5 samples were measured as the doubtful positive by using PCR-microchip electrophoresis. The followed sequencing analysis demonstrated that the above 9 samples were all FLT3-ITD mutation positive, indicating that PCR-capillary electrophoresis was more accurate and sensitive in screening the FLT3-ITD mutation, although statistic analysis showed that there were no significant differences in the detected results between PCR-microchip electrophoresis and PCR-capillary electrophoresis groups (Pearson Chi-squared Test, P > 0.05). It is concluded that both PCR-microchip electrophoresis and PCR-capillary electrophoresis were convenient and fast for screening FLT3-ITD mutation, but the accuracy of PCR-microchip electrophoresis awaits further improvement.

  9. Recent advances in combination of capillary electrophoresis with mass spectrometry: methodology and theory.

    PubMed

    Klepárník, Karel

    2015-01-01

    This review focuses on the latest development of microseparation electromigration methods in capillaries and microfluidic devices with MS detection and identification. A wide selection of 183 relevant articles covers the literature published from June 2012 till May 2014 as a continuation of the review article on the same topic by Kleparnik [Electrophoresis 2013, 34, 70-86]. Special attention is paid to the new improvements in the theory of instrumentation and methodology of MS interfacing with capillary versions of zone electrophoresis, ITP, and IEF. Ionization methods in MS include ESI, MALDI, and ICP. Although the main attention is paid to the development of instrumentation and methodology, representative examples illustrate also applications in the proteomics, glycomics, metabolomics, biomarker research, forensics, pharmacology, food analysis, and single-cell analysis. The combinations of MS with capillary versions of electrochromatography and micellar electrokinetic chromatography are not included.

  10. Study on Dicarboxylic Acids in Aerosol Samples with Capillary Electrophoresis

    PubMed Central

    Adler, Heidi; Sirén, Heli

    2014-01-01

    The research was performed to study the simultaneous detection of a homologous series of α, ω-dicarboxylic acids (C2–C10), oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages) from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE) before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50 μL. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2–C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m3. PMID:24729915

  11. A Contactless Capacitance Detection System for Microchip Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Wu, Peter

    2008-05-01

    The design, construction and operation of a simple, inexpensive and compact high voltage power supply for use in conjunction with a simple cross, capillary electrophoresis microchip is presented. The detection system utilizes a single high voltage power supply (15 kV), a voltage divider network for obtaining the required voltages for enabling a gated injection valve, and two high voltage relays for switching between the open and closed gate sequences of the injection. The system is used to determine sodium monofluoroacetate (MFA) concentration in diluted fruit juices and tap water. A separation buffer consisting of 20 mM citric acid and histidine at pH 3.5 enabled the detection of the anion in diluted apple juice, cranberry juice, and orange juice without lengthy sample pretreatments. Limit of detection in diluted juices and tap water were determined to be 125, 167, 138, and 173 mg/L for tap water, apple juice, cranberry juice, and orange juice, respectively, based upon an S/N of 3:1. The total analysis time for detecting the MFA anion in fruit juices was less than 5 min, which represents a considerable reduction in analysis time compared to other analytical methods currently used in food analysis.

  12. Univalent salts as modifiers in micellar capillary electrophoresis.

    PubMed

    McLaren, David G; Boulat, Olivier; Chen, David D Y

    2002-06-01

    The influence of three univalent salts (LiCl, NaCl and RbCl) on the separation of amino acids labelled with 3-(4-carboxybenzoyl)-quinoline-2-carboxaldehyde (CBQCA) in micellar capillary electrophoresis has been studied. Capacity factors for a series of eight CBQCA-labelled amino acids in a sodium dodecyl sulfate (SDS) micellar system containing different concentrations of salt were measured and were found to be related to both the hydrodynamic radius of the salt counter-ion (Li(+), Na(+), Rb(+)) and the relative hydrophobicity of the amino acid. Affinities of the analytes for the micelles were generally observed to decrease as the salt concentration in the background electrolyte was increased from 10 to 50 mM. This decrease in affinity was greatest in the presence of the salt counter-ion with the smallest hydrodynamic radius and is primarily due to an increased resistance to mass transfer. Furthermore, interaction of hydrophobic analytes with the micelles is greater than that of hydrophilic analytes at all salt concentrations due to the greater strength of the hydrophobic interactions and this effect is also enhanced in the presence of a smaller counter-ion. No negative effects due to Joule heating or electromigrative dispersion were observed for low to moderate concentrations of salt, which suggests that the use of simple univalent salts to modify analyte/micelle affinities can be a practical method for improving the separation of complex mixtures.

  13. Chiral separation of amino acids and peptides by capillary electrophoresis.

    PubMed

    Wan, H; Blomberg, L G

    2000-04-14

    Chiral separation of amino acids and peptides by capillary electrophoresis (CE) is reviewed regarding the separation principles of different approaches, advantages and limitations, chiral recognition mechanisms and applications. The direct approach details various chiral selectors with an emphasis on cyclodextrins and their derivatives, antibiotics and chiral surfactants as the chiral selectors. The indirect approach deals with various chiral reagents applied for diastereomer formation and types of separation media such as micelles and polymeric pseudo-stationary phases. Many derivatization reagents used for high sensitivity detection of amino acids and peptides are also discussed and their characteristics are summarized in tables. A large number of relevant examples is presented illustrating the current status of enantiomeric and diastereomeric separation of amino acids and peptides. Strategies to enhance the selectivity and optimize separation parameters by the application of experimental designs are described. The reversal of enantiomeric elution order and the effects of organic modifiers on the selectivity are illustrated in both direct and indirect methods. Some applications of chiral amino acid and peptide analysis, in particular, regarding the determination of trace enantiomeric impurities, are given. This review selects more than 200 articles published between 1988 and 1999.

  14. Study on dicarboxylic acids in aerosol samples with capillary electrophoresis.

    PubMed

    Adler, Heidi; Sirén, Heli

    2014-01-01

    The research was performed to study the simultaneous detection of a homologous series of α , ω -dicarboxylic acids (C2-C10), oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages) from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE) before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50  μ L. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2-C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m(3).

  15. Numerical modeling of capillary electrophoresis - electrospray mass spectrometry interface design.

    PubMed

    Jarvas, Gabor; Guttman, Andras; Foret, Frantisek

    2015-01-01

    Capillary electrophoresis hyphenated with electrospray mass spectrometry (CE-ESI-MS) has emerged in the past decade as one of the most powerful bioanalytical techniques. As the sensitivity and efficiency of new CE-ESI-MS interface designs are continuously improving, numerical modeling can play important role during their development. In this review, different aspects of computer modeling and simulation of CE-ESI-MS interfaces are comprehensively discussed. Relevant essentials of hydrodynamics as well as state-of-the-art modeling techniques are critically evaluated. Sheath liquid-, sheathless-, and liquid-junction interfaces are reviewed from the viewpoint of multidisciplinary numerical modeling along with details of single and multiphase models together with electric field mediated flows, electrohydrodynamics, and free fluid-surface methods. Practical examples are given to help non-specialists to understand the basic principles and applications. Finally, alternative approaches like air amplifiers are also included. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 34: 558-569, 2015. © 2014 Wiley Periodicals, Inc.

  16. Quaternary ammonium substituted agarose as surface coating for capillary electrophoresis.

    PubMed

    Ullsten, Sara; Söderberg, Lennart; Folestad, Staffan; Markides, Karin E

    2004-05-01

    A novel positively charged polymer of quaternary ammonium substituted agarose (Q-agarose) has been synthesized and explored for use as a coating in capillary electrophoresis. The fast and simple coating procedure is based on a multi-site electrostatic interaction between the polycationic agarose polymer and the negatively charged fused-silica surface. By simply flushing fused-silica capillaries with hot polymer solution a positively charged, hydrophilic deactivation layer is achieved. The polymer surface provides an intermediate electroosmotic flow of reversed direction, over a range of pH 2-11, compared to unmodified fused-silica. The coating procedure was highly reproducible with an RSD of 4%, evaluated as the electroosmotic flow mobility for 30 capillaries prepared at 10 different occasions. The application of Q-agarose coated capillaries in separation science was investigated using a set of basic drugs and model proteins and peptides. Due to the intermediate electroosmotic flow generated, the resolution of basic drugs could be increased, compared to using bare fused-silica capillaries. Moreover, the coating enabled separation of proteins and peptides with efficiencies up to 300.000 plates m(-1).

  17. Analysis of an antibody pharmaceutical, tocilizumab, by capillary electrophoresis using a carboxylated capillary.

    PubMed

    Taga, Atsushi; Kita, Soichiro; Nishiura, Kaori; Hayashi, Tomonori; Kinoshita, Mitsuhiro; Sato, Atsushi; Suzuki, Kentaro; Kodama, Shuji; Kakehi, Kazuaki

    2008-03-01

    Antibody pharmaceuticals are becoming more and more prevalent due to their excellent effectiveness in clinical medications, and are expected to allow tailor-made medical treatment for rheumatic diseases, immunosuppression in cardiac transplantation, and cancer. Antibody-type pharmaceuticals of immunoglobulin G (IgG) commonly have N-glycosylated carbohydrate chains attached to heavy chains. The carbohydrate chains play important roles in the effectiveness of antibodies. Therefore evaluation of a glycosylated species is important in the first step of quality control of antibody pharmaceuticals. In the present work, we examined capillary electrophoresis with a newly developed, chemically modified capillary, the inner surface of which is modified with carboxyl groups, for evaluation of IgG molecular species which have carbohydrate chains; tocilizumab was used as a model. The analytical system developed in the present study is useful for determining the content of non-glycosylated peptides. In the analysis of tocilizumab, the ratio of non-glycosylated peptide was estimated to be 1.23% with a relative standard deviation of 3.05%. The method affords high reproducibility with simple operation, and analysis can be completed within 6 min.

  18. Quantification of Carbohydrates in Grape Tissues Using Capillary Zone Electrophoresis

    PubMed Central

    Zhao, Lu; Chanon, Ann M.; Chattopadhyay, Nabanita; Dami, Imed E.; Blakeslee, Joshua J.

    2016-01-01

    Soluble sugars play an important role in freezing tolerance in both herbaceous and woody plants, functioning in both the reduction of freezing-induced dehydration and the cryoprotection of cellular constituents. The quantification of soluble sugars in plant tissues is, therefore, essential in understanding freezing tolerance. While a number of analytical techniques and methods have been used to quantify sugars, most of these are expensive and time-consuming due to complex sample preparation procedures which require the derivatization of the carbohydrates being analyzed. Analysis of soluble sugars using capillary zone electrophoresis (CZE) under alkaline conditions with direct UV detection has previously been used to quantify simple sugars in fruit juices. However, it was unclear whether CZE-based methods could be successfully used to quantify the broader range of sugars present in complex plant extracts. Here, we present the development of an optimized CZE method capable of separating and quantifying mono-, di-, and tri-saccharides isolated from plant tissues. This optimized CZE method employs a column electrolyte buffer containing 130 mM NaOH, pH 13.0, creating a current of 185 μA when a separation voltage of 10 kV is employed. The optimized CZE method provides limits-of-detection (an average of 1.5 ng/μL) for individual carbohydrates comparable or superior to those obtained using gas chromatography–mass spectrometry, and allows resolution of non-structural sugars and cell wall components (structural sugars). The optimized CZE method was successfully used to quantify sugars from grape leaves and buds, and is a robust tool for the quantification of plant sugars found in vegetative and woody tissues. The increased analytical efficiency of this CZE method makes it ideal for use in high-throughput metabolomics studies designed to quantify plant sugars. PMID:27379118

  19. Structure analysis of lipoglycans and lipoglycan-derived carbohydrates by capillary electrophoresis and mass spectrometry.

    PubMed

    Lamari, Fotini N; Gioldassi, Xanthee M; Mitropoulou, Theoni N; Karamanos, Nikos K

    2002-04-01

    Lipoglycans (lipopolysaccharides, lipoarabinomannans and glycolipids) are unique components of the cell membrane of all cells and the envelope of many bacteria. They play important roles in determining cell-environment interactions, which, however, are only partly understood due to incomplete description of their structural components, lipids and glycans. Capillary electrophoresis is an analytical technique of high separation efficiency and minimum sample requirements and has successfully been used for the analysis of several molecules of biological importance: proteins, nucleic acids and glycoconjugates. In the last years, a few applications of capillary electrophoresis to the analysis of lipoglycans have been reported. Analysis of lipoglycans involves the study of two parameters: intact molecules and carbohydrate parts. The conjunction of capillary electrophoresis and mass spectroscopy not only enhances the detection sensitivity, but also provides structural information on these structurally complex molecules. The interest in the field is rising and the results from the exact determination on the lipoglycan structure are expected to improve our understanding of the molecular mechanism of lipoglycan binding to proteins and cells of host organisms as well as their relationship to the virulence and pathogenesis of bacteria. In this report, an overview of the capillary electrophoresis methods used to analyze and characterize the intact lipoglycans as well as their carbohydrate parts is presented. Copyright 2002 John Wiley & Sons, Ltd.

  20. Micropreparative capillary gel electrophoresis of DNA: rapid expressed sequence tag library construction.

    PubMed

    Shi, Liang; Khandurina, Julia; Ronai, Zsolt; Li, Bi-Yu; Kwan, Wai King; Wang, Xun; Guttman, András

    2003-01-01

    A capillary gel electrophoresis based automated DNA fraction collection technique was developed to support a novel DNA fragment-pooling strategy for expressed sequence tag (EST) library construction. The cDNA population is first cleaved by BsaJ I and EcoR I restriction enzymes, and then subpooled by selective ligation with specific adapters followed by polymerase chain reaction (PCR) amplification and labeling. Combination of this cDNA fingerprinting method with high-resolution capillary gel electrophoresis separation and precise fractionation of individual cDNA transcript representatives avoids redundant fragment selection and concomitant repetitive sequencing of abundant transcripts. Using a computer-controlled capillary electrophoresis device the transcript representatives were separated by their size and fractions were automatically collected in every 30 s into 96-well plates. The high resolving power of the sieving matrix ensured sequencing grade separation of the DNA fragments (i.e., single-base resolution) and successful fraction collection. Performance and precision of the fraction collection procedure was validated by PCR amplification of the collected DNA fragments followed by capillary electrophoresis analysis for size and purity verification. The collected and PCR-amplified transcript representatives, ranging up to several hundred base pairs, were then sequenced to create an EST library.

  1. Clinical applications of capillary electrophoresis based immunoassays.

    PubMed

    Moser, Annette C; Willicott, Corey W; Hage, David S

    2014-04-01

    Immunoassays have long been an important set of tools in clinical laboratories for the detection, diagnosis, and treatment of disease. Over the last two decades, there has been growing interest in utilizing CE as a means for conducting immunoassays with clinical samples. The resulting method is known as a CE immunoassay. This approach makes use of the selective and strong binding of antibodies for their targets, as is employed in a traditional immunoassay, and combines this with the speed, efficiency, and small sample requirements of CE. This review discusses the variety of ways in which CE immunoassays have been employed with clinical samples. An overview of the formats and detection modes that have been employed in these applications is first presented. A more detailed discussion is then given on the type of clinical targets and samples that have been measured or studied by using CE immunoassays. Particular attention is given to the use of this method in the fields of endocrinology, pharmaceutical measurements, protein and peptide analysis, immunology, infectious disease detection, and oncology. Representative applications in each of these areas are described, with these examples involving work with both traditional and microanalytical CE systems.

  2. Quantitative, small-scale, fluorophore-assisted carbohydrate electrophoresis implemented on a capillary electrophoresis-based DNA sequence analyzer.

    PubMed

    Murray, Sarah; McKenzie, Marian; Butler, Ruth; Baldwin, Samantha; Sutton, Kevin; Batey, Ian; Timmerman-Vaughan, Gail M

    2011-06-15

    Fluorophore-assisted carbohydrate electrophoresis (FACE) is an analytical method for characterizing carbohydrate chain length that has been applied to neutral, charged, and N-linked oligosaccharides and that has been implemented using diverse separation platforms, including polyacrylamide gel electrophoresis and capillary electrophoresis. In this article, we describe three substantial improvements to FACE: (i) reducing the amount of starch and APTS required in labeling reactions and systematically analyzing the effect of altering the starch and 8-amino-1,3,6-pyrenetrisulfonic acid (APTS) concentrations on the reproducibility of the FACE peak area distributions; (ii) implementing FACE on a multiple capillary DNA sequencer (an ABI 3130xl), enabling higher throughput than is possible on other separation platforms; and (iii) developing a protocol for producing quantitative output of peak heights and areas using genetic marker analysis software. The results of a designed experiment to determine the effect of decreasing both the starch and fluorophore concentrations on the sensitivity and reproducibility of FACE electrophoregrams are presented. Analysis of the peak area distributions of the FACE electrophoregrams identified the labeling reaction conditions that resulted in the smallest variances in the peak area distributions while retaining strong fluorescence signals from the capillary-based DNA sequencer.

  3. Potential of polyE-323 coated capillaries for capillary electrophoresis of lipids.

    PubMed

    Martma, Kert; Lindenburg, Petrus W; Habicht, Kaia-Liisa; Vulla, Kaspar; Resik, Kristiin; Kuut, Gunnar; Shimmo, Ruth

    2013-11-22

    In this note the feasibility of a polyamine-based capillary coating, polyE-323, for capillary electrophoresis (CE) of lipids is explored. PolyE-323 has previously been demonstrated to be suitable to suppress analyte-wall interaction of proteins in CE. However, the full applicability range of polyE-323 has not been exploited yet and it might be useful in the analysis of hydrophobic analytes, such as lipids. In this study, the stability of polyE-323 when using highly organic background electrolytes (BGEs), which are needed to solubilize the lipid analytes, was studied. For this, we used three different lipid samples: sphingomyelin, cardiolipin and a lipid extract from a cell culture. The highly organic BGEs that were used in this study consisted of 94.5% of organic solvents and 5.5% of an aqueous buffer. First, the influence of pure acetonitrile, methanol, propylene carbonate, isopropanol and chloroform on the polyE-323 coating was investigated. Then BGEs were developed and tested, using sphingomyelin and cardiolipin as test analytes in CE-UV experiments. After establishing the best BGEs (in terms of analysis time and repeatability) by CE-UV, sphingomyelin was used as a test analyte to demonstrate that method was also suitable for CE with mass-spectrometry detection (CE-MS). The LOD of sphingomyelin was estimated to be 100 nM and its migration time repeatability was 1.3%. The CE-MS analysis was further applied on a lipid extract obtained from human glioblastoma cells, which resulted in the separation and detection of a multitude of putative lipids. The results of our feasibility study indicate that CE systems based on polyE-323 coated capillaries and highly organic BGEs are promising for fast electromigration-based analysis of lipids.

  4. A forensic laboratory tests the Berkeley microfabricated capillary array electrophoresis device.

    PubMed

    Greenspoon, Susan A; Yeung, Stephanie H I; Johnson, Kelly R; Chu, Wai K; Rhee, Han N; McGuckian, Amy B; Crouse, Cecelia A; Chiesl, Thomas N; Barron, Annelise E; Scherer, James R; Ban, Jeffrey D; Mathies, Richard A

    2008-07-01

    Miniaturization of capillary electrophoresis onto a microchip for forensic short tandem repeat analysis is the initial step in the process of producing a fully integrated and automated analysis system. A prototype of the Berkeley microfabricated capillary array electrophoresis device was installed at the Virginia Department of Forensic Science for testing. Instrument performance was verified by PowerPlex 16 System profiling of single source, sensitivity series, mixture, and casework samples. Mock sexual assault samples were successfully analyzed using the PowerPlex Y System. Resolution was assessed using the TH01, CSF1PO, TPOX, and Amelogenin loci and demonstrated to be comparable with commercial systems along with the instrument precision. Successful replacement of the Hjerten capillary coating method with a dynamic coating polymer was performed. The accurate and rapid typing of forensic samples demonstrates the successful technology transfer of this device into a practitioner laboratory and its potential for advancing high-throughput forensic typing.

  5. Two-peak approximation in kinetic capillary electrophoresis.

    PubMed

    Cherney, Leonid T; Krylov, Sergey N

    2012-04-07

    Kinetic capillary electrophoresis (KCE) constitutes a toolset of homogeneous kinetic affinity methods for measuring rate constants of formation (k(+)) and dissociation (k(-)) of non-covalent biomolecular complexes, C, formed from two binding partners, A and B. A parameter-based approach of extracting k(+) and k(-) from KCE electropherograms relies on a small number of experimental parameters found from the electropherograms and used in explicit expressions for k(+) and k(-) derived from approximate solutions to mass transfer equations. Deriving the explicit expressions for k(+) and k(-) is challenging but it is justified as the parameter-based approach is the simplest way of finding k(+) and k(-) from KCE electropherograms. Here, we introduce a unique approximate analytical solution of mass transfer equations in KCE termed a "two-peak approximation" and a corresponding parameter-based method for finding k(+) and k(-). The two-peak approximation is applicable to any KCE method in which: (i) A* binds B to form C* (the asterisk denotes a detectable label on A), (ii) two peaks can be identified in a KCE electropherogram and (iii) the concentration of B remains constant. The last condition holds if B is present in access to A* and C* throughout the capillary. In the two-peak approximation, the labeling of A serves only for detection of A and C and, therefore, is not required if A (and thus C) can be observed with a label-free detection technique. We studied the proposed two-peak approximation, in particular, its accuracy, by using the simulated propagation patterns built with the earlier-developed exact solution of the mass-transfer equations for A* and C*. Our results prove that the obtained approximate solution of mass transfer equations is correct. They also show that the two-peak approximation facilitates finding k(+) and k(-) with a relative error of less than 10% if two peaks can be identified on a KCE electropherogram. Importantly, the condition of constant

  6. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014-2016).

    PubMed

    Breadmore, Michael C; Wuethrich, Alain; Li, Feng; Phung, Sui Ching; Kalsoom, Umme; Cabot, Joan M; Tehranirokh, Masoomeh; Shallan, Aliaa I; Abdul Keyon, Aemi S; See, Hong Heng; Dawod, Mohamed; Quirino, Joselito P

    2017-01-01

    One of the most cited limitations of capillary (and microchip) electrophoresis is the poor sensitivity. This review continues to update this series of biennial reviews, first published in Electrophoresis in 2007, on developments in the field of on-line/in-line concentration methods in capillaries and microchips, covering the period July 2014-June 2016. It includes developments in the field of stacking, covering all methods from field amplified sample stacking and large volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis.

  7. Stability-indicating capillary zone electrophoresis method for the assessment of recombinant human granulocyte-macrophage colony-stimulating factor and its correlation with reversed-phase liquid chromatography method and bioassay.

    PubMed

    Dalmora, Sergio Luiz; Butzge, Cairo dos Santos; Machado, Francine Trevisan; Walter, Maurício Elesbão; Dalmora, Maria Elisabeth de Ávila; Souto, Ricardo Bizogne

    2012-05-30

    A stability-indicating capillary zone electrophoresis (CZE) method was validated for the analysis of granulocyte-macrophage colony-stimulating factor (rhGM-CSF) using leuprorelin acetate (LA), as internal standard (IS). A fused-silica capillary (75 μm i.d.; effective length, 72 cm) was used at 25 °C; the applied voltage was 12 kV. The background electrolyte solution consisted of 50mM di-sodium hydrogen phosphate solution at pH 8.8. Injections were performed using a pressure mode at 50 mbar for 9s, with detection by photodiode array detector set at 200 nm. Specificity and stability-indicating capability were established in degradation studies, which also showed that there was no interference of the excipients. The method was linear over the concentration range of 2.5-200 μg mL(-1) (r(2)=0.9995) and the limit of detection (LOD) and limit of quantitation (LOQ) were 0.79 μg mL(-1) and 2.5 μg mL(-1), respectively. The accuracy was 99.14% with bias lower than 1.40%. The method was applied to the quantitative analysis of biopharmaceutical formulations, and the results were correlated to those of a validated reversed-phase LC method (RP-LC), and an in vitro bioassay, showing non-significant differences (p>0.05).

  8. Comparison of Capillary Electrophoresis with Cellulose Acetate Electrophoresis for the Screening of Hemoglobinopathies

    PubMed Central

    Kim, Ji-Eun; Kim, Bo-Ram; Woo, Kwang-Sook; Kim, Jeong-Man; Park, Joo-In

    2011-01-01

    Background β-thalassemia is primarily found in individuals of Mediterranean and Southeast Asian ancestry. With rapid growth in the Southeast Asian segments of the Korean population, the geographic distribution of hemoglobinopathies is expected to become significantly different from what it is today. In this study, Hb fractions were measured in patients with hypochromic microcytosis to detect thalassemia and Hb variants. To evaluate the feasibility of replacing cellulose acetate electrophoresis (CA) with capillary electrophoresis (CE) in a clinical laboratory, both techniques were performed and the outcomes were compared. Methods To evaluate hemoglobinopathies, complete blood cell counts (CBC), CA, and CE were carried out on samples from healthy and microcytic hypochromic groups. The microcytic hypochromic group consisted of 103 patients whose mean corpuscular volume (MCV) was less than 75 fL and mean corpuscular hemoglobin (MCH) was less than 24 pg. Quantitative analysis of Hb fractions was performed on 143 whole blood samples. Results There was a good correlation for measurements of HbA (r=0.9370, P<0.0001), HbA2 (r=0.8973 P<0.0001), and HbF (r= 0.8010, P=0.0304) between the two methods. In the microcytic hypochromic group, there were 29 cases (28.2%) with decreased HbA2, 2 cases (1.9%) with increased HbA2, 3 cases (2.9%) with increased HbF, and 2 cases (1.9%) with increased HbA2 and HbF. Conclusions CE is comparable to CA for reliable measurement of Hb fractions. It is suitable for screening of hemoglobinopathies in many clinical laboratories. PMID:22016676

  9. Analytical method development for directed enzyme evolution research: a high throughput high-performance liquid chromatography method for analysis of ribose and ribitol and a capillary electrophoresis method for the separation of ribose enantiomers.

    PubMed

    Sun, Baoguo; Miller, Gregory; Lee, Wan Yee; Ho, Kelvin; Crowe, Michael A; Partridge, Leslie

    2013-01-04

    Analytical methods were developed for a directed enzyme evolution research programme, which pursued high performance enzymes to produce high quality L-ribose using large scale biocatalytic reaction. A high throughput HPLC method with evaporative light-scattering detection was developed to test ribose and ribitol in the enzymatic reaction, a β-cyclobond 2000 analytical column separated ribose and ribitol in 2.3 min, a C(18) guard column was used as an on-line filter to clean up the enzyme sample matrix and a short gradient was applied to wash the column, the enzymatic reaction solution can be directly injected after quenching. Total run time of each sample was approx. 4 min which provided capability of screening 4×96-well plates/day/instrument. Meanwhile, a capillary electrophoresis method was developed for the separation of ribose enantiomers, while 7-aminonaphthalene-1,3-disulfonic acid was used as derivatisation reagent and 25 mM tetraborate with 5 mM β-cyclodextrin was used as electrolyte. 0.35%of D-ribose in L-ribose can be detected which can be translated into 99.3% ee of L-ribose. Derivatisation reagent and sample matrix did not interfere with the measurement. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Theoretical and experimental separation dynamics in capillary zone electrophoresis

    NASA Technical Reports Server (NTRS)

    Thormann, Wolfgang; Michaud, Jon-Pierre; Mosher, Richard A.

    1986-01-01

    The mathematical model of Bier et al. (1983) is used in a computer aided analysis of the conditions in capillary zone electrophoresis (ZE) under which sample zones migrate noninteractively with the carrier electrolyte. The monitoring of sample zones with a capillary analyzer that features both on-line conductivity and UV detection at the end of the separation trough is discussed. Data from a ZE analysis of a 5-component mixture are presented, and it is noted that all five components can be monitored via their conductivity change if enough sample is present. It is suggested from the results that the concentration ratio of background buffer to sample should be a minimum of 100:1 to effectively apply the plate concept to ZE.

  11. Capillary zone electrophoresis of graphene oxide and chemically converted graphene.

    PubMed

    Müller, Marc B; Quirino, Joselito P; Nesterenko, Pavel N; Haddad, Paul R; Gambhir, Sanjeev; Li, Dan; Wallace, Gordon G

    2010-11-26

    The preparation of processable graphene oxide colloids called chemically converted graphene (CCG) involves the following steps: oxidation of graphite to form graphite oxide; exfoliation of graphite oxide to form graphene oxide (GO); and reduction of GO to form CCG. In this work, the exfoliation and reduction steps were monitored by capillary zone electrophoresis (CZE). CZE was performed in fused silica capillaries with UV absorbance at 230 nm (GO) and 270 nm (CCG) using 250 μM tetrapropylammonium hydroxide (pH 10.4). The results indicate that almost complete exfoliation of graphite oxide (0.05 wt%) and higher recovery of CCG were obtained by sonication at 50% power for more than 15 h. CZE is considered a valuable tool for the fractionation and analysis of GO nanoparticles and, hence, for the control of different steps in preparation of CCG. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  12. On-column electrochemical detection for microchip capillary electrophoresis.

    PubMed

    Osbourn, Damon M; Lunte, Craig E

    2003-06-01

    The development of a cellulose acetate decoupler for on-column electrochemical detection in microchip capillary electrophoresis is presented. The capillary based laser-etched decoupler is translated to the planar format to isolate the detector circuit from the separation circuit. The decoupler is constructed by aligning a series of 20 30-microm holes through the coverplate of the microchip with the separation channel and casting a thin film of cellulose acetate within the holes. The decoupler shows excellent isolation of the detection circuit for separation currents up to 60 microA, with noise levels at or below 1 pA at a carbon fiber electrode. Detection limits of 25 nM were achieved for dopamine. This decoupler design combines excellent mechanical stability, effective shunting of high separation currents, and ease of manufacture.

  13. Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection

    SciTech Connect

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This is a review article. During the past decade, significant progress in the development of miniaturized microfluidic systems has Occurred due to the numerous advantages of microchip analysis. This review focuses on recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creation of truly portable devices.

  14. Capillary electrophoresis-electrochemical detection microchip device and supporting circuits

    DOEpatents

    Jackson, Douglas J [New Albany, IN; Roussel, Jr., Thomas J.; Crain, Mark M [Georgetown, IN; Baldwin, Richard P [Louisville, KY; Keynton, Robert S [Louisville, KY; Naber, John F [Prospect, KY; Walsh, Kevin M [Louisville, KY; Edelen, John G [Versailles, KY

    2008-03-18

    The present invention is a capillary electrophoresis device, comprising a substrate; a first channel in the substrate, and having a buffer arm and a detection arm; a second channel in the substrate intersecting the first channel, and having a sample arm and a waste arm; a buffer reservoir in fluid communication with the buffer arm; a waste reservoir in fluid communication with the waste arm; a sample reservoir in fluid communication with the sample arm; and a detection reservoir in fluid communication with the detection arm. The detection arm and the buffer arm are of substantially equal length.

  15. Challenges of glycoprotein analysis by microchip capillary gel electrophoresis.

    PubMed

    Engel, Nicole; Weiss, Victor U; Wenz, Christian; Rüfer, Andreas; Kratzmeier, Martin; Glück, Susanne; Marchetti-Deschmann, Martina; Allmaier, Günter

    2015-08-01

    Glycosylations severely influence a protein's biological and physicochemical properties. Five exemplary proteins with varying glycan moieties were chosen to establish molecular weight (MW) determination (sizing), quantitation, and sensitivity of detection for microchip capillary gel electrophoresis (MCGE). Although sizing showed increasing deviations from literature values (SDS-PAGE or MALDI-MS) with a concomitant higher degree of analyte glycosylation, the reproducibility of MW determination and accuracy of quantitation with high sensitivity and reliability were demonstrated. Additionally, speed of analysis together with the low level of analyte consumption render MCGE attractive as an alternative to conventional SDS-PAGE.

  16. A covalent capillary coating of diazoresin and polyglycerol dendrimer for protein analysis using capillary electrophoresis.

    PubMed

    Yu, Bing; Wang, Minghong; Cong, Hailin; Li, Guoling

    2017-08-29

    Overcoming proteins adsorption on the inner surface of capillary has attracted increasing attention recently. By using the unique photochemistry reaction of diazoresin (DR), a new covalent capillary coating was prepared on the fused-silica capillary through layer-by-layer self-assembly of DR with polyglycerol (PG) dendrimer. The separation performance of covalently DR/PG-dendrimer coated capillary noticeably exceeded the bare capillary and the noncovalently linked DR/PG-dendrimer capillary. A baseline separation of lysozyme, myoglobin, bovine serum albumin, and ribonuclease A was achieved using CE within 20 min. Besides, the covalently linked DR/PG-dendrimer coating has the remarkable stability and reproducibility. Especially, compared with the traditional method which use highly toxic and moisture-sensitive silane coupling agent, this method seems to be a simple and environmental friendly way to prepare the covalently coated capillaries for CE. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Capillary electrophoresis of peptides and proteins with plug of Pluronic gel.

    PubMed

    Sedlakova, P; Svobodova, J; Miksik, I

    2006-07-24

    Electromigration capillary methods are promising techniques in proteomics and they are still under research. We used a partial filling approach, i.e. a combination of gel and non-gel separation mechanisms in a single dimension. We tried using an interesting gel, Pluronic F 127, which can be considered as a surfactant capable of self-association both with isotropic and anisotropic gels. The Pluronic was inserted inside the capillary as a plug at the start of the capillary, and it provided separation at the first time. Separation by this gel was achieved according to molecular weight and/or hydrophobicity. The applicability of this method was demonstrated in the separation of real samples-peptides arising from collagen after CNBr or collagenase cleavage and albumin after trypsin cleavage (peptide mapping). Some peptides and proteins were selectively retained by the Pluronic gel. These interactions with the gel did not depended on their molecular weight alone, but they probably depend on a combination of both principles. It was confirmed that capillary electrophoresis with Pluronic plug can give us another new separation option, complementary to free solution capillary electrophoresis. The CE method presented here, consisting of a partial filling approach with combine gel and non-gel separation mechanisms seemed to be a promising method for the separation of complex mixtures of peptides.

  18. Application of capillary electrophoresis to the development and evaluation of aptamer affinity probes

    NASA Astrophysics Data System (ADS)

    Sooter, Letha J.; McMasters, Sun; Stratis-Cullum, Dimitra N.

    2007-09-01

    Nucleic acid aptamers can exhibit high binding affinities for a wide variety of targets and have received much attention as molecular recognition elements for enhanced biosensor performance. These aptamers recognize target molecules through a combination of conformational dependent non-covalent interactions in aqueous media which can be investigated using capillary electrophoresis-based methods. In this paper we report on the results of our studies of the relative binding affinity of Campylobacter jejuni aptamers using a capillary electrophoretic immunoassay. Our results show preferential binding to C. jejuni over other common food pathogen bacteria. Capillary electrophoresis can also be used to develop new aptamer recognition elements using an in vitro selection process known as systematic evolution of ligand by exponential enrichment (SELEX). Recently, this process has been adapted to use capillary electrophoresis in an attempt to shorten the overall selection process. This smart selection of nucleic acid aptamers from a large diversity of a combinatorial DNA library is under optimization for the development of aptamers which bind to Army-relevant targets. This paper will include a discussion of the establishment of CE-SELEX methods for the future development of smart aptamer probes.

  19. Development in electrophoresis: instrumentation for two-dimensional gel electrophoresis of protein separation and application of capillary electrophoresis in micro-bioanalysis

    SciTech Connect

    Xu, Aoshuang

    2008-01-01

    This dissertation begins with a general introduction of topics related to this work. The following chapters contain three scientific manuscripts, each presented in a separate chapter with accompanying tables, figures, and literature citations. The final chapter summarizes the work and provides some prospective on this work. This introduction starts with a brief treatment of the basic principles of electrophoresis separation, followed by a discussion of gel electrophoresis and particularly polyacrylamide gel electrophoresis for protein separation, a summary of common capillary electrophoresis separation modes, and a brief treatment of micro-bioanalysis application of capillary electrophoresis, and ends with an overview of protein conformation and dynamics.

  20. Separation of Trivalent Actinides from Lanthanides Using a Capillary Electrophoresis

    SciTech Connect

    Mori, Tomotaka; Ishii, Yasuo; Hayashi, Kazunori; Suganuma, Hideo; Satoh, Isamu

    2007-07-01

    A separation of {sup 241}Am(III) from {sup 152,154}Eu(III) was carried out using a capillary electrophoresis technique in a mixed solvent (CH{sub 3}OH/H{sub 2}O) system containing thiocyanate ion. First, the formation constants ({beta}{sub n}) between thiocyanate ion and Eu(III) or Am(III) were investigated in the mixed solvent solutions by a back-extraction technique using bis (2-ethylhexyl) hydrogen phosphate-toluene. The mean charges calculated on the basis of the data of {beta}{sub n} for Eu(III) were comparatively higher than those for Am(III). Based on the differences between the mean charges of Eu(III) and Am(III), separations for Am(III)/Eu(III) by means of capillary electrophoresis technique were tried in the (H{sup +}, Na{sup +})(SCN{sup -}, ClO{sub 4}{sup -}) mixed solvent solutions. It was proved that Am(III) was completely separated from Eu(III). (authors)

  1. Capillary Electrophoresis of Covalently Functionalized Single-Chirality Carbon Nanotubes.

    PubMed

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-03-30

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high performance capillary electrophoresis. Controlled amounts of negatively- and positively-charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to non-functionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high-degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality enriched samples, and show the feasibility of applying capillary electrophoresis for high performance separation of nanomaterials based on differences in surface functional density. This article is protected by copyright. All rights reserved.

  2. Capillary coated with graphene oxide as stationary phase for the separation of brucine and strychnine by capillary electrophoresis.

    PubMed

    Li, Jian; Ye, Nengsheng; Gao, Chong; Zhou, Tingting; Ma, Jichao

    2015-04-01

    A new capillary electrophoresis (CE) method was developed by using graphene oxide (GO) as a stationary phase for the separation of brucine and strychnine. The separation performance, reproducibility and stability of GO-coated capillary were investigated for the analysis of brucine and strychnine. After optimization of the separation conditions, a phosphate solution (40 mM, pH 7.0) containing 25% (v/v) acetonitrile was selected as the running buffer. Compared with uncoated capillary, higher separation efficiency was achieved by GO-coated capillary as a result of the increasing interactions between the analytes and the stationary phase of capillary. The linear ranges of these two alkaloids were 4.0-100.0 μg mL(-1) with a satisfied correlation coefficients (R > 0.9994), and this novel method provided an efficient separation of brucine and strychnine as well as a good reproducibility and stability. Finally, the developed method was successfully applied for the determination of these two alkaloids in a pharmaceutical formulation of traditional Chinese medicines. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Comparison of three modifications of fused-silica capillaries and untreated capillaries for protein profiling of maize extracts by capillary electrophoresis.

    PubMed

    Pobozy, Ewa; Sentkowska, Aleksandra; Piskor, Anna

    2014-09-01

    In this work, capillary electrophoresis was applied to protein profiling of fractionated extracts of maize. A comparative study on the application of uncoated fused-silica capillaries and capillaries modified with hydroxypropylmethylcellulose, ω-iodoalkylammonium salt and a commercially available neutral capillary covalently coated with polyacrylamide is presented. The coating stability, background electrolyte composition, and separation efficiency were investigated. It was found that for zeins separation, the most stable and efficient was the capillary coated with polyacrylamide. Finally, the usefulness of these methods was studied for the differentiation of zein fraction in transgenic and nontransgenic maize. Zeins extracted from maize standards containing 0 and 5% m/m genetic modification were successfully separated, but slight differences were observed in terms of the zein content. Albumin and globulin fractions were analyzed with the use of unmodified fused-silica capillary with borate buffer pH 9 and the capillary coated with polyacrylamide with phosphate buffer pH 3. In the albumin fraction, additional peaks were found in genetically modified samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Higher sensitivity of capillary electrophoresis in detecting hemoglobin A2'compared to traditional gel electrophoresis.

    PubMed

    Oleske, Deanna Alicia; Huang, Richard Sheng Poe; Dasgupta, Amitava; Nguyen, Andy; Wahed, Amer

    2014-01-01

    HbA2' (also called Hb B2) is the most common delta-globin chain defect and is reported to occur in 1-2% of the African American population. The major clinical significance of HbA2' is that the failure to detect it might lead to an underestimation of the total HbA2, leading to failure to diagnose β-thalassemia minor. In order to diagnose β-thalassemia minor, both HbA2 and HbA2' levels must be combined.Hb A2' accounts for a small percentage (1-2%) of the total hemoglobin in heterozygotes. It is difficult to detect this small amount by traditional gel electrophoresis. Using HPLC Hb A2' is easily detected as it produces a minor peak in the S window. Other conditions which might interfere with detection of HbA2' by HPLC include Hb S trait or Hb SS disease (Hb A2' hidden in the S peak), transfused Hb SS (Hb S peak may be very small), Hb C trait or Hb CC disease (glycosylated Hb C elutes in the S window), and Hb G (Hb G2 elutes in the S window). All of the above conditions, including Hb A2', occur most commonly in the same ethnic group (African American). We reviewed 654 consecutive cases over a period of three months for the presence of Hb A2' in our laboratory where capillary electrophoresis is used as the primary diagnostic tool. We detected seven cases (1.07 %) of HbA2'. In contrast, we did not detect any HbA2' using conventional gel electrophoresis in the last one year (2,580 cases). Although in none of the seven cases the sum of Hb A2 and Hb A2' exceeded 3.5%, we believe that capillary electrophoresis allows for a better detection of Hb A2' than gel electrophoresis and HPLC.

  5. CAPELLA, Capillary Electrophoresis for in situ Life Analysis

    NASA Astrophysics Data System (ADS)

    Eckhard, F.; Brunink, J. A.; van Driel, K.; Leeuwis, H.; Prak, A.; Huijser, R.; Fraaije, J. G.

    Capillary electrophoresis has emerged as a high-resolution analytical technique for the separation of chiral molecules, as it is simple to construct and modify a chiral environment within a capillary. In the search for the origin of life, chemical analysis plays an important role. Many important molecules required for earth-borne life exist in two forms. These two forms are non-super imposable mirror images of each other, i.e.: they are related like our left and right hands. Hence this property is called chirality, derived from the Greek word for hand. Nearly all biological polymers must be homochiral to function. For a great number of years in the Netherlands work is done on the development of a system for capillary electrophoresis (CE) applicable in a space environment. At the end of 1996, the development of CAELIS, a first demonstrator, fitting in an STS Middeck Drawer was finished. The problems, which have been encountered during the development of this system, have led to a completely new design, called MUSE (Multipurpose micro analysis tool). For this development the so-called MATAS technology, which enables the design and development of compact and rugged "Lab on Chip" systems, is applied. The use of this technology results in a very compact layout enabling, among others, to become part of a planetary rover. CAPELLA, a compact CE system for incorporation in a planetary rover is an example of such a system. Three detectors are currently under development, a fluorescence detector, an electrochemical and a refractive index detection system. If necessary, these detectors can be used in combination with each other, offering the opportunity to perform a wide range of analyses in one single run.

  6. Analysis and characterization of aluminum chlorohydrate oligocations by capillary electrophoresis.

    PubMed

    Ouadah, Nesrine; Moire, Claudine; Kuntz, Jean-François; Brothier, Fabien; Cottet, Hervé

    2017-04-07

    Aluminum chlorohydrates (ACH) are the active ingredients used in most antiperspirant products. ACH is a water soluble aluminum complex which contains several oligomeric polycations of aluminum with degrees of polymerization up to Al13 or Al30. The characterization and quantification of ACH oligo-cations remain a challenging issue of primary interest for developing structure/antiperspirant activity correlations, and for controlling the ACH ingredients. In this work, highly repeatable capillary electrophoresis (CE) separation of Al3(+), Al13 and Al30 oligomers contained in ACH samples was obtained at pH 4.8, owing to a careful choice of the background electrolyte counter-ion and chromophore, capillary I.D. and capillary coating. This is the first reported separation of Al13 and Al30 oligomers in conditions that are compatible with the aluminum speciation in ACH solution or in conditions of antiperspirant application/formulation. Al13 and Al30 effective charge numbers were also determined from the sensitivity of detection in indirect UV detection mode. The relative mass proportion of Al13 compared to Al13+Al30 could be determined in different aluminum chlorohydrate samples. Due to its simplicity, repeatability/reproducibility, minimal sample preparation and mild analytical conditions, CE appears to be a promising analytical separation technique for the characterization of ACH materials and for the study of structure/antiperspirant activity correlations. Copyright © 2017. Published by Elsevier B.V.

  7. Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration

    NASA Technical Reports Server (NTRS)

    Hutt, L. D.; Glavin, D. P.; Bada, J. L.; Mathies, R. A.

    1999-01-01

    Chiral separations of fluorescein isothiocyanate-labeled amino acids have been performed on a microfabricated capillary electrophoresis chip to explore the feasibility of using such devices to analyze for extinct or extant life signs in extraterrestrial environments. The test system consists of a folded electrophoresis channel (19.0 cm long x 150 microns wide x 20 microns deep) that was photolithographically fabricated in a 10-cm-diameter glass wafer sandwich, coupled to a laser-excited confocal fluorescence detection apparatus providing subattomole sensitivity. Using a sodium dodecyl sulfate/gamma-cyclodextrin pH 10.0 carbonate electrophoresis buffer and a separation voltage of 550 V/cm at 10 degrees C, baseline resolution was observed for Val, Ala, Glu, and Asp enantiomers and Gly in only 4 min. Enantiomeric ratios were determined for amino acids extracted from the Murchison meteorite, and these values closely matched values determined by HPLC. These results demonstrate the feasibility of using microfabricated lab-on-a-chip systems to analyze extraterrestrial samples for amino acids.

  8. Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration

    NASA Technical Reports Server (NTRS)

    Hutt, L. D.; Glavin, D. P.; Bada, J. L.; Mathies, R. A.

    1999-01-01

    Chiral separations of fluorescein isothiocyanate-labeled amino acids have been performed on a microfabricated capillary electrophoresis chip to explore the feasibility of using such devices to analyze for extinct or extant life signs in extraterrestrial environments. The test system consists of a folded electrophoresis channel (19.0 cm long x 150 microns wide x 20 microns deep) that was photolithographically fabricated in a 10-cm-diameter glass wafer sandwich, coupled to a laser-excited confocal fluorescence detection apparatus providing subattomole sensitivity. Using a sodium dodecyl sulfate/gamma-cyclodextrin pH 10.0 carbonate electrophoresis buffer and a separation voltage of 550 V/cm at 10 degrees C, baseline resolution was observed for Val, Ala, Glu, and Asp enantiomers and Gly in only 4 min. Enantiomeric ratios were determined for amino acids extracted from the Murchison meteorite, and these values closely matched values determined by HPLC. These results demonstrate the feasibility of using microfabricated lab-on-a-chip systems to analyze extraterrestrial samples for amino acids.

  9. Comparison of aqueous and non-aqueous capillary electrophoresis for quantitative determination of morphine in pharmaceuticals.

    PubMed

    Bjørnsdottir, I; Hansen, S H

    1997-05-01

    Two capillary electrophoresis methods involving aqueous and non-aqueous electrophoresis media, respectively, have been compared for the quantitative determination of morphine in pharmaceutical preparations. In the aqueous system the separation from other opium alkaloids was achieved using 2,6-di-O-methyl-beta-cyclodextrin as an additive to the electrophoresis buffer. In the non-aqueous system no other additives than the electrolytes were necessary in order to achieve separation of the opium alkaloids. The two methods have been partially validated and compared with a currently used high-performance liquid chromatography method. From the overall point of view the validations show that the three methods are equivalent in performance and that they are appropriate for the purposes they are intended for.

  10. Single-strand conformation polymorphism analysis using capillary array electrophoresis for large-scale mutation detection.

    PubMed

    Larsen, Lars Allan; Jespersgaard, Cathrine; Andersen, Paal Skytt

    2007-01-01

    This protocol describes capillary array electrophoresis single-strand conformation polymorphism (CAE-SSCP), a screening method for detection of unknown and previously identified mutations. The method detects 98% of mutations in a sample material and can be applied to any organism where the goal is to determine genetic variation. This protocol describes how to screen for mutations in 192 singleplex or up to 768 multiplex samples over 3 days. The protocol is based on the principle of sequence-specific mobility of single-stranded DNA in a native polymer, and covers all stages in the procedure, from initial DNA purification to final CAE-SSCP data analysis, as follows: DNA is purified, followed by PCR amplification using fluorescent primers. After PCR amplification, double-stranded DNA is heat-denatured to separate the strands and subsequently cooled on ice to avoid reannealing. Finally, samples are analyzed by capillary electrophoresis and appropriate analysis software.

  11. Improved electrospray ionization interface for capillary zone electrophoresis-mass spectrometry

    SciTech Connect

    Smith, R.D.; Barinaga, C.J.; Udseth, H.R.

    1988-09-15

    A new electrospray ionization interface for capillary zone electrophoresis-mass spectrometry (CZE-MS) is described. The interface uses a sheath flow of liquid to make the electrical contact at the CZE terminus, thus defining both the CZE and electrospray field gradients. This allows the composition of the electrosprayed liquid to be controlled independently of the CZE buffer, providing operation with buffers that could not be used previously (e.g., aqueous and high ionic strength buffers). The interface operation is independent of CZE flow rate; CZE capillaries are easily replaced and require no additional preparation. Since the electrospray occurs directly from the CZE capillary terminus, additional mixing volumes and metal surfaces are avoided and electrophoretic separation efficiency appears unperturbed. The dead volume associated with the electrospray interface is < 10 nL, corresponding to < 0.1 s for typical flow rates of the sheath electrode liquid. CZE-MS separations for mixtures of quaternary phosphonium salts and for epinephrine and related amines are demonstrated. Operation is demonstrated with high surfactant concentrations, as required for capillary electrokinetic chromatography. The extension to other capillary electrophoresis methods, such as isotachophoresis and isoelectric focusing, appears feasible.

  12. Interinstrumental transfer of a fast short-end injection capillary electrophoresis method: Application to the separation of niobium, tantalum, and their substituted ions.

    PubMed

    De Cock, Bart; Oliver, James D; Delaunay, Nathalie; Deblonde, Gauthier; Mangelings, Debby; Vander Heyden, Yvan

    2017-08-01

    The interinstrumental transfer of a short-end CE method was studied. A model separation of the hexameric forms of niobium, tantalum, and their substituted ions (Nb6-x Tax with 0 ≤ x ≤ 6) was selected as test case. The method was first optimized on a Beckman instrument and in a second step transferred to an Agilent instrument. The transfer needed updated guidelines that tackled differences in effective capillary length, 8.5 (Agilent) versus 10 cm (Beckman), because of instrumental different capillary cartridges. Differences in effective length lead to migration time and separation efficiency inequalities, illustrated by a decrease in resolution between the substituted ions. The difference in effective length was overcome by adapting the lift offset parameter of the Agilent instrument. The lift offset default setting is 4 mm and by increasing this parameter both the inlet and outlet lifts are lowered and thus the detection window can be displaced and consequently the effective length was increased. The decrease in effective length difference and the effect on the separation efficiency was investigated and led finally to a restored separation of the substituted ions. The adaptation of the lift offset parameter during short-end injection methods was added to earlier developed guidelines to facilitate interinstrumental method transfer of CE methods. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Preparative capillary zone electrophoresis using a dynamic coated wide-bore capillary.

    PubMed

    Yassine, Mahmoud M; Lucy, Charles A

    2006-08-01

    Preparative capillary zone electrophoresis separations of cytochrome c from bovine and horse heart are performed efficiently in a surfactant-coated capillary. The surfactant, dimethylditetradecylammonium bromide (2C(14)DAB), effectively eliminated protein adsorption from the capillary surface, such that symmetrical peaks with efficiencies of 0.7 million plates/m were observed in 50-microm id capillaries when low concentrations of protein were injected. At protein concentrations greater than 1 g/L, electromigration dispersion became the dominant source of band broadening and the peak shape distorted to triangular fronting. Matching of the mobility of the buffer co-ion to that of the cytochrome c resulted in dramatic improvements in the efficiency and peak shape. Using 100 mM bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane phosphate buffer at pH 7.0 with a 100-microm id capillary, the maximum sample loading capacity in a single run was 160 pmol (2.0 microg) of each protein.

  14. Determination of acid dissociation constants of warfarin and hydroxywarfarins by capillary electrophoresis.

    PubMed

    Nowak, Paweł; Olechowska, Paulina; Mitoraj, Mariusz; Woźniakiewicz, Michał; Kościelniak, Paweł

    2015-08-10

    In this work the acid dissociation constants--pKa of warfarin and its all important oxidative metabolites have been determined by capillary electrophoresis-based methods. It has resulted in a complete description of two acid-base dissociation equilibria, yet not investigated experimentally for phase I metabolites of warfarin. The capillary electrophoresis (CE) method based on the relation between effective electrophoretic mobilities and pH has proven to be a suitable tool for pKa determination, while the spectrophotometric (CE-DAD) and the internal standard methods (IS-CE), have appeared to be promising alternative approaches. The CE-DAD approach based on the change in absorbance spectra between the acidic and basic forms is a combination between capillary electrophoresis and spectrophotometric titration, and yields very consistent values of pKa1 with CE. The IS-CE, in turn, enables an estimation of pKa1 and pKa2 from only two analytical runs, however, less accurate than CE and CE-DAD. The Debye-Hückel model has been confirmed experimentally as a good predictor of pKa values at various ionic strengths. Therefore, it has been used in determination of thermodynamic pKa1 and pKa2, referring to the zero ionic strength. The results are important from the analytical, pharmacological, and theoretical points of view. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Sensitive detection of malachite green and crystal violet by nonlinear laser wave mixing and capillary electrophoresis.

    PubMed

    Maxwell, Eric J; Tong, William G

    2016-05-01

    An ultrasensitive label-free antibody-free detection method for malachite green and crystal violet is presented using nonlinear laser wave-mixing spectroscopy and capillary zone electrophoresis. Wave-mixing spectroscopy provides a sensitive absorption-based detection method for trace analytes. This is accomplished by forming dynamic gratings within a sample cell, which diffracts light to create a coherent laser-like signal beam with high optical efficiency and high signal-to-noise ratio. A cubic dependence on laser power and square dependence on analyte concentration make wave mixing sensitive enough to detect molecules in their native form without the use of fluorescent labels for signal enhancement. A 532 nm laser and a 635 nm laser were used for malachite green and crystal violet sample excitation. The use of two lasers of different wavelengths allows the method to simultaneously detect both analytes. Selectivity is obtained through the capillary zone electrophoresis separation, which results in characteristic migration times. Measurement in capillary zone electrophoresis resulted in a limit of detection of 6.9 × 10(-10)M (2.5 × 10(-19) mol) for crystal violet and 8.3 × 10(-11)M (3.0 × 10(-20) mol) for malachite green at S/N of 2.

  16. Capillary liquid chromatography using laser-based and mass spectrometric detection. [Capillary zone electrophoresis (CZE); micellar electrokinetic capillary kchromatography (MECC)

    SciTech Connect

    Sepaniak, M.J.; Cook, K.D.

    1992-01-01

    In the years following the 1986 seminal paper (J. Chromatogr. Sci., 24, 347-352) describing modern capillary zone electrophoresis (CZE), the prominence of capillary electrokinetic separation techniques has grown. A related electrochromatographic technique is micellar electrokinetic capillary chromatography (MECC). This report presents a brief synopsis of research efforts during the current 3-year period. In addition to a description of analytical separations-based research, results of efforts to develop and expand spectrometric detection for the techniques is reviewed. Laser fluorometric detection schemes have been successfully advanced. Mass spectrometric research was less fruitful, largely owing to personnel limitations. A regenerable fiber optic sensor was developed that can be used to remotely monitor chemical carcinogens, etc. (DLC)

  17. Improving sensitivity in simultaneous determination of copper carboxylates by nonaqueous capillary electrophoresis.

    PubMed

    Laamanen, Pirkko-Leena; Blanco, Eva; Cela, Rafael; Matilainen, Rose

    2006-03-31

    A new method of nonaqueous capillary electrophoresis (NACE) with UV spectrophotometric detection was developed and optimized for the simultaneous determination of seven carboxylates (trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA), diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA), nitrilotriacetic acid (NTA), 1,3-diaminopropane-N,N,N',N'-tetraacetic acid (PDTA) and triethylenetetraaminehexaacetic acid (TTHA)) as copper complexes. The method development was carried out by using a fused silica capillary. Background electrolyte (BGE) was optimized and the best separation achieved by using 30mmolL(-1) potassium bromide in N-methylformamide (NMF) at apparent pH (pH(app)) 10.2. A voltage of +30kV and direct UV detection at 280nm were used in all measurements. Large-volume sample stacking using the electroosmotic flow pump (LVSEP) was tested in addition to basic capillary electrophoresis (CE) and observed to improve the separation of the analyte zones in the capillary. All the peaks in the electropherograms were properly separated, the calibration plots gave excellent correlation coefficients (R(2)>or=0.994) and all seven copper carboxylate complexes were detected in less than 20min using both the basic measurements and the large-volume sample stacking method. The new NACE method was tested with lake water and proved to be reliable.

  18. Ultrafast Capillary Electrophoresis Isolation of DNA Aptamer for the PCR Amplification-Based Small Analyte Sensing

    NASA Astrophysics Data System (ADS)

    Fiore, Emmanuelle; Dausse, Eric; Dubouchaud, Hervé; Peyrin, Eric; Ravelet, Corinne

    2015-08-01

    Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR) amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization) of capillary electrophoresis and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s) was developed by designing a capillary electrophoresis input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 µM.

  19. Capillary electrophoresis of neutral carbohydrates: mono-, oligosaccharides, glycosides.

    PubMed

    Campa, Cristiana; Rossi, Marco

    2008-01-01

    This chapter reports an overview of the recent advances in the analysis of neutral sugars by capillary electrophoresis (CE); furthermore, some relevant reviews and research articles in the field are tabulated. Comparison of CE with chromatography is also presented, with special attention to separation efficiency and sensitivity. The main routes aimed at pretreatment and CE analysis of uncharged mono-, oligosaccharides, and glycosides are described. Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral mono- and oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) underivatized mono- and di-saccharides analyzed using highly alkaline buffers; and (3) anomeric couples of glycosides separated using borate-based buffers.

  20. Accessing Protein Methyltransferase and Demethylase Enzymology Using Microfluidic Capillary Electrophoresis

    PubMed Central

    Wigle, Tim J.; Provencher, Laurel M.; Norris, Jacqueline L.; Jin, Jian; Brown, Peter J.; Frye, Stephen V.; Janzen, William P.

    2010-01-01

    Summary The discovery of small molecules targeting the > 80 enzymes that add (methyltransferases) or remove (demethylases) methyl marks from lysine and arginine residues, most notably present in histone tails, may yield unprecedented chemotherapeutic agents and facilitate regenerative medicine. To better enable chemical exploration of these proteins, we have developed a novel and highly quantitative microfluidic capillary electrophoresis assay to enable full mechanistic studies of these enzymes and the kinetics of their inhibition. This technology separates small biomolecules, i.e., peptides, based on their charge-to-mass ratio. Methylation, however, does not alter the charge of peptide substrates. To overcome this limitation, we have employed a methylation-sensitive endoproteinase strategy to separate methylated from unmethylated peptides. The assay was validated on a lysine methyltransferase (G9a) and a lysine demethylase (LSD1) and was employed to investigate the inhibition of G9a by small molecules. PMID:20659682

  1. Separation of cold medicine ingredients by capillary electrophoresis.

    PubMed

    Suntornsuk, L

    2001-01-01

    This study demonstrates the separation of cold medicine ingredients (e.g., phenylpropanolamine, dextromethorphan, chlorpheniramine maleate, and paracetamol) by capillary zone electrophoresis and micellar electrokinetic chromatography. Factors affecting their separations were the buffer pH and the concentrations of buffer, surfactant and organic modifiers. Optimum results were obtained with a 10 mM sodium dihydrogen-phosphate-sodium tetraborate buffer containing 50 mM sodium dodecyl sulfate (SDS) and 5% methanol (MeOH), pH 9.0. The carrier electrolyte gave a baseline separation of phenylpropanolamine, dextromethorphan, chlorpheniramine maleate, and paracetamol with a resolution of 1.2, and the total migration time was 11.38 min.

  2. Olive oil by capillary electrophoresis: characterization and genuineness.

    PubMed

    Monasterio, Romina P; Fernández, María de los Ángeles; Silva, María Fernanda

    2013-05-15

    Olive oil, obtained from Olea europaea L. (Oleaceae) fruits, is an important ingredient in the Mediterranean diet. The purpose of this paper is to review and evaluate olive oil analysis using capillary electrophoresis (CE). This review covers a selection of the literature published on this topic over the past decade. The current state of the art of the topic is evaluated, with special emphasis on separation conditions, analysis purpose, and analytes investigated. CE has been used to characterize or to carry out authenticity studies. Particular attention has been focused on the botanical origin because high-quality monovarietal olive oils have been recently introduced on the markets and their quality control requires the development of new and powerful analytical tools as well as new regulations to avoid fraud. CE represents a good compromise between sample throughput, sample volume, satisfactory characterization, and sustainability for the analysis of target compounds present in olive oils.

  3. Capillary electrophoresis-mass spectrometry in food analysis.

    PubMed

    Simó, Carolina; Barbas, Coral; Cifuentes, Alejandro

    2005-04-01

    This work provides an updated overview (including works published till June 2004) on the principal applications of capillary electrophoresis-mass spectrometry (CE-MS) together with their main advantages and drawbacks in food science. Thus, analysis of amino acids, peptides, proteins, carbohydrates, or polyphenols by CE-MS in different foods is reviewed. Also, other natural compounds (e.g., alkaloids) and toxins analyzed by CE-MS in foods are revised. Moreover, exogenous substances with a potential risk for human health (e.g., pesticides, drugs) detected in foods by CE-MS are included in this work. The usefulness of CE-MS for food analysis and the information that this coupling can provide in terms of processing, composition, authenticity, quality, or safety of foods is also discussed.

  4. Determination of opiate alkaloids in process liquors using capillary electrophoresis.

    PubMed

    Hindson, Benjamin J; Francis, Paul S; Purcell, Stuart D; Barnett, Neil W

    2007-02-19

    This paper describes the determination of opiate alkaloids (morphine, codeine, oripavine and thebaine) in industrial process liquors using capillary zone electrophoresis with UV-absorption detection at 214 nm. A study of cyclodextrin type and concentration revealed that the addition of 30 mM hydroxypropyl-beta-cyclodextrin to the electrolyte solution (100mM Tris adjusted to pH 2.8) was suitable to resolve the four analytes of interest. Typical analysis time was 12 min and the limit of detection for each alkaloid was 2.5 x 10(-6) M. The results for the proposed methodology were in good agreement with those of a conventional HPLC procedure. Under the same conditions, short-end injection was used to reduce the effective separation length from 41.5 to 8.5 cm, which allowed the determination of morphine and thebaine in process liquors within 2.5 min.

  5. Separation of enantiomers in capillary electrophoresis with contactless conductivity detection.

    PubMed

    Gong, Xiao Yang; Kubán, Pavel; Tanyanyiwa, Jatisai; Hauser, Peter C

    2005-08-05

    Contactless conductivity detection is successfully demonstrated for the enantiomeric separation of basic drugs and amino acids in capillary electrophoresis (CE). Derivatization of the compounds or the addition of a visualization agent as for indirect optical detection schemes were not needed. Non-charged chiral selectors were employed, hydroxypropylated cyclodextrin (CD) for the more lipophilic basic drugs and 18-crown-6-tetracarboxylic acid (18C6H4) for the amino acids. Acidic buffer solutions based on lactic or citric acid were used. The detection limits were determined as 0.3 microM for pseudoephedrine as an example of a basic drug and were in the range from 2.5 to 20 microM for the amino acids.

  6. Automated ribosomal DNA fingerprinting by capillary electrophoresis of PCR products.

    PubMed

    Martin, F; Vairelles, D; Henrion, B

    1993-10-01

    Capillary electrophoresis (CE) provides a rapid and automated technique for the analysis of subnanogram amounts of DNA fragments generated by the polymerase chain reaction (PCR). Here we describe the implementation of size-selective CE for DNA profiling and restriction fragment length polymorphism analysis of amplified polymorphic spacers of ribosomal DNA from fungi. Separations of unpurified and isopropanol-precipitated PCR-amplified DNA fragments in the size range of 20-1600 base pairs were achieved in less than 20 min with the use of hydroxypropyl methylcellulose as a sieving medium. The amplified internal transcribed spacer (ITS) and intergenic spacer (IGS) of RNA genes could be sized by coelectrophoresing a standard size ladder mixed with every sample, thereby eliminating errors in size estimation. This, together with the strictly controlled conditions of CE, permit the discrimination of amplified rDNA fragments differing only a few base pairs in length. Inter- and intraspecific variation in the size and number of restriction sites of the amplified rDNA spacers from the ectomycorrhizal basidiomycetes Laccaria laccata and Laccaria bicolor was observed and most strains could thus be reliably genotyped by PCR-CE. Multiple amplified IGS fragments of heterogeneous size were detected in several strains. This polymorphism is due to the occurrence of 5S rDNA subrepeats (i.e., multiple annealing of primer) within IGS. With CE, in contrast to slab gel electrophoresis, run times are short, the capillary can be reused, and full automation is feasible. Data acquisition and analysis are computer-controlled, which facilitates the locus identification and reduces error especially when large numbers of PCR products must be analyzed.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Improvements of polymerase chain reaction and capillary electrophoresis single-strand conformation polymorphism methods in microbial ecology: toward a high-throughput method for microbial diversity studies in soil.

    PubMed

    Zinger, Lucie; Gury, Jérôme; Giraud, Frédéric; Krivobok, Serge; Gielly, Ludovic; Taberlet, Pierre; Geremia, Roberto A

    2007-08-01

    The molecular signature of bacteria from soil ecosystems is an important tool for studying microbial ecology and biogeography. However, a high-throughput technology is needed for such studies. In this article, we tested the suitability of available methods ranging from soil DNA extraction to capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) for high-throughput studies. Our results showed that the extraction method does not dramatically influence CE-SSCP profiles, and that DNA extraction of a 0.25 g soil sample is sufficient to observe overall bacterial diversity in soil matrices. The V3 region of the 16S rRNA gene was amplified by PCR, and the extension time was found to be critical. We have also found that proofreading DNA polymerases generate a better signal in CE-SSCP profiles. Experiments performed with different soil matrices revealed the repeatability, efficiency, and consistency of CE-SSCP. Studies on PCR and CE-SSCP using single-species genomic DNA as a matrix showed that several ribotypes may migrate at the same position, and also that single species can produce double peaks. Thus, the extrapolation between number of peaks and number of species remains difficult. Additionally, peak detection is limited by the analysis software. We conclude that the presented method, including CE-SSCP and the analyzing step, is a simple and effective technique to obtain the molecular signature of a given soil sample.

  8. Pervaporation as interface between solid samples and capillary electrophoresis. Determination of biogenic amines in food.

    PubMed

    Ruiz-Jiménez, J; Luque de Castro, M D

    2006-03-31

    A fully automated system for solid sample analysis has been developed by on-line coupling a pervaporation module with a capillary electrophoresis system using as interface a flow injection manifold and a modified capillary electrophoresis vial. The pervaporator allows leaching, formation of the volatile analytes and their removal by evaporation and diffusion through a membrane. The isolated analytes are on-line injected into the capillary electrophoresis system meanwhile the solid matrix remains in the pervaporator. By this approach biogenic amines have been determined in fish, meat and sausage. The detection limits (LOD) ranged between 0.2 and 0.6microg/ml, the quantification limits between 0.7 and 1.9microg/ml and the linear dynamic between 0.4 and 400microg/ml. The precision, expressed as relative standard deviation (RSD), ranged between 0.76 and 4.21% for repeatability and between 1.12 and 4.78% for within laboratory reproducibility. The errors, expressed as RSD for all compounds, ranged between 1.64 and 3.42%. The optimal pervaporation time and that necessary for the individual separation/detection of the target analytes are 14 and 12min, respectively. The analysis frequency is higher than 3h(-1) and the sample size 0.1g. A two-tailed t-test, used to compare the proposed method with that based on HPLC, yielded similar results for nine different samples.

  9. Rapid diagnosis of thalassemias and other hemoglobinopathies by capillary electrophoresis system.

    PubMed

    Winichagoon, Pranee; Svasti, Saovaros; Munkongdee, Thongperm; Chaiya, Wantana; Boonmongkol, Piatip; Chantrakul, Nawarath; Fucharoen, Suthat

    2008-10-01

    Basic diagnosis of hemoglobinopathies can be performed by analysis of erythrocyte indices as well as by the separation and quantification of the common hemoglobin (Hb) fractions Hb A(2), Hb S, Hb C, Hb D, Hb E, and Hb F. This study used an automatic capillary zone electrophoresis system to diagnose various types of hemoglobinopathies common in the Thai population. A total of 459 adults were recruited, which consisted of normal, various types of thalassemia carriers, and thalassemia patients with different genotypes. Hb types and quantification of all Hb components were determined by an automated capillary zone electrophoresis. The automatic capillary electrophoresis system can separate and quantitate Hbs A, F, E, A(2), Constant Spring (CS), H, and Bart's in a way that is comparable with other Hb analysis methods. Moreover, the Hb A(2) peak can be distinguished clearly from the Hb E peak in individuals who carry Hb E. The slightly increased levels of Hb A(2), 3.5% +/- 0.4%, which is shown in the carriers of Hb E, confirm that Hb E is the silent phenotype of beta(+)-thalassemia.

  10. Novel separation and detection methods of DNA fragments in electrophoresis

    SciTech Connect

    Chan, K.C.

    1992-01-01

    A charge-coupled device (CCD) based electrophoresis system was developed. The system allowed non-destructive, sensitive, and on-line detection of native DNA in slab-gel electrophoresis via ultraviolet absorption measurement. The detection limit of double-stranded DNA fragment was 5 ng per band. Since the amount of DNA used in this experiment was typical, the CCD-based system could be readily implemented in molecular biology. Gel-filled and non-gel sieving capillary electrophoresis (CE) was developed for rapid and efficient separation of double-stranded DNA fragments. For the gel-filled CE separation a new gel matrix, the HydroLink gel (HL), was used. The HL capillary gel was easier to cast than the polyacrylamide capillary gel. For the non-gel separation, a GC capillary was used as the separation chamber, and cellulose additive was included in the electrophoresis as the sieving medium. Indirect fluorometry was applied in non-gel and gel electrophoresis for the detection of DNA fragments. This method allowed nondestructive and on-line detection of DNA during electrophoresis. The amount of DNA used with this method was comparable to those obtained with absorption measurement.

  11. Novel separation and detection methods of DNA fragments in electrophoresis

    SciTech Connect

    Chan, King Cheung.

    1993-01-27

    A charge-coupled device (CCD) based electrophoresis system was developed. The system allowed non-destructive, sensitive, and on-line detection of native DNA in slab-gel electrophoresis via ultraviolet absorption measurement. The detection limit of double-stranded DNA fragment was 5 ng per band. Since the amount of DNA used in this experiment was typical, the CCD-based system could be readily implemented in molecular biology. Gel-filled and non-gel sieving capillary electrophoresis was developed for rapid and efficient separation of double-stranded DNA fragments. For the gel-filled CE separation a new gel matrix, the HydroLink gel (HL), was used. The HL capillary gel was easier to cast than the polyacrylamide capillary gel. For the non-gel separation, a GC capillary was used as the separation chamber, and cellulose additive was included in the electrophoresis as the sieving medium. Indirect fluorometry was applied in non-gel and gel electrophoresis for the detection of DNA fragments. This method allowed non-destructive and on-line detection of DNA during electrophoresis. The amount of DNA used with this method was comparable to those obtained with absorption measurement.

  12. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    PubMed

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs.

  13. Capillary electrophoresis as a screening tool for alpha amylase inhibitors in plant extracts

    PubMed Central

    Hamdan, Imad I.; Afifi, Fatima U.

    2010-01-01

    Capillary electrophoresis (CE) method was developed for screening plant extract for potential alpha amylase (AA) inhibitory activity. The method was validated against a well established UV method. Overall, the proposed method was shown able to detect plants with significant alpha amylase inhibitory activity but not those with rather clinically insignificant activities. Fifty plant species were screened using both the proposed CE method and the UV method and seven plant species were found to possess significant AA inhibitory activities. Two plant species were proved to have alpha amylase inhibitory activity for the first time. PMID:24115900

  14. Automated sampling system for the analysis of amino acids using microfluidic capillary electrophoresis.

    PubMed

    Xu, Zhang-Run; Lan, Yue; Fan, Xiao-Feng; Li, Qi

    2009-04-30

    An improved automated continuous sample introduction system for microfluidic capillary electrophoresis (CE) is described. A sample plate was designed into gear-shaped and was fixed onto the shaft of a step motor. Twenty slotted reservoirs for containing samples and working electrolytes were fabricated on the "gear tooth" of the plate. A single 7.5-cm long Teflon AF-coated silica capillary serves as separation channel, sampling probe, as well as liquid-core waveguide (LCW) for light transmission. Platinum layer deposited on the capillary tip serves as the electrode. Automated continuous sample introduction was achieved by scanning the capillary tip through the slots of reservoirs. The sample was introduced into capillary and separated immediately in the capillary with only about 2-nL gross sample consumption. The laser-induced fluorescence (LIF) method with LCW technique was used for detecting fluorescein isothiocyanate (FITC)-labeled amino acids. With electric-field strength of 320 V/cm for injection and separation, and 1.0-s sample injection time, a mixture of FITC-labeled arginine and leucine was separated with a throughput of 60/h and a carryover of 2.7%.

  15. Optimization of capillary array electrophoresis single-strand conformation polymorphism analysis for routine molecular diagnostics.

    PubMed

    Jespersgaard, Cathrine; Larsen, Lars Allan; Baba, Shingo; Kukita, Yoji; Tahira, Tomoko; Christiansen, Michael; Vuust, Jens; Hayashi, Kenshi; Andersen, Paal Skytt

    2006-10-01

    Mutation screening is widely used for molecular diagnostics of inherited disorders. Furthermore, it is anticipated that the present and future identification of genetic risk factors for complex disorders will increase the need for high-throughput mutation screening technologies. Capillary array electrophoresis (CAE) SSCP analysis is a low-cost, automated method with a high throughput and high reproducibility. Thus, the method fulfills many of the demands to be met for application in routine molecular diagnostics. However, the need for performing the electrophoresis at three temperatures between 18 degrees C and 35 degrees C for achievement of high sensitivity is a disadvantage of the method. Using a panel of 185 mutant samples, we have analyzed the effect of sample purification, sample medium and separation matrix on the sensitivity of CAE-SSCP analysis to optimize the method for molecular diagnostic use. We observed different effects from sample purification and sample medium at different electrophoresis temperatures, probably reflecting the complex interplay between sequence composition, electrophoresis conditions and sensitivity in SSCP analysis. The effect on assay sensitivity from three different polymers was tested using a single electrophoresis temperature of 27 degrees C. The data suggest that a sensitivity of 98-99% can be obtained using a 10% long chain poly-N,N-dimethylacrylamide polymer.

  16. High-throughput viscosity measurement using capillary electrophoresis instrumentation and its application to protein formulation.

    PubMed

    Allmendinger, Andrea; Dieu, Le-Ha; Fischer, Stefan; Mueller, Robert; Mahler, Hanns-Christian; Huwyler, Jörg

    2014-10-01

    Viscosity characterization of protein formulations is of utmost importance for the development of subcutaneously administered formulations. However, viscosity determinations are time-consuming and require large sample volumes in the range of hundreds of microliters to a few milliliters, depending on the method used. In this article, an automated, high-throughput method is described to determine dynamic viscosity of Newtonian fluids using standard capillary electrophoresis (CE) equipment. CE is an analytical method routinely used for the separation and characterization of proteins. In our set-up, the capillary is filled with the test sample, and a constant pressure is applied. A small aliquot of riboflavin is subsequently loaded into the capillary and used as a dye to monitor movement of protein samples. Migration time of the riboflavin peak moving through the filled capillary is converted to the viscosity by applying the Hagen-Poiseuille's law. The instrument is operated without using an electrical field. Repeatability, robustness, linearity, and reproducibility were demonstrated for different capillary lots and instruments, as well as for different capillary lengths and diameters. Accuracy was verified by comparing the viscosity data obtained by CE instrumentation with those obtained by plate/cone rheometry. The suitability of the method for protein formulations was demonstrated, and limitations were discussed. Typical viscosities in the range of 5-40mPas were reliably measured with this method. Advantages of the CE instrumentation-based method included short measurement times (1-15min), small sample volumes (few microliters) for a capillary with a diameter of 50μm and a length of 20.5cm as well as potential to be suitable for high-throughput measurements.

  17. Recent advances in chemiluminescence detection coupled with capillary electrophoresis and microchip capillary electrophoresis.

    PubMed

    Liu, Yuxuan; Huang, Xiangyi; Ren, Jicun

    2016-01-01

    CE is an ideal analytical method for extremely volume-limited biological microenvironments. However, the small injection volume makes it a challenge to achieve highly sensitive detection. Chemiluminescence (CL) detection is characterized by providing low background with excellent sensitivity because of requiring no light source. The coupling of CL with CE and MCE has become a powerful analytical method. So far, this method has been widely applied to chemical analysis, bioassay, drug analysis, and environment analysis. In this review, we first introduce some developments for CE-CL and MCE-CL systems, and then put the emphasis on the applications in the last 10 years. Finally, we discuss the future prospects.

  18. Analytical quality by design in the development of a cyclodextrin-modified capillary electrophoresis method for the assay of metformin and its related substances.

    PubMed

    Orlandini, Serena; Pasquini, Benedetta; Gotti, Roberto; Giuffrida, Alessandro; Paternostro, Ferdinando; Furlanetto, Sandra

    2014-09-01

    Quality by Design (QbD) is a new paradigm of quality to be applied to pharmaceutical products and processes, recently encouraged by International Conference on Harmonisation guidelines. In this paper QbD approach was applied to the development of a CE method for the simultaneous assay of metformin hydrochloride (MET) and its main impurities. QbD strategy was focused on electrophoretic process understanding, and the analytical method was thoroughly evaluated by applying risk assessment and chemometric tools. Method scouting allowed CD-CZE based on the addition of carboxymethyl-β-CD to Britton-Robinson acidic buffer to be chosen as operative mode. Seven critical process parameters (CPPs) were selected, related to capillary, injection, BGE and instrumental settings. The effect of the different levels of the CPPs on critical quality attributes (CQAs), e.g. critical resolution values and analysis time, was evaluated in a screening study. Response surface methodology led to draw contour plots and sweet spot plots. The definition of design space was accomplished by applying Monte-Carlo simulations, thus identifying by risk of failure maps a multivariate zone where the CQAs fulfilled the requirements with a selected probability. Finally, a control strategy was designed and the method was applied to a real sample of MET tablets.

  19. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012-2014).

    PubMed

    Breadmore, Michael C; Tubaon, Ria Marni; Shallan, Aliaa I; Phung, Sui Ching; Abdul Keyon, Aemi S; Gstoettenmayr, Daniel; Prapatpong, Pornpan; Alhusban, Ala A; Ranjbar, Leila; See, Hong Heng; Dawod, Mohamed; Quirino, Joselito P

    2015-01-01

    One of the most cited limitations of capillary (and microchip) electrophoresis is the poor sensitivity. This review continues to update this series of biannual reviews, first published in Electrophoresis in 2007, on developments in the field of on-line/in-line concentration methods, covering the period July 2012-July 2014. It includes developments in the field of stacking, covering all methods from field-amplified sample stacking and large-volume sample stacking, through to ITP, dynamic pH junction, and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis.

  20. Capillary electrophoresis: Imaging of electroosmotic and pressure driven flow profiles in fused silica capillaries

    NASA Technical Reports Server (NTRS)

    Williams, George O., Jr.

    1996-01-01

    This study is a continuation of the summer of 1994 NASA/ASEE Summer Faculty Fellowship Program. This effort is a portion of the ongoing work by the Biophysics Branch of the Marshall Space Flight Center. The work has focused recently on the separation of macromolecules using capillary electrophoresis (CE). Two primary goals were established for the effort this summer. First, we wanted to use capillary electrophoresis to study the electrohydrodynamics of a sample stream. Secondly, there was a need to develop a methodology for using CE for separation of DNA molecules of various sizes. In order to achieve these goals we needed to establish a procedure for detection of a sample plug under the influence of an electric field Detection of the sample with the microscope and image analysis system would be helpful in studying the electrohydrodynamics of this stream under load. Videotaping this process under the influence of an electric field in real time would also be useful. Imaging and photography of the sample/background electrolyte interface would be vital to this study. Finally, detection and imaging of electroosmotic flow and pressure driven flow must be accomplished.

  1. Monitoring refolding of tailspike endorhamnosidase using capillary electrophoresis-laser induced tryptophan fluorescence

    SciTech Connect

    Jensen, P.K.; Lee, Cheng S.; King, J.A.

    1997-12-31

    The use of capillary electrophoresis equipped with laser-induced tryptophan fluorescence detection is presented for monitoring the refolding pathway of phage P22 tailspike endorhamnosidase. Upon initiation of refolding, tailspike polypeptides rapidly fold into structured monomeric intermediates with a high content of secondary structure. These monomeric species associate to form the triple-chain defined folding intermediates, the protrimers. Conversion of the protrimer into the native, sodium dodecyl sulfate (SDS) resistant tailspike protein is the rate-limiting step in the refolding pathway. Refolding kinetics and yield measured by capillary electrophoresis are in good agreement with those obtained via native gel electrophoresis, SDS polyacrylamide gel electrophoresis (SDS-PAGE) and fluorescence spectrophotometry. To enhance separation resolution between protrimer and native protein in capillary electrophoresis, the use of poly(ethylene oxide) is investigated for the introduction of a sieving separation mechanism. The increased viscosity of the electrophoresis buffer may also play a role in resolution enhancement.

  2. Capillary zone electrophoresis method for the direct determination of amino acids in recombinant human erythropoietin preparations used for the treatment of anemia.

    PubMed

    de Souza Crespo, Izabel Cristina; de Resende, Matheus Troina; Pereira Netto, Annibal Duarte; de Carvalho Marques, Flávia Ferreira

    2015-05-01

    A method based on CZE for the determination of glutamic acid, glycine, and alanine in a biopharmaceutical formulation containing recombinant human erythropoietin was developed. The separation was achieved within less than 5 min, using a fused-silica capillary column (55 cm × 50 μm id) and 30 mmol/L phosphate buffer at pH 11.5, containing 0.6 mmol/L CTAB and 10% v/v methanol, as BGE solution. Applied potential of -25 kV, temperature of 15°C and hydrodynamic injection time of 15 s, at 50 mbar, were employed. The detection of the analytes was carried out without any derivatization reaction, at 220 nm using an UV-DAD detector. Linear ranges from 50 to 2500 mg/L and quantification limits of 40, 39, and 37 mg/L were obtained for glutamic acid, glycine, and alanine, respectively. Sample preparation required only a dilution step. Considering peak area and migration time values, the method presented good repeatability (RSD <1.7%; n = 9) and intermediate precision (RSD <1.0%; n = 6). Recovery evaluation using a commercial sample led to values between 97.5 ± 5.2% and 101.5 ± 4.6%, demonstrating the feasibility of the method, which was successfully applied in the quantification of the amino acids of interest in biopharmaceutical samples.

  3. [Determination of chondroitin sulfate in food supplements by capillary zone electrophoresis].

    PubMed

    Arianova, E A; Bogachuk, M N; Perederiaev, O I

    2013-01-01

    Chondroitin sulfate is widely used as an ingredient in food supplements. A method of capillary zone electrophoresis for qualitative and quantitative analysis of chondroitin sulfate in food supplements has been developed. The system of capillary electrophoresis Agilent 3D CE (USA) with diode array detector (spectral range 190-400 nm, 192 nm was used to quantity), quartz capillary Agilent with effective length 56 cm (USA) (internal diameter 50 microm, temperature 25 degrees C, 30 kV, negative polarity) and 50 mM phosphate buffer (pH 3.5) has been used. Quantity limit of this method was 0.5 g/kg. It was used for determination of content of chondroitin sulfate in 14 food supplements. The chondroitin sulfate was detected in all test samples with deviation from the declared content (25-600 mg per capsule or tablet) at the level of 1 to 9%. The applicability of the elaborated method for assessing of food supplements quality has been shown.

  4. Multiplexed microRNA detection by capillary electrophoresis with laser-induced fluorescence.

    PubMed

    Jiang, Ruei-Min; Chang, Yu-Sun; Chen, Shu-Jen; Chen, Jian-Hung; Chen, Hua-Chien; Chang, Po-Ling

    2011-05-06

    In this study, we developed a novel assay that simultaneously detects multiple miRNAs (microRNAs) within a single capillary by combining a tandem adenosine-tailed DNA bridge-assisted splinted ligation with denaturing capillary gel electrophoresis with laser-induced fluorescence. This proposed method not only represents a significant improvement in resolution but also allows for the detection of multiple miRNAs within a single capillary based on the length differences of specified target bridge DNA. The assay's linear range covers three orders of magnitude (1.0 nM to 1.0 pM) with a limit of detection (S/N=3) as low as 190 fM (2.5 zmol). Five miRNAs of Epstein-Barr virus (EBV) were also detected in EBV-infected nasopharyngeal carcinoma cells, while they did not appear in non-virus infected cells. Moreover, the electropherogram indicated that the screening of isomiRs (isomer of miRNA) of BART2 by CE-LIF is feasible by our proposed method. The developed electrophoresis-based method for miRNA detection is fast, amplification-free, multiplexed and cost-effective, making it potentially applicable to large-scale screening of isomiRs.

  5. Accurate quantification of DNA methylation of DRD4 applying capillary gel electrophoresis with LIF detection.

    PubMed

    Goedecke, Simon; Schlosser, Sabrina; Mühlisch, Jörg; Hempel, Georg; Frühwald, Michael C; Wünsch, Bernhard

    2009-04-01

    Aberrant DNA methylation of gene promoters may be investigated by an array of different technologies. Besides DNA sequencing techniques following bisulfite treatment and determination of overall methylation by quantification of 5-methylcytosine/cytosine ratio following DNA hydrolysis, most approaches rely on PCR amplification of a defined template and subsequent analysis by conventional gel electrophoresis. As an additional analytical tool, a capillary gel electrophoresis method has been developed to quantify the methylation in combined bisulfite restriction analysis products of the gene dopamine receptor D4 (DRD4). Analyses were carried out in a bare fused-silica capillary dynamically coated with a 1% w/w solution of PVA (M(r)=72,000). A buffer (pH 7.3) containing 3% w/w 2-hydroxyethylcellulose (M(nu) approximately 90,000 g/mol) was used as sieving matrix. With 1/x weighted regression the accuracy (bias) of the method is within +/-10% and the precision (expressed as RSD) also meets the common acceptance criteria of 15% (20% near lower LOQ). It overcomes the limitations of standard gel electrophoresis, which allows only one single run per analysis and requires large amounts of DNA. Therefore, the method represents a valuable tool for routine quantitative analysis of the methylation status of DRD4 and other target genes.

  6. Quantification of cholesterol in foods using non-aqueous capillary electrophoresis.

    PubMed

    Xu, Xiao-Hua; Li, Ren-Kuan; Chen, Juan; Chen, Ping; Ling, Xiang-Yang; Rao, Ping-Fan

    2002-03-05

    A simple method for the rapid quantification of cholesterol in egg yolk and milk by non-aqueous capillary electrophoresis (NACE) is described in this paper. The samples were treated with saponification and then quantified by NACE, in which 100 mM sodium acetate-acetic acid in methanol was employed as the running buffer. The correlation coefficient between the cholesterol concentration and the corresponding peak area was 0.999. The detection limit of cholesterol was 5 microg/ml (twice the signal-to-noise ratio). This method can be used as a routine method for the rapid and sensitive determination of cholesterol in foods.

  7. Simultaneous determination of 19 intracellular nucleotides and nucleotide sugars in Chinese Hamster ovary cells by capillary electrophoresis.

    PubMed

    Feng, Hua-Tao; Wong, Niki; Wee, Sheena; Lee, May May

    2008-07-01

    Twelve nucleotides and seven nucleotide sugars in Chinese Hamster ovary (CHO) cells were determined by capillary electrophoresis (CE). The CE operating conditions of buffer pH value, ion strength, capillary temperature, polymer additive and cell extraction method were investigated. Optimum separation was achieved with 40 mM sodium tetraborate buffer (pH 9.5) containing 1% (w/v) polyethylene glycol (PEG) at a capillary temperature of 22 degrees C. Acetonitrile and chloroform were used for intracellular extraction. This method can be used to monitor intracellular carbohydrate metabolism.

  8. Profiling and screening analysis of 27 aromatic amino acids by capillary electrophoresis in dual modes.

    PubMed

    La, Sookie; Kim, Ahrrum; Kim, Jung-Han; Choi, One-Kyun; Kim, Kyoung-Rae

    2002-04-01

    An efficient capillary electrophoretic (CE) profiling and screening system based on dual modes of capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) was developed for the simultaneous determination of 23 nonprotein amino acids (NPAAs) and 4 protein amino acids with aromatic moiety. It involves separation by an uncoated fused-silica capillary under phosphoric acid buffer in CZE mode and by another uncoated fused-silica capillary under neutral sodium dihydrogen phosphate buffer containing sodium dodecyl sulfate in MEKC mode. Migration orders of the amino acids studied on the two separation modes under each optimum condition were very different. The repeatability of migration times measured by the CZE and MEKC was found to be better than 4.8 and 3.4%, respectively, thereby enabling to cross-check the identification of each amino acid. The method linearity and limit of detection of the CZE for each amino acid were found to be adequate for the assay of aromatic amino acids. When the present CE profiling and screening analysis in dual modes was applied to plant seeds, NPAAs such as mimosine from Mimosa pudica Linné, and 2-phenylglycine from Lindera erythrocarpa Makino were positively detected along with tryptophan, phenylalanine and tyrosine.

  9. Merging a sensitive capillary electrophoresis-ultraviolet detection method with chemometric exploratory data analysis for the determination of phenolic acids and subsequent characterization of avocado fruit.

    PubMed

    Hurtado-Fernández, Elena; Contreras-Gutiérrez, Paulina K; Cuadros-Rodríguez, Luis; Carrasco-Pancorbo, Alegría; Fernández-Gutiérrez, Alberto

    2013-12-15

    Herein we present the development of a powerful CE-UV method able to detect and quantify an important number of phenolic acids in 13 varieties of avocado fruits at 2 ripening stages. All the variables involved in CE separation were exhaustively optimized and the best results were obtained with a capillary of 50 μm i.d. × 50 cm effective length, sodium tetraborate 40 mM at a pH of 9.4, 30 kV, 25 °C, 10s of hydrodynamic injection (0.5 psi) and UV detection at 254 nm. This optimal methodology was fully validated and then applied to different avocado samples. The number of phenolic acids determined varied from 8 to 14 compounds; in general, they were in concentrations ranging from 0.13 ppm to 3.82 ppm, except p-coumaric, benzoic and protocatechuic acids, which were found at higher concentrations. Principal component analysis (PCA) was applied to highlight the differences between varieties and ripening degrees, looking for the most influential analytes.

  10. Development and validation of a capillary electrophoresis method with capacitively coupled contactless conductivity detection (CE-C(4) D) for the analysis of amikacin and its related substances.

    PubMed

    El-Attug, Mohamed Nouri; Adams, Erwin; Van Schepdael, Ann

    2012-09-01

    Amikacin is a semisynthetic aminoglycoside antibiotic derived from kanamycin A that lacks a strong UV absorbing chromophore or fluorophore. Due to the physicochemical properties of amikacin and its related substances, CE in combination with capacitively coupled contactless conductivity detection (CE-C(4) D) was chosen. The optimized separation method uses a BGE composed of 20 mM MES adjusted to pH 6.6 by l-histidine and 0.3 mM CTAB that was added as flow modifier in a concentration below the CMC. Ammonium acetate 20 mg.L(-1) was used as internal standard. 30 kV was applied in reverse polarity on a fused silica capillary (73/48 cm; 75 μm id). The optimized separation was obtained in less than 6 min with good linearity (R(2) = 0.9996) for amikacin base. It shows a good precision expressed as RSD on relative peak areas equal to 0.1 and 0.7% for intraday and interday, respectively. The LOD and LOQ are 0.5 mg.L(-1) and 1.7 mg.L(-1) , respectively.

  11. Raman spectroscopy and capillary electrophoresis applied to forensic colour inkjet printer inks analysis.

    PubMed

    Król, Małgorzata; Karoly, Agnes; Kościelniak, Paweł

    2014-09-01

    Forensic laboratories are increasingly engaged in the examination of fraudulent documents, and what is important, in many cases these are inkjet-printed documents. That is why systematic approaches to inkjet printer inks comparison and identification have been carried out by both non-destructive and destructive methods. In this study, micro-Raman spectroscopy and capillary electrophoresis (CE) were applied to the analysis of colour inkjet printer inks. Micro-Raman spectroscopy was used to study the chemical composition of colour inks in situ on a paper surface. It helps to characterize and differentiate inkjet inks, and can be used to create a spectra database of inks taken from different cartridge brands and cartridge numbers. Capillary electrophoresis in micellar electrophoretic capillary chromatography mode was applied to separate colour and colourless components of inks, enabling group identification of those components which occur in a sufficient concentration (giving intensive peaks). Finally, on the basis of the obtained results, differentiation of the analysed inks was performed. Twenty-three samples of inkjet printer inks were examined and the discriminating power (DP) values for both presented methods were established in the routine work of experts during the result interpretation step. DP was found to be 94.0% (Raman) and 95.6% (CE) when all the analysed ink samples were taken into account, and it was 96.7% (Raman) and 98.4% (CE), when only cartridges with different index numbers were considered. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Chiral separation of benzoporphyrin derivative mono- and diacids by laser induced fluorescence-capillary electrophoresis.

    PubMed

    Peng, Xuejun; Sternberg, Ethan; Dolphin, David

    2002-01-01

    A method for the separation of benzoporphyrin derivative mono- and diacid (BPDMA, BPDDA) enantiomers by laser induced fluorescence-capillary electrophoresis (LIF-CE) has been developed. By using 300 mM borate buffer, pH 9.2, 25 mM sodium cholate and 10% acetronitrile as electrolyte, +10 kV electrokinetic sampling injection of 2 s and an applied +20 kV voltage across the ends of a 37 cm capillary (30 cm to the detector, 50 microm ID), all six BPD stereoisomers were baseline-separated within 20 min. Formation constants, free electrophoretic and complexation mobilities with borate and cholate were determined based on dynamic complexation capillary electrophoresis theory. The BPD enantiomers can be quantitatively determined in the range of 10(-2)-10(-5) mg mL(-1). The correlation coefficients (r2) of the least-squares linear regression analysis of the BPD enantiomers are in the range of 0.9914-0.9997. Their limits of detection are 2.18-3.5 x 10(-3) mg mL(-1). The relative standard deviations for the separation were 2.90-4.64% (n = 10). In comparison with high-performance liquid chromatography (HPLC), CE has better resolution and efficiency. This separation method was successfully applied to the BPD enantiomers obtained from a matrix of bovine serum and from liposomally formulated material as well as from studies with rat, dog and human microsomes.

  13. Study of the Electrophoretic Behavior of Cephalosporins by Capillary Zone Electrophoresis

    PubMed Central

    Hancu, Gabriel; Sasebeşi, Adina; Rusu, Aura; Kelemen, Hajnal; Ciurba, Adriana

    2015-01-01

    Purpose: The aim of the study was the characterization of the electrophoretic behavior of cephalosporins from different generation having different structural characteristics in order to develop a rapid, simple and efficient capillary electrophoretic method for their identification and simultaneous separation from complex mixtures. Methods: Ten cephalosporin derivatives (cefaclor, cefadroxil, cefalexin, cefazolin, cefoxitin, cefuroxime, cefoperazone, cefotaxime, ceftazidime, ceftriaxone) were analyzed by capillary zone electrophoresis using different background electrolyte solutions at different pH values. Electrophoretic mobilities of the analytes were calculated, the influence of the electrophoretic parameteres on the separation was established and the analytical conditions were optimized. Results: Taking into consideration their structural and chemical properties cephalosporins can be detected over a pH range between 6 and 10. The best results were obtained using a buffer solution containing 25 mM disodium hydrogenophosphate - 25 mM sodium dihydrogenophosphate, at a pH – 7.00, + 25 kV voltage at a temperature of 25 °C, UV detection at 210 nm. Using the optimized analytical conditions we achieved the simultaneous baseline separation for seven cephalosporins in less then 10 minutes. Conclusion: Using the described optimized electrophoretic procedures, capillary electrophoresis can be used for the identification and determination of cephalosporins in formulated pharmaceutical products and for their separation from complex mixtures. PMID:26236661

  14. Gold nanoparticles - enhanced capillary electrophoresis- chemiluminescence assay of trace uric acid

    PubMed Central

    Zhao, Shulin; Lan, Xuehua; Liu, Yi-Ming

    2009-01-01

    A sensitive method based on gold nanoparticle-enhanced capillary electrophoresis-chemiluminescence detection was developed for quantifying uric acid in serum. In this work, gold nanoparticles were added into the running buffer of capillary electrophoresis to catalyze the post-column chemiluminescence reaction between luminol and hydrogen peroxide, achieving highly efficient chemiluminescence emission. Negative peaks were produced due to the inhibitory effects on chemiluminescence emission from uric acid eluted from the electrophoretic capillary. The decrease in chemiluminescence intensity was proportional to the concentration of uric acid in the range of 2.5 × 10−7 ~ 1.0 × 10−5 M. Detection limit was 4.6 × 10−8 M uric acid. Ten human serum samples were analyzed by the presented method. Serum level of uric acid was found to be in the range from 204 to 324 μM for healthy subjects (n=5), and from 464 to 497 μM for diabetic patients (n=5). The two groups were significantly different (p < 0.05). The results suggested a potential application of the proposed assay in rapid primary diagnosis of diseases such as diabetes. PMID:19650050

  15. Separation and quantitation of azimilide and its putative metabolites by capillary electrophoresis.

    PubMed

    Bao, J J; Parekh, N J; Shuja, A

    1998-12-11

    Reliable methods based on capillary electrophoresis (CE) have been developed for the separation and quantitation of azimilide, an antiarrhythmic drug under development at Procter & Gamble Pharmaceuticals (P&GP). Both capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MECC) were employed in the separation of azimilide from its impurities, degradants and/or metabolites. Separation of azimilide from NE-11178, F-410, F-1054 and F-1292 was obtained by MECC at pH 9 with 50 mM sodium dodecyl sulfate (SDS). The separation of azimilide and NE-10171, a key metabolite of azimilide, was difficult because their structures differ by only a single methyl group. The best separation was achieved under acidic pH conditions with cetyltriethyl ammonium chloride (CTAC) additive in the buffer. All of the CE separations were completed within a substantially shorter time and with better resolution than the corresponding high-performance liquid chromatography (HPLC) separations. Quantitation was done with azimilide and NE-10171. Calibration curves ranging from 10 to 1000 microg/ml were obtained with R2 greater than 0.997 for both azimilide and NE-10171. The back-calculated concentrations of the calibration standards and the recoveries of the quality control (QC) samples were within the acceptance range currently used for HPLC methods. These results demonstrated the viability of CE as an alternative technique for drug metabolism studies in support of pharmaceutical development.

  16. Capillary electrophoresis to quantitate gossypol enantiomers in cotton flower petals and seed.

    PubMed

    Vshivkov, Sergey; Pshenichnov, Egor; Golubenko, Zamira; Akhunov, Alik; Namazov, Shadman; Stipanovic, Robert D

    2012-11-01

    Gossypol is a toxic compound that occurs as a mixture of enantiomers in cotton plant tissues including seed and flower petals. The (-)-enantiomer is more toxic to non-ruminant animals. Efforts to breed cottonseed with a low percentage of (-)-gossypol requires determination of the (+)- to (-)-gossypol ratio in seed and flower petals. We report a method to quantitatively determine the total gossypol and percent of its enantiomers in cotton tissues using high performance capillary electrophoresis (HPCE). The method utilizes a borate buffer at pH 9.3 using a capillary with internal diameter of 50μm, effective length of 24.5cm, 15kV and cassette temperature of 15°C. This method provides high accuracy and reproducible results with a limit of detection of the individual enantiomers of less than 36ng/mL providing base line separation in less than 6min.

  17. [Determination of sildenafil in medicines for erectile dysfunction by capillary electrophoresis].

    PubMed

    Li, Run-kai; Bo, Tao; Liu, Hu-wei; Li, Ke-an

    2002-07-01

    A method has been developed for the determination of sildenafil in the medicines for erectile dysfunction by capillary electrophoresis. The samples were analyzed with 60 mmol/L NaH2PO4(pH 5.0) running buffer at 35 degrees C capillary temperature and 30 kV voltage. A linear calibration was obtained from 0.07 g/L to 1.05 g/L of sildenafil (r = 0.9985) with the RSD of 4.7% for peak area, and the average recovery was 97.4%. The results were compared with those of HPLC, showing that the method is precise, simple and cost-effective, and can be used as a complementary method to HPLC.

  18. Combining Capillary Electrophoresis with Mass Spectrometry for Applications in Proteomics

    SciTech Connect

    Simpson, David C.; Smith, Richard D.

    2005-04-01

    Throughout the field of global proteomics, ranging from simple organism studies to human medical applications, the high sample complexity creates demands for improved separations and analysis techniques. Furthermore, with increased organism complexity, the correlation between proteome and genome becomes less certain due to extensive mRNA processing prior to translation. In this way, the same DNA sequence can potentially code for regions in a number of distinct proteins; quantitative differences in expression (or abundance) between these often-related species are of significant interest. Well-established proteomics techniques, which use genomic information to identify peptides that originate from protease digestion, often cannot easily distinguish between such gene products; intact protein-level analyses are required to complete the picture, particularly for identifying post-translational modifications. While chromatographic techniques are currently better suited to peptide analysis, capillary electrophoresis (CE) in combination with mass spectrometry (MS) may become important for intact protein analysis. This review focuses on CE/MS instrumentation and techniques showing promise for such applications, highlighting those with greatest potential. Reference will also be made to developments relevant to peptide-level analyses for use in time- or sample-limited situations.

  19. Cyclodextrins in capillary electrophoresis: recent developments and new trends.

    PubMed

    Escuder-Gilabert, L; Martín-Biosca, Y; Medina-Hernández, M J; Sagrado, S

    2014-08-29

    Despite the fact that extensive research in the field of separations by capillary electrophoresis (CE) has been carried out and many reviews have been published in the last years, a specific review on the use and future potential of cyclodextrins (CDs) in CE is not available. This review focuses the attention in the CD-CE topic over the January 2013-February 2014 period (not covered by previous more general CE-reviews). Recent contributions (reviews and research articles) including practical uses (e.g. solute-CD binding constant estimation and further potentials; 19% of publications), developments and applications (mainly chiral and achiral analysis; 38 and 24% of publications, respectively) are summarized in nine comprehensive tables and are commented. Statistics and predictions related to the CD-CE publications are highlighted in order to infer the current and expected research interests. Finally, trends and initiatives on CD-CE attending to real needs or practical criteria are outlined. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Nonaqueous capillary electrophoresis of dextromethorphan and its metabolites.

    PubMed

    Pelcová, Marta; Langmajerová, Monika; Cvingráfová, Eliška; Juřica, Jan; Glatz, Zdeněk

    2014-10-01

    This study deals with the nonaqueous capillary electrophoretic separation of dextromethorphan and its metabolites using a methanolic background electrolyte. The optimization of separation conditions was performed in terms of the resolution of dextromethorphan and dextrorphan and the effect of separation temperature, voltage, and the characteristics of the background electrolyte were studied. Complete separation of all analytes was achieved in 40 mM ammonium acetate dissolved in methanol. Hydrodynamic injection was performed at 3 kPa for 4 s. The separation voltage was 20 kV accompanied by a low electric current. The ultraviolet detection was performed at 214 nm, the temperature of the capillary was 25°C. These conditions enabled the separation of four analytes plus the internal standard within 9 min. Further, the developed method was validated in terms of linearity, sensitivity, and repeatability. Rat liver perfusate samples were subjected to the nonaqueous capillary electrophoretic method to illustrate its applicability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characterization and quantitation of soybean proteins in commercial soybean products by capillary electrophoresis.

    PubMed

    García-Ruiz, C; García, M C; Torre, M; Marina, M L

    1999-07-01

    Capillary electrophoresis was applied for the first time to determine soybean proteins in commercial soybean products. The most suitable conditions for the analysis of these products in less than 7 min were 0.05 M phosphate buffer (pH 8) with 1 M urea; detection wavelength, 254 nm; applied voltage, 20 kV; and temperature, 30 degrees C. Quantitation of soybean proteins was achieved using referenced conditions by means of the method of standard additions, using as standard a soybean protein isolate. This method was validated and applied to the quantitation of soybean proteins in commercial products derived from soybean protein isolate and soybean seeds.

  2. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    EPA Science Inventory

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  3. Application of capillary electrophoresis for the determination of inorganic ions in trace explosives and explosive residues.

    PubMed

    Kishi, T; Nakamura, J; Arai, H

    1998-01-01

    Capillary electrophoresis was developed for the analysis of low explosive residue, because a significant amount of inorganic anions and cations remain after deflagration. Certain high explosives, such as emulsion explosives, produce a vast quantity of inorganic ions after a blast and can readily be analyzed using capillary electrophoresis. Often, trace amounts of explosive residues may be present on physical evidence submitted in criminal cases. Trace amounts of inorganic ions such as nitrate, chlorate, and ammonium may be detected using capillary electrophoresis owing to the low detection limit of these species. The utility of capillary electrophoresis in the analysis of explosive residues is in its ability to simultaneously analyze trace explosives and ionic products present on physical evidence.

  4. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    EPA Science Inventory

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  5. IDENTIFICATION OF REACTIVE DYES IN SPENT DYEBATHS AND WASTEWATER BY CAPILLARY ELECTROPHORESIS/MASS SPECTROMETRY

    EPA Science Inventory

    Capillary electrophoresis with diode array detection and mass spectrometry combined with solid-phase extraction were employed for the identification of reactive vinylsulfone and chlorotriazine dyes and their hydrolysis products in spent dyebaths and raw and treated wastewater. Re...

  6. CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION OF FLUORESCEIN AS A GROUNDWATER MIGRATION TRACER

    EPA Science Inventory

    Capillary electrophoresis (CE) has been applied to the determination of the groundwater migration tracer dye fluorescein based on laser-induced fluorescence (LIF) detection and compared to determinations obtained with traditional spectrofluorimetry. Detection limits of injected d...

  7. APPLICATIONS OF CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION TO GROUND WATER MIGRATION STUDIES

    EPA Science Inventory

    Capillary electrophoresis (CE) has been applied to the determination of groundwater migration based on laser-induced fluorescence (LIF) detection and traditional spectrofluorimetry. The detection limits of injected dye-fluorescent whitening agent (tinopal) in the low parts per tr...

  8. IDENTIFICATION OF REACTIVE DYES IN SPENT DYEBATHS AND WASTEWATER BY CAPILLARY ELECTROPHORESIS/MASS SPECTROMETRY

    EPA Science Inventory

    Capillary electrophoresis with diode array detection and mass spectrometry combined with solid-phase extraction were employed for the identification of reactive vinylsulfone and chlorotriazine dyes and their hydrolysis products in spent dyebaths and raw and treated wastewater. Re...

  9. Comparison of CZE, MEKC, MEEKC and non-aqueous capillary electrophoresis for the determination of impurities in bromazepam.

    PubMed

    Hansen, Steen Honoré; Sheribah, Zeinab Awad

    2005-09-01

    The purpose of the present investigation was to develop a test for related substances in the benzodiazepine drug substance bromazepam based on capillary electrophoresis (CE). A final method for the determination of impurities in bromazepam is based on non-aqueous capillary electrophoresis (NACE). Five modes of capillary electrophoresis were investigated and compared for the said purpose. All the CE systems investigated make use of running buffers at low pH in order to protonate the analytes. A low pH of the running buffers was needed as the pK(a) values of benzodiazepines in general are in the range from 1.3 to 4.6. Dynamically coated capillaries were used to overcome the low electro-osmotic flow at low pH in the aqueous buffers investigated. CZE with and without dynamical coating of the internal surface of the fused capillaries was compared and also micellar electrokinetic chromatography (MEKC) as well as microemulsion electrokinetic chromatography (MEEKC) performed in dynamically coated capillaries were investigated. The NACE was chosen as the best technique as the low solubility of the benzodiazepines in water is easily overcome. The NACE system showed good selectivity and detectability for the substances investigated and the limit of quantitation for the impurities corresponded to 0.05% of the drug substance. Linearity was good.

  10. [Determination of zearalenone and its metabolites in grains by capillary electrophoresis].

    PubMed

    Zeng, Hongyan; Li, Yuanqian; Jin, Jun; Sun, Huiqin

    2003-04-01

    To establish a method for the determination of zearalenone and its metabolites in grains by capillary electrophoresis. The samples were extracted with liquid-liquid partition and ultrasonic extraction, cleaned up with C18 cartridges, then determined by micellar electrokinetic capillary chromatography (MEKC). The limits of detection for Zearalenone (ZON), alpha-Zearalenol (alpha-ZOL), beta-Zearalenol (beta-ZOL), Aflatoxin B1 (AFT B1) and Ochratoxin A (Och A) were 0.0084, 0.081, 0.14, 0.0016 and 0.031 microgram/ml, respectively. Recoveries of all compounds were in the range of 77.9%-103.1%. Relative standard deviations (RSDs) were 0.63%-1.98%. This sensitive and accurate method can be used in the determination of zearalenone and its metabolites in grains.

  11. [Capillary electrophoresis with end-column electrochemical detection for hydrochlorothiazide and triamterene diuretics].

    PubMed

    Zhang, Lan; Tong, Ping; He, Yu; Huang, Duanhua; Chen, Guonan

    2005-01-01

    A method based on capillary electrophoresis with end-column electrochemical detection (HPCE-ED) was developed for the determination of the diuretics of hydrochlorothiazide (HCT) and triamterene (TAT) simultaneously. The detection electrode was a 300 microm carbon disc electrode at a working potential of +1.1 V versus Ag/AgCl electrode. The two analytes could be well separated within 8 min in a 50 cm long capillary at a separation voltage of 24 kV with a 10 mmol/L phosphate buffer (pH 7.5). Under optimum conditions, the current response was linear over about two orders of magnitude with detection limits (S/N = 3) of 0.29 and 0.25 mg/L for triamterene and hydrochlorothiazide, respectively. The proposed method was successfully applied to determine the synthetic urine and real pharmaceuticals samples. The recoveries were found to be in the range of 93.5%-97.2%.

  12. DNA sequencing with capillary electrophoresis and single cell analysis with mass spectrometry

    SciTech Connect

    Fung, N.

    1998-03-27

    Since the first demonstration of the laser in the 1960`s, lasers have found numerous applications in analytical chemistry. In this work, two different applications are described, namely, DNA sequencing with capillary gel electrophoresis and single cell analysis with mass spectrometry. Two projects are described in which high-speed DNA separations with capillary gel electrophoresis were demonstrated. In the third project, flow cytometry and mass spectrometry were coupled via a laser vaporization/ionization interface and individual mammalian cells were analyzed. First, DNA Sanger fragments were separated by capillary gel electrophoresis. A separation speed of 20 basepairs per minute was demonstrated with a mixed poly(ethylene oxide) (PEO) sieving solution. In addition, a new capillary wall treatment protocol was developed in which bare (or uncoated) capillaries can be used in DNA sequencing. Second, a temperature programming scheme was used to separate DNA Sanger fragments. Third, flow cytometry and mass spectrometry were coupled with a laser vaporization/ionization interface.

  13. Chemometric experimental design based optimization techniques in capillary electrophoresis: a critical review of modern applications.

    PubMed

    Hanrahan, Grady; Montes, Ruthy; Gomez, Frank A

    2008-01-01

    A critical review of recent developments in the use of chemometric experimental design based optimization techniques in capillary electrophoresis applications is presented. Current advances have led to enhanced separation capabilities of a wide range of analytes in such areas as biological, environmental, food technology, pharmaceutical, and medical analysis. Significant developments in design, detection methodology and applications from the last 5 years (2002-2007) are reported. Furthermore, future perspectives in the use of chemometric methodology in capillary electrophoresis are considered.

  14. Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria

    DTIC Science & Technology

    2009-11-01

    Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria by Dimitra N. Stratis-Cullum, Sun...Aptamer Binding to Campylobacter jejuni Bacteria Dimitra N. Stratis-Cullum, Sun McMasters, and Paul M. Pellegrino Sensors and Electron Devices...To) 2007–2008 4. TITLE AND SUBTITLE Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria 5a

  15. Role of capillary electrophoresis in the fight against doping in sports.

    PubMed

    Harrison, Christopher R

    2013-08-06

    At present the role of capillary electrophoresis in the detection of doping agents in athletes is, for the most part, nonexistent. More traditional techniques, namely gas and liquid chromatography with mass spectrometric detection, remain the gold standard of antidoping tests. This Feature will investigate the in-roads that capillary electrophoresis has made, the limitations that the technique suffers from, and where the technique may grow into being a key tool for antidoping analysis.

  16. Development and validation of an analytical method for the separation and determination of major bioactive curcuminoids in Curcuma longa rhizomes and herbal products using non-aqueous capillary electrophoresis.

    PubMed

    Anubala, S; Sekar, R; Nagaiah, K

    2014-06-01

    A simple, fast and efficient non-aqueous capillary electrophoresis method (NACE) was developed for the simultaneous determination of three major bioactive curcuminoids (CMNs) in Curcuma longa rhizomes and its herbal products. Good separation, resolution and reproducibility were achieved with the background electrolyte (BGE) consisting a mixture of 15.0 mM sodium tetraborate and 7.4 mM sodium hydroxide (NaOH) in 2:10:15 (v/v/v) of water, 1-propanol, and methanol. The influences of background electrolyte, sodium hydroxide, water, sodium dodecyl sulfate and hydroxylpropyl-β-cyclodextrin on separations were investigated. The separation was carried out in a fused-silica capillary tube with reverse polarity. Hydrodynamic injection of 25mbar for 12s was used for injecting samples and a voltage of 28 kV was applied for separation. The ultrasonication method was used for the extraction of CMNs from the turmeric herbal products and the extract was filtered and directly injected without any further treatments. The limits of detection and quantification were less than 5.0 and 14.6 µg/ml respectively for all CMNs. The percentage recoveries for CMNs were >97.2% (%RSD, <2.62). The results obtained by the method were compared with existing spectrophotometric and HPLC methods. The related compounds in the extract did not interfere in the determination of CMNs. The proposed NACE method is better than existing chromatographic and electrophoretic methods in terms of simple electrophoretic medium, fast analysis and good resolution.

  17. Analysis of colistin sulfate by capillary zone electrophoresis with cyclodextrins as additive.

    PubMed

    Kang, J; Vankeirsbilck, T; Van Schepdael, A; Orwa, J; Roets, E; Hoogmartens, J

    2000-09-01

    A method for the quantitative analysis of colistin sulfate by capillary zone electrophoresis is described. Since colistin components have five free amino groups, they tend to adsorb onto the capillary wall and cause peak tailing. It was found that triethanolamine (TEA)-phosphate buffer at pH 2.5 was useful to reduce such adsorption. Methyl-beta-cyclodextrin (M-beta-CD) and 2-propanol (IPA) were found necessary for selectivity enhancement. In order to optimize the separation parameters and predict the method robustness, a central composite design was performed including three variables, namely concentration of M-beta-CD, TEA, and IPA. The effects of capillary length and applied voltage on separation were also investigated. The optimal conditions established were: 140 mM TEA-phosphate buffer containing 5 mM M-beta-CD and 6% v/v IPA, a capillary with 55 cm total length (50 microm inner diameter, 47 cm from inlet to detection window) and 24 kV applied voltage. The method was found to be robust when the variables were changed in the following range: 4-6 mM M-beta-CD, 5-7% v/v IPA, and 130-150 mM TEA. Further, the linearity, limit of detection (LOD), and limit of quantitation (LOQ), as well as repeatability for both colistin A and B were examined and three commercial samples were quantitatively analyzed.

  18. New rapid methods for determination of total LAS in sewage sludge by high performance liquid chromatography (HPLC) and capillary electrophoresis (CE).

    PubMed

    Villar, M; Callejón, M; Jiménez, J C; Alonso, E; Guiraúm, A

    2009-02-23

    Linear alkylbenzene sulfonates (LAS) are the most common synthetic anionic surfactant used in domestic and industrial detergents, with a global production of 2.4x10(6) t year(-1). After use and disposal, LAS may enter the environment by one of the several routes, including by direct discharge to surface water or discharge to water from sewage treatment plants. Sewage treatment plants break down LAS only partly: some of them remain in effluent and other fraction is adsorbed in sewage solid. New and rapid methods for determination of total LAS from sewage sludge based on microwave assisted extraction and HPLC-FL and CE-DAD determination are proposed. The extraction of total LAS is carried out by using microwaves energy, an extraction time of 10 min and 5 mL of methanol. For HPLC-FL determination, mobile phase acetonitrile-water was used, comprising 60% (v/v) from 0 to 1 min and a flow rate of 1 mL min(-1) programmed to 100% acetonitrile between 1 and 2 min and a flow rate of 2 mL min(-1). The final composition was maintained for a further 5 min. The determination of total LAS by CE-DAD was performed in a phosphate buffer (10 mM, pH 9). The separation voltage was 25 kV and the temperature of the capillary was 30 degrees C. Injections were performed in the pressure mode and the injection time was set at 12 s. The determination of total LAS is carried out in less than 5 min. The methods did not require clean-up or preconcentration steps. Detection limit for total LAS in the sludge was 3.03 mg kg(-1) using HPLC-FL and 21.0 mg kg(-1) using CE-DAD, and recoveries were >85% using both determination methods. Concentrations of total LAS obtained using both methods were compared with the sum of concentrations of homologues LAS C-10, LAS C-11, LAS C-12 and LAS C-13 obtained using microwaves assisted extraction and HPLC-FL and CE-DAD determination.

  19. Brain tumor cell line authentication, an efficient alternative to capillary electrophoresis by using a microfluidics-based system

    PubMed Central

    An, Qian; Fillmore, Helen L.; Vouri, Mikaella; Pilkington, Geoffrey J.

    2014-01-01

    Background The current method for cell line authentication is genotyping based on short tandem repeat (STR)–PCR involving coamplification of a panel of STR loci by multiplex PCR and downstream fragment length analysis (FLA), usually performed by capillary electrophoresis. FLA by capillary electrophoresis is time-consuming and can be expensive, as the facilities are generally not accessible for many research laboratories. Methods In the present study, a microfluidic electrophoresis system, the Agilent 2100 Bioanalyzer, was used to analyze the STR-PCR fragments from 10 human genomic loci of a number of human cell lines, including 6 gliomas, 1 astrocyte, 1 primary lung cancer, 1 lung brain metastatic cancer, and 1 rhabdomyosarcoma; and this was compared with the standard method, that is, capillary electrophoresis, using the Applied Biosystems 3130xl Genetic Analyzer. Results The microfluidic electrophoresis method produced highly reproducible results with good sensitivity in sizing of multiple PCR fragments, and each cell line demonstrated a unique DNA profile. Furthermore, DNA fingerprinting of samples from 5 different passage numbers of the same cell line showed excellent reproducibility when FLA was performed with the Bioanalyzer, indicating that no cross-contamination had occurred during the culture period. Conclusion This novel application provides a straightforward and cost-effective alternative to STR-based cell line authentication. In addition, this application would be of great value for cell bank repositories to maintain and distribute precious cell lines. PMID:24335698

  20. Screening of Small Intact Proteins by Capillary Electrophoresis Electrospray Ionization-Mass Spectrometry (CE-ESI-MS).

    PubMed

    Neuberger, Sabine; Rafai, Angelina; Neusüß, Christian

    2016-01-01

    Capillary electrophoresis (CE) has been shown to be a suitable separation technique for complex samples. Combined with electrospray ionization-mass spectrometry (ESI-MS), it is a powerful tool offering the opportunity of high selectivity and sensitivity combined with the possibility to identify and characterize intact proteins. In this protocol, we demonstrate a screening method for intact proteins based on capillary zone electrophoresis (CZE) separation coupled with online mass spectrometric detection. In order to avoid protein-wall interactions, a neutral coated capillary is used to create a universal method for proteins with both low and high electrophoretic mobilities. In addition, we show the successful validation and application of this screening method for a set of eight standard proteins and the glycoprotein erythropoietin.

  1. Enantioseparation of citalopram analogues with sulfated β-cyclodextrin by capillary electrophoresis.

    PubMed

    Wang, Yadi; Zhang, Shusheng; Breitbach, Zachary S; Petersen, Hans; Ellegaard, Peter; Armstrong, Daniel W

    2016-03-01

    Capillary electrophoresis methods were developed for the enantiomeric separation of 27 citalopram analogues. Sulfated β-cyclodextrin was the most broadly selective and useful chiral selector. The separations of most of the citalopram analogue compounds reported in this work have not been reported previously. Excellent enantiomeric separations were obtained for 26 out of 27 compounds, and most of the separations were achieved within 10 min. The effects of chemical parameters such as chiral selector types, buffer types, chiral selector and buffer concentrations, buffer pH and organic modifiers on the separation were investigated. The influence of analyte structure on separation also was examined and discussed.

  2. Quantitative aspects of rare earth metal determinations using capillary electrophoresis with indirect absorbance detection

    SciTech Connect

    Colburn, B.A.; Starnes, S.D.; Sepaniak, M.J.

    1995-04-01

    The practical utility of capillary zone electrophoresis with indirect absorbance detection is examined for the separation and quantitation of rare earth metals. Various imidazole derivatives are investigated as to their suitability as running buffer (displaceable) detection ions with {alpha}-hydroxyisobutyric acid functioning as a chelating agent to enhance separations. Parameters important for quantitative analysis, such as limits of detection, relative standard deviation of peak areas, efficiency, resolution, peak shape and linear dynamic range are presented. The influence of sample matrix, method of injection, and background ion identity on these parameters are investigated and discussed.

  3. A new post-column reactor-laser induced fluorescence detector for capillary electrophoresis

    SciTech Connect

    Liling, Zhang

    1996-01-02

    Capillary zone electrophoresis (CZE), a powerful separation method based on the differential migration of charged species under the influence of an electric field, has been widely used for separations covering from small ions to big biomolecules. Chapter 1 describes the method, then discusses detection of the separated analytes by laser induced fluorescence and by chemical derivatization, and the use of O-phthaldialdehyde (OPA) as a post-column reagent. Chapter 2 describes a post-column reactor which uses two narrow bore capillaries connected coaxially. This reactor differs from other coaxial reactors in terms of capillary dimensions, reagent flow control, ease of construction and most importantly, better limits of detection. The derivatization reagent is electroosmotically driven into the reaction capillary and the reagent flow rate is independently controlled by a high voltage power supply. Amino acids, amines and proteins, derivatized by OPA/2-mercaptoethanol using this post-column reactor coupled with LIF detection, show low attomole mass limits of detection, and for the first time, the authors demonstrate single cell capability with a post-column derivatization scheme. The single cell capability shows that this reactor could find applications in assaying non-fluorescent or electrochemically inactive components in individual biological cells in the future.

  4. Capillary electrophoresis for the assay of fixed-dose combination tablets of artesunate and amodiaquine

    PubMed Central

    2012-01-01

    Background Quality control of drugs in formulations is still a major challenge in developing countries. For the quality control of artesunate and amodiaquine tablets in fixed-dose combination, only liquid chromatographic methods have been proposed in the literature. There are no capillary electrophoretic methods reported for the determination of these active substances, although this technique presents several advantages over liquid chromatography (long lifetime, low price of the capillary, low volumes of electrolyte consumption) in addition to simplicity. In this paper, a reliable capillary electrophoresis method has been developed and validated for the quality control of these drugs in commercial fixed-dose combination tablets. Methods Artesunate and amodiaquine hydrochloride in bilayer tablets were determined by micellar electrokinetic capillary chromatography (MEKC). Analytes were extracted from tablets by sonication with a solvent mixture phosphate buffer pH 7.0-acetonitrile containing benzoic acid as internal standard. Separation was carried out on Beckman capillary electrophoresis system equipped with fused silica capillary, 30 cm long (20 cm to detector) × 50 μm internal diameter, using a 25 mM borate buffer pH 9.2 containing 30 mM sodium dodecyl sulfate as background electrolyte, a 500 V cm−1 electric field and a detection wavelength of 214 nm. Results Artesunate, amodiaquine and benzoic acid were separated in 6 min. The method was found to be reliable with respect to specificity,linearity of the calibration line (r2 > 0.995), recovery from synthetic tablets (in the range 98–102%), repeatability (RSD 2–3%, n = 7 analytical procedures). Application to four batches of commercial formulations with different dosages gave content in good agreement with the declared content. Conclusion The MEKC method proposed is reliable for the determination of artesunate and amodiaquine hydrochloride in fixed-dose combination tablets. The

  5. Chiral separation of benzothiazole derivatives of amino acids using capillary zone electrophoresis.

    PubMed

    Nováková, Zuzana; Pejchal, Vladimír; Fischer, Jan; Česla, Petr

    2017-02-01

    A method for the separation of enantiomers of leucine and phenylalanine benzothiazole derivatives as potential antimicrobial agents was developed using capillary zone electrophoresis with a dual cyclodextrin (CD) system. The best resolution of enantiomers was achieved in 100 mmol/L phosphate background electrolyte (pH 3.5) with the dual CD system consisting of 10 mmol/L of β-CD with 10 mmol/L of 2-hydroxypropyl-β-cyclodextrin for leucine derivative and 10 mmol/L of 2-hydroxypropyl-γ-cyclodextrin for phenylalanine derivative, respectively. Under the optimal conditions, the highest enantioresolution of 1.25 was achieved in a noncoated-fused silica capillary at 17°C and 24 kV applied voltage.

  6. Determination of camptothecins in DMSO extracts of Nothapodytes foetida by direct injection capillary electrophoresis.

    PubMed

    Hsiao, Hsien-Yi; Cheng, Tzong-Jih; Yang, Ge-Ming; Huang, I-Jen; Chen, Richie L C

    2008-01-01

    A rapid capillary electrophoresis procedure was developed for determining the anti-cancer components, camptothecins, in Nothapodytes foetida. The hydrophobic compound was extracted from plant tissue (ca. 1 mL of DMSO for 100 mg of dried plant tissue) with a water-miscible organic solvent, DMSO, at elevated temperature (60 degrees C). The extract was directly injected into the separation capillary (untreated fused silica, 34 cm in length, 75 microm i.d.) and analysed in MEKC mode (369 nm). Within 5 min of migration, camptothecins were successfully separated and quantified by adding organic modifiers to the running buffer (20% DMSO, 90 mm SDS in 10 mm borate buffer, pH 8.60). The linear dynamic range for camptothecin was from 5 to 400 microg/mL. This method was proven to be very suitable for monitoring the amount of camptothecins during the cultivation of the medicinal plant. Copyright 2007 John Wiley & Sons, Ltd.

  7. ANALYSIS OF ANIONIC METALLIZED AZO AND FORMAZAN DYES BY CAPILLARY ELECTROPHORESIS/MASS SPECTROMETRY

    EPA Science Inventory

    Capillary electrophoresis-mass spectrometry was applied to the separation of several anionic dyes containing copper(II), chromium(III), or cobalt(III) as part of the dye molecule. The dyes were separated using a 110 cmX50 mu m uncoated fused-silica capillary and a 5 mM ammonium a...

  8. Detection of Aequorea victoria green fluorescent protein by capillary electrophoresis laser induced fluorescence detection.

    PubMed

    Craig, D B; Wong, J C; Dovichi, N J

    1997-01-01

    Aequorea victoria green fluorescent protein was assayed by capillary electrophoresis using post-capillary laser-induced fluorescence detection in a sheath flow cuvette. The limit of detection was 3.0 x 10(-12) M protein in an injection volume of 17 nL, corresponding to a mass of 3100 molecules.

  9. ANALYSIS OF ANIONIC METALLIZED AZO AND FORMAZAN DYES BY CAPILLARY ELECTROPHORESIS/MASS SPECTROMETRY

    EPA Science Inventory

    Capillary electrophoresis-mass spectrometry was applied to the separation of several anionic dyes containing copper(II), chromium(III), or cobalt(III) as part of the dye molecule. The dyes were separated using a 110 cmX50 mu m uncoated fused-silica capillary and a 5 mM ammonium a...

  10. Capillary Electrophoresis Analysis of Cations in Water Samples: An Experiment for the Introductory Laboratory

    ERIC Educational Resources Information Center

    Pursell, Christopher J.; Chandler, Bert; Bushey, Michelle M.

    2004-01-01

    Capillary electrophoresis is gradually working its way into the undergraduate laboratory curriculum. Typically, experiments utilizing this newer technology have been introduced into analytical or instrumental courses. The authors of this article have introduced an experiment into the introductory laboratory that utilizes capillary electrophoresis…

  11. CAPILLARY ELECTROPHORESIS COUPLED ON-LINE WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY FOR ELEMENTAL SPECIATION

    EPA Science Inventory

    A novel interface to connect a capillary electrophoresis (CE) system with an inductively coupled plasma mass spectrometric (ICPMS) detector is reported here. The interface was built using a direct injection nebulizer (DIN) system. In this interface, the CE capillary was placed co...

  12. CAPILLARY ELECTROPHORESIS COUPLED ON-LINE WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY FOR ELEMENTAL SPECIATION

    EPA Science Inventory

    A novel interface to connect a capillary electrophoresis (CE) system with an inductively coupled plasma mass spectrometric (ICPMS) detector is reported here. The interface was built using a direct injection nebulizer (DIN) system. In this interface, the CE capillary was placed co...

  13. Capillary electrophoresis: Biotechnology for separation of DNA and chromosomes

    NASA Technical Reports Server (NTRS)

    Williams, George O., Jr.

    1994-01-01

    Electrophoresis has been used for the separation of particles, ions, and molecules for a number of years. The technology for separation and detection of the results has many applications in the life sciences. One of the major goals of the scientific community is to separate DNA molecules and intact chromosomes based upon their different lengths or number of base pairs. This may be achieved by using some of the commercially available and widely used methods, but these processes require a considerable amount of time. The challenge is to achieve separation of intact chromosomes in a short time, preferably in a matter of minutes.

  14. Deep-UV-LEDs in photometric detection: a 255 nm LED on-capillary detector in capillary electrophoresis.

    PubMed

    Krcmová, Lenka; Stjernlof, Anna; Mehlen, Sebastien; Hauser, Peter C; Abele, Silvija; Paull, Brett; Macka, Mirek

    2009-12-01

    A 255 nm deep-UV-light-emitting diode (deep-UV-LED) is investigated as a novel light source for photometric detection in view of fundamental properties of UV-LEDs, in particular emission spectra and energy conversion. Its performance in on-capillary photometric detection in capillary electrophoresis (CE) is determined and the potential of deep-UV-LEDs in optical detection is discussed.

  15. Peptide mapping using capillary electrophoresis offline coupled to matrix-assisted laser desorption ionization time of flight mass spectrometry.

    PubMed

    Bachmann, Stefan; Bakry, Rania; Huck, Christian W; Polato, Fabio; Corradini, Danilo; Bonn, Günther K

    2011-10-01

    This article reports the results of a study carried out to evaluate the offline hyphenation of capillary zone electrophoresis with matrix-assisted lased desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) for the analysis of low-abundant complex samples, represented by the tryptic phosphorylated peptides of phosphoproteins, such as α-casein, β-casein, and fetuin. The proposed method employs a latex-coated capillary and consists in the online preconcentration of the tryptic peptides by a pH-mediated stacking method, their separation by capillary zone electrophoresis, and subsequent deposition of the separated analytes onto a MALDI target for their MS analysis. The online preconcentration method allows loading a large sample volume (∼150 nL), which is introduced into the capillary after the hydrodynamic injection of a short plug of 1.0 M ammonium hydroxide solution and is sandwiched between two plugs of the acidic background electrolyte solution (BGE) filling the capillary. The sample spotting of the separated analytes onto the MALDI target is performed either during or postseparation using an automatic spotting device connected to the exit of the separation capillary. The proposed method allows the separation and identification of multiphosphorylated peptides from other peptides and enables their identification at femtomole level with improved efficiency compared with LC approaches hyphenated to MS.

  16. Laser ablation construction of on-column reagent addition devices for capillary electrophoresis.

    PubMed

    Rezenom, Yohannes H; Lancaster, Joseph M; Pittman, Jason L; Gilman, S Douglass

    2002-04-01

    A simple and reproducible technique for constructing perfectly aligned gaps in fused-silica capillaries has been developed for postcolumn reagent addition with capillary electrophoresis. This technique uses laser ablation with the second harmonic of a Nd:YAG laser (532 nm) at 13.5 mJ/pulse and a repetition rate of 15 Hz to create these gaps. A capillary is glued to a microscope slide and positioned at the focal point of a cylindrical lens using the focused beam from a laser pointer as a reference. Gaps of 14.0 +/- 2.2 microm (n = 33) at the bore of the capillary are produced with a success rate of 94% by ablation with 400 pulses. This simple method of gap construction requires no micromanipulation under a microscope, hydrofluoric acid etching, or use of column fittings. These structures have been used for reagent addition for postcolumn derivatization with laser-induced fluorescence detection and have been tested for the separation of proteins and amino acids. Detection limits of 6 x 10(-7) and 1 x 10(-8) M have been obtained for glycine and tranferrin, respectively. Separation efficiencies obtained using these gap reactors range from 38,000 to 213,000 theoretical plates.

  17. Impact of capillary conditioning and background electrolyte composition on capillary electrophoresis analysis of prostate specific antigen isoforms.

    PubMed

    Farina-Gomez, Noemi; Puerta, Angel; Gonzalez, Monica; Diez-Masa, Jose Carlos; de Frutos, Mercedes

    2016-04-22

    Glycoproteins expressed in the human body can experience modifications as result of pathological situations. Detection of those changes can be useful as disease biomarkers. As a result of these modifications, size and/or electrical charge of the glycoprotein can be altered. Migration in capillary zone electrophoresis (CZE) is governed by the size to charge ratio of the analyte and therefore this separation technique can be used to monitor those modifications. At its turn, the alteration of the electrophoretical pattern of a given glycoprotein could be used as disease biomarker. To this aim, high repeatability for separation of a large number of peaks for a given glycoprotein is desirable. For prostate cancer, new markers are needed to decrease the high number of false positive results provided by the biomarkers currently used in clinics. In this sense, CZE methods for analysis of the several prostate specific antigen (PSA) peaks which this glycoprotein exhibit, called isoforms and containing one or more glycoforms, could be useful to study the PSA pattern as prostate cancer marker. In this study two complementary strategies to achieve both lot-to-lot capillary repeatability and high resolution of a large number of PSA isoforms are developed. Better performance and precision have been obtained for capillaries conditioned with HCl than for those conditioned with NaOH. Optimization of the background electrolyte (BGE) pH value to 8.0 and inclusion of 3M urea on its composition were the two factors of highest impact for enhancing resolution of the highest number of PSA peaks. Under the optimized conditions for capillary conditioning and BGE pH and composition, long-term resolution of 10 isoforms of PSA was achieved. Inter-day (n=3) %RSD was 0.55 for the ratio tm/tEOF, 1.15 for μeff, and 5.02 for % Acorr of the PSA peaks.

  18. Thermally-initiated free radical polymerization for reproducible production of stable linear polyacrylamide coated capillaries, and their application to proteomic analysis using capillary zone electrophoresis-mass spectrometry.

    PubMed

    Zhu, Guijie; Sun, Liangliang; Dovichi, Norman J

    2016-01-01

    Proteomic analysis using capillary zone electrophoresis (CZE) typically is performed with linear polyacrylamide (LPA) coated capillaries. These capillaries both minimize the adsorption of peptides and proteins to the inner wall of the capillary and decrease electroosmosis, which increases the separation capacity. LPA coating protocols were first reported by Hjerten in 1985. Conventional LPA production is based on the use of tetramethylethylenediamine (TEMED) to catalyze the free-radical polymerization that couples acrylamide to a capillary wall that has been pretreated with γ-methacryloxypropyltrimethoxysilane. The treated capillary is filled with a mixture of monomer, TEMED, and ammonium persulfate; free radical polymerization forms the LPA coating. Over many years, we have observed significant variation in the electroosmotic properties of commercial LPA coated capillaries both along the capillary length and between lots. We believe this variation is due to differences in the time between initiation of the reaction and the filling of the capillary. Here, we report a simple method for the generation of very stable and reproducible coatings. In this protocol, the monomer mixture and an ammonium persulfate initiator are introduced into the capillary without TEMED initiator. The mixture is stable and does not begin polymerization at room temperature. The filled capillary is then heated in a water bath to initiate polymerization in a well-controlled manner. A mixture of four standard proteins was used to evaluate the coating performance. Compared with commercialized LPA capillaries, our LPA capillaries generate much better separation performance and superior protein peak shape in CZE analysis. We also analyzed an intact antibody (MW 150K) by CZE-MS with the new LPA capillary in triplicate runs. The intact antibody generated a Gaussian-shaped electrophoresis peak with 1.2% relative standard deviation in migration time and 8.5% in base peak intensity. An automated CZE

  19. Rapid separation of free fatty acids in vegetable oils by capillary zone electrophoresis.

    PubMed

    Sato, Renata Takabayashi; de Jesus Coelho Castro, Renata; de Castro Barra, Patrícia Mendonça; de Oliveira, Marcone Augusto Leal

    2014-01-01

    Olive oil is a very important product to human health since it inhibits formation of free radicals, tumour growth, lesions and inflammatory substances. High concentrations of free fatty acids in olive oils results in lipid deterioration due to oxidative or hydrolytic rancidity. To optimise an alternative capillary zone electrophoresis methodology, under ultraviolet indirect detection and to determine free fatty acids in edible vegetable oils without derivatisation steps in sample preparation. The condition used consisted of 15 mm NaH2 PO4 -Na2 HPO4 at pH ~6.86, 4.0 mm of sodium dodecybenzenesulphonate, 8.3 mm of Brij 35®, 45% v/v of acetonitrile and 2.1% of 1-octanol, injection at 12.0 mbar of pressure for 4 s, +19 kV of applied voltage and indirect detection at 224 nm, within an analysis time of 11 min. The capillary zone electrophoresis method was successfully applied to determination of free fatty acids in extra virgin olive oil, virgin olive oil and soybean oil samples. The comparison with the official volumetric titration method showed no significant difference within the 95% confidence interval. The main advantage to the proposed method is the possibility to observe the individual amount of the free fatty acids, which would be useful for researchers interested in studying the effect of the free fatty acids profile on oxidative process in food. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Determination of pharmaceutical and personal care products in wastewater by capillary electrophoresis with UV detection.

    PubMed

    Gibbons, Stephen E; Wang, Chuan; Ma, Yinfa

    2011-05-30

    Capillary electrophoresis (CE) offers a fast and cost-effective alternative analytical technique to LC-MS/MS for separation and quantitation of many PPCP compounds in wastewater. In this study, we have developed a method that can simultaneously analyze eight different PPCP compounds in untreated wastewater (ibuprofen, triclosan, carbamazepine, caffeine, acetaminophen, sulfamethoxazole, trimethoprim, and lincomycin), using capillary electrophoresis with UV detection (CE-UV). The method detection limit (MDL) ranged from 1.6 to 68.7 ppb through solid phase extraction. The standard limit of quantification (LOQ) ranged from 0.63 to 7.72 ppm. Factors affecting separation and quantification of PPCPs, such as pH, electrophoretic potential, buffer strength, buffer type, and additives, were investigated and optimized. Water samples from two different wastewater treatment plants were collected and analyzed. The results obtained were comparable with those of LC-MS/MS. The technique developed in this study provides a low cost, simple, fast, and relatively sensitive method for determination of various PPCPs in wastewater samples for PPCP screening.

  1. Evaluation of sample injection precision in respect to sensitivity in capillary electrophoresis using various injection modes.

    PubMed

    Ciura, Krzesimir; Pawelec, Aleksandra; Buszewska-Forajta, Magdalena; Markuszewski, Michał Jan; Nowakowska, Joanna; Prahl, Adam; Wielgomas, Bartosz; Dziomba, Szymon

    2017-03-01

    A comparative study was conducted to assess the injection precision in capillary electrophoresis for cationic analytes (arecoline, codeine, papaverine). The precision was measured in respect to methods sensitivity in various injection modes in capillary electrophoresis: standard hydrodynamic injection (3.45 kPa for 6 s), large volume sample stacking (3.45 kPa for 40 s), and field-amplified sample injection (10 kV for 65 s). All measurements were conducted for aqueous solutions of standards to minimize the errors linked to the sample preparation step. The methods were submitted to precision assessment at three concentration levels: at the limit of quantification, three-fold and ten-fold of limit of quantification. The results were compared to those from high-performance liquid chromatography as a reference technique. The field-amplified sample injection method was shown to provide greatest sensitivity (quantification limits down to 4 ng/mL for all three tested compounds) but the lowest precision. High-performance liquid chromatography was established as the most reliable technique (coefficient of variation in all intraday experiments was below 1%). It was also shown that with a use of large volume sample injection technique, similar sensitivity as in high-performance liquid chromatography can be easily reached.

  2. Rapid identification and quantitation for oral bacteria based on short-end capillary electrophoresis.

    PubMed

    Chen, Jin; Ni, Yi; Liu, Chenchen; Yamaguchi, Yoshinori; Chen, Qinmiao; Sekine, Shinichi; Zhu, Xifang; Dou, Xiaoming

    2016-11-01

    High-speed capillary electrophoresis (HSCE) is a promising technology applied in ultra-rapid and high-performance analysis of biomolecules (such as nucleic acids, protein). In present study, the short-end capillary electrophoresis coupled with one novel space domain internal standard method (SDIS) was employed for the rapid and simultaneous analysis of specific genes from three oral bacteria (Porphyromonas gingivalis (P.g), Treponema denticola (T.d) and Tannerela forsythia (T.f)). The reliability, reproducibility and accuracy properties of above mentioned SDIS method were investigated in detail. The results showed the target gene fragments of P.g, T.d and T.f could be precisely, fast identified and quantitated within 95s via present short-end CE system. The analyte concentration and the ratio of space domain signals (between target sample and internal standard sample) featured a well linear relationship calculated via SDIS method. And the correlation coefficients R(2) and detection limits for P.g, T.d, T.f genes were 0.9855, 0.9896, 0.9969 and 0.077, 0.114 and 0.098ng/μl, respectively.

  3. Separation of attogram terpenes by the capillary zone electrophoresis with fluorometric detection.

    PubMed

    Kubesová, Anna; Horká, Marie; Růžička, Filip; Slais, Karel; Glatz, Zdeněk

    2010-11-12

    An original method based on capillary zone electrophoresis with fluorimetric detection has been developed for the determination of terpenic compounds. The method is based on the separation of a terpenes dynamically labeled by the non-ionogenic tenside poly(ethylene glycol) pyrenebutanoate, which was used previously for the labeling of biopolymers. The background electrolytes were composed of taurine-Tris buffer (pH 8.4). In addition to the non-ionogenic tenside aceton and poly(ethylene glycol) were used as the additives. The capillary zone electrophoresis with fluorometric detection at the excitation wavelength 335 nm and the emission wavelength 463 nm was successfully applied to the analysis of tonalid, cholesterol, vitamin A, ergosterol, estrone and farnesol at level of 10(-17) mol L(-1). Farnesol, is produced by Candida albicans as an extracellular quorum-sensing molecule that influences expression of a number of virulence factors, especially morphogenesis and biofilm formation. It enables this yeast to cause serious nosocomial infections. The sensitivity of this method was demonstrated on the separation of farnesol directly from the cultivation medium.

  4. Determination of ephedrine and pseudoephedrine by field-amplified sample injection capillary electrophoresis.

    PubMed

    Deng, Dongli; Deng, Hao; Zhang, Lichun; Su, Yingying

    2014-04-01

    A simple and rapid capillary electrophoresis method was developed for the separation and determination of ephedrine (E) and pseudoephedrine (PE) in a buffer solution containing 80 mM of NaH2PO4 (pH 3.0), 15 mM of β-cyclodextrin and 0.3% of hydroxypropyl methylcellulose. The field-amplified sample injection (FASI) technique was applied to the online concentration of the alkaloids. With FASI in the presence of a low conductivity solvent plug (water), an approximately 1,000-fold improvement in sensitivity was achieved without any loss of separation efficiency when compared to conventional sample injection. Under these optimized conditions, a baseline separation of the two analytes was achieved within 16 min and the detection limits for E and PE were 0.7 and 0.6 µg/L, respectively. Without expensive instruments or labeling of the compounds, the limits of detection for E and PE obtained by the proposed method are comparable with (or even lower than) those obtained by capillary electrophoresis laser-induced fluorescence, liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. The method was validated in terms of precision, linearity and accuracy, and successfully applied for the determination of the two alkaloids in Ephedra herbs.

  5. Development of high-throughput and high sensitivity capillary gel electrophoresis platform method for Western, Eastern, and Venezuelan equine encephalitis (WEVEE) virus like particles (VLPs) purity determination and characterization.

    PubMed

    Gollapudi, Deepika; Wycuff, Diane L; Schwartz, Richard M; Cooper, Jonathan W; Cheng, K C

    2017-08-26

    In this paper, we describe development of a high-throughput, highly sensitive method based on Lab Chip CGE-SDS platform for purity determination and characterization of virus-like particle (VLP) vaccines. A capillary gel electrophoresis approach requiring about 41 s per sample for analysis and demonstrating sensitivity to protein initial concentrations as low as 20 μg/mL, this method has been used previously to evaluate monoclonal antibodies, but this application for lot release assay of VLPs using this platform is unique. The method was qualified and shown to be accurate for the quantitation of VLP purity. Assay repeatability was confirmed to be less than 2% relative standard deviation of the mean (% RSD) with interday precision less than 2% RSD. The assay can evaluate purified VLPs in a concentration range of 20-249 μg/mL for VEE and 20-250 μg/mL for EEE and WEE VLPs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Quantitation of mRNA levels of steroid 5alpha-reductase isozymes: A method that combines one-step reverse transcription-polymerase chain reaction and separation by capillary electrophoresis.

    PubMed

    Torres, Jesús M; Ortega, Esperanza

    2004-02-01

    We developed an accurate, rapid, and modestly labor-intensive method to precisely quantitate mRNA species by one-step reverse transcription-polymerase chain reaction (RT-PCR). This approach combines the high specificity of quantitative competitive PCR with the sensitivity of laser-induced fluorescence capillary electrophoresis (LIF-CE). Both cDNA synthesis and PCR amplification are performed with the same enzyme and site-specific primers, improving the efficiency of cDNA synthesis. The specific target mRNA and a mimic DNA fragment, used as a competitive internal standard, were coamplified in a single reaction in which the same primers are used. The 5' forward primers were end-labeled with 6-carboxy-fluorescein (6-FAM). The ratio of fluorescence intensity between amplified products of the target cDNA and the competitive DNA was determined quantitatively after separation by CE and fluorescence analysis. Using this method, we have been able to precisely quantify the mean amount of steroid 5alpha-reductase (5alpha-R) isozyme mRNA levels in ventral prostate of the rat, detecting 10-fold difference for 5alpha-R1 and 50-fold difference for 5alpha-R2, respectively, in comparison with our previously reported two-step method. Because the competitive RT-PCR presented in this paper enables a more efficient quantitative determination of mRNAs, low-level gene expression could be quantified.

  7. Capillary electrophoresis of adenosine phosphates using boron-doped diamond electrodes

    NASA Astrophysics Data System (ADS)

    Firmansyah, B. D.; Ivandini, T. A.; Gunlazuardi, J.

    2017-04-01

    A capillary electrophoresis coupled with electrochemical detection using boron-doped diamond electrode was developed for simultaneous detection of adenosine phosphates, i.e. adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP). In phosphate buffer solution pH 7, these three adenosine phosphates have similar oxidation potentials at around +0.9 V (vs. Ag/AgCl), which indicated that the oxidation occurred at the same moiety. Capillary electrophoresis, which was then performed using fused silica capillary (dia. 0.05 mm) at an applied potential of 10 KV can separate ATP, ADP and AMP with the retention times of 848 s, 1202 s, and 1439 s, respectively. Linear calibration curves with the limits of detection of 0.59 μM, 0.56 μM and 1.78 μM, respectively, can be achieved, suggested that capillary electrophoresis with electrochemical detector is promising for simultaneous detection of adenosine phosphates.

  8. A capillary electrophoresis-based enzyme assay for kinetics and inhibition studies of carbonic anhydrase.

    PubMed

    Iqbal, Shoaib; Nisar-ur-Rahman; Iqbal, Jamshed

    2014-01-01

    In the current study, capillary electrophoresis (CE)-based enzyme assay for characterization and inhibition study of bovine carbonic anhydrase II (bCA II) was developed. The developed method is the first CE assay for carbonic anhydrase (CA). The method was optimized in order to get short analysis time, minimal sample volume consumption, and high resolution of substrate and product. The CE conditions were optimized as follows: fused-silica capillary (30 cm effective length×75 μm i.d.), pressure injection for 5s, 20mM sodium borate buffer (pH 9.0), constant voltage of 15 kV, constant capillary temperature of 25 °C, and detection at 260 nm. For precise measurements, uridine was used as an internal standard during optimization of the CE methods. The limits of detection and quantification for p-nitrophenyl acetate (p-NPA) were 3.01 and 9.12 μM, respectively, whereas for p-nitrophenolate they were 2.05 and 6.22 μM, respectively. The performance of the developed method was confirmed by determination of kinetic parameters (i.e., K(m) and V(max) of bCA for p-NPA); the inhibition constant (K(i)) was determined for furosemide, a standard inhibitor of CA. The new method proved to be fast and efficient, and it can be used for the investigation of inhibitors of all isoforms of CAs.

  9. Separation and determination of cefotaxime enantiomers in injections by capillary zone electrophoresis.

    PubMed

    Wang, Rong; Jia, Zheng-Ping; Fan, Jun-Jie; Ma, Jun; Hua, Xie; Zhang, Qiang; Wang, Juan

    2009-03-01

    Cefotaxime enantiomers have specific effects on Gram-negative bacteria. For quality control of cefotaxime it was necessary to establish a method for enantioseparation by capillary zone electrophoresis (CZE) using cyclodextrin (CD) as a chiral selector. The effects of various parameters on enantioseparation were studied. A fused silica capillary (40 cm effective length x 75 microm ID) was used. The cefotaxime enantiomers were separated on the baseline under conditions of 0.5 mmol/L CM-beta-CD, 75 mmol/L NaH2PO4 buffer at pH 7.0 using UV detection at 280 nm. Applied voltage and capillary temperature were 20 kV and 25 degrees C, respectively. Under these conditions for enantioseparation, linear calibration curves were obtained in the range 2 approximately 160 microg/mL. The limit of detection for both isomers was less than 0.5 microg/mL. The method was used for analysis of pharmaceutical preparations (dosage forms) of cefotaxime from various factories. A simple and specific CZE method was successfully demonstrated for the separation of cefotaxime enantiomers. The enantioseparation method should be established and this method should be used to control the quality of cefotaxime.

  10. Process and product monitoring of recombinant DNA-derived biopharmaceuticals with high-performance capillary electrophoresis.

    PubMed

    Sunday, Brooks R; Sydor, Wasyl; Guariglia, Lawrence M; Obara, Julie; Mengisen, Roland

    2003-01-01

    High-performance capillary electrophoresis (HPCE) has emerged over the past 20 years as a powerful multidimensional separation tool that is orthogonal to HPLC and comparable to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) slab gel methods. HPCE is most frequently applied in the QC release testing of recombinant DNA-derived protein and monoclonal antibody (MAb) biopharmaceuticals. HPCE is a rugged and robust separation tool that can be used like HPLC to monitor the purification process, as well as to analyze bulk drug and drug substances. Examples of the practical applications of the predominant free-solution capillary electrophoresis (FSCE) and capillary gel electrophoresis (CGE) formats of HPCE, applied for process monitoring and product monitoring of recombinant protein and MAb biotherapeutics, are presented. HPCE has been applied in FSCE mode to monitor the purification of the rDNA-derived protein, recombinant human interleukin-4 (rhIL4). FSCE is demonstrated to be a robust method that can be used to monitor multiple column chromatographic purification processes, such as immobiilized metal-ion affinity chromatography (IMAC), ion exchange chromatography (IEC), and size exclusion chromatography (SEC) columns. The FSCE data are used to pool fractions to carry forward for further purification. The FSCE method is compared to the corresponding RP-HPLC method for rhIL4. HPCE has been applied in the CGE mode to monitor the purification of an rDNA-derived IgG4 MAb. CGE is demonstrated to be a convenient and rapid method to profile the purification process, compare purification processes, and provide a fingerprint of the MAb bulk drug that is useful for determining purity and lot-to-lot consistency. The practical advantages and limitations of CGE for process monitoring and product monitoring of MAbs are presented. The CGE method is compared to the high-performance SEC separation of the MAb under nondenaturing (HP-SEC) and denaturing (HP

  11. Simultaneous determination of phenylethanoid glycosides and aglycones by capillary zone electrophoresis with running buffer modifier.

    PubMed

    Dong, Shuqing; Gao, Ruibin; Yang, Yan; Guo, Mei; Ni, Jingman; Zhao, Liang

    2014-03-15

    Although the separation efficiency of capillary electrophoresis (CE) is much higher than that of other chromatographic methods, it is sometimes difficult to adequately separate the complex ingredients in biological samples. This article describes how one effective and simple way to develop the separation efficiency in CE is to add some modifiers to the running buffer. The suitable running buffer modifier β-cyclodextrin (β-CD) was explored to fast and completely separate four phenylethanoid glycosides and aglycones (homovanillyl alcohol, hydroxytyrosol, 3,4-dimethoxycinnamic acid, and caffeic acid) in Lamiophlomis rotata (Lr) and Cistanche by capillary zone electrophoresis with ultraviolet (UV) detection. It was found that when β-CD was used as running buffer modifier, a baseline separation of the four analytes could be accomplished in less than 20 min and the detection limits were as low as 10(-3) mg L(-1). Other factors affecting the CE separation, such as working potential, pH value and ionic strength of running buffer, separation voltage, and sample injection time, were investigated extensively. Under the optimal conditions, a successful practical application on the determination of Lr and Cistanche samples confirmed the validity and practicability of this method. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Rapid high-resolution characterization of functionally important monoclonal antibody N-glycans by capillary electrophoresis.

    PubMed

    Szabo, Zoltan; Guttman, András; Bones, Jonathan; Karger, Barry L

    2011-07-01

    Characterization of the N-glycosylation present in the Fc region of therapeutic monoclonal antibodies requires rapid, high-resolution separation methods to guarantee product safety and efficacy during all stages of process development. Determination of fucosylated oligosaccharides is particularly important during clone selection, product characterization, and lot release as fucose has been shown to adversely affect the ability of mAbs to induce antibody dependent cellular cytotoxicity (ADCC). Here, we apply a general capillary electrophoresis optimization strategy to separate functionally relevant fucosylated and afucosylated glycans on mononclonal antibody products in the presence of several high mannose oligosaccharides. The N-glycans chosen represent those most commonly reported on CHO cell derived therapeutic antibodies. A rapid (<7 min) high-resolution separation of 12 commonly reported and functionally important IgG glycans was developed by systematically evaluating the effects of selectivity (boric acid) and efficiency (linear polyacrylamide) enhancing additives. The approach can be used to rapidly optimize capillary electrophoresis separation of other glycan mixtures. Following optimization, the method was applied to overnight sample processing for automated 96 well plate-based glycosylation analyses of two nonproprietary therapeutic monoclonal antibodies, demonstrating ruggedness and suitability for high-throughput process and product monitoring applications.

  13. Determination of herbicides paraquat, glyphosate, and aminomethylphosphonic acid in marijuana samples by capillary electrophoresis.

    PubMed

    Lanaro, Rafael; Costa, José L; Cazenave, Silvia O S; Zanolli-Filho, Luiz A; Tavares, Marina F M; Chasin, Alice A M

    2015-01-01

    In this work, two methods were developed to determine herbicides paraquat, glyphosate, and aminomethylphosphonic acid (AMPA) in marijuana samples by capillary electrophoresis. For paraquat analysis, sample was extracted with aqueous acetic acid solution and analyzed by capillary zone electrophoresis with direct UV detection. The running electrolyte was 50 mmol/L phosphate buffer (pH 2.50). For glyphosate and AMPA, indirect UV/VIS detection was used, as these substances do not present chromophoric groups. Samples were extracted with 5 mmol/L hydrochloric acid. The running electrolyte was 10 mmol/L gallic acid, 6 mmol/L TRIS, and 0.1 mmol/L CTAB (pH = 4.7). The methods presented good linearity, precision, accuracy, and recovery. Paraquat was detected in 12 samples (n = 130), ranging from 0.01 to 25.1 mg/g. Three samples were positive for glyphosate (0.15-0.75 mg/g), and one sample presented AMPA as well. Experimental studies are suggested to evaluate the risks of these concentrations to marijuana user. © 2014 American Academy of Forensic Sciences.

  14. An axial approach to detection in capillary electrophoresis

    SciTech Connect

    Taylor, John Aaron

    1993-05-01

    Our approach involves on-axis illumination of the compounds inside the capillary detection region and is applied to absorbance and fluorescence detection. Absorbance measurements were made by focussing an incident laser beam into one capillary end; by using signals collected over the entire length of analyte band, this enhances the analytical path length of conventional absorbance detection 60x. This instrument offers a 15x improvement in detection limits. Three fluorescence detection experiments are discussed, all of which involve insertion of an optical fiber into capillary. The first uses a high refractive index liquid phase to obtain total internal reflectance along capillary axis, this reducing light scatter. The second uses a charge-coupled device camera for simultaneous imaging of a capillary array (this may be useful in genome sequencing, etc.). The third is a study of fluid motion inside the capillary under pressure-driven and electroosmotic flow. The thesis is divided into four parts. Figs, tabs.

  15. Recent advances in amino acid analysis by capillary electrophoresis.

    PubMed

    Poinsot, Véréna; Carpéné, Marie-Anne; Bouajila, Jalloul; Gavard, Pierre; Feurer, Bernard; Couderc, François

    2012-01-01

    This paper describes the most important articles that have been published on amino acid analysis using CE during the period from June 2009 to May 2011 and follows the format of the previous articles of Smith (Electrophoresis 1999, 20, 3078-3083), Prata et al. (Electrophoresis 2001, 22, 4129-4138) and Poinsot et al. (Electrophoresis 2003, 24, 4047-4062; Electrophoresis 2006, 27, 176-194; Electrophoresis 2008, 29, 207-223; Electrophoresis 2010, 31, 105-121). We present new developments in amino acid analysis with CE, which are reported describing the use of lasers or light emitting diodes for fluorescence detection, conductimetry electrochemiluminescence detectors, mass spectrometry applications, and lab-on-a-chip applications using CE. In addition, we describe articles concerning clinical studies and neurochemical applications of these techniques.

  16. Development and Validation of a Stability-Indicating Capillary Electrophoresis Method for the Determination of Zolpidem Tartrate in Tablet Dosage Form with Positive Confirmation using 2D- and 3D-DAD Fingerprints.

    PubMed

    Al Azzam, Khaldun M; Yit, Lee Kam; Saad, Bahruddin; Shaibah, Hassan

    2014-01-01

    The aim of the current study was to develop a simple, precise, and accurate capillary zone electrophoresis method for the determination of zolpidem tartrate in tablet dosage form. Separation was conducted in normal polarity mode at 25°C, 22 kV, using hydrodynamic injection for 10 s. Separation was achieved using a background electrolyte of 20 mM disodium hydrogen phosphate adjusted with phosphoric acid (85%), pH at 5.50, and detection at 254 nm. Using the above optimized conditions, complete determination took place in less than 3 min using amiloride HCl as the internal standard. The method was linear over the range of 3-1000 μg mL(-1) with a correlation coefficient of 0.9999. Forced degradation studies were conducted by introducing a sample of zolpidem tartrate standard and pharmaceutical sample solutions to different forced degradation conditions, being neutral (water), basic (0.1 M NaOH), acidic (0.1 M HCl), oxidative (10% H2O2), temperature (60°C in oven for 3 days), and photolytic (exposure to UV light at 254 nm for 2 h). Degradation products resulting from the stress studies did not interfere with the detection of zolpidem tartrate and the assay can be considered stability-indicating.

  17. Development and Validation of a Stability-Indicating Capillary Electrophoresis Method for the Determination of Zolpidem Tartrate in Tablet Dosage Form with Positive Confirmation using 2D- and 3D-DAD Fingerprints

    PubMed Central

    Al Azzam, Khaldun M.; Yit, Lee Kam; Saad, Bahruddin; Shaibah, Hassan

    2014-01-01

    The aim of the current study was to develop a simple, precise, and accurate capillary zone electrophoresis method for the determination of zolpidem tartrate in tablet dosage form. Separation was conducted in normal polarity mode at 25°C, 22 kV, using hydrodynamic injection for 10 s. Separation was achieved using a background electrolyte of 20 mM disodium hydrogen phosphate adjusted with phosphoric acid (85%), pH at 5.50, and detection at 254 nm. Using the above optimized conditions, complete determination took place in less than 3 min using amiloride HCl as the internal standard. The method was linear over the range of 3–1000 μg mL−1 with a correlation coefficient of 0.9999. Forced degradation studies were conducted by introducing a sample of zolpidem tartrate standard and pharmaceutical sample solutions to different forced degradation conditions, being neutral (water), basic (0.1 M NaOH), acidic (0.1 M HCl), oxidative (10% H2O2), temperature (60°C in oven for 3 days), and photolytic (exposure to UV light at 254 nm for 2 h). Degradation products resulting from the stress studies did not interfere with the detection of zolpidem tartrate and the assay can be considered stability-indicating. PMID:24959406

  18. Combining ligation reaction and capillary gel electrophoresis to obtain reliable long DNA probes.

    PubMed

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2011-05-01

    New DNA amplification methods are continuously developed for sensitive detection and quantification of specific DNA target sequences for, e.g. clinical, environmental or food applications. These new applications often require the use of long DNA oligonucleotides as probes for target sequences hybridization. Depending on the molecular technique, the length of DNA probes ranges from 40 to 450 nucleotides, solid-phase chemical synthesis being the strategy generally used for their production. However, the fidelity of chemical synthesis of DNA decreases for larger DNA probes. Defects in the oligonucleotide sequence result in the loss of hybridization efficiency, affecting the sensitivity and selectivity of the amplification method. In this work, an enzymatic procedure has been developed as an alternative to solid-phase chemical synthesis for the production of long oligonucleotides. The enzymatic procedure for probe production was based on ligation of short DNA sequences. Long DNA probes were obtained from smaller oligonucleotides together with a short sequence that acts as bridge stabilizing the molecular complex for DNA ligation. The ligation reactions were monitored by capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) using a bare fused-silica capillary. The capillary gel electrophoresis-LIF method demonstrated to be very useful and informative for the characterization of the ligation reaction, providing important information about the nature of some impurities, as well as for the fine optimization of the ligation conditions (i.e. ligation cycles, oligonucleotide and enzyme concentration). As a result, the yield and quality of the ligation product were highly improved. The in-lab prepared DNA probes were used in a novel multiplex ligation-dependent genome amplification (MLGA) method for the detection of genetically modified maize in samples. The great possibilities of the whole approach were demonstrated by the specific and sensitive

  19. Separation of plant hormones from biofertilizer by capillary electrophoresis using a capillary coated dynamically with polycationic polymers.

    PubMed

    Jiang, Ting-Fu; Lv, Zhi-Hua; Wang, Yuan-Hong; Yue, Mei-E

    2006-06-01

    A new, simple and rapid capillary electrophoresis (CE) method, using hexadimethrine bromide (HDB) as electroosmotic flow (EOF) modifier, was developed for the identification and quantitative determination of four plant hormones, including gibberellin A3 (GA3), indole-3-acetic acid (IAA), alpha-naphthaleneacetic acid (NAA) and 4-chlorophenoxyacetic acid (4-CA). The optimum separation was achieved with 20 mM borate buffer at pH 10.00 containing 0.005% (w/v) of HDB. The applied voltage was -25 kV and the capillary temperature was kept constant at 25 degrees C. Salicylic acid was used as internal standard for quantification. The calibration dependencies exhibited good linearity within the ratios of the concentrations of standard samples and internal standard and the ratios of the peak areas of samples and internal standard. The correlation coefficients were from 0.9952 to 0.9997. The relative standard deviations of migration times and peak areas were < 1.93 and 6.84%, respectively. The effects of buffer pH, the concentration of HDB and the voltage on the resolution were studied systematically. By this method, the contents of plant hormone in biofertilizer were successfully determined within 7 min, with satisfactory repeatability and recovery.

  20. Ultra-high throughput rotary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis.

    PubMed

    Scherer, J R; Kheterpal, I; Radhakrishnan, A; Ja, W W; Mathies, R A

    1999-06-01

    We have constructed a rotary confocal fluorescence scanner and capillary array electrophoresis system that is designed to analyze over 1000 DNA sequencing or fragment sizing separations in parallel. Capillaries are arranged around the surface of a cylinder and a rotating objective in the middle of the cylinder excites and collects fluorescence from labeled DNA fragments as they pass the capillary detection window. The capillaries are pressure-filled with a replaceable matrix and the samples are electrokinetically injected in parallel from a stainless steel microtiter plate at the cathode end. We demonstrate that the instrument is capable of producing four-color data from all capillaries at a scan rate of 4 Hz (corresponding to a linear scan velocity of 121 cm/s). M13 sequencing data were obtained using a 128 capillary array mounted in half of the first quadrant of the scanner. In this initial run, read lengths greater than 500 bases were obtained in over 60% of the capillaries.

  1. Determination of impurities in heparin by capillary electrophoresis using high molarity phosphate buffers.

    PubMed

    Wielgos, Todd; Havel, Karalyn; Ivanova, Nadia; Weinberger, Robert

    2009-02-20

    Oversulfated chondroitin sulfate (OSCS), an impurity found in some porcine intestinal heparin samples was separated from intact heparin by capillary electrophoresis (CE) using a 600mM phosphate buffer, pH 3.5 as the background electrolyte in a 56cm x 25microm i.d. capillary. This method was confirmed in two separate labs, was shown to be linear, reproducible, robust, easy to use and provided the highest resolution and superior limits of detection compared to other available CE methods. Glycosoaminoglycans such as dermatan sulfate and heparan sulfate were separated and quantified as well during a single run. The heparin peak area response correlated well to values obtained using the official assay for biological activity. A high speed, high resolution version of the method was developed using 600mM lithium phosphate, pH 2.8 in a 21.5cm x 25microm i.d. capillary which provided limits of detection for OSCS that were below 0.1%.

  2. Quality control of piperaquine in pharmaceutical formulations by capillary zone electrophoresis.

    PubMed

    Zhang, Qin; Li, Yuan Fang; Huang, Cheng Zhi

    2008-06-30

    Quality control (QC) is of great importance since the pharmaceutical quality not only directly affects the curative effect of the drugs, but also relates to human health and safety closely. Capillary electrophoresis (CE) has recently become a good alternative for pharmaceutical analysis and a complementary technique to high-performance liquid chromatography since it possesses many unique advantages. In this contribution, we propose a simple and reliable capillary zone electrophoretic method for the detection of piperaquine (PQ) in pharmaceutical formulations in terms of quality control, which might be of use to those working on similar compounds. The influence of buffer type, buffer pH, buffer concentration, buffer additive, applied voltage, capillary temperature and injection amount was systemically investigated and the proposed method was then successfully applied to the quality control of piperaquine in its pharmaceutical formulations. With quinine (QN) as an internal standard to improve precision, this method was suitably validated with respect to the linearity, limit of detection and quantification, accuracy, precision, specificity and stability.

  3. Quantitative Determination of Lercanidipine Enantiomers in Commercial Formulations by Capillary Electrophoresis

    PubMed Central

    Lourenço, Luciana Pereira; Aguiar, Fernando Armani; de Oliveira, Anderson Rodrigo Moraes; de Gaitani, Cristiane Masetto

    2015-01-01

    An enantioselective method based on capillary electrophoresis (CE) using cyclodextrin (CD) as chiral selector was developed and validated for determination of lercanidipine (LER) enantiomers, a drug calcium channel blocker which exerts antihypertensive effects of long duration, in a pharmaceutical formulation. Optimum separation of LER enantiomers was obtained on a 50 cm × 50 μm id capillary using a sodium acetate buffer solution 200 mmol/L pH 4.0 containing 10 mmol/L of 2,3,6-o-methyl-β-cyclodextrin (TM-β-CD) as background electrolyte. The capillary temperature and voltage were 15°C and 25 kV, respectively, hydrodynamic injection and detection at 237 nm. Linearity was obtained in the range 12.5–100 μg/mL for both enantiomers (r ≥ 0.995). The RSD (%) and relative errors (E, %) obtained in precision and accuracy studies (intraday and interday) were lower than 5%. After validation, the method was applied to quantify the enantiomers of LER in commercial tablets and the results were satisfactory in terms of accuracy and precision, both less than 5%. Therefore, this method was found to be appropriate for enantioselective quality control of LER enantiomers in pharmaceutical formulations. PMID:25821632

  4. Capillary electrophoresis and liquid chromatography in the analysis of some quaternary ammonium salts used in lozenges as antibacterial agents.

    PubMed

    Taylor, R B; Toasaksiri, S; Reid, R G

    1998-01-01

    A comparison is made of the relative merits of high-performance liquid chromatography and capillary electrophoresis, both using direct UV detection, for the determination of three quaternary ammonium compounds used as the active antibacterial ingredient in lozenge formulations. While both techniques are capable of separating the compounds cetylpyridinium chloride, dequalinium chloride, and benzalkonium chlorides, the liquid chromatographic method involving ion pairing and using a 5-micron cyanopropyl stationary phase, was unable to resolve the benzalkonium chlorides from the lozenge excipients and quantitation was not possible. The capillary electrophoresis method using a 205-mm 50-micron-i.d. capillary with a running buffer of 50% vol/vol 50 mM phosphate buffer at pH 3 provided superior resolution of the three antibacterials in all lozenge formulations. This system was also capable of resolving impurities in the dequalinium chloride both in the standard and in lozenges containing this compound. On the basis of quantitative results previously published, both methods have adequate validation parameters since the relative insensitivity of capillary electrophoresis compared with liquid chromatography is not important at the concentration required to be determined following a single simple sample pretreatment.

  5. Separation of proteolytic enzymes originating from Antarctic krill (Euphausia superba) by capillary electrophoresis.

    PubMed

    Sjödahl, J; Emmer, A; Karlstam, B; Vincent, J; Roeraade, J

    1998-02-13

    Extracts prepared from Antarctic krill (Euphausia superba), mainly consisting of acidic proteolytic enzymes, have been studied with capillary electrophoretic techniques. Approximately 50 repeatable peaks were obtained with capillary zone electrophoresis on an untreated fused-silica capillary using a phosphate buffer containing anionic and cationic fluorosurfactant additives as separation medium. A faster separation was achieved on a polyvinyl alcohol coated capillary. Quantitative variations of individual proteins regarding different krill enzyme batches were noted. In the krill samples trypsin-like serine proteinase, carboxypeptidase A and carboxypeptidase B were tentatively identified.

  6. Determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Baker, S. A.; Miller-Ihli, N. J.

    2000-12-01

    The determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) was investigated. Both capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) modes of operation were studied. The optimal separation of four cobalamin species (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5'-deoxyadenosylcobalamin) and a potentially harmful corrinoid analogue (cobinamide dicyanide) was obtained using CZE at a pH of 2.5. Both 20 mM phosphate and 20 mM formate buffers were used with success, although the formate buffer provided improved resolution. The CZE-ICP-MS method was used to quantify cyanocobalamin in a vitamin supplement and the analytical results were in good agreement (±5%) with values obtained by ICP-MS for total Co levels. The solution detection limits for cobalamins using CZE-ICP-MS were approximately 50 ng/ml. MEKC was found to be useful for the screening of vitamin preparations because it provided a rapid means of distinguishing cyanocobalamin (the form most commonly used in vitamin preparations) from free cobalt. The separation of free cobalt and cyanocobalamin using MEKC was achieved in less than 10 min.

  7. ANALYSIS OF GLYCANS DERIVED FROM GLYCOCONJUGATES BY CAPILLARY ELECTROPHORESIS-MASS SPECTROMETRY

    PubMed Central

    Mechref, Yehia

    2012-01-01

    The high structural variation of glycan derived from glycoconjugates, which substantially increases with the molecular size of a protein, contributes to the complexity of glycosylation patterns commonly associated with glycoconjugates. In the case of glycoproteins, such variation originates from the multiple glycosylation sites of proteins and the number of glycan structures associated with each site (microheterogeneity). The ability to comprehensively characterize highly complex mixture of glycans has been analytically stimulating and challenging. Although the most powerful mass spectrometric (MS) and tandem MS techniques are capable of providing a wealth of structural information, they are still not able to readily identify isomeric glycan structures without high order tandem MS (MSn). The analysis of isomeric glycan structures has been attained using several separation methods, including high-pH anion exchange chromatography (HPAEC), hydrophilic interaction chromatography (HILIC) and gas chromatography (GC). However, capillary electrophoresis (CE) and microfluidics capillary electrophoresis (MCE) offer high separation efficiency and resolutions, allowing the separation of closely related glycan structures. Therefore, interfacing CE and MCE to MS is a powerful analytical approach, allowing potentially comprehensive and sensitive analysis of complex glycan samples. This review describes and discusses the utility of different CE and MCE approaches in the structural characterization of glycoproteins and the feasibility of interfacing these approaches to mass spectrometry. PMID:22180203

  8. Simultaneous determination of antidepressants by non-aqueous or quasi-non-aqueous capillary electrophoresis.

    PubMed

    Sasajima, Yasuhide; Lim, Lee Wah; Takeuchi, Toyohide; Suenami, Koichi; Sato, Kiyohito; Takekoshi, Yuji

    2010-01-01

    Simultaneous determinations of 20 antidepressants were carried out by non-aqueous capillary electrophoresis using a background electrolyte consisting of an organic solvent. A bubble cell fused silica capillary (112.5 cm x 50 microm i.d., 150 microm i.d. bubble) was used as an electrophoresis tube. The determination was carried out at 215 nm, while the detection wavelength between 190 and 500 nm was selected for qualitative analysis. When an acetonitrile solution alone was used as the background electrolyte, good separation was observed, but it was not sufficient to separate all tested analytes. It was found that better separation was acquired by adding a few other solvents into acetonitrile, such as water and methanol; the best separation was achieved with a mixture of acetonitrile containing 60 mM ammonium acetate and 1 M acetic acid/water/methanol (100:1:0.5, v/v/v). As for the plasma sample, liquid-liquid extraction and solid-phase extraction (SPE) were considered; as a result, SPE with Oasis HLB was found to be most suitable. The present method is very useful as regards to plasma samples.

  9. Dynamic three-phase microextraction as a sample preparation technique prior to capillary electrophoresis.

    PubMed

    Hou, Li; Lee, Hian Kee

    2003-06-01

    Dynamic three-phase (liquid-liquid-liquid) microextraction was developed for capillary electrophoresis. Four aromatic amines as model compounds were extracted from 4-mL aqueous samples adjusted to basic condition (donor solution) through a small volume of organic solvent impregnated in a hollow fiber, which was held by the needle of a conventional syringe, and retracted into a 5-microL acidic acceptor solution inside the syringe. A renewable organic film and aqueous sample plug were formed inside the hollow fiber with the repeated movement of the syringe plunger enabled by a programmable syringe pump. This is believed to be the first reported instance of a semiautomated dynamic liquid-liquid-liquid microextraction (LLLME) procedure. Following this microextraction, the 5-microL acceptor solution was analyzed by capillary zone electrophoresis (CE). This new technique provided approximately 140-fold enrichment in 20 min. Utilizing 4-chloroaniline as internal standard, dynamic LLLME could provide good reproducibility (<4.0%). In addition, this method allowed the direct transfer of extracted analytes to a CE system for analysis.

  10. New chiral ligand exchange capillary electrophoresis system with chiral amino amide ionic liquids as ligands.

    PubMed

    Jiang, Junfang; Mu, Xiaoyu; Qiao, Juan; Su, Yuan; Qi, Li

    2017-12-01

    Using chiral amino amide ionic liquids as the ligands, a new chiral ligand exchange capillary electrophoresis method with Cu(II) as the central ion was constructed for enantioseparation of labeled D,L-amino acids. The effects of key parameters, including pH value of the running buffer, the ratio of Cu(II) to chiral amino amide ionic liquids, the concentration of complexes based on Cu(II)-chiral amino amide ionic liquids were investigated. It has been observed that eight pairs of labeled D,L-amino acids could be baseline-separated with a running buffer of 15.0mM ammonium acetate, 10.0mM Cu(II) and 20.0mML-phenylalaninamide based ionic liquid at pH 5.0. The quantitation of D,L-amino acids was conducted and good linearity (r(2) ≥ 0.964) was obtained. Furthermore, an assay for determining the enantiomeric purity of D,L-amino acids was developed and the possible enantiorecognition mechanism was discussed briefly. The results indicated that the chiral amino amide ionic liquids could play the role of ligands in chiral ligand exchange capillary electrophoresis system and exhibit great potential in chiral analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Determination of pharmaceuticals classified as emerging pollutants using capillary electrophoresis with capacitively coupled contactless conductivity detection.

    PubMed

    Quek, Ngee Mien; Law, Wai Siang; Lau, Hiu Fung; Zhao, Jian Hong; Hauser, Peter C; Li, Sam Fong Yau

    2008-09-01

    A study on the simultaneous separation of 13 pharmaceutical products by capillary electrophoresis with capacitively coupled contactless conductivity detection was presented. The parameters of the background electrolyte, such as pH, organic additives as well as types and concentrations of cyclodextrins (CD) were studied. The optimal separation conditions were achieved with a background electrolyte consisting of 9 mM Tris/5 mM lactic acid at pH 8.0, containing 5% n-propanol, 0.025% gamma-CD, 0.075% hydroxyl-beta-CD and 0.15% dimethyl-beta-CD. Limits of detections ranged from 61 to 1676 microg/L (S/N=3) and the relative standard deviations for migration time and peak area were below 2 and 6%, respectively. This demonstrated the potential of the capillary electrophoresis-capacitively coupled contactless conductivity detection method for biomedical and environmental analysis, as shown in the determination of pharmaceuticals identified as emerging pollutants in water samples.

  12. Analysis of recombinant monoclonal antibodies by capillary zone electrophoresis.

    PubMed

    Espinosa-de la Garza, Carlos E; Perdomo-Abúndez, Francisco C; Padilla-Calderón, Jesús; Uribe-Wiechers, Jaime M; Pérez, Néstor O; Flores-Ortiz, Luis F; Medina-Rivero, Emilio

    2013-04-01

    Analytical platforms that characterize charge heterogeneity in therapeutic proteins, such as mAbs, are important tools that can be used to define quality attributes. CZE separates protein moieties close to their native state and is a valuable physicochemical analytical method that can be used in parallel with other orthogonal methods for characterization and comparability. In this study, custom conditions for the analysis of charge heterogeneity of two mAbs were developed with regard to critical parameters in the BGE, running conditions, and sample treatment. The method application was tested for up to four mAbs and one mAb fragment. The electropherograms showed specific profiles and contrasting levels of basic and acidic isoforms with respect to the main isoform. Issues that surround this method, such as peak tailing and capillary lifetime, are summarized. Using this method, the identities of rituximab and trastuzumab were confirmed, based on the correspondence between the biosimilars and reference products, noninterference of the sample matrix, and the ability to separate spiked samples of related mAbs. The RSD of the isoform content and migration time for the method repeatability were less than 2 and 1%, respectively.

  13. Discrete wavelets transform for signal denoising in capillary electrophoresis with electrochemiluminescence detection.

    PubMed

    Cao, Weidong; Chen, Xiaoyan; Yang, Xiurong; Wang, Erkang

    2003-09-01

    Discrete wavelets transform (DWT) was applied to noise on removal capillary electrophoresis-electrochemiluminescence (CE-ECL) electropherograms. Several typical wavelet transforms, including Haar, Daublets, Coiflets, and Symmlets, were evaluated. Four types of determining threshold methods, fixed form threshold, rigorous Stein's unbiased estimate of risk (rigorous SURE), heuristic SURE and minimax, combined with hard and soft thresholding methods were compared. The denoising study on synthetic signals showed that wave Symmlet 4 with a level decomposition of 5 and the thresholding method of heuristic SURE-hard provide the optimum denoising strategy. Using this strategy, the noise on CE-ECL electropherograms could be removed adequately. Compared with the Savitzky-Golay and Fourier transform denoising methods, DWT is an efficient method for noise removal with a better preservation of the shape of peaks.

  14. Separation and determination of pseudoephedrine, dextromethorphan, diphenhydramine and chlorpheniramine in cold medicines by nonaqueous capillary electrophoresis.

    PubMed

    Dong, Yuming; Chen, Xiaofeng; Chen, Yonglei; Chen, Xingguo; Hu, Zhide

    2005-09-01

    An easy, rapid and simple nonaqueous capillary electrophoresis (NACE) method was developed for the identification and determination of four basic nitrogenous compounds, i.e. pseudoephedrine (PE), dextromethorphan (DXM), diphenhydramine (DHM) and chlorpheniramine (CLP). The most suitable running buffer was composed of 40 mM ammonium acetate, 10% acetonitrile (ACN) in methanol with a fused-silica capillary column (47 cm x 75 microm i.d.), 25 kV applied voltage and 25 degrees C capillary temperature. The calibration curves revealed linear relationships between the peak area for each analyte and its concentration (correlation coefficients: 0.9993 for PE, 0.9971 for DXM, 0.9991 for DHM, and 0.9995 for CLP, respectively). The relative standard deviations of the migration time and peak area of the four compounds were 0.37, 3.90, 0.73 and 0.68, and 2.80, 3.50, 1.60 and 3.70%, respectively. The method was successfully applied to determine the four compounds in five cold medicines, the recoveries of the four constituents ranging between 91 and 109%.

  15. Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry.

    PubMed

    Daniel, Daniela; Dos Santos, Vagner Bezerra; Vidal, Denis Tadeu Rajh; do Lago, Claudimir Lucio

    2015-10-16

    A capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) method for the simultaneous assessment of nine biogenic amines (spermine, spermidine, putrescine, cadaverine, histamine, phenylethylamine, tryptamine, tyramine, and urocanic acid) in commercial samples of beer and wine is introduced. The samples were submitted to a simple clean-up step with poly(vinylpolypyrrolidone) followed by filtration. Electrophoretic separation in a polyvinyl alcohol (PVA)-coated capillary using 0.5 mol L(-1) acetic acid (pH 2.5) as background electrolyte and detection by electrospray-tandem mass spectrometry was employed. The range of the correlation coefficients of the calibration curves of the analyzed compounds was 0.996-0.999, and the limits of detection and limits of quantification were in the range of 1-2 μg L(-1) and 3-8 μg L(-1), respectively. The recovery values for samples spiked at three concentration levels (0.2, 0.5, and 1.0 mg L(-1)) ranged from 87 to 113% with standard deviation not greater than 5.8%. The use of a PVA-coated silica capillary allows suppressing the electroosmotic flow and, consequently, increasing of the separation efficiency. The method was successfully used to determine biogenic amines in commercial samples of beer and wine.

  16. Quality criterion to optimize separations in capillary electrophoresis: Application to the analysis of harmala alkaloids.

    PubMed

    Tascon, Marcos; Benavente, Fernando; Castells, Cecilia B; Gagliardi, Leonardo G

    2016-08-19

    In capillary electrophoresis (CE), resolution (Rs) and selectivity (α) are criteria often used in practice to optimize separations. Nevertheless, when these and other proposed parameters are considered as an elementary criterion for optimization by mathematical maximization, certain issues and inconsistencies appear. In the present work we analyzed the pros and cons of using these parameters as elementary criteria for mathematical optimization of capillary electrophoretic separations. We characterized the requirements of an ideal criterion to qualify separations within the framework of mathematical optimizations and, accordingly, propose: -1- a new elementary criterion (t') and -2- a method to extend this elementary criterion to compose a global function that simultaneously qualifies many different aspects, also called multicriteria optimization function (MCOF). In order to demonstrate this new concept, we employed a group of six alkaloids with closely related structures (harmine, harmaline, harmol, harmalol, harmane and norharmane). On the basis of this system, we present a critical comparison between the new optimization criterion t' and the former elementary criteria. Finally, aimed at validating the proposed methods, we composed an MCOF in which the capillary-electrophoretic separation of the six model compounds is mathematically optimized as a function of pH as the unique variable. Experimental results subsequently confirmed the accuracy of the model.

  17. Determination of RNA degradation by capillary electrophoresis with cyan light-emitted diode-induced fluorescence.

    PubMed

    Yang, Tzu-Hsueh; Chang, Po-Ling

    2012-05-25

    RNA integrity plays an important role in RNA studies because poor RNA quality may have a great impact on downstream methodologies. This study proposes a cost-effective, rapid, and sensitive method for determining RNA integrity based on capillary electrophoresis that utilizes a cyan light-emitted diode-induced fluorescence as a separation tool. The capillary was initially coated with 0.1% Poly(vinylpyrrolidone) (M(ave) 1,300,000 Da) to reduce electroosmotic flow and avoid RNA adsorption. When the capillary was filled with 0.4% poly(ethylene) oxide (M(ave) 4,000,000) and a nucleic acid-specific fluorescent dye, SYTO 9, the baseline separation of the 18S and 28S ribosomal RNAs (rRNAs) in total RNA was accomplished within 15 min. The lowest detectable concentration for the 18S and 28S rRNAs was estimated to be 50 pg/μL. Some peaks longer than the 28S rRNA that migrated slowly were observed as long as the initial total RNA concentration was optimized. The temperature-induced degradation of the large RNA fragments (longer than the 28S rRNA) was faster than that of 18S rRNA and 28S rRNA. These large RNA fragments may serve as a promising marker for testing RNA integrity compared to the traditional method. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Determination of oversulfated chondroitin sulfate and dermatan sulfate impurities in heparin by capillary electrophoresis.

    PubMed

    Somsen, Govert W; Tak, Yvonne H; Toraño, Javier Sastre; Jongen, Peter M J M; de Jong, Gerhardus J

    2009-05-01

    Recently, oversulfated chondroitin sulfate (OSCS) present in certain lots of heparin was identified as the toxic contaminant responsible for severe side effects following intravenous heparin administration. The United States Pharmacopeia (USP) and European Pharmacopeia (Eur.Ph.) announced an immediate revision of their monographs for heparin sodium by adding two US Food and Drugs Administration-recommended tests for OSCS based on nuclear magnetic resonance and capillary electrophoresis (CE). However, the proposed CE method provides only partial separation of the OSCS contaminant from heparin, thereby hindering appropriate impurity profiling. Here we present an improved CE method that is especially useful for the reliable quantification of OSCS in heparin samples, but also allows determination of the common impurity dermatan sulfate (DS). Parameters such as type and concentration of background electrolyte, capillary temperature, sample concentration and injection volume were investigated and optimized. Enhancement of the OSCS-heparin separation was achieved by using high concentrations of Tris phosphate (pH 3.0) as background electrolyte. High currents and excessive Joule heating were prevented by employing fused-silica capillaries with an internal diameter of 25 microm. Good separations of OSCS, heparin and DS are obtained within 17 min. The method permits injection of relatively high heparin concentrations (up to 50 mg/ml) and large sample volumes (up to 5% of the capillary volume) allowing OSCS and DS determination in heparin down to the 0.05% and 0.5% (w/w) level, respectively. The CE method is shown to be repeatable and linear (R(2)>0.99) for OSCS, heparin and DS. CE analyses of OSCS-contaminated heparin samples and different heparin standards further demonstrate the utility of the method.

  19. Determination of antibacterial quaternary ammonium compounds in lozenges by capillary electrophoresis.

    PubMed

    Taylor, R B; Toasaksiri, S; Reid, R G

    1998-03-06

    A method for the specific determination of three quaternary ammonium compounds, benzalkonium chloride, cetylpyridinium chloride and dequalinium chloride, used as antibacterial agents in candy-based lozenges, is described based on capillary zone electrophoresis. It is shown that, following optimisation of buffer composition with respect to organic modifier concentration. pH and buffer concentration together with the inclusion of sodium dodecylsulphate as an ion-pairing agent in the case of dequalinium chloride, these analytes migrate in less than 5 min. The resultant electrophoretic peaks are sharp and readily quantified. The individual alkyl components of benzalkonium chloride can be resolved as can related impurities in dequalinium chloride lozenges. The quantitative characteristics of the assay method, based on peak areas normalised with respect to migration times, are reported and the method is compared with a previously published method based on liquid chromatography.

  20. Capillary electrophoresis--a new tool for ionic analysis of exhaled breath condensate.

    PubMed

    Kubáň, Petr; Kobrin, Eeva-Gerda; Kaljurand, Mihkel

    2012-12-07

    Exhaled breath condensate has been analyzed for its ionic content by capillary electrophoresis with capacitively coupled contactless conductometric detection. A simple device for collection of small volumes (100-200 μL) of exhaled breath condensate in less than 2 min was developed. A method for simultaneous determination of inorganic cations, inorganic anions and organic anions from the samples using dual-opposite end injection principle with a short fused silica capillary (35 cm, 50 μm I.D.) was developed. A background electrolyte composed of 20mM 2-(N-morpholino)ethanesulfonic acid, 20 mM l-histidine, 30 μM cetyltrimethylammonium bromide and 2mM 18-crown-6 was used. The analysis time was less than 3 min with limits of detection reaching low μM levels for most of the anions and cations. It has been shown that changes of nitrite could be observed in acute inflammation of upper airways and in a person with diagnosed mild chronic obstructive pulmonary disease, while changes of other ions could also be observed. Lactate concentrations could also be monitored and about 4-fold increase of lactate concentration in exhaled breath condensate was determined following an exhaustive cycling exercise. The developed non-invasive sampling of exhaled breath condensate, followed by rapid capillary electrophoretic analysis, could be very useful in lung inflammatory disease screening as well as in monitoring fast metabolic processes such as lactate build-up and removal.

  1. Characterization of phthalocyanine functionalized quantum dots by dynamic light scattering, laser Doppler, and capillary electrophoresis.

    PubMed

    Ramírez-García, Gonzalo; Oluwole, David O; Nxele, Siphesihle Robin; d'Orlyé, Fanny; Nyokong, Tebello; Bedioui, Fethi; Varenne, Anne

    2017-02-01

    In this work, we characterized different phtalocyanine-capped core/shell/shell quantum dots (QDs) in terms of stability, ζ-potential, and size at various pH and ionic strengths, by means of capillary electrophoresis (CE), and compared these results to the ones obtained by laser Doppler electrophoresis (LDE) and dynamic light scattering (DLS). The effect of the phthalocyanine metallic center (Zn, Al, or In), the number (one or four), and nature of substituents (carboxyphenoxy- or sulfonated-) of functionalization on the phthalocyanine physicochemical properties were evaluated. Whereas QDs capped with zinc mono-carboxyphenoxy-phtalocyanine (ZnMCPPc-QDs) remained aggregated in the whole analyzed pH range, even at low ionic strength, QDs capped with zinc tetracarboxyphenoxy phtalocyanine (ZnTPPc-QDs) were easily dispersed in buffers at pH equal to or higher than 7.4. QDs capped with aluminum tetrasulfonated phthalocyanine (AlTSPPc-QDs) and indium tetracarboxyphenoxy phthalocyanines (InTCPPc-QDs) were stable in aqueous suspension only at pH higher than 9.0 due to the presence of functional groups bound to the metallic center of the phthalocyanine. The ζ-potential values determined by CE for all the samples decreased when ionic strength increased, being well correlated with the aggregation of the nanoconjugates at elevated salt concentrations. The use of electrokinetic methodologies has provided insights into the colloidal stability of the photosensitizer-functionalized QDs in physiological relevant solutions and thereby, its usefulness for improving their design and applications for photodynamic therapy. Graphical Abstract Schematic illustration of the phthalocyanine capped QDs nanoconjugates and the capillary electrophoresis methods applied for size and ζ-potential characterization.

  2. The mobility minima in pulsed-field capillary electrophoresis of large DNA.

    PubMed Central

    Sudor, J; Novotny, M

    1995-01-01

    Pulsed-field capillary electrophoresis represents a new tool for rapid and highly efficient separations of large biopolymers. The method has been utilized here to study dependencies of the electrophoretic mobility upon the frequency and pulse shape of applied voltage for large, double-stranded DNA molecules (5-100 kb) migrating in neutral polymer solutions. Two different shapes of alternating electric field (sine- and square-wave impulses) were examined with the frequency values ranging from 1 to 30 Hz. The linear dependence between duration of the forward pulse (at which the DNA molecule experiences a minimum mobility) and the product N.In(N) (where N is the number of base pairs) was experienced in field-inversion gel electrophoresis, while exponential dependence was found with the sinusoidal electric field. The mobility minima were lower in field-inversion electrophoresis than with the biased sinusoidal-field technique. The DNA (5 kb concatamers) was adequately separated using a ramp of frequency in the square-wave electric field, in approximately 1 h. The migration order of DNA fragments was referenced through adding a monodisperse DNA (48.5 kb) into the sample. The band inversion phenomena were not observed under any experimental conditions used in this work. PMID:7630733

  3. Capillary blotting of glycosaminoglycans on nitrocellulose membranes after agarose-gel electrophoresis separation.

    PubMed

    Volpi, Nicola; Maccari, Francesca

    2009-01-01

    A method for the blotting and immobilizing of several nonsulfated and sulfated complex polysaccharides on membranes made hydrophilic and positively charged by cationic detergent after their separation by conventional agarose gel electrophoresis is illustrated. This new approach to the study of glycosaminoglycans (GAGs) utilizes the capacity of agarose gel electrophoresis to separate single species of polysaccharides from mixtures and the membrane technology for further preparative and analytical uses.Nitrocellulose membranes are derivatized with the cationic detergent cetylpyridinium chloride and mixtures of GAGs are capillary blotted after their separation in agarose gel electrophoresis. Single purified species of variously sulfated polysaccharides are transferred on derivatized membranes with an efficiency of 100% and stained with alcian blue (irreversible staining) and toluidine blue (reversible staining). This enables a lower amount limit of detection of 0.1 microg. Nonsulfated polyanions, for example hyaluronic acid, may also be transferred to membranes with a limit of detection of approximately 0.1-0.5 microg after irreversible or reversible staining. The membranes may be stained with reversible staining and the same lanes are used for immunological detection or other applications.

  4. Determination of catecholamines in single adrenal medullary cells by capillary electrophoresis and laser-induced native fluorescence

    SciTech Connect

    Chang, H.T.; Yeung, E.S. |

    1995-03-15

    The present study demonstrates that native fluroescence detection combined with capillary electrophoresis separation at low pH provides high sensitivity (down to nanomolar), high resolution, high speed, and low interference for the analysis of catecholamines. Further, this method has been employed successfully for the measurement of the amounts of epinephrine and norepinephrine in individual bovine adrenal medullary cells. Application of this method to the study of neurochemistry is promising. 46 refs., 7 figs., 2 tabs.

  5. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    SciTech Connect

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  6. Self-assembled covalent capillary coating of diazoresin/carboxyl fullerene for analysis of proteins by capillary electrophoresis and a comparison with diazoresin/graphene oxide coating.

    PubMed

    Yu, Bing; Shu, Xi; Cong, Hailin; Chen, Xin; Liu, Huwei; Yuan, Hua; Chi, Ming

    2016-03-11

    Self-assembled and covalently linked capillary coatings of carboxyl fullerenes (C60-COOH) were prepared using photosensitive diazoresin (DR) as a coupling agent. Layer by layer (LBL) self-assembled DR/C60-COOH coatings based on ionic bonding was fabricated first on the inner surface of silica capillary, and subsequently converted into covalent bonding after treatment with UV light through a unique photochemistry reaction of DR. The covalently bonded coatings had the ability of suppressing protein adsorption on the inner surface of silica capillary, and thus the baseline separation of lysozyme (Lys), cytochrome c (Cyt-c), bovine serum albumin (BSA) and myoglobin (Mb) was achieved within 13min by using capillary electrophoresis (CE). The covalently linked DR/C60-COOH capillary coatings presented good chemical stability and repeatability. The reproducibility of the separation of proteins was less than 1%, 2.5%, and 3.5%, respectively, for run-to-run, day-to-day, capillary-to-capillary, respectively; and the RSD of migration time for the proteins are all less than 2.5% after a continuous 100 times running in a coating column. Compared with DR/graphene oxide (GO) coatings prepared by the same method, the DR/C60-COOH capillary coatings showed excellent protein separation performance due to a self-lubrication based anti-fouling mechanism. Because of the replacement of highly toxic and moisture sensitive silane coupling agent by DR in the covalent coating preparation, this method may provide an environmentally friendly and simple way to prepare the covalently coated capillaries for CE. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Capillary electrophoresis with field-amplified sample stacking for rapid and sensitive determination of sulfadiazine and sulfamethoxazole.

    PubMed

    Li, Yuqin; Cui, Yingjie; Jia, Baoxiu; Wang, Hao; Liu, Caihong; Qi, Yongxiu

    2012-09-01

    A new capillary electrophoresis method with field-amplified sample stacking (FASS) was developed for the analysis of sulfadiazine and sulfamethoxazole. After optimization of the separation and concentration conditions, the two compounds can be separated within 7 min and quantified with high sensitivity, with detection limits of 0.48 ng/mL for sulfadiazine and 0.76 ng/mL for sulfamethoxazole. This resulted in a 300-1500-fold improvement in concentration sensitivity relative to conventional capillary electrophoresis methods. The method was useful for qualitative and quantitative analysis of sulfadiazine and sulfamethoxazole in their preparations with recovery of 99.0%-102% for sulfadiazine and 99.5% - 99.7% for sulfamethoxazole.

  8. Enhanced Resolution of Chiral Amino Acids with Capillary Electrophoresis for Biosignature Detection in Extraterrestrial Samples.

    PubMed

    Creamer, Jessica S; Mora, Maria F; Willis, Peter A

    2017-01-17

    Amino acids are fundamental building blocks of terrestrial life as well as ubiquitous byproducts of abiotic reactions. In order to distinguish between amino acids formed by abiotic versus biotic processes it is possible to use chemical distributions to identify patterns unique to life. This article describes two capillary electrophoresis methods capable of resolving 17 amino acids found in high abundance in both biotic and abiotic samples (seven enantiomer pairs d/l-Ala, -Asp, -Glu, -His, -Leu, -Ser, -Val and the three achiral amino acids Gly, β-Ala, and GABA). To resolve the 13 neutral amino acids one method utilizes a background electrolyte containing γ-cyclodextrin and sodium taurocholate micelles. The acidic amino acid enantiomers were resolved with γ-cyclodextrin alone. These methods allow detection limits down to 5 nM for the neutral amino acids and 500 nM for acidic amino acids and were used to analyze samples collected from Mono Lake with minimal sample preparation.

  9. Evaluation of capillary electrophoresis for in-flight ionic contaminant monitoring of SSF potable water

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.; Schultz, John R.; Sauer, Richard L.

    1992-01-01

    Until 1989, ion chromatography (IC) was the baseline technology selected for the Specific Ion Analyzer, an in-flight inorganic water quality monitor being designed for Space Station Freedom. Recent developments in capillary electrophoresis (CE) may offer significant savings of consumables, power consumption, and weight/volume allocation, relative to IC technology. A thorough evaluation of CE's analytical capability, however, is necessary before one of the two techniques is chosen. Unfortunately, analytical methods currently available for inorganic CE are unproven for NASA's target list of anions and cations. Thus, CE electrolyte chemistry and methods to measure the target contaminants must be first identified and optimized. This paper reports the status of a study to evaluate CE's capability with regard to inorganic and carboxylate anions, alkali and alkaline earth cations, and transition metal cations. Preliminary results indicate that CE has an impressive selectivity and trace sensitivity, although considerable methods development remains to be performed.

  10. The selective determination of sulfates, sulfonates, and phosphates in urine by capillary electrophoresis/mass spectrometry.

    PubMed

    Bunz, Svenja-Catharina; Neusüß, Christian

    2013-01-01

    Metabolite identification and metabolite profiling are of major importance in the pharmaceutical and clinical context. However, anions of biological relevance such as sulfates, sulfonates, and phosphates are rarely included in common techniques for metabolite studies. In this protocol, we demonstrate a unique method to selectively determine these anions. The method comprises a capillary electrophoresis separation using an acidic background electrolyte (pH ≤ 2) and anodic detection by mass spectrometry via negative electrospray ionization. In this way, only anions of strong acids like sulfates are determined. The selectivity for sulfur-containing species is proved based on the specific isotopic ratios. In conjunction with the accurate mass from the time-of-flight mass spectrometer, the presented method is well suited for clinical and pharmaceutical applications to identify possible metabolites and to quantify known metabolites.

  11. Determination of salicylic acid in human serum with capillary zone electrophoresis.

    PubMed

    Goto, Y; Makino, K; Kataoka, Y; Shuto, H; Oishi, R

    1998-03-20

    The determination of salicylic acid (SA), a metabolite of aspirin, in human serum was developed using capillary zone electrophoresis (CZE) with diode array detection. The reproducibility of separation and quantification with CZE analysis of the extract of SA from human serum was appropriate for the intra- and inter-day assay coefficients. A high correlation was revealed between the serum SA levels in volunteers determined by CZE and those determined by a fluorescence polarization immunoassay (r=0.973, n = 12), although the former values were slightly higher than the latter. There were no peaks interfering with the assay of SA by internal standard method. This CZE method could provide a simple and efficient method for monitoring SA in patients.

  12. Evaluation of capillary electrophoresis for in-flight ionic contaminant monitoring of SSF potable water

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.; Schultz, John R.; Sauer, Richard L.

    1992-01-01

    Until 1989, ion chromatography (IC) was the baseline technology selected for the Specific Ion Analyzer, an in-flight inorganic water quality monitor being designed for Space Station Freedom. Recent developments in capillary electrophoresis (CE) may offer significant savings of consumables, power consumption, and weight/volume allocation, relative to IC technology. A thorough evaluation of CE's analytical capability, however, is necessary before one of the two techniques is chosen. Unfortunately, analytical methods currently available for inorganic CE are unproven for NASA's target list of anions and cations. Thus, CE electrolyte chemistry and methods to measure the target contaminants must be first identified and optimized. This paper reports the status of a study to evaluate CE's capability with regard to inorganic and carboxylate anions, alkali and alkaline earth cations, and transition metal cations. Preliminary results indicate that CE has an impressive selectivity and trace sensitivity, although considerable methods development remains to be performed.

  13. Capillary zone electrophoresis for bottom-up analysis of complex proteomes

    PubMed Central

    Sun, Liangliang; Zhu, Guijie; Yan, Xiaojing; Zhang, Zhenbin; Wojcik, Roza; Champion, Matthew M.

    2016-01-01

    Capillary zone electrophoresis (CZE) is emerging as a useful tool in proteomic analysis. Interest arises from dramatic improvements in performance that result from improvements in the background electrolyte used for the separation, the incorporation of advanced sample injection methods, the development of robust and sensitive electrospray interfaces, and the coupling with Orbitrap mass spectrometers with high resolution and sensitivity. The combination of these technologies produces performance that is rapidly approaching the performance of UPLC-based methods for microgram samples and exceeds the performance of UPLC-based methods for mid- to low nanogram samples. These systems now produce over 10,000 peptide IDs in a single 100-minute analysis of the HeLa proteome. PMID:26508368

  14. Development of a Capillary Electrophoresis Platform for Identifying Inhibitors of Protein-Protein Interactions

    PubMed Central

    Rauch, Jennifer N.; Nie, Jing; Buchholz, Tonia J.; Gestwicki, Jason E.; Kennedy, Robert T.

    2013-01-01

    Methods for identifying chemical inhibitors of protein-protein interactions (PPIs) are often prone to discovery of false positives, particularly those caused by molecules that induce protein aggregation. Thus, there is interest in developing new platforms that might allow earlier identification of these problematic compounds. Capillary electrophoresis (CE) has been evaluated as a method to screen for PPI inhibitors using the challenging system of Hsp70 interacting with its co-chaperone Bag3. In the method, Hsp70 is labeled with a fluorophore, mixed with Bag3, and the resulting bound and free Hsp70 separated and detected by CE with laser-induced fluorescence detection. The method used a chemically modified CE capillary to prevent protein adsorption. Inhibitors of the Hsp70-Bag3 interaction were detected by observing a reduction in the bound to free ratio. The method was used to screen a library of 3,443 compounds and results compared to those from a flow cytometry protein interaction assay. CE was found to produce a lower hit rate with more compounds that reconfirmed in subsequent testing suggesting greater specificity. This finding was attributed to use of electropherograms to detect artifacts such as aggregators and to differences in protein modifications required to perform the different assays. Increases in throughput are required to make the CE method suitable for primary screens but at the current stage of development it is attractive as a secondary screen to test hits found by higher throughput methods. PMID:24060167

  15. Development of a capillary electrophoresis platform for identifying inhibitors of protein-protein interactions.

    PubMed

    Rauch, Jennifer N; Nie, Jing; Buchholz, Tonia J; Gestwicki, Jason E; Kennedy, Robert T

    2013-10-15

    Methods for identifying chemical inhibitors of protein-protein interactions (PPIs) are often prone to discovery of false positives, particularly those caused by molecules that induce protein aggregation. Thus, there is interest in developing new platforms that might allow earlier identification of these problematic compounds. Capillary electrophoresis (CE) has been evaluated as a method to screen for PPI inhibitors using the challenging system of Hsp70 interacting with its co-chaperone Bag3. In the method, Hsp70 is labeled with a fluorophore, mixed with Bag3, and the resulting bound and free Hsp70 are separated and detected by CE with laser-induced fluorescence detection. The method used a chemically modified CE capillary to prevent protein adsorption. Inhibitors of the Hsp70-Bag3 interaction were detected by observing a reduction in the bound-to-free ratio. The method was used to screen a library of 3443 compounds, and the results were compared to those from a flow cytometry protein interaction assay. CE was found to produce a lower hit rate with more compounds that were reconfirmed in subsequent testing, suggesting greater specificity. This finding was attributed to the use of electropherograms to detect artifacts such as aggregators and to differences in protein modifications required to perform the different assays. Increases in throughput are required to make the CE method suitable for primary screens, but at the current stage of development it is attractive as a secondary screen to test hits found by higher-throughput methods.

  16. New advances in on-line sample preconcentration by capillary electrophoresis using dynamic pH junction.

    PubMed

    Ptolemy, Adam S; Britz-McKibbin, Philip

    2008-12-01

    The small injection volumes and narrow dimensions characteristic of microseparation techniques place constraints on concentration sensitivity that is required for trace chemical analyses. On-line sample preconcentration techniques using dynamic pH junction and its variants have emerged as simple yet effective strategies for enhancing concentration sensitivity of weakly ionic species by capillary electrophoresis (CE). Dynamic pH junction offers a convenient format for electrokinetic focusing of dilute sample plugs directly in-capillary for improved detection without off-line sample pretreatment. In this report, we highlight new advances in dynamic pH junction which have been reported to enhance method performance while discussing challenges for future research.

  17. Total trans fatty acid analysis in spreadable cheese by capillary zone electrophoresis.

    PubMed

    De Castro, Patrícia Mendonça; Barra, Marcelo Macedo; Costa Ribeiro, Mauro Carlos; Aued-Pimentel, Sabria; Da Silva, Simone Alves; De Oliveira, Marcone Augusto Leal

    2010-02-10

    An alternative method for determination of total trans fatty acids expressed as elaidic acid by capillary zone electrophoresis (CZE) under indirect UV detection at 224 nm within an analysis time of 7.5 min was developed. The optimized running electrolyte includes 15.0 mmol L(-1) KH(2)PO(4)/Na(2)HPO(4) buffer (pH approximately 7.0), 4.0 mmol L(-1) SDBS, 8.0 mmol L(-1) Brij35, 45%v/v ACN, 8% methanol, and 1.5% v/v n-octanol. Baseline separation of the critical pair C18-9cis/C18:1-9t with a resolution higher than 1.5 was achieved using C15:0 as the internal standard. The optimum capillary electrophoresis (CE) conditions for the background electrolyte were established with the aid of Raman spectroscopy and experiments of a 3(2) factorial design. After response factor (R(F)) calculations, the CE method was applied to total trans fatty acid (TTFA) analysis in a hydrogenated vegetable fat (HVF) sample, and compared with the American Oil Chemists' Society (AOCS) official method by gas chromatography (GC). The methods were compared with an independent sample t test, and no significant difference was found between CE and GC methods within the 95% confidence interval for six genuine replicates of TTFA analysis (p-value > 0.05). The CE method was applied to TTFA analysis in a spreadable cheese sample. Satisfactory results were obtained, indicating that the optimized methodology can be used for trans fatty acid determination for these samples.

  18. High-Throughput Genetic Analysis and Combinatorial Chiral Separations Based on Capillary Electrophoresis

    SciTech Connect

    Zhong, Wenwan

    2003-01-01

    Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in this manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.

  19. Molecular sieving polymer for DNA/RNA separation in capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Liu, Chenchen; Yamaguchi, Yoshinori; Dou, Xiaoming

    2017-07-01

    In capillary polymer electrophoresis, the property of polymer sieving matrix dominates the migration behavior of DNA/RNA. We investigated the capillary electrophoresis of RNA ranging from 100 nt to 10,000 nt in polyacrylamide (PA) solutions with different molecular weights (Mw) and different concentrations. We observed that the resolution length (RSL) of RNA fragments was improved and the migration time was prolonged, when polymer concentration was increased. The resolution for small RNA fragments (<1000 nt) was improved with the increase of polymer concentration, whereas the large ones (>3000 nt) became inseparable. In addition, we estimated the smallest resolvable nucleotide length (Ls) by the plot of RSL against RNA size.

  20. Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis.

    PubMed

    Ghosal, Sandip

    2004-01-01

    Electroosmotic flow (EOF) usually accompanies electrophoretic migration of charged species in capillary electrophoresis unless special precautions are taken to suppress it. The presence of the EOF provides certain advantages in separations. It is an alternative to mechanical pumps, which are inefficient and difficult to build at small scales, for transporting reagents and analytes on microfluidic chips. The downside is that any imperfection that distorts the EOF profile reduces the separation efficiency. In this paper, the basic facts about EOF are reviewed from the perspective of fluid mechanics and its effect on separations in free solution capillary zone electrophoresis is discussed in the light of recent advances.

  1. Pulsed UV Laser-Induced Stationary Capillary Vibration for Highly Sensitive and Direct Detection of Capillary Electrophoresis.

    PubMed

    Odake, T; Kitamori, T; Sawada, T

    1997-07-01

    A stationary wave of the capillary vibration effect was successfully induced by a series of short laser pulses. This wave could be applied to highly sensitive detection of capillary electrophoresis as well as the already reported capillary vibration induced by an intensity-modulated CW laser (CVL effect). Generally, pulses with much shorter width than the period of the natural frequency of the vibrating system cannot induce a standing vibration. However, utilizing the time constant of CVL determined by heat dissipation time, we found conditions which could induce a stable stationary wave of the capillary by a series of nanosecond light pulses. We used the KrF excimer laser operated at 248 nm with a pulse width of 60 ns and output of ∼10 μJ/pulse as the CVL excitation source and applied it to highly sensitive detection of nonderivatized amino acids at the femtomole level. The sensitivity was at least 2 orders of magnitude superior to that of a commercially available UV absorbance detector. This technique extends the CVL's spectral regions. For example, in the UV region, where many biological materials have significant absorption bands, this technique will extend analytical applications in capillary electrophoresis by eliminating the need for a derivatization process.

  2. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis

    NASA Astrophysics Data System (ADS)

    Scherer, James R.; Liu, Peng; Mathies, Richard A.

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  3. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    PubMed

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  4. In vitro assay of the interaction between Rnc1 protein and Pmp1 mRNA by affinity capillary electrophoresis with a carboxylated capillary.

    PubMed

    Taga, Atsushi; Satoh, Ryosuke; Ishiwata, Shunji; Kodama, Shuji; Sato, Atsushi; Suzuki, Kentaro; Sugiura, Reiko

    2010-12-15

    The interaction between Rnc1, an RNA interactive protein, and a Pmp1 mRNA was investigated by affinity capillary electrophoresis (ACE). Prior to the ACE experiments, the column performances of three capillaries (an untreated fused silica capillary, a polybrene-polyacrylic acid (PB-PAA) double layer coating capillary, and a carboxylated capillary with a covalent modification) were studied with model proteins including ribonuclease B (RNase B) and bovine serum albumin (BSA). Using an untreated fused silica and a PB-PAA double layer coating capillaries, both of the protein peaks were broad and tailing. However, using a carboxylated capillary, the protein peaks were sharp and symmetric, and migration times were repeatable (RSD<0.4%). Further, the proteins in human serum also gave sharp peaks and its repeatability was kept at a high level by pre-treatment of a capillary inner wall with 1M sodium chloride solution before each run. An Rnc1 protein was analyzed by ACE with background electrolytes containing various concentrations of Pmp1 sense mRNA using a carboxylated capillary. Increase in the concentration of the mRNA was found to delay the migration time of the protein. But the migration time of the protein was kept constant with increasing Pmp1 anti-sense mRNA instead of Pmp1 sense mRNA. A straight line (r=0.987) was obtained by plotting 1/(migration time shift) versus 1/(Pmp1 sense mRNA concentration) and the association constant of Rnc1 protein with Pmp1 sense mRNA could be estimated to be 4.15x10(6)M(-1). These results suggest that the association constants of proteins with mRNAs as ligands were easily determined by the proposed method.

  5. Steroid determination in fish plasma using capillary electrophoresis

    USGS Publications Warehouse

    Bykova, L.; Archer-Hartmann, S. A.; Holland, L.A.; Iwanowicz, L.R.; Blazer, V.S.

    2010-01-01

    A capillary separation method that incorporates pH-mediated stacking is employed for the simultaneous determination of circulating steroid hormones in plasma from Perca flavescens (yellow perch) collected from natural aquatic environments. The method can be applied to separate eight steroid standards: progesterone, 17α,20β-dihydroxypregn-4-en-3-one, 17α-hydroxyprogesterone, testosterone, estrone, 11-ketotestosterone, ethynyl estradiol, and 17β-estradiol. Based on screening of plasma, the performance of the analytical method was determined for 17α,20β-dihydroxypregn-4-en-3-one, testosterone, 11-ketotestosterone, and 17β-estradiol. The within-day reproducibility in migration time for these four steroids in aqueous samples was ≤2%. Steroid quantification was accomplished using a calibration curve obtained with external standards. Plasma samples from fish collected from the Choptank and Severn Rivers, Maryland, USA, stored for up to one year were extracted with ethyl acetate and then further processed with anion exchange and hydrophobic solid phase extraction cartridges. The recovery of testosterone and 17β-estradiol from yellow perch plasma was 84 and 85%, respectively. Endogenous levels of testosterone ranged from 0.9 to 44 ng/ml, and when detected 17α,20β-dihydroxypregn-4-en-3-one ranged from 5 to 34 ng/ml. The reported values for testosterone correlated well with the immunoassay technique. Endogenous concentrations of 17β-estradiol were ≤1.7 ng/ml. 11-Ketotestosterone was not quantified because of a suspected interferant. Higher levels of 17α,20β-dihydroxypregn-4-en-3-one were found in male and female fish in which 17β-estradiol was not detected. Monitoring multiple steroids can provide insight into hormonal fluctuations in fish.

  6. Determination of phenolic disinfectants in consumer products by capillary electrophoresis with amperometric detection.

    PubMed

    Jiang, Lianmei; Wang, Jinyan; He, Yan; Ye, Jiannong; Chu, Qingcui

    2010-08-01

    Numerous disinfection products are widely used in daily life to kill pathogenic microorganisms. However, most disinfectants are organic compounds that might be hazardous to the environment and humans when used excessively. Phenolic disinfectants in disinfection products are investigated using a high-performance capillary electrophoresis-amperometric detection method. Under the optimum conditions, five commonly used disinfectants can be well-separated within 19 min at the separation voltage of 18 kV in a 80 mmol/L borax running buffer (pH 9.2), and adequate extraction was obtained with ethanol for the determination of the five compounds. Satisfactory recovery (93.5-106.0%), intra-day repeatability of the peak current (< 2.9%), and detection limits (1.6 x 10(-7) - 3.8 x 10(-8) g/mL) for the method are achieved. This proposed procedure is successfully used to analyze different samples of disinfection products.

  7. Mutation detection using ligase chain reaction in passivated silicon-glass microchips and microchip capillary electrophoresis.

    PubMed

    Lou, Xing Jian; Panaro, Nicholas J; Wilding, Peter; Fortina, Paolo; Kricka, Larry J

    2004-09-01

    The ligase chain reaction (LCR) following PCR is one of the most sensitive and specific methods for detecting mutations, especially single nucleotide polymorphisms (SNPs). Performing LCR in microchips remains a challenge because of the inhibitory effect of the internal surfaces of silicon-glass microchips. We have tested a dynamic polymer-based surface passivation method for LCR conducted in oxide-coated silicon-glass microchips. The combination of polyvinylpyrrolidone 40 (PVP-40) at 0.75% (w/v) with an excess of the ligase produced successful LCR in the silicon-glass microchips, with yields of ligated primers comparable to reactions performed in conventional reaction tubes. Ligated primers were detected and quantified simply and conveniently using microchip capillary electrophoresis.

  8. Integration of rapid DNA hybridization and capillary zone electrophoresis using bidirectional isotachophoresis.

    PubMed

    Bahga, Supreet S; Han, Crystal M; Santiago, Juan G

    2013-01-07

    We present a method for rapid, sequence-specific detection of multiple DNA fragments by integrating isotachophoresis (ITP) based DNA hybridization and capillary zone electrophoresis (CZE) using bidirectional ITP. Our method leverages the high preconcentration ability of ITP to accelerate slow, second-order DNA hybridization kinetics, and the high resolving power of CZE to separate and identify reaction products. We demonstrate the speed and sensitivity of our assay by detecting 5 pM, 39 nt ssDNA target within 3 min, using a molecular beacon probe. We also demonstrate the feasibility of our assay for multiplexed detection of multiple-length ssDNA targets by simultaneously detecting 39 and 90 nt ssDNA targets.

  9. Determination of 3-amino-1,2,4-triazole (amitrole) in environmental waters by capillary electrophoresis.

    PubMed

    Chicharro, M; Zapardiel, A; Bermejo, E; Moreno, M

    2003-01-02

    3-Amino-1,2,4-triazole (amitrole) is a widely used pesticide, with many difficulties to be analyzed at the regulatory level in drinking water, because its high solubility in water. This paper describes a simple and fast method for the simultaneous determination of amitrole and atrazin-2-hydroxy, principal degradation product of s-triazines, by capillary zone electrophoresis. Separation and determination of these herbicides in water samples was performed in 0.02 mol l(-1) phosphate buffer at pH 3.2. The method allows determination of the amitrole and atrazin-2-hydroxy in water samples in concentration lower than 100 mug l(-1). The detection limits using a previous preconcentration step of amitrole in Alberche River (Comunidad Autónoma de Madrid, Spain) and drinking water spiked samples was of 4 mug l(-1).

  10. Using Capillary Electrophoresis to Determine the Purity of Acetylsalicylic Acid Synthesized in the Undergraduate Laboratory

    NASA Astrophysics Data System (ADS)

    Welder, Frank; Colyer, Christa L.

    2001-11-01

    Capillary electrophoresis (CE), although a powerful analytical tool, has found only limited application in undergraduate laboratory study. In an effort to expose freshman and sophomore chemistry students to this technique, thereby giving them practical instrumental experience early in their careers, we propose to use CE in the analysis of student-synthesized acetylsalicylic acid (ASA). The synthesis of ASA from salicylic acid (SA) is a routine undergraduate laboratory, although students rarely have the opportunity to test the purity of their product. The CE method described herein provides students with a method to test purity and yield of their product and to determine the effect of aging on their sample. CE can accomplish this in a short period of time, with minimal disruption to the regular laboratory curriculum. Optimized separation conditions, limits of detection, and linear range for ASA and SA are also given.

  11. Detection of divalent transition metal ions in complex media by capillary electrophoresis

    SciTech Connect

    Sgammato, J.D.; DiIorio, A.; Crusberg, T.C.

    1997-12-31

    A method was developed for the analysis of divalent metal ions in complex media. Research into the bioremediation of metals requires exploratory methods for analyzing those metals in growth media. Capillary electrophoresis uses small (< 500 {micro}L) samples, permitting multiple analyses over time without introducing volumetric effects. But growth media often contain concentrations of other cations high enough to interfere with resolution of the metals in question. A capillary electrophoretic method was developed that analyzes Cu, Ni, and Zn at concentrations as low as 10 mg/L in nutrient media containing 540 mg/L Na, 270 mg/L K, 50 mg/L Mg, and 27 mg/L Ca. The analysis uses 500 {micro}L samples, permitting aliquots to be taken during the course of a shake-flask experiment without introducing volumetric errors. Multiple analyses can be made from the same sample. A sample takes 10 minutes to run, with a 2.5 minute purge and 5-second injection between samples, and is automated, permitting overnight analysis. No sample preparation was required. This method is useful for determining rates of metal uptake, optimizing nutritional requirements, for microbial growth rates, and the effect of varying environmental factors for metal-sorbing organisms. This method has been applied to research on the copper-immobilizing fungus Penicillium ochro-chloron.

  12. An on-column fracture/end-column reaction interface for chemiluminescence detection in capillary electrophoresis.

    PubMed

    Xu, Qinfeng; Ji, Xinghu; Li, Haigang; Liu, Jing; He, Zhike

    2010-08-27

    Chemiluminescence (CL) offers a sensitive detection method for capillary electrophoresis (CE), but the implementation of CE-CL is usually under compromised operating conditions for CE, such as the prerequisite of extreme pH buffer for optimal CL reaction at the capillary outlet. This has sometimes significantly deteriorated the separation of CE. In this study, the development of a new interface makes it possible to optimize the operating conditions for CE separation and CL detection independently. The interface consists of an on-column fracture being installed in a reservoir near the capillary end to create an electrical connection and also serve as reagent addition entrance. The capillary terminal is inserted into an end-column reservoir for CL reaction and detection. In this arrangement, the applied electric field has been decoupled from the CL detection, which is proved to effectively improve CE's performance by allowing the use of optimal CE buffers. At the same time, it enables the optimization of CL detection independently. The applicability of this interface was evaluated by using acridinium ester (AE) and luminol systems. For AE system, the interfering products of CL reagent ((-)OH, HO(2)(-)) have been prevented, and the pH range of CE buffer can be independent to the optimal pH value of AE CL reaction, which is usually below 3. The AE was detected using running buffer at pH 8.7, giving a detection limit of 0.1 nM (S/N=3), and the theoretical plate numbers is as high as 56,000. The on-column fracture based configuration is simple, sensitive and easy to implement. 2010 Elsevier B.V. All rights reserved.

  13. Wheat cultivar discrimination by capillary electrophoresis of gliadins in isoelectric buffers.

    PubMed

    Capelli, L; Forlani, F; Perini, F; Guerrieri, N; Cerletti, P; Righetti, P G

    1998-02-01

    A modified method is reported for screening of wheat cultivars: capillary zone electrophoresis of gliadins in isoelectric buffers. Previously published procedures recommended a 100 mM phosphate buffer, supplemented with 0.05% hydroxypropylmethylcellulose and 20% acetonitrile, in uncoated capillaries. Due to the very high conductivity of such a buffer (4.7 mmhos at 25 degrees C) high speed separations (10-12 min analysis time at 800 V/cm) could only be elicited in 20 microm internal diameter (ID) capillaries, at the expense of sensitivity. In the present report, we optimized the background electrolyte as follows: 40 mM aspartic acid (pH=pI=2.77) in the presence of 7 M urea and 0.5% short-chain hydroxyethylcellulose (Mn 27000 Da; apparent pH 3.9 in 7 M urea). As an alternative recipe, the same isoelectric buffer can be supplemented with a mixed organic solvent composed of 4 M urea and 20% acetonitrile (apparent pH 3.66). Due to the much lower conductivity (0.7 mmhos), separations can be carried out at 1000 V/cm in only 10 min, but in larger bore capillaries (50 microm ID), ensuring a five-times higher sensitivity. The gliadin patterns thus obtained are species-specific and allow easy identification of all cultivars tested of both durum and bread wheat. No adsorption of proteins to the silica wall seems to occur and high reproducibility in peak areas and transit times is obtained.

  14. Increased Monoclonal Components: Prevalence in an Italian Population of 44 474 Outpatients Detected by Capillary Electrophoresis

    PubMed Central

    Vernocchi, Arialdo; Longhi, Ermanno; Lippi, Giuseppe

    2016-01-01

    Summary Background Identification, quantification and typing of M-Proteins (MP) play an important role in the diagnosis, classification and monitoring of monoclonal gammopathies both of malignant origin (eg. Multiple Myeloma) and of unknown origin. Previous evidence attests that MGUS (Monoclonal Gammopathy of Undetermined Significance) detected by agarose gel electrophoresis has a prevalence of 3.2% in the general population. Therefore, our study aimed to verify this data by means of capillary zone electrophoresis (CZE). Methods CZE was performed to evaluate the prevalence of M-Protein (MP) in 44.474 consecutive outpatients of all ages with a prescription for serum protein electrophoresis over a 2-year period (2008 and 2009). All MPs that were identified were then typed by immunofixation electrophoresis on agarose gel (IFE). Results In subjects aged over 50 (23.408, i.e., 52.6% of the whole cohort) MP ≤30 g/L (MGUS) was identified in 6.0% of cases, with a frequency nearly double than that previously reported. The population was then divided into ten-year age groups: the 71–80 age group had the highest percentage of MP (29%), followed by 61–70 (27%), 51–60 (18%), 81–90 (12%), 41–50 (8%), 31–40 (3%), >90 (2%) and <30 (1%). The frequency of MP types (IFE) was the same in each age group, with IgG Kappa being the most represented class. Conclusions According to the high MGUS prevalence observed in this study, these results may be useful especially for general practitioners, because the identification even of small MP (analytical sensitivity: 0.5 g/L) may help optimize clinical management.

  15. Sheathless capillary electrophoresis-mass spectrometry for anionic metabolic profiling.

    PubMed

    Gulersonmez, Mehmet Can; Lock, Stephen; Hankemeier, Thomas; Ramautar, Rawi

    2016-04-01

    The performance of CE coupled on-line to MS via a sheathless porous tip sprayer was evaluated for anionic metabolic profiling. A representative metabolite mixture and biological samples were used for the evaluation of various analytical parameters, such as peak efficiency (plate numbers), migration time and peak area repeatability, and LODs. The BGE, i.e. 10% acetic acid (pH 2.2), previously used for cationic metabolic profiling was now assessed for anionic metabolic profiling by using MS detection in negative ion mode. For test compounds, RSDs for migration times and peak areas were below 2 and 11%, respectively, and plate numbers ranged from 60 000 to 40 0000 demonstrating a high separation efficiency. Critical metabolites with low or no retention on reversed-phase LC could be efficiently separated and selectively analyzed by the sheathless CE-MS method. An injection volume of only circa 20 nL resulted in LODs between 10 and 200 nM (corresponding to an amount of 0.4-4 fmol), which was an at least tenfold improvement as compared to LODs obtained by conventional CE-MS approaches for these analytes. The methodology was applied to anionic metabolic profiling of glioblastoma cell line extracts. Overall, a sheathless CE-MS method has been developed for highly efficient and sensitive anionic metabolic profiling studies, which can also be used for cationic metabolic profiling studies by only switching the MS detection and separation voltage polarity. © 2015 The Authors ELECTROPHORESIS Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Evaluation of capillary zone electrophoresis for the determination of protein composition in therapeutic immunoglobulins and human albumins.

    PubMed

    Christians, Stefan; van Treel, Nadine Denise; Bieniara, Gabriele; Eulig-Wien, Annika; Hanschmann, Kay-Martin; Giess, Siegfried

    2016-07-01

    Capillary zone electrophoresis (CZE) provides an alternative means of separating native proteins on the basis of their inherent electrophoretic mobilities. The major advantage of CZE is the quantification by UV detection, circumventing the drawbacks of staining and densitometry in the case of gel electrophoresis methods. The data of this validation study showed that CZE is a reliable assay for the determination of protein composition in therapeutic preparations of human albumin and human polyclonal immunoglobulins. Data obtained by CZE are in line with "historical" data obtained by the compendial method, provided that peak integration is performed without time correction. The focus here was to establish a rapid and reliable test to substitute the current gel based zone electrophoresis techniques for the control of protein composition of human immunoglobulins or albumins in the European Pharmacopoeia. We believe that the more advanced and modern CZE method described here is a very good alternative to the procedures currently described in the relevant monographs.

  17. Screening for urinary amphetamine and analogs by capillary electrophoretic immunoassays and confirmation by capillary electrophoresis with on-column multiwavelength absorbance detection.

    PubMed

    Ramseier, A; Caslavska, J; Thormann, W

    1998-11-01

    This paper characterizes competitive binding, electrokinetic capillary-based immunoassays for screening of urinary amphetamine (A) and analogs using reagents which were commercialized for a fluorescence polarization immunoassay (FPIA). After incubation of 25 microL urine with the reactants, a small aliquot of the mixture is applied onto a fused-silica capillary and unbound fluorescein-labeled tracer compounds are monitored by capillary electrophoresis with on-column laser-induced fluorescence detection. Configurations in presence and absence of micelles were investigated and found to be capable of recognizing urinary D-(+)-amphetamine at concentrations > about 80 ng/mL. Similar responses were obtained for racemic methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA). The electrokinetic immunoassay data suggest that the FPIA reagent kit includes two immunoassay systems (two antibodies and two tracer molecules), one that recognizes MA and MDMA, and one that is geared towards monitoring of A. For confirmation analysis of urinary amphetamines and ephedrines, capillary electrophoresis in a pH 9.2 buffer and multiwavelength UV detection was employed. The suitability of the electrokinetic methods for screening and confirmation is demonstrated via analysis of patient and external quality control urines.

  18. Simultaneous determination of naphazoline, diphenhydramine and phenylephrine in nasal solutions by capillary electrophoresis.

    PubMed

    Marchesini, A F; Williner, M R; Mantovani, V E; Robles, J C; Goicoechea, H C

    2003-02-05

    A capillary zone electrophoresis (CZE) method has been developed to separate and quantitate naphazoline (NAPH), dyphenhydramine (DIP) and phenylephrine (PHE) in nasal solutions. Samples were diluted 1:25 in ultrapure water and injected at the anodic end. A central composite design has been used to optimise the experimental conditions for a complete and fast separation of the active ingredients studied. Critical parameters such as voltage, pH and buffer concentration have been studied to evaluate how they affect responses such as resolution and migration times. Separation was performed on a silica capillary with 75 microm I.D. and 70 cm total length at an applied voltage of 17.7 kV with a phosphate run buffer of