Sample records for capillary entry pressure

  1. Effects of intermediate wettability on entry capillary pressure in angular pores.

    PubMed

    Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Shokri, Nima

    2016-07-01

    Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Computation of three-phase capillary entry pressures and arc menisci configurations in pore geometries from 2D rock images: A combinatorial approach

    NASA Astrophysics Data System (ADS)

    Zhou, Yingfang; Helland, Johan Olav; Hatzignatiou, Dimitrios G.

    2014-07-01

    We present a semi-analytical, combinatorial approach to compute three-phase capillary entry pressures for gas invasion into pore throats with constant cross-sections of arbitrary shapes that are occupied by oil and/or water. For a specific set of three-phase capillary pressures, geometrically allowed gas/oil, oil/water and gas/water arc menisci are determined by moving two circles in opposite directions along the pore/solid boundary for each fluid pair such that the contact angle is defined at the front circular arcs. Intersections of the two circles determine the geometrically allowed arc menisci for each fluid pair. The resulting interfaces are combined systematically to allow for all geometrically possible three-phase configuration changes. The three-phase extension of the Mayer and Stowe - Princen method is adopted to calculate capillary entry pressures for all determined configuration candidates, from which the most favorable gas invasion configuration is determined. The model is validated by comparing computed three-phase capillary entry pressures and corresponding fluid configurations with analytical solutions in idealized triangular star-shaped pores. It is demonstrated that the model accounts for all scenarios that have been analyzed previously in these shapes. Finally, three-phase capillary entry pressures and associated fluid configurations are computed in throat cross-sections extracted from segmented SEM images of Bentheim sandstone. The computed gas/oil capillary entry pressures account for the expected dependence of oil/water capillary pressure in spreading and non-spreading fluid systems at the considered wetting conditions. Because these geometries are irregular and include constrictions, we introduce three-phase displacements that have not been identified previously in pore-network models that are based on idealized pore shapes. However, in the limited number of pore geometries considered in this work, we find that the favorable displacements are not generically different from those already encountered in network models previously, except that the size and shape of oil layers that are surrounded by gas and water are described more realistically. The significance of the results for describing oil connectivity in porous media accurately can only be evaluated by including throats with more complex cross-sections in three-phase pore-network models.

  3. Influence of local capillary trapping on containment system effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, Steven

    2014-03-31

    Immobilization of CO 2 injected into deep subsurface storage reservoirs is a critical component of risk assessment for geologic CO 2 storage (GCS). Local capillary trapping (LCT) is a recently established mode of immobilization that arises when CO 2 migrates due to buoyancy through heterogeneous storage reservoirs. This project sought to assess the amount and extent of LCT expected in storage formations under a range of injection conditions, and to confirm the persistence of LCT if the seal overlying the reservoir were to lose its integrity. Numerical simulation using commercial reservoir simulation software was conducted to assess the influence ofmore » injection. Laboratory experiments, modeling and numerical simulation were conducted to assess the effect of compromised seal integrity. Bench-scale (0.6 m by 0.6 m by 0.03 m) experiments with surrogate fluids provided the first empirical confirmation of the key concepts underlying LCT: accumulation of buoyant nonwetting phase at above residual saturations beneath capillary barriers in a variety of structures, which remains immobile under normal capillary pressure gradients. Immobilization of above-residual saturations is a critical distinction between LCT and the more familiar “residual saturation trapping.” To estimate the possible extent of LCT in a storage reservoir an algorithm was developed to identify all potential local traps, given the spatial distribution of capillary entry pressure in the reservoir. The algorithm assumes that the driving force for CO 2 migration can be represented as a single value of “critical capillary entry pressure” P c,entry crit, such that cells with capillary entry pressure greater/less than P c,entry crit act as barriers/potential traps during CO 2 migration. At intermediate values of P c,entry crit, the barrier regions become more laterally extensive in the reservoir, approaching a percolation threshold while non-barrier regions remain numerous. The maximum possible extent of LCT thus occurs at P c,entry crit near this threshold. Testing predictions of this simple algorithm against full-physics simulations of buoyancy-driven CO 2 migration support the concept of critical capillary entry pressure. However, further research is needed to determine whether a single value of critical capillary entry pressure always applies and how that value can be determined a priori. Simulations of injection into high-resolution (cells 0.3 m on a side) 2D and 3D heterogeneous domains show two characteristic behaviors. At small gravity numbers (vertical flow velocity much less than horizontal flow velocity) the CO 2 fills local traps as well as regions that would act as local barriers if CO 2 were moving only due to buoyancy. When injection ceases, the CO 2 migrates vertically to establish large saturations within local traps and residual saturation elsewhere. At large gravity numbers, the CO 2 invades a smaller portion of the perforated interval. Within this smaller swept zone the local barriers are not invaded, but local traps are filled to large saturation during injection and remain during post-injection gravity-driven migration. The small gravity number behavior is expected in the region within 100 m of a vertical injection well at anticipated rates of injection for commercial GCS. Simulations of leakage scenarios (through-going region of large permeability imposed in overlying seal) indicate that LCT persists (i.e. CO 2 remains held in a large fraction of the local iv traps) and the persistence is independent of injection rate during storage. Simulations of leakage for the limiting case of CO 2 migrating vertically from an areally extensive emplacement in the lower portion of a reservoir showed similar strong persistence of LCT. This research has two broad implications for GCS. The first is that LCT can retain a significant fraction of the CO 2 stored in a reservoir – above and beyond the residual saturation -- if the overlying seal were to fail. Thus frameworks for risk assessment should be extended to account for LCT. The second implication is that compared to pressure driven flow in reservoirs, CO 2 migration and trapping behave in a qualitatively different manner in heterogeneous reservoirs when buoyancy is the dominant driving force for flow. Thus simulations of GCS that neglect capillary heterogeneity will fail to capture important features of the CO 2 plume. While commercial reservoir simulation software can account for fine scale capillary heterogeneity, it has not been designed to work efficiently with such domains, and no simulators can handle fine-scale resolution throughout the reservoir. A possible way to upscale the migration and trapping is to apply an “effective residual saturation” to coarse-scale grids. While the extent of overall immobilization can be correlated in this way, all coarser grids failed to capture the distance traveled by the migrating CO 2 for large gravity number. Thus it remains unclear how best to account for LCT in the routine simulation work-flow that will be needed for large-scale GCS. Alternatives meriting investigation include streamline methods, reduced-physics proxies (e.g. particle tracking), and biased invasion percolation algorithms, which are based on precisely the capillary heterogeneity essential for LCT.« less

  4. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    NASA Astrophysics Data System (ADS)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  5. Field-Scale Modeling of Local Capillary Trapping During CO2 Injection into a Saline Aquifer

    NASA Astrophysics Data System (ADS)

    Ren, B.; Lake, L. W.; Bryant, S. L.

    2015-12-01

    Local capillary trapping is the small-scale (10-2 to 10+1 m) CO2 trapping that is caused by the capillary pressure heterogeneity. The benefit of LCT, applied specially to CO2 sequestration, is that saturation of stored CO2 is larger than the residual gas, yet these CO2 are not susceptible to leakage through failed seals. Thus quantifying the extent of local capillary trapping is valuable in design and risk assessment of geologic storage projects. Modeling local capillary trapping is computationally expensive and may even be intractable using a conventional reservoir simulator. In this paper, we propose a novel method to model local capillary trapping by combining geologic criteria and connectivity analysis. The connectivity analysis originally developed for characterizing well-to-reservoir connectivity is adapted to this problem by means of a newly defined edge weight property between neighboring grid blocks, which accounts for the multiphase flow properties, injection rate, and gravity effect. Then the connectivity is estimated from shortest path algorithm to predict the CO2 migration behavior and plume shape during injection. A geologic criteria algorithm is developed to estimate the potential local capillary traps based only on the entry capillary pressure field. The latter is correlated to a geostatistical realization of permeability field. The extended connectivity analysis shows a good match of CO2 plume computed by the full-physics simulation. We then incorporate it into the geologic algorithm to quantify the amount of LCT structures identified within the entry capillary pressure field that can be filled during CO2 injection. Several simulations are conducted in the reservoirs with different level of heterogeneity (measured by the Dykstra-Parsons coefficient) under various injection scenarios. We find that there exists a threshold Dykstra-Parsons coefficient, below which low injection rate gives rise to more LCT; whereas higher injection rate increases LCT in heterogeneous reservoirs. Both the geologic algorithm and connectivity analysis are very fast; therefore, the integrated methodology can be used as a quick tool to estimate local capillary trapping. It can also be used as a potential complement to the full-physics simulation to evaluate safe storage capacity.

  6. Influence of Capillary Force and Buoyancy on CO2 Migration During CO2 Injection in a Sandstone Reservoir

    NASA Astrophysics Data System (ADS)

    Wu, H.; Pollyea, R.

    2017-12-01

    Carbon capture and sequestration (CCS) is one component of a broad carbon management portfolio designed to mitigate adverse effects of anthropogenic CO2 emissions. During CCS, capillary trapping is an important mechanism for CO2 isolation in the disposal reservoir, and, as a result, the distribution of capillary force is an important factor affecting CO2 migration. Moreover, the movement of CO2 being injected to the reservoir is also affected by buoyancy, which results from the density difference between CO2 and brine. In order to understand interactions between capillary force and buoyancy, we implement a parametric modeling experiment of CO2 injections in a sandstone reservoir for combinations of the van Genuchten capillary pressure model that bound the range of capillary pressure-saturation curves measured in laboratory experiments. We simulate ten years supercritical CO2 (scCO2) injections within a 2-D radially symmetric sandstone reservoir for five combinations of the van Genuchten model parameters λ and entry pressure (P0). Results are analyzed on the basis of a modified dimensionless ratio, ω, which is similar to the Bond number and defines the relationship between buoyancy pressure and capillary pressure. We show how parametric variability affects the relationship between buoyancy and capillary force, and thus controls CO2 plume geometry. These results indicate that when ω >1, then buoyancy governs the system and CO2 plume geometry is governed by upward flow. In contrast, when ω <1, then buoyancy is smaller than capillary force and lateral flow governs CO2 plume geometry. As a result, we show that the ω ratio is an easily implemented screening tool for qualitative assessment of reservoir performance.

  7. Two-phase convective CO 2 dissolution in saline aquifers

    DOE PAGES

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO 2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO 2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO 2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have eithermore » ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO 2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO 2 more than 3 times above the rate assuming single-phase conditions.« less

  8. Water retention curve for hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Dai, Sheng; Santamarina, J. Carlos

    2013-11-01

    water retention curve plays a central role in numerical algorithms that model hydrate dissociation in sediments. The determination of the water retention curve for hydrate-bearing sediments faces experimental difficulties, and most studies assume constant water retention curves regardless of hydrate saturation. This study employs network model simulation to investigate the water retention curve for hydrate-bearing sediments. Results show that (1) hydrate in pores shifts the curve to higher capillary pressures and the air entry pressure increases as a power function of hydrate saturation; (2) the air entry pressure is lower in sediments with patchy rather than distributed hydrate, with higher pore size variation and pore connectivity or with lower specimen slenderness along the flow direction; and (3) smaller specimens render higher variance in computed water retention curves, especially at high water saturation Sw > 0.7. Results are relevant to other sediment pore processes such as bioclogging and mineral precipitation.

  9. Microfluidic Investigation Reveals Distinct Roles for Actin Cytoskeleton and Myosin II Activity in Capillary Leukocyte Trafficking

    PubMed Central

    Gabriele, Sylvain; Benoliel, Anne-Marie; Bongrand, Pierre; Théodoly, Olivier

    2009-01-01

    Circulating leukocyte sequestration in pulmonary capillaries is arguably the initiating event of lung injury in acute respiratory distress syndrome. We present a microfluidic investigation of the roles of actin organization and myosin II activity during the different stages of leukocyte trafficking through narrow capillaries (entry, transit and shape relaxation) using specific drugs (latrunculin A, jasplakinolide, and blebbistatin). The deformation rate during entry reveals that cell stiffness depends strongly on F-actin organization and hardly on myosin II activity, supporting a microfilament role in leukocyte sequestration. In the transit stage, cell friction is influenced by stiffness, demonstrating that the actin network is not completely broken after a forced entry into a capillary. Conversely, membrane unfolding was independent of leukocyte stiffness. The surface area of sequestered leukocytes increased by up to 160% in the absence of myosin II activity, showing the major role of molecular motors in microvilli wrinkling and zipping. Finally, cell shape relaxation was largely independent of both actin organization and myosin II activity, whereas a deformed state was required for normal trafficking through capillary segments. PMID:19450501

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewers, Thomas; Heath, Jason E.; Leigh, Christi D.

    The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two - phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in oth er realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Mo dels for waste release scenarios in salt back - fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree ofmore » consolidation, and require experimental measurement to parameterize and vali date. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potent ial usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mech anics, using sieved run - of - mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (%7E900 psi) and temperatures to 90 o C. This corresponds to UFD Work Package 15SN08180211 milestone "FY:15 Transport Properties of Run - of - Mine Salt Backfill - Unconsolidated to Consolidated". Samples exposed to uniaxial compression undergo time - dependent consolidation, or creep, to various deg rees. Creep volume strain - time relations obey simple log - time behavior through the range of porosities (%7E50 to 2% as measured); creep strain rate increases with temperature and applied stress as expected. Mercury porosimetry is used to determine characteri stic capillary pressure curves from a series of consolidation tests and show characteristic saturation - capillary pressure curves that follow the common van Genuchten (1978, 1980) formulation at low stresses. Higher capillary pressure data are suspect due t o the large potential for sample damage, including fluid inclusion decrepitation and pore collapse. Data are supportive of use of the Leverett "J" function (Leverett, 1941) to use for scaling characteristic curves at different degrees of consolidation, but better permeability determinations are needed to support this hypothesis. Recommendations for further and refined testing are made with the goal of developing a self - consistent set of constitutive laws for granular salt consolidation and multiphase (brin e - air) flow.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewers, Thomas; Heath, Jason E.; Leigh, Christi D.

    The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two-phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in other realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Models for waste release scenarios in salt back-fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree of consolidation, and require experimental measurement tomore » parameterize and validate. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potential usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mechanics, using sieved run-of-mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (~900 psi) and temperatures to 90°C. This corresponds to UFD Work Package 15SN08180211 milestone “FY:15 Transport Properties of Run-of-Mine Salt Backfill – Unconsolidated to Consolidated”. Samples exposed to uniaxial compression undergo time-dependent consolidation, or creep, to various degrees. Creep volume strain-time relations obey simple log-time behavior through the range of porosities (~50 to 2% as measured); creep strain rate increases with temperature and applied stress as expected. Mercury porosimetry is used to determine characteristic capillary pressure curves from a series of consolidation tests and show characteristic saturation-capillary pressure curves that follow the common van Genuchten (1978, 1980) formulation at low stresses. Higher capillary pressure data are suspect due to the large potential for sample damage, including fluid inclusion decrepitation and pore collapse. Data are supportive of use of the Leverett “J” function (Leverett, 1941) to use for scaling characteristic curves at different degrees of consolidation, but better permeability determinations are needed to support this hypothesis. Recommendations for further and refined testing are made with the goal of developing a self- consistent set of constitutive laws for granular salt consolidation and multiphase (brine-air) flow.« less

  12. Hybrid Upwinding for Two-Phase Flow in Heterogeneous Porous Media with Buoyancy and Capillarity

    NASA Astrophysics Data System (ADS)

    Hamon, F. P.; Mallison, B.; Tchelepi, H.

    2016-12-01

    In subsurface flow simulation, efficient discretization schemes for the partial differential equations governing multiphase flow and transport are critical. For highly heterogeneous porous media, the temporal discretization of choice is often the unconditionally stable fully implicit (backward-Euler) method. In this scheme, the simultaneous update of all the degrees of freedom requires solving large algebraic nonlinear systems at each time step using Newton's method. This is computationally expensive, especially in the presence of strong capillary effects driven by abrupt changes in porosity and permeability between different rock types. Therefore, discretization schemes that reduce the simulation cost by improving the nonlinear convergence rate are highly desirable. To speed up nonlinear convergence, we present an efficient fully implicit finite-volume scheme for immiscible two-phase flow in the presence of strong capillary forces. In this scheme, the discrete viscous, buoyancy, and capillary spatial terms are evaluated separately based on physical considerations. We build on previous work on Implicit Hybrid Upwinding (IHU) by using the upstream saturations with respect to the total velocity to compute the relative permeabilities in the viscous term, and by determining the directionality of the buoyancy term based on the phase density differences. The capillary numerical flux is decomposed into a rock- and geometry-dependent transmissibility factor, a nonlinear capillary diffusion coefficient, and an approximation of the saturation gradient. Combining the viscous, buoyancy, and capillary terms, we obtain a numerical flux that is consistent, bounded, differentiable, and monotone for homogeneous one-dimensional flow. The proposed scheme also accounts for spatially discontinuous capillary pressure functions. Specifically, at the interface between two rock types, the numerical scheme accurately honors the entry pressure condition by solving a local nonlinear problem to compute the numerical flux. Heterogeneous numerical tests demonstrate that this extended IHU scheme is non-oscillatory and convergent upon refinement. They also illustrate the superior accuracy and nonlinear convergence rate of the IHU scheme compared with the standard phase-based upstream weighting approach.

  13. Generalized network modeling of capillary-dominated two-phase flow

    NASA Astrophysics Data System (ADS)

    Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2018-02-01

    We present a generalized network model for simulating capillary-dominated two-phase flow through porous media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network—described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017), 10.1103/PhysRevE.96.013312]—which comprises pores that are divided into smaller elements called half-throats and subsequently into corners. Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the two-phase flow model that is used to compute the averaged flow properties of the generalized network, including relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional pore-network model and experimental measurements of relative permeability in the literature.

  14. Seal assessment and estimated storage capacities of a targeted CO2 reservoir based on new displacement pressures in SW Wyoming, U.S.A.

    NASA Astrophysics Data System (ADS)

    Spaeth, Lynsey; Campbell-Stone, Erin; Lynds, Ranie; Frost, Carol; McLaughlin, J. Fred

    2013-04-01

    Carbon capture and storage locations are being investigated throughout the state of Wyoming, USA, in preparation for sequestration of greenhouse gases. At potential storage sites, confining units must be identified that are capable of ensuring stored carbon dioxide remains in place at depth. Previous fluid inclusion volatile work indicates that Triassic formations in southwestern Wyoming act as a confining system on the Rock Springs uplift (RSU). An investigation of the Triassic Dinwoody Formation using mercury capillary entry pressure was conducted to calculate column height potential for CO2 sequestration on the RSU. A stratigraphic test well drilled on the RSU recovered 27.4 meters of core from the Dinwoody Formation. It is dominantly a brownish-red, very fine-grained sandy and micaceous siltstone with minor layers of thin mudstone and minor amounts of anhydrite. Four samples were taken from this core for mercury injection capillary pressure (MICP) analysis. During MICP analysis, mercury is injected into the sample over a range of pressures increased in steps. Only when sufficient pressure is applied will the mercury penetrate into the pore system and at this pressure a confining system will begin to leak. The mercury entry pressures for the Dinwoody samples range from 6.58 to18.85 megapascals and were converted to entry pressures for brine/CO2 systems. Previous simulations indicate that sequestering commercial quantities of CO2 (5-15 megatons CO2/year) over the course of 50 years can be accommodated at the RSU. Determination of the total possible capacity requires knowledge of the column height, i.e. the vertical thickness of CO2 that can be safely injected without caprock failure. Using converted pressures for brine/CO2 systems, the interfacial tensions of CO2, water, and substrate, as well as the densities of CO2 and brine, column heights were calculated for the RSU. It has been suggested by other research that supercritical CO2 and brine may behave as a single wetting phase at elevated pressures and temperatures, resulting in an interfacial tension of 0 milliNewton/meter. Under these conditions the pore throat radius of sealing units is assumed to be the principle inhibitor to flow through the seal. Experimental data indicate pore throat radii range from 39.2 to 113.5 nanometers in the confining system, and preliminary column height calculations indicate that, depending on the size of the plume, reservoir thickness will most likely be the limiting factor to the amount of CO2 that can be sequestered rather than the column height.

  15. Pumping Test Determination of Unsaturated Aquifer Properties

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2008-12-01

    Tartakovsky and Neuman [2007] presented a new analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering the unsaturated zone. In their solution three-dimensional, axially symmetric unsaturated flow is described by a linearized version of Richards' equation in which both hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value, the latter defining the interface between the saturated and unsaturated zones. Both exponential functions are characterized by a common exponent k having the dimension of inverse length, or equivalently a dimensionless exponent kd=kb where b is initial saturated thickness. The authors used their solution to analyze drawdown data from a pumping test conducted by Moench et al. [2001] in a Glacial Outwash Deposit at Cape Cod, Massachusetts. Their analysis yielded estimates of horizontal and vertical saturated hydraulic conductivities, specific storage, specific yield and k . Recognizing that hydraulic conductivity and water content seldom vary identically with incremental capillary pressure head, as assumed by Tartakovsky and Neuman [2007], we note that k is at best an effective rather than a directly measurable soil parameter. We therefore ask to what extent does interpretation of a pumping test based on the Tartakovsky-Neuman solution allow estimating aquifer unsaturated parameters as described by more common constitutive water retention and relative hydraulic conductivity models such as those of Brooks and Corey [1964] or van Genuchten [1980] and Mualem [1976a]? We address this question by showing how may be used to estimate the capillary air entry pressure head k and the parameters of such constitutive models directly, without a need for inverse unsaturated numerical simulations of the kind described by Moench [2003]. To assess the validity of such direct estimates we use maximum likelihood- based model selection criteria to compare the abilities of numerical models based on the STOMP code to reproduce observed drawdowns during the test when saturated and unsaturated aquifer parameters are estimated either in the above manner or by means of the inverse code PEST.

  16. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  17. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  18. CO2 Capillary-Trapping Processes in Deep Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum I.; Soltanian, Mohamadreza; Ritzi, Robert W., Jr.; Dominic, David F.

    2014-05-01

    The idea of reducing the Earth's greenhouse effect by sequestration of CO2 into the Earth's crust has been discussed and evaluated for more than two decades. Deep saline aquifers are the primary candidate formations for realization of this idea. Evaluation of reservoir capacity and the risk of CO2 leakage require a detailed modeling of the migration and distribution of CO2 in the subsurface structure. There is a finite risk that structural (or hydrodynamic) trapping by caprock may be compromised (e.g. by improperly abandoned wells, stratigraphic discontinuities, faults, etc.). Therefore, other trapping mechanisms (capillary trapping, dissolution, and mineralization) must be considered. Capillary trapping may be very important in providing a "secondary-seal", and is the focus of our investigation. The physical mechanism of CO2 trapping in porous media by capillary trapping incorporates three related processes, i.e. residual trapping, trapping due to hysteresis of the relative permeability, and trapping due to hysteresis of the capillary pressure. Additionally CO2 may be trapped in heterogeneous media due to difference in capillary pressure entry points for different materials. The amount of CO2 trapped by these processes is a complicated nonlinear function of the spatial distribution of permeability, permeability anisotropy, capillary pressure, relative permeability of brine and CO2, permeability hysteresis and residual gas saturation (as well as the rate, total amount and placement of injected CO2). Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. We investigated how the dynamics of a CO2 plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such reservoirs. The results strongly suggest that representing these small scales features, and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes. References [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in Facies Models Revisited, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85-170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, Water Resources Research, v. 46, W04515.

  19. Self-Structuring of Granular material under Capillary Bulldozing

    NASA Astrophysics Data System (ADS)

    Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Måløy, Knut Jørgen; Flekkøy, Eirik

    2017-06-01

    An experimental observation of the structuring of a granular suspension under the progress of a gas/liquid meniscus in a narrow tube is reported here. The granular material is moved and compactifies as a growing accumulation front. The frictional interaction with the confining walls increases until the pore capillary entry pressure is reached. The gas then penetrates the clogged granular packing and a further accumulation front is formed at the far side of the plug. This cyclic process continues until the gas/liquid interface reaches the tube's outlet, leaving a trail of plugs in the tube. Such 1D pattern formation belongs to a larger family of patterning dynamics observed in 2D Hele-Shaw geometry. The cylindrical geometry considered here provides an ideal case for a theoretical modelling for forced granular matter oscillating between a long frictional phase and a sudden viscous fluidization.

  20. Measurement of Capillary Radius and Contact Angle within Porous Media.

    PubMed

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed

    2015-12-01

    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.

  1. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Li, Qingbo; Lu, Xiandan

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  2. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  3. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Li, Q.; Lu, X.

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  4. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  5. Gas/oil capillary pressure at chalk at elevated pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christoffersen, K.R.; Whitson, C.H.

    1995-09-01

    Accurate capillary pressure curves are essential for studying the recovery of oil by gas injection in naturally fractured chalk reservoirs. A simple and fast method to determine high-pressure drainage capillary pressure curves has been developed. The effect of gas/oil interfacial tension (IFT) on the capillary pressure of chalk cores has been determined for a methane/n-pentane system. Measurements on a 5-md outcrop chalk core were made at pressures of 70, 105, and 130 bar, with corresponding IFT`s of 6.3, 3.2, and 1.5 mN/m. The results were both accurate and reproducible. The measured capillary pressure curves were not a linear function ofmore » IFT when compared with low-pressure centrifuge data. Measured capillary pressures were considerably lower than IFT-scaled centrifuge data. It appears that the deviation starts at an IFT of about 5 mN/m. According to the results of this study, the recovery of oil by gravity drainage in naturally fractured chalk reservoirs may be significantly underestimated if standard laboratory capillary pressure curves are scaled by IFT only. However, general conclusions cannot be made on the basis on only this series of experiments on one chalk core.« less

  6. Direct measurement of capillary blood pressure in the human lip

    NASA Technical Reports Server (NTRS)

    Parazynski, S. E.; Tucker, B. J.; Aratow, M.; Crenshaw, A.; Hargens, A. R.

    1993-01-01

    In this study, we developed and tested a new procedure for measuring microcirculatory blood pressures above heart level in humans. Capillary and postcapillary venule blood pressures were measured directly in 13 human subjects by use of the servonulling micropressure technique adapted for micropuncture of lip capillaries. Pressure waveforms were recorded in 40 separate capillary vessels and 14 separate postcapillary venules over periods ranging from 5 to 64 s. Localization and determination of capillary and postcapillary vessels were ascertained anatomically before pressure measurements. Capillary pressure was 33.2 +/- 1.5 (SE) mm Hg in lips of subjects seated upright. Repeated micropunctures of the same vessel gave an average coefficient of variation of 0.072. Postcapillary venule pressure was 18.9 +/- 1.6 mm Hg. This procedure produces a direct and reproducible means of measuring microvascular blood pressures in a vascular bed above heart level in humans.

  7. Capillary pressure curves for low permeability chalk obtained by NMR imaging of core saturation profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norgaard, J.V.; Olsen, D.; Springer, N.

    1995-12-31

    A new technique for obtaining water-oil capillary pressure curves, based on NMR imaging of the saturation distribution in flooded cores is presented. In this technique, a steady state fluid saturation profile is developed by flooding the core at a constant flow rate. At the steady state situation where the saturation distribution no longer changes, the local pressure difference between the wetting and non-wetting phases represents the capillary pressure. The saturation profile is measured using an NMR technique and for a drainage case, the pressure in the non-wetting phase is calculated numerically. The paper presents the NMR technique and the proceduremore » for calculating the pressure distribution in the sample. Inhomogeneous samples produce irregular saturation profiles, which may be interpreted in terms of variation in permeability, porosity, and capillary pressure. Capillary pressure curves for North Sea chalk obtained by the new technique show good agreement with capillary pressure curves obtained by traditional techniques.« less

  8. PARAMETER ESTIMATION OF TWO-FLUID CAPILLARY PRESSURE-SATURATION AND PERMEABILITY FUNCTIONS

    EPA Science Inventory

    Capillary pressure and permeability functions are crucial to the quantitative description of subsurface flow and transport. Earlier work has demonstrated the feasibility of using the inverse parameter estimation approach in determining these functions if both capillary pressure ...

  9. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends onmore » the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.« less

  10. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

    PubMed

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-03-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  11. Capillary Pressure of a Liquid Between Uniform Spheres Arranged in a Square-Packed Layer

    NASA Technical Reports Server (NTRS)

    Alexader, J. Iwan D.; Slobozhanin, Lev A.; Collicott, Steven H.

    2004-01-01

    The capillary pressure in the pores defined by equidimensional close-packed spheres is analyzed numerically. In the absence of gravity the menisci shapes are constructed using Surface Evolver code. This permits calculation the free surface mean curvature and hence the capillary pressure. The dependences of capillary pressure on the liquid volume constructed here for a set of contact angles allow one to determine the evolution of basic capillary characteristics under quasi-static infiltration and drainage. The maximum pressure difference between liquid and gas required for a meniscus passing through a pore is calculated and compared with that for hexagonal packing and with approximate solution given by Mason and Morrow [l]. The lower and upper critical liquid volumes that determine the stability limits for the equilibrium capillary liquid in contact with square packed array of spheres are tabulated for a set of contact angles.

  12. Minimized Capillary End Effect During CO2 Displacement in 2-D Micromodel by Manipulating Capillary Pressure at the Outlet Boundary in Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Kang, Dong Hun; Yun, Tae Sup

    2018-02-01

    We propose a new outflow boundary condition to minimize the capillary end effect for a pore-scale CO2 displacement simulation. The Rothman-Keller lattice Boltzmann method with multi-relaxation time is implemented to manipulate a nonflat wall and inflow-outflow boundaries with physically acceptable fluid properties in 2-D microfluidic chip domain. Introducing a mean capillary pressure acting at CO2-water interface to the nonwetting fluid at the outlet effectively prevents CO2 injection pressure from suddenly dropping upon CO2 breakthrough such that the continuous CO2 invasion and the increase of CO2 saturation are allowed. This phenomenon becomes most pronounced at capillary number of logCa = -5.5, while capillary fingering and massive displacement of CO2 prevail at low and high capillary numbers, respectively. Simulations with different domain length in homogeneous and heterogeneous domains reveal that capillary pressure and CO2 saturation near the inlet are reproducible compared with those with a proposed boundary condition. The residual CO2 saturation uniquely follows the increasing tendency with increasing capillary number, corroborated by experimental evidences. The determination of the mean capillary pressure and its sensitivity are also discussed. The proposed boundary condition is commonly applicable to other pore-scale simulations to accurately capture the spatial distribution of nonwetting fluid and corresponding displacement ratio.

  13. Simulating Air-Entrapment in Low Permeability Mudrocks using a Macroscopic Invasion Percolation Model

    NASA Astrophysics Data System (ADS)

    Singh, A.; Holt, R. M.; Ramarao, B.; Clemo, T.

    2011-12-01

    Three radioactive waste disposal landfills at the Waste Control Specialists (WCS) facility in Andrews County, Texas are constructed below grade, within the low-permeability Dockum Group mudrocks (Cooper Canyon Formation) of Triassic age. Recent site investigations at the WCS disposal facilities indicate the presence of a trapped and compressed gas phase in the mudrocks. The Dockum is a low-permeability medium with vertical and horizontal effective hydraulic conductivities of 1.2E-9 cm/s and 2.9E-7 cm/s. The upper 300+ feet of the Dockum is in the unsaturated zone, with an average saturation of 0.87 and average capillary pressure of 2.8 MPa determined from core samples. Air entry pressures on core samples range from from 0.016 to 9.8 MPa, with a mean of 1.0 MPa. Heat dissipation sensors, thermocouple psychrometers, and advanced tensiometers installed in Dockum borehole arrays generally show capillary pressures one order of magnitude less than those measured on core samples. These differences with core data are attributed to the presence of a trapped and compressed gas phase within Dockum materials. In the vicinity of an instrumented borehole, the gas phase pressure equilibrates with atmospheric pressure, lowering the capillary pressure. We have developed a new macroscopic invasion percolation (MIP) model to illustrate the origin of the trapped gas phase in the Dockum rocks. An MIP model differs from invasion percolation (IP) through the definition of macro-scale capillarity. Individual pore throats and necks are not considered. Instead, a near pore-scale block is defined and characterized by a local threshold spanning pressure (a local block-scale breakthrough pressure) that represents the behavior of the subscale network. The model domain is discretized into an array of grid blocks with assigned spanning pressures. An invasion pressure for each block is then determined by the sum of spanning pressure, buoyance forces, and viscous forces. An IP algorithm sorts the invadable blocks, selects the block connected to the growing cluster with the lowest invasion pressure, and invades it. Our new MIP model incorporates several new features, including an efficient three-dimensional clustering algorithm; simultaneous invasion/reinvasion of water and air phases; hysteresis in water and air drainage curves; capability for distributed porosities and drainage parameters; and gas-phase compression and trapping. We apply this model in simulations representing the WCS site and illustrate the origin of the trapped and compressed gas phase in Dockum mudrocks.

  14. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates

    PubMed Central

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-01-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges. PMID:26928329

  15. Heuristic approach to capillary pressures averaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coca, B.P.

    1980-10-01

    Several methods are available to average capillary pressure curves. Among these are the J-curve and regression equations of the wetting-fluid saturation in porosity and permeability (capillary pressure held constant). While the regression equation seem completely empiric, the J-curve method seems to be theoretically sound due to its expression based on a relation between the average capillary radius and the permeability-porosity ratio. An analysis is given of each of these methods.

  16. Nonequilibrium capillarity effects in multiphase flow through small volume fractured porous media

    NASA Astrophysics Data System (ADS)

    Tang, M.; Zhan, H.; Lu, S.

    2017-12-01

    Analyzing and understanding the capillary pressure curves in fractured porous media is a crucial subject in a number of industrial applications, such as crude oil recovery in the fractured reservoir, CO2 sequestration in fractured brine aquifers and shale gas development. Many studies have observed the significant nonequilibrium capillarity effects in multiphase flow through porous media and proposed that conventional equilibrium capillary pressure may not accurately describe transient two-phase flow behavior under dynamical conditions. To date, only several laboratory experiments and numerical models have been conducted into investigating the characteristic of nonequilibrium capillary pressure in unfractured porous media, a clear picture of the effects of fractures on the dynamic capillary pressure in fractured porous media remains elusive. In this study, four digital porous models were built based on CT image data from ZEISS Xradia 520 Versa CT scanning, a series of direct simulations of multiphase flow in fractured porous media were carried out based on lattice Boltzmann method and three-dimensional porous models. The results show that both the aperture and orientation of the fractures have significant effects on the nonequilibrium capillary pressure coefficients and multiphase flow behaviors. The nonequilibrium capillary pressure coefficients in fractured porous media are one to two orders of magnitude lower than unfractured porous media. This study presents a new direct simulation based methodology for the detailed analysis of nonequilibrium capillary pressure in fractured porous media.

  17. Visualization and quantification of capillary drainage in the pore space of laminated sandstone by a porous plate method using differential imaging X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Lin, Qingyang; Bijeljic, Branko; Rieke, Holger; Blunt, Martin J.

    2017-08-01

    The experimental determination of capillary pressure drainage curves at the pore scale is of vital importance for the mapping of reservoir fluid distribution. To fully characterize capillary drainage in a complex pore space, we design a differential imaging-based porous plate (DIPP) method using X-ray microtomography. For an exemplar mm-scale laminated sandstone microcore with a porous plate, we quantify the displacement from resolvable macropores and subresolution micropores. Nitrogen (N2) was injected as the nonwetting phase at a constant pressure while the porous plate prevented its escape. The measured porosity and capillary pressure at the imaged saturations agree well with helium measurements and experiments on larger core samples, while providing a pore-scale explanation of the fluid distribution. We observed that the majority of the brine was displaced by N2 in macropores at low capillary pressures, followed by a further brine displacement in micropores when capillary pressure increases. Furthermore, we were able to discern that brine predominantly remained within the subresolution micropores, such as regions of fine lamination. The capillary pressure curve for pressures ranging from 0 to 1151 kPa is provided from the image analysis compares well with the conventional porous plate method for a cm-scale core but was conducted over a period of 10 days rather than up to few months with the conventional porous plate method. Overall, we demonstrate the capability of our method to provide quantitative information on two-phase saturation in heterogeneous core samples for a wide range of capillary pressures even at scales smaller than the micro-CT resolution.

  18. Predicting capillarity of mudrocks for geological storage of CO2

    NASA Astrophysics Data System (ADS)

    Busch, Andreas; Amann-Hildenbrand, Alexandra

    2013-04-01

    Various rock types were investigated, with the main focus on the determination and prediction of the capillary breakthrough and snap-off pressure in mudrocks (e.g. shales, siltstones, mudstones). Knowledge about these two critical pressures is important for the prediction of the capillary sealing capacity of CO2 storage sites. Capillary pressure experiments, when performed on low-permeable core plugs, are difficult and time consuming. Laboratory measurements on core plugs under in-situ conditions are mostly performed using nitrogen, but also with methane and carbon dioxide. Therefore, mercury porosimetry measurements (MIP) are preferably used in the industry to determine an equivalent value for the capillary breakthrough pressure. These measurements have the advantage to be quick and cheap and only require cuttings or trim samples. When evaluating the database in detail we find that (1) MIP data plot well with the drainage breakthrough pressures determined on sample plugs, while the conversion of the system Hg/air to CO2/brine using interfacial and wettability data does not provide a uniform match, potentially caused by non fully water-wet conditions; (2) brine permeability versus capillary breakthrough pressure determined on sample plugs shows a good match and could provide a first estimate of Pc-values since permeability is easier to determine than capillary breakthrough pressures. For imbibition snap-off pressures a good correlation was found for CH4 measured on sample plugs only; (3) porosity shows a fairly good correlation with permeability for sandstone only, and with plug-derived capillary breakthrough pressures for sandstones, carbonates and evaporates. No such correlations exist for mudrocks; (4) air and brine-derived permeabilities show an excellent correlation and (5) from the data used we do not infer any direct correlations between specific surface area (SSA), mineralogy or organic carbon content with permeability or capillary pressure however were able to predict permeabilities using a more sophisticated model that relies on several of these parameters.

  19. Fluid balance within the canine anterolateral compartment and its relationship to compartment syndromes.

    PubMed

    Hargens, A R; Akeson, W H; Mubarak, S J; Owen, C A; Evans, K L; Garetto, L P; Gonsalves, M R; Schmidt, D A

    1978-06-01

    Fluid homeostasis within muscle compartments is maintained by four pressures: capillary blood pressure, capillary blood oncotic pressure, tissue-fluid pressure, and tissue fluid oncotic pressure. As determined in the canine anterolateral compartment, capillary blood pressure is 25 +/- 3 millimeters of mercury; capillary blood oncotic pressure, 26 +/- 3 millimeters of mercury, tissue-pbessure, -2 +/- 2 millimeters of mercury; and tissue-fluid oncotic pressure, 11 +/- 1 millimeters of mercury. The wick technique allows direct measurement of tissue-fluid pressure in skeletal muscle and, with minor modifications, is adapted to collect microsamples of interstitial fluid for determinations of tissue-fluid oncotic pressure. The wick technique detects very slight fluctuations in intracompartmental pressure such as light finger compression, injection of small volumes of fluid, and even pulsation due to adjacent arterial pressure. Adjacent muscle compartments may contain different tissue-fluid pressure due to impermeable osseofascial barriers. Our results obtained in canine muscle compartments pressurized by infusion of autologous plasma suggest that risks of muscle damage are significant at intracompartmental pressures greater than thirty millimeters of mercury.

  20. Enhancing separation in short-capillary electrophoresis via pressure-driven backflow.

    PubMed

    Tian, Miaomiao; Wang, Yujia; Mohamed, Amara Camara; Guo, Liping; Yang, Li

    2015-07-01

    We present a novel easy-to-operate and efficient method to improve the separation efficiency in short-capillary electrophoresis by introducing steady backflow to counterbalance electro-osmotic flow without the use of any external pressure. The backflow was easily generated by tapering the capillary end, which was achieved by heating a straight capillary and stretching it with a constant force. We investigated the net fluidic transport rate under different tip lengths and separation voltages. Good run-to-run repeatability and capillary-to-capillary reproducibility of the present method were obtained with RSD less than 1.5%, indicating the stability of the fluid transport rate in the tapered capillary, which ensures the quantification and repeatability of capillary zone electrophoresis (CZE) analysis. Enhanced separation of the tapered short capillary electrophoresis was demonstrated by CZE analyzing amino acids and positional isomers. Baseline separations were achieved in less than 60 s using a tapered capillary with the effective length of 5 cm, while no separation was achieved using a normal capillary without a tapered tip. The present study provides a promising method to use pressure-driven backflow to enhance separation efficiency in short-capillary electrophoresis, which would be of potential value in a wide application for fast analysis of complex samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Capillary pressure spectrometry: Toward a new method for the measurement of the fractional wettability of porous media

    NASA Astrophysics Data System (ADS)

    Sygouni, Varvara; Tsakiroglou, Christos D.; Payatakes, Alkiviades C.

    2006-05-01

    A transparent porous medium of controlled fractional wettability is fabricated by mixing intermediate-wet glass microspheres with strongly oil-wet polytetrafluouroethylene microspheres, and packing them between two transparent glass plates. Silicon oil is displaced by water, the growth pattern is video-recorded, and the transient response of the pressure drop across the pore network is measured for various fractions of oil-wet particles. The measured global capillary pressure fluctuates as the result of the variation of the equilibrium curvature of menisci between local maxima and local minima. With the aid of wavelets, the transient response of the capillary pressure is transformed to a capillary pressure spectrum (CPS). The peaks of the CPS are used to identify the most significant flow events and correlate their amplitude with the spatial distribution of fractional wettability. The flow events are closely related with the fluctuations of the capillary pressure and are classified into three main categories: motion in pore clusters, generation/expansion of capillary fingers, coalescence of interfaces. The amplitude of the peaks of CPS is related quasilinearly with a local coefficient of fractional wettability presuming that the same class of flow events is concerned. Approximate calculations of the maximum meniscus curvature in pores of converging-diverging geometry and uniform wettability in combination with simple mixing laws predict satisfactorily the experimentally measured average prebreakthrough capillary pressure as a function of the fraction of the oil-wet particles.

  2. Direct Printing of Stretchable Elastomers for Highly Sensitive Capillary Pressure Sensors.

    PubMed

    Liu, Wenguang; Yan, Chaoyi

    2018-03-28

    We demonstrate the successful fabrication of highly sensitive capillary pressure sensors using an innovative 3D printing method. Unlike conventional capacitive pressure sensors where the capacitance changes were due to the pressure-induced interspace variations between the parallel plate electrodes, in our capillary sensors the capacitance was determined by the extrusion and extraction of liquid medium and consequent changes of dielectric constants. Significant pressure sensitivity advances up to 547.9 KPa -1 were achieved. Moreover, we suggest that our innovative capillary pressure sensors can adopt a wide range of liquid mediums, such as ethanol, deionized water, and their mixtures. The devices also showed stable performances upon repeated pressing cycles. The direct and versatile printing method combined with the significant performance advances are expected to find important applications in future stretchable and wearable electronics.

  3. Capillary toroid cavity detector for high pressure NMR

    DOEpatents

    Gerald, II, Rex E.; Chen, Michael J.; Klingler, Robert J.; Rathke, Jerome W.; ter Horst, Marc

    2007-09-11

    A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.

  4. Hysteresis of the Contact Angle of a Meniscus Inside a Capillary with Smooth, Homogeneous Solid Walls.

    PubMed

    Kuchin, Igor V; Starov, Victor M

    2016-05-31

    A theory of contact angle hysteresis of a meniscus inside thin capillaries with smooth, homogeneous solid walls is developed in terms of surface forces (disjoining/conjoining pressure isotherm) using a quasi-equilibrium approach. The disjoining/conjoining pressure isotherm includes electrostatic, intermolecular, and structural components. The values of the static receding θr, advancing θa, and equilibrium θe contact angles in thin capillaries were calculated on the basis of the shape of the disjoining/conjoining pressure isotherm. It was shown that both advancing and receding contact angles depend on the capillary radius. The suggested mechanism of the contact angle hysteresis has a direct experimental confirmation: the process of receding is accompanied by the formation of thick β-films on the capillary walls. The effect of the transition from partial to complete wetting in thin capillaries is predicted and analyzed. This effect takes place in very thin capillaries, when the receding contact angle decreases to zero.

  5. A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: Effects of fluid and geometrical properties

    NASA Astrophysics Data System (ADS)

    Li, Zi; Galindo-Torres, Sergio; Yan, Guanxi; Scheuermann, Alexander; Li, Ling

    2018-06-01

    Simulations of simultaneous steady-state two-phase flow in the capillary force-dominated regime were conducted using the state-of-the-art Shan-Chen multi-component lattice Boltzmann model (SCMC-LBM) based on two-dimensional porous media. We focused on analyzing the fluid distribution (i.e., WP fluid-solid, NP fluid-solid and fluid-fluid interfacial areas) as well as the capillary pressure versus saturation curve which was affected by fluid and geometrical properties (i.e., wettability, adhesive strength, pore size distribution and specific surface area). How these properties influenced the relative permeability versus saturation relation through apparent effective permeability and threshold pressure gradient was also explored. The SCMC-LBM simulations showed that, a thin WP fluid film formed around the solid surface due to the adhesive fluid-solid interaction, resulting in discrete WP fluid distributions and reduction of the WP fluid mobility. Also, the adhesive interaction provided another source of capillary pressure in addition to capillary force, which, however, did not affect the mobility of the NP fluid. The film fluid effect could be enhanced by large adhesive strength and fine pores in heterogeneous porous media. In the steady-state infiltration, not only the NP fluid but also the WP fluid were subjected to the capillary resistance. The capillary pressure effect could be alleviated by decreased wettability, large average pore radius and improved fluid connectivity in heterogeneous porous media. The present work based on the SCMC-LBM investigations elucidated the role of film fluid as well as capillary pressure in the two-phase flow system. The findings have implications for ways to improve the macroscopic flow equation based on balance of force for the steady-state infiltration.

  6. A postscript to Circulation of the blood: men and ideas.

    PubMed

    Riley, R L

    1982-10-01

    Since 1964, when Fishman and Richards published Circulation of the Blood: Men and Ideas, Guyton's model of the circulation, in which mean circulatory pressure serves as the upstream pressure for venous return, has been extended, and the concept of vascular smooth muscle tone acting like the pressure surrounding a Starling resistor has been postulated. According to this scheme, the positive zero flow intercepts of rapidly determined arterial pressure-flow curves are the effective downstream pressures for arterial flow to different tissues. The arterioles, like Starling resistors, determine the downstream pressures and are followed by abrupt pressure drops, or "waterfalls." Capillary pressures are closely linked to those of the venules into which they flow. Capillary-venular pressures are the upstream pressures for venous return. In exercising muscles, reduced arteriolar tone lowers arteriolar pressure and increases arterial flow. This, in turn, raises capillary-venular pressure and increases venous flow. The arteriolar-capillary waterfall is decreased or eliminated. Total blood flow is increased by diversion of blood from tissues with slow venous drainage to muscles with fast venous drainage (low resistance X compliance). The heart pumps away the increased venous return by shifting to a new ventricular function curve.

  7. Derivation of Jurin's Law Revisited

    ERIC Educational Resources Information Center

    Rodriguez-Valverde, Miguel Angel; Miranda, Maria Tirado

    2011-01-01

    The capillary rise/fall of a liquid within a thin capillary tube is described by the well-established Jurin's law. The liquid reaches an equilibrium height/depth as the capillary pressure is balanced by the hydrostatic pressure. When the adhesion force at the three-phase contact line is counteracted by the liquid weight, the liquid column also…

  8. Design of Capillary Flows with Spatially Graded Porous Films

    NASA Astrophysics Data System (ADS)

    Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen

    2013-11-01

    We have developed a new capillary tube model, consisting of multi-layered capillary tubes oriented in the direction of flow, to predict capillary speeds on spatially graded porous films. Capillary flows through thin porous media have been widely utilized for small size liquid transport systems. However, for most media it is challenging to realize arbitrary shapes and spatially functionalized micro-structures with variable flow properties. Therefore, conventional media can only be used for capillary flows obeying Washburn's equation and the modifications thereof. Given this background, we recently developed a method called breakdown anodization (BDA) to produce highly wetting porous films. The resulting surfaces show nearly zero contact angles and fast water spreading speed. Furthermore, capillary pressure and spreading diffusivity can be expressed as functions of capillary height when customized electric fields are used in BDA. From the capillary tube model, we derived a general capillary flow equation of motion in terms of capillary pressure and spreading diffusivity. The theoretical model shows good agreement with experimental capillary flows. The study will provide novel design methodologies for paper-based microfluidic devices.

  9. A FORTRAN program for interpretation of relative permeability from unsteady-state displacements with capillary pressure included

    USGS Publications Warehouse

    Udegbunam, E.O.

    1991-01-01

    This paper presents a FORTRAN program for the determination of two-phase relative permeabilities from unsteady-state displacement data with capillary pressure terms included. The interpretative model employed in this program combines the simultaneous solution of a variant of the fractional flow equation which includes a capillary pressure term and an integro-differential equation derived from Darcy's law without assuming the simplified Buckley-Leverett flow. The incorporation of capillary pressure in the governing equations dispenses with the high flowrate experimental requirements normally employed to overcome capillarity effects. An illustrative example is presented herein which implements this program for the determination of oil/water relative permeabilities from a sandstone core sample. Results obtained compares favorably with results previously given in the literature. ?? 1991.

  10. Wicking Tests for Unidirectional Fabrics: Measurements of Capillary Parameters to Evaluate Capillary Pressure in Liquid Composite Molding Processes.

    PubMed

    Pucci, Monica Francesca; Liotier, Pierre-Jacques; Drapier, Sylvain

    2017-01-27

    During impregnation of a fibrous reinforcement in liquid composite molding (LCM) processes, capillary effects have to be understood in order to identify their influence on void formation in composite parts. Wicking in a fibrous medium described by the Washburn equation was considered equivalent to a flow under the effect of capillary pressure according to the Darcy law. Experimental tests for the characterization of wicking were conducted with both carbon and flax fiber reinforcement. Quasi-unidirectional fabrics were then tested by means of a tensiometer to determine the morphological and wetting parameters along the fiber direction. The procedure was shown to be promising when the morphology of the fabric is unchanged during capillary wicking. In the case of carbon fabrics, the capillary pressure can be calculated. Flax fibers are sensitive to moisture sorption and swell in water. This phenomenon has to be taken into account to assess the wetting parameters. In order to make fibers less sensitive to water sorption, a thermal treatment was carried out on flax reinforcements. This treatment enhances fiber morphological stability and prevents swelling in water. It was shown that treated fabrics have a linear wicking trend similar to those found in carbon fabrics, allowing for the determination of capillary pressure.

  11. Microcirculation of human pancreatic islets transplanted under the renal capsule of nude mice.

    PubMed

    Jansson, L; Tyrberg, B; Carlsson, P O; Nordin, A; Andersson, A; Källskog O

    2001-08-27

    The aim was to measure the capillary blood pressure in transplanted human islets. Human islets were isolated at the Central Unit of the beta-cell Transplant in Brussels, Belgium. After transport to our laboratory, the islets were implanted under the renal capsule of normoglycemic nude mice. Two weeks later the capillary and venous blood pressures in the islet graft and adjacent renal parenchyma were measured with a micropuncture technique. Capillary blood pressure was approximately 5-8 mmHg in both graft and renal capillaries: twice as high as in native islets. Venous blood pressures were similar (4-5 mmHg) in the veins draining the graft and in the renal interlobular veins. All veins leading from the graft emptied into the renal parenchyma, that is, into interlobular veins. The capillary hypertension seen in transplanted human islets is probably necessary to secure adequate drainage through the renal veins. Whether this contributes to the poor results of long-term islet graft survival is unknown.

  12. Pleural pressure theory revisited: a role for capillary equilibrium.

    PubMed

    Casha, Aaron R; Caruana-Gauci, Roberto; Manche, Alexander; Gauci, Marilyn; Chetcuti, Stanley; Bertolaccini, Luca; Scarci, Marco

    2017-04-01

    Theories elucidating pleural pressures should explain all observations including the equal and opposite recoil of the chest wall and lungs, the less than expected pleural hydrostatic gradient and its variation at lobar margins, why pleural pressures are negative and how pleural fluid circulation functions. A theoretical model describing equilibrium between buoyancy, hydrostatic forces, and capillary forces is proposed. The capillary equilibrium model described depends on control of pleural fluid volume and protein content, powered by an active pleural pump. The interaction between buoyancy forces, hydrostatic pressure and capillary pressure was calculated, and values for pleural thickness and pressure were determined using values for surface tension, contact angle, pleural fluid and lung densities found in the literature. Modelling can explain the issue of the differing hydrostatic vertical pleural pressure gradient at the lobar margins for buoyancy forces between the pleural fluid and the lung floating in the pleural fluid according to Archimedes' hydrostatic paradox. The capillary equilibrium model satisfies all salient requirements for a pleural pressure model, with negative pressures maximal at the apex, equal and opposite forces in the lung and chest wall, and circulatory pump action. This model predicts that pleural effusions cannot occur in emphysema unless concomitant heart failure increases lung density. This model also explains how the non-confluence of the lung with the chest wall (e.g., lobar margins) makes the pleural pressure more negative, and why pleural pressures would be higher after an upper lobectomy compared to a lower lobectomy. Pathological changes in pleural fluid composition and lung density alter the equilibrium between capillarity and buoyancy hydrostatic pressure to promote pleural effusion formation.

  13. Modulation of Pre-capillary Arteriolar Pressure with Drag Reducing Polymers: A Novel Method for Enhancing Microvascular Perfusion

    PubMed Central

    Pacella, John J.; Kameneva, Marina V.; Brands, Judith; Lipowsky, Herbert H.; Vink, Hans; Lavery, Linda L.; Villanueva, Flordeliza S.

    2012-01-01

    Objective We have shown that drag reducing polymers (DRP) enhance capillary perfusion during severe coronary stenosis and increase RBC velocity in capillaries, through uncertain mechanisms. We hypothesize that DRP decreases pressure loss from the aorta to the arteriolar compartment. Methods Intravital microscopy of the rat cremaster muscle and measurement of pressure in arterioles (diameters 20–132 µm) was performed in 24 rats. DRP (polyethylene oxide, 1 ppm) was infused i.v. and measurements were made at baseline and 20 minutes after completion of DRP infusion. In a 10 rat subset, additional measurements were made 3 minutes after the start, and 1–5 and 10 minutes after completion of DRP. Results Twenty minutes after the completion of DRP mean arteriolar pressure was 22% higher than baseline (from 42±3 to 49±3 mmHg, p<0.005, n=24). DRP decreased the pressure loss from the aorta to the arterioles by 24% (from 35±6 to 27±5 mmHg, p=0.001, n=10). In addition, there was a strong trend towards an increase in pressure at 10 minutes after the completion of DRP (n=10). Conclusions DRP diminishes pressure loss between the aorta and the arterioles. This results in a higher pre-capillary pressure and likely explains the observed DRP enhancement in capillary perfusion. PMID:22578102

  14. Xenon excimer emission from pulsed high-pressure capillary microdischarges

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Joon; Rahaman, Hasibur; Petzenhauser, Isfried; Frank, Klaus; Giapis, Konstantinos P.

    2007-06-01

    Intense xenon vacuum ultraviolet (VUV) emission is observed from a high-pressure capillary cathode microdischarge in direct current operation, by superimposing a high-voltage pulse of 50ns duration. Under stagnant gas conditions, the total VUV light intensity increases linearly with pressure from 400 to 1013mbar for a fixed voltage pulse. At fixed pressure, however, the VUV light intensity increases superlinearly with voltage pulse height ranging from 08to2.8kV. Gains in emission intensity are obtained by inducing gas flow through the capillary cathode, presumably because of excimer dimer survival due to gas cooling.

  15. On the consistency of scale among experiments, theory, and simulation

    DOE PAGES

    McClure, James E.; Dye, Amanda L.; Miller, Cass T.; ...

    2017-02-20

    As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examinemore » a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. Here, we demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area.« less

  16. On the consistency of scale among experiments, theory, and simulation

    NASA Astrophysics Data System (ADS)

    McClure, James E.; Dye, Amanda L.; Miller, Cass T.; Gray, William G.

    2017-02-01

    As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examine a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. We demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area.

  17. Pleural pressure theory revisited: a role for capillary equilibrium

    PubMed Central

    Caruana-Gauci, Roberto; Manche, Alexander; Gauci, Marilyn; Chetcuti, Stanley; Bertolaccini, Luca

    2017-01-01

    Background Theories elucidating pleural pressures should explain all observations including the equal and opposite recoil of the chest wall and lungs, the less than expected pleural hydrostatic gradient and its variation at lobar margins, why pleural pressures are negative and how pleural fluid circulation functions. Methods A theoretical model describing equilibrium between buoyancy, hydrostatic forces, and capillary forces is proposed. The capillary equilibrium model described depends on control of pleural fluid volume and protein content, powered by an active pleural pump. Results The interaction between buoyancy forces, hydrostatic pressure and capillary pressure was calculated, and values for pleural thickness and pressure were determined using values for surface tension, contact angle, pleural fluid and lung densities found in the literature. Modelling can explain the issue of the differing hydrostatic vertical pleural pressure gradient at the lobar margins for buoyancy forces between the pleural fluid and the lung floating in the pleural fluid according to Archimedes’ hydrostatic paradox. The capillary equilibrium model satisfies all salient requirements for a pleural pressure model, with negative pressures maximal at the apex, equal and opposite forces in the lung and chest wall, and circulatory pump action. Conclusions This model predicts that pleural effusions cannot occur in emphysema unless concomitant heart failure increases lung density. This model also explains how the non-confluence of the lung with the chest wall (e.g., lobar margins) makes the pleural pressure more negative, and why pleural pressures would be higher after an upper lobectomy compared to a lower lobectomy. Pathological changes in pleural fluid composition and lung density alter the equilibrium between capillarity and buoyancy hydrostatic pressure to promote pleural effusion formation. PMID:28523153

  18. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels.

    PubMed

    Kim, Yongman; Wan, Jiamin; Kneafsey, Timothy J; Tokunaga, Tetsu K

    2012-04-03

    Wettability of reservoir minerals and rocks is a critical factor controlling CO(2) mobility, residual trapping, and safe-storage in geologic carbon sequestration, and currently is the factor imparting the greatest uncertainty in predicting capillary behavior in porous media. Very little information on wettability in supercritical CO(2) (scCO(2))-mineral-brine systems is available. We studied pore-scale wettability and wettability alteration in scCO(2)-silica-brine systems using engineered micromodels (transparent pore networks), at 8.5 MPa and 45 °C, over a wide range of NaCl concentrations up to 5.0 M. Dewetting of silica surfaces upon reactions with scCO(2) was observed through water film thinning, water droplet formation, and contact angle increases within single pores. The brine contact angles increased from initial values near 0° up to 80° with larger increases under higher ionic strength conditions. Given the abundance of silica surfaces in reservoirs and caprocks, these results indicate that CO(2) induced dewetting may have important consequences on CO(2) sequestration including reducing capillary entry pressure, and altering quantities of CO(2) residual trapping, relative permeability, and caprock integrity.

  19. New insights into the mechanisms of water-stress-induced cavitation in conifers.

    PubMed

    Cochard, Hervé; Hölttä, Teemu; Herbette, Stéphane; Delzon, Sylvain; Mencuccini, Maurizio

    2009-10-01

    Cavitation resistance is a key parameter to understand tree drought tolerance but little is known about the mechanisms of air entry into xylem conduits. For conifers three mechanisms have been proposed: (1) a rupture of pit margo microfibrils, (2) a displacement of the pit torus from its normal sealing position over the pit aperture, and (3) a rupture of an air-water menisci in a pore of the pit margo. In this article, we report experimental results on three coniferous species suggesting additional mechanisms. First, when xylem segments were injected with a fluid at a pressure sufficient to aspirate pit tori and well above the pressure for cavitation induction we failed to detect the increase in sample conductance that should have been caused by torus displacement from blocking the pit aperture or by membrane rupture. Second, by injecting xylem samples with different surfactant solutions, we found a linear relation between sample vulnerability to cavitation and fluid surface tension. This suggests that cavitation in conifers could also be provoked by the capillary failure of an air-water meniscus in coherence with the prediction of Young-Laplace's equation. Within the bordered pit membrane, the exact position of this capillary seeding is unknown. The possible Achilles' heel could be the seal between tori and pit walls or holes in the torus. The mechanism of water-stress-induced cavitation in conifers could then be relatively similar to the one currently proposed for angiosperms.

  20. An improved sample loading technique for cellular metabolic response monitoring under pressure

    NASA Astrophysics Data System (ADS)

    Gikunda, Millicent Nkirote

    To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.

  1. Condensation in Nanoporous Packed Beds.

    PubMed

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.

  2. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    NASA Astrophysics Data System (ADS)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness of the Pc-S- awn relation is step towards complete description of two-phase flow at the Darcy scale.

  3. Publications - GMC 338 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    capillary pressure data, X-ray diffraction data, sample photographs, petrographic thin-section photographs '-13221.35'); which includes permeability and porosity data, mercury injection capillary pressure data, X-ray

  4. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  5. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  6. A novel method for calculating the dynamic capillary force and correcting the pressure error in micro-tube experiment.

    PubMed

    Wang, Shuoliang; Liu, Pengcheng; Zhao, Hui; Zhang, Yuan

    2017-11-29

    Micro-tube experiment has been implemented to understand the mechanisms of governing microcosmic fluid percolation and is extensively used in both fields of micro electromechanical engineering and petroleum engineering. The measured pressure difference across the microtube is not equal to the actual pressure difference across the microtube. Taking into account the additional pressure losses between the outlet of the micro tube and the outlet of the entire setup, we propose a new method for predicting the dynamic capillary pressure using the Level-set method. We first demonstrate it is a reliable method for describing microscopic flow by comparing the micro-model flow-test results against the predicted results using the Level-set method. In the proposed approach, Level-set method is applied to predict the pressure distribution along the microtube when the fluids flow along the microtube at a given flow rate; the microtube used in the calculation has the same size as the one used in the experiment. From the simulation results, the pressure difference across a curved interface (i.e., dynamic capillary pressure) can be directly obtained. We also show that dynamic capillary force should be properly evaluated in the micro-tube experiment in order to obtain the actual pressure difference across the microtube.

  7. N2 and CO2 capillary breakthrough experiments on Opalinus Clay

    NASA Astrophysics Data System (ADS)

    Amann, Alexandra; Busch, Andreas; Krooss, Bernhard M.

    2013-04-01

    The aim of this project was to identify the critical capillary pressures on the drainage and the imbibition path for clay-rich rocks, at a burial depth of 1500 m (30 MPa confining pressure, 45°C). The experiments were performed on fully water-saturated sample plugs of 38 mm diameter and 5 to 20 mm length. The capillary breakthrough pressure was determined by step-wise increase of the differential pressure (drainage), the capillary snap-off pressure was determined from the final pressure difference at the end of a spontaneous imbibition phase. The confining pressure was kept constant throughout the experiment, which resulted in a continuous change of effective stress. The measurements were performed in a closed system and the pressure response was interpreted in terms of different flow mechanisms (diffusion-controlled vs. viscous flow). In total, four breakthrough experiments with N2 and five experiments with CO2 were conducted. Because of very low flow rates and high critical capillary pressures the experiments took rather long. In some cases the experiments were allowed to run for half a year (drainage experiments). Substantial differences were observed between gas breakthrough (drainage) and snap-off (imbibition) pressures. As expected, breakthrough pressures were always higher than the snap-off pressures. For three samples a pbreakthrough/psnap-off ratio of 1.6 to 1.9 was observed, for one sample a ratio of 4. A clear permeability-capillary pressure relationship could not be identified. Based on (omnidirectional) Hg-injection porosimetry results, and assuming perfectly water wet mineral surfaces, gas breakthrough pressures were predicted to occur at approximately 16 MPa for N2 and 5.7 MPa for CO2. The gas breakthrough experiments, however, produced different results. Even though a relatively homogeneous sample set was chosen, with permeability coefficients ranging between 1E-21 and 6E-21 m², the critical capillary breakthrough pressures for nitrogen ranged between 3.4 and 12.3 MPa and snap-off pressures from 0.5 to 6.4 MPa. The CO2 experiments yielded breakthrough pressures of 14.0 to 17.5 MPa and snap-off pressures of 3.5 to 10 MPa. No significant changes in single-phase water permeability coefficients before and after the gas breakthrough experiments were observed. In our contribution we will discuss the following points: 1. Gas fluxes occurring during gas breakthrough experiments may be extremely low. Therefore an unambigous identification of gas breakthrough is not always possible. Besides viscous or diffusive transport, dissolution of CO2 in the pore water may affect the observed pressure changes in the upstream and downstream compartments. All of these processes occur simultaneously and can only be partly discriminated. Gas fluxes detected during the diffusion-controlled flow regimes result in nominal effective gas permeability coefficients as low as 6E-25 m² to 7E-24m². 2. The application of purely capillary-controlled flow models may not be justified. o Gas breakthrough is controlled by effective stress, i.e. the opening of pores or small fissures. o Assumptions about wettability (completely water-wet mineral surfaces) may be incorrect.

  8. Simplifying the design of microstructured optical fibre pressure sensors.

    PubMed

    Osório, Jonas H; Chesini, Giancarlo; Serrão, Valdir A; Franco, Marcos A R; Cordeiro, Cristiano M B

    2017-06-07

    In this paper, we propose a way to simplify the design of microstructured optical fibres with high sensitivity to applied pressure. The use of a capillary fibre with an embedded core allows the exploration of the pressure-induced material birefringence due to the capillary wall displacements and the photoelastic effect. An analytical description of pressure-induced material birefringence is provided, and fibre modal characteristics are explored through numerical simulations. Moreover, a capillary fibre with an embedded core is fabricated and used to probe pressure variations. Even though the embedded-core fibre has a non-optimized structure, measurements showed a pressure sensitivity of (1.04 ± 0.01) nm/bar, which compares well with more complex, specially designed fibre geometries reported in the literature. These results demonstrate that this geometry enables a novel route towards the simplification of microstructured fibre-based pressure sensors.

  9. CO2/ brine substitution experiments at simulated reservoir conditions

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Spangenberg, Erik

    2015-04-01

    Capillary properties of rocks affect the mobility of fluids in a reservoir. Therefore, the understanding of the capillary pressure behaviour is essential to assess the long-term behaviour of CO2 reservoirs. Beyond this, a calibration of the petrophysical properties on water saturation of reservoir rocks at simulated in situ conditions is crucial for a proper interpretation of field monitoring data. We present a set-up, which allows for the combined measurements of capillary pressure, electric resistivity, and elastic wave velocities under controlled reservoir conditions (pconf = 400 bar, ppore = 180 bar, T = 65 ° C) at different brine-CO2 saturations. The capillary properties of the samples are measured using the micropore membrane technique. The sample is jacketed with a Viton tube (thickness = 4 mm) and placed between two current electrode endcaps, which as well contain pore fluid ports and ultrasonic P and S wave transducers. Between the sample and the lower endcap the hydrophilic semi-permeable micro-pore membrane (pore size = 100 nm) is integrated. It is embedded into filter papers to establish a good capillary contact and to protect the highly sensitive membrane against mechanical damage under load. Two high-precision syringe pumps are used to displace a quantified volume of brine by CO2 and determine the corresponding sample saturation. The fluid displacement induces a pressure gradient along the sample, which corresponds to the capillary pressure at a particular sample saturation. It is measured with a differential pressure sensor in the range between 0 - 0.2 MPa. Drainage and imbibition cycles are performed to provide information on the efficiency of capillary trapping and to get a calibration of the petrophysical parameters of the sample.

  10. Pressure-assisted introduction of urine samples into a short capillary for electrophoretic separation with contactless conductivity and UV spectrometry detection.

    PubMed

    Makrlíková, Anna; Opekar, František; Tůma, Petr

    2015-08-01

    A computer-controlled hydrodynamic sample introduction method has been proposed for short-capillary electrophoresis. In the method, the BGE flushes sample from the loop of a six-way sampling valve and is carried to the injection end of the capillary. A short pressure impulse is generated in the electrolyte stream at the time when the sample zone is at the capillary, leading to injection of the sample into the capillary. Then the electrolyte flow is stopped and the separation voltage is turned on. This way of sample introduction does not involve movement of the capillary and both of its ends remain constantly in the solution during both sample injection and separation. The amount of sample introduced to the capillary is controlled by the duration of the pressure pulse. The new sample introduction method was tested in the determination of ammonia, creatinine, uric acid, and hippuric acid in human urine. The determination was performed in a capillary with an overall length of 10.5 cm, in two BGEs with compositions 50 mM MES + 5 mM NaOH (pH 5.1) and 1 M acetic acid + 1.5 mM crown ether 18-crown-6 (pH 2.4). A dual contactless conductivity/UV spectrometric detector was used for the detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT.

    PubMed

    Zhi, Zhongwei; Cepurna, William; Johnson, Elaine; Jayaram, Hari; Morrison, John; Wang, Ruikang K

    2015-09-01

    To determine if retinal capillary filling is preserved in the face of acutely elevated intraocular pressure (IOP) in anesthetized rats, despite a reduction in total retinal blood flow (RBF), using optical microangiography/optical coherence tomography (OMAG/OCT). OMAG provided the capability of depth-resolved imaging of the retinal microvasculature down to the capillary level. Doppler OCT was applied to measure the total RBF using an enface integration approach. The microvascular pattern, capillary density, and total RBF were monitored in vivo as the IOP was increased from 10 to 100mmHg in 10mmHg intervals and returned back to 10mmHg. In animals with mean arterial pressure (MAP) of 102±4mmHg (n=10), when IOP was increased from 0 to 100mmHg, the capillary density remained at or above 80% of baseline for the IOP up to 60mmHg [or ocular perfusion pressure (OPP) at 40mmHg]. This was then decreased, achieving 60% of baseline at IOP 70mmHg and OPP of 30mmHg. Total RBF was unaffected by moderate increases in IOP up to 30mmHg, beyond which total RBF decreased linearly, reaching 50% of baseline at IOP 60mmHg and OPP 40mmHg. Both capillary density and total RBF were totally extinguished at 100mmHg, but fully recovered when IOP returned to baseline. By comparison, a separate group of animals with lower MAP (mean=75±6mmHg, n=7) demonstrated comparable decreases in both capillary filling and total RBF at IOPs that were 20mmHg lower than in the initial group. Both were totally extinguished at 80mmHg, but fully recovered when IOP returned to baseline. Relationships of both parameters to OPP were unchanged. Retinal capillary filling and total RBF responses to IOP elevation can be monitored non-invasively by OMAG/OCT and both are influenced by OPP. Retinal capillary filling was relatively preserved down to a perfusion pressure of 40mmHg, despite a linear reduction in total RBF. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. [Recent advances and applications of capillary electrochromatography and pressurized capillary electrochromatography].

    PubMed

    Wu, Yi; Zhang, Xiaohui; Wei, Juan; Xue, Yunyun; Bahatibieke, Marjan; Wang, Yan; Yan, Chao

    2009-09-01

    Capillary electrochromatography (CEC), in which electroosmotic flow (EOF) created from the electrical double layer is made to act as a pump to drive the mobile phase in a capillary column packed with micro-particulates or coated with stationary phase. Both neutral and charged species can be resolved by CEC. It has been demonstrated that the efficiency of a separation obtained by electroosmotic propulsion is superior to that obtained by pressure-driven flow (as is the case in HPLC). CEC combines the best features of CE and versatile selectivity and large sample capacity of HPLC, promising high efficiency, high resolution, high selectivity and high peak capacity. However, in practice, when CEC is used without pressure, often used on a commercial CE instrument, there are problems and difficulties associated with bubbles formation and column dry-out. These difficulties can be overcome by a pressurized CEC (pCEC) system, in which a supplementary pressure is applied to the column in addition to the EOF. In such a system, a pressure can be applied to the capillary column to suppress bubbles formation. Quantitative sample introduction in pCEC can be easily achieved through a rotary-type injector. Most importantly, it is amenable for a solvent gradient mode, similar to that in HPLC, by programming the composition of mobile phase. The article brings a comprehensive survey of recent development of CEC and pCEC, including the development of instrumentation, capillary columns and stationary phase as well as CEC and pCEC applications in life science, biotechnology, pharmaceutical analysis, food safety and environmental security. Prospects for CEC and pCEC development and application are also discussed.

  13. A novel APPI-MS setup for in situ degradation product studies of atmospherically relevant compounds: capillary atmospheric pressure photo ionization (cAPPI).

    PubMed

    Kersten, Hendrik; Derpmann, Valerie; Barnes, Ian; Brockmann, Klaus J; O'Brien, Rob; Benter, Thorsten

    2011-11-01

    We report on the development of a novel atmospheric pressure photoionization setup and its applicability for in situ degradation product studies of atmospherically relevant compounds. A custom miniature spark discharge lamp was embedded into an ion transfer capillary, which separates the atmospheric pressure from the low pressure region in the first differential pumping stage of a conventional atmospheric pressure ionization mass spectrometer. The lamp operates with a continuous argon flow and produces intense light emissions in the VUV. The custom lamp is operated windowless and efficiently illuminates the sample flow through the transfer capillary on an area smaller than 1 mm(2). Limits of detection in the lower ppbV range, a temporal resolution of milliseconds in the positive as well as the quasi simultaneously operating negative ion mode, and a significant reduction of ion transformation processes render this system applicable to real time studies of rapidly changing chemical systems. The method termed capillary atmospheric pressure photo ionization (cAPPI) is characterized with respect to the lamp emission properties as a function of the operating conditions, temporal response, and its applicability for in situ degradation product studies of atmospherically relevant compounds, respectively.

  14. High hydrostatic pressures in traumatic joints require elevated synovial capillary pressure probably associated with arteriolar vasodilatation.

    PubMed

    Ahlqvist, J; Harilainen, A; Aalto, K; Sarna, S; Lalla, M; Osterlund, K

    1994-11-01

    Three out of the four Starling pressures were determined at arthroscopy of traumatic effusions of the knee. The range of the joint fluid hydrostatic pressure Pjoint was 5-83 cmH2O (0.5-8.1 kPa, 4-61 mmHg), that of the colloid osmotic pressure difference COPplasma-COPjoint 0-21.7 cmH2O. In 11 of 15 cases the sum Pjoint+COP difference exceeded 32.6 cmH2O (3.19 kPa, 24 mmHg), a high estimate of average capillary pressure at the level of the heart. The number of 'exceeding' cases was 8/15 if only 80% of the COP difference was considered effective. Pjoint and the COP difference oppose filtration of fluid from plasma into joints, indicating that mean capillary pressure, the only Starling pressure not determined, was elevated unless the effusions were being resorbed back into the blood. The findings can be explained by tamponade compensated by arteriolar vasodilatation, suspected to be metabolically mediated.

  15. The Dynamics of Glomerular Ultrafiltration in the Rat

    PubMed Central

    Brenner, Barry M.; Troy, Julia L.; Daugharty, Terrance M.

    1971-01-01

    Using a unique strain of Wistar rats endowed with glomeruli situated directly on the renal cortical surface, we measured glomerular capillary pressures using servo-nulling micropipette transducer techniques. Pressures in 12 glomerular capillaries from 7 rats averaged 60 cm H2O, or approximately 50% of mean systemic arterial values. Wave form characteristics for these glomerular capillaries were found to be remarkably similar to those of the central aorta. From similarly direct estimates of hydrostatic pressures in proximal tubules, and colloid osmotic pressures in systemic and efferent arteriolar plasmas, the net driving force for ultrafiltration was calculated. The average value of 14 cm H2O is lower by some two-thirds than the majority of estimates reported previously based on indirect techniques. Single nephron GFR (glomerular filtration rate) was also measured in these rats, thereby permitting calculation of the glomerular capillary ultrafiltration coefficient. The average value of 0.044 nl sec−1 cm H2O−1 glomerulus−1 is at least fourfold greater than previous estimates derived from indirect observations. PMID:5097578

  16. Water infiltration in prewetted porous media: dynamic capillary pressure and Green-Ampt modeling

    NASA Astrophysics Data System (ADS)

    Hsu, S.; Hilpert, M.

    2013-12-01

    Recently, an experimental study has shown that the modified Green-Ampt (GA) model, which accounts for a velocity-dependent capillary pressure, can describe water infiltration in dry sand columns better than the classical GA model. Studies have also shown that the initial water content of prewetted porous media affects the dynamic capillary pressure during infiltration. In this study, we performed a series of downward water infiltration experiments in prewetted sand columns for four different initial water contents: 0%, 3.3%, 6.5%, and 13.8%. We also used three different ponding heights: 10 cm, 20 cm, and 40 cm. As expected, an increase in ponding height resulted in a monotonic increase in cumulative infiltration. However, we found anomalous behavior, in that the cumulative infiltration did not monotonically decrease as the initial water content increased. When modeling the experiments with the modified GA approach, we linked this anomalous behavior to the reduction factor in the model for dynamic capillary pressure that is a function of initial water content.

  17. Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects

    NASA Astrophysics Data System (ADS)

    Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning

    2010-05-01

    We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model the impact of the saturation changes in the system over the pressure difference between the wetting and non wetting phase. We show that the so-called dynamic effects referred in the hydrology literature of experimentally measured capillary pressure curves might be explained by the combined effect of capillary pressure along the invasion front of the gaseous phase and pressure changes caused by viscous effects. A detailed study of the structure optically followed shows that the geometry of the invader is self-similar with two different behaviors at small and large scales: the structure corresponds to the ones of invasion percolation models at small scales (capillary fingering structures with fractal dimension D=1.83), whereas at large scales, viscous pressure drops dominate over the capillary threshold variations, and the structures are self-similar fingering structures with a fractal dimension corresponding to Dielectric Breakdown Models (variants of the DLA model), with D ≠ƒ 1.5. The cross-over scale is set by the scale at which capillary fluctuations are of the order of the viscous pressure drops. This leads physically to the fact that cross-over scale between the two fingering dimensions, goes like the inverse of the capillary number. This study utilizes these geometrical characteristics of the viscous fingers forming in dynamic drainage, to obtain a meaningfull scaling law for the saturation-pressure curve at finite speed, i.e. the so-called dynamic capillary pressure relations. We thus show how the micromechanical interplay between viscous and capillary forces leads to some pattern formation, which results in a general form of dynamic capillary pressure relations. By combining these detailed informations on the displacement structure with global measures of pressure, saturation and controlling the capillary number Ca, a scaling relation relating pressure, saturation, system size and capillary number is developed. By applying this scaling relation, pressure-saturation curves for a wide range of capillary numbers can be collapsed. Effects of pressure oscillations on drainage in an elastic porous medium: The effects of seismic stimulation on the flow of two immiscible fluids in an elastic synthetic porous medium is experimentally investigated. A wetting fluid is slowly evacuated from the medium, while a pressure oscillation is applied on the injected non-wetting fluid. The amplitude and frequency of the pressure oscillations as well as the evacuation speed are kept constant throughout an experiment. The resulting morphology of the invading structure is found to be strongly dependent on the interplay between the amplitude and the frequency of the applied pressure oscillations and the elasticity of the porous medium. Different combinations of these properties yield morphologically similar structures, allowing a classification of structures that is found to depend on a proposed dimensionless number. [1] Tallakstad, K.T., H.A. Knudsen, T. Ramstad, G. Løvoll, K.J. Maløy, R. Toussaint and E.G. Flekkøy , Steady-state two-phase flow in porous media: statistics and transport properties, Phys. Rev. Lett. 102, 074502 (2009). doi:10.1103/PhysRevLett.102.074502 [2] Løvoll, G., M. Jankov, K.J. Maløy, R. Toussaint, J. Schmittbuhl, G. Schaefer and Y. Ḿ eheust, Influence of viscous fingering on dynamic saturation-pressure curves in porous media, submitted to Transport In Porous Media, (2010) [3] Jankov, M., G. Løvoll, H.A. Knudsen, K.J. Maløy, R. Planet, R. Toussaint and E.G. Flekkøy; Effects of pressure oscillations on drainage in an elastic porous medium, Transport In Porous Media, in press (2010).

  18. Capillary pressure – saturation relationships for gas shales measured using a water activity meter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, B.; Perfect, E.; McKay, L. D.

    Hydraulic fracturing of gas shale formations involves pumping a large volume of fracking fluid into a hydrocarbon reservoir to fracture the rock and thus increase its permeability. The majority of the fracking fluid introduced is never recovered and the fate of this lost fluid, often called “leak off,” has become the source of much debate. Information on the capillary pressure – saturation relationship for each wetting phase is needed to simulate leak off using numerical reservoir models. The petroleum industry commonly employs air – water capillary pressure – saturation curves to predict these relationships for mixed wet reservoirs. Traditional methodsmore » of measuring this curve are unsuitable for gas shales due to high capillary pressures associated with the small pores present. Still, a possible alternative method is the water activity meter which is used widely in the soil sciences for such measurements. However, its application to lithified material has been limited. Here, this study utilized a water activity meter to measure air – water capillary pressures (ranging from 1.3 to 219.6 MPa) at several water saturation levels in both the wetting and drying directions. Water contents were measured gravimetrically. Seven types of gas producing shale with different porosities (2.5–13.6%) and total organic carbon contents (0.4–13.5%) were investigated. Nonlinear regression was used to fit the resulting capillary pressure – water saturation data pairs for each shale type to the Brooks and Corey equation. Data for six of the seven shale types investigated were successfully fitted (median R 2 = 0.93), indicating this may be a viable method for parameterizing capillary pressure – saturation relationships for inclusion in numerical reservoir models. As expected, the different shale types had statistically different Brooks and Corey parameters. However, there were no significant differences between the Brooks and Corey parameters for the wetting and drying measurements, suggesting that hysteresis may not need to be taken into account in leak off simulations.« less

  19. Capillary pressure – saturation relationships for gas shales measured using a water activity meter

    DOE PAGES

    Donnelly, B.; Perfect, E.; McKay, L. D.; ...

    2016-05-10

    Hydraulic fracturing of gas shale formations involves pumping a large volume of fracking fluid into a hydrocarbon reservoir to fracture the rock and thus increase its permeability. The majority of the fracking fluid introduced is never recovered and the fate of this lost fluid, often called “leak off,” has become the source of much debate. Information on the capillary pressure – saturation relationship for each wetting phase is needed to simulate leak off using numerical reservoir models. The petroleum industry commonly employs air – water capillary pressure – saturation curves to predict these relationships for mixed wet reservoirs. Traditional methodsmore » of measuring this curve are unsuitable for gas shales due to high capillary pressures associated with the small pores present. Still, a possible alternative method is the water activity meter which is used widely in the soil sciences for such measurements. However, its application to lithified material has been limited. Here, this study utilized a water activity meter to measure air – water capillary pressures (ranging from 1.3 to 219.6 MPa) at several water saturation levels in both the wetting and drying directions. Water contents were measured gravimetrically. Seven types of gas producing shale with different porosities (2.5–13.6%) and total organic carbon contents (0.4–13.5%) were investigated. Nonlinear regression was used to fit the resulting capillary pressure – water saturation data pairs for each shale type to the Brooks and Corey equation. Data for six of the seven shale types investigated were successfully fitted (median R 2 = 0.93), indicating this may be a viable method for parameterizing capillary pressure – saturation relationships for inclusion in numerical reservoir models. As expected, the different shale types had statistically different Brooks and Corey parameters. However, there were no significant differences between the Brooks and Corey parameters for the wetting and drying measurements, suggesting that hysteresis may not need to be taken into account in leak off simulations.« less

  20. A detailed study of CO 2-brine capillary trapping mechanisms as applied to geologic carbon storage. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wildenschild, Dorthe

    2017-04-06

    The proposed research focuses on improved fundamental understanding of the efficiency of physical trapping mechanisms, and as such will provide the basis for subsequent upscaling efforts. The overarching hypothesis of the proposed research is that capillary pressure plays a significant role in capillary trapping of CO 2, especially during the water imbibition stage of the sequestration process. We posit that the relevant physics of the sequestration process is more complex than is currently captured in relative permeability models, which are often based on so-called trapping models to represent relative permeability hysteresis. Our 4 main questions, guiding the 4 main tasksmore » of the proposed research, are as follows: (1) What is the morphology of capillary trapped CO 2 at the pore scale as a function of temperature, pressure, brine concentration, interfacial tension, and pore-space morphology under injection and subsequent imbibition? (2) Is it possible to describe the capillary trapping process using formation-dependent, but otherwise unique continuum-scale functions in permeability-capillary pressure, interfacial area and saturation space, rather than hysteretic functions in permeability-saturation or capillary pressure-saturation space? (3) How do continuum-scale relationships between kr-Pc-S-Anw developed based on pore-scale observations compare with traditional models incorporating relative permeability hysteresis (such as Land’s and other models,) and with observations at the core (5-10cm) scale? (4) How can trapped CO 2 volume be optimized via engineered injection and sweep strategies, and as a function of formation type (incl. heterogeneity)?« less

  1. Perfusion-induced changes in cardiac contractility depend on capillary perfusion.

    PubMed

    Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N

    1998-02-01

    The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.

  2. Protein vs electrolytes and all of the Starling forces.

    PubMed

    Peters, R M; Hargens, A R

    1981-10-01

    Hemodilution-induced reductions of the intravascular protein concentration in patients and experimental animals with intact capillaries do not lead to pulmonary edema, despite significant increases in the amount of extravascular water in the systemic interstitial space. The protective factors are a drop in the extravascular concentration of protein, a rise in interstitial tissue pressure, and an increase in lymph flow. If the capillary endothelium is damaged, protein leaks into the extravascular space, and protein infusion has a diminished effect on fluid exchange across the capillary. Whether capillaries are intact or injured, prevention of increases in capillary hydrostatic pressure is the most important factor in preventing pulmonary edema. Administration of hypertonic fluids may provide a useful method of limiting total fluid infusion and reducing cell swelling after blood loss.

  3. Image-Based Modeling of Blood Flow and Oxygen Transfer in Feto-Placental Capillaries

    PubMed Central

    Brownbill, Paul; Janáček, Jiří; Jirkovská, Marie; Kubínová, Lucie; Chernyavsky, Igor L.; Jensen, Oliver E.

    2016-01-01

    During pregnancy, oxygen diffuses from maternal to fetal blood through villous trees in the placenta. In this paper, we simulate blood flow and oxygen transfer in feto-placental capillaries by converting three-dimensional representations of villous and capillary surfaces, reconstructed from confocal laser scanning microscopy, to finite-element meshes, and calculating values of vascular flow resistance and total oxygen transfer. The relationship between the total oxygen transfer rate and the pressure drop through the capillary is shown to be captured across a wide range of pressure drops by physical scaling laws and an upper bound on the oxygen transfer rate. A regression equation is introduced that can be used to estimate the oxygen transfer in a capillary using the vascular resistance. Two techniques for quantifying the effects of statistical variability, experimental uncertainty and pathological placental structure on the calculated properties are then introduced. First, scaling arguments are used to quantify the sensitivity of the model to uncertainties in the geometry and the parameters. Second, the effects of localized dilations in fetal capillaries are investigated using an idealized axisymmetric model, to quantify the possible effect of pathological placental structure on oxygen transfer. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximized by an optimal width of the dilation. The results could explain the prevalence of fetal hypoxia in cases of delayed villous maturation, a pathology characterized by a lack of the vasculo-syncytial membranes often seen in conjunction with localized capillary dilations. PMID:27788214

  4. Laser absorption waves in metallic capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Kanevskii, M. F.; Kondrashov, V. V.

    1987-07-01

    The propagation of laser absorption waves in metallic capillaries was studied experimentally and numerically during pulsed exposure to CO2 laser radiation. The dependence of the plasma front propagation rate on the initial air pressure in the capillary is determined. In a broad range of parameters, the formation time of the optically opaque plasma layer is governed by the total laser pulse energy from the beginning of the exposure to the instant screening appears, and is weakly dependent on the pulse shape and gas pressure.

  5. Microexplosions initiated by a microwave capillary torch on a metal surface at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A., E-mail: kossyi@fpl.gpi.ru

    2015-07-15

    The interaction of the plasma of a microwave capillary argon torch with a metal surface was studied experimentally. It is shown that the interaction of the plasma jet generated by the capillary plasma torch with the metal in atmospheric-pressure air leads to the initiation of microexplosions (sparks) on the metal surface. As a result, the initially smooth surface acquires a relief in the form of microtips and microcraters. The possibility of practical application of the observed phenomenon is discussed.

  6. Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities

    NASA Astrophysics Data System (ADS)

    Doster, F.; Celia, M. A.; Nordbotten, J. M.

    2012-12-01

    Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.

  7. Synthesis of capillary pressure curves from post-stack seismic data with the use of intelligent estimators: A case study from the Iranian part of the South Pars gas field, Persian Gulf Basin

    NASA Astrophysics Data System (ADS)

    Golsanami, Naser; Kadkhodaie-Ilkhchi, Ali; Erfani, Amir

    2015-01-01

    Capillary pressure curves are important data for reservoir rock typing, analyzing pore throat distribution, determining height above free water level, and reservoir simulation. Laboratory experiments provide accurate data, however they are expensive, time-consuming and discontinuous through the reservoir intervals. The current study focuses on synthesizing artificial capillary pressure (Pc) curves from seismic attributes with the use of artificial intelligent systems including Artificial Neural Networks (ANNs), Fuzzy logic (FL) and Adaptive Neuro-Fuzzy Inference Systems (ANFISs). The synthetic capillary pressure curves were achieved by estimating pressure values at six mercury saturation points. These points correspond to mercury filled pore volumes of core samples (Hg-saturation) at 5%, 20%, 35%, 65%, 80%, and 90% saturations. To predict the synthetic Pc curve at each saturation point, various FL, ANFIS and ANN models were constructed. The varying neural network models differ in their training algorithm. Based on the performance function, the most accurately functioning models were selected as the final solvers to do the prediction process at each of the above-mentioned mercury saturation points. The constructed models were then tested at six depth points of the studied well which were already unforeseen by the models. The results show that the Fuzzy logic and neuro-fuzzy models were not capable of making reliable estimations, while the predictions from the ANN models were satisfyingly trustworthy. The obtained results showed a good agreement between the laboratory derived and synthetic capillary pressure curves. Finally, a 3D seismic cube was captured for which the required attributes were extracted and the capillary pressure cube was estimated by using the developed models. In the next step, the synthesized Pc cube was compared with the seismic cube and an acceptable correspondence was observed.

  8. Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav

    2017-10-01

    Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. [Figure not available: see fulltext.

  9. Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers.

    PubMed

    Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav

    2017-10-01

    Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. Graphical Abstract ᅟ.

  10. Mars Entry Atmospheric Data System Trajectory Reconstruction Algorithms and Flight Results

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark; Shidner, Jeremy; Munk, Michelle

    2013-01-01

    The Mars Entry Atmospheric Data System is a part of the Mars Science Laboratory, Entry, Descent, and Landing Instrumentation project. These sensors are a system of seven pressure transducers linked to ports on the entry vehicle forebody to record the pressure distribution during atmospheric entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. Specifically, angle of attack, angle of sideslip, dynamic pressure, Mach number, and freestream atmospheric properties are reconstructed from the measured pressures. Such data allows for the aerodynamics to become decoupled from the assumed atmospheric properties, allowing for enhanced trajectory reconstruction and performance analysis as well as an aerodynamic reconstruction, which has not been possible in past Mars entry reconstructions. This paper provides details of the data processing algorithms that are utilized for this purpose. The data processing algorithms include two approaches that have commonly been utilized in past planetary entry trajectory reconstruction, and a new approach for this application that makes use of the pressure measurements. The paper describes assessments of data quality and preprocessing, and results of the flight data reduction from atmospheric entry, which occurred on August 5th, 2012.

  11. A Zero Dimensional Time-Dependent Model of High-Pressure Ablative Capillary Discharge (Preprint)

    DTIC Science & Technology

    2008-06-01

    comprehensive model of capillary discharge is important to understand the physics and engineering aspects of the capillary discharge thruster. A schematic...investigators since the mid-1980s see 1-11 and references therein, satisfy both of these conditions well. These studies investigated the dynamics of high...is a comprehensive description of the radiative heat transfer in the capillary discharge. It is worth noting that in other types of capillary

  12. Investigation of Capillary Limit in a Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This paper presets an experimental study on the capillary limit of a loop heat pipe (LHP) at low powers. The slow thermal response of the loop at low powers made it possible to observe interactions among various components after the capillary limit was exceeded. The capillary limit at low powers was achieved by imposing additional pressure drops on the vapor line through the use of a metering valve. A differential pressure transducer was also used to measure the pressure drop across the evaporator and the compensation chamber (CC). Test results show that when the capillary limit is exceeded, vapor will penetrate the primary wick, resulting in a partial dry-out of the evaporator and a rapid increase of the CC temperature. Because the evaporator can tolerate vapor bubbles, the LHP will continue to function and may reach a new steady state at the higher temperature. Thus, the LHP will exhibit a graceful degradation in performance rather than a complete failure. Moreover, the loop can recover from a partial dry-out by reducing the heat load without a re-start.

  13. Migration And Entrapment Of Mercury In The Subsurface

    NASA Astrophysics Data System (ADS)

    M, D.; Nambi, I. M.

    2009-12-01

    Elemental mercury is an immiscible liquid with high density and high surface tension. The movement of mercury in the saturated subsurface region is therefore considered a case of two phase flow involving mercury and water and is expected to be governed by gravity, viscous and capillary forces. Fundamental investigation into the migration and capillary entrapment of mercury in the subsurface was done by controlled laboratory capillary pressure saturation experiments using mercury and water as non wetting and wetting fluid respectively. Residual mercury saturation and van Genuchten’s capillary entrapment parameters were determined independently for different sizes of porous media. Based on the experimental data, theoretical investigations were done on the role of the three predominant forces and their influence on mercury migration and entrapment. The effects of fluid density and interfacial tension and the influence of Capillary and Bond number on mercury entrapment were analyzed with the help of similar capillary pressure - saturation experiments using Tetrachloroethylene (PCE)-water fluid pair. Mercury-water systems exhibited a low residual saturation of 0.02 and 0.07 as compared to 0.16 and 0.27 for PCE-water systems. Less residual mercury saturation, lack of apparent hysteresis in capillary pressure saturation curves and large variation in van Genuchten’s parameters 'α'(inverse of displacement pressure) and ‘n’ (pore size distribution index) for mercury-water systems compared to PCE-water systems were observed. These anomalies between the two systems elucidate that the capillary trapping is equally dependent on the fluid characteristics especially for high density immiscible fluids. Gravity force nevertheless a predominant controlling factor in the migration of highly dense mercury, is counteracted by not less trivial capillary force which was 1.22x104 times higher than gravity force. The capillary forces thus surmount the gravity forces and cause entrapment of mercury in the soil pores even in homogeneous porous medium system. Bond number (Bond number relates gravity and capillary forces) for mercury-water system was found to 2.5 times higher than PCE-water systems. Large density differences between mercury and water lead to high Bond number and thus less residual saturation. Capillary number (Capillary number relates viscous and capillary forces) was found to be less for mercury-water systems. Literature review unveils that low Capillary number does not influence non wetting residual saturation. But for high density mercury with natural infiltration, even low Capillary number influences residual saturation. With the alarming increase in number of mercury spill sites, results of this study showed a better understanding of the capillary entrapment phenomena and the extent of influence of each predominant force during displacement of highly dense mercury. The fundamental inputs to NAPL entrapment models were generated in this study for mercury for the first time. This data will be used to assess the distribution of mercury in contaminated sites and design suitable remedial alternatives.

  14. Pressure Profiles in a Loop Heat Pipe Under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  15. Transcapillary fluid shifts in head and neck tissues during and after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Parazynski, S. E.; Hargens, Alan R.; Tucker, B.; Aratow, M.; Styf, J.; Crenshaw, A.

    1991-01-01

    To understand the mechanism, magnitude, and time course of facial puffiness that occurs in microgravity, seven male subjects were tilted 6 degrees head down for 8 hr, and all four Starling transcapillary pressures were directly measured before, during, and after tilt. Head-down tilt (HDT) caused facial edema and a significant elevation of microvascular pressures measured in the lower lip: capillary pressures increased from 27.2 +/- 5 mm Hg pre-HDT to 33.9 +/- 1.7 mm Hg by the end of tilt. Subcutaneous and intramuscular interstitial fluid pressures in the neck also increased as a result of HDT, while interstitial fluid colloid osmotic pressures remained unchanged. Plasma colloid osmotic pressures dropped significantly after 4 hr of HDT, suggesting a transition from fluid filtration to absorption in capillary beds between the heart and feet during HDT. After 4 hr of seated recovery from HDT, microvascular pressures remained significantly elevated by 5 to 8 mm Hg above baseline values, despite a significant HDT diuresis and the orthostatic challenge of an upright, seated posture. During the control (baseline) period, urine output was 46.7 ml/hr; during HDT, it was 126.5 ml/hr. These results indicate that facial edema resulting from HDT is primarily caused by elevated capillary pressures and decreased plasma colloid osmotic pressures. Elevation of cephalic capillary pressures sustained for 4 hr after HDT suggests that there is a compensatory vasodilation to maintain microvascular perfusion. The negativity of interstitial fluid pressures above heart level also has implications for the maintenance of tissue fluid balance in upright posture.

  16. Pressure Profiles in a Loop Heat Pipe under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  17. Measuring Viscosities of Gases at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  18. Device to improve detection in electro-chromatography

    DOEpatents

    Garguilo, Michael G.; Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    Apparatus and method for improving the resolution of non-pressure driven capillary chromatographic systems, and particularly for capillary electrochromatography (CEC) systems. By reducing the cross-sectional area of a packed capillary column by means of a second open capillary contiguous with the outlet end of a packed capillary column, where the packed capillary column has a cross sectional area of between about 2 and 5 times that of the open capillary column, the phenomenon of band broadening in the transition region between the open capillary and the packed capillary column, where the individual components of the mixture are analyzed, can be eliminated, thereby providing for a significant improvement in resolution and more accurate detection and analysis.

  19. Device to improve detection in electro-chromatography

    DOEpatents

    Garguilo, Michael G.; Paul, Phillip H.; Rakestraw, David J.

    2002-01-01

    Apparatus and method for improving the resolution of non-pressure driven capillary chromatographic systems, and particularly for capillary electrochromatography (CEC) systems. By reducing the cross-sectional area of a packed capillary column by means of a second open capillary contiguous with the outlet end of a packed capillary column, where the packed capillary column has a cross sectional area of between about 2 and 5 times that of the open capillary column, the phenomenon of band broadening in the transition region between the open capillary and the packed capillary column, where the individual components of the mixture are analyzed, can be eliminated, thereby providing for a significant improvement in resolution and more accurate detection and analysis.

  20. Ionization source utilizing a multi-capillary inlet and method of operation

    DOEpatents

    Smith, Richard D.; Kim, Taeman; Udseth, Harold R.

    2004-10-12

    A multi-capillary inlet to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, which allows increased conductance of ions and other charged particles. The multi-capillary inlet is juxtaposed between an ion source and the interior of an instrument maintained at near atmospheric pressure, it finds particular advantages when deployed to improve the ion transmission between an electrospray ionization source and the first vacuum stage of a mass spectrometer, and finds its greatest advantages when deployed in conjunction with an electrodynamic (RF) ion funnel deployed within the interior of the mass spectrometer, particularly an ion funnel equipped with a jet disturber.

  1. A design tool for predicting the capillary transport characteristics of fuel cell diffusion media using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Kumbur, E. C.; Sharp, K. V.; Mench, M. M.

    Developing a robust, intelligent design tool for multivariate optimization of multi-phase transport in fuel cell diffusion media (DM) is of utmost importance to develop advanced DM materials. This study explores the development of a DM design algorithm based on artificial neural network (ANN) that can be used as a powerful tool for predicting the capillary transport characteristics of fuel cell DM. Direct measurements of drainage capillary pressure-saturation curves of the differently engineered DMs (5, 10 and 20 wt.% PTFE) were performed at room temperature under three compressions (0, 0.6 and 1.4 MPa) [E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1295-B1304; E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1305-B1314; E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1315-B1324]. The generated benchmark data were utilized to systematically train a three-layered ANN framework that processes the feed-forward error back propagation methodology. The designed ANN successfully predicts the measured capillary pressures within an average uncertainty of ±5.1% of the measured data, confirming that the present ANN model can be used as a design tool within the range of tested parameters. The ANN simulations reveal that tailoring the DM with high PTFE loading and applying high compression pressure lead to a higher capillary pressure, therefore promoting the liquid water transport within the pores of the DM. Any increase in hydrophobicity of the DM is found to amplify the compression effect, thus yielding a higher capillary pressure for the same saturation level and compression.

  2. A simulation model of the oxygen alveolo-capillary exchange in normal and pathological conditions.

    PubMed

    Brighenti, Chiara; Gnudi, Gianni; Avanzolini, Guido

    2003-05-01

    This paper presents a mathematical model of the oxygen alveolo-capillary exchange to provide the capillary oxygen partial pressure profile in normal and pathological conditions. In fact, a thickening of the blood-gas barrier, heavy exercise or a low oxygen partial pressure (PO2) in the alveolar space can reduce the O2 alveolo-capillary exchange. Since the reversible binding between haemoglobin and oxygen makes it impossible to determine the closed form for the mathematical description of the PO2 profile along the pulmonary capillaries, an approximate analytical solution of the capillary PO2 profile is proposed. Simulation results are compared with the capillary PO2 profile obtained by numerical integration and by a piecewise linear interpolation of the oxyhaemoglobin dissociation curve. Finally, the proposed model is evaluated in a large range of physiopathological diffusive conditions. The good fit to numerical solutions in all experimental conditions seems to represent a substantial improvement with respect to the approach based on a linear approximation of the oxyhaemoglobin dissociation curve, and makes this model a candidate to be incorporated into the integrated descriptions of the entire respiratory system, where the datum of primary interest is the value of end capillary PO2.

  3. A model for capillary rise in micro-tube restrained by a sticky layer

    NASA Astrophysics Data System (ADS)

    Shen, Anqi; Xu, Yun; Liu, Yikun; Cai, Bo; Liang, Shuang; Wang, Fengjiao

    2018-06-01

    Fluid transport in a microscopic capillary under the effects of a sticky layer was theoretically investigated. A model based on the classical Lucas-Washburn (LW) model is proposed for the meniscus rise with the sticky layer present. The sticky layer consists of two parts: a fixed (located at the wall) and a movable part (located on the inside of the capillary), affecting the micro-capillary flow in different ways. Within our model, the movable layer is defined by the capillary radius and pressure gradient. From the model it follows that the fixed sticky layer leads to a decrease of capillary radius, while the movable sticky layer increases flow resistance. The movable layer thickness varies with the pressure gradient, which in turn varies with the rising of the meniscus. The results of our theoretical calculation also prove that the capillary radius has a greater effect on the meniscus height, rather than the additional resistance caused by the movable layer. Moreover, the fixed sticky layer, which affects the capillary radius, has a greater influence than the movable sticky layer. We conclude that the sticky layer causes a lower imbibition height than the LW model predicts.

  4. Short-term reversibility of ultrastructural changes in pulmonary capillaries caused by stress failure

    NASA Technical Reports Server (NTRS)

    Elliott, A. R.; Fu, Z.; Tsukimoto, K.; Prediletto, R.; Mathieu-Costello, O.; West, J. B.

    1992-01-01

    We previously showed that when the pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to determine whether some of the ultrastructural changes are rapidly reversible when the capillary pressure is reduced. To test this, the Ptm was raised to 52.5 cmH2O for 1 min of blood perfusion and then reduced to 12.5 cmH2O for 3 min of saline-dextran perfusion, followed by intravascular fixation at the same pressure. In another group of animals, the pressure was elevated for 1 min of blood and 3 min of saline-dextran before being reduced. The results were compared with previous studies in which the capillary pressures were maintained elevated at 52.5 cmH2O during the entire procedure. Control studies were also done at sustained low pressures. The results showed that the number of endothelial and epithelial breaks per millimeter and the total fraction area of the breaks were reduced when the pressure was lowered. For example, the number of endothelial breaks per millimeter decreased from 7.1 +/- 2.1 to 2.4 +/- 0.7, and the number of epithelial breaks per millimeter fell from 11.4 +/- 3.7 to 3.4 +/- 0.7. There was evidence that the breaks that closed were those that were initially small and were associated with an intact basement membrane. The results suggest that cells can move along their underlying matrix by rapid disengagement and reattachment of cell adhesion molecules, causing breaks to open or close within minutes.(ABSTRACT TRUNCATED AT 250 WORDS).

  5. Toward multiscale modelings of grain-fluid systems

    NASA Astrophysics Data System (ADS)

    Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon

    2017-06-01

    Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.

  6. Recent advances in capillary ultrahigh pressure liquid chromatography.

    PubMed

    Blue, Laura E; Franklin, Edward G; Godinho, Justin M; Grinias, James P; Grinias, Kaitlin M; Lunn, Daniel B; Moore, Stephanie M

    2017-11-10

    In the twenty years since its initial demonstration, capillary ultrahigh pressure liquid chromatography (UHPLC) has proven to be one of most powerful separation techniques for the analysis of complex mixtures. This review focuses on the most recent advances made since 2010 towards increasing the performance of such separations. Improvements in capillary column preparation techniques that have led to columns with unprecedented performance are described. New stationary phases and phase supports that have been reported over the past decade are detailed, with a focus on their use in capillary formats. A discussion on the instrument developments that have been required to ensure that extra-column effects do not diminish the intrinsic efficiency of these columns during analysis is also included. Finally, the impact of these capillary UHPLC topics on the field of proteomics and ways in which capillary UHPLC may continue to be applied to the separation of complex samples are addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Measurements of Capillary Pressure-Saturation Relationships for Silica Sands Using Light Transmission Visualization and a Rapid Pseudo Static Methods

    EPA Science Inventory

    Measurement of water saturation in porous media is essential for many types of studies including subsurface water flow, subsurface colloids transport and contaminant remediation to name a few. Water saturation (S) in porous media is dependent on the capillary pressure (Pc) which,...

  8. IB-LBM simulation of the haemocyte dynamics in a stenotic capillary.

    PubMed

    Yuan-Qing, Xu; Xiao-Ying, Tang; Fang-Bao, Tian; Yu-Hua, Peng; Yong, Xu; Yan-Jun, Zeng

    2014-01-01

    To study the behaviour of a haemocyte when crossing a stenotic capillary, the immersed boundary-lattice Boltzmann method was used to establish a quantitative analysis model. The haemocyte was assumed to be spherical and to have an elastic cell membrane, which can be driven by blood flow to adopt a highly deformable character. In the stenotic capillary, the spherical blood cell was stressed both by the flow and the wall dimension, and the cell shape was forced to be stretched to cross the stenosis. Our simulation investigated the haemocyte crossing process in detail. The velocity and pressure were anatomised to obtain information on how blood flows through a capillary and to estimate the degree of cell damage caused by excessive pressure. Quantitative velocity analysis results demonstrated that a large haemocyte crossing a small stenosis would have a noticeable effect on blood flow, while quantitative pressure distribution analysis results indicated that the crossing process would produce a special pressure distribution in the cell interior and to some extent a sudden change between the cell interior and the surrounding plasma.

  9. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  10. Atrial natriuretic factor increases splenic microvascular pressure and fluid extravasation in the rat.

    PubMed

    Sultanian, R; Deng, Y; Kaufman, S

    2001-05-15

    The spleen is an important site of atrial natriuretic factor (ANF)-induced fluid extravasation into the systemic lymphatic system. The mechanism underlying this process was studied in a blood-perfused (1 ml min(-1)) rat spleen using the double occlusion technique. To ensure that our observations were spleen specific, a similar protocol was repeated in the hindquarters. Rat ANF(1-28), infused into the splenic artery of anaesthetized male rats, caused a dose-dependent (0.3-59 pmol min(-1)) increase in microvascular pressure from 11.3 +/- 0.7 to 14.9 +/- 0.5 mmHg and in post-capillary resistance from 7.2 +/- 0.6 to 10.1 +/- 1.1 mmHg ml(-1). ANF elicited no change in splenic pre-capillary resistance or in hindquarter haemodynamics. Intrasplenic ANF (6.5 pmol min(-1)) caused a sustained increase in intrasplenic fluid efflux from 0.1 +/- 0.1 to 0.3 +/- 0.1 ml min(-1), and in capillary filtration coefficient (Kf) from 1.2 +/- 0.5 to 2.4 +/- 0.6 ml mmHg-1 min-1 (100 g tissue)-1. Mechanical elevation of splenic intravascular pressure (from 11.3 +/- 0.7 to 22.4 +/- 0.2 mmHg) significantly increased intrasplenic fluid extravasation (from 0.4 +/- 0.3 to 1.4 +/- 0.3 ml min(-1)). The natriuretic peptide receptor-C (NPRC)-specific agonist C-ANF(4-23) (12.5 and 125 pmol min(-1)) did not alter splenic intravascular pressure or pre-/post-capillary resistance. The ANF antagonist A71915 (8.3 and 83 pmol min-1), which blocks ANF-stimulated cGMP production via natriuretic peptide receptor-A (NPRA), inhibited the ANF-induced changes in splenic microvascular pressure and post-capillary resistance. It is concluded that ANF enhances the extravasation of isoncotic fluid from the splenic vasculature both by raising intrasplenic microvascular pressure (increased post-capillary resistance) and by increasing filtration area. The constrictive activity of ANF on the splenic vasculature is mediated through NPRA.

  11. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  12. Acoustic cavitation of individual ultrasound contrast agent microbubbles confined in capillaries

    NASA Astrophysics Data System (ADS)

    Almaqwashi, Ali; McIntyre, David; Ammi, Azzdine

    2011-10-01

    Ultrasound targeted therapies mainly rely on the inertial cavitation of ultrasound contrast agent (UCA) microbubbles. Our objective is to determine the cavitation acoustic pressure threshold for the destruction of UCA microbubbles inside cellulose capillaries. Acoustic emission from individual Optison microbubbles confined inside a 200-μm diameter capillary was detected using a passive cavitation detection system. Excitation signals from a 2.25 MHz transmitter were applied to the microbubbles while their acoustic emission was detected by a broadband 15 MHz receiver. Time traces were recorded (100 MHz sampling, 12- bit), and frequency-domain analysis of the received signals was performed to characterize microbubble cavitation. The cavitation acoustic pressure threshold was found to be 1 MPa inside the capillary in comparison with ˜0.7 MPa previously reported for unconfined UCA microbubbles. This work provides a clearer understanding of the role of ultrasound contrast agent dynamics inside a capillary.

  13. Optimization of gas-filled quartz capillary discharge waveguide for high-energy laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Qin, Zhiyong; Li, Wentao; Liu, Jiansheng; Liu, Jiaqi; Yu, Changhai; Wang, Wentao; Qi, Rong; Zhang, Zhijun; Fang, Ming; Feng, Ke; Wu, Ying; Ke, Lintong; Chen, Yu; Wang, Cheng; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    A hydrogen-filled capillary discharge waveguide made of quartz is presented for high-energy laser wakefield acceleration (LWFA). The experimental parameters (discharge current and gas pressure) were optimized to mitigate ablation by a quantitative analysis of the ablation plasma density inside the hydrogen-filled quartz capillary. The ablation plasma density was obtained by combining a spectroscopic measurement method with a calibrated gas transducer. In order to obtain a controllable plasma density and mitigate the ablation as much as possible, the range of suitable parameters was investigated. The experimental results demonstrated that the ablation in the quartz capillary could be mitigated by increasing the gas pressure to ˜7.5-14.7 Torr and decreasing the discharge current to ˜70-100 A. These optimized parameters are promising for future high-energy LWFA experiments based on the quartz capillary discharge waveguide.

  14. Spatial interaction between tissue pressure and skeletal muscle perfusion during contraction.

    PubMed

    van Donkelaar, C C; Huyghe, J M; Vankan, W J; Drost, M R

    2001-05-01

    The vascular waterfall theory attributes decreased muscle perfusion during contraction to increased intramuscular pressure (P(IM)) and concomitant increase in venous resistance. Although P(IM) is distributed during contractions, this theory does not account for heterogeneity. This study hypothesises that pressure heterogeneity could affect the interaction between P(IM) rise and perfusion. Regional tissue perfusion during submaximum (100kPa) tetanic contraction is studied, using a finite element model of perfused contracting skeletal muscle. Capillary flow in muscles with one proximal artery and vein (SIM(1)) and with an additional distal artery and vein (SIM(2)) is compared. Blood flow and pressures at rest and P(IM) during contraction ( approximately 25kPa maximally) are similar between simulations, but capillary flow and venous pressure differ. In SIM(2), venous pressure and capillary flow correspond to P(IM) distribution, whereas capillary flow in SIM(1) is less than 10% of flow in SIM(2), in the muscle half without draining vein. This difference is caused by a high central P(IM), followed by central venous pressure rise, in agreement with the waterfall theory. The high central pressure (SIM(1)), obstructs outflow from the distal veins. Distal venous pressure rises until central blood pressure is reached, although local P(IM) is low. Adding a distal vein (SIM(2)) restores the perfusion. It is concluded that regional effects contribute to the interaction between P(IM) and perfusion during contraction. Unlike stated by the vascular waterfall theory, venous pressure may locally exceed P(IM). Although this can be explained by the principles of this theory, the theory does not include this phenomenon as such.

  15. Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGill U; Gostick, J. T.; Gunterman, H. P.

    2010-06-25

    X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.

  16. Publications - GMC 385 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 385 Publication Details Title: Porosity, permeability, and capillary pressure core analysis Shimer, G., 2011, Porosity, permeability, and capillary pressure core analysis results (2,124'-2,193 -capilar.xls (108.0 K) gmc385-cores-water.xls (19.0 K) Keywords Oil and Gas; Permeability; Porosity Top of Page

  17. Publications - GMC 394 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    , permeability to air, porosity, mercury injection capillary pressure, and grain density) from the E. Simpson #1 (total organic carbon, rock-eval, permeability to air, porosity, mercury injection capillary pressure Files gmc394.pdf (89.0 K) gmc394.zip (1.54 M) Keywords Oil and Gas; Permeability; Porosity; Rock-Eval

  18. A homemade high-resolution orthogonal-injection time-of-flight mass spectrometer with a heated capillary inlet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Changjuan; Huang Zhengxu; Gao Wei

    2008-01-15

    We describe a homemade high-resolution orthogonal-injection time-of-flight (O-TOF) mass spectrometer combing a heated capillary inlet. The O-TOF uses a heated capillary tube combined with a radio-frequency only quadrupole (rf-only quadrupole) as an interface to help the ion transmission from the atmospheric pressure to the low-pressure regions. The principle, configuration of the O-TOF, and the performance of the instrument are introduced in this paper. With electrospray ion source, the performances of the mass resolution, the sensitivity, the mass range, and the mass accuracy are described. We also include our results obtained by coupling atmospheric pressure matrix-assisted laser deporption ionization with thismore » instrument.« less

  19. Micro-Textured Black Silicon Wick for Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Sunada, Eric T.; Ganapathi, Gani B.; Manohara, Harish; Homyk, Andrew; Prina, Mauro

    2013-01-01

    Planar, semiconductor heat arrays have been previously proposed and developed; however, this design makes use of a novel, microscale black silicon wick structure that provides increased capillary pumping pressure of the internal working fluid, resulting in increased effective thermal conductivity of the device, and also enables operation of the device in any orientation with respect to the gravity vector. In a heat pipe, the efficiency of thermal transfer from the case to the working fluid is directly proportional to the surface area of the wick in contact with the fluid. Also, the primary failure mechanism for heat pipes operating within the temperature range of interest is inadequate capillary pressure for the return of fluid from the condenser to the wick. This is also what makes the operation of heat pipes orientation-sensitive. Thus, the two primary requirements for a good wick design are a large surface area and high capillary pressure. Surface area can be maximized through nanomachined surface roughening. Capillary pressure is largely driven by the working fluid and wick structure. The proposed nanostructure wick has characteristic dimensions on the order of tens of microns, which promotes menisci of very small radii. This results in the possibility of enormous pumping potential due to the inverse proportionality with radius. Wetting, which also enhances capillary pumping, can be maximized through growth of an oxide layer or material deposition (e.g. TiO2) to create a superhydrophilic surface.

  20. Pore-scale modeling of wettability effects on CO2-brine displacement during geological storage

    NASA Astrophysics Data System (ADS)

    Basirat, Farzad; Yang, Zhibing; Niemi, Auli

    2017-11-01

    Wetting properties of reservoir rocks and caprocks can vary significantly, and they strongly influence geological storage of carbon dioxide in deep saline aquifers, during which CO2 is supposed to displace the resident brine and to become permanently trapped. Fundamental understanding of the effect of wettability on CO2-brine displacement is thus important for improving storage efficiency and security. In this study, we investigate the influence of wetting properties on two-phase flow of CO2 and brine at the pore scale. A numerical model based on the phase field method is implemented to simulate the two-phase flow of CO2-brine in a realistic pore geometry. Our focus is to study the pore-scale fluid-fluid displacement mechanisms under different wetting conditions and to quantify the effect of wettability on macroscopic parameters such as residual brine saturation, capillary pressure, relative permeability, and specific interfacial area. Our simulation results confirm that both the trapped wetting phase saturation and the normalized interfacial area increase with decreasing contact angle. However, the wetting condition does not appear to influence the CO2 breakthrough time and saturation. We also show that the macroscopic capillary pressures based on the pressure difference between inlet and outlet can differ significantly from the phase averaging capillary pressures for all contact angles when the capillary number is high (log Ca > -5). This indicates that the inlet-outlet pressure difference may not be a good measure of the continuum-scale capillary pressure. In addition, the results show that the relative permeability of CO2 can be significantly lower in strongly water-wet conditions than in the intermediate-wet conditions.

  1. Capillary flow enhancement in rectangular polymer microchannels with a deformable wall.

    PubMed

    Anoop, R; Sen, A K

    2015-07-01

    We report the capillary flow enhancement in rectangular polymer microchannels, when one of the channel walls is a deformable polymer membrane. We provide detailed insight into the physics of elastocapillary interaction between the capillary flow and elastic membrane, which leads to significant improvements in capillary flow performance. As liquid flows by capillary action in such channels, the deformable wall deflects inwards due to the Young-Laplace pressure drop across the liquid meniscus. This, in turn, decreases the radius of curvature of the meniscus and increases the driving capillary pressure. A theoretical model is proposed to predict the resultant increase in filling speed and rise height, respectively, in deformable horizontal and vertical microchannels having large aspect ratios. A non-dimensional parameter J, which represents the ratio of the capillary force to the mechanical restoring force, is identified to quantify the elastocapillary effects in terms of the improvement in filling speed (for J>0.238) and the condition for channel collapse (J>1). The theoretical predictions show good agreement with experimental data obtained using deformable rectangular poly(dimethylsiloxane) microchannels. Both model predictions and experimental data show that over 15% improvement in the Washburn coefficient in horizontal channels, and over 30% improvement in capillary rise height in vertical channels, are possible prior to channel collapse. The proposed technique of using deformable membranes as channel walls is a viable method for capillary flow enhancement in microfluidic devices.

  2. Stress failure of pulmonary capillaries: role in lung and heart disease

    NASA Technical Reports Server (NTRS)

    West, J. B.; Mathieu-Costello, O.

    1992-01-01

    Pulmonary capillaries have extremely thin walls to allow rapid exchange of respiratory gases across them. Recently it has been shown that the wall stresses become very large when the capillary pressure is raised, and in anaesthetised rabbits, ultrastructural damage to the walls is seen at pressures of 40 mm Hg and above. The changes include breaks in the capillary endothelial layer, alveolar epithelial layer, and sometimes all layers of the wall. The strength of the thin part of the capillary wall can be attributed to the type IV collagen in the extracellular matrix. Stress failure of pulmonary capillaries results in a high-permeability form of oedema, or even frank haemorrhage, and is apparently the mechanism of neurogenic pulmonary oedema and high-altitude pulmonary oedema. It also explains the exercise-induced pulmonary haemorrhage that occurs in all racehorses. Several features of mitral stenosis are consistent with stress failure. Overinflation of the lung also leads to stress failure, a common cause of increased capillary permeability in the intensive care environment. Stress failure also occurs if the type IV collagen of the capillary wall is weakened by autoantibodies as in Goodpasture's syndrome. Neutrophil elastase degrades type IV collagen and this may be the starting point of the breakdown of alveolar walls that is characteristic of emphysema. Stress failure of pulmonary capillaries is a hitherto overlooked and potentially important factor in lung and heart disease.

  3. Wettability control on fluid-fluid displacements in patterned microfluidics and porous media

    NASA Astrophysics Data System (ADS)

    Juanes, Ruben; Trojer, Mathias; Zhao, Benzhong

    2014-11-01

    While it is well known that the wetting properties are critical in two-phase flows in porous media, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We then conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.

  4. Mars Entry Atmospheric Data System Modelling and Algorithm Development

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Beck, Roger E.; OKeefe, Stephen A.; Siemers, Paul; White, Brady; Engelund, Walter C.; Munk, Michelle M.

    2009-01-01

    The Mars Entry Atmospheric Data System (MEADS) is being developed as part of the Mars Science Laboratory (MSL), Entry, Descent, and Landing Instrumentation (MEDLI) project. The MEADS project involves installing an array of seven pressure transducers linked to ports on the MSL forebody to record the surface pressure distribution during atmospheric entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the total pressure, dynamic pressure, Mach number, angle of attack, and angle of sideslip. Secondary objectives are to estimate atmospheric winds by coupling the pressure measurements with the on-board Inertial Measurement Unit (IMU) data. This paper provides details of the algorithm development, MEADS system performance based on calibration, and uncertainty analysis for the aerodynamic and atmospheric quantities of interest. The work presented here is part of the MEDLI performance pre-flight validation and will culminate with processing flight data after Mars entry in 2012.

  5. Flow rate impacts on capillary pressure and interface curvature of connected and disconnected fluid phases during multiphase flow in sandstone

    NASA Astrophysics Data System (ADS)

    Herring, Anna L.; Middleton, Jill; Walsh, Rick; Kingston, Andrew; Sheppard, Adrian

    2017-09-01

    We investigate capillary pressure-saturation (PC-S) relationships for drainage-imbibition experiments conducted with air (nonwetting phase) and brine (wetting phase) in Bentheimer sandstone cores. Three different flow rate conditions, ranging over three orders of magnitude, are investigated. X-ray micro-computed tomographic imaging is used to characterize the distribution and amount of fluids and their interfacial characteristics. Capillary pressure is measured via (1) bulk-phase pressure transducer measurements, and (2) image-based curvature measurements, calculated using a novel 3D curvature algorithm. We distinguish between connected (percolating) and disconnected air clusters: curvatures measured on the connected phase interfaces are used to validate the curvature algorithm and provide an indication of the equilibrium condition of the data; curvature and volume distributions of disconnected clusters provide insight to the snap-off processes occurring during drainage and imbibition under different flow rate conditions.

  6. Microvascular pressures and filtration coefficients in the cat mesentery.

    PubMed Central

    Fraser, P A; Smaje, L H; Verrinder, A

    1978-01-01

    1. Filtration coefficient and hydrostatic pressure have been measured in single capillaries and venules in the cat mesentery using a modification of the Landis (1927) single vessel occlusion technique. 2. Venules were found to be filtering fluid, not absorbing it as is often supposed. 3. The mean filtration coefficient in capillaries was 0.018 micrometers . s-1 . mmHg-1 (1.35 X 10(-10)m . s-1 . Pa-1) while that in venules, was 0.027 micrometers . s-1 . mmHg-1 (2.02 X 10(-10)m . s-1 . Pa-1). 4. In both capillaries and venules, filtration coefficient increased with decreasing pressure. 5. The difference between directly measured venular pressure and that calculated from the occlusion data was used to determine the contribution of the interstitium to fluid exchange. In the mesentery superfused with Krebs solution the tissue pressure so determined was found to be zero or subatmospheric initially but became increasingly positive with lengthening exposure of the mesentery. PMID:722585

  7. Impact of Major Pulmonary Resections on Right Ventricular Function: Early Postoperative Changes.

    PubMed

    Elrakhawy, Hany M; Alassal, Mohamed A; Shaalan, Ayman M; Awad, Ahmed A; Sayed, Sameh; Saffan, Mohammad M

    2018-01-15

    Right ventricular (RV) dysfunction after pulmonary resection in the early postoperative period is documented by reduced RV ejection fraction and increased RV end-diastolic volume index. Supraventricular arrhythmia, particularly atrial fibrillation, is common after pulmonary resection. RV assessment can be done by non-invasive methods and/or invasive approaches such as right cardiac catheterization. Incorporation of a rapid response thermistor to pulmonary artery catheter permits continuous measurements of cardiac output, right ventricular ejection fraction, and right ventricular end-diastolic volume. It can also be used for right atrial and right ventricular pacing, and for measuring right-sided pressures, including pulmonary capillary wedge pressure. This study included 178 patients who underwent major pulmonary resections, 36 who underwent pneumonectomy assigned as group (I) and 142 who underwent lobectomy assigned as group (II). The study was conducted at the cardiothoracic surgery department of Benha University hospital in Egypt; patients enrolled were operated on from February 2012 to February 2016. A rapid response thermistor pulmonary artery catheter was inserted via the right internal jugular vein. Preoperatively the following was recorded: central venous pressure, mean pulmonary artery pressure, pulmonary capillary wedge pressure, cardiac output, right ventricular ejection fraction and volumes. The same parameters were collected in fixed time intervals after 3 hours, 6 hours, 12 hours, 24 hours, and 48 hours postoperatively. For group (I): There were no statistically significant changes between the preoperative and postoperative records in the central venous pressure and mean arterial pressure; there were no statistically significant changes in the preoperative and 12, 24, and 48 hour postoperative records for cardiac index; 3 and 6 hours postoperative showed significant changes. There were statistically significant changes between the preoperative and postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index, in all postoperative records. For group (II): There were no statistically significant changes between the preoperative and all postoperative records for the central venous pressure, mean arterial pressure and cardiac index. There were statistically significant changes between the preoperative and postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index in all postoperative records. There were statistically significant changes between the two groups in all postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index. There is right ventricular dysfunction early after major pulmonary resection caused by increased right ventricular afterload. This dysfunction is more present in pneumonectomy than in lobectomy. Heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction, and right ventricular end diastolic volume index are significantly affected by pulmonary resection.

  8. Regulation of the pulmonary circulation

    PubMed Central

    Lee, G. de J.

    1971-01-01

    Factors regulating pressure and flow in the lungs are reviewed with particular emphasis on their role in regulating blood flow velocity and distribution within the lung capillaries. The behaviour of the pulmonary arterial, system, alveolar capillaries, and pulmonary venous system are considered individually. The effect of heart disease on lung capillary blood flow is examined. PMID:4929437

  9. Optical fiber-based on-line UV/Vis spectroscopic monitoring of chemical reaction kinetics under high pressure in a capillary microreactor.

    PubMed

    Benito-Lopez, Fernando; Verboom, Willem; Kakuta, Masaya; Gardeniers, J Han G E; Egberink, Richard J M; Oosterbroek, Edwin R; van den Berg, Albert; Reinhoudt, David N

    2005-06-14

    With a miniaturized (3 microL volume) fiber-optics based system for on-line measurement by UV/Vis spectroscopy, the reaction rate constants (at different pressures) and the activation volumes (deltaV(not =)) were determined for a nucleophilic aromatic substitution and an aza Diels-Alder reaction in a capillary microreactor.

  10. Paramecium swimming in capillary tube

    NASA Astrophysics Data System (ADS)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2012-04-01

    Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.

  11. Incorporating the Impacts of Small Scale Rock Heterogeneity into Models of Flow and Trapping in Target UK CO2 Storage Systems

    NASA Astrophysics Data System (ADS)

    Jackson, S. J.; Reynolds, C.; Krevor, S. C.

    2017-12-01

    Predictions of the flow behaviour and storage capacity of CO2 in subsurface reservoirs are dependent on accurate modelling of multiphase flow and trapping. A number of studies have shown that small scale rock heterogeneities have a significant impact on CO2flow propagating to larger scales. The need to simulate flow in heterogeneous reservoir systems has led to the development of numerical upscaling techniques which are widely used in industry. Less well understood, however, is the best approach for incorporating laboratory characterisations of small scale heterogeneities into models. At small scales, heterogeneity in the capillary pressure characteristic function becomes significant. We present a digital rock workflow that combines core flood experiments with numerical simulations to characterise sub-core scale capillary pressure heterogeneities within rock cores from several target UK storage reservoirs - the Bunter, Captain and Ormskirk sandstone formations. Measured intrinsic properties (permeability, capillary pressure, relative permeability) and 3D saturations maps from steady-state core flood experiments were the primary inputs to construct a 3D digital rock model in CMG IMEX. We used vertical end-point scaling to iteratively update the voxel by voxel capillary pressure curves from the average MICP curve; with each iteration more closely predicting the experimental saturations and pressure drops. Once characterised, the digital rock cores were used to predict equivalent flow functions, such as relative permeability and residual trapping, across the range of flow conditions estimated to prevail in the CO2 storage reservoirs. In the case of the Captain sandstone, rock cores were characterised across an entire 100m vertical transect of the reservoir. This allowed analysis of the upscaled impact of small scale heterogeneity on flow and trapping. Figure 1 shows the varying degree to which heterogeneity impacted flow depending on the capillary number in the Captain sandstone. At low capillary numbers, typical of regions where flow is dominated by buoyancy, fluid flow is impeded and trapping enhanced. At high capillary numbers, typical of the near wellbore environment, the fluid distributed homogeneously and the equivalent relative permeability was higher leading to improved injectivity.

  12. The unsaturated flow in porous media with dynamic capillary pressure

    NASA Astrophysics Data System (ADS)

    Milišić, Josipa-Pina

    2018-05-01

    In this paper we consider a degenerate pseudoparabolic equation for the wetting saturation of an unsaturated two-phase flow in porous media with dynamic capillary pressure-saturation relationship where the relaxation parameter depends on the saturation. Following the approach given in [13] the existence of a weak solution is proved using Galerkin approximation and regularization techniques. A priori estimates needed for passing to the limit when the regularization parameter goes to zero are obtained by using appropriate test-functions, motivated by the fact that considered PDE allows a natural generalization of the classical Kullback entropy. Finally, a special care was given in obtaining an estimate of the mixed-derivative term by combining the information from the capillary pressure with the obtained a priori estimates on the saturation.

  13. Soil-Moisture Retention Curves, Capillary Pressure Curves, and Mercury Porosimetry: A Theoretical and Computational Investigation of the Determination of the Geometric Properties of the Pore Space

    NASA Astrophysics Data System (ADS)

    Strand, T. E.; Wang, H. F.

    2003-12-01

    Immiscible displacement protocols have long been used to infer the geometric properties of the void space in granular porous media. The three most commonly used experimental techniques are the measurement of soil-moisture retention curves and relative permeability-capillary pressure-saturation relations, as well as mercury intrusion porosimetry experiments. A coupled theoretical and computational investigation was performed that provides insight into the limitations associated with each technique and quantifies the relationship between experimental observations and the geometric properties of the void space. It is demonstrated that the inference of the pore space geometry from both mercury porosimetry experiments and measurements of capillary pressure curves is influenced by trapping/mobilization phenomena and subject to scaling behavior. In addition, both techniques also assume that the capillary pressure at a location on the meniscus can be approximated by a pressure difference across a region or sample. For example, when performing capillary pressure measurements, the capillary pressure, taken to be the difference between the injected fluid pressure at the inlet and the defending fluid pressure at the outlet, is increased in a series of small steps and the fluid saturation is measured each time the system reaches steady. Regions of defending fluid that become entrapped by the invading fluid can be subsequently mobilized at higher flow rates (capillary pressures), contributing to a scale-dependence of the capillary pressure-saturation curve that complicates the determination of the properties of the pore space. This scale-dependence is particularly problematic for measurements performed at the core scale. Mercury porosimetry experiments are subject to similar limitations. Trapped regions of defending fluid are also present during the measurement of soil-moisture retention curves, but the effects of scaling behavior on the evaluation of the pore space properties from the immiscible displacement structure are much simpler to account for due to the control of mobilization phenomena. Some mobilization may occur due to film flow, but this can be limited by keeping time scales relatively small or exploited at longer time scales in order to quantify the rate of film flow. Computer simulations of gradient-stabilized drainage and imbibition to the (respective) equilibrium positions were performed using a pore-scale modified invasion percolation (MIP) model in order to quantify the relationship between the saturation profile and the geometric properties of the void space. These simulations are similar to the experimental measurement of soil-moisture retention curves. Results show that the equilibrium height and the width of the equilibrium fringe depend on two length scale distributions, one controlling the imbibition equilibrium structure and the other controlling the drainage structure. The equilibrium height is related to the mean value of the appropriate distribution as described by Jurin's law, and the width of the equilibrium fringe scales as a function of a combined parameter, the Bond number, Bo, divided by the coefficient of variation (cov). Simulations also demonstrate that the apparent radius distribution obtained from saturation profiles using direct inversion by Jurin's law is a subset of the actual distribution in the porous medium. The relationship between the apparent and actual radius distributions is quantified in terms of the combined parameter, Bo/cov, and the mean coordination number of the porous medium.

  14. Single molecule FRET investigation of pressure-driven unfolding of cold shock protein A

    NASA Astrophysics Data System (ADS)

    Schneider, Sven; Paulsen, Hauke; Reiter, Kim Colin; Hinze, Erik; Schiene-Fischer, Cordelia; Hübner, Christian G.

    2018-03-01

    We demonstrate that fused silica capillaries are suitable for single molecule fluorescence resonance energy transfer (smFRET) measurements at high pressure with an optical quality comparable to the measurement on microscope coverslips. Therefore, we optimized the imaging conditions in a standard square fused silica capillary with an adapted arrangement and evaluated the performance by imaging the focal volume, fluorescence correlation spectroscopy benchmarks, and FRET measurements. We demonstrate single molecule FRET measurements of cold shock protein A unfolding at a pressure up to 2000 bars and show that the unfolded state exhibits an expansion almost independent of pressure.

  15. Unsaturated flow characterization utilizing water content data collected within the capillary fringe

    USGS Publications Warehouse

    Baehr, Arthur; Reilly, Timothy J.

    2014-01-01

    An analysis is presented to determine unsaturated zone hydraulic parameters based on detailed water content profiles, which can be readily acquired during hydrological investigations. Core samples taken through the unsaturated zone allow for the acquisition of gravimetrically determined water content data as a function of elevation at 3 inch intervals. This dense spacing of data provides several measurements of the water content within the capillary fringe, which are utilized to determine capillary pressure function parameters via least-squares calibration. The water content data collected above the capillary fringe are used to calculate dimensionless flow as a function of elevation providing a snapshot characterization of flow through the unsaturated zone. The water content at a flow stagnation point provides an in situ estimate of specific yield. In situ determinations of capillary pressure function parameters utilizing this method, together with particle-size distributions, can provide a valuable supplement to data libraries of unsaturated zone hydraulic parameters. The method is illustrated using data collected from plots within an agricultural research facility in Wisconsin.

  16. Pulmonary arterial pressure and right ventricular dilatation independently determine tricuspid valve insufficiency severity in pre-capillary pulmonary hypertension.

    PubMed

    De Meester, Pieter; Van De Bruaene, Alexander; Delcroix, Marion; Belmans, Ann; Herijgers, Paul; Voigt, Jens-Uwe; Budts, Werner

    2012-11-01

    Elevated pulmonary artery systolic pressure (PASP) causes functional tricuspid valve insufficiency (TI). However, the differential contribution of pressure load and right ventricular (RV) dilatation is not well established. The study aim was to evaluate both variables in relation to TI. A cross-sectional study was performed of consecutive transthoracic echocardiographic studies of patients with pre-capillary pulmonary hypertension (PH). Both, demographic data and echocardiographic RV parameters were reviewed. TI was graded semi-quantitatively with color Doppler flow imaging. Trend analyses for TI severity (TI grade 0/4, 1/4, 2/4, 3/4, or 4/4) were performed. A proportional odds logistic regression analysis was carried out to identify independent predictors of TI severity. Eighty-one patients (56 females, 25 males; mean age 60 +/- 15 years) with pre-capillary PH were evaluated. Patients with more severe TI had a significantly lower body mass index, a lower mean systemic blood pressure, a shorter pulmonary acceleration time, a higher tricuspid regurgitant gradient, and a more dilated right ventricle. From the echocardiographic parameters, RV dilatation (p = 0.0143) and the tricuspid regurgitant gradient (p = 0.0026) were independently related to the degree of TI. In patients with pre-capillary PH, PASP and RV dilatation were both related to the increasing severity of TI. When focusing on TI to improve the prognosis of patients with pre-capillary PH, both PASP and RV dimensions should be taken into consideration.

  17. Miniaturised electrically actuated high pressure injection valve for portable capillary liquid chromatography.

    PubMed

    Li, Yan; Pace, Kirsten; Nesterenko, Pavel N; Paull, Brett; Stanley, Roger; Macka, Mirek

    2018-04-01

    A miniaturised high pressure 6-port injection valve has been designed and evaluated for its performance in order to facilitate the development of portable capillary high performance liquid chromatography (HPLC). The electrically actuated valve features a very small size (65 × 19 × 19mm) and light weight (33g), and therefore can be easily integrated in a miniaturised modular capillary LC system suited for portable field analysis. The internal volume of the injection valve was determined as 98 nL. The novel conical shape of the stator and rotor and the spring-loaded rotor performed well up to 32MPa (4641psi), the maximum operating pressure investigated. Suitability for application was demonstrated using a miniaturised capillary LC system applied to the chromatographic separation of a mixture of biogenic amines and common cations. The RSD (relative standard deviation) values of retention times and peak areas of 6 successive runs were 0.5-0.7% and 1.8-2.8% for the separation of biogenic amines, respectively, and 0.1-0.2% and 2.1-3.0% for the separation of cations, respectively. This performance was comparable with bench-top HPLC systems thus demonstrating the applicability of the valve for use in portable and miniaturised capillary HPLC systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Constant pressure-assisted head-column field-amplified sample injection in combination with in-capillary derivatization for enhancing the sensitivity of capillary electrophoresis.

    PubMed

    Yan, Na; Zhou, Lei; Zhu, Zaifang; Zhang, Huige; Zhou, Ximin; Chen, Xingguo

    2009-05-15

    In this work, a novel method combining constant pressure-assisted head-column field-amplified sample injection (PA-HC-FASI) with in-capillary derivatization was developed for enhancing the sensitivity of capillary electrophoresis. PA-HC-FASI uses an appropriate positive pressure to counterbalance the electroosmotic flow in the capillary column during electrokinetic injection, while taking advantage of the field amplification in the sample matrix and the water of the "head column". Accordingly, the analytes were stacked at the stationary boundary between water and background electrolyte. After 600s PA-HC-FASI, 4-fluoro-7-nitro-2,1,3-benzoxadiazole as derivatization reagent was injected, followed by an electrokinetic step (5kV, 45s) to enhance the mixing efficiency of analytes and reagent plugs. Standing a specified time of 10min for derivatization reaction under 35 degrees C, then the capillary temperature was cooled to 25 degrees C and the derivatives were immediately separated and determined under 25 degrees C. By investigating the variables of the presented approach in detail, on-line preconcentration, derivatization and separation could be automatically operated in one run and required no modification of current CE commercial instrument. Moreover, the sensitivity enhancement factor of 520 and 800 together with the detection limits of 16.32 and 6.34pg/mL was achieved for model compounds: glufosinate and aminomethylphosphonic acid, demonstrating the high detection sensitivity of the presented method.

  19. Interfacial spreading effects on one-dimensional organic liquid imbibition in water-wetted porous media

    NASA Astrophysics Data System (ADS)

    McBride, J. F.; Simmons, C. S.; Cary, J. W.

    1992-10-01

    The spreading coefficient, Csp, determines whether an organic immiscible liquid, OIL, will form a lens ( Csp < 0) or will spread spontaneously ( Csp > 0) on a water surface. An OIL that forms a lens does not perfectly wet the water surface and therefore has a contact angle greater than 0°. The one-dimensional rate at which an OIL spreads spontaneously on a water surface is proportional to the square root of Csp. Of the OIL's that pose a contaminant threat to the subsurface, the majority has a non-zero Csp. To test the influence of such interfacial spreading phenomena on OIL infiltration in a pristine vadose zone, upward OIL and water imbibition infiltration experiments were performed in glass-bead columns, moistened with water, by using OIL's with different Csp. An analytical model for saturated liquid front rise was used to inversely estimate the effective capillary pressure head at the front and the average liquid conductivity. A nonspreading OIL ( Csp ≪ 0) exhibited a reduced capillary pressure head in the water-wetted glass beads. A spontaneously spreading OIL ( Csp ≫0) manifested an enhanced capillary pressure head. Reduced capillary pressure head was associated with an increase in average conductivity, and enhanced capillary pressure head was associated with a decrease in average conductivity when compared to the average water conductivity during water imbibition. The employed experimental method and mathematical analysis of dynamic flow, subject to interfacial spreading phenomena, are practical for quantifying parameters for use in sharp-front OIL infiltration models, but more research is needed to determine how to incorporate the spreading coefficient in numerical multiphase flow models.

  20. Percutaneous excretion of iron and ferritin (through Al-hijamah) as a novel treatment for iron overload in beta-thalassemia major, hemochromatosis and sideroblastic anemia.

    PubMed

    El Sayed, Salah Mohamed; Abou-Taleb, Ashraf; Mahmoud, Hany Salah; Baghdadi, Hussam; Maria, Reham A; Ahmed, Nagwa Sayed; Nabo, Manal Mohamed Helmy

    2014-08-01

    Iron overload is a big challenge when treating thalassemia (TM), hemochromatosis and sideroblastic anemia. It persists even after cure of TM with bone marrow transplantation. Iron overload results from increased iron absorption and repeated blood transfusions causing increased iron in plasma and interstitial fluids. Iron deposition in tissues e.g. heart, liver, endocrine glands and others leads to tissue damage and organ dysfunction. Iron chelation therapy and phlebotomy for iron overload have treatment difficulties, side effects and contraindications. As mean iron level in skin of TM patients increases by more than 200%, percutaneous iron excretion may be beneficial. Wet cupping therapy (WCT) is a simple, safe and economic treatment. WCT is a familiar treatment modality in some European countries and in Chinese hospitals in treating different diseases. WCT was reported to clear both blood plasma and interstitial spaces from causative pathological substances (CPS). Standard WCT method is Al-hijamah (cupping, puncturing and cupping, CPC) method of WCT that was reported to clear blood and interstitial fluids better than the traditional WCT (puncturing and cupping method, PC method of WCT). In other word, traditional WCT may be described as scarification and suction method (double S technique), while Al-hijamah may be described as suction, scarification and suction method (triple S technique). Al-hijamah is a more comprehensive treatment modality that includes all steps and therapeutic benefits of traditional dry cupping therapy and WCT altogether according to the evidence-based Taibah mechanism (Taibah theory). During the first cupping step of Al-hijamah, a fluid mixture is collected inside skin uplifting due to the effect of negative pressure inside sucking cups. This fluid mixture contains collected interstitial fluids with CPS (iron, ferritin and hemolyzed RBCs in thalassemia), filtered fluids (from blood capillaries) with iron and hemolyzed blood cells (hemolyzed RBCs, WBCs and platelets). That fluid mixture does not contain intact blood cells (having diameters in microns) that are too big to pass through pores of skin capillaries (6-12nm in diameter) and cannot be filtered. Puncturing skin upliftings and applying second cupping step excrete collected fluids. Skin scarifications (shartat mihjam in Arabic) should be small, superficial (0.1mm in depth), short (1-2mm in length), multiple, evenly distributed and confined to skin upliftings. Sucking pressure inside cups (-150 to -420mmHg) applied to skin is transmitted to around skin capillaries to be added to capillary hydrostatic pressure (-33mmHg at arterial end of capillaries and -13mmHg at venous end of capillaries) against capillary osmotic pressure (+20mmHg). This creates a pressure gradient and a traction force across skin and capillaries and increases filtration at arterial end of capillaries at net pressure of -163 to -433mmHg and at venous end of capillaries at net pressure of -143 to -413mmHg resulting in clearance of blood from CPS (iron, ferritin and hemolyzed blood cells). Net filtration pressure at renal glomeruli is 10mmHg i.e. Al-hijamah exerts a more pressure-dependent filtration than renal glomeruli. Al-hijamah may benefit patients through inducing negative iron balance. Interestingly, Al-hijamah was reported to decrease serum ferritin significantly (by about 22%) in healthy subjects while excessive traditional WCT was reported to cause iron deficiency anemia. Al-hijamah is a highly recommended treatment in prophetic medicine. In conclusion, Al-hijamah may be a promising adjuvant treatment for iron overload in TM, hemochromatosis and sideroblastic anemia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.

    PubMed

    Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai

    2017-02-14

    The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.

  2. Early regimes of water capillary flow in slit silica nanochannels.

    PubMed

    Oyarzua, Elton; Walther, Jens H; Mejía, Andrés; Zambrano, Harvey A

    2015-06-14

    Molecular dynamics simulations are conducted to investigate the initial stages of spontaneous imbibition of water in slit silica nanochannels surrounded by air. An analysis is performed for the effects of nanoscopic confinement, initial conditions of liquid uptake and air pressurization on the dynamics of capillary filling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes: an initial regime where the capillary force is balanced only by the inertial drag and characterized by a constant velocity and a plug flow profile. In this regime, the meniscus formation process plays a central role in the imbibition rate. Thereafter, a transitional regime takes place, in which, the force balance has significant contributions from both inertia and viscous friction. Subsequently, a regime wherein viscous forces dominate the capillary force balance is attained. Flow velocity profiles identify the passage from an inviscid flow to a developing Poiseuille flow. Gas density profiles ahead of the capillary front indicate a transient accumulation of air on the advancing meniscus. Furthermore, slower capillary filling rates computed for higher air pressures reveal a significant retarding effect of the gas displaced by the advancing meniscus.

  3. Design of an experimental apparatus for measurement of the surface tension of metastable fluids

    NASA Astrophysics Data System (ADS)

    Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.

    2013-04-01

    A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.

  4. Light propagation in the micro-size capillary injected by high temperature liquid

    NASA Astrophysics Data System (ADS)

    Li, Yan-jun; Li, Edward; Xiao, Hai

    2016-11-01

    The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperature liquid tin into the micro-size capillary by using a high pressure difference system. After pumping, a single mode fiber (SMF) connected with the optical carrier based microwave interferometry (OCMI) system is used to measure different liquid tin levels in the micro-size capillary. The second method can pump the room temperature engine oil into the capillary by using a syringe pump. This method can avoid the air bubbles when the liquids are pumped into the capillary.

  5. Pressure-driven occlusive flow of a confined red blood cell.

    PubMed

    Savin, Thierry; Bandi, M M; Mahadevan, L

    2016-01-14

    When red blood cells (RBCs) move through narrow capillaries in the microcirculation, they deform as they flow. In pathophysiological processes such as sickle cell disease and malaria, RBC motion and flow are severely restricted. To understand this threshold of occlusion, we use a combination of experiment and theory to study the motion of a single swollen RBC through a narrow glass capillary of varying inner diameter. By tracking the movement of the squeezed cell as it is driven by a controlled pressure drop, we measure the RBC velocity as a function of the pressure gradient as well as the local capillary diameter, and find that the effective blood viscosity in this regime increases with both decreasing RBC velocity and tube radius by following a power-law that depends upon the length of the confined cell. Our observations are consistent with a simple elasto-hydrodynamic model and highlight the role of lateral confinement in the occluded pressure-driven slow flow of soft confined objects.

  6. Effect of wave action on near-well zone cleaning

    NASA Astrophysics Data System (ADS)

    Pen'kovskii, V. I.; Korsakova, N. K.

    2017-10-01

    Drilling filtrate invasion into the producing formation and native water accumulating of the near-well zone in well operation reduce the well productivity. As a result of that, depending on characteristic capillary pressure scale and differential pressure drawdown, oil production rate may become lower than expected one. In this paper, it is considered the hysteresis effects of capillary pressure after reversion of displacement. As applied to laboratory experiment conditions, the solution of problem of oil flow in formation model with a pressure drop on the model sides harmonically varied with time is presented. It was estimated a range of fluid vibration effective action on the near-well zone cleaning from capillary locking water. The plant simulating extraction of oil from formation using widely practised sucker-rod pump has been created. Formation model is presented as a slot filled with broken glass between two plates. In the process, natural oil and sodium chloride solution were used as working fluids. The experiments qualitatively confirm a positive effect of jack pumps on the near-well zone cleaning.

  7. Fabrication of self-enclosed nanochannels based on capillary-pressure balance mechanism

    NASA Astrophysics Data System (ADS)

    Kou, Yu; Sang, Aixia; Li, Xin; Wang, Xudi

    2017-10-01

    Polymer-based micro/nano fluidic devices are becoming increasingly important to biological applications and fluidic control. In this paper, we propose a self-enclosure method for the fabrication of large-area nanochannels without external force by using a capillary-pressure balance mechanism. The melt polymer coated on the nanogrooves fills into the trenches inevitably and the air in the trenches is not excluded but compressed, which leads to an equilibrium state between pressure of the trapped air and capillary force of melt polymer eventually, resulting in the channels’ formation. A pressure balance model was proposed to elucidate the unique self-sealing phenomenon and the criteria for the design and construction of sealed channels was discussed. According to the bonding mechanism investigated using the volume of fluid (VOF) simulation and experiments, we can control the dimension of sealed channels by varying the baking condition. This fabrication technique has great potential for low-cost and mass production of polymeric-based micro/nano fluidic devices.

  8. Capillary Flows Along Open Channel Conduits: The Open-Star Section

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark; Geile, John; Chen, Yongkang; Nguyen, Thanh Tung; Callahan, Michael

    2014-01-01

    Capillary rise in tubes, channels, and grooves has received significant attention in the literature for over 100 years. In yet another incremental extension of such work, a transient capillary rise problem is solved for spontaneous flow along an interconnected array of open channels forming what is referred to as an 'open-star' section. This geometry possesses several attractive characteristics including passive phase separations and high diffusive gas transport. Despite the complex geometry, novel and convenient approximations for capillary pressure and viscous resistance enable closed form predictions of the flow. As part of the solution, a combined scaling approach is applied that identifies unsteady-inertial-capillary, convective-inertial-capillary, and visco-capillary transient regimes in a single parameter. Drop tower experiments are performed employing 3-D printed conduits to corroborate all findings.

  9. Proof Of Concept of Integrated Load Measurement in 3D Printed Structures

    DOE PAGES

    Hinderdael, Michael; Strantza, Maria; De Baere, Dieter; ...

    2017-02-09

    Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externallymore » mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain).« less

  10. Proof Of Concept of Integrated Load Measurement in 3D Printed Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinderdael, Michael; Strantza, Maria; De Baere, Dieter

    Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externallymore » mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain).« less

  11. Proof of Concept of Integrated Load Measurement in 3D Printed Structures

    PubMed Central

    Hinderdael, Michaël; Jardon, Zoé; Lison, Margot; De Baere, Dieter; Devesse, Wim; Strantza, Maria; Guillaume, Patrick

    2017-01-01

    Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM) technique was used to integrate a strain sensing element inside polymer (ABS) tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externally mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid) is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain), but 32 times more sensitive than the same sensor based on air (compressible fluid) (±101 µstrain). PMID:28208779

  12. Independent Assessment of the Backshell Pressure Field for Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2)

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Shoenenberger, Mark

    2017-01-01

    The Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2) project requested that the NASA Engineering and Safety Center (NESC) support a ballistic range test to measure backshell pressures on scale models of the Mars 2020 entry capsule. The MEDLI2 project needed the test to provide important dynamic pressure data to help select a backshell pressure port, quantify drag coefficient reconstruction uncertainties, and design the data acquisition hardware. This document contains the outcome of the NESC assessment.

  13. Lattice Boltzmann simulations of supercritical CO2-water drainage displacement in porous media: CO2 saturation and displacement mechanism.

    PubMed

    Yamabe, Hirotatsu; Tsuji, Takeshi; Liang, Yunfeng; Matsuoka, Toshifumi

    2015-01-06

    CO2 geosequestration in deep aquifers requires the displacement of water (wetting phase) from the porous media by supercritical CO2 (nonwetting phase). However, the interfacial instabilities, such as viscous and capillary fingerings, develop during the drainage displacement. Moreover, the burstlike Haines jump often occurs under conditions of low capillary number. To study these interfacial instabilities, we performed lattice Boltzmann simulations of CO2-water drainage displacement in a 3D synthetic granular rock model at a fixed viscosity ratio and at various capillary numbers. The capillary numbers are varied by changing injection pressure, which induces changes in flow velocity. It was observed that the viscous fingering was dominant at high injection pressures, whereas the crossover of viscous and capillary fingerings was observed, accompanied by Haines jumps, at low injection pressures. The Haines jumps flowing forward caused a significant drop of CO2 saturation, whereas Haines jumps flowing backward caused an increase of CO2 saturation (per injection depth). We demonstrated that the pore-scale Haines jumps remarkably influenced the flow path and therefore equilibrium CO2 saturation in crossover domain, which is in turn related to the storage efficiency in the field-scale geosequestration. The results can improve our understandings of the storage efficiency by the effects of pore-scale displacement phenomena.

  14. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu

    1988-12-01

    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  15. Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays.

    PubMed

    Weng, Kuo-Yao; Chou, Nien-Jen; Cheng, Jya-Wei

    2008-07-01

    An innovative vacuum capillary pneumatic actuation concept that can be used for point-of-care testing has been investigated. The vacuum glass capillaries are encapsulated within a laminated pouch and incorporated into the fluidic card. Vacuum glass capillaries broken by external force such as finger pressure, generate the pneumatic forces to induce liquid flow in the fluidic system. The sizes of vacuum capillary play a vital role in the pumping and metering functions of the system. The luteinizing hormone (LH) chromatographic immunoassay performances in the fluidic cards show consistency comparable to that obtained by manual micropipetting. The vacuum capillary pneumatic actuation will be applied in other complex handling step bioassays and lab-on-a-chip devices.

  16. Pressure-viscosity measurements for several lubricants to 5.5 x 10 to the 8th power Newtons per square meter (8 x 10 to the 4th psi) and 149 C (300 F)

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Johnson, R. L.; Winer, W. O.; Sanborn, D. M.

    1974-01-01

    A capillary viscometer was used to measure viscosity as a function of pressure, temperature, and shear stress for a number of lubricants. The conditions under which the measurements were made are specified. The results obtained for each material are analyzed. It was determined that all pressure-viscosity coefficients decreased with increasing temperature. Data from other techniques such as optical elastohydrodynamics, oscillating crystal, and low shear capillary viscometry were compared with the results obtained.

  17. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar

    1995-01-01

    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethysmography of supine healthy male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n = 6) and during placebo infusion (n = 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 +/- 4 to 2,568 +/- 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion: mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3%, respectively, relative to preinfusion baseline values (p less than 0.05). Mean calf filtration, however, was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20% with ANP infusion, whereas blood pressure was unchanged. Calf conductance (blood flow/ arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, pharmacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchnic sites or both, while having the opposite effect in the leg.

  18. Numerical investigations of two-phase flow with dynamic capillary pressure in porous media via a moving mesh method

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zegeling, Paul Andries

    2017-09-01

    Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow in porous media incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a traveling wave ansatz and efficient numerical methods. The traveling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behavior. Special attention is paid to the non-monotonic profiles. The traveling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.

  19. Implementation of high slurry concentration and sonication to pack high-efficiency, meter-long capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Godinho, Justin M; Reising, Arved E; Tallarek, Ulrich; Jorgenson, James W

    2016-09-02

    Slurry packing capillary columns for ultrahigh pressure liquid chromatography is complicated by many interdependent experimental variables. Previous results have suggested that combination of high slurry concentration and sonication during packing would create homogeneous bed microstructures and yield highly efficient capillary columns. Herein, the effect of sonication while packing very high slurry concentrations is presented. A series of six, 1m×75μm internal diameter columns were packed with 200mg/mL slurries of 2.02μm bridged-ethyl hybrid silica particles. Three of the columns underwent sonication during packing and yielded highly efficient separations with reduced plate heights as low as 1.05. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Thermal diffusion of radon in porous media.

    PubMed

    Minkin, L

    2003-01-01

    Based on the non-intersection model of cylindrical capillaries, the mean radius of the pores of some soils and building materials are estimated. In size, the above-mentioned radii are usually of the order of the free path of gas molecules at atmospheric pressure. A review of pore size distribution data also reveals that a large fraction of concrete pores belong to Knudsen's region. This fact indicates that the thermal gradient in these media must cause gas (radon) transport. The interpretation of the experimental data concerning the rate of emanation of 222Rn from a concrete-capped source subjected to a sudden increase in temperature is given, based on irreversible thermodynamics theory. The calculations given here for radon flux, caused by concentration and thermal gradients, are in satisfactory agreement with the experimental data. It is shown that thermodiffusion can significantly contribute to radon flux in concrete. The need to include the thermodiffusion radon flux in the radon entry model is discussed.

  1. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  2. Experimental Simulations of Methane Gas Migration through Water-Saturated Sediment Cores

    NASA Astrophysics Data System (ADS)

    Choi, J.; Seol, Y.; Rosenbaum, E. J.

    2010-12-01

    Previous numerical simulations (Jaines and Juanes, 2009) showed that modes of gas migration would mainly be determined by grain size; capillary invasion preferably occurring in coarse-grained sediments vs. fracturing dominantly in fine-grained sediments. This study was intended to experimentally simulate preferential modes of gas migration in various water-saturated sediment cores. The cores compacted in the laboratory include a silica sand core (mean size of 180 μm), a silica silt core (1.7 μm), and a kaolin clay core (1.0 μm). Methane gas was injected into the core placed within an x-ray-transparent pressure vessel, which was under continuous x-ray computed tomography (CT) scanning with controlled radial (σr), axial (σa), and pore pressures (P). The CT image analysis reveals that, under the radial effective stress (σr') of 0.69 MPa and the axial effective stress (σa') of 1.31 MPa, fracturings by methane gas injection occur in both silt and clay cores. Fracturing initiates at the capillary pressure (Pc) of ~ 0.41 MPa and ~ 2.41 MPa for silt and clay cores, respectively. Fracturing appears as irregular fracture-networks consisting of nearly invisibly-fine multiple fractures, longitudinally-oriented round tube-shape conduits, or fine fractures branching off from the large conduits. However, for the sand core, only capillary invasion was observed at or above 0.034 MPa of capillary pressure under the confining pressure condition of σr' = 1.38 MPa and σa' = 2.62 MPa. Compared to the numerical predictions under similar confining pressure conditions, fracturing occurs with relatively larger grain sizes, which may result from lower grain-contact compression and friction caused by loose compaction and flexible lateral boundary employed in the experiment.

  3. New type of capillary for use as ion beam collimator and air-vacuum interface

    NASA Astrophysics Data System (ADS)

    Stoytschew, V.; Schulte-Borchers, M.; Božičević Mihalića, Iva; Perez, R. D.

    2016-08-01

    Glass capillaries offer a unique way to combine small diameter ion beam collimation with an air-vacuum interface for ambient pressure ion beam applications. Usually they have an opening diameter of a few microns, limiting the air inflow sufficiently to maintain stable conditions on the vacuum side. As the glass capillaries generally are quite thin and fragile, handling of the capillary in the experiment becomes difficult. They also introduce an X-ray background produced by the capillary wall material, which has to be shielded or subtracted from the data for Particle Induced X-ray Emission (PIXE) applications. To overcome both drawbacks, a new type of conical glass capillary has been developed. It has a higher wall thickness eliminating the low energy X-ray background produced by common capillaries and leading to a more robust lens. The results obtained in first tests show, that this new capillary is suitable for ion beam collimation and encourage further work on the capillary production process to provide thick wall capillaries with an outlet diameter in the single digit micro- or even nanometre range.

  4. Pulmonary hypertension and ventilation during exercise: Role of the pre-capillary component.

    PubMed

    Caravita, Sergio; Faini, Andrea; Deboeck, Gael; Bondue, Antoine; Naeije, Robert; Parati, Gianfranco; Vachiéry, Jean-Luc

    2017-07-01

    Excessive exercise-induced hyperventilation and high prevalence of exercise oscillatory breathing (EOB) are present in patients with post-capillary pulmonary hypertension (PH) complicating left heart disease (LHD). Patients with pre-capillary PH have even higher hyperventilation but no EOB. We sought to determine the impact of a pre-capillary component of PH on ventilatory response to exercise in patients with PH and left heart disease. We retrospectively compared patients with idiopathic or heritable pulmonary arterial hypertension (PAH, n = 29), isolated post-capillary PH (IpcPH, n = 29), and combined post- and pre-capillary PH (CpcPH, n = 12). Diastolic pressure gradient (DPG = diastolic pulmonary artery pressure - pulmonary wedge pressure) was used to distinguish IpcPH (DPG <7 mm Hg) from CpcPH (DPG ≥7 mm Hg). Pulmonary vascular resistance (PVR) was higher in PAH, intermediate in CpcPH, and low in IpcPH. All patients with CpcPH but 1 had PVR >3 Wood unit. Exercise-induced hyperventilation (high minute ventilation over carbon dioxide production, low end-tidal carbon dioxide) was marked in PAH, intermediate in CpcPH, and low in IpcPH (p < 0.001) and correlated with DPG and PVR. Prevalence of EOB decreased from IpcPH to CpcPH to PAH (p < 0.001). Patients with CpcPH may have worse hemodynamics than patients with IpcPH and distinct alterations of ventilatory control, consistent with more exercise-induced hyperventilation and less EOB. This might be explained at least in part by the presence and extent of pulmonary vascular disease. Copyright © 2017 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Application of the FADS system on the Re-entry Module

    NASA Astrophysics Data System (ADS)

    Zhen, Huang

    2016-07-01

    The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.

  6. Engineering and Design: Indoor Radon Prevention and Mitigation

    DTIC Science & Technology

    1993-09-15

    slabs on grade, capillary water barrier below floor slabs on grade, dampproofing or waterproofing and protection board on below grade walls, sealants in...will be lapped 12 inches and sealed with adhesives or pressure sensitive tape and sealed at foundation walls with mastic. Capillary water barrier will...Systems, Letter Codes B, C, and D. Sub- slab suction systems consist of 4 inch diameter perforated PVC pipe laid in the capillary water barrier below floor

  7. Why alite stops hydrating below 80% relative humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flatt, Robert J.; Scherer, George W., E-mail: scherer@princeton.edu; Bullard, Jeffrey W.

    2011-09-15

    It has been observed that the hydration of cement paste stops when the relative humidity drops below about 80%. A thermodynamic analysis shows that the capillary pressure exerted at that RH shifts the solubility of tricalcium silicate, so that it is in equilibrium with water. This is a reflection of the chemical shrinkage in this system: according to Le Chatelier's principle, since the volume of the products is less than that of the reactants, a negative (capillary) pressure opposes the reaction.

  8. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.

  9. End-faced waveguide mediated optical propulsion of microspheres and single cells in a microfluidic device.

    PubMed

    Lilge, Lothar; Shah, Duoaud; Charron, Luc

    2013-07-07

    Single cell transport in microfluidic devices is a topic of interest as their utility is becoming appreciated by cell and molecular biologist. Cell transport should minimize mechanical stress due to friction or pressure gradients. Optical forces have the advantage of applying their forces across the cell volume and not only at the cell membrane and are thus preferable. Optical pushing by scattering force is a suitable candidate so highly dependent on the photon irradiance field inside the propagation capillary which in turn is determined by the waveguide properties delivering the radiation pressure. Here we present a numerical approach to predict the optical scattering force, speed and trajectory of cells as a function of waveguide and propagation capillary geometry. Experimental verification of the simulation approach is demonstrated using polystyrene microspheres and leukemia cells. Effects of optical fibre to waveguide alignment, capillary wall angle and temperature on the dynamic viscosity on speed and position of the microspheres and cells inside the propagation capillary are demonstrated.

  10. Role of Re-entry Tears on the Dynamics of Type B Dissection Flap.

    PubMed

    Canchi, Saranya; Guo, Xiaomei; Phillips, Matt; Berwick, Zachary; Kratzberg, Jarin; Krieger, Joshua; Roeder, Blayne; Haulon, Stephan; Chambers, Sean; Kassab, Ghassan S

    2018-01-01

    Mortality during follow-up after acute Type B aortic dissection is substantial with aortic expansion observed in over 59% of the patients. Lumen pressure differential is considered a prime contributing factor for aortic dilation after propagation. The objective of the study was to evaluate the relationship between changes in vessel geometry with and without lumen pressure differential post propagation in an ex vivo porcine model with comparison with patient clinical data. A pulse duplicator system was utilized to propagate the dissection within descending thoracic porcine aortic vessels for set proximal (%circumference of the entry tear: 40%, axial length: 2 cm) and re-entry (50% of distal vessel circumference) tear geometry. Measurements of lumen pressure differential were made along with quantification of vessel geometry (n = 16). The magnitude of mean lumen pressure difference measured after propagation was low (~ 5 mmHg) with higher pressures measured in false lumen and as anticipated the pressure difference approached zero after the creation of distal re-entry tear. False lumen Dissection Ratio (FDR) defined as arc length of dissected wall divided by arc length of dissection flap, had mean value of 1.59 ± 0.01 at pressure of 120/80 mmHg post propagation with increasing values with increase in pulse pressure that was not rescued with the creation of distal re-entry tear (p < 0.01). An average FDR of 1.87 ± 0.27 was measured in patients with acute Type B dissection. Higher FDR value (FDR = 1 implies zero dissection) in the presence of distal re-entry tear demonstrates an acute change in vessel morphology in response to the dissection independent of local pressure changes challenges the re-apposition of the aortic wall.

  11. Automated Parallel Capillary Electrophoretic System

    DOEpatents

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  12. Fluid Delivery System For Capillary Electrophoretic Applications.

    DOEpatents

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  13. Micromechanism linear actuator with capillary force sealing

    DOEpatents

    Sniegowski, Jeffry J.

    1997-01-01

    A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.

  14. Ambulatory blood pressure and heart rate during shuttle flight, entry and landing

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Moore, T. P.; Uri, J.

    1993-01-01

    Ambulatory blood pressures (BP) and heart rates (HR) were recorded on a series of early Shuttle flights during preflight and pre-entry, entry, landing and egress. There were no significant differences between flight and preflight values during routine activity. Systolic blood pressure was slightly elevated in the deorbit period and systolic and diastolic blood pressure and heart rates were all elevated with onset of gravitoinertial loads and remained so through egress. Two of seven subjects had orthostatic problems in egress but their data did not show significant differences from others except in heart rate. Comparison of this data to that from recent studies show even larger increase in HR/BP values during current deorbit and entry phases which is consistent with increased heat and weight loads imposed by added survival gear. Both value and limitations of ambulatory heart rate/blood pressure data in this situation are demonstrated.

  15. Automatic sampling and analysis of organics and biomolecules by capillary action-supported contactless atmospheric pressure ionization mass spectrometry.

    PubMed

    Hsieh, Cheng-Huan; Meher, Anil Kumar; Chen, Yu-Chie

    2013-01-01

    Contactless atmospheric pressure ionization (C-API) method has been recently developed for mass spectrometric analysis. A tapered capillary is used as both the sampling tube and spray emitter in C-API. No electric contact is required on the capillary tip during C-API mass spectrometric analysis. The simple design of the ionization method enables the automation of the C-API sampling system. In this study, we propose an automatic C-API sampling system consisting of a capillary (∼1 cm), an aluminium sample holder, and a movable XY stage for the mass spectrometric analysis of organics and biomolecules. The aluminium sample holder is controlled by the movable XY stage. The outlet of the C-API capillary is placed in front of the orifice of a mass spectrometer, whereas the sample well on the sample holder is moved underneath the capillary inlet. The sample droplet on the well can be readily infused into the C-API capillary through capillary action. When the sample solution reaches the capillary outlet, the sample spray is readily formed in the proximity of the mass spectrometer applied with a high electric field. The gas phase ions generated from the spray can be readily monitored by the mass spectrometer. We demonstrate that six samples can be analyzed in sequence within 3.5 min using this automatic C-API MS setup. Furthermore, the well containing the rinsing solvent is alternately arranged between the sample wells. Therefore, the C-API capillary could be readily flushed between runs. No carryover problems are observed during the analyses. The sample volume required for the C-API MS analysis is minimal, with less than 1 nL of the sample solution being sufficient for analysis. The feasibility of using this setup for quantitative analysis is also demonstrated.

  16. Heterogeneous Nucleation Induced by Capillary Wave During Acoustic Levitation

    NASA Astrophysics Data System (ADS)

    Lü, Yong-Jun; Xie, Wen-Jun; Wei, Bing-Bo

    2003-08-01

    The rapid solidification of acoustically levitated drops of Pb-61.9 wt.%Sn eutectic alloy is accomplished. A surface morphology of spreading ripples is observed on a sample undercooled by 15 K. The ripples originate from the centre of sample surface, which is also the heterogeneous nucleation site for eutectic growth. The Faraday instability excited by forced surface vibration has brought about these ripples. They are retained in the solidified sample if the sound pressure level exceeds the threshold pressure required for the appearance of capillary waves. Theoretical calculations indicate that both the pressure and displacement maxima exist in the central part of a levitated drop. The pressure near the sample centre can promote heterogeneous nucleation, which is in agreement qualitatively with the experimental results.

  17. Regulation of store-operated Ca{sup 2+} entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kito, Hiroaki; Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto; Yamamura, Hisao

    2015-04-10

    Store-operated Ca{sup 2+} entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cyclemore » progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca{sup 2+} influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs.« less

  18. Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries.

    PubMed

    Hsiao, Erik; Marino, Matthew J; Kim, Seong H

    2010-12-15

    This paper explains the origin of the vapor pressure dependence of the asperity capillary force in vapor environments. A molecular adsorbate layer is readily formed on solid surface in ambient conditions unless the surface energy of the solid is low enough and unfavorable for vapor adsorption. Then, the capillary meniscus formed around the solid asperity contact should be in equilibrium with the adsorbate layer, not with the bare solid surface. A theoretical model incorporating the vapor adsorption isotherm into the solution of the Young-Laplace equation is developed. Two contact geometries--sphere-on-flat and cone-on-flat--are modeled. The calculation results show that the experimentally-observed strong vapor pressure dependence can be explained only when the adsorption isotherm of the vapor on the solid surface is taken into account. The large relative partial pressure dependence mainly comes from the change in the meniscus size due to the presence of the adsorbate layer. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Radon entry into basements: Approach, experimental structures, and instrumentation of the small structures research project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, W.J.; Modera, M.P.; Sextro, R.G.

    1992-02-01

    We describe the experimental approach, structures, and instrumentation of a research project on radon generation and transport in soil and entry into basements. The overall approach is to construct small precisely-fabricated basements in areas of different geology and climate, to control the pressures and ventilation rates in the structures, and to monitor radon concentrations and other relevant parameters over a period of one year or more. Two nearly air-tight structures have been constructed at the first site. The floor of each structure contains adjustable-width slots that serve as the only significant pathway for advective entry of radon. A layer ofmore » gravel underlays the floor of one structure; otherwise they are identical. The structures are instrumented for continuous or periodic monitoring of soil, structural, and meteorological parameters that affect radon entry. The pressure difference that drives advective radon entry can be maintained constant or varied over time. Soil gas and radon entry rates and associated parameters, such as soil gas pressures and radon concentrations, have been monitored for a range of steady-state and time-varying pressure differences between the interior of the structure and the soil. Examples of the experimentally-measured pressure and permeability fields in the soil around a structure are presented and discussed.« less

  20. High pressure flow-rate switch

    NASA Technical Reports Server (NTRS)

    Gale, G. P.

    1970-01-01

    Flow-rate switch adjusts easily over a wide switching range and operates uniformly over many cycles. It adapts easily to control of various fluids and has the possibility of introducing multi-point switching. Novel design features include the tapered spool, balanced porting, capillary-bypass lubrication, and capillary-restriction damping.

  1. Flow Analysis of Isobutane (R-600A) Inside AN Adiabatic Capillary Tube

    NASA Astrophysics Data System (ADS)

    Alok, Praveen; Sahu, Debjyoti

    2018-02-01

    Capillary tubes are simple narrow tubes but the phase change which occurs inside the capillary tubes is complex to analyze. In the present investigation, an attempt is made to analyze the flow of Isobutane (R-600a) inside the coiled capillary tubes for different load conditions by Homogeneous Equilibrium Model. The Length and diameter of the capillary tube not only depend on the pressure and temperature of the condenser and evaporator but also on the cooling load. The present paper investigates the change in dimensions of the coil capillary tube with respect to the change in cooling load on the system for the constant condenser and evaporator conditions. ANSYS CFX (Central Florida Expressway) software is used to study the flow characteristics of the refrigerant. Appropriate helical coil is selected for this analysis.

  2. Retention behavior of neutral solutes in pressurized flow-driven capillary electrochromatography using an ODS column.

    PubMed

    Nakagawa, Hiroyuki; Kitagawa, Shinya; Araki, Shuki; Ohtani, Hajime

    2006-02-01

    Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.

  3. Electrified Flow in Slender V-Groove Microchannels: Generalized Stability of Steady State Configurations

    NASA Astrophysics Data System (ADS)

    Markeviciute, Vilda; White, Nicholas; Troian, Sandra

    2017-11-01

    Although spontaneous capillary flow can be an especially rapid process in slender open microchannels resembling V-grooves, enhanced flow control is possible through implementation of electric field distributions which generate opposing electrohydrodynamic pressures along the air/liquid interface to modulate the capillary pressures. Important fundamental work by Romero and Yost (1996) and Weislogel(1996) has elucidated the behavior of Newtonian films in slender V-grooves driven to flow solely by the streamwise change in capillary pressure due to the change in radius of curvature of the circular arc describing the interface of wetting or non-wetting fluids. Here we augment the Romero and Yost model with inclusion of Maxwell stresses for perfectly conducting wetting films and examine which electric field distributions allow formation of steady state film shapes for various inlet and outlet boundary conditions. We investigate the stability of these steady solutions to small perturbations in film thickness using a generalized stability analysis. These results reveal how the ratio of Maxwell to capillary stresses influences the degree of linearized transient growth or decay for thin films confined to flow within an open V-groove. Funding from the 2017 Caltech Summer Undergraduate Research Fellowship Program (Markeviciute) as well as a 2017 NASA Space Technology Research Fellowship (White) is gratefully acknowledged.

  4. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar

    1995-01-01

    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethys-mography of supine health male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n equals 6) and during placebo infusion (n equals 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 plus or minus 4 to 2,568 plus or minus 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion; mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3 percent respectively, relative to pre-infusion baseline values (p is less than 0.05). Mean calf filtration, however was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20 percent with ANP infusion, wheras blood pressure was unchanged. Calf conductance (blood flow/arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, phamacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchic sites or both, while having the opposite effect in the leg.

  5. Investigation of Episodic Flow from Unsaturated Porous Media into a Macropore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. K. Podgorney; J. P. Fairley

    Th e recent literature contains numerous observations of episodic or intermittent fl ow in unsaturated flow systems under both constant fl ux and ponded boundary conditions. Flow systems composed of a heterogeneous porous media, as well as discrete fracture networks, have been cited as examples of systems that can exhibit episodic fl ow. Episodic outfl ow events are significant because relatively large volumes of water can move rapidly through an unsaturated system, carrying water and contaminants to depth greatly ahead of a wetting front predicted by a one-dimensional, gravity-driven diff usive infiltration model. In this study, we model the behaviormore » of water flow through a sand column underlain by an impermeable-walled macropore. Relative permeability and capillary pressure relationships were developed that capture the complex interrelationships between the macropore and the overlying porous media that control fl ow out of the system. The potential for episodic flow is assessed and compared to results of conventional modeling approaches and experimental data from the literature. Model results using coupled matrix–macropore relative permeability and capillary pressure relationships capture the behavior observed in laboratory experiments remarkably well, while simulations using conventional relative permeability and capillary pressure functions fail to capture some of the observed fl ow dynamics. Capturing the rapid downward movement of water suggests that the matrix-macropore capillary pressure and relative permeability functions developed have the potential to improve descriptions of fl ow and transport processes in heterogeneous, variably saturated media.« less

  6. The effect of a microscale fracture on dynamic capillary pressure of two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Tang, Mingming; Lu, Shuangfang; Zhan, Hongbin; Wenqjie, Guo; Ma, Huifang

    2018-03-01

    Dynamic capillary pressure (DCP) effects, which is vital for predicting multiphase flow behavior in porous media, refers to the injection rate dependence capillary pressure observed during non-equilibrium displacement experiments. However, a clear picture of the effects of microscale fractures on DCP remains elusive. This study quantified the effects of microscale fractures on DCP and simulated pore-scale force and saturation change in fractured porous media using the multiphase lattice Boltzmann method (LBM). Eighteen simulation cases were carried out to calculate DCP as a function of wetting phase saturation. The effects of viscosity ratio and fracture orientation, aperture and length on DCP and DCP coefficient τ were investigated, where τ refers to the ratio of the difference of DCP and static capillary pressure (SCP) over the rate of wetting-phase saturation change versus time. Significant differences in τ values were observed between unfractured and fractured porous media. The τ values of fractured porous media were 1.1  × 104 Pa ms to 5.68 × 105 Pa ms, which were one or two orders of magnitude lower than those of unfractured porous media with a value of 4 × 106 Pa. ms. A horizontal fracture had greater effects on DCP and τ than a vertical fracture, given the same fracture aperture and length. This study suggested that a microscale fracture might result in large magnitude changes in DCP for two-phase flow.

  7. Capillary liquid chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Ostman, Pekka; Jäntti, Sirkku; Grigoras, Kestas; Saarela, Ville; Ketola, Raimo A; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2006-07-01

    A miniaturized nebulizer chip for capillary liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (capillary LC-microchip APCI-MS) is presented. The APCI chip consists of two wafers, a silicon wafer and a Pyrex glass wafer. The silicon wafer has a DRIE etched through-wafer nebulizer gas inlet, an edge capillary insertion channel, a stopper, a vaporizer channel and a nozzle. The platinum heater electrode and pads for electrical connection were patterned on to the Pyrex glass wafer. The two wafers were joined by anodic bonding, creating a microchip version of an APCI-source. The sample inlet capillary from an LC column is directly connected to the vaporizer channel of the APCI chip. The etched nozzle in the microchip forms a narrow sample plume, which is ionized by an external corona needle, and the formed ions are analyzed by a mass spectrometer. The nebulizer chip enables for the first time the use of low flow rate separation techniques with APCI-MS. The performance of capillary LC-microchip APCI-MS was tested with selected neurosteroids. The capillary LC-microchip APCI-MS provides quantitative repeatability and good linearity. The limits of detection (LOD) with a signal-to-noise ratio (S/N) of 3 in MS/MS mode for the selected neurosteroids were 20-1000 fmol (10-500 nmol l(-1)). LODs (S/N = 3) with commercial macro APCI with the same compounds using the same MS were about 10 times higher. Fast heat transfer allows the use of the optimized temperature for each compound during an LC run. The microchip APCI-source provides a convenient and easy method to combine capillary LC to any API-MS equipped with an APCI source. The advantages and potentials of the microchip APCI also make it a very attractive interface in microfluidic APCI-MS.

  8. Intrinsic advantages of packed capillaries over narrow-bore columns in very high-pressure gradient liquid chromatography.

    PubMed

    Gritti, Fabrice; McDonald, Thomas; Gilar, Martin

    2016-06-17

    250μm×100mm fused silica glass capillaries were packed with 1.8μm high-strength silica (HSS) fully porous particles. They were prepared without bulky stainless steel endfittings and metal frits, which both generate significant sample dispersion. The isocratic efficiencies and gradient peak capacities of these prototype capillary columns were measured for small molecules (n-alkanophenones) using a home-made ultra-low dispersive micro-HPLC instrument. Their resolution power was compared to that of standard 2.1mm×100mm very high-pressure liquid chromatography (vHPLC) narrow-bore columns packed with the same particles. The results show that, for the same column efficiency (25000 plates) and gradient steepness (0.04min(-1)), the peak capacity of the 250μm i.d. capillary columns is systematically 15-20% higher than that of the 2.1mm i.d. narrow-bore columns. A validated model of gradient chromatography enabled one to predict accurately the observed peak capacities of the capillary columns for non-linear solvation strength retention behavior and under isothermal conditions. Thermodynamics applied to the eluent quantified the temperature difference for the thermal gradients in both capillary and narrow-bore columns. Experimental data revealed that the gradient peak capacity is more affected by viscous heating than the column efficiency. Unlike across 2.1mm i.d. columns, the changes in eluent composition across the 250μm i.d. columns during the gradient is rapidly relaxed by transverse dispersion. The combination of (1) the absence of viscous heating and (2) the high uniformity of the eluent composition across the diameter of capillary columns explains the intrinsic advantage of capillary over narrow-bore columns in gradient vHPLC. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Influence of Air Discontinuity and Wall Effects on the Measurements of Hydraulic Parameters Under Dynamic Conditions

    NASA Astrophysics Data System (ADS)

    Looms, M. C.; Jensen, K. H.; Wildenschild, D.; Christensen, B. S.; Gudbjerg, J.

    2003-12-01

    Both dynamic (one-step) and semi-static (syringe pump) outflow experiments were carried out in the lab to test whether the resulting retention characteristics differed according to experiment type. Three sands of varying uniformity and coarseness were packed in a cylindrical sample holder. Compressed air was used to control the air phase pressure, while water was allowed to drain at atmospheric pressure from the outlet at the bottom of the sample. During the outflow experiments the capillary pressure was measured within the sample holder using a tensiometer connected to a pressure transducer. A medical CT-scanner was used to visualize and quantify the outflow patterns within the sand matrix during selected outflow experiments. Positive vertical shifts in capillary pressure during dynamic experiments were found in all three sand types at saturations close to porosity. The size and shape of the shifts corresponded with the dynamic effects found in previous work on the topic. Furthermore, the shifts were slightly greater in the coarsest and most uniform sand type. Numerical simulations of the one-step experiments using HYDRUS1D and T2VOC showed, however, that one of the basic assumptions when calculating the capillary pressure was most likely violated. The air phase could not be considered to be continuous at all times, and assuming this to be the case would result in positive shifts of the retention curves when running T2VOC. The results of using the CT-scanner showed the importance of achieving a homogeneous packing, since the investigated sand packing turned out to have an area at the edge of the sample holder with a higher porosity. This caused the edge to control the initial drainage. Therefore, the data collected at high saturations could not be expected to adequately describe the hydraulic properties of the inner sand. We also found that the time at which the inner sand commenced drainage coincided with a jump in capillary pressure for the resulting measured retention curve.

  10. Microgravity Investigation of Capillary Driven Imbibition

    NASA Astrophysics Data System (ADS)

    Dushin, V. R.; Nikitin, V. F.; Smirnov, N. N.; Skryleva, E. I.; Tyurenkova, V. V.

    2018-05-01

    The goal of the present paper is to investigate the capillary driven filtration in porous media under microgravity conditions. New mathematical model that allows taking into account the blurring of the front due to the instability of the displacement that is developing at the front is proposed. The constants in the mathematical model were selected on the basis of the experimental data on imbibition into unsaturated porous media under microgravity conditions. The flow under the action of a combination of capillary forces and a constant pressure drop or a constant flux is considered. The effect of capillary forces and the type of wettability of the medium on the displacement process is studied. A criterion in which case the capillary effects are insignificant and can be neglected is established.

  11. Regulation of store-operated Ca2+ entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells.

    PubMed

    Kito, Hiroaki; Yamamura, Hisao; Suzuki, Yoshiaki; Yamamura, Hideto; Ohya, Susumu; Asai, Kiyofumi; Imaizumi, Yuji

    2015-04-10

    Store-operated Ca(2+) entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca(2+) influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. High-pressure differential thermal analysis/dilatometric apparatus based on an Instron capillary rheometer

    NASA Astrophysics Data System (ADS)

    Hsiao, B. S.; Shaw, M. T.; Samulski, E. T.

    1987-06-01

    A high-pressure apparatus in the form of a modified Instron capillary rheometer capable of measuring differential thermal analysis (DTA) data and pressure-volume-temperature (P-V-T) relations was constructed in our laboratory. Temperatures from 20 to 370 °C and pressures from 1 to 6000 bar are achievable with a data-acquisition and control system based on an APPLE II+ microcomputer. Measurements of pressure to an accuracy of 1%, temperature of 0.5%, and volume change of 0.1% have been obtained. Software was developed to operate the experiments at fixed heating or cooling rates as well as at a constant pressure or with isothermal pressure sweeps. Polymer samples were compressed into rods preceding the experiment by a vacuum molder to eliminate voids. Low-density polyethylene (LDPE) was run as an example to demonstrate the performance of this pressure apparatus. The results revealed an excellent match between our experimental data and the published data.

  13. Stability limits of unsteady open capillary channel flow

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Haake, Dennis; Rosendahl, Uwe; Klatte, J.?Rg; Dreyer, Michael E.

    This paper is concerned with steady and unsteady flow rate limitations in open capillary channels under low-gravity conditions. Capillary channels are widely used in Space technology for liquid transportation and positioning, e.g. in fuel tanks and life support systems. The channel observed in this work consists of two parallel plates bounded by free liquid surfaces along the open sides. The capillary forces of the free surfaces prevent leaking of the liquid and gas ingestion into the flow.In the case of steady stable flow the capillary pressure balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. Increasing the flow rate in small steps causes a decrease of the liquid pressure. A maximum steady flow rate is achieved when the flow rate exceeds a certain limit leading to a collapse of the free surfaces due to the choking effect. In the case of unsteady flow additional dynamic effects take place due to flow rate transition and liquid acceleration. The maximum flow rate is smaller than in the case of steady flow. On the other hand, the choking effect does not necessarily cause surface collapse and stable temporarily choked flow is possible under certain circumstances.To determine the limiting volumetric flow rate and stable flow dynamic properties, a new stability theory for both steady and unsteady flow is introduced. Subcritical and supercritical (choked) flow regimes are defined. Stability criteria are formulated for each flow type. The steady (subcritical) criterion corresponds to the speed index defined by the limiting longitudinal small-amplitude wave speed, similar to the Mach number. The unsteady (supercritical) criterion for choked flow is defined by a new characteristic number, the dynamic index. It is based on pressure balances and reaches unity at the stability limit.The unsteady model based on the Bernoulli equation and the mass balance equation is solved numerically for perfectly wetting incompressible liquids. The unsteady model and the stability theory are verified by comparison to results of a sounding rocket experiment (TEXUS 41) on capillary channel flows launched in December 2005 from ESRANGE in north Sweden. For a clear overview of subcritical, supercritical, and unstable flow, parametric studies and stability diagrams are shown and compared to experimental observations.

  14. Electrphoretic Sample Excitation Light Assembly.

    DOEpatents

    Li, Qingbo; Liu, Changsheng

    2002-04-02

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  15. Motorized Positioning Apparatus Having Coaxial Carrousels.

    DOEpatents

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2002-04-02

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  16. Pore-scale simulations of drainage in granular materials: Finite size effects and the representative elementary volume

    NASA Astrophysics Data System (ADS)

    Yuan, Chao; Chareyre, Bruno; Darve, Félix

    2016-09-01

    A pore-scale model is introduced for two-phase flow in dense packings of polydisperse spheres. The model is developed as a component of a more general hydromechanical coupling framework based on the discrete element method, which will be elaborated in future papers and will apply to various processes of interest in soil science, in geomechanics and in oil and gas production. Here the emphasis is on the generation of a network of pores mapping the void space between spherical grains, and the definition of local criteria governing the primary drainage process. The pore space is decomposed by Regular Triangulation, from which a set of pores connected by throats are identified. A local entry capillary pressure is evaluated for each throat, based on the balance of capillary pressure and surface tension at equilibrium. The model reflects the possible entrapment of disconnected patches of the receding wetting phase. It is validated by a comparison with drainage experiments. In the last part of the paper, a series of simulations are reported to illustrate size and boundary effects, key questions when studying small samples made of spherical particles be it in simulations or experiments. Repeated tests on samples of different sizes give evolution of water content which are not only scattered but also strongly biased for small sample sizes. More than 20,000 spheres are needed to reduce the bias on saturation below 0.02. Additional statistics are generated by subsampling a large sample of 64,000 spheres. They suggest that the minimal sampling volume for evaluating saturation is one hundred times greater that the sampling volume needed for measuring porosity with the same accuracy. This requirement in terms of sample size induces a need for efficient computer codes. The method described herein has a low algorithmic complexity in order to satisfy this requirement. It will be well suited to further developments toward coupled flow-deformation problems in which evolution of the microstructure require frequent updates of the pore network.

  17. Comparison of CO2 trapping in highly heterogeneous reservoirs with Brooks-Corey and van Genuchten capillary pressure curves

    NASA Astrophysics Data System (ADS)

    Gershenzon, Naum; Soltanian, Mohamadreza; Ritzi, Robert, Jr.; Dominic, David

    2015-04-01

    Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. Previously we showed how the dynamics of a CO2 plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such reservoirs [3]. The results strongly suggest that representing these small scales (few cm in vertical direction and few meters in horizontal direction) features and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes. The results also demonstrated the importance of using separate capillary pressure and relative permeability relationships for different textural facies types. Here we present the result of simulation of CO2 trapping in deep saline aquifers using two different conventional approaches, i.e. Brooks-Corey and van Genuchten, to capillary pressure. We showed that capillary trapping as well as dissolution rates are very different for the Brooks-Corey and van Genuchten approaches if reservoir consists from various species with different capillary pressure and relative permeability curves. We also found a dramatic difference in simulation time; using the van Genuchten approach improves convergence and thus reduces calculation time by one-two orders of magnitude. [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in Facies Models Revisited, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85-170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, Water Resources Research, v. 46, W04515. [3] Gershenzon N.I., M. Soltanian, R.W. Ritzi Jr., and D.F. Dominic (2014) Influence of small scale heterogeneity on CO2 trapping processes in deep saline aquifers, Energy Procedia, 59, 166 - 173.

  18. Hemodynamic heterogeneity of connective tissue disease patients with borderline mean pulmonary artery pressure and its distinctive characters from those with normal pulmonary artery pressure: a retrospective study.

    PubMed

    Asari, Yusa; Yamasaki, Yoshioki; Tsuchida, Kosei; Suzuki, Kengo; Akashi, Yoshihiro J; Okazaki, Takahiro; Ozaki, Shoichi; Yamada, Hidehiro; Kawahata, Kimito

    2018-05-18

    To clarify whether patients with connective tissue disease (CTD)-associated borderline mean pulmonary artery pressure (mPAP) have distinctive hemodynamic characteristics from those with normal mPAP and whether pathogenesis is as heterogeneous as manifest pulmonary hypertension (PH). Seventy-five CTD patients who underwent right heart catheterization (RHC) from 2008 through 2016 were retrospectively analyzed. We compared between-group differences in clinical and hemodynamic findings: normal mPAP (n = 35), borderline mPAP (n = 15), and PH (n = 25). A therapeutic intervention trial based on RHC results was performed in nine patients. The values of tricuspid regurgitation pressure gradient (TRPG) in patients with borderline mPAP were comparable at rest but became higher after exercise compared to those with a normal mPAP (P = 0.01). Pulmonary artery wedge pressure in patients with borderline mPAP was higher than in those with normal mPAP (P < 0.0001) and comparable to those with PH. Each of the three patients was treated for pre-capillary and post-capillary disease and two for interstitial lung disease (ILD). During the mean follow-up period of 40 months, mPAP or TRPG normalized in all patients treated for pre-capillary and post-capillary disease. One patient with severe ILD developed to PH and died from it. CTD patients with borderline mPAP, the underlining pathogenesis of which is heterogeneous as PH, have distinctive hemodynamic characteristics from those with normal mPAP. Whether a specific treatment targeting the inflammatory process or local hemodynamics may alter the clinical course to PH is a topic for future research.

  19. Optimization of post-column reactor radius in capillary high performance liquid chromatography Effect of chromatographic column diameter and particle diameter

    PubMed Central

    Xu, Hongjuan; Weber, Stephen G.

    2006-01-01

    A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (Nobs) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte’s retention factor, k′, is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (ar) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of ar become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 μm radius is suitable for all columns smaller than 150 μm (radius) packed with 2–5 μm particles. For 1 μm packing particles, only columns smaller than 42.5 μm (radius) can be used and the reactor radius needs to be 5 μm. PMID:16494886

  20. Capillary pressure-saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    NASA Astrophysics Data System (ADS)

    Wang, Shibo; Tokunaga, Tetsu K.; Wan, Jiamin; Dong, Wenming; Kim, Yongman

    2016-08-01

    Capillary pressure (Pc)-saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, 17 sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23°C) and reservoir (12.0 MPa, 45°C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  1. Capillary pressure - saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    NASA Astrophysics Data System (ADS)

    Tokunaga, T. K.; Wang, S.; Wan, J.; Dong, W.; Kim, Y.

    2016-12-01

    Capillary pressure (Pc) - saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, seventeen sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23 °C) and reservoir (12.0 MPa, 45 °C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  2. Design of distributed JT (Joule-Thomson) effect heat exchanger for superfluid 2 K cooling device

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Park, C.; Kim, K.

    2018-03-01

    Superfluid at 2 K or below is readily obtained from liquid helium at 4.2 K by reducing its vapour pressure. For better cooling performance, however, the cold energy of vaporized helium at 2 K chamber can be effectively utilized in a recuperator which is specially designed in this paper for accomplishing so-called the distributed Joule-Thomson (JT) expansion effect. This paper describes the design methodology of distributed JT effect heat exchanger for 2 K JT cooling device. The newly developed heat exchanger allows continuous significant pressure drop at high-pressure part of the recuperative heat exchanger by using a capillary tube. Being different from conventional recuperative heat exchangers, the efficient JT effect HX must consider the pressure drop effect as well as the heat transfer characteristic. The heat exchanger for the distributed JT effect actively utilizes continuous pressure loss at the hot stream of the heat exchanger by using an OD of 0.64 mm and an ID of 0.4 mm capillary tube. The analysis is performed by dividing the heat exchanger into the multiple sub-units of the heat exchange part and JT valve. For more accurate estimation of the pressure drop of spirally wound capillary tube, preliminary experiments are carried out to investigate the friction factor at high Reynolds number. By using the developed pressure drop correlation and the heat transfer correlation, the specification of the heat exchanger with distributed JT effect for 2 K JT refrigerator is determined.

  3. Modeling the Capillary Pressure for the Migration of the Liquid Phase in Granular Solid-Liquid-Vapor Systems: Application to the Control of the Composition Profile in W-Cu FGM Materials

    NASA Astrophysics Data System (ADS)

    Missiaen, Jean-Michel; Raharijaona, Jean-Joël; Delannay, Francis

    2016-11-01

    A model is developed to compute the capillary pressure for the migration of the liquid phase out or into a uniform solid-liquid-vapor system. The capillary pressure is defined as the reduction of the overall interface energy per volume increment of the transferred fluid phase. The model takes into account the particle size of the solid particle aggregate, the packing configuration (coordination number, porosity), the volume fractions of the different phases, and the values of the interface energies in the system. The model is used for analyzing the stability of the composition profile during processing of W-Cu functionally graded materials combining a composition gradient with a particle size gradient. The migration pressure is computed with the model in two stages: (1) just after the melting of copper, i.e., when sintering and shape accommodation of the W particle aggregate can still be neglected and (2) at high temperature, when the system is close to full density with equilibrium particle shape. The model predicts well the different stages of liquid-phase migration observed experimentally.

  4. Suction and cohesion demise in desaturating granular medium

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Mielniczuk, B.; El-Youssoufi, S. M.

    2017-12-01

    Continuum mechanics for unsaturated soils is based on the assumption of a one-to-one relationship betwee saturation degree and suction represented by the characteristic curve. Such curve commonly shows exceedingly high values of suction at saturation decreasing below 10%. We have performed a series of experiments on physical micro-structural models of 8-, 5, 4, 3, and 2-grain assemblies filled with water forming capillary, funicular and pendular bridges. Dynamic variables characterizing the evolution include: Laplace pressure, surface tension force, total intergralular force, contact angle and contact perimeter length. The Laplace pressure was calculated from the directly measured curvatures of interface surface for 2-grain bridges, and estimated from tomography stills for 3 grain bridges. The initial negative Laplace pressure (suction) as well as total intergranular force increase modestly at the begining of evaporation, but undergo an unstable decrease at the advanced stage, often with a jump in the force known as a Haines jumps since 1925. Laplace pressure turns into positive values prior to rupture for 2-grain bodies. For 3-grain bridges there is never an exceedingly high intergranular force of suction, reported in macro-scale experiments. For multiple-grain bodies there are two types of instabilities, depending on densitiy of the assembly and the Gaussian curvature (GC): at positive GC points it is thin-sheet instability, while at negative GC points instability is linked with air entry fingers, all associated with the split of assemblies into smaller isolated funicular, and eventually pendular bodies. The multi-grain bridges instabilities are linked to material drying cracking, the instabilities in 2 grain systems mean eventual loss of cohesion.

  5. Development and study of a heat pipe with dielectric properties

    NASA Astrophysics Data System (ADS)

    Semena, M. G.; Gershuni, A. N.; Chepurnoi, A. B.

    Requirements for the structural elements of heat pipes with dielectric properties are examined. To obtain information necessary for the thermal analysis of heat pipes, a study is made of the capillary-transport characteristics of a dielectric capillary structure consisting of quartz fibers; the capillary pressure and the liquid penetration coefficient are determined. The results of the study are used to develop dielectric heat pipes for the cooling of a vacuum electronic instrument. Experimentally determined characteristics of the heat pipes are presented.

  6. The Potential of Computational Fluid Dynamics Simulation on Serial Monitoring of Hemodynamic Change in Type B Aortic Dissection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Simon C. H., E-mail: simonyu@cuhk.edu.hk; Liu, Wen; Wong, Randolph H. L.

    PurposeWe aimed to assess the potential of computational fluid dynamics simulation (CFD) in detecting changes in pressure and flow velocity in response to morphological changes in type B aortic dissection.Materials and MethodsPressure and velocity in four morphological models of type B aortic dissection before and after closure of the entry tear were calculated with CFD and analyzed for changes among the different scenarios. The control model (Model 1) was patient specific and built from the DICOM data of CTA, which bore one entry tear and three re-entry tears. Models 2–4 were modifications of Model 1, with two re-entry tears lessmore » in Model 2, one re-entry tear more in Model 3, and a larger entry tear in Model 4.ResultsThe pressure and velocity pertaining to each of the morphological models were unique. Changes in pressure and velocity findings were accountable by the changes in morphological features of the different models. There was no blood flow in the false lumen across the entry tear after its closure, the blood flow direction across the re-entry tears was reversed after closure of the entry tear.ConclusionCFD simulation is probably useful to detect hemodynamic changes in the true and false lumens of type B aortic dissection in response to morphological changes, it may potentially be developed into a non-invasive and patient-specific tool for serial monitoring of hemodynamic changes of type B aortic dissection before and after treatment.« less

  7. The Relationship Between Microscopic Grain Surface Structure and the Dynamic Capillary-Driven Advance of Water Films over Individual Dry Natural Sand Grains

    NASA Astrophysics Data System (ADS)

    Kibbey, T. C. G.; Adegbule, A.; Yan, S.

    2017-12-01

    The movement of nonvolatile solutes in unsaturated porous media at low water contents depends on transport in surface-associated water films. The focus of the work described here was on studying solute movement in water films advancing by capillary forces over initially-dry grain surfaces, to understand how microscopic surface roughness features influence the initial velocity of water film advance. For this work, water containing a non-adsorbing conservative tracer was used to track the movement of advancing water films. A stainless steel capillary tube connected to an external reservoir a fixed distance below the grain surface was used to transmit solution to the grain surface under negative pressure (positive capillary pressure), consistent with conditions that might be expected in the unsaturated zone. The small internal diameter of the capillary prevents solution from draining out of the capillary back into the reservoir. When the capillary is contacted with a grain surface, capillary forces that result from contact between the fluid and the rough grain surface cause water films to wick across the grain surface. Multiple experiments were conducted on the same grain, rotating the grain and varying the capillary contact point around the circumference of the grain. Imaging was conducted at fixed intervals using an automated Extended Depth of Field (EDF) imaging system, and images were analyzed to determine initial velocity. Grain surfaces were then characterized through scanning electron microscope (SEM) imaging, using a hybrid stereoscopic reconstruction method designed to extract maximum detail in creating elevation maps of geologic surfaces from tilted pairs of SEM images. The resulting elevation maps were used to relate surface roughness profiles around the grain with initial velocities. Results suggest that velocity varies significant with contact point around an individual grain, and correlates quantitatively with the local grain surface structure. Preliminary simulation results will also be discussed.

  8. Static mechanical strain induces capillary endothelial cell cycle re-entry and sprouting.

    PubMed

    Zeiger, A S; Liu, F D; Durham, J T; Jagielska, A; Mahmoodian, R; Van Vliet, K J; Herman, I M

    2016-08-16

    Vascular endothelial cells are known to respond to a range of biochemical and time-varying mechanical cues that can promote blood vessel sprouting termed angiogenesis. It is less understood how these cells respond to sustained (i.e., static) mechanical cues such as the deformation generated by other contractile vascular cells, cues which can change with age and disease state. Here we demonstrate that static tensile strain of 10%, consistent with that exerted by contractile microvascular pericytes, can directly and rapidly induce cell cycle re-entry in growth-arrested microvascular endothelial cell monolayers. S-phase entry in response to this strain correlates with absence of nuclear p27, a cyclin-dependent kinase inhibitor. Furthermore, this modest strain promotes sprouting of endothelial cells, suggesting a novel mechanical 'angiogenic switch'. These findings suggest that static tensile strain can directly stimulate pathological angiogenesis, implying that pericyte absence or death is not necessarily required of endothelial cell re-activation.

  9. Determining bruise etiology in muscle tissue using finite element analysis.

    PubMed

    Tang, Kevin; Sharpe, Wyatt; Schulz, Alexandra; Tam, Edric; Grosse, Ian; Tis, John; Cullinane, Dennis

    2014-03-01

    Bruising, the result of capillary failure, is a common physical exam finding due to blunt trauma and, depending on location and severity, a potential indicator of abuse. Despite its clinical relevance, few studies have investigated the etiology of capillary failure. The goal of this study was to determine whether capillaries primarily fail under shear stress or hydraulic-induced tensile stress. An arteriole bifurcating into four capillaries was modeled using ANSYS 14.0 (®) . The capillaries were embedded in muscle tissue and a pressure of 20.4 kPa was applied. Any tensile stress exceeding 8.4 × 10(4)  Pa was considered failure. Results showed that failure occurred directly under the impact zone and where capillaries bifurcated, rather than along the line of greatest shear stress, indicating that internal tensile stress is likely the primary mode of capillary failure in bruising. These results are supported by the concept that bruising can occur via blunt trauma in which no shearing lacerations occur. © 2013 American Academy of Forensic Sciences.

  10. [Progress of researches on the mechanism of cupping therapy].

    PubMed

    Cui, Shuai; Cui, Jin

    2012-12-01

    Cupping therapy of Chinese medicine is able to relieve a variety of diseases or clinical conditions, which results from the comprehensive effects of multiple types of stimulation exerted onto the regional acupoint areas. Among the stimuli, the negative pressure from cupping is one of the main factors inducing therapeutic effects. In the present paper, the authors review development of researches on the underlying mechanism of therapeutic effects of cupping-negative pressure from 1) the factor of intra-cup negative pressure; 2) influence of intra-cup negative pressure on cup-blackspot formation; 3) influence of cupping on regional blood vessels and blood flow; 4) effect of cupping on regional ultrastructure of the capillary in the raw-surface tissue; 5) effect of cupping-negative pressure on regional endothelial cells; and 6) biological effects of negative pressure drainage. Generally, cupping induced negative pressure can dilate local blood vessels to improve microcirculation, promote capillary endothelial cells repair, accelerate granulation and angiogenesis, etc., in the regional tissues, normalizing the patients' functional state at last.

  11. Development of a Long-Column Method to Test Constitutive Relations for LNAPL Movement in Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Zhong, L.; Wietsma, T.; Covert, M.

    2007-12-01

    Multifluid relative permeability - saturation - capillary pressure (k-S-P) empirical constitutive models are components of numerical simulators that are used to predict fluid distributions following a nonaqueous phase liquid (NAPL) contamination event or during remediation. The S-P parameter values for these empirical models are either obtained from the literature or determined experimentally by fitting the models to measured data. Most of the experimental emphasis so far has been on testing the S-P component of the k-S-P constitutive relations. Due to the difficulties in obtaining quality relative permeability laboratory data for multiphase systems, testing of the k-S models that are used in multifluid flow simulators has been virtually non-existent. A new tool, the Multiple Location Saturation Pressure Apparatus (MLSPA), located in PNNL's EMSL Subsurface Flow and Transport Laboratory, has been developed to obtain data sets that can be used to test both S-P and k-S relationships for two-phase NAPL-water systems. The MLSPA is a long column (~1 m) equipped with several hydrophilic and hydrophobic pressure transducers. Fluid saturations are determined along the length of a column using a dual-energy gamma radiation system. Although the MLSPA is limited to porous media with a relatively small entry pressure and fairly homogeneous pore-size distributions, it offers the distinct advantage of obtaining S-P data at multiple locations. Besides for static determinations of S-P relations, the MLSPA offers the benefit that it can be used for more dynamic experiments where fluid pressures are changed more rapidly. The data sets produced by the dynamic experiments can be used in relative permeability models. Results of several experiments with crude-oil brine systems will be presented.

  12. Characterization of heterogeneity in the Heletz sandstone from core to pore scale and quantification of its impact on multi-phase flow

    DOE PAGES

    Hingerl, Ferdinand F.; Yang, Feifei; Pini, Ronny; ...

    2016-02-02

    In this paper we present the results of an extensive multiscale characterization of the flow properties and structural and capillary heterogeneities of the Heletz sandstone. We performed petrographic, porosity and capillary pressure measurements on several subsamples. We quantified mm-scale heterogeneity in saturation distributions in a rock core during multi-phase flow using conventional X-ray CT scanning. Core-flooding experiments were conducted under reservoirs conditions (9 MPa, 50 °C) to obtain primary drainage and secondary imbibition relative permeabilities and residual trapping was analyzed and quantified. We provide parameters for relative permeability, capillary pressure and trapping models for further modeling studies. A synchrotron-based microtomographymore » study complements our cm- to mm-scale investigation by providing links between the micromorphology and mm-scale saturation heterogeneities.« less

  13. Capillary pressure heterogeneity and hysteresis for the supercritical CO2/water system in a sandstone

    NASA Astrophysics Data System (ADS)

    Pini, Ronny; Benson, Sally M.

    2017-10-01

    We report results from an experimental investigation on the hysteretic behaviour of the capillary pressure curve for the supercritical CO2-water system in a Berea Sandstone core. Previous observations have highlighted the importance of subcore-scale capillary heterogeneity in developing local saturations during drainage; we show in this study that the same is true for the imbibition process. Spatially distributed drainage and imbibition scanning curves were obtained for mm-scale subsets of the rock sample non-invasively using X-ray CT imagery. Core- and subcore-scale measurements are well described using the Brooks-Corey formalism, which uses a linear trapping model to compute mobile saturations during imbibition. Capillary scaling yields two separate universal drainage and imbibition curves that are representative of the full subcore-scale data set. This enables accurate parameterisation of rock properties at the subcore-scale in terms of capillary scaling factors and permeability, which in turn serve as effective indicators of heterogeneity at the same scale even when hysteresis is a factor. As such, the proposed core-analysis workflow is quite general and provides the required information to populate numerical models that can be used to extend core-flooding experiments to conditions prevalent in the subsurface, which would be otherwise not attainable in the laboratory.

  14. Toward direct pore-scale modeling of three-phase displacements

    NASA Astrophysics Data System (ADS)

    Mohammadmoradi, Peyman; Kantzas, Apostolos

    2017-12-01

    A stable spreading film between water and gas can extract a significant amount of bypassed non-aqueous phase liquid (NAPL) through immiscible three-phase gas/water injection cycles. In this study, the pore-scale displacement mechanisms by which NAPL is mobilized are incorporated into a three-dimensional pore morphology-based model under water-wet and capillary equilibrium conditions. The approach is pixel-based and the sequence of invasions is determined by the fluids' connectivity and the threshold capillary pressure of the advancing interfaces. In addition to the determination of three-phase spatial saturation profiles, residuals, and capillary pressure curves, dynamic finite element simulations are utilized to predict the effective permeabilities of the rock microtomographic images as reasonable representations of the geological formations under study. All the influential features during immiscible fluid flow in pore-level domains including wetting and spreading films, saturation hysteresis, capillary trapping, connectivity, and interface development strategies are taken into account. The capabilities of the model are demonstrated by the successful prediction of saturation functions for Berea sandstone and the accurate reconstruction of three-phase fluid occupancies through a micromodel.

  15. Heat Load Sharing in a Capillary Pumped Loop with Multiple Evaporators and Multiple Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2005-01-01

    This paper describes the heat load sharing function among multiple parallel evaporators in a capillary pumped loop (CPL). In the normal mode of operation, the evaporators cool the instruments by absorbing the waste heat. When an instruments is turned off, the attached evaporator can keep it warm by receiving heat from other evaporators serving the operating instruments. This is referred to as heat load sharing. A theoretical basis of heat load sharing is given first. The fact that the wicks in the powered evaporators will develop capillary pressure to force the generated vapor to flow to cold locations where the pressure is lower leads to the conclusion that heat load sharing is an inherent function of a CPL with multiple evaporators. Heat load sharing has been verified with many CPLs in ground tests. Experimental results of the Capillary Pumped Loop 3 (CAPL 3) Flight Experiment are presented in this paper. Factors that affect the amount of heat being shared are discussed. Some constraints of heat load sharing are also addressed.

  16. Rapid and Simple Capillary-Rise/Vanishing Interfacial Tension Method To Determine Crude Oil Minimum Miscibility Pressure: Pure and Mixed CO 2, Methane, and Ethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, Steven B.; Miller, David J.; Jin, Lu

    Here, we report a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2-4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO 2, methane, and ethane as well as 0-100% mole ratios of methane/CO 2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO 2, while methane MMPs were ca. double or triple those with CO 2. MMPs with mixed methane/CO 2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with mole percent methane in ethane, with a little increase in MMP until ca. 20 mol % methane in ethane.« less

  17. Rapid and Simple Capillary-Rise/Vanishing Interfacial Tension Method To Determine Crude Oil Minimum Miscibility Pressure: Pure and Mixed CO 2, Methane, and Ethane

    DOE PAGES

    Hawthorne, Steven B.; Miller, David J.; Jin, Lu; ...

    2016-07-10

    Here, we report a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2-4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO 2, methane, and ethane as well as 0-100% mole ratios of methane/CO 2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO 2, while methane MMPs were ca. double or triple those with CO 2. MMPs with mixed methane/CO 2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with mole percent methane in ethane, with a little increase in MMP until ca. 20 mol % methane in ethane.« less

  18. Elevated blood pressure in preterm-born offspring associates with a distinct antiangiogenic state and microvascular abnormalities in adult life.

    PubMed

    Lewandowski, Adam J; Davis, Esther F; Yu, Grace; Digby, Janet E; Boardman, Henry; Whitworth, Polly; Singhal, Atul; Lucas, Alan; McCormick, Kenny; Shore, Angela C; Leeson, Paul

    2015-03-01

    Preterm-born individuals have elevated blood pressure. We tested the hypothesis that this associates with an enhanced antiangiogenic circulating profile and that this association is mediated by variations in capillary density. We studied 204 adults aged 25 years (range, 20-30 years), of which 102 had been followed up prospectively since very preterm birth (mean gestational age, 30.3±2.5 weeks) and 102 were born term to uncomplicated pregnancies. A panel of circulating biomarkers, including soluble endoglin and soluble fms-like tyrosine kinase-1, were compared between groups and related to perinatal history and adult cardiovascular risk. Associations with cardiovascular phenotype were studied in 90 individuals who had undergone detailed assessment of microvascular, macrovascular, and cardiac structure and function. Preterm-born individuals had elevations in soluble endoglin (5.64±1.03 versus 4.06±0.85 ng/mL; P<0.001) and soluble fms-like tyrosine kinase-1 (88.1±19.0 versus 73.0±15.3 pg/mL; P<0.001) compared with term-born individuals, proportional to elevations in resting and ambulatory blood pressure, as well as degree of prematurity (P<0.05). Maternal hypertensive pregnancy disorder was associated with additional increases in soluble fms-like tyrosine kinase-1 (P=0.002). Other circulating biomarkers, including those of inflammation and endothelial activation, were not related to blood pressure. There was a specific graded association between soluble endoglin and degree of functional and structural capillary rarefaction (P=0.002 and P<0.001), and in multivariable analysis, there were capillary density-mediated associations between soluble endoglin and blood pressure. Preterm-born individuals exhibit an enhanced antiangiogenic state in adult life that is specifically related to elevations in blood pressure. The association seems to be mediated through capillary rarefaction and is independent of other cardiovascular structural and functional differences in the offspring. © 2014 American Heart Association, Inc.

  19. Numerical Simulation of Sickle Cell Blood Flow in the Microcirculation

    NASA Astrophysics Data System (ADS)

    Berger, Stanley A.; Carlson, Brian E.

    2001-11-01

    A numerical simulation of normal and sickle cell blood flow through the transverse arteriole-capillary microcirculation is carried out to model the dominant mechanisms involved in the onset of vascular stasis in sickle cell disease. The transverse arteriole-capillary network is described by Strahler's network branching method, and the oxygen and blood transport in the capillaries is modeled by a Krogh cylinder analysis utilizing Lighthill's lubrication theory, as developed by Berger and King. Poiseuille's law is used to represent blood flow in the arterioles. Applying this flow and transport model and utilizing volumetric flow continuity at each network bifurcation, a nonlinear system of equations is obtained, which is solved iteratively using a steepest descent algorithm coupled with a Newton solver. Ten different networks are generated and flow results are calculated for normal blood and sickle cell blood without and with precapillary oxygen loss. We find that total volumetric blood flow through the network is greater in the two sickle cell blood simulations than for normal blood owing to the anemia associated with sickle cell disease. The percentage of capillary blockage in the network increases dramatically with decreasing pressure drop across the network in the sickle cell cases while there is no blockage when normal blood flows through simulated networks. It is concluded that, in sickle cell disease, without any vasomotor dilation response to decreasing oxygen concentrations in the blood, capillary blockage will occur in the microvasculature even at average pressure drops across the transverse arteriole-capillary networks.

  20. Interstitial distribution of charged macromolecules in the dog lung: a kinetic model.

    PubMed

    Parker, J C; Miniati, M; Pitt, R; Taylor, A E

    1987-01-01

    A mathematic model was constructed to investigate conflicting physiologic data concerning the charge effect of continuous capillaries to macromolecules in the lung. We simulated the equilibration kinetics of lactate dehydrogenase (MR 4.2 nM) isozymes LDH 1 (pI = 5.0) and LDH 5 (pI = 7.9) between plasma and lymph using previously measured permeability coefficients, lung tissue distribution volumes (VA) and plasma concentrations (CP) in lung tissue. Our hypothesis is that the fixed anionic charges in interstitium, basement membrane, and cell surfaces determine equilibration rather than charged membrane effects at the capillary barrier, so the same capillary permeability coefficients were used for both isozymes. Capillary filtration rates and protein fluxes were calculated using conventional flux equations. Initial conditions at baseline and increased left atrial pressures (PLA) were those measured in animal studies. Simulated equilibration of isozymes over 30 h in the model at baseline capillary pressures accurately predicted the observed differences in lymph/plasma concentration ratios (CL/CP) between isotopes at 4 h and equilibration of these ratios at 24 h. Quantitative prediction of isozyme CL/CP ratios was also obtained at increased PLA. However, an additional cation selective compartment representing the surface glycocalyx was required to accurately simulate the initial higher transcapillary clearances of cationic LDH 5. Thus experimental data supporting the negative barrier, positive barrier, and no charge barrier hypotheses were accurately reproduced by the model using only the observed differences in interstitial partitioning of isozymes without differences in capillary selectivity.

  1. Effect of Dihedral Angle and Porosity on Percolating-Sealing Capacity of Texturally Equilibrated Rock Salt

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.; Gardner, J. E.

    2013-12-01

    Salt deposits in sedimentary basins have long been considered to be a seal against fluid penetration. However, experimental, theoretical and field evidence suggests brine (and oil) can wet salt crystal surfaces at higher pressures and temperatures, which can form a percolating network. This network may act as flow conduits even at low porosities. The aim of this work is to investigate the effects of dihedral angle and porosity on the formation of percolating paths in different salt network lattices. However, previous studies considered only simple homogeneous and isotropic geometries. This work extends the analysis to realistic salt textures by presenting a novel numerical method to describe the texturally equilibrated pore shapes in polycrystalline rock salt and brine systems. First, a theoretical interfacial topology was formulated to minimize the interfacial surface between brine and salt. Then, the resulting nonlinear system of ordinary differential equations was solved using the Newton-Raphson method. Results show that the formation of connected fluid channels is more probable in lower dihedral angles and at higher porosities. The connectivity of the pore network is hysteretic, because the connection and disconnection at the pore throats for processes with increasing or decreasing porosities occur at different porosities. In porous media with anisotropic solids, pores initially connect in the direction of the shorter crystal axis and only at much higher porosities in the other directions. Consequently, even an infinitesimal elongation of the crystal shape can give rise to very strong anisotropy in permeability of the pore network. Also, fluid flow was simulated in the resulting pore network to calculate permeability, capillary entry pressure and velocity field. This work enabled us to investigate the opening of pore space and sealing capacity of rock salts. The obtained pore geometries determine a wide range of petrophysical properties such as permeability and capillary entry pressure. This expanded knowledge of the salt textural behavior vs. depth could also improve drilling operations in salt. Second, a series of experiments in different P-T conditions was carried out to investigate the actual shape of equilibrated channels in salt. The synthetic salt samples were scanned at the High Resolution X-ray CT Facility at the Department of Geological Science, the University of Texas at Austin with resolution in 1-6 micron range. The experimental results show both equilibrated (tubular pores) and non-equilibrated (planar features) in salt structure. Image processing was carried out by two open source software programs: ImageJ, which is a public domain Java image processing program, and 3DMA-Rock, which is a software package for quantitative analyzing of the pore space in three-dimensional X-ray computed microtomographic images of rock. We obtain medial axis and medial surface of the pore space, as well as find and characterize the corresponding pore-throat network. We also report permeability of the pore space computed using Palabos software.

  2. Fluctuations of wormlike micelle fluids in capillary flow

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Meek, Stephen; Hudson, Steven; Polymers; Complex Fluids Group Team

    2017-11-01

    We investigate the effect of entrance geometry on the flow stability of wormlike micelles solutions in capillary flow. These solutions exhibit strong shear thinning behavior resulting from micelle breakage and have been observed to undergo large flow rate fluctuations. We investigate these fluctuations using simultaneous measurements of flow rate and pressure drop across a capillary, and we adjust entrance geometry. With a tapered constriction, we observe large persistent fluctuations above a critical flow rate, characterized by rapid decreases in the pressure drop with corresponding increase in flow rate followed by a period of recovery where pressure increases and flow rate decreases. Flow field observations in the tapered entrance show large flow circulations. An abrupt contraction produces smaller transient fluidized jets forming upstream of the constriction and the magnitude of the fluctuations are significantly diminished. The effect of fluid properties is studied by comparing the magnitude and timescales of the fluctuations for surfactant systems with different relaxation times. The onset of fluctuations is compared to a criterion for the onset of elastic instabilities and the magnitude is compared to estimates for changes in channel resistance. NIST on a Chip.

  3. Disintegration of the 'waterfall phenomenon' in the inferior vena cava due to right heart failure.

    PubMed

    Kira, S; Dambara, T; Mieno, T; Tamaki, S; Natori, H

    1996-03-01

    The concept of the waterfall phenomenon in Zone 2 in the pulmonary vasculature is well known from West's lung model. It is believed that the flow through this zone is determined by the pressure difference between the pulmonary artery and alveoli, and the left atrial pressure is not transmissible to the alveolar capillaries. However, it is impossible to see whether alveolar capillaries are really displaying the waterfall phenomenon or not. In this review, the interrelation between the flow and geometry of the alveolar capillaries in the waterfall phenomenon is analyzed based on physiological studies using a model system and isolated lung lobe experiments. Further, extending the concept to the analysis of ventilatory changes of the inferior vena cava (IVC) configuration, it is ascertained that the waterfall phenomenon normally occurs in the IVC during inspiration just before it enters the thorax and the waterfall phenomenon in the IVC disintegrates with elevation of the central venous pressure. Because these configurations of the IVC in normal and abnormal conditions are visible with ultrasonography, the technique is very useful as a noninvasive approach to diagnose right heart failure.

  4. Mars Science Laboratory Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberer, Mark; Shidner, Jeremy D.

    2013-01-01

    On August 5th 2012, The Mars Science Laboratory entry vehicle successfully entered Mars atmosphere and landed the Curiosity rover on its surface. A Kalman filter approach has been implemented to reconstruct the entry, descent, and landing trajectory based on all available data. The data sources considered in the Kalman filtering approach include the inertial measurement unit accelerations and angular rates, the terrain descent sensor, the measured landing site, orbit determination solutions for the initial conditions, and a new set of instrumentation for planetary entry reconstruction consisting of forebody pressure sensors, known as the Mars Entry Atmospheric Data System. These pressure measurements are unique for planetary entry, descent, and landing reconstruction as they enable a reconstruction of the freestream atmospheric conditions without any prior assumptions being made on the vehicle aerodynamics. Moreover, the processing of these pressure measurements in the Kalman filter approach enables the identification of atmospheric winds, which has not been accomplished in past planetary entry reconstructions. This separation of atmosphere and aerodynamics allows for aerodynamic model reconciliation and uncertainty quantification, which directly impacts future missions. This paper describes the mathematical formulation of the Kalman filtering approach, a summary of data sources and preprocessing activities, and results of the reconstruction.

  5. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    NASA Astrophysics Data System (ADS)

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  6. Laws of physics help explain capillary non-perfusion in diabetic retinopathy.

    PubMed

    Stefánsson, E; Chan, Y K; Bek, T; Hardarson, S H; Wong, D; Wilson, D I

    2018-02-01

    The purpose is to use laws of physics to elucidate the mechanisms behind capillary non-perfusion in diabetic retinopathy. In diabetic retinopathy, loss of pericytes weakens capillary walls and the vessel dilates. A dilated capillary has reduced resistance to flow, therefore increased flow in that vessel and decreased in adjoining capillaries. A preferential shunt vessel is thus formed from the dilated capillary and the adjacent capillaries become non-perfused. We apply the laws of Laplace and Hagen-Poiseuille to better understand the phenomena that lead to capillary non-perfusion. These laws of physics can give a foundation for physical or mathematical models to further elucidate this field of study. The law of Laplace predicts that a weaker vessel wall will dilate, assuming constant transmural pressure. The Hagen-Poiseuille equation for flow and the Ostwald-de Waele relationship for viscosity predict that a dilated vessel will receive a higher portion of the fluid flow than the adjoining capillaries. Viscosity will decrease in the dilated vessel, furthering the imbalance and resulting in a patch of non-perfused capillaries next to the dilated 'preferential' shunt vessel. Physical principles support or inspire novel hypotheses to explain poorly understood phenomena in ophthalmology. This thesis of pericyte death and capillary remodelling, which was first proposed by Cogan and Kuwabara, already agrees with histological and angiographical observations in diabetic retinopathy. We have shown that it is also supported by classical laws of physics.

  7. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J.

    2015-11-01

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ, and Hα were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit "coral" and "cauliflower-like" morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  8. Light-induced cross transport phenomena in a single-component gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chermyaninov, I. V.; Chernyak, V. G., E-mail: Vladimir.Chernyak@usu.ru

    2013-07-15

    The cross transport processes that occur in a single-component gas in a capillary and are caused by resonance laser radiation and pressure and temperature gradients are studied. An expression for entropy production is derived using a system of kinetic Boltzmann equations in a linear approximation. The kinetic coefficients that determine the transport processes are shown to satisfy the Onsager reciprocal relations at any Knudsen numbers and any character of the elastic interaction of gas particles with the capillary surface. The light-induced baro- and thermoeffects that take place in a closed heat-insulated system in the field of resonance laser radiation aremore » considered. Analytical expressions are obtained for the Onsager coefficients in an almost free-molecular regime. The light-induced pressure and temperature gradients that appear in a closed heat-insulated capillary under typical experimental conditions are numerically estimated.« less

  9. Aspects of hysteresis in unsaturated porous media flow

    NASA Astrophysics Data System (ADS)

    van Duijn, Hans

    2016-04-01

    About 20 years ago, Peter Raats and I wrote a technical note related to the horizontal redistribution in unsaturated porous media with hysteresis in the capillary pressure (P.A.C. Raats & C.J. van Duijn, A note on horizontal redistribution with capillary hysteresis, WWR 31, p. 231-232, 1995). In the first part of my presentation, I will revisit the results of that paper. In particular the cases of unconventional flow, where the water flows from the dry region to the wet region. A comparison will be made with results obtained with the current interface area models as introduced by Gray & Hassanizadeh. I will explain and outline the differences. In the second part, travelling wave solutions of Richards equation with gravity and with hysteresis in both the capillary pressure and relative permeability will be discussed. It will be explained why such solutions oscillate in space-time and how they behave as the hysteresis regularization vanishes.

  10. Spontaneous Imbibition in Low Permeability Medium, SUPRI TR-114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovscek, Anthony R.; Schembre, Josephina

    1999-08-09

    A systematic experimental investigation of capillary pressure characteristics and fluid flow in diatomite was begun. Using an X-ray CT scanner and a specially constructed imbibition cell, we study spontaneous water imbibition processes in diatomite and, for reference, Berea sandstone and chalk. The mass of water imbibed as a function of time is also measured. Imbibition is restricted to concurrent flow. Despite a marked difference in rock properties such as permeability and porosity, we find similar trends in saturation profiles and weight gain versus time functions. Imbibition in diatomote is relatively rapid when initial water saturation is low due to largemore » capillary forces. Using a non-linear regression analysis together with the experimental data, the capillary pressure and water relative permeability curves are determined for the diatomite in the water-air system. The results given for displacement profiles by numerical simulation match the experimental results.« less

  11. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    DOE PAGES

    Gou, Huiyang; Hemley, Russell J.; Hemawan, Kadek W.

    2015-11-02

    Polycrystalline diamond has been successfully synthesized on silicon substrates at atmospheric pressure using a microwave capillary plasma chemical vapor deposition technique. The CH 4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C 2, Ar, N 2, CH, H β and H α were observed in emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T 2g phonon at 1333 cm -1 peak relative to the Raman features of graphitic carbon. Furthermore, fieldmore » emission scanning electron microscopy (SEM) images reveal that, depending on the on growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.« less

  12. Type 2 diabetes management in nurse-led primary healthcare settings in urban and rural Cameroon.

    PubMed

    Kengne, Andre Pascal; Fezeu, Leopold; Sobngwi, Eugene; Awah, Paschal Kum; Aspray, Terence J; Unwin, Nigel C; Mbanya, Jean-Claude

    2009-08-01

    To implement a protocol-driven primary nurse-led care for type 2 diabetes in rural and urban Cameroon. We set-up three primary healthcare clinics in Yaounde (Capital city) and two in the Bafut rural health district. Participants were 225 (17% rural) patients with known or newly diagnosed type 2 diabetes, not requiring insulin, referred either from a baseline survey (38 patients, 17%), or secondarily attracted to the clinics. Protocol-driven glucose and blood pressure control were delivered by trained nurses. The main outcomes were trajectories of fasting capillary glucose and blood pressure indices, and differences in the mean levels between baseline and final visits. The total duration of follow-up was 1110 patient-months. During follow-up, there was a significant downward trend in fasting capillary glucose overall (p<0.001) and in most subgroups of participants. Between baseline and final visits, mean fasting capillary glucose dropped by 1.6 mmol/L (95% CI: 0.8-2.3; p< or =0.001). Among those with hypertension, blood pressure also decreased significantly for systolic and marginally for diastolic blood pressure. No major significant change was noticed for body weight. Nurses may be potential alternatives to improve access to diabetes care in settings where physicians are not available.

  13. Effect of wettability of a porous stainless steel on thermally induced liquid-vapor interface behavior

    NASA Astrophysics Data System (ADS)

    Oka, C.; Odagiri, K.; Nagano, H.

    2017-12-01

    Control of thermally induced liquid-vapor interface behavior at the contact surface of porous media is crucial for development of two-phase heat transfer devices such as loop heat pipes. The behavior experiences three modes with increase of heat flux, and the middle mode possesses the highest heat transfer performance. In this paper, the effect of improving wettability of the porous media is demonstrated experimentally and numerically for the first time, in particular with regard to the effect on a domain of the middle mode. Ethanol wettability of a porous stainless steel was improved via a facile method, which was a simple acid treatment. As a result, the domain of the middle mode was extended as a consequence of the wettability improvement. The mode transfers from the middle to the last one when the pressure drop in the liquid supply exceeds the capillary pressure of liquid bridges formed between the heating plate and the porous medium. Hence, the extension of the domain suggested that the capillary pressure was increased by the wettability improvement. This was verified via numerical calculation. The calculated capillary pressure was increased by 7% after improving wettability, which resulted in the extension of the domain of the middle mode.

  14. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.

    PubMed

    Polwaththe-Gallage, Hasitha-Nayanajith; Saha, Suvash C; Sauret, Emilie; Flower, Robert; Senadeera, Wijitha; Gu, YuanTong

    2016-12-28

    Blood continuously flows through the blood vessels in the human body. When blood flows through the smallest blood vessels, red blood cells (RBCs) in the blood exhibit various types of motion and deformed shapes. Computational modelling techniques can be used to successfully predict the behaviour of the RBCs in capillaries. In this study, we report the application of a meshfree particle approach to model and predict the motion and deformation of three-dimensional RBCs in capillaries. An elastic spring network based on the discrete element method (DEM) is employed to model the three-dimensional RBC membrane. The haemoglobin in the RBC and the plasma in the blood are modelled as smoothed particle hydrodynamics (SPH) particles. For validation purposes, the behaviour of a single RBC in a simple shear flow is examined and compared against experimental results. Then simulations are carried out to predict the behaviour of RBCs in a capillary; (i) the motion of five identical RBCs in a uniform capillary, (ii) the motion of five identical RBCs with different bending stiffness (K b ) values in a stenosed capillary, (iii) the motion of three RBCs in a narrow capillary. Finally five identical RBCs are employed to determine the critical diameter of a stenosed capillary. Validation results showed a good agreement with less than 10% difference. From the above simulations, the following results are obtained; (i) RBCs exhibit different deformation behaviours due to the hydrodynamic interaction between them. (ii) Asymmetrical deformation behaviours of the RBCs are clearly observed when the bending stiffness (K b ) of the RBCs is changed. (iii) The model predicts the ability of the RBCs to squeeze through smaller blood vessels. Finally, from the simulations, the critical diameter of the stenosed section to stop the motion of blood flow is predicted. A three-dimensional spring network model based on DEM in combination with the SPH method is successfully used to model the motion and deformation of RBCs in capillaries. Simulation results reveal that the condition of blood flow stopping depends on the pressure gradient of the capillary and the severity of stenosis of the capillary. In addition, this model is capable of predicting the critical diameter which prevents motion of RBCs for different blood pressures.

  15. Wettability Control on Fluid-Fluid Displacements in Patterned Microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Trojer, M.; Cueto-Felgueroso, L.; Juanes, R.

    2014-12-01

    Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and water infiltration in soil. While it is well known that the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We confirm that wettability exerts a fundamental control on meniscus deformation, and synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We compare our experiments to a macroscopic phase-field model of two-phase flow. We use the insights gained from the capillary tube experiments to explore the viscous fingering instability in the Hele-Shaw geometry in the partial-wetting regime. A key difference between a Hele-Shaw cell and a porous medium is the existence of micro-structures (i.e. pores and pore throats). To investigate how these micro-structrues impact fluid-fluid displacement, we conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.

  16. Studies on cryogenic Xe capillary jet target for laser-produced plasma EUV-light source

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Nica, P. E.; Kaku, K.; Shimoura, A.; Amano, S.; Miyamoto, S.; Mochizuki, T.

    2006-03-01

    In this paper, characterizations of a cryogenic Xe capillary jet target for a laser-produced plasma extreme ultraviolet (EUV) light source are reported. The capillary jet target is a candidate of fast-supplying targets for mitigating debris generation and target consumption in a vacuum chamber without reducing the EUV conversion efficiency. Xe capillary jets (jet velocity ~ 0.4 m/s) were generated in vacuum by using annular nozzles chilled to ~ 170 K at a Xe backing pressure of ~ 0.7 MPa. Forming mechanisms of the capillary jet targets were studied by using numerical calculations. Furthermore, laser-produced plasma EUV generation was performed by irradiating a Nd:YAG laser (1064 nm, ~ 0.5 J, 10 ns, 120 μmφ, ~ 4×10 11 W/cm2) on a Xe capillary jet target (outer / inner diameter = 100 / 70 μmφ). The angular distribution of EUV generation was approximately uniform around the Xe capillary jet target, and the peak kinetic energy of the fast-ions was evaluated to be ~ 2 keV.

  17. A physics link between venous stenosis and multiple sclerosis.

    PubMed

    Tucker, Trevor W

    2011-12-01

    This paper hypothesizes that a stenosis or obstruction at a lower extremity of an internal jugular vein (IJV) would, in accordance with the physics of fluid dynamics, cause a standing pressure wave within the vein. This pressure wave would possess regions of large pressure fluctuations and other regions of relatively little fluctuation which also have substantially lower peak pressure values. If the wavelength of the hypothesized pressure wave is comparable to the distance from the obstruction to the venule end of the capillary bed, then a region of high pressure fluctuation would exist at the venules. Depending on the degree of obstruction, the pressure fluctuations at the venules of the capillary bed would be substantially greater than those that would exist in a healthy unobstructed vein. This increase in blood pressure fluctuation located at the venule end of the capillary bed, which would be equivalent to local hypertension, is predicted to reduce the pressure drop across the bed which, in turn, would reduce blood flow through the bed in accordance with Darcy's Law. Such a reduction in blood flow through the bed would be accompanied by a reduction in the transfer of oxygen, glucose and other nutrients into the brain tissue in accordance with Fick's Principle. The reduction in oxygen levels in the brain tissue (i.e. hypoxia), would, in turn, be associated with increased fatigue and decreased mental acuity in the subject patient. Also the deprivation of oxygen in the brain tissue may result in the death of oligodendrocyte cells, which, in turn would result in the deterioration of the myelin surrounding the brain's neural axons. In addition, the paper also predicts that, in cases of extreme obstruction, the predicted localized hypertension at the venule end of the capillary bed may be sufficiently high to cause a localized disruption in the blood-brain barrier. Such a disruption of the blood-brain barrier could then allow the migration of leukocytes (auto-immune attack cells), from the blood into the brain tissue, enabling them to attack myelin, which has degenerated or deteriorated from the reduction in repair function normally provided by oligodendrocyte cells. Such leukocyte attack on myelin has long been associated with multiple sclerosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The Effect of Electrokinetic Controlled Wettability on Externally Measured Pressures for a Micro-Fluidic Channel

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Nolte, D. D.; Pyrak-Nolte, L. J.

    2017-12-01

    The hysteretic relationship between capillary pressure (Pc) on saturation (S) has been shown to be a projection of a higher-dimensional surface that depends on interfacial area per volume (IAV) as the additional state variable. Most studies that validate the capillary-pressure-saturation-IAV relationship are performed on 2D micro-models or cores where scanning is performed in pressure and not in saturation. We have developed an EWOD technique (electro-wetting on dielectric) to internally manipulate fluid saturation to determine the effect on externally measured pressures. Applying electric fields to electrolytic fluids changes the contact angle among the fluids and the solid. For a parallel-plate electro-wetting set-up, the pressure difference is given by gsl (cosq'EW - cosqEW )/d', where d' is the aperture, qEQ and q'EW are the contact angles before and after the application of voltage, V, and gsl is the interfacial tension between the solid and liquid phases. This pressure difference enables direct control over internal fluid distributions. The contact angle reverts to the original value when V = 0. A sealed micro-model with Electro-Wetting on Dielectric (EWOD) electrodes was fabricated using a PDMS wedge-shaped channel with an entrance width of 1 mm and an exit width of 2 mm. The channel length was 2 mm, and had a depth of 0.9 mm. The PDMS channel was attached to an aluminum plate that served as the ground electrode. An ITO slide coated with PDMS formed the high voltage electrode and was used to seal the micro-model. X-ray Micro-CT scans showed that the contact angle between electrodes changes from from 110˚ (non-wetting) to 70˚ (wetting) for an applied voltage of 318 V AC. By applying voltage to the wedge-shaped micromodel, with the inlet and the outlet opened to the atmosphere, the externally measured capillary pressure remained constant even though the fluid-air interface moved and the saturation increased. For a closed system, the externally measured change in capillary pressure was 30 Pa and the saturation in the channel increased. EWOD provides method to assess the contributions of wettability to the fundamental physics of immiscible fluids in analog porous media. Acknowledgment: This research was supported by the National Science Foundation (1314663-EAR).

  19. Characterization of Geologic Structures and Host Rock Properties Relevant to the Hydrogeology of the Standard Mine in Elk Basin, Gunnison County, Colorado

    USGS Publications Warehouse

    Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn

    2010-01-01

    The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.

  20. Effects of increased inspired oxygen concentration on tissue oxygenation: theoretical considerations.

    PubMed

    Lumb, Andrew B; Nair, Sindhu

    2010-03-01

    Breathing increased fractional oxygen concentration (FiO2) is recommended for the treatment of tissue ischaemia. The theoretical benefits of increasing FiO2 on tissue oxygenation were evaluated using standard physiological equations. Assuming constant oxygen consumption by tissues throughout the length of a capillary, the oxygen content at 20 arbitrary points along a capillary was calculated. Using mathematical representations of the haemoglobin dissociation curve and an iterative approach to include the dissolved oxygen component of oxygen content, the oxygen partial pressure (PO2) profile along a capillary was estimated. High FiO2 concentrations cause large increases in PO2 at the arteriolar end of capillaries but these large PO2 values, caused by the extra dissolved oxygen, rapidly decline along the capillary. At the venular end of the capillary (the area of tissue most likely to be hypoxic), breathing oxygen causes only a modest improvement in PO2. Increasing FiO2 to treat tissue hypoxia has clear benefits, but a multimodal approach to management is required.

  1. The effect of contact angles and capillary dimensions on the burst frequency of super hydrophilic and hydrophilic centrifugal microfluidic platforms, a CFD study.

    PubMed

    Kazemzadeh, Amin; Ganesan, Poo; Ibrahim, Fatimah; He, Shuisheng; Madou, Marc J

    2013-01-01

    This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms.

  2. The Effect of Contact Angles and Capillary Dimensions on the Burst Frequency of Super Hydrophilic and Hydrophilic Centrifugal Microfluidic Platforms, a CFD Study

    PubMed Central

    Kazemzadeh, Amin; Ganesan, Poo; Ibrahim, Fatimah; He, Shuisheng; Madou, Marc J.

    2013-01-01

    This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms. PMID:24069169

  3. Study of the efficiency for ion transfer through bent capillaries.

    PubMed

    Chen, Tsung-Chi; Xu, Wei; Garimella, Sandilya; Ouyang, Zheng

    2012-11-01

    Discontinuous atmospheric pressure interfaces (DAPIs) with bent capillaries represent a highly simplified and flexible means for introducing ions into a vacuum manifold for mass analysis or gas phase ion reactions. In this work, a series of capillaries of different radians and curvatures were used with DAPI for studying the impact of the capillary bending on the ion transfer. The variation of transfer efficiency was systematically characterized for dry and solvated ions. The efficiency loss for dry ions was less than one order of magnitude, even with a three-turn bent capillary. The transfer of solvated ions generated by electrospray was found to be minimally impacted by the bending of the transfer capillary. For multiply protonated ions, the transfer efficiency for ions at lower charge states could be relatively well retained, presumably due to the lower reactivity associated with proton transfer reaction and the compensation in intensity by conversion of ions at higher charge states. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Miniaturised medium pressure capillary liquid chromatography system with flexible open platform design using off-the-shelf microfluidic components.

    PubMed

    Li, Yan; Dvořák, Miloš; Nesterenko, Pavel N; Stanley, Roger; Nuchtavorn, Nantana; Krčmová, Lenka Kujovská; Aufartová, Jana; Macka, Mirek

    2015-10-08

    Trends towards portable analytical instrumentation of the last decades have not been equally reflected in developments of portable liquid chromatography (LC) instrumentation for rapid on-site measurements. A miniaturised medium pressure capillary LC (MPLC) system with gradient elution capability has been designed based on a flexible modular microfluidic system using primarily off-the-shelf low cost components to ensure wide accessibility to other analysts. The microfluidic platform was assembled on a breadboard and contained microsyringe pumps and switch valves, complemented with an injection valve and on-capillary detectors, all controlled by a PC. Four miniaturised microsyringe pumps, with 5, 20 and 100 μL syringe volume options, formed the basis of the pumping system. Two pairs of pumps were used for each mobile phase to create gradient elution capability. The two microsyringe pumps in each pairs were linked by two electrically operated microfluidic switching valves and both pairs of pumps were connected through a zero void volume cross-connector, thus providing a low hold-up volume for gradient formation. Sample was injected by a 20 nL nano-LC sampling valve, directly connected to a 18 cm long 100 μm i.d. Chromolith CapRod RP-18 monolithic capillary column. On-capillary LED-based UV-vis photometric detection was conducted through a piece of equal diameter fused silica capillary connected after the column. The performance of the portable LC system was evaluated theoretically and experimentally, including the maximum operating pressure, gradient mixing performance, and the performance of the detectors. The 5 μL microsyringe pump offered the best performance, with typical maximum operating pressures up to 11.4 ± 0.4 MPa (water) and gradient pumping repeatability of between 4 and 9% for gradients between 0.10% s(-1) and 0.33% s(-1). Test analytes of charged and uncharged dyes and pharmaceuticals of varying hydrophobicity showed typical RSD values of 0.7-1.4% and 3.3-4.8% in isocratic mode and 1.2-4.6% and 3.2-6.4% in gradient mode, respectively for retention time and peak area repeatability. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  5. Modeling of the anode of a liquid-feed DMFC: Inhomogeneous compression effects and two-phase transport phenomena

    NASA Astrophysics Data System (ADS)

    García-Salaberri, Pablo A.; Vera, Marcos; Iglesias, Immaculada

    2014-01-01

    An isothermal two-phase 2D/1D across-the-channel model for the anode of a liquid-feed Direct Methanol Fuel Cell (DMFC) is presented. The model takes into account the effects of the inhomogeneous assembly compression of the Gas Diffusion Layer (GDL), including the spatial variations of porosity, diffusivity, permeability, capillary pressure, and electrical conductivity. The effective anisotropic properties of the GDL are evaluated from empirical data reported in the literature corresponding to Toray carbon paper TGP-H series. Multiphase transport is modeled according to the classical theory of porous media (two-fluid model), considering the effect of non-equilibrium evaporation and condensation of methanol and water. The numerical results evidence that the hydrophobic Leverett J-function approach is physically inconsistent to describe capillary transport in the anode of a DMFC when assembly compression effects are considered. In contrast, more realistic results are obtained when GDL-specific capillary pressure curves reflecting the mixed-wettability characteristics of GDLs are taken into account. The gas coverage factor at the GDL/channel interface also exhibits a strong influence on the gas-void fraction distribution in the GDL, which in turn depends on the relative importance between the capillary resistance induced by the inhomogeneous compression, Rc(∝ ∂pc / ∂ ε) , and the capillary diffusivity, Dbarc(∝ ∂pc / ∂ s) .

  6. System automatically supplies precise analytical samples of high-pressure gases

    NASA Technical Reports Server (NTRS)

    Langdon, W. M.

    1967-01-01

    High-pressure-reducing and flow-stabilization system delivers analytical gas samples from a gas supply. The system employs parallel capillary restrictors for pressure reduction and downstream throttling valves for flow control. It is used in conjunction with a sampling valve and minimizes alterations of the sampled gas.

  7. Motion of liquid plugs between vapor bubbles in capillary tubes: a comparison between fluids

    NASA Astrophysics Data System (ADS)

    Bertossi, Rémi; Ayel, Vincent; Mehta, Balkrishna; Romestant, Cyril; Bertin, Yves; Khandekar, Sameer

    2017-11-01

    Pulsating heat pipes (PHP) are now well-known devices in which liquid/vapor slug flow oscillates in a capillary tube wound between hot and cold sources. In this context, this paper focuses on the motion of the liquid plug, trapped between vapor bubbles, moving in capillary tubes, to try to better understand the thermo-physical phenomena involved in such devices. This study is divided into three parts. In the first part, an experimental study presents the evolution of the vapor pressure during the evaporation process of a liquid thin film deposited from a liquid plug flowing in a heated capillary tube: it is found that the behavior of the generated and removed vapor can be very different, according to the thermophysical properties of the fluids. In the second part, a transient model allows to compare, in terms of pressure and duration, the motion of a constant-length liquid plug trapped between two bubbles subjected to a constant difference of vapor pressure: the results highlight that the performances of the four fluids are also very different. Finally, a third model that can be considered as an improvement of the second one, is also presented: here, the liquid slug is surrounded by two vapor bubbles, one subjected to evaporation, the pressure in both bubbles is now a result of the calculation. This model still allows comparing the behaviors of the fluid. Even if our models are quite far from a complete model of a real PHP, results do indicate towards the applicability of different fluids as suitable working fluids for PHPs, particularly in terms of the flow instabilities which they generate.

  8. Modeling of FMISO [F18] nanoparticle PET tracer in normal-cancerous tissue based on real clinical image.

    PubMed

    Asgari, Hanie; Soltani, M; Sefidgar, Mostafa

    2018-07-01

    Hypoxia as one of the principal properties of tumor cells is a reaction to the deprivation of oxygen. The location of tumor cells could be identified by assessment of oxygen and nutrient level in human body. Positron emission tomography (PET) is a well-known non-invasive method that is able to measure hypoxia based on the FMISO (Fluoromisonidazole) tracer dynamic. This paper aims to study the PET tracer concentration through convection-diffusion-reaction equations in a real human capillary-like network. A non-uniform oxygen pressure along the capillary path and convection mechanism for FMISO transport are taken into account to accurately model the characteristics of the tracer. To this end, a multi-scale model consists of laminar blood flow through the capillary network, interstitial pressure, oxygen pressure, FMISO diffusion and FMISO convection transport in the extravascular region is developed. The present model considers both normal and tumor tissue regions in computational domain. The accuracy of numerical model is verified with the experimental results available in the literature. The convection and diffusion types of transport mechanism are employed in order to calculate the concentration of FMISO in the normal and tumor sub-domain. The influences of intravascular oxygen pressure, FMISO transport mechanisms, capillary density and different types of tissue on the FMISO concentration have been investigated. According to result (Table 4) the convection mechanism of FMISO molecules transportation is negligible, but it causes more accuracy of the proposed model. The approach of present study can be employed in order to investigate the effects of various parameters, such as tumor shape, on the dynamic behavior of different PET tracers, such as FDG, can be extended to different case study problems, such as drug delivery. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Pore-Lining Composition and Capillary Breakthrough Pressure of Mudstone Caprocks: Sealing Efficiency of Geologic CO2 Storage Sites

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Dewers, T. A.; McPherson, B. J.; Kotula, P. G.

    2010-12-01

    Subsurface containment of CO2 is predicated on effective caprock sealing. Many previous studies have relied on macroscopic measurements of capillary breakthrough pressure and other petrophysical properties without direct examination of solid phases that line pore networks and directly contact fluids. However, pore-lining phases strongly contribute to sealing behavior through interfacial interactions among CO2, brine, and the mineral or non-mineral phases. Our high resolution (i.e., sub-micron) examination of the composition of pore-lining phases of several continental and marine mudstones indicates that sealing efficiency (i.e., breakthrough pressure) is governed by pore shapes and pore-lining phases that are not identifiable except through direct characterization of pores. Bulk X-ray diffraction data does not indicate which phases line the pores and may be especially lacking for mudstones with organic material. Organics can line pores and may represent once-mobile phases that modify the wettability of an originally clay-lined pore network. For shallow formations (i.e., < ~800 m depth), interfacial tension and contact angles result in breakthrough pressures that may be as high as those needed to fracture the rock—thus, in the absence of fractures, capillary sealing efficiency is indicated. Deeper seals have poorer capillary sealing if mica-like wetting dominates the wettability. We thank the U.S. Department of Energy’s National Energy Technology Laboratory and the Office of Basic Energy Sciences, and the Southeast and Southwest Carbon Sequestration Partnerships for supporting this work. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. High-throughput method to predict extrusion pressure of ceramic pastes.

    PubMed

    Cao, Kevin; Liu, Yang; Tucker, Christopher; Baumann, Michael; Grit, Grote; Lakso, Steven

    2014-04-14

    A new method was developed to measure the rheology of extrudable ceramic pastes using a Hamilton MicroLab Star liquid handler. The Hamilton instrument, normally used for high throughput liquid processing, was expanded to function as a low pressure capillary rheometer. Diluted ceramic pastes were forced through the modified pipettes, which produced pressure drop data that was converted to standard rheology data. A known ceramic paste containing cellulose ether was made and diluted to various concentrations in water. The most dilute paste samples were tested in the Hamilton instrument and the more typical, highly concentrated, ceramic paste were tested with a hydraulic ram extruder fitted with a capillary die and pressure measurement system. The rheology data from this study indicates that the dilute high throughput method using the Hamilton instrument correlates to, and can predict, the rheology of concentrated ceramic pastes normally used in ceramic extrusion production processes.

  11. An analysis of induced pressure fields in electroosmotic flows through microchannels.

    PubMed

    Zhang, Yonghao; Gu, Xiao-Jun; Barber, Robert W; Emerson, David R

    2004-07-15

    Induced pressure gradients are found to cause band-broadening effects which are important to the performance of microfluidic devices, such as capillary electrophoresis and capillary chromatography. An improved understanding of the underlying mechanisms causing an induced pressure gradient in electroosmotic flows is presented. The analysis shows that the induced pressure distribution is the key to understanding the experimentally observed phenomena of leakage flows. A novel way of determining the static pressures at the inlet and outlet of microchannels is also presented that takes account of the pressure losses due to flow contraction and expansion. These commonly neglected pressure losses at the channel entrance and outlet are shown to be important in accurately describing the flow. The important parameters that define the effect of induced pressure on the flows are discussed, which may facilitate the design of improved microfluidic devices. The present model clearly identifies the mechanism behind the experimentally observed leakage flows, which is further confirmed by numerical simulations. Not only can the leakage flow occur from the electric-field-free side channel to the main channel, but also the fluid in the main channel can be attracted into the side channel by the induced pressure gradient. Copyright 2004 Elsevier Inc.

  12. Capillary electrophoresis: Imaging of electroosmotic and pressure driven flow profiles in fused silica capillaries

    NASA Technical Reports Server (NTRS)

    Williams, George O., Jr.

    1996-01-01

    This study is a continuation of the summer of 1994 NASA/ASEE Summer Faculty Fellowship Program. This effort is a portion of the ongoing work by the Biophysics Branch of the Marshall Space Flight Center. The work has focused recently on the separation of macromolecules using capillary electrophoresis (CE). Two primary goals were established for the effort this summer. First, we wanted to use capillary electrophoresis to study the electrohydrodynamics of a sample stream. Secondly, there was a need to develop a methodology for using CE for separation of DNA molecules of various sizes. In order to achieve these goals we needed to establish a procedure for detection of a sample plug under the influence of an electric field Detection of the sample with the microscope and image analysis system would be helpful in studying the electrohydrodynamics of this stream under load. Videotaping this process under the influence of an electric field in real time would also be useful. Imaging and photography of the sample/background electrolyte interface would be vital to this study. Finally, detection and imaging of electroosmotic flow and pressure driven flow must be accomplished.

  13. Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Q.; Birkholzer, J.T.; Mehnert, E.

    Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of highmore » injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.« less

  14. Comparison of usefulness of each of five predictors of mortality and urgent transplantation in patients with advanced heart failure.

    PubMed

    Sachdeva, Amit; Horwich, Tamara B; Fonarow, Gregg C

    2010-09-15

    B-type natriuretic peptide (BNP), peak oxygen consumption (VO(2)), blood urea nitrogen (BUN), systolic blood pressure (SBP), and pulmonary capillary wedge pressure are all established predictors of mortality or urgent transplantation in patients with advanced heart failure (HF). However, their comparative predictive ability in estimating prognosis has not been well studied. We analyzed 1,215 patients with advanced systolic HF referred to a university center from 1999 to 2009. BUN, BNP, VO(2), SBP, and pulmonary capillary wedge pressure were measured as a part of the initial evaluation. The patients were divided into groups according to the best cutoffs for predicting both 1- and 2-year mortality from the analysis of the receiver operating characteristic curves (BNP > or =579 pg/ml, peak VO(2) <14 ml/kg/min, BUN > or =53 mg/dl, SBP <118 mm Hg, and pulmonary capillary wedge pressure > or =21 mm Hg). During a 2-year follow-up, 234 patients (19%) died, and 208 (17%) required urgent transplantation. BNP (odds ratio 4.3, 95% confidence interval 3.3 to 5.5) and peak VO(2) (odds ratio 4.5, 95% confidence interval 2.6 to 7.8) were the strongest predictors for death or urgent transplantation. On multivariate analyses, BNP and peak VO(2) were the strongest predictors for both death or urgent transplantation and all-cause mortality. The c-statistic was 0.756 for BNP, 0.701 for VO(2), 0.659 for BUN, 0.638 for SBP, and 0.650 for pulmonary capillary wedge pressure. In conclusion, of the 5 established predictors of outcomes in advanced HF, BNP was the most robust discriminator of risk and thus could be useful, along with other more traditional prognostic variables, in patient counseling regarding prognosis and determining the timing for heart transplantation. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Densimetry for the Quantification of Sorption Phenomena on Nonporous Media Near the Dew Point of Fluid Mixtures.

    PubMed

    Richter, Markus; McLinden, Mark O

    2017-07-21

    Phase equilibria of fluid mixtures are important in numerous industrial applications and are, thus, a major focus of thermophysical property research. Improved data, particularly along the dew line, are needed to improve model predictions. Here we present experimental results utilizing highly accurate densimetry to quantify the effects of sorption and capillary condensation, which exert a distorting influence on measured properties near the dew line. We investigate the (pressure, density, temperature, composition) behaviour of binary (CH 4  + C 3 H 8 ) and (Ar + CO 2 ) mixtures over the temperature range from (248.15 to 273.15) K starting at low pressures and increasing in pressure towards the dew point along isotherms. Three distinct regions are observed: (1) minor sorption effects in micropores at low pressures; (2) capillary condensation followed by wetting in macro-scale surface scratches beginning approximately 2% below the dew-point pressure; (3) bulk condensation. We hypothesize that the true dew point lies within the second region.

  16. Optical fiber tip interferometer gas pressure sensor based on anti-resonant reflecting guidance mechanism

    NASA Astrophysics Data System (ADS)

    Yang, Y. B.; Wang, D. N.; Xu, Ben; Wang, Z. K.

    2018-05-01

    We propose and demonstrate a gas pressure sensor based on an anti-resonant reflecting guidance (ARRG) mechanism in quartz capillary tube with an open cavity. The device is simple in fabrication by only fusion splicing a segment of capillary tube with single mode fiber. It has compact size, robust structure, convenient mode of operation, and high sensitivity of 4.278 nm/MPa. Moreover, as two Faby-Perot cavities exist in the device, which create the interference spectrum with several distinct resonance dips, a simultaneous gas pressure and temperature detection can be readily achieved by tracing two dip wavelengths. The error in the measurement due to the choice of different resonant dips can be effectively reduced by using the Fourier band pass filtering method.

  17. The Influence of Seal Properties on Pressure Buildup and Leakage of Carbon Dioxide from Sequestration Reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Benson, S. M.; Chabora, E.

    2009-12-01

    The transport properties of seals, namely permeability, relative permeability, and capillary pressure control both migration of carbon dioxide and brine through the seal. Only recently has the the importance of brine migration emerged as key issue in the environmental performance of carbon dioxide sequestration projects. In this study we use numerical simulation to show that brine migration through the seal can be either advantageous or deleterious to the environmental performance of a carbon dioxide sequestration project. Brine migration through the seal can lower the pressure buildup in the storage reservoir, thereby reducing the risk of leakage or geomechanical stresses on the seal. On the other hand, if the seal is penetrated by a permeable fault it can lead to focused flow up a fault, which could lead to brine migration into drinking water aquifers. We also show that as the carbon dioxide plume grows, brine flow undergoes a complex evolution from upward flow to downward flows driven by countercurrent migration of carbon dioxide and brine in the seal and capillary pressure gradients at the base of the seal. Finally, we discuss desirable attributes seals, taking into account both carbon dioxide and brine migration through the seal. In particular, identifying seals that provide an effective capillary barrier to block the flow of carbon dioxide while allowing some brine migration through the seal can help to control pressure buildup and allow more efficient utilization of a sequestration reservoir. This could be particularly important in those settings that may be limited by the maximum allowable pressure buildup.

  18. Pulse wave myelopathy: An update of an hypothesis highlighting the similarities between syringomyelia and normal pressure hydrocephalus.

    PubMed

    Bateman, Grant A

    2015-12-01

    Most hypotheses trying to explain the pathophysiology of idiopathic syringomyelia involve mechanisms whereby CSF is pumped against a pressure gradient, from the subarachnoid space into the cord parenchyma. On review, these theories have universally failed to explain the disease process. A few papers have suggested that the syrinx fluid may originate from the cord capillary bed itself. However, in these papers, the fluid is said to accumulate due to impaired fluid drainage out of the cord. Again, there is little evidence to substantiate this. This proffered hypothesis looks at the problem from the perspective that syringomyelia and normal pressure hydrocephalus are almost identical in their manifestations but only differ in their site of effect within the neuraxis. It is suggested that the primary trigger for syringomyelia is a reduction in the compliance of the veins draining the spinal cord. This reduces the efficiency of the pulse wave dampening, occurring within the cord parenchyma, increasing arteriolar and capillary pulse pressure. The increased capillary pulse pressure opens the blood-spinal cord barrier due to a direct effect upon the wall integrity and interstitial fluid accumulates due to an increased secretion rate. An increase in arteriolar pulse pressure increases the kinetic energy within the cord parenchyma and this disrupts the cytoarchitecture allowing the fluid to accumulate into small cystic regions in the cord. With time the cystic regions coalesce to form one large cavity which continues to increase in size due to the ongoing interstitial fluid secretion and the hyperdynamic cord vasculature. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. Capillary Pumped Heat Transfer (CHT) Experiment

    NASA Technical Reports Server (NTRS)

    Hallinan, Kevin P.; Allen, J. S.

    1998-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  20. Sedimentological Control on Hydrate Saturation Distribution in Arctic Gas-Hydrate-Bearing Deposits

    NASA Astrophysics Data System (ADS)

    Behseresht, J.; Peng, Y.; Bryant, S. L.

    2010-12-01

    Grain size variations along with the relative rates of fluid phases migrating into the zone of hydrate stability, plays an important role in gas-hydrate distribution and its morphologic characteristics. In the Arctic, strata several meters thick containing large saturations of gas hydrate are often separated by layers containing small but nonzero hydrate saturations. Examples are Mt. Elbert, Alaska and Mallik, NW Territories. We argue that this sandwich type hydrate saturation distribution is consistent with having a gas phase saturation within the sediment when the base of gas hydrate stability zone (BGHSZ) was located above the sediment package. The volume change during hydrate formation process derives movement of fluid phases into the GHSZ. We show that this fluid movement -which is mainly governed by characteristic relative permeability curves of the host sediment-, plays a crucial role in the amount of hydrate saturation in the zone of major hydrate saturation. We develop a mechanistic model that enables estimating the final hydrate saturation from an initial gas/water saturation in sediment with known relative permeability curves. The initial gas/water saturation is predicted using variation of capillary entry pressure with depth, which in turn depends on the variation in grain-size distribution. This model provides a mechanistic approach for explaining large hydrate saturations (60%-75%) observed in zones of major hydrate saturation considering the governing characteristic relative permeability curves of the host sediments. We applied the model on data from Mount Elbert well on the Alaskan North Slope. It is shown that, assuming a cocurrent flow of gas and water into the GHSZ, such large hydrate saturations (up to 75%) cannot result from large initial gas saturations (close to 1-Sw,irr) due to limitations on water flux imposed by typical relative permeability curves. They could however result from modest initial gas saturations (ca. 40%) at which we have reasonable phase mobility ratios required for appropriate relative rates of gas and water transporting into GHSZ to form large hydrate saturations. Nevertheless, from the profile of capillary entry pressure vs. depth, we expect large initial gas saturations and thus the final high hydrate saturation suggests another form of water flow: water moves down through accumulated hydrate from the unfrozen water above. For this to happen the water phase must remain connected within the hydrate-bearing sediment. This seems plausible in hydrate bearing sediments because hydrate formation will be stopped before water saturation gets to very low values (lower than Sw,irr) due to salinity build up. The location of small hydrate saturations (10-15%) is consistent with the location of the residual gas phase established during water imbibition into these locations while they serve as a gas source to the layers above.

  1. Rapid and Simple Capillary-Rise/Vanishing Interfacial Tension Method To Determine Crude Oil Minimum Miscibility Pressure: Pure and Mixed CO 2 , Methane, and Ethane

    DOE PAGES

    Hawthorne, Steven B.; Miller, David J.; Jin, Lu; ...

    2016-07-20

    We report here a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2−4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO2, methane, and ethane as well as 0−100% mole ratios of methane/CO2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO2, while methane MMPs were ca. double or triple those with CO2. MMPs with mixed methane/CO2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with mole percent methane in ethane, with a little increase in MMP until ca. 20 mol % methane in ethane.« less

  2. Physicochemical application of capillary chromatography

    NASA Astrophysics Data System (ADS)

    Vasil'ev, A. V.; Aleksandrov, E. N.

    1992-04-01

    The application of capillary gas chromatography in the determination of the free energy, enthalpy, and entropy of sorption, the saturated vapour pressure and activity coefficients, the assessment of the lipophilicity of volatile compounds, and the study of the properties of polymers and liquid crystals is described. The use of reaction cappillary chromatography in kinetic studies of conformational conversions, thermal degradation, and photochemical reactions is examined. Studies on the use of capillary columns for determination of the second virial coefficients and viscosity of gases and the diffusion coefficients in gases, liquids, supercritical fluids, and polymers are analysed. The bibliography includes 114 references.

  3. Trajectory optimization study of a lifting body re-entry vehicle for medium to intermediate range applications

    NASA Astrophysics Data System (ADS)

    Rizvi, S. Tauqeer ul Islam; Linshu, He; ur Rehman, Tawfiq; Rafique, Amer Farhan

    2012-11-01

    A numerical optimization study of lifting body re-entry vehicles is presented for nominal as well as shallow entry conditions for Medium and Intermediate Range applications. Due to the stringent requirement of a high degree of accuracy for conventional vehicles, lifting re-entry can be used to attain the impact at the desired terminal flight path angle and speed and thus can potentially improve accuracy of the re-entry vehicle. The re-entry of a medium range and intermediate range vehicles is characterized by very high negative flight path angle and low re-entry speed as compared to a maneuverable re-entry vehicle or a common aero vehicle intended for an intercontinental range. Highly negative flight path angles at the re-entry impose high dynamic pressure as well as heat loads on the vehicle. The trajectory studies are carried out to maximize the cross range of the re-entry vehicle while imposing a maximum dynamic pressure constraint of 350 KPa with a 3 MW/m2 heat rate limit. The maximum normal acceleration and the total heat load experienced by the vehicle at the stagnation point during the maneuver have been computed for the vehicle for possible future conceptual design studies. It has been found that cross range capability of up to 35 km can be achieved with a lifting-body design within the heat rate and the dynamic pressure boundary at normal entry conditions. For shallow entry angle of -20 degree and intermediate ranges a cross range capability of up to 250 km can be attained for a lifting body design with less than 10 percent loss in overall range. The normal acceleration also remains within limits. The lifting-body results have also been compared with wing-body results at shallow entry condition. An hp-adaptive pseudo-spectral method has been used for constrained trajectory optimization.

  4. The Propagation of a Liquid Bolus Through an Elastic Tube and Airway Reopening

    NASA Technical Reports Server (NTRS)

    Howell, Peter D.; Grotberg, James B.

    1996-01-01

    We use lubrication theory and matched asymptotic expansions to model the quasi-steady propagation of a liquid bridge through an elastic tube. In the limit of small capillary number, asymptotic expressions are found for the pressure drop across the bridge and the thickness of the liquid film left behind, as functions of the capillary number, the thickness of the liquid lining ahead of the bridge and the elastic characteristics of the tube wall. For a given precursor thickness, we find a critical propagation speed, and hence a critical imposed pressure drop, above which the bridge will eventually burst, and hence the tube will reopen.

  5. Estimation of relative permeability and capillary pressure from mass imbibition experiments

    NASA Astrophysics Data System (ADS)

    Alyafei, Nayef; Blunt, Martin J.

    2018-05-01

    We perform spontaneous imbibition experiments on three carbonates - Estaillades, Ketton, and Portland - which are three quarry limestones that have very different pore structures and span wide range of permeability. We measure the mass of water imbibed in air saturated cores as a function of time under strongly water-wet conditions. Specifically, we perform co-current spontaneous experiments using a highly sensitive balance to measure the mass imbibed as a function of time for the three rocks. We use cores measuring 37 mm in diameter and three lengths of approximately 76 mm, 204 mm, and 290 mm. We show that the amount imbibed scales as the square root of time and find the parameter C, where the volume imbibed per unit cross-sectional area at time t is Ct1/2. We find higher C values for higher permeability rocks. Employing semi-analytical solutions for one-dimensional flow and using reasonable estimates of relative permeability and capillary pressure, we can match the experimental data. We finally discuss how, in combination with conventional measurements, we can use theoretical solutions and imbibition measurements to find or constrain relative permeability and capillary pressure.

  6. Living cell manipulation, manageable sampling, and shotgun picoliter electrospray mass spectrometry for profiling metabolites.

    PubMed

    Gholipour, Yousef; Erra-Balsells, Rosa; Hiraoka, Kenzo; Nonami, Hiroshi

    2013-02-01

    A modified cell pressure probe and an online Orbitrap mass spectrometer were used to sample in situ plant single cells without any additional manipulation. The cell pressure probe, a quartz capillary tip filled with an oil mixture, was penetrated to various depths into parenchyma cells of tulip bulb scale, followed by a hydraulic continuity test to determine the exact location of the tip inside target cells. The operation was conducted under a digital microscope, and the capillary tip was photographed to calculate the volume of the cell sap sucked. The cell sap sample was then directly nebulized/ionized under high-voltage conditions at the entrance of the mass spectrometer. Several sugars, amino acids, organic acids, vitamins, fatty acids, and secondary metabolites were detected. Because picoliter solutions can be accurately handled and measured, known volumes of standard solutions can be added to cell sap samples inside the capillary tip to be used as references for metabolite characterization and relative quantitation. The high precision and sensitivity of the cell pressure probe and Orbitrap mass spectrometer allow for the manipulation and analysis of both femtoliter cell sap samples and standard solutions. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    NASA Astrophysics Data System (ADS)

    Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.

    2012-06-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.

  8. From catastrophic acceleration to deceleration of liquid plugs in prewetted capillary tubes

    NASA Astrophysics Data System (ADS)

    Magniez, Juan; Baudoin, Michael; Zoueshtiagh, Farzam; Lemac/Lics Team

    2016-11-01

    Liquid/gas flows in capillaries are involved in a multitude of systems including flow in porous media, petroleum extraction, imbibition of paper or flows in pulmonary airways in pathological conditions. Liquid plugs, witch compose the biphasic flows, can have a dramatic impact on patients with pulmonary obstructive diseases, since they considerably alter the circulation of air in the airways and thus can lead to severe breathing difficulties. Here, the dynamics of liquid plugs in prewetted capillary tube is investigated experimentally and theoretically, with a particular emphasis on the role of the prewetting films and of the driving condition (constant flow rate, constant pressure). For both driving conditions, the plugs can either experience a continuous increase or decrease of their size. While this phenomenon is regular in the case of imposed flow rate, a constant pressure head can lead to a catastrophic acceleration of the plug and eventually its rupture or a dramatic increase of the plug size. A theoretical model is proposed to explain the transition between theses two regimes. These results give a new insight on the critical pressure required for airways obstruction and reopening. IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, University of Lille.

  9. Thermal dissociation of ions limits the degree of the gas-phase H/D exchange at the atmospheric pressure.

    PubMed

    Kostyukevich, Y; Kononikhin, A; Popov, I; Nikolaev, E

    2017-04-01

    We present the application of the extended desolvating capillaries for increasing the degree of the gas-phase hydrogen/deuterium exchange reaction at atmospheric pressure. The use of the extended capillaries results in the increase of the time that ions spend in the high pressure region, what leads to the significant improvement of the efficiency of the reaction. For the small protein ubiquitin, it was observed that for the same temperature, the number of exchanges increases with the decrease of the charge state so that the lowest charge state can exchange twice the number of hydrogen than the highest one. With the increase of the temperature, the difference decreases, and eventually, the number of exchanges equalizes for all charge states. The value of this temperature and the corresponding number of exchanges depend on the geometric parameters of the capillary. Further increase of the temperature leads to the thermal dissociation of the protein ion. The observed b/y fragments are identical to those produced by collision-induced dissociation performed in the ion trap. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Drainage and impregnation capillary pressure curves calculated by the X-ray CT model of Berea sandstone using Lattice Boltzmann's method

    NASA Astrophysics Data System (ADS)

    Zakirov, T.; Galeev, A.; Khramchenkov, M.

    2018-05-01

    The study deals with the features of the technique for simulating the capillary pressure curves of porous media on their X-ray microtomographic images. The results of a computational experiment on the immiscible displacement of an incompressible fluid by another in the pore space represented by a digital image of the Berea sandstone are presented. For the mathematical description of two-phase fluid flow we use Lattice Boltzmann Equation (LBM), and phenomena at the fluids interface are described by the color-gradient model. Compared with laboratory studies, the evaluation of capillary pressure based on the results of a computational filtration experiment is a non-destructive method and has a number of advantages: the absence of labor for preparation of fluids and core; the possibility of modeling on the scale of very small core fragments (several mm), which is difficult to realize under experimental conditions; three-dimensional visualization of the dynamics of filling the pore space with a displacing fluid during drainage and impregnation; the possibility of carrying out multivariate calculations for specified parameters of multiphase flow (density and viscosity of fluids, surface tension, wetting contact angle). A satisfactory agreement of the capillary pressure curves during drainage with experimental results was obtained. It is revealed that with the increase in the volume of the digital image, the relative deviation of the calculated and laboratory data decreases and for cubic digital cores larger than 1 mm it does not exceed 5%. The behavior of the non-wetting fluid flow during drainage is illustrated. It is shown that flow regimes under which computational and laboratory experiments are performed the distribution of the injected phase in directions different from the gradient of the hydrodynamic drop, including the opposite ones, is characteristic. Experimentally confirmed regularities are obtained when carrying out calculations for drainage and imbibition at different values of interfacial tension. There is a close coincidence in the average diameters of permeable channels, estimated by capillary curves for different interfacial tension and pore network model. The differences do not exceed 15%.

  11. A novel pneumatic micropipette aspiration method using a balance pressure model.

    PubMed

    Zhao, Qili; Wu, Ming; Cui, Maosheng; Qin, Yanding; Yu, Jin; Sun, Mingzhu; Zhao, Xin; Feng, Xizeng

    2013-12-01

    This paper presents a novel micropipette aspiration (MA) method based on a common pneumatic micro-injection system. This method is the first to quantify the influence of capillary effect on aspiration pressure using a balance pressure model, and in return, uses the capillary effect to quantify the aspiration pressure. Subsequently, the seal between the cell and the micropipette is detected to judge and exclude the ineffective MA attempts. The rationality of the balance pressure model is validated by the designed micropipette-filling experiments. Through applied to elasticity-determination of the cells with different sizes, the feasibility and versatility of this MA method are proved. With abilities to quantify aspiration pressures and detect the seam between the cell and the micropipette, our method is expected to advance the application of the commercial pneumatic injector in the MA of cells. Moreover, with the quantified volume of the liquid entering into the micropipette during MA process, our method also has a potential applicability to the study of the permeability of the cell membrane in the future.

  12. Orbiter Gap Filler Bending Model for Re-entry

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2007-01-01

    Pressure loads on a protruding gap filler during an Orbiter reentry are investigated to evaluate the likelihood of extraction due to pressure loads, and to ascertain how much bending will be induced by re-entry pressure loads. Oblique shock wave theory is utilized to develop a representation of the pressure loads induced on a gap filler for the ISSHVFW trajectory, representative of a heavy weight ISS return. A free body diagram is utilized to react the forces induced by the pressure forces. Preliminary results developed using these methods demonstrate that pressure loads, alone, are not likely causes of gap filler extraction during reentry. Assessment of the amount a gap filler will bend over is presented. Implications of gap filler bending during re-entry include possible mitigation of early boundary layer transition concerns, uncertainty in ground based measurement of protruding gap fillers from historical Orbiter flight history, and uncertainty in the use of Orbiter gap fillers for boundary layer prediction calibration. Authors will be added to the author list as appropriate.

  13. Shuttle Entry Air Data System (SEADS) hardware development. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    While, D. M.

    1983-01-01

    Hardware development of the Shuttle Entry Data System (SEADS) is described. The system consists of an array of fourteen pressure ports, installed in an Orbiter nose cap, which, when coupled with existing fuselage mounted static pressure ports permits computation of entry flight parameters. Elements of the system that are described include the following: (1) penetration assemblies to place pressure port openings at the surface of the nose cap; (2) pressure tubes to transmit the surface pressure to transducers; (3) support posts or manifolds to provide support for, and reduce the length of, the individual pressure tubes; (4) insulation for the manifolds; and (5) a SEADS nose cap. Design, analyses, and tests to develop and certify design for flight are described. Specific tests include plasma arc exposure, radiant thermal, vibration, and structural. Volume one summarizes highlights of the program, particularly as they relate to the final design of SEADS. Volume two summarizes all of the Vought responsible activities in essentially a chronological order.

  14. Shuttle Entry Air Data System (SEADS) hardware development. Volume 2: History

    NASA Technical Reports Server (NTRS)

    While, D. M.

    1983-01-01

    Hardware development of the Shuttle Entry Air Data System (SEADS) is described. The system consists of an array of fourteen pressure ports, installed in an Orbiter nose cap, which, when coupled with existing fuselage mounted static pressure ports permits computation of entry flight parameters. Elements of the system that are described include the following: (1) penetration assemblies to place pressure port openings at the surface of the nose cap; (2) pressure tubes to transmit the surface pressure to transducers; (3) support posts or manifolds to provide support for, and reduce the length of, the individual pressure tubes; (4) insulation for the manifolds; and (5) a SEADS nose cap. Design, analyses, and tests to develop and certify design for flight are described. Specific tests included plasma arc exposure, radiant thermal, vibration, and structural. Volume one summarizes highlights of the program, particularly as they relate to the final design of SEADS. Volume two summarizes all of the Vought responsible activities in essentially a chronological order.

  15. Self-Similar Taylor Cone Formation in Conducting Viscous Films: Computational Study of the Influence of Reynolds Number

    NASA Astrophysics Data System (ADS)

    Albertson, Theodore; Troian, Sandra

    2017-11-01

    Previous studies by Zubarev (2001) and Suvorov and Zubarev (2004) have shown that above a critical field strength, an ideal (inviscid) conducting fluid film will deform into a singular profile characterized by a conic cusp. The governing equations for the electrohydrodynamic response beneath the cusp admit self-similar solutions leading to so-called blow-up behavior in the Maxwell pressure, capillary pressure and kinetic energy density. The runaway behavior in these variables reflects divergence in time characterized by an exponent of -2/3. Here we extend the physical system to include viscous effects and conduct a computational study of the cusp region as a function of increasing electrical Reynolds number ReE . We employ a finite element, moving mesh algorithm to examine the behavior of the film shape, Maxwell pressure and capillary pressure upon approach to the blow-up event. Our study indicates that self-similarity establishes at relatively low ReE despite the presence of vorticity, which is localized to the cusp surface region. With increasing ReE , the period of self-similiarity extends further in time as the exponent changes from about -4/5 to the ideal value of -2/3, with slightly different values distinguishing the Maxwell and capillary stresses. T. Albertson gratefully acknowledges support from a NASA Space Technology Research Fellowship.

  16. Models of Cerebral-Body Perfusion and Cerebral Chemical Transport.

    DTIC Science & Technology

    1988-03-01

    Pressure Waves 22 Conchusion 23 References 36 A Compartmental Brain Model for Chemical Transport and CO2 Controlled Blood Flow Abstract 37 Introduction 38...surrounding the body, e.g., atmospheric pressure , pressure al high and low altitudes, high underwater pressure , vacuum and excessive gravity acceleration...Resistance of the AreriolarNenous capillary, accounting for the pressure drop observed between them. RCB Resistance of the Blood -Brain barrier (between

  17. Symmetric and asymmetric capillary bridges between a rough surface and a parallel surface.

    PubMed

    Wang, Yongxin; Michielsen, Stephen; Lee, Hoon Joo

    2013-09-03

    Although the formation of a capillary bridge between two parallel surfaces has been extensively studied, the majority of research has described only symmetric capillary bridges between two smooth surfaces. In this work, an instrument was built to form a capillary bridge by squeezing a liquid drop on one surface with another surface. An analytical solution that describes the shape of symmetric capillary bridges joining two smooth surfaces has been extended to bridges that are asymmetric about the midplane and to rough surfaces. The solution, given by elliptical integrals of the first and second kind, is consistent with a constant Laplace pressure over the entire surface and has been verified for water, Kaydol, and dodecane drops forming symmetric and asymmetric bridges between parallel smooth surfaces. This solution has been applied to asymmetric capillary bridges between a smooth surface and a rough fabric surface as well as symmetric bridges between two rough surfaces. These solutions have been experimentally verified, and good agreement has been found between predicted and experimental profiles for small drops where the effect of gravity is negligible. Finally, a protocol for determining the profile from the volume and height of the capillary bridge has been developed and experimentally verified.

  18. Multiplexed detection of nitrate and nitrite for capillary electrophoresis with an automated device for high injection efficiency.

    PubMed

    Gao, Leyi; Patterson, Eric E; Shippy, Scott A

    2006-02-01

    A simple automated nanoliter scale injection device which allows for reproducible 5 nL sample injections from samples with a volume of <1 microL is successfully used for conventional capillary electrophoresis (CE) and Hadamard transform (HT) CE detection. Two standard fused silica capillaries are assembled axially through the device to function as an injection and a separation capillary. Sample solution is supplied to the injection capillary using pressure controlled with a solenoid valve. Buffer solution flows gravimetrically by the junction of the injection and separation capillaries and is also gated with a solenoid valve. Plugs of sample are pushed into the space between the injection and separation capillaries for electrokinectic injection. To evaluate the performance of the injection device, several optimizations are performed including the influence of flow rates, the injected sample volume and the control of the buffer transverse flow on the overall sensitivity. The system was then applied to HT-CE-UV detection for the signal-to-noise ratio (S/N) improvement of the nitric oxide (NO) metabolites, nitrite and nitrate. In addition, signal averaging was performed to explore the possibility of greater sensitivity enhancements compared to single injections.

  19. Enhanced laser radiation pressure acceleration of protons with a gold cone-capillary

    NASA Astrophysics Data System (ADS)

    Lv, Chong; Xie, Bai-Song; Wan, Feng; Hou, Ya-Juan; Jia, Mo-Ran; Sang, Hai-Bo; Hong, Xue-Ren; Liu, Shi-Bing

    2017-03-01

    A scheme with a gold cone-capillary is proposed to improve the protons acceleration, and involved problems are investigated by using the two-dimensional particle-in-cell simulations. It is demonstrated that the cone-capillary can efficiently guide and collimate the protons to a longer distance and result in a better beam quality with a dense density ≥ 10 n c , monoenergetic peak energy E k ˜ 1.51 GeV , spatial emittance ˜ 0.0088 mm mrad with divergence angle θ ˜ 1.0 ° and diameter ˜ 0.5 μ m . The enhancement is mainly attributed to the focusing effect by the transverse electric field generated by the cone as well as the capillary, which can prevent greatly the protons from expanding in the transverse direction. Comparable to without the capillary, the protons energy spectra have a stable monoenergetic peak and divergence angle nearby 1.0 ° in longer time. Besides, the efficiency of acceleration depending on the capillary length is explored, and the optimal capillary length is also achieved. Such a target may be beneficial to many applications such as ion fast ignition in inertial fusion, proton therapy and so on.

  20. A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis.

    PubMed

    Zhang, Wenjing; He, Muyi; Yuan, Tao; Xu, Wei

    2017-12-01

    The measurement of electroosmotic flow (EOF) is important in a capillary electrophoresis (CE) experiment in terms of performance optimization and stability improvement. Although several methods exist, there are demanding needs to accurately characterize ultra-low electroosmotic flow rates (EOF rates), such as in coated capillaries used in protein separations. In this work, a new method, called the two-step method, was developed to accurately and rapidly measure EOF rates in a capillary, especially for measuring the ultra-low EOF rates in coated capillaries. In this two-step method, the EOF rates were calculated by measuring the migration time difference of a neutral marker in two consecutive experiments, in which a pressure driven was introduced to accelerate the migration and the DC voltage was reversed to switch the EOF direction. Uncoated capillaries were first characterized by both this two-step method and a conventional method to confirm the validity of this new method. Then this new method was applied in the study of coated capillaries. Results show that this new method is not only fast in speed, but also better in accuracy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Prediction of aerodynamic heating and pressures on Shuttle Entry Air Data System (SEADS) nose cap and comparison with STS-61C flight data

    NASA Technical Reports Server (NTRS)

    Ting, Paul C.; Rochelle, William C.; Curry, Donald M.

    1988-01-01

    Results are presented from predictions of aerothermodynamic heating rates, temperatures, and pressures on the surface of the Shuttle Entry Air Data System (SEADS) nosecap during Orbiter reentry. These results are compared with data obtained by the first actual flight of the SEADS system aboard STS-61C. The data also used to predict heating rates and surface temperatures for a hypothetical Transatlantic Abort Landing entry trajectory, whose analysis involved ascertaining the increases in heating rate as the airstream flowed across regions of the lower surface catalycity carbon/carbon composite to the higher surface catalycity columbium pressure ports.

  2. Phenotypic heterogeneity in lung capillary and extra-alveolar endothelial cells. Increased extra-alveolar endothelial permeability is sufficient to decrease compliance.

    PubMed

    Lowe, Kevin; Alvarez, Diego; King, Judy; Stevens, Troy

    2007-11-01

    In acute respiratory distress syndrome, pulmonary vascular permeability increases, causing intravascular fluid and protein to move into the lung's interstitium. The classic model describing the formation of pulmonary edema suggests that fluid crossing the capillary endothelium is drawn by negative interstitial pressure into the potential space surrounding extra-alveolar vessels and, as interstitial pressure builds, is forced into the alveolar air space. However, the validity of this model is challenged by animal models of acute lung injury in which extra-alveolar vessels are more permeable than capillaries under a variety of conditions. In the current study, we sought to determine whether extravascular fluid accumulation can be produced because of increased permeability of either the capillary or extra-alveolar endothelium, and whether different pathophysiology results from such site-specific increases in permeability. We perfused isolated lungs with either the plant alkaloid thapsigargin, which increases extra-alveolar endothelial permeability, or with 4alpha-phorbol 12, 13-didecanoate, which increases capillary endothelial permeability. Both treatments produced equal increases in whole lung vascular permeability, but caused fluid accumulations in separate anatomical compartments. Light microscopy of isolated lungs showed that thapsigargin caused fluid cuffing of large vessels, while 4alpha-phorbol 12, 13-didecanoate caused alveolar flooding. Dynamic compliance was reduced in lungs with cuffing of large vessels, but not in lungs with alveolar flooding. Phenotypic differences between vascular segments resulted in site-specific increases in permeability, which have different pathophysiological outcomes. Our findings suggest that insults leading to acute respiratory distress syndrome may increase permeability in extra-alveolar or capillary vascular segments, resulting in different pathophysiological sequela.

  3. The effects of low-temperature plasma treatment on the capillary properties of inorganic fibers

    NASA Astrophysics Data System (ADS)

    Garifullin, A. R.; Abdullin, I. Sh; Skidchenko, E. A.; Krasina, I. V.; Shaekhov, M. F.

    2016-01-01

    Solving the problem of achieving high adhesion between the components in the polymeric composite material (PCM) based on carbon fibers (CF) and basalt fibers (BF) is proposed to use the radio-frequency (RF) plasma under lower pressure by virtue of efficiency, environmental friendliness and rationality of the method. The paper gives the results of studies of the properties of CF and BF after RF capacitive discharge plasma treatment. The plasma modification modes of carbon and basalt fiber were investigated. The efficiency of treatment tool in surface properties modification of carbon and basalt fibers was found, namely capillary properties of CF and BF were researched. The optimal treatment modes were selected. It was found that the method of plasma modification in the radio-frequency capacitive discharge under the lower pressure contributes enhancing the capillary properties of inorganic fibers, in particular carbon and basalt ones. It shows the tendency to increase of the adhesive properties in PCM, and, consequently, the increase of the physical and mechanical properties of the products.

  4. Study of liquid and vapor flow into a Centaur capillary device

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Risberg, J. A.

    1979-01-01

    The following areas of liquid and vapor flow were analyzed and experimentally evaluated; 1) the refilling of capillary devices with settled liquid, and 2) vapor flow across wetted screens. These investigations resulted in: 1) the development of a versatile computer program that was successfully correlated with test data and used to predict Centaur D-1S LO2 and LH2 start basket refilling; 2) the development of a semi-empirical model that was only partially correlated with data due to difficulties in obtaining repeatable test results. Also, a comparison was made to determine the best propellant management system for the Centaur D-1S vehicle. The comparison identified the basline Centaur D-1S system (using pressurization, boost pumps and propellant settling) as the best candidate based on payload weight penalty. However, other comparison criteria and advanced mission condition were identified where pressure fed systems, thermally subcooled boost pumps and capillary devices would be selected as attractive alternatives.

  5. Wettability and Flow Rate Impacts on Immiscible Displacement: A Theoretical Model

    NASA Astrophysics Data System (ADS)

    Hu, Ran; Wan, Jiamin; Yang, Zhibing; Chen, Yi-Feng; Tokunaga, Tetsu

    2018-04-01

    When a more viscous fluid displaces a less viscous one in porous media, viscous pressure drop stabilizes the displacement front against capillary pressure fluctuation. For this favorable viscous ratio conditions, previous studies focused on the front instability under slow flow conditions but did not address competing effects of wettability and flow rate. Here we study how this competition controls displacement patterns. We propose a theoretical model that describes the crossover from fingering to stable flow as a function of invading fluid contact angle θ and capillary number Ca. The phase diagram predicted by the model shows that decreasing θ stabilizes the displacement for θ≥45° and the critical contact angle θc increases with Ca. The boundary between corner flow and cooperative filling for θ < 45° is also described. This work extends the classic phase diagram and has potential applications in predicting CO2 capillary trapping and manipulating wettability to enhance gas/oil displacement efficiency.

  6. Intermittent KoldBlue cryotherapy of 3x10 min changes mid-portion Achilles tendon microcirculation.

    PubMed

    Knobloch, Karsten; Grasemann, Ruth; Spies, Marcus; Vogt, Peter M

    2007-06-01

    Neovascularisation and microcirculatory changes have been reported in Achilles tendinopathy. Cryotherapy and compression, as part of a rest, ice, compression and elevation regimen, are shown to decrease pain and improve function. However, the microcirculatory changes following a given dosage of cryotherapy on mid-portion Achilles tendon remain unclear. Prospective clinical cohort study, level of evidence 2. 30 people (12 males, 33 (SD 12) years, body mass index 25.6 (5.3) kg/m2) were included in the cohort. 3x10 min KoldBlue ankle-cooling bandages were applied and microcirculation of Achilles tendon mid-portion was real-time and continuously assessed using a laser-Doppler-spectrophotometry system (O2C, Germany). Superficial capillary blood flow was reduced from 42 to 6, 5 and 3 relative units (rU) in the first, second and third cryotherapy periods, respectively (-65%, p = 0.001), with no significant capillary hyperaemia. Deep capillary tendon blood flow was reduced from 180 to 82, 53 and 52 rU (-71%, p = 0.001) within 6-9 min of application without hyperaemia. Superficial tendon oxygen saturation dropped significantly from 43% to 26%, 18% and 11% (p = 0.001) after repetitive cryotherapy, with persisting increase of tendon oxygenation during rewarming (51%, 49% and 54%, p = 0.077) up to 27% of the baseline level. At 8 mm tendon depth, cryotherapy preserved local oxygenation. Relative postcapillary venous tendon filling pressures were favourably reduced from 41 (11) to 31, 28 and 26 rU (-36%, p = 0.001) superficially and from 56 (11) to 45, 46 and 48 rU (-18%, p = 0.001) in deep capillary blood flow during cryotherapy, facilitating capillary venous clearance. Intermittent cryotherapy of 3x10 min significantly decreases local Achilles tendon mid-portion capillary blood flow by 71%. Within 2 min of rewarming, tendon oxygen saturation is re-established following cryotherapy. Postcapillary venous filling pressures are reduced during cryotherapy, favouring capillary venous outflow of the healthy Achilles tendon.

  7. Analysis of flow dynamics through small diameter gas sampling systems

    NASA Technical Reports Server (NTRS)

    Brown, K. G.

    1984-01-01

    The removal of gas material through a capillary opening in a surface is analyzed. The gas, from which the sample is removed, is moving past the surface at supersonic velocities. A variety of possible conditions of temperature, pressure and composition are discussed in an effort to emulate conditions that might be found at the surface of a vehicle traversing the altitude range 100-50 km, or might exist at the surface of a model in the stream of a high enthalpy wind tunnel. Aspects discussed include: (1) the throughput of the capillary for conditions of different lengths and different L/a (length/radius) ratios; (2) the total throughput when the surface in question contains many hundreds of these capillaries; (3) the effect of the capillaries upon the composition of the analyzed gas; (4) the effect of the capillary or capillaries upon the gas stream itself; and (5) the implications of the calculations upon the possible implementation of this type of device as an inlet for a mass spectrometer to be developed for analyzing the upper atmosphere.

  8. Mechanism of Kinetically Controlled Capillary Condensation in Nanopores: A Combined Experimental and Monte Carlo Approach.

    PubMed

    Hiratsuka, Tatsumasa; Tanaka, Hideki; Miyahara, Minoru T

    2017-01-24

    We find the rule of capillary condensation from the metastable state in nanoscale pores based on the transition state theory. The conventional thermodynamic theories cannot achieve it because the metastable capillary condensation inherently includes an activated process. We thus compute argon adsorption isotherms on cylindrical pore models and atomistic silica pore models mimicking the MCM-41 materials by the grand canonical Monte Carlo and the gauge cell Monte Carlo methods and evaluate the rate constant for the capillary condensation by the transition state theory. The results reveal that the rate drastically increases with a small increase in the chemical potential of the system, and the metastable capillary condensation occurs for any mesopores when the rate constant reaches a universal critical value. Furthermore, a careful comparison between experimental adsorption isotherms and the simulated ones on the atomistic silica pore models reveals that the rate constant of the real system also has a universal value. With this finding, we can successfully estimate the experimental capillary condensation pressure over a wide range of temperatures and pore sizes by simply applying the critical rate constant.

  9. Simulation of DNAPL migration in heterogeneous translucent porous media based on estimation of representative elementary volume

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Wu, Jianfeng; Wu, Jichun

    2017-10-01

    When the dense nonaqueous phase liquid (DNAPL) comes into the subsurface environment, its migration behavior is crucially affected by the permeability and entry pressure of subsurface porous media. A prerequisite for accurately simulating DNAPL migration in aquifers is then the determination of the permeability, entry pressure and corresponding representative elementary volumes (REV) of porous media. However, the permeability, entry pressure and corresponding representative elementary volumes (REV) are hard to determine clearly. This study utilizes the light transmission micro-tomography (LTM) method to determine the permeability and entry pressure of two dimensional (2D) translucent porous media and integrates the LTM with a criterion of relative gradient error to quantify the corresponding REV of porous media. As a result, the DNAPL migration in porous media might be accurately simulated by discretizing the model at the REV dimension. To validate the quantification methods, an experiment of perchloroethylene (PCE) migration is conducted in a two-dimensional heterogeneous bench-scale aquifer cell. Based on the quantifications of permeability, entry pressure and REV scales of 2D porous media determined by the LTM and relative gradient error, different models with different sizes of discretization grid are used to simulate the PCE migration. It is shown that the model based on REV size agrees well with the experimental results over the entire migration period including calibration, verification and validation processes. This helps to better understand the microstructures of porous media and achieve accurately simulating DNAPL migration in aquifers based on the REV estimation.

  10. Atmospheric Entry Studies for Venus Missions: 45 Sphere-Cone Rigid Aeroshells and Ballistic Entries

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Spilker, Thomas R.; Allen, Gary A., Jr.; Hwang, Helen H.; Cappuccio, Gelsomina; Moses, Robert W.

    2013-01-01

    The present study considers direct ballistic entries into the atmosphere of Venus using a 45deg sphere-cone rigid aeroshell, a legacy shape that has been used successfully in the past in the Pioneer Venus Multiprobe Mission. For a number of entry mass and heatshield diameter combinations (i.e., various ballistic coefficients) and entry velocities, the trajectory space in terms of entry flight path angles between skip out and -30deg is explored with a 3DoF trajectory code, TRAJ. From these trajectories, the viable entry flight path angle space is determined through the use of mechanical and thermal performance limits on the thermal protection material and science payload; the thermal protection material of choice is entry-grade carbon phenolic, for which a material thermal response model is available. For mechanical performance, a 200 g limit is placed on the peak deceleration load experienced by the science instruments, and 10 bar is assumed as the pressure limit for entry-grade carbon-phenolic material. For thermal performance, inflection points in the total heat load distribution are used as cut off criteria. Analysis of the results shows the existence of a range of critical ballistic coefficients beyond which the steepest possible entries are determined by the pressure limit of the material rather than the deceleration load limit.

  11. Spectacularly robust! Tensegrity principle explains the mechanical strength of the avian lung.

    PubMed

    Maina, J N

    2007-01-15

    Among the air-breathing vertebrates, the respiratory system of birds, the lung-air sac system, is remarkably complex and singularly efficient. The most perplexing structural property of the avian lung pertains to its exceptional mechanical strength, especially that of the minuscule terminal respiratory units, the air- and the blood capillaries. In different species of birds, the air capillaries range in diameter from 3 to 20 micro m: the blood capillaries are in all cases relatively smaller. Over and above their capacity to withstand enormous surface tension forces at the air-tissue interface, the air capillaries resist mechanical compression (parabronchial distending pressure) as high as 20 cm H(2)O (2 kPa). The blood capillaries tolerate a pulmonary arterial vascular pressure of 24.1 mmHg (3.2 kPa) and vascular resistance of 22.5 mmHg (3 kPa) without distending. The design of the avian respiratory system fundamentally stems from the rigidity (strength) of the lung. The gas exchanger (the lung) is uncoupled from the ventilator (the air sacs), allowing the lung (the paleopulmonic parabronchi) to be ventilated continuously and unidirectionally by synchronized bellows like action of the air sacs. Since during the ventilation of the lung the air capillaries do not have to be distended (dilated), i.e., surface tension force does not have to be overcome (as would be the case if the lung was compliant), extremely intense subdivision of the exchange tissue was possible. Minuscule terminal respiratory units developed, producing a vast respiratory surface area in a limited lung volume. I make a case that a firm (rigid) rib cage, a lung tightly held by the ribs and the horizontal septum, a lung directly attached to the trunk, specially formed and compactly arranged parabronchi, intertwined atrial muscles, and tightly set air capillaries and blood capillaries form an integrated hierarchy of discrete network system of tension and compression, a tensegrity (tensional integrity) array, which absorbs, transmits, and dissipates stress, stabilizing (strengthening) the lung and its various structural components.

  12. Blood flow vs. venous pressure effects on filtration coefficient in oleic acid-injured lung.

    PubMed

    Anglade, D; Corboz, M; Menaouar, A; Parker, J C; Sanou, S; Bayat, S; Benchetrit, G; Grimbert, F A

    1998-03-01

    On the basis of changes in capillary filtration coefficient (Kfc) in 24 rabbit lungs, we determined whether elevations in pulmonary venous pressure (Ppv) or blood flow (BF) produced differences in filtration surface area in oleic acid-injured (OA) or control (Con) lungs. Lungs were cyclically ventilated and perfused under zone 3 conditions by using blood and 5% albumin with no pharmacological modulation of vascular tone. Pulmonary arterial, venous, and capillary pressures were measured by using arterial, venous, and double occlusion. Before and during each Kfc-measurement maneuver, microvascular/total vascular compliance was measured by using venous occlusion. Kfc was measured before and 30 min after injury, by using a Ppv elevation of 7 cmH2O or a BF elevation from 1 to 2 l . min-1 . 100 g-1 to obtain a similar double occlusion pressure. Pulmonary arterial pressure increased more with BF than with Ppv in both Con and OA lungs [29 +/- 2 vs. 19 +/- 0.7 (means +/- SE) cmH2O; P < 0. 001]. In OA lungs compared with Con lungs, values of Kfc (200 +/- 40 vs. 83 +/- 14%, respectively; P < 0.01) and microvascular/total vascular compliance ratio (86 +/- 4 vs. 68 +/- 5%, respectively; P < 0.01) increased more with BF than with Ppv. In conclusion, for a given OA-induced increase in hydraulic conductivity, BF elevation increased filtration surface area more than did Ppv elevation. The steep pulmonary pressure profile induced by increased BF could result in the recruitment of injured capillaries and could also shift downstream the compression point of blind (zone 1) and open injured vessels (zone 2).

  13. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Rivera, Andrew; Birdsell, Dawn N.; Wagner, David M.; Zenhausern, Frederic

    2015-12-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30-100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis.

  14. Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy

    USGS Publications Warehouse

    Pan, Z.; Chou, I-Ming; Burruss, R.C.

    2009-01-01

    The advantages of using fused silica capillary reactor (FSCR) instead of conventional autoclave for studying chemical reactions at elevated pressure and temperature conditions were demonstrated in this study, including the allowance for visual observation under a microscope and in situ Raman spectroscopic characterization of polycarbonate and coexisting phases during hydrolysis in subcritical water.

  15. Infiltration of MHD liquid into a deformable porous material

    NASA Astrophysics Data System (ADS)

    Naseem, Anum; Mahmood, Asif; Siddique, J. I.; Zhao, Lifeng

    2018-03-01

    We analyze the capillary rise dynamics for magnetohydrodynamics (MHD) fluid flow through deformable porous material in the presence of gravity effects. The modeling is performed using mixture theory approach and mathematical manipulation yields a nonlinear free boundary problem. Due to the capillary rise action, the pressure gradient in the liquid generates a stress gradient that results in the deformation of porous substrate. The capillary rise process for MHD fluid slows down as compared to Newtonian fluid case. Numerical solutions are obtained using a method of lines approach. The graphical results are presented for important physical parameters, and comparison is presented with Newtonian fluid case.

  16. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  17. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels.

    PubMed

    Wang, Xiaolin; Phan, Duc T T; Sobrino, Agua; George, Steven C; Hughes, Christopher C W; Lee, Abraham P

    2016-01-21

    This paper reports a method for generating an intact and perfusable microvascular network that connects to microfluidic channels without appreciable leakage. This platform incorporates different stages of vascular development including vasculogenesis, endothelial cell (EC) lining, sprouting angiogenesis, and anastomosis in sequential order. After formation of a capillary network inside the tissue chamber via vasculogenesis, the adjacent microfluidic channels are lined with a monolayer of ECs, which then serve as the high-pressure input ("artery") and low pressure output ("vein") conduits. To promote a tight interconnection between the artery/vein and the capillary network, sprouting angiogenesis is induced, which promotes anastomosis of the vasculature inside the tissue chamber with the EC lining along the microfluidic channels. Flow of fluorescent microparticles confirms the perfusability of the lumenized microvascular network, and minimal leakage of 70 kDa FITC-dextran confirms physiologic tightness of the EC junctions and completeness of the interconnections between artery/vein and the capillary network. This versatile device design and its robust construction methodology establish a physiological transport model of interconnected perfused vessels from artery to vascularized tissue to vein. The system has utility in a wide range of organ-on-a-chip applications as it enables the physiological vascular interconnection of multiple on-chip tissue constructs that can serve as disease models for drug screening.

  18. The criterion of subscale sufficiency and its application to the relationship between static capillary pressure, saturation and interfacial areas.

    PubMed

    Kurzeja, Patrick

    2016-05-01

    Modern imaging techniques, increased simulation capabilities and extended theoretical frameworks, naturally drive the development of multiscale modelling by the question: which new information should be considered? Given the need for concise constitutive relationships and efficient data evaluation; however, one important question is often neglected: which information is sufficient? For this reason, this work introduces the formalized criterion of subscale sufficiency. This criterion states whether a chosen constitutive relationship transfers all necessary information from micro to macroscale within a multiscale framework. It further provides a scheme to improve constitutive relationships. Direct application to static capillary pressure demonstrates usefulness and conditions for subscale sufficiency of saturation and interfacial areas.

  19. Means of introducing an analyte into liquid sampling atmospheric pressure glow discharge

    DOEpatents

    Marcus, R. Kenneth; Quarles, Jr., Charles Derrick; Russo, Richard E.; Koppenaal, David W.; Barinaga, Charles J.; Carado, Anthony J.

    2017-01-03

    A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).

  20. Comments on the Operation of Capillary Pumped Loop Devices in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hallinan, K. P.; Allen, J. S.

    1999-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  1. Colloidal Asphaltene Deposition and Aggregation in Capillary Flow: Experiments and Mesoscopic Simulation

    NASA Astrophysics Data System (ADS)

    Boek, Edo S.; Ladva, Hemant K.; Crawshaw, John P.; Padding, Johan T.

    2008-07-01

    The aggregation and deposition of colloidal asphaltene in reservoir rock is a significant problem in the oil industry. To obtain a fundamental understanding of this phenomenon, we have studied the deposition and aggregation of colloidal asphaltene in capillary flow by experiment and simulation. For the simulation, we have used the stochastic rotation dynamics (SRD) method, in which the solvent hydrodynamic emerges from the collisions between the solvent particles, while the Brownian motion emerges naturally from the interactions between the colloidal asphaltene particles and the solvent. The asphaltene colloids interact through a screened Coulomb potential. We vary the well depth ɛ∝ and the flow rate v to obtain Peflow≫1 (hydrodynamic interactions dominate) and Re≪1 (Stokes flow). In the simulations, we impose a pressure drop over the capillary length and measure the corresponding solvent flow rate. We observe that the transient solvent flow rate decreases when the asphaltene particles become more "sticky". For a well depth ɛ∝ = 2kBT, a monolayer deposits on the capillary wall. With an increasing well depth, the capillary becomes totally blocked. The clogging is transient for ɛ∝ = 5kBT, but appears to be permanent for ɛ∝ = 10-20 kBT. We compare our simulation results with flow experiments in glass capillaries, where we use extracted asphaltenes in toluene, reprecipitated with n-heptane. In the experiments, the dynamics of asphaltene precipitation and deposition were monitored in a slot capillary using optical microscopy under flow conditions similar to those used in the simulation. Maintaining a constant flow rate of 5 μL min-1, we found that the pressure drop across the capillary first increased slowly, followed by a sharp increase, corresponding to a complete local blockage of the capillary. Doubling the flow rate to 10 μL min-1, we observe that the initial deposition occurs faster but the deposits are subsequently entrained by the flow. We calculate the change in the dimensionless permeability as a function of time for both experiment and simulation. By matching the experimental and simulation results, we obtain information about (1) the interaction potential well depth for the particular asphaltenes used in the experiments and (2) the flow conditions associated with the asphaltene deposition process.

  2. User`s guide for UTCHEM implicit (1.0) a three dimensional chemical flood simulator. Final report, September 30, 1992--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    UTCHEM IMPLICIT is a three-dimensional chemical flooding simulator. The solution scheme is fully implicit. The pressure equation and the mass conservation equations are solved simultaneously for the aqueous phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used to reduce numerical dispersion effects. Saturations and phase concentrations are solved in a flash routine. The major physical phenomena modeled in the simulator are: dispersion, adsorption, aqueous-oleic-microemulsion phase behavior, interfacial tension, relative permeability, capillary trapping, compositional phase viscosity, capillary pressure, phase density, polymer properties: shear thinning viscosity, inaccessiblemore » pore volume, permeability reduction, and adsorption. The following options are available in the simulator: constant or variable time-step sizes, uniform or nonuniform grid, pressure or rate constrained wells, horizontal and vertical wells.« less

  3. Compliance with dietary guidelines affects capillary recruitment in healthy middle-aged men and women.

    PubMed

    Govoni, Virginia; Sanders, Thomas A B; Reidlinger, Dianne P; Darzi, Julia; Berry, Sarah E E; Goff, Louise M; Seed, Paul T; Chowienczyk, Philip J; Hall, Wendy L

    2017-04-01

    Healthy microcirculation is important to maintain the health of tissues and organs, most notably the heart, kidney and retina. Single components of the diet such as salt, lipids and polyphenols may influence microcirculation, but the effects of dietary patterns that are consistent with current dietary guidelines are uncertain. It was hypothesized that compliance to UK dietary guidelines would have a favourable effect on skin capillary density/recruitment compared with a traditional British diet (control diet). A 12-week randomized controlled trial in men and women aged 40-70 years was used to test whether skin microcirculation, measured by skin video-capillaroscopy on the dorsum of the finger, influenced functional capillary density (number of capillaries perfused under basal conditions), structural capillary density (number of anatomical capillaries perfused during finger cuff inflation) and capillary recruitment (percentage difference between structural and functional capillary density). Microvascular measures were available for 137 subjects out of the 165 participants randomized to treatment. There was evidence of compliance to the dietary intervention, and participants randomized to follow dietary guidelines showed significant falls in resting supine systolic, diastolic and mean arterial pressure of 3.5, 2.6 and 2.9 mmHg compared to the control diet. There was no evidence of differences in capillary density, but capillary recruitment was 3.5 % (95 % CI 0.2, 6.9) greater (P = 0.04) on dietary guidelines compared with control. Adherence to dietary guidelines may help maintain a healthy microcirculation in middle-aged men and women. This study is registered at www.isrctn.com as ISRCTN92382106.

  4. An Apparent Deficiency of Lymphatic Capillaries in the Islets of Langerhans in the Human Pancreas.

    PubMed

    Korsgren, Erik; Korsgren, Olle

    2016-04-01

    The lymphatic system is crucial for efficient immune surveillance and for the maintenance of a physiological pressure in the interstitial space. Even so, almost no information is available concerning the lymph drainage of the islets of Langerhans in the human pancreas. Immunohistochemical staining allowed us to distinguish lymphatic capillaries from blood capillaries. Almost no lymphatic capillaries were found within the islets in pancreatic biopsy specimens from subjects without diabetes or from subjects with type 1 or type 2 diabetes. Lymphatic capillaries were, however, found at the islet-exocrine interface, frequently located along blood capillaries and other fibrotic structures within or close to the islet capsule. Lymphatic capillaries were regularly found in the exocrine pancreas, with small lymphatic vessels located close to and around acini. Larger collecting lymphatic vessels were located in fibrotic septa between the exocrine lobules and adjacent to the ductal system of the pancreas. In summary, we report a pronounced deficiency of lymphatic capillaries in human islets, a finding with implications for immune surveillance and the regulation of interstitial fluid transport in the endocrine pancreas as well as for the pathophysiology of both type 1 and type 2 diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Irradiation of orderly multiline spectra from linear plasma formed by vacuum discharge capillary

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki

    2005-03-01

    The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments are primarily performed in order to generate intense soft x rays. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbomolecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -11.5 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 μm aluminum filter were less than 30 μs. In the spectrum measurement, we observed orderly multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. The line number decreased with corresponding decreases in the capillary length.

  6. On the unsteady gravity-capillary wave pattern found behind a slow moving localized pressure distribution

    NASA Astrophysics Data System (ADS)

    Masnadi, N.; Duncan, J. H.

    2013-11-01

    The non-linear response of a water surface to a slow-moving pressure distribution is studied experimentally using a vertically oriented carriage-mounted air-jet tube that is set to translate over the water surface in a long tank. The free surface deformation pattern is measured with a full-field refraction-based method that utilizes a vertically oriented digital movie camera (under the tank) and a random dot pattern (above the water surface). At towing speeds just below the minimum phase speed of gravity-capillary waves (cmin ~ 23 cm/s), an unsteady V-shaped pattern is formed behind the pressure source. Localized depressions are generated near the source and propagate in pairs along the two arms of the V-shaped pattern. These depressions are eventually shed from the tips of the pattern at a frequency of about 1 Hz. It is found that the shape and phase speeds of the first depressions shed in each run are quantitatively similar to the freely-propagating gravity-capillary lumps from potential flow calculations. In the experiments, the amplitudes of the depressions decrease by approximately 60 percent while travelling 12 wavelengths. The depressions shed later in each run behave in a less consistent manner, probably due to their interaction with neighboring depressions.

  7. CEC-atmospheric pressure ionization MS of pesticides using a surfactant-bound monolithic column.

    PubMed

    Gu, Congying; Shamsi, Shahab A

    2010-04-01

    A surfactant bound poly (11-acrylaminoundecanoic acid-ethylene dimethacrylate) monolithic column was simply prepared by in situ co-polymerization of 11-acrylaminoundecanoic acid and ethylene dimethacrylate with 1-propanol, 1,4-butanediol and water as porogens in 100 microm id fused-silica capillary in one step. This column was used in CEC-atmospheric pressure photoionization (APPI)-MS system for separation and detection of N-methylcarbamates pesticides. Numerous parameters are optimized for CEC-APPI-MS. After evaluation of the mobile phase composition, sheath liquid composition and the monolithic capillary outlet position, a fractional factorial design was selected as a screening procedure to identify factors of ionization source parameters, such as sheath liquid flow rate, drying gas flow rate, drying gas temperature, nebulizing gas pressure, vaporizer temperature and capillary voltage, which significantly influence APPI-MS sensitivity. A face-centered central composite design was further utilized to optimize the most significant parameters and predict the best sensitivity. Under optimized conditions, S/Ns around 78 were achieved for an injection of 100 ng/mL of each pesticide. Finally, this CEC-APPI-MS method was successfully applied to the analysis of nine N-methylcarbamates in spiked apple juice sample after solid phase extraction with recoveries in the range of 65-109%.

  8. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores

    PubMed Central

    Wang, Sen; Javadpour, Farzam; Feng, Qihong

    2016-01-01

    We optimized potential parameters in a molecular dynamics model to reproduce the experimental contact angle of a macroscopic mercury droplet on graphite. With the tuned potential, we studied the effects of pore size, geometry, and temperature on the wetting of mercury droplets confined in organic-rich shale nanopores. The contact angle of mercury in a circular pore increases exponentially as pore size decreases. In conjunction with the curvature-dependent surface tension of liquid droplets predicted from a theoretical model, we proposed a technique to correct the common interpretation procedure of mercury intrusion capillary pressure (MICP) measurement for nanoporous material such as shale. Considering the variation of contact angle and surface tension with pore size improves the agreement between MICP and adsorption-derived pore size distribution, especially for pores having a radius smaller than 5 nm. The relative error produced in ignoring these effects could be as high as 44%—samples that contain smaller pores deviate more. We also explored the impacts of pore size and temperature on the surface tension and contact angle of water/vapor and oil/gas systems, by which the capillary pressure of water/oil/gas in shale can be obtained from MICP. This information is fundamental to understanding multiphase flow behavior in shale systems. PMID:26832445

  9. Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury

    PubMed Central

    Østergaard, Leif; Engedal, Thorbjørn S; Aamand, Rasmus; Mikkelsen, Ronni; Iversen, Nina K; Anzabi, Maryam; Næss-Schmidt, Erhard T; Drasbek, Kim R; Bay, Vibeke; Blicher, Jakob U; Tietze, Anna; Mikkelsen, Irene K; Hansen, Brian; Jespersen, Sune N; Juul, Niels; Sørensen, Jens CH; Rasmussen, Mads

    2014-01-01

    Most patients who die after traumatic brain injury (TBI) show evidence of ischemic brain damage. Nevertheless, it has proven difficult to demonstrate cerebral ischemia in TBI patients. After TBI, both global and localized changes in cerebral blood flow (CBF) are observed, depending on the extent of diffuse brain swelling and the size and location of contusions and hematoma. These changes vary considerably over time, with most TBI patients showing reduced CBF during the first 12 hours after injury, then hyperperfusion, and in some patients vasospasms before CBF eventually normalizes. This apparent neurovascular uncoupling has been ascribed to mitochondrial dysfunction, hindered oxygen diffusion into tissue, or microthrombosis. Capillary compression by astrocytic endfeet swelling is observed in biopsies acquired from TBI patients. In animal models, elevated intracranial pressure compresses capillaries, causing redistribution of capillary flows into patterns argued to cause functional shunting of oxygenated blood through the capillary bed. We used a biophysical model of oxygen transport in tissue to examine how capillary flow disturbances may contribute to the profound changes in CBF after TBI. The analysis suggests that elevated capillary transit time heterogeneity can cause critical reductions in oxygen availability in the absence of ‘classic' ischemia. We discuss diagnostic and therapeutic consequences of these predictions. PMID:25052556

  10. Aerodynamic Heating Computations for Projectiles. Volume 1. In-Depth Heat Conduction Modifications to the ABRES Shape Change Code (BRLASCC)

    DTIC Science & Technology

    1984-06-01

    preceding the corresponding pressure group of the surface thermochemistry deck as described below. The temperature entries within each section must be... pressure group the transfer coefficient values will be ordered. Within each transfer coefficient section, ablation rate entries need not he ordered in any...may not exceed 5 (and may be only I); the number of transfer coefficient values in each pressure group may not exceed 5 but may be only 1. If no

  11. Quantification of bulk solution limits for liquid and interfacial transport in nanoconfinements.

    PubMed

    Kelly, Shaina; Balhoff, Matthew T; Torres-Verdín, Carlos

    2015-02-24

    Liquid imbibition, the capillary-pressure-driven flow of a liquid into a gas, provides a mechanism for studying the effects of solid-liquid and solid-liquid-gas interfaces on nanoscale transport. Deviations from the classic Washburn equation for imbibition are generally observed for nanoscale imbibition, but the identification of the origin of these irregularities in terms of transport variables varies greatly among investigators. We present an experimental method and corresponding image and data analysis scheme that enable the determination of independent effective values of nanoscale capillary pressure, liquid viscosity, and interfacial gas partitioning coefficients, all critical transport variables, from imbibition within nanochannels. Experiments documented herein are performed within two-dimensional siliceous nanochannels of varying size and as small as 30 nm × 60 nm in cross section. The wetting fluid used is the organic solvent isopropanol and the nonwetting fluid is air, but investigations are not limited to these fluids. Optical data of dynamic flow are rare in geometries that are nanoscale in two dimensions due to the limited resolution of optical microscopy. We are able to capture tracer-free liquid imbibition with reflected differential interference contrast microscopy. Results with isopropanol show a significant departure from bulk transport values in the nanochannels: reduced capillary pressures, increased liquid viscosity, and nonconstant interfacial mass-transfer coefficients. The findings equate to the nucleation of structured, quasi-crystalline boundary layers consistently ∼10-25 nm in extent. This length is far thicker than the boundary layer range prescribed by long-range intermolecular force interactions. Slower but linear imbibition in some experimental cases suggests that structured boundary layers may inhibit viscous drag at confinement walls for critical nanochannel dimensions. Probing the effects of nanoconfinement on the definitions of capillary pressure, viscosity, and interfacial mass transfer is critical in determining and improving the functionality and fluid transport efficacy of geological, biological, and synthetic nanoporous media and materials.

  12. Thermal Vacuum Facility for Testing Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Sikora, Joseph G.

    2002-01-01

    A thermal vacuum facility for testing launch vehicle thermal protection systems by subjecting them to transient thermal conditions simulating re-entry aerodynamic heating is described. Re-entry heating is simulated by controlling the test specimen surface temperature and the environmental pressure in the chamber. Design requirements for simulating re-entry conditions are briefly described. A description of the thermal vacuum facility, the quartz lamp array and the control system is provided. The facility was evaluated by subjecting an 18 by 36 in. Inconel honeycomb panel to a typical re-entry pressure and surface temperature profile. For most of the test duration, the average difference between the measured and desired pressures was 1.6% of reading with a standard deviation of +/- 7.4%, while the average difference between measured and desired temperatures was 7.6% of reading with a standard deviation of +/- 6.5%. The temperature non-uniformity across the panel was 12% during the initial heating phase (t less than 500 sec.), and less than 2% during the remainder of the test.

  13. Raetrad model extensions for radon entry into multi-level buildings with basements or crawl spaces.

    PubMed

    Nielson, K K; Rogers, V C; Rogers, V; Holt, R B

    1997-10-01

    The RAETRAD model was generalized to characterize radon generation and movement from soils and building materials into multi-level buildings with basements or crawl spaces. With the generalization, the model retains its original simplicity and ease of use. The model calculates radon entry rates that are consistent with measurements published for basement test structures at Colorado State University, confirming approximately equal contributions from diffusion and pressure-driven air flow at indoor-outdoor air pressure differences of deltaP(i-o) = -3.5 Pa. About one-fourth of the diffusive radon entry comes from concrete slabs and three-fourths comes from the surrounding soils. Calculated radon entry rates with and without a barrier over floor-wall shrinkage cracks generally agree with Colorado State University measurements when a sustained pressure of deltaP(i-o) = -2 Pa is used to represent calm wind (<1 m s(-1)) conditions. Calculated radon distributions in a 2-level house also are consistent with published measurements and equations.

  14. Contact Line Instability Caused by Air Rim Formation under Nonsplashing Droplets.

    PubMed

    Pack, Min; Kaneelil, Paul; Kim, Hyoungsoo; Sun, Ying

    2018-05-01

    Drop impact is fundamental to various natural and industrial processes such as rain-induced soil erosion and spray-coating technologies. The recent discovery of the role of air entrainment between the droplet and the impacting surface has produced numerous works, uncovering the unique physics that correlates the air film dynamics with the drop impact outcomes. In this study, we focus on the post-failure air entrainment dynamics for We numbers well below the splash threshold under different ambient pressures and elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on perfectly smooth, viscous films of constant thickness. A high-speed total internal reflection microscopy technique accounting for the Fresnel reflection at the drop-air interface allows for in situ measurements of an entrained air rim at the wetting front. The presence of an air rim is found to be a prerequisite to the interfacial instability which is formed when the capillary pressure in the vicinity of the contact line can no longer balance the increasing gas pressure near the wetting front. A critical capillary number for the air rim formation is experimentally identified above which the wetting front becomes unstable where this critical capillary number inversely scales with the ambient pressure. The contact line instabilities at relatively low We numbers ( We ∼ O(10)) observed in this study provide insight into the conventional understanding of hydrodynamic instabilities under drop impact which usually require We ≫ 10.

  15. Intense laser pulse propagation in ionizing gases

    NASA Astrophysics Data System (ADS)

    Bian, Zhigang

    2003-10-01

    There have been considerable technological advances in the development of high intensity, short pulse lasers. However, high intensity laser pulses are subject to various laser-plasma instabilities. In this thesis, a theory is developed to study the scattering instability that occurs when a laser pulse propagates through and ionizes a gas. The instability is due to the intensity dependence of the ionization rate, which leads to a transversely structured free electron density. The instability is convective in the frame of laser pulse, but can have a relatively short growth length scaling as Lg˜k0/k2p where k0 is the laser wave number, k2p=w2p/c 2 and op is the plasma frequency. The most unstable perturbations correspond to a scattering angle for which the transverse wave number is around the plasma wave number, k p. The scattered light is frequency upshifted. The comparison between simple analytic theory and numerical simulation shows good agreement. Instabilities can drastically change the shape of the laser pulse and reduce the propagation distance of the laser pulse. Therefore, we change the propagation conditions and reduce the laser-plasma interaction possibilities in applications which require an interaction length well in excess of the Rayleigh length of the laser beam. One of the methods is to use a capillary to propagate the laser pulse. We studied the propagation of short pulses in a glass capillary. The propagation is simulated using the code WAKE, which has been modified to treat the case in which the simulation boundary is the wall of a capillary. Parameters that were examined include transmission efficiency of the waveguides as a function of gas pressure, laser intensity, and waveguide length, which is up to 40 Rayleigh lengths. The transmission efficiency decreases with waveguide length due to energy loss through the side-walls of the capillary. The loss increases with gas pressure due to ionization of the gas and scattering of the radiation. The intensity on the inner wall of the capillary is monitored to assure realistic simulations, consistent with optical breakdown of the waveguide material. Generally speaking the intensity on the wall increases with gas pressure due to the scattering of the lowest order capillary mode. Finally, the high order harmonic generation (HHG) in a capillary is investigated. The phase matching condition is studied to increase the conversion efficiency for high order harmonics generation. The phase matching occurs as a balance of the dispersion of the neutral gas, plasma and the waveguide.

  16. Critical capillary channel flow

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.

    The main subject are numerical studies on capillary channel flow, based on results of the sounding rocket experiments TEXUS 41/42. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behaviour, a dimensionless transient model was developed. It is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The pressure is related to the curvature of the free liquid surface by the dimensionless Gauss-Laplace equation with two principal radii. The experimental and evaluated contour data shows good agreement for a sequence of transient flow rate perturbations. The surface oscillation frequencies and amplitudes can be predicted with quite high accuracy. The dynamic of the pump is defined by the increase of the flow rate in a time period. To study the unsteady system behavior in the "worst case", we use a perturbations related to the natural frequency of the oscillating liquid. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value Sca = 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index D considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies result in a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate. It may serve as a road map for open capillary channel flow control.

  17. Design and testing of a high power spacecraft thermal management system

    NASA Technical Reports Server (NTRS)

    Mccabe, Michael E., Jr.; Ku, Jentung; Benner, Steve

    1988-01-01

    The design and test results are presented of an ammonia hybrid capillary pumped loop thermal control system which could be used for heat acquisition and transport on future large space platforms and attached payloads, such as those associated with the NASA Space Station. The High Power Spacecraft Thermal Management System (HPSTM) can operate as either a passive, capillary pumped two phase thermal control system, or, when additional pressure head is required, as a mechanically pumped loop. Testing has shown that in the capillary mode, the HPSTM evaporators can acquire a total heat load of between 600 W and 24 kW, transported over 10 meters, at a maximum heat flux density of 4.3 W/sq cm. With the mechanical pump circulating the ammonia, a heat acquisition potential of 52 kW was demonstrated for 15 minutes without an evaporator failure. These results represent a significant improvement over the maximum transport capability previously displayed in other capillary systems. The HPSTM system still retains the proven capillary capabilities of heat load sharing and flow control between evaporator plates, rapid power cycling, and nonuniform heating in both the capillary and hybrid operating modes.

  18. Micro-injector for capillary electrophoresis.

    PubMed

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C

    2015-08-01

    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 μm diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 μM) and linear ranges (between about 10 and 1000 μM). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development and application of an empirical probability distribution for the prediction error of re-entry body maximum dynamic pressure

    NASA Technical Reports Server (NTRS)

    Lanzi, R. James; Vincent, Brett T.

    1993-01-01

    The relationship between actual and predicted re-entry maximum dynamic pressure is characterized using a probability density function and a cumulative distribution function derived from sounding rocket flight data. This paper explores the properties of this distribution and demonstrates applications of this data with observed sounding rocket re-entry body damage characteristics to assess probabilities of sustaining various levels of heating damage. The results from this paper effectively bridge the gap existing in sounding rocket reentry analysis between the known damage level/flight environment relationships and the predicted flight environment.

  20. Improved solution for saturated-unsaturated flow to a partially penetrating well in a compressible unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Neuman, S. P.

    2009-12-01

    Tartakovsky and Neuman [2007] developed an analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering an unsaturated zone of infinite thickness. In their solution three-dimensional, axially symmetric unsaturated flow was described by a linearized version of Richards’ equation in which both relative hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value. Both exponential functions were characterized by a common exponent. We present an improved solution in which relative hydraulic conductivity and water content are characterized by separate parameters and the unsaturated zone has finite thickness. Our four-parameter representation of these functions is more flexible than the three-parameter version of Mathias and Butler [2006], who consider flow in the unsaturated zone to be strictly vertical and the pumping well to be fully penetrating. We investigate the effects of unsaturated zone thickness and constitutive parameters on drawdown in the unsaturated and saturated zones as functions of position and time. We then use our new solution to analyze data from synthetic and real pumping tests.

  1. Economic method for measuring ultra-low flow rates of fluids

    NASA Technical Reports Server (NTRS)

    Bogdanovic, J. A.; Keller, W. F.

    1970-01-01

    Capillary tube flowmeter measures ultra-low flows of very corrosive fluids /such as chlorine trifluoride and liquid fluorine/ and other liquids with reasonable accuracy. Flowmeter utilizes differential pressure transducer and operates on the principle that for laminar flow in the tube, pressure drop is proportional to flow rate.

  2. Alterations in the sarcoplasmic protein fraction of beef muscle with postmortem aging and hydrodynamic pressure processing

    USDA-ARS?s Scientific Manuscript database

    Capillary electrophoresis (CE) and reversed-phase high performance liquid chromatography (RP-HPLC) analysis were utilized to detect differences in the sarcoplasmic protein profiles of beef strip loins subjected to aging and hydrodynamic pressure processing (HDP) treatments. At 48 h postmortem, stri...

  3. Moisture storage and transport properties of preservative treated and untreated southern pine wood

    Treesearch

    Samuel L. Zelinka; Samuel V. Glass; Charles R. Boardman; Dominique Derome

    2016-01-01

    Moisture storage and transport properties of southern pine (Pinus spp.) wood were measured for implementation into hygrothermal models. Specimens were untreated or pressure-treated with alkaline copper quaternary (ACQ) preservative. Moisture storage was characterized with sorption isotherms in the hygroscopic region (high capillary pressures) and...

  4. A model and numerical method for compressible flows with capillary effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidmayer, Kevin, E-mail: kevin.schmidmayer@univ-amu.fr; Petitpas, Fabien, E-mail: fabien.petitpas@univ-amu.fr; Daniel, Eric, E-mail: eric.daniel@univ-amu.fr

    2017-04-01

    A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results onmore » droplet breakup induced by a shock wave.« less

  5. Capillary device refilling. [liquid rocket propellant tank tests

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Merino, F.; Symons, E. P.

    1980-01-01

    An analytical and experimental study was conducted dealing with refilling start baskets (capillary devices) with settled fluid. A computer program was written to include dynamic pressure, screen wicking, multiple-screen barriers, standpipe screens, variable vehicle mass for computing vehicle acceleration, and calculation of tank outflow rate and vapor pullthrough height. An experimental apparatus was fabricated and tested to provide data for correlation with the analytical model; the test program was conducted in normal gravity using a scale-model capillary device and ethanol as the test fluid. The test data correlated with the analytical model; the model is a versatile and apparently accurate tool for predicting start basket refilling under actual mission conditions.

  6. A simple and inexpensive on-column frit fabrication method for fused-silica capillaries for increased capacity and versatility in LC-MS/MS applications.

    PubMed

    Wang, Ling-Chi; Okitsu, Cindy Yen; Kochounian, Harold; Rodriguez, Anthony; Hsieh, Chih-Lin; Zandi, Ebrahim

    2008-05-01

    A modified sol-gel method for a one-step on-column frit preparation for fused-silica capillaries and its utility for peptide separation in LC-MS/MS is described. This method is inexpensive, reproducible, and does not require specialized equipments. Because the frit fabrication process does not damage polyimide coating, the frit-fabricated column can be tightly connected on-line for high pressure LC. These columns can replace any capillary liquid transfer tubing without any specialized connections up-stream of a spray tip column. Therefore multiple columns with different phases can be connected in series for one- or multiple-dimensional chromatography.

  7. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  8. Submaximal Exercise Pulmonary Gas Exchange in Left Heart Disease Patients With Different Forms of Pulmonary Hypertension.

    PubMed

    Taylor, Bryan J; Smetana, Michael R; Frantz, Robert P; Johnson, Bruce D

    2015-08-01

    We determined whether pulmonary gas exchange indices during submaximal exercise are different in heart failure (HF) patients with combined post- and pre-capillary pulmonary hypertension (PPC-PH) versus HF patients with isolated post-capillary PH (IPC-PH) or no PH. Pulmonary hemodynamics and pulmonary gas exchange were assessed during rest and submaximal exercise in 39 HF patients undergoing right heart catheterization. After hemodynamic evaluation, patients were classified as having no PH (n = 11), IPC-PH (n = 12), or PPC-PH (n = 16). At an equivalent oxygen consumption, end-tidal CO2 (PETCO2) and arterial oxygen saturation (SaO2) were greater in no-PH and IPC-PH versus PPC-PH patients (36.1 ± 3.2 vs. 31.7 ± 4.5 vs. 26.2 ± 4.7 mm Hg and 97 ± 2 vs. 96 ± 3 vs. 91 ± 1%, respectively). Conversely, dead-space ventilation (VD/VT) and the ventilatory equivalent for carbon dioxide (V˙(E)/V˙CO2 ratio) were lower in no-PH and IPC-PH versus PPC-PH patients (0.37 ± 0.05 vs. 0.38 ± 0.04 vs. 0.47 ± 0.03 and 38 ± 5 vs. 42 ± 8 vs. 51 ± 8, respectively). The exercise-induced change in V(D)/V(T), V˙(E)/V˙CO2 ratio, and PETCO2 correlated significantly with the change in mean pulmonary arterial pressure, diastolic pressure difference, and transpulmonary pressure gradient in PPC-PH patients only. Noninvasive pulmonary gas exchange indices during submaximal exercise are different in HF patients with combined post- and pre-capillary PH compared with patients with isolated post-capillary PH or no PH. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Nonflat equilibrium liquid shapes on flat surfaces.

    PubMed

    Starov, Victor M

    2004-01-15

    The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.

  10. Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing.

    PubMed

    Perez, Sondra A; Charles, John B; Fortner, G William; Hurst, Victor; Meck, Janice V

    2003-07-01

    Many cardiovascular changes associated with spaceflight reduce the ability of the cardiovascular system to oppose gravity on return to Earth, leaving astronauts susceptible to orthostatic hypotension during re-entry and landing. Consequently, an anti-G suit was developed to protect arterial pressure during re-entry. A liquid cooling garment (LCG) was then needed to alleviate the thermal stress resulting from use of the launch and entry suit. We studied 34 astronauts on 22 flights (4-16 d). Subjects were studied 10 d before launch and on landing day. Preflight, crewmembers were suited with their anti-G suits set to the intended inflation for re-entry. Three consecutive measurements of heart rate and arterial pressure were obtained while seated and then again while standing. Three subjects who inflated the anti-G suits also donned the LCG for landing. Arterial pressure and heart rate were measured every 5 min during the de-orbit maneuver, through maximum G-loading (max-G) and touch down (TD). After TD, crew-members again initiated three seated measurements followed by three standing measurements. Astronauts with inflated anti-G suits had higher arterial pressure than those who did not have inflated anti-G suits during re-entry and landing (133.1 +/- 2.5/76.1 +/- 2.1 vs. 128.3 +/- 4.2/79.3 +/- 2.9, de-orbit; 157.3 +/- 4.5/102.1 +/- 3.6 vs. 145.2 +/- 10.5/95.7 + 5.5, max-G; 159.6 +/- 3.9/103.7 +/- 3.3 vs. 134.1 +/- 5.1/85.7 +/- 3.1, TD). In the group with inflated anti-G suits, those who also wore the LCG exhibited significantly lower heart rates than those who did not (75.7 +/- 11.5 vs. 86.5 +/- 6.2, de-orbit; 79.5 +/- 24.8 vs. 112.1 +/- 8.7, max-G; 84.7 +/- 8.0 vs. 110.5 +/- 7.9, TD). The anti-G suit is effective in supporting arterial pressure. The addition of the LCG lowers heart rate during re-entry.

  11. Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing

    NASA Technical Reports Server (NTRS)

    Perez, Sondra A.; Charles, John B.; Fortner, G. William; Hurst, Victor 4th; Meck, Janice V.

    2003-01-01

    BACKGROUND: Many cardiovascular changes associated with spaceflight reduce the ability of the cardiovascular system to oppose gravity on return to Earth, leaving astronauts susceptible to orthostatic hypotension during re-entry and landing. Consequently, an anti-G suit was developed to protect arterial pressure during re-entry. A liquid cooling garment (LCG) was then needed to alleviate the thermal stress resulting from use of the launch and entry suit. METHODS: We studied 34 astronauts on 22 flights (4-16 d). Subjects were studied 10 d before launch and on landing day. Preflight, crewmembers were suited with their anti-G suits set to the intended inflation for re-entry. Three consecutive measurements of heart rate and arterial pressure were obtained while seated and then again while standing. Three subjects who inflated the anti-G suits also donned the LCG for landing. Arterial pressure and heart rate were measured every 5 min during the de-orbit maneuver, through maximum G-loading (max-G) and touch down (TD). After TD, crew-members again initiated three seated measurements followed by three standing measurements. RESULTS: Astronauts with inflated anti-G suits had higher arterial pressure than those who did not have inflated anti-G suits during re-entry and landing (133.1 +/- 2.5/76.1 +/- 2.1 vs. 128.3 +/- 4.2/79.3 +/- 2.9, de-orbit; 157.3 +/- 4.5/102.1 +/- 3.6 vs. 145.2 +/- 10.5/95.7 + 5.5, max-G; 159.6 +/- 3.9/103.7 +/- 3.3 vs. 134.1 +/- 5.1/85.7 +/- 3.1, TD). In the group with inflated anti-G suits, those who also wore the LCG exhibited significantly lower heart rates than those who did not (75.7 +/- 11.5 vs. 86.5 +/- 6.2, de-orbit; 79.5 +/- 24.8 vs. 112.1 +/- 8.7, max-G; 84.7 +/- 8.0 vs. 110.5 +/- 7.9, TD). CONCLUSIONS: The anti-G suit is effective in supporting arterial pressure. The addition of the LCG lowers heart rate during re-entry.

  12. The criterion of subscale sufficiency and its application to the relationship between static capillary pressure, saturation and interfacial areas

    PubMed Central

    2016-01-01

    Modern imaging techniques, increased simulation capabilities and extended theoretical frameworks, naturally drive the development of multiscale modelling by the question: which new information should be considered? Given the need for concise constitutive relationships and efficient data evaluation; however, one important question is often neglected: which information is sufficient? For this reason, this work introduces the formalized criterion of subscale sufficiency. This criterion states whether a chosen constitutive relationship transfers all necessary information from micro to macroscale within a multiscale framework. It further provides a scheme to improve constitutive relationships. Direct application to static capillary pressure demonstrates usefulness and conditions for subscale sufficiency of saturation and interfacial areas. PMID:27279769

  13. Using evaporation to control capillary instabilities in micro-systems.

    PubMed

    Ledesma-Aguilar, Rodrigo; Laghezza, Gianluca; Yeomans, Julia M; Vella, Dominic

    2017-12-06

    The instabilities of fluid interfaces represent both a limitation and an opportunity for the fabrication of small-scale devices. Just as non-uniform capillary pressures can destroy micro-electrical mechanical systems (MEMS), so they can guide the assembly of novel solid and fluid structures. In many such applications the interface appears during an evaporation process and is therefore only present temporarily. It is commonly assumed that this evaporation simply guides the interface through a sequence of equilibrium configurations, and that the rate of evaporation only sets the timescale of this sequence. Here, we use Lattice-Boltzmann simulations and a theoretical analysis to show that, in fact, the rate of evaporation can be a factor in determining the onset and form of dynamical capillary instabilities. Our results shed light on the role of evaporation in previous experiments, and open the possibility of exploiting diffusive mass transfer to directly control capillary flows in MEMS applications.

  14. Molar volume and adsorption isotherm dependence of capillary forces in nanoasperity contacts.

    PubMed

    Asay, David B; Kim, Seong H

    2007-11-20

    The magnitude of the capillary force at any given temperature and adsorbate partial pressure depends primarily on four factors: the surface tension of the adsorbate, its liquid molar volume, its isothermal behavior, and the contact geometry. At large contacting radii, the adsorbate surface tension and the contact geometry are dominating. This is the case of surface force apparatus measurements and atomic force microscopy (AFM) experiments with micrometer-size spheres. However, as the size of contacting asperities decreases to the nanoscale as in AFM experiments with sharp tips, the molar volume and isotherm of the adsorbate become very important to capillary formation as well as capillary adhesion. This effect is experimentally and theoretically explored with simple alcohol molecules (ethanol, 1-butanol, and 1-pentanol) which have comparable surface tensions but differing liquid molar volumes. Adsorption isotherms for these alcohols on silicon oxide are also reported.

  15. Simulation of the Flow Through Porous Layers Composed of Converging-Diverging Capillary Fissures or Tubes

    NASA Astrophysics Data System (ADS)

    Walicka, A.

    2018-02-01

    In this paper, a porous medium is modelled by a network of converging-diverging capillaries which may be considered as fissures or tubes. This model makes it necessary to consider flows through capillary fissures or tubes. Therefore an analytical method for deriving the relationships between pressure drops, volumetric flow rates and velocities for the following fluids: Newtonian, polar, power-law, pseudoplastic (DeHaven and Sisko types) and Shulmanian, was developed. Next, considerations on the models of pore network for Newtonian and non-Newtonian fluids were presented. The models, similar to the schemes of central finite differences may provide a good basis for transforming the governing equations of a flow through the porous medium into a set of linear or quasi-linear algebraic equations. It was shown that the some coefficients in these algebraic equations depend on the kind of the capillary convergence.

  16. High lung volume increases stress failure in pulmonary capillaries

    NASA Technical Reports Server (NTRS)

    Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.

    1992-01-01

    We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological mechanism for other studies showing increased capillary permeability at high states of lung inflation.

  17. Numerical modeling of fluid and oxygen exchanges through microcirculation for the assessment of microcirculation alterations caused by type 2 diabetes.

    PubMed

    Tang, Yuanliang; He, Ying

    2018-05-01

    Type 2 diabetes mellitus (DM2) is frequently accompanied by microcirculation complications, including structural and functional alterations, which may have serious effects on substance exchanges between blood and interstitial tissue and the health of organs. In this paper, we aim to study the influence of microcirculation alterations in DM2 patients on fluid and oxygen exchanges through a model analysis. A fluid flow and oxygen transport model were developed by considering the interplay between blood in capillary network and interstitial tissue. The two regions were separately represented by 1D network model and 3D volume model, and the immersed boundary method (IBM) was adopted to solve fluid and mass transfer between these two regions. By using the model, the steady flow field and the distributions of oxygen in capillary network and surrounding tissue were firstly simulated. In the interstitial volume, fluid pressure and oxygen tension decreased with the increase of distance from the network; in the network, oxygen tension in blood plasma dropped from 100 mm Hg at the entrance to about 40 mm Hg at the exit. We further tested several structural and functional disorders related to diabetic pathological conditions. Simulated results show that the impaired connectivity of the network could result in poor robustness in maintaining blood flow and perfused surface; under high fluid permeability conditions of capillary walls, the pressure gradient was much larger around the capillary bed, and this alteration led to a saturation level of the interstitial pressure when lymphatic flow drainage can't work effectively; the variations in network connectivity and permeability of capillary wall also had unfavorable influence on oxygen distributions in interstitial tissue. In addition, when the oxygen releasing capacity of hemoglobin was confined by glycosylated hemoglobin (HbA1) in the case of diabetes, the plasma could not be complemented with adequate oxygen and thus the hypoxic tissue range will be extended. This study illustrates that when microcirculation disturbances, including the structure of capillary network, the wall osmosis property and the capacity of blood binding oxygen occur in DM2, some negative impacts are raised on microvascular hemodynamics and metabolism circumstance of interstitial tissue. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. The role of facilitated diffusion in oxygen transport by cell-free hemoglobins: implications for the design of hemoglobin-based oxygen carriers.

    PubMed

    McCarthy, M R; Vandegriff, K D; Winslow, R M

    2001-08-30

    We compared rates of oxygen transport in an in vitro capillary system using red blood cells (RBCs) and cell-free hemoglobins. The axial PO(2) drop down the capillary was calculated using finite-element analysis. RBCs, unmodified hemoglobin (HbA(0)), cross-linked hemoglobin (alpha alpha-Hb) and hemoglobin conjugated to polyethylene-glycol (PEG-Hb) were evaluated. According to their fractional saturation curves, PEG-Hb showed the least desaturation down the capillary, which most closely matched the RBCs; HbA(0) and alpha alpha-Hb showed much greater desaturation. A lumped diffusion parameter, K*, was calculated based on the Fick diffusion equation with a term for facilitated diffusion. The overall rates of oxygen transfer are consistent with hemoglobin diffusion rates according to the Stokes-Einstein Law and with previously measured blood pressure responses in rats. This study provides a conceptual framework for the design of a 'blood substitute' based on mimicking O(2) transport by RBCs to prevent autoregulatory changes in blood flow and pressure.

  19. Calculation methods for externally pressurised (hydrostatic) journal bearings with capillary restrictor control

    NASA Astrophysics Data System (ADS)

    1992-09-01

    ESDU 92026 provides a procedure for the design and performance analysis of the bearings with five or more identical equally-spaced rectangular recesses (or pockets) fed by identical capillary restrictors from a constant pressure supply. The method takes account of stiffness and overload capacity requirements and determines the bearing overall size and proportions from the required load, speed and shaft diameter, recommends the clearance and supply pressure, and defines the recess dimensions and capillary restrictor size from the properties of the chosen lubricant. Equations and charts allow prediction of the journal displacement under load, the power loss, the lubricant flow rate, and the bearing and lubricant temperatures. The method applies to laminar flow and guidance is given for assessing the onset of non-laminar flow in the bearing and restrictors. Guidance is also given on the likelihood of bearing-induced instability. The user is assisted by flowcharts in applying the method, and two practical worked examples illustrate the procedure. ESDU 92037 introduces a FORTRAN program that implements the method, and magnetic media are available in ESDUpac A9237.

  20. Multi-source ion funnel

    DOEpatents

    Tang, Keqi; Belov, Mikhail B.; Tolmachev, Aleksey V.; Udseth, Harold R.; Smith, Richard D.

    2005-12-27

    A method for introducing ions generated in a region of relatively high pressure into a region of relatively low pressure by providing at least two electrospray ion sources, providing at least two capillary inlets configured to direct ions generated by the electrospray sources into and through each of the capillary inlets, providing at least two sets of primary elements having apertures, each set of elements having a receiving end and an emitting end, the primary sets of elements configured to receive a ions from the capillary inlets at the receiving ends, and providing a secondary set of elements having apertures having a receiving end and an emitting end, the secondary set of elements configured to receive said ions from the emitting end of the primary sets of elements and emit said ions from said emitting end of the secondary set of elements. The method may further include the step of providing at least one jet disturber positioned within at least one of the sets of primary elements, providing a voltage, such as a dc voltage, in the jet disturber, thereby adjusting the transmission of ions through at least one of the sets of primary elements.

  1. Water imbibition by mica pores: what happens when capillary flow is suppressed?

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Qiao, Rui

    2017-11-01

    The imbibition of liquids into porous media plays a critical role in numerous applications. Most prior studies focused on imbibition driven by capillary flows. In this work, we study the imbibition of water into slit-shaped mica pores filled with pressurized methane using molecular simulations. Despite that capillary flow is suppressed by the high gas pressure, water is imbibed into the pore as monolayer liquid films. Since the classical hydrodynamic flow is not readily applicable for the monolayer water film propagating on the mica wall and the imbibition is driven by the strong affinity of water molecules to the mica walls, the observed imbibition is best taken as surface hydration. We show that the dynamics of water's imbibition front follows a simple diffusive scaling law. The effective diffusion coefficient of the imbibition front, however, is more than ten times larger than the diffusion coefficient of the water molecules in the water film adsorbed on the mica walls. Using a molecular theory originally developed for the spreading of monolayer films on solid substrates, we clarify the mechanism underlying the rapid water imbibition observed here.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiratsuka, Tatsumasa; Tanaka, Hideki, E-mail: tanaka@cheme.kyoto-u.ac.jp; Miyahara, Minoru T., E-mail: miyahara@cheme.kyoto-u.ac.jp

    Capillary condensation in the regime of developing hysteresis occurs at a vapor pressure, P{sub cond}, that is less than that of the vapor-like spinodal. This is because the energy barrier for the vapor-liquid transition from a metastable state at P{sub cond} becomes equal to the energy fluctuation of the system; however, a detailed mechanism of the spontaneous transition has not been acquired even through extensive experimental and simulation studies. We therefore construct accurate atomistic silica mesopore models for MCM-41 and perform molecular simulations (gauge cell Monte Carlo and grand canonical Monte Carlo) for argon adsorption on the models at subcriticalmore » temperatures. A careful comparison between the simulation and experiment reveals that the energy barrier for the capillary condensation has a critical dimensionless value, W{sub c}{sup *} = 0.175, which corresponds to the thermal fluctuation of the system and depends neither on the mesopore size nor on the temperature. We show that the critical energy barrier W{sub c}{sup *} controls the capillary condensation pressure P{sub cond} and also determines a boundary between the reversible condensation/evaporation regime and the developing hysteresis regime.« less

  3. Microjet formation in a capillary by laser-induced cavitation

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Tagawa, Yoshiyuki; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2010-11-01

    A vapor bubble is created by focusing a laser pulse inside a capillary that is partially filled with water. Upon creation of the bubble, a shock wave travels through the capillary. When this shock wave meets the meniscus of the air-water interface, a thin jet is created that travels at very high speeds. A crucial ingredient for the creation of the jet is the shape of the meniscus, which is responsible for focusing the energy provided by the shock wave. We examine the formation of this jet numerically using a boundary integral method, where we prepare an initial interface at rest inside a tube with a diameter ranging from 50 to 500 μm. To simulate the effect of the bubble we then apply a short, strong pressure pulse, after which the jet forms. We investigate the influence of the shape of the meniscus, and pressure amplitude and duration on the jet formation. The jet shape and velocity obtained by the simulation compare well with experimental data, and provides good insight in the origin of the jet.

  4. Effects of periodic atmospheric pressure variation on radon entry into buildings

    NASA Astrophysics Data System (ADS)

    Tsang, Y. W.; Narasimhan, T. N.

    1992-06-01

    Using a mathematical model, we have investigated the temporal variations of radon entry into a house basement in the presence of time-dependent periodic variations of barometric pressure as well as a persistent small steady depressurization within the basement. The tool for our investigation is an integral finite difference numerical code which can solve for both diffusive and advective flux of radon in the soil gas which is treated as a slightly compressible fluid. Two different boundary conditions at the house basement are considered: (1) a dirt floor basement so that diffusion is equally or more important than advective transport, and (2) an "impermeable" cement basement except for a 1-cm-wide crack near the perimeter of the basement floor; in which case, advective transport of radon flux dominates. Two frequencies of barometric pressure fluctuation with representative values of amplitudes, based on a Fourier decomposition of barometric pressure data, were chosen in this study: one with a short period of 0.5 hour with pressure amplitude of 50 Pa, the other a diurnal variation with a period of 24 hours with the typical pressure amplitude of 250 Pa. For a homogeneous soil medium with soil permeability to air between 10-13 and 10-10 m2, we predict that the barometric fluctuations increase the radon entry into the basement by up to 120% of the steady radon inflow into the basement owing to a steady depressurization of 5 Pa. If soil permeability heterogeneity is present, such as the presence of a thin layer of higher permeability aggregate immediately below the basement floor, radon flux due to atmospheric pumping is further increased. Effects of pressure pumping on radon entry are also compared to diffusion-only transport when the steady depressurization is absent. It is found that contribution to radon entry is significant for the basement crack configuration. In particular, for pressure pumping at 0.5-hour period and for a homogeneous medium of permeability of 10-10 m2, the radon entry is a factor of 10 larger than that predicted by the diffusion-only transport. This may help to explain indoor radon concentrations during times of low steady state driving force. Extending beyond radon transport, the results of this case study establish the importance of transient advective transport resulting from atmospheric pressure variation. These results may have relevance in the estimations of the transfer of trace gases such as methane and nitrous oxide across the soil-atmosphere interface and their impact on global climate changes.

  5. Field testing the Raman gas composition sensor for gas turbine operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buric, M.; Chorpening, B.; Mullem, J.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class Imore » Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.« less

  6. Pressure-assisted electrokinetic injection for on-line enrichment in capillary electrophoresis-mass spectrometry: a sensitive method for measurement of ten haloacetic acids in drinking water.

    PubMed

    Zhang, Huijuan; Zhu, Jiping; Aranda-Rodriguez, Rocio; Feng, Yong-Lai

    2011-11-07

    Haloacetic acids (HAAs) are by-products of the chlorination of drinking water containing natural organic matter and bromide. A simple and sensitive method has been developed for determination of ten HAAs in drinking water. The pressure-assisted electrokinetic injection (PAEKI), an on-line enrichment technique, was employed to introduce the sample into a capillary electrophoresis (CE)-electrospray ionization-tandem mass spectrometry system (ESI-MS/MS). HAAs were monitored in selected reaction monitoring mode. With 3 min of PAEKI time, the ten major HAAs (HAA10) in drinking water were enriched up to 20,000-fold into the capillary without compromising resolution. A simple solid phase clean-up method has been developed to eliminate the influence of ionic matrices from drinking water on PAEKI. Under conditions optimized for mass spectrometry, PAEKI and capillary electrophoresis, detection limits defined as three times ratio of signal to noise have been achieved in a range of 0.013-0.12 μg L(-1) for ten HAAs in water sample. The overall recoveries for all ten HAAs in drinking water samples were between 76 and 125%. Six HAAs including monochloro- (MCAA), dichloro- (DCAA), trichloro- (TCAA), monobromo- (MBAA), bromochloro- (BCAA), and bromodichloroacetic acids (BDCAA) were found in tap water samples collected. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  7. Porous micropillar structures for retaining low surface tension liquids.

    PubMed

    Agonafer, Damena D; Lee, Hyoungsoon; Vasquez, Pablo A; Won, Yoonjin; Jung, Ki Wook; Lingamneni, Srilakshmi; Ma, Binjian; Shan, Li; Shuai, Shuai; Du, Zichen; Maitra, Tanmoy; Palko, James W; Goodson, Kenneth E

    2018-03-15

    The ability to manipulate fluid interfaces, e.g., to retain liquid behind or within porous structures, can be beneficial in multiple applications, including microfluidics, biochemical analysis, and the thermal management of electronic systems. While there are a variety of strategies for controlling the disposition of liquid water via capillarity, such as the use of chemically modified porous adhesive structures and capillary stop valves or surface geometric features, methods that work well for low surface tension liquids are far more difficult to implement. This study demonstrates the microfabrication of a silicon membrane that can retain exceptionally low surface tension fluorinated liquids against a significant pressure difference across the membrane via an array of porous micropillar structures. The membrane uses capillary forces along the triple phase contact line to maintain stable liquid menisci that yield positive working Laplace pressures. The micropillars have inner diameters and thicknesses of 1.5-3 μm and ∼1 μm, respectively, sustaining Laplace pressures up to 39 kPa for water and 9 kPa for Fluorinert™ (FC-40). A theoretical model for predicting the change in pressure as the liquid advances along the porous micropillar structure is derived based on a free energy analysis of the liquid meniscus with capped spherical geometry. The theoretical prediction was found to overestimate the burst pressure compared with the experimental measurements. To elucidate this deviation, transient numerical simulations based on the Volume of Fluid (VOF) were performed to explore the liquid pressure and evolution of meniscus shape under different flow rates (i.e., Capillary numbers). The results from VOF simulations reveal strong dynamic effects where the anisotropic expansion of liquid along the outer micropillar edge leads to an irregular meniscus shape before the liquid spills along the micropillar edge. These findings suggest that the analytical prediction of burst Laplace pressure obtained under quasi-static condition (i.e., equilibrium thermodynamic analysis under low capillary number) is not applicable to highly dynamic flow conditions, where the liquid meniscus shape deformation by flow perturbation cannot be restored by surface tension force instantaneously. Therefore, the critical burst pressure is dependent on the liquid velocity and viscosity under dynamic flow conditions. A numerical simulation using Surface Evolver also predicts that surface defects along the outer micropillar edge can yield up to 50% lower Laplace pressures than those predicted with ideal feature geometries. The liquid retention strategy developed here can facilitate the routing and phase management of dielectric working fluids for application in heat exchangers. Further improvements in the retention performance can be realized by optimizing the fabrication process to reduce surface defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.

    PubMed

    Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C

    2008-04-01

    Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary.

  9. Intermittent KoldBlue cryotherapy of 3×10 min changes mid‐portion Achilles tendon microcirculation

    PubMed Central

    Knobloch, Karsten; Grasemann, Ruth; Spies, Marcus; Vogt, Peter M

    2007-01-01

    Background Neovascularisation and microcirculatory changes have been reported in Achilles tendinopathy. Cryotherapy and compression, as part of a rest, ice, compression and elevation regimen, are shown to decrease pain and improve function. However, the microcirculatory changes following a given dosage of cryotherapy on mid‐portion Achilles tendon remain unclear. Study design Prospective clinical cohort study, level of evidence 2. Methods 30 people (12 males, 33 (SD 12) years, body mass index 25.6 (5.3) kg/m2) were included in the cohort. 3×10 min KoldBlue ankle‐cooling bandages were applied and microcirculation of Achilles tendon mid‐portion was real‐time and continuously assessed using a laser‐Doppler‐spectrophotometry system (O2C, Germany). Results Superficial capillary blood flow was reduced from 42 to 6, 5 and 3 relative units (rU) in the first, second and third cryotherapy periods, respectively (−65%, p = 0.001), with no significant capillary hyperaemia. Deep capillary tendon blood flow was reduced from 180 to 82, 53 and 52 rU (−71%, p = 0.001) within 6–9 min of application without hyperaemia. Superficial tendon oxygen saturation dropped significantly from 43% to 26%, 18% and 11% (p = 0.001) after repetitive cryotherapy, with persisting increase of tendon oxygenation during rewarming (51%, 49% and 54%, p = 0.077) up to 27% of the baseline level. At 8 mm tendon depth, cryotherapy preserved local oxygenation. Relative postcapillary venous tendon filling pressures were favourably reduced from 41 (11) to 31, 28 and 26 rU (−36%, p = 0.001) superficially and from 56 (11) to 45, 46 and 48 rU (−18%, p = 0.001) in deep capillary blood flow during cryotherapy, facilitating capillary venous clearance. Conclusion Intermittent cryotherapy of 3×10 min significantly decreases local Achilles tendon mid‐portion capillary blood flow by 71%. Within 2 min of rewarming, tendon oxygen saturation is re‐established following cryotherapy. Postcapillary venous filling pressures are reduced during cryotherapy, favouring capillary venous outflow of the healthy Achilles tendon. PMID:17138636

  10. Effect of antioxidant therapy with dl-alpha-tocopherol on cardiovascular structure in experimental renal failure.

    PubMed

    Amann, Kerstin; Törnig, Johannes; Buzello, Mareike; Kuhlmann, Alexander; Gross, Marie-Luise; Adamczak, Marcin; Buzello, Moriz; Ritz, Eberhard

    2002-09-01

    Chronic renal failure is characterized by remodeling of the structure of the heart and the vasculature, for example, left ventricular hypertrophy, myocardial fibrosis, capillary/myocyte mismatch, as well as thickening of intramyocardial arteries and of peripheral arteries and veins. Furthermore, uremia is a state of increased oxygen stress. It was the purpose of this study to examine whether these findings are interrelated. To investigate whether antioxidative therapy with dl-alpha-tocopherol (Toco; vitamin E) interferes with the development of abnormal cardiovascular structure in experimental renal failure, 28 male Sprague-Dawley rats were subjected to partial renal ablation (subtotal nephrectomy, SNX) or to sham operation (sham). SNX were either left untreated or received the antioxidant Toco (2 x 1500 IE/kg BW/week in the pellets). Blood pressure was measured using tail plethysmography. The experiment was terminated after 12 weeks. Heart and left ventricular weight were determined and the following parameters were measured using morphometry and stereology: volume densities of cardiomyocytes, capillaries and non-vascular interstitium; length density and total length of cardiac capillaries, wall thickness of intramyocardial arterioles and of the aorta. Systolic blood pressure and body weight were comparable in all groups. Treatment with Toco led to significantly increased plasma concentrations of Toco. Left ventricular weight and wall thickness of intramyocardial arteries were significantly higher in both SNX groups compared to sham controls. Volume density of the cardiac interstitial tissue was significantly higher in untreated SNX than in Toco treated SNX and sham control rats. Length density of capillaries was significantly lower in untreated SNX than in control rats; however, the values were significantly higher, and even higher than in sham controls, when SNX were treated with Toco. Treatment with the antioxidant dl-alpha-tocopherol prevented cardiomyocyte/capillary mismatch, and to some extent also myocardial fibrosis in rats with renal failure. The results point to a role of oxidative stress in the genesis of myocardial interstitial fibrosis and capillary deficit of the heart.

  11. Clinical Issues-November 2017.

    PubMed

    Johnstone, Esther M

    2017-11-01

    Heating, ventilation, and air-conditioning (HVAC) systems in the OR Key words: airborne contaminants, HVAC system, air pressure, air quality, temperature and humidity. Air changes and positive pressure Key words: air changes, positive pressure airflow, unidirectional airflow, outdoor air, recirculated air. Product selection Key word: product evaluation, product selection, selection committee. Entry into practice Key words: associate degree in nursing, bachelor of science in nursing, entry-level position, advanced education, BSN-prepared RNs. Mentoring in perioperative nursing Key words: mentor, novice, practice improvement, nursing workforce. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  12. Subtle exchange model of flow depended on the blood cell shape to enhance the micro-circulation in capillary

    NASA Astrophysics Data System (ADS)

    Chan, Iatneng

    2012-02-01

    In general the exchange of gases or other material in capillary system is conceptualized by the diffusion effect. But in this model, we investigate a micro-flow pattern by simulation and computation on a micro-exchange model in which the blood cell is a considered factor, especially on its shape. It shows that the cell benefits the circulation while it is moving in the capillary. In the study, the flow detail near the cell surface is mathematically analyzed, such that the Navier-Stokes equations are applied and the viscous factor is also briefly considered. For having a driven force to the motion of micro-circulation, a breathing mode is suggested to approximately compute on the flow rate in the blood capillary during the transfer of cell. The rate is also used to estimate the enhancement to the circulation in additional to the outcome of diffusion. Moreover in the research, the shape change of capillary wall under pressure influence is another element in the beginning calculation for the effect in the assistance to cell motion.

  13. Harvesting liquid from unsaturated vapor - nanoflows induced by capillary condensation

    NASA Astrophysics Data System (ADS)

    Vincent, Olivier; Marguet, Bastien; Stroock, Abraham

    2016-11-01

    A vapor, even subsaturated, can spontaneously form liquid in nanoscale spaces. This process, known as capillary condensation, plays a fundamental role in various contexts, such as the formation of clouds or the dynamics of hydrocarbons in the geological subsurface. However, large uncertainties remain on the thermodynamics and fluid mechanics of the phenomenon, due to experimental challenges as well as outstanding questions about the validity of macroscale physics at the nanometer scale. We studied experimentally the spatio-temporal dynamics of water condensation in a model nanoporous medium (pore radius 2 nm), taking advantage of the color change of the material upon hydration. We found that at low relative humidities (< 60 % RH), capillary condensation progressed in a diffusive fashion, while it occurred through a well-defined capillary-viscous imbibition front at > 60 % RH, driven by a balance between the pore capillary pressure and the condensation stress given by Kelvin equation. Further analyzing the imbibition dynamics as a function of saturation allowed us to extract detailed information about the physics of nano-confined fluids. Our results suggest excellent extension of macroscale fluid dynamics and thermodynamics even in pores 10 molecules in diameter.

  14. Viscosity of ammonia at high temperature and pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, S.B.K.; Storvick, T.S.

    1979-04-01

    The viscosity of ammonia on five isotherms in the temperature range 448 to 598 K and pressures to 121 bar are reported. The measurements were made in a steady-state, capillary flow viscometer. The measurements are estimated to be accurate to better than 0.4% over the full range. 5 figures, 1 table.

  15. Capillary liquid chromatography combined with pressurized liquid extraction and dispersive liquid-liquid microextraction for the determination of vitamin E in cosmetic products.

    PubMed

    Viñas, Pilar; Pastor-Belda, Marta; Campillo, Natalia; Bravo-Bravo, María; Hernández-Córdoba, Manuel

    2014-06-01

    Capillary liquid chromatography (LC) is used for the determination of tocopherols and tocotrienols in cosmetic products. Dispersive liquid-liquid microextraction (DLLME) allows the analytes to be preconcentrated into a very small volume of organic solvent which is then injected into the chromatograph running at a very low flow rate. Pressurized liquid extraction (PLE) at a high temperature and pressure was used to isolate vitamin E forms from cosmetics. The Taguchi experimental method was used to optimize the factors affecting DLLME. The parameters selected were 2mL of acetonitrile (disperser solvent), 100μL carbon tetrachloride (extraction solvent) and 10mL aqueous solution. A volume of 5μL of the organic phase was injected into the reversed-phase capillary LC system equipped with a diode array detector and using an isocratic mobile phase composed of an 95:5 (v/v) methanol:water mixture at a flow-rate of 20μLmin(-1). Quantification was carried out using aqueous standards and detection limits were in the range 0.1-0.5ngmL(-1), corresponding to 3-15ngg(-1) in the cosmetic sample. The recoveries were in the 87-105% range, with RSDs lower than 7.8%. The method was validated according to international guidelines and using a certified reference material. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synergism between endotoxin priming and exotoxin challenge in provoking severe vascular leakage in rabbit lungs.

    PubMed

    Schütte, H; Rosseau, S; Czymek, R; Ermert, L; Walmrath, D; Krämer, H J; Seeger, W; Grimminger, F

    1997-09-01

    Lipopolysaccharides (LPS) of gram-negative bacteria prime rabbit lungs for enhanced thromboxane-mediated vasoconstriction upon subsequent challenge with the exotoxin Escherichia coli hemolysin (HlyA) (Walmrath et al. J. Exp. Med. 1994;180:1437-1443). We investigated the impact of endotoxin priming and subsequent HlyA challenge on lung vascular permeability while maintaining constancy of capillary pressure. Rabbit lungs were perfused in a pressure-controlled mode in the presence of the thromboxane receptor antagonist BM 13.505, with continuous monitoring of flow. Perfusion for 180 min with 10 ng/ml LPS did not provoke vasoconstriction or alteration of capillary filtration coefficient (Kfc) values. HlyA (0.021 hemolytic units/ml) induced thromboxane release and a transient decrease in perfusion flow in the absence of significant changes in Kfc. Similar results were obtained when LPS and HlyA were coapplied simultaneously. However, when the HlyA challenge was undertaken after 180 min of LPS priming, a manifold increase in Kfc values was noted, with concomitant severe lung edema formation, although capillary pressure remained unchanged. Thus, endotoxin primes the lung vasculature to respond with a severe increase in vascular permeability to a subsequent low-dose application of HlyA. Such synergism between endotoxin priming and exotoxin challenge in provoking lung vascular leakage may contribute to the pathogenesis of respiratory failure in sepsis and severe lung infection.

  17. Water Displacement in Oil-Wet Tight Reservoirs by Dynamic Network Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, M.; Chen, M.

    2017-12-01

    Pore network simulation is an effective tool for studying the multiphase flow in porous media. Based on the topological information and pore-throat size distribution obtained from the analysis of Scanning Electron Microscope (SEM) and constant-rate mercury injection (CRMI) for tight cores (composed by micro-nano scale throats and micro scale pores), a simple cubic (SC) pore-throat network was built with equilateral triangular cross-section throats and cubic bodies. Rules for oil and water movement and redistribution were devised in accordance with the physics process at pore-throat scale. Water flooding from oil-saturated under irreducible water were simulated by considering the changing displacement rate and viscosity ratio at the slightly oil-wet condition (the static contact angle ranges between π/2 to 2π/3). Different from the double pressure field algorithm, a single pressure field which solved by using successive over relaxation method was used with the flow of irreducible water in corners was ignored while its swilling was take into consideration. Dynamic of displacement fronts, relative permeability curves and residual oil saturation were obtained. It showed that there were obviously snap-off at low capillary number (Nc<10-5) and fingering at high capillary number (Nc<10-4) even at a favorable viscosity ratio (M=1). The magnitude of viscosity ratio effect on relative permeability depended largely on the capillary number, which the effect wasn't noticeable for a high capillary number. For residual oil saturation Sor, it showed that Sor decreased with the increase of capillary number at different viscosity ratio. Changing of residual oil saturation from simulation was in good agreement with the experimental results in a certain range, which indicated that this network model could be used to character the water flooding in tight reservoirs.

  18. Investigation of capillary nanosecond discharges in air at moderate pressure: comparison of experiments and 2D numerical modelling

    NASA Astrophysics Data System (ADS)

    Klochko, Andrei V.; Starikovskaia, Svetlana M.; Xiong, Zhongmin; Kushner, Mark J.

    2014-09-01

    Nanosecond electrical discharges in the form of ionization waves are of interest for rapidly ionizing and exciting complex gas mixtures to initiate chemical reactions. Operating with a small discharge tube diameter can significantly increase the specific energy deposition and so enable optimization of the initiation process. Analysis of the uniformity of energy release in small diameter capillary tubes will aid in this optimization. In this paper, results for the experimentally derived characteristics of nanosecond capillary discharges in air at moderate pressure are presented and compared with results from a two-dimensional model. The quartz capillary tube, having inner and outer diameters of 1.5 and 3.4 mm, is about 80 mm long and filled with synthetic dry air at 27 mbar. The capillary tube with two electrodes at the ends is inserted into a break of the central wire of a long coaxial cable. A metal screen around the tube is connected to the cable ground shield. The discharge is driven by a 19 kV 35 ns voltage pulse applied to the powered electrode. The experimental measurements are conducted primarily by using a calibrated capacitive probe and back current shunts. The numerical modelling focuses on the fast ionization wave (FIW) and the plasma properties in the immediate afterglow after the conductive plasma channel has been established between the two electrodes. The FIW produces a highly focused region of electric field on the tube axis that sustains the ionization wave that eventually bridges the electrode gap. Results from the model predict FIW propagation speed and current rise time that agree with the experiment.

  19. The Hypoxic Response Contributes to Altered Gene Expression and Pre-Capillary Pulmonary Hypertension in Patients with Sickle Cell Disease

    PubMed Central

    Zhang, Xu; Zhang, Wei; Ma, Shwu-Fan; Desai, Ankit A.; Saraf, Santosh; Miasniakova, Galina; Sergueeva, Adelina; Ammosova, Tatiana; Xu, Min; Nekhai, Sergei; Abbasi, Taimur; Casanova, Nancy G.; Steinberg, Martin H.; Baldwin, Clinton T.; Sebastiani, Paola; Prchal, Josef T.; Kittles, Rick; Garcia, Joe G. N.; Machado, Roberto F.; Gordeuk, Victor R.

    2014-01-01

    Background We postulated that the hypoxic response in sickle cell disease (SCD) contributes to altered gene expression and pulmonary hypertension, a complication associated with early mortality. Methods and Results To identify genes regulated by the hypoxic response and not other effects of chronic anemia, we compared expression variation in peripheral blood mononuclear cells from 13 SCD subjects with hemoglobin SS genotype and 15 Chuvash polycythemia subjects (VHLR200W homozygotes with constitutive up-regulation of hypoxia inducible factors in the absence of anemia or hypoxia). At 5% false discovery rate, 1040 genes exhibited >1.15 fold change in both conditions; 297 were up-regulated and 743 down-regulated including MAPK8 encoding a mitogen-activated protein kinase important for apoptosis, T-cell differentiation and inflammatory responses. Association mapping with a focus on local regulatory polymorphisms in 61 SCD patients identified expression quantitative trait loci (eQTL) for 103 of these hypoxia response genes. In a University of Illinois SCD cohort the A allele of a MAPK8 eQTL, rs10857560, was associated with pre-capillary pulmonary hypertension defined as mean pulmonary artery pressure ≥25 and pulmonary capillary wedge pressure ≤15 mm Hg at right heart catheterization (allele frequency=0.66; OR=13.8, P=0.00036, n=238). This association was confirmed in an independent Walk-PHaSST cohort (allele frequency=0.65; OR=11.3, P=0.0025, n=519). The homozygous AA genotype of rs10857560 was associated with decreased MAPK8 expression and present in all 14 identified pre-capillary pulmonary hypertension cases among the combined 757 patients. Conclusions Our study demonstrates a prominent hypoxic transcription component in SCD and a MAPK8 eQTL associated with pre-capillary pulmonary hypertension. PMID:24515990

  20. Determination of Barometric Altimeter Errors for the Orion Exploration Flight Test-1 Entry

    NASA Technical Reports Server (NTRS)

    Brown, Denise L.; Bunoz, Jean-Philippe; Gay, Robert

    2012-01-01

    The Exploration Flight Test 1 (EFT-1) mission is the unmanned flight test for the upcoming Multi-Purpose Crew Vehicle (MPCV). During entry, the EFT-1 vehicle will trigger several Landing and Recovery System (LRS) events, such as parachute deployment, based on on-board altitude information. The primary altitude source is the filtered navigation solution updated with GPS measurement data. The vehicle also has three barometric altimeters that will be used to measure atmospheric pressure during entry. In the event that GPS data is not available during entry, the altitude derived from the barometric altimeter pressure will be used to trigger chute deployment for the drogues and main parachutes. Therefore it is important to understand the impact of error sources on the pressure measured by the barometric altimeters and on the altitude derived from that pressure. The error sources for the barometric altimeters are not independent, and many error sources result in bias in a specific direction. Therefore conventional error budget methods could not be applied. Instead, high fidelity Monte-Carlo simulation was performed and error bounds were determined based on the results of this analysis. Aerodynamic errors were the largest single contributor to the error budget for the barometric altimeters. The large errors drove a change to the altitude trigger setpoint for FBC jettison deploy.

  1. An evaluation of Shuttle Entry Air Data System (SEADS) flight pressures - Comparisons with wind tunnel and theoretical predictions

    NASA Technical Reports Server (NTRS)

    Henry, M. W.; Wolf, H.; Siemers, Paul M., III

    1988-01-01

    The SEADS pressure data obtained from the Shuttle flight 61-C are analyzed in conjunction with the preflight database. Based on wind tunnel data, the sensitivity of the Shuttle Orbiter stagnation region pressure distribution to angle of attack and Mach number is demonstrated. Comparisons are made between flight and wind tunnel SEADS orifice pressure distributions at several points throughout the re-entry. It is concluded that modified Newtonian theory provides a good tool for the design of a flush air data system, furnishing data for determining orifice locations and transducer sizing. Ground-based wind tunnel facilities are capable of providing the correction factors necessary for the derivation of accurate air data parameters from pressure data.

  2. Gravimetric capillary method for kinematic viscosity measurements

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing

    1992-01-01

    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  3. Development of a 45kpsi ultrahigh pressure liquid chromatography instrument for gradient separations of peptides using long microcapillary columns and sub-2μm particles.

    PubMed

    Grinias, Kaitlin M; Godinho, Justin M; Franklin, Edward G; Stobaugh, Jordan T; Jorgenson, James W

    2016-10-21

    Commercial chromatographic instrumentation for bottom-up proteomics is often inadequate to resolve the number of peptides in many samples. This has inspired a number of complex approaches to increase peak capacity, including various multidimensional approaches, and reliance on advancements in mass spectrometry. One-dimensional reversed phase separations are limited by the pressure capabilities of commercial instruments and prevent the realization of greater separation power in terms of speed and resolution inherent to smaller sorbents and ultrahigh pressure liquid chromatography. Many applications with complex samples could benefit from the increased separation performance of long capillary columns packed with sub-2μm sorbents. Here, we introduce a system that operates at a constant pressure and is capable of separations at pressures up to 45kpsi. The system consists of a commercially available capillary liquid chromatography instrument, for sample management and gradient creation, and is modified with a storage loop and isolated pneumatic amplifier pump for elevated separation pressure. The system's performance is assessed with a complex peptide mixture and a range of microcapillary columns packed with sub-2μm C18 particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. High pressure capillary micro-fluidic valve device and a method of fabricating same

    DOEpatents

    Crocker, Robert W [Fremont, CA; Caton, Pamela F [Berkely, CA; Gerhardt, Geoff C [Milbury, MA

    2007-04-17

    A freeze-thaw valve and a method of micro-machining the freeze-thaw valve is provided and includes a valve housing, wherein the valve housing defines a housing cavity and includes a housing inlet, a housing vent, a capillary tubing inlet and a capillary tubing outlet. A valve body is provided, at least a portion of which is lithographically constructed, wherein the valve body includes a refrigerant inlet, a refrigerant outlet and an expansion chamber. The expansion chamber is disposed to communicate the refrigerant inlet with the refrigerant outlet and includes a restriction region having a flow restriction. Additionally, the valve body is disposed within the housing cavity to form an insulating channel between the valve housing and the valve body.

  5. Interfacial bubbles formed by plunging thin liquid films in a pool

    NASA Astrophysics Data System (ADS)

    Salkin, Louis; Schmit, Alexandre; David, Richard; Delvert, Alexandre; Gicquel, Eric; Panizza, Pascal; Courbin, Laurent

    2017-06-01

    We show that the immersion of a horizontally suspended thin film of liquid in a pool of the same fluid creates an interfacial bubble, that is, a bubble at the liquid-air interface. Varying the fluid properties, the film's size, and its immersion velocity, our experiments unveil two formation regimes characterized by either a visco-capillary or an inertio-capillary mechanism that controls the size of a produced bubble. To rationalize these results, we compare the pressure exerted by the air flow under a plunging film with the Laplace pressure needed to generate film dimpling, which subsequently yields air entrapment and the production of a bubble. This physical model explains the power-law variations of the bubble size with the governing dimensionless number for each regime.

  6. Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.

    PubMed

    Keh, Huan J; Ding, Jau M

    2003-07-15

    An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.

  7. Circumventing Imprecise Geometric Information and Development of a Unified Modeling Technique for Various Flow Regimes in Capillary Tubes

    NASA Astrophysics Data System (ADS)

    Abbasi, Bahman

    2012-11-01

    Owing to their manufacturability and reliability, capillary tubes are the most common expansion devices in household refrigerators. Therefore, investigating flow properties in the capillary tubes is of immense appeal in the said business. The models to predict pressure drop in two-phase internal flows invariably rely upon highly precise geometric information. The manner in which capillary tubes are manufactured makes them highly susceptible to geometric imprecisions, which renders geometry-based models unreliable to the point of obsoleteness. Aware of the issue, manufacturers categorize capillary tubes based on Nitrogen flow rate through them. This categorization method presents an opportunity to substitute geometric details with Nitrogen flow data as the basis for customized models. The simulation tools developed by implementation of this technique have the singular advantage of being applicable across flow regimes. Thus the error-prone process of identifying compatible correlations is eliminated. Equally importantly, compressibility and chocking effects can be incorporated in the same model. The outcome is a standalone correlation that provides accurate predictions, regardless of any particular fluid or flow regime. Thereby, exploratory investigations for capillary tube design and optimization are greatly simplified. Bahman Abbasi, Ph.D., is Lead Advanced Systems Engineer at General Electric Appliances in Louisville, KY. He conducts research projects across disciplines in the household refrigeration industry.

  8. Precourt prepares for entry seated at the commander's station

    NASA Image and Video Library

    1997-06-05

    STS084-318-035 (15-24 May 1997) --- Attired in the partial pressure launch and entry garment, astronaut Charles J. Precourt, commander, performs final checkout procedures prior to the re-entry phase of the STS-84 mission. The photo was taken with a 35mm camera by one of the Space Shuttle Atlantis' rear station-seated crewmembers.

  9. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  10. Entry vehicle performance analysis and atmospheric guidance algorithm for precision landing on Mars. M.S. Thesis - Massachusetts Inst. of Technology

    NASA Technical Reports Server (NTRS)

    Dieriam, Todd A.

    1990-01-01

    Future missions to Mars may require pin-point landing precision, possibly on the order of tens of meters. The ability to reach a target while meeting a dynamic pressure constraint to ensure safe parachute deployment is complicated at Mars by low atmospheric density, high atmospheric uncertainty, and the desire to employ only bank angle control. The vehicle aerodynamic performance requirements and guidance necessary for 0.5 to 1.5 lift drag ratio vehicle to maximize the achievable footprint while meeting the constraints are examined. A parametric study of the various factors related to entry vehicle performance in the Mars environment is undertaken to develop general vehicle aerodynamic design requirements. The combination of low lift drag ratio and low atmospheric density at Mars result in a large phugoid motion involving the dynamic pressure which complicates trajectory control. Vehicle ballistic coefficient is demonstrated to be the predominant characteristic affecting final dynamic pressure. Additionally, a speed brake is shown to be ineffective at reducing the final dynamic pressure. An adaptive precision entry atmospheric guidance scheme is presented. The guidance uses a numeric predictor-corrector algorithm to control downrange, an azimuth controller to govern crossrange, and analytic control law to reduce the final dynamic pressure. Guidance performance is tested against a variety of dispersions, and the results from selected tests are presented. Precision entry using bank angle control only is demonstrated to be feasible at Mars.

  11. Capillary refill time is an unreliable indicator of cardiovascular status in term neonates.

    PubMed

    LeFlore, Judy L; Engle, William D

    2005-06-01

    Decisions regarding the need for volume replacement in neonates often are made in the immediate newborn period. Capillary refill time (CRT) is used as an indicator of circulatory status; however, recent data show that CRT varies considerably with age, ambient and skin temperature, anatomical site of measurement, and duration of pressure. The purpose of this study was to (1) examine the relationship between CRT and heart rate (HR) and blood pressure (BP) in term neonates, and (2) evaluate the differences among CRT values measured at 3 body sites and with varying duration of cutaneous pressure. This was a prospective, cross-sectional, correlational study. Subjects Forty-two appropriate-weight-for-gestational-age (AGA) neonates with birthweights, (M = 3407; SD = +/- 540 g), gestational ages (M = 39 weeks; SD = +/- 1 week), and sex (21 males, 21 females). Infants had no history of perinatal distress or maternal chorioamnionitis. Each neonate was studied prospectively 1 to 4 hours after birth. The infants were clothed with only a diaper and evaluated on a radiant warmer bed set to achieve an axillary temperature of 36.5 degrees to 37.0 degrees C. Capillary refill time was measured with a digital stopwatch at 3 sites: volar surface of finger (F), plantar surface of heel (H), and lower sternum (St), using brief (1- to 2-second) and extended (3- to 4-second) pressure. Heart rate was auscultated and counted for 60 seconds, and BP was measured by oscillometry. Relationships among variables were assessed by Pearson correlation coefficient, analysis of variance, and multiple regression analysis. The Bonferroni correction for multiple comparisons was applied. Capillary refill time, blood pressure, and heart rate. There was no significant site variation for CRT for either brief (2.4 +/- 0.6 to 2.9 +/- 1.0 seconds) or extended (3.8 +/- 0.8 to 4.3 +/- 0.8 seconds) pressure. However, regardless of site, CRT was greater when extended versus brief pressure was used (P < 0.001). There were no significant correlations between HR and CRT. There was a moderate, direct relationship between BP and CRT observed in the following anatomic sites: (1) sternum/extended pressure and systolic BP (SBP), diastolic BP, and mean BP (r = 0.35, P = 0.02; r = 0.49, P = 0.001; and r = 0.43, P = 0.005, respectively); (2) sternum/brief pressure and SBP (r = 0.31, P = 0.05); and (3) finger/extended pressure and SBP (r = 0.30, P = 0.05). An unanticipated moderate, direct correlation between BP and CRT was observed; prolongation of CRT occurred with elevated blood pressure. This finding may have been secondary to increased circulating vasoactive substances in the newborn period; measurement of these substances was beyond the scope of this study. In addition, CRT was highly dependent on the duration of cutaneous pressure, regardless of the site. These 2 findings indicate that CRT may be an unreliable indicator of cardiovascular status in the term neonate during the first 4 hours after birth.

  12. Flow Redistribution Between Legs and Brain During STS 93 Re-Entry and Landing

    NASA Technical Reports Server (NTRS)

    Arbeille, P.; Meck, J.; Porcher, M.; Benavides, E.; Martin, D. S.; South, D. A.; Ribeiro, C.; Westover, A.

    2003-01-01

    The objective was to quantify bit by bit the arterial hemodynamic response to the successive acceleration induced fluid shifts during re-entry and landing. Method: The astronaut instrumented himself with a flat Doppler probe fixed on the skin, a blood pressure arm cuff, and 3 ECG electrodes. The ICMS (integrated cardiovascular monitoring system, 15x15x25 cu cm, battery powered) designed to monitor Blood pressure, ECG, cerebral and femoral flows was fixed below the astronaut sit in the middeck. Recordings started 5 minutes before de-orbiting (TIG) and stopped 5 min after wheels stop. Results. During re-entry blood pressure increased by 20% at TIG, and then by 25 to 30% during the highest Gz accelerations (approx 1 S g ) . The cerebral flow remained decreased by 10 to 15% below inflight value all during the Entry and landing phases. Conversely the femoral flow increased at TIG and entry ( + l0 to 20%), recovered at 0.lg, and then decreased in proportion with the Gz acceleration (-10% to -40% from 0.5g to 1.5g). The reduction in Femoral flow was associated with an opposite variation in lower limb vascular resistance. Consequently the cerebral flow/femoral flow ratio decreased at TIG and entry (-20%), and then increased according to the Gz acceleration level ( + l0 to +40% from 0.5 to 1.5g). Conclusion: During orthostatic tests (Stand LBNP tests) the cerebral to femoral flow ratio allowed to quantify the efficiency of the flow redistribution between these 2 areas and predicted orthostatic intolerance. In the present case the astronaut was found orthostatically tolerant at postflight tilt tests, but we suggest that during re-entry this parameter could predict the occurrence of syncope in severely disadapted astronauts.

  13. Process for hydraulically mining coal. [28 claims

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoji, K.; Sieling, R.E.; Taylor, J.T.

    The invention is a method for the hydraulic mining of coal of varying hardness. It is described in particular as to coal of the type occurring in the Balmer seam in British Columbia. By the method at least two parallel spaced entries are driven upward through a seam of coal. Monitors are positioned in each entry. Each monitor is horizontally and vertically pivotable, and has nozzle means from which a jet of water under a pressure of about 1900 to 2200 psi is emitted. The high pressure jet cuts the coal, which is then fed to a machine that breaksmore » and crushes the coal into sizes wherein the resultant coal/water slurry will flow down a sloped flume into a dewatering station. The method further embodies differentially retreating along adjacent parallel entries by increments of desirably at least about 40 feet each. By the different retreat system, as a panel of coal is hydraulically mined in one entry, the monitor and associated equipment in a second adjacent parallel entry are moved back the desired increment to the next working position (retreated). When the panel of coal in the first entry is mined, the monitor is retreated in the same manner and hydraulic mining commences in the second adjacent parallel entry. The operation is thus alternated along the length of the parallel entries. 28 claims, 4 figures.« less

  14. An Experimental Study of Pressure Oscillation in a Capillary Pumped Loop with Multiple Evaporators and Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jen-Tung; Hoang, Triem T.

    1998-01-01

    The heat transport capability of a capillary pumped loop (CPL) is limited by the pressure drop that its evaporator wick can sustain. The pressure drop in a CPL is not constant even under seemingly steady operation, but rather exhibits an oscillatory behavior. A hydrodynamic theory based on a mass-spring-dashpot model was previously developed to predict the pressure oscillation in a CPL with a single evaporator and a single condenser. The theory states that the pressure oscillation is a function of physical dimensions of the CPL components and operating conditions. Experimental data agreed very well with theoretical predictions. The hydrodynamic stability theory has recently been extended to predict the pressure oscillations in CPLs with multiple evaporators and multiple condensers. Concurrently, an experimental study was conducted to verify the theory and to investigate the effects of various parameters on the pressure oscillation. Four evaporators with different wick properties were tested using a test loop containing two condenser plates. The test loop allowed the four evaporators to be tested in a single-pump, two-pump or four-pump configuration, and the two condenser plates to be plumbed either in parallel or in series. Test conditions included varying the power input, the reservoir set point temperature, the condenser sink temperature, and the flow resistance between the reservoir and the loop. Experimental results agreed well with theoretical predictions.

  15. Low-pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives.

    PubMed

    Usmanov, Dilshadbek T; Yu, Zhan; Chen, Lee Chuin; Hiraoka, Kenzo; Yamabe, Shinichi

    2016-02-01

    In this work, a low-pressure air dielectric-barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitroperhydro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low-pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO3 ](-) even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. Copyright © 2016 John Wiley & Sons, Ltd.

  16. The effect of small- and core-scale heterogeneity on the multiphase flow properties of CO2 and water in sandstones

    NASA Astrophysics Data System (ADS)

    Pini, R.; Benson, S. M.

    2012-12-01

    Capillary pressure and relative permeability functions are characteristic curves that, when coupled to the continuum-scale equations of motion, allow for a description of multiphase displacement processes in porous media. Traditionally, these properties are measured in the laboratory and are implemented into reservoir simulations to predict the behavior at the field-scale. There is an increasing awareness that detailed investigations are required to understand the role of the inherent heterogeneity of the rock samples used in the experiments on the measured multiphase properties. In fact, although a significant amount of simulation work has explored the effect of heterogeneities on Pc-kr-S relationships, very few experimental studies report on displacements with well-characterized, naturally heterogeneous media. To extend the current data set and to support these numerical findings, more laboratory data are therefore required that have been obtained under a variety of conditions and on cores from different geological settings. A direct practical implication of these studies would be the definition of a minimum scale at which heterogeneities have to be resolved, so that mathematical models would adequately capture the observed displacement patterns. Moreover, the coupling of experiments and theory will serve as a firm starting point for testing scale-up methods. In this study, results from core-flooding experiments are presented that have been carried out at representative conditions on a variety of naturally heterogeneous core samples. Results are presented from a newly developed technique that allows measuring drainage capillary pressure curves during core-flooding experiments; data have been collected at different temperature (25 and 50C), at different pressures (2 and 9MPa) and with different fluid pairs (CO2/water, N2/water and CO2/brine), thus showing the applicability of the novel technique in a wide range of interfacial tension levels. Additionally, Pc-S relationships on mm-scale subsets of the rock core have been obtained by combination with saturation measurements from X-ray CT scanning; these are of high relevance as they directly and non-destructively quantify small-scale capillary heterogeneity in these systems. The spatial variation of the capillary pressure curve is then described by means of so-called scaling factors, which are derived from scaling-laws based on the concept of similar media (such as the Leverett J-Function), and which can be related to other relevant petrophysical properties of the rock, such as porosity, permeability and grain size distribution. The role of core-scale capillary heterogeneity is investigated based on observations from a CO2/water core-flooding experiment on a rock core that possesses a heterogeneous feature of relatively simple geometry. An integrated approach is applied where these experimental results are combined with independent measurements of capillary pressure, porosity and permeability. It is shown that 3D saturation profiles obtained by X-ray CT scanning during the core-flooding experiment are essential for defining heterogeneous features and that the latter significantly affect the character of the measured relative permeability curve.

  17. Lung heparan sulfates modulate Kfc during increased vascular pressure: evidence for glycocalyx-mediated mechanotransduction

    PubMed Central

    Cluff, Mark; Kingston, Joseph; Hill, Denzil; Chen, Haiyan; Hoehne, Soeren; Malleske, Daniel T.; Kaur, Rajwinederjit

    2012-01-01

    Lung endothelial cells respond to changes in vascular pressure through mechanotransduction pathways that alter barrier function via non-Starling mechanism(s). Components of the endothelial glycocalyx have been shown to participate in mechanotransduction in vitro and in systemic vessels, but the glycocalyx's role in mechanosensing and pulmonary barrier function has not been characterized. Mechanotransduction pathways may represent novel targets for therapeutic intervention during states of elevated pulmonary pressure such as acute heart failure, fluid overload, and mechanical ventilation. Our objective was to assess the effects of increasing vascular pressure on whole lung filtration coefficient (Kfc) and characterize the role of endothelial heparan sulfates in mediating mechanotransduction and associated increases in Kfc. Isolated perfused rat lung preparation was used to measure Kfc in response to changes in vascular pressure in combination with superimposed changes in airway pressure. The roles of heparan sulfates, nitric oxide, and reactive oxygen species were investigated. Increases in capillary pressure altered Kfc in a nonlinear relationship, suggesting non-Starling mechanism(s). nitro-l-arginine methyl ester and heparanase III attenuated the effects of increased capillary pressure on Kfc, demonstrating active mechanotransduction leading to barrier dysfunction. The nitric oxide (NO) donor S-nitrosoglutathione exacerbated pressure-mediated increase in Kfc. Ventilation strategies altered lung NO concentration and the Kfc response to increases in vascular pressure. This is the first study to demonstrate a role for the glycocalyx in whole lung mechanotransduction and has important implications in understanding the regulation of vascular permeability in the context of vascular pressure, fluid status, and ventilation strategies. PMID:22160307

  18. Laser-induced capillary leakage for blood biomarker detection and vaccine delivery via the skin.

    PubMed

    Wu, Jeffrey H; Li, Bo; Wu, Mei X

    2016-07-01

    Circulation system is the center for coordination and communication of all organs in our body. Examination of any change in its analytes or delivery of therapeutic drugs into the system consists of important medical practice in today's medicine. Two recent studies prove that brief illumination of skin with a low powered laser, at wavelengths preferentially absorbed by hemoglobin, increases the amount of circulating biomarkers in the epidermis and upper dermis by more than 1,000-fold. When probe-coated microneedle arrays are applied into laser-treated skin, plasma blood biomarkers can be reliably, accurately, and sufficiently quantified in 15∼30 min assays, with a maximal detection in one hr in a manner independent of penetration depth or a molecular mass of the biomarker. Moreover, the laser treatment permits a high efficient delivery of radiation-attenuated malarial sporozoites (RAS) into the circulation, leading to robust immunity against malaria infections, whereas similar immunization at sham-treated skin elicits poor immune responses. Thus this technology can potentially instruct designs of small, portable devices for onsite, in mobile clinics, or at home for point-of-care diagnosis and drug/vaccine delivery via the skin. Laser-induced capillary leakage (a) to induce extravasation of circualing molecules only (b) or facilitate entry of attenuated malaria sporozoites into the capillary (c). Skin illumination with a laser preferably absorbed by hemoglobin causes dilation of the capillary beneath the skin. The extravasated molecules can be sufficiently measured in the skin or guide sporozoites to enter the vessel. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Streamlined sign-out of capillary protein electrophoresis using middleware and an open-source macro application.

    PubMed

    Mathur, Gagan; Haugen, Thomas H; Davis, Scott L; Krasowski, Matthew D

    2014-01-01

    Interfacing of clinical laboratory instruments with the laboratory information system (LIS) via "middleware" software is increasingly common. Our clinical laboratory implemented capillary electrophoresis using a Sebia(®) Capillarys-2™ (Norcross, GA, USA) instrument for serum and urine protein electrophoresis. Using Data Innovations Instrument Manager, an interface was established with the LIS (Cerner) that allowed for bi-directional transmission of numeric data. However, the text of the interpretive pathology report was not properly transferred. To reduce manual effort and possibility for error in text data transfer, we developed scripts in AutoHotkey, a free, open-source macro-creation and automation software utility. Scripts were written to create macros that automated mouse and key strokes. The scripts retrieve the specimen accession number, capture user input text, and insert the text interpretation in the correct patient record in the desired format. The scripts accurately and precisely transfer narrative interpretation into the LIS. Combined with bar-code reading by the electrophoresis instrument, the scripts transfer data efficiently to the correct patient record. In addition, the AutoHotKey script automated repetitive key strokes required for manual entry into the LIS, making protein electrophoresis sign-out easier to learn and faster to use by the pathology residents. Scripts allow for either preliminary verification by residents or final sign-out by the attending pathologist. Using the open-source AutoHotKey software, we successfully improved the transfer of text data between capillary electrophoresis software and the LIS. The use of open-source software tools should not be overlooked as tools to improve interfacing of laboratory instruments.

  20. Skin blood flow with elastic compressive extravehicular activity space suit.

    PubMed

    Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu; Hargens, Alan R

    2003-10-01

    During extravehicular activity (EVA), current space suits are pressurized with 100% oxygen at approximately 222 mmHg. A tight elastic garment, or mechanical counter pressure (MCP) suit that generates pressure by compression, may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with negative ambient pressure with an MCP sleeve. The MCP glove and sleeve generated pressures similar to the current space suit. MCP remained constant during negative pressure due to unchanged elasticity of the material. Decreased skin capillary blood flow and temperature during MCP compression was counteracted by greater negative pressure or a smaller pressure differential.

  1. Endothelial C-Type Natriuretic Peptide Acts on Pericytes to Regulate Microcirculatory Flow and Blood Pressure.

    PubMed

    Špiranec, Katarina; Chen, Wen; Werner, Franziska; Nikolaev, Viacheslav O; Naruke, Takashi; Koch, Franziska; Werner, Andrea; Eder-Negrin, Petra; Diéguez-Hurtado, Rodrigo; Adams, Ralf H; Baba, Hideo A; Schmidt, Hannes; Schuh, Kai; Skryabin, Boris V; Movahedi, Kiavash; Schweda, Frank; Kuhn, Michaela

    2018-04-06

    Background -Peripheral vascular resistance has a major impact on arterial blood pressure levels. Endothelial C-type natriuretic peptide (CNP) participates in the local regulation of vascular tone but the target cells remain controversial. The cGMP-producing guanylyl cyclase-B (GC-B) receptor for CNP is expressed in vascular smooth muscle cells (VSMC). However, whereas endothelial cell-specific CNP knockout mice are hypertensive, mice with deletion of GC-B in VSMC have unaltered blood pressure. Methods -We analyzed whether the vasodilating response to CNP changes along the vascular tree, i.e. whether the GC-B receptor is expressed in microvascular types of cells. Mice with a floxed GC-B ( Npr2 ) gene were interbred with Tie2-Cre or PDGF-Rβ-Cre ERT2 lines to develop mice lacking GC-B in endothelial cells or in precapillary arteriolar SMC and capillary pericytes. Intravital microscopy, (non)invasive hemodynamics, fluorescence energy transfer studies of pericyte's cAMP levels in situ and renal physiology were combined to dissect whether and how CNP/GC-B/cGMP signaling modulates microcirculatory tone and blood pressure. Results -Intravital microscopy studies revealed that the vasodilatatory effect of CNP increases towards small-diameter arterioles and capillaries. Consistently, CNP did not prevent endothelin-1-induced acute constrictions of proximal arterioles but fully reversed endothelin effects in precapillary arterioles and capillaries. Here, the GC-B receptor is expressed both in endothelial and mural cells, i.e. in pericytes. Notably, the vasodilatatory effects of CNP were preserved in mice with endothelial GC-B deletion but abolished in mice lacking GC-B in microcirculatory SMC and pericytes. CNP, via GC-B/cGMP signaling modulates two signaling cascades in pericytes: it activates cGMP-dependent protein kinase I to phosphorylate downstream targets such as the cytoskeleton-associated vasodilator activated phosphoprotein; and it inhibits phosphodiesterase 3A, thereby enhancing pericyte's cAMP levels. Ultimately these pathways prevent endothelin-induced increases of pericyte calcium levels and pericyte contraction. Mice with deletion of GC-B in microcirculatory SMC and pericytes have elevated peripheral resistance and chronic arterial hypertension without a change in renal function. Conclusions -Our studies indicate that endothelial CNP regulates distal arteriolar and capillary blood flow. CNP-induced GC-B/cGMP signaling in microvascular SMC and pericytes is essential for the maintenance of normal microvascular resistance and blood pressure.

  2. Fluorescein angiography

    MedlinePlus

    ... other retinopathy High blood pressure Inflammation or edema Macular degeneration Microaneurysms -- enlargement of capillaries in the retina Tumors ... Eye Problems Read more Eye Diseases Read more Macular Degeneration Read more A.D.A.M., Inc. is ...

  3. Determination of Barometric Altimeter Errors for the Orion Exploration Flight Test-1 Entry

    NASA Technical Reports Server (NTRS)

    Brown, Denise L.; Munoz, Jean-Philippe; Gay, Robert

    2011-01-01

    The EFT-1 mission is the unmanned flight test for the upcoming Multi-Purpose Crew Vehicle (MPCV). During entry, the EFT-1 vehicle will trigger several Landing and Recovery System (LRS) events, such as parachute deployment, based on onboard altitude information. The primary altitude source is the filtered navigation solution updated with GPS measurement data. The vehicle also has three barometric altimeters that will be used to measure atmospheric pressure during entry. In the event that GPS data is not available during entry, the altitude derived from the barometric altimeter pressure will be used to trigger chute deployment for the drogues and main parachutes. Therefore it is important to understand the impact of error sources on the pressure measured by the barometric altimeters and on the altitude derived from that pressure. There are four primary error sources impacting the sensed pressure: sensor errors, Analog to Digital conversion errors, aerodynamic errors, and atmosphere modeling errors. This last error source is induced by the conversion from pressure to altitude in the vehicle flight software, which requires an atmosphere model such as the US Standard 1976 Atmosphere model. There are several secondary error sources as well, such as waves, tides, and latencies in data transmission. Typically, for error budget calculations it is assumed that all error sources are independent, normally distributed variables. Thus, the initial approach to developing the EFT-1 barometric altimeter altitude error budget was to create an itemized error budget under these assumptions. This budget was to be verified by simulation using high fidelity models of the vehicle hardware and software. The simulation barometric altimeter model includes hardware error sources and a data-driven model of the aerodynamic errors expected to impact the pressure in the midbay compartment in which the sensors are located. The aerodynamic model includes the pressure difference between the midbay compartment and the free stream pressure as a function of altitude, oscillations in sensed pressure due to wake effects, and an acoustics model capturing fluctuations in pressure due to motion of the passive vents separating the barometric altimeters from the outside of the vehicle.

  4. Stability analysis for capillary channel flow: 1d and 3d computations

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.

    The subject of the presentation are numerical studies on capillary channel flow, based on results of the sounding rocket TEXUS experiments. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behavior, a dimensionless one-dimensional model and a corresponding three-dimensional model were developed. The one-dimensional model is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The experimental and evaluated contour data show good agreement for a sequence of transient flow rate perturbations. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies lead to a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate.

  5. The dark sides of capillary morphogenesis gene 2

    PubMed Central

    Deuquet, Julie; Lausch, Ekkehart; Superti-Furga, Andrea; van der Goot, F Gisou

    2012-01-01

    Capillary morphogenesis gene 2 (CMG2) is a type I membrane protein involved in the homeostasis of the extracellular matrix. While it shares interesting similarities with integrins, its exact molecular role is unknown. The interest and knowledge about CMG2 largely stems from the fact that it is involved in two diseases, one infectious and one genetic. CMG2 is the main receptor of the anthrax toxin, and knocking out this gene in mice renders them insensitive to infection with Bacillus anthracis spores. On the other hand, mutations in CMG2 lead to a rare but severe autosomal recessive disorder in humans called Hyaline Fibromatosis Syndrome (HFS). We will here review what is known about the structure of CMG2 and its ability to mediate anthrax toxin entry into cell. We will then describe the limited knowledge available concerning the physiological role of CMG2. Finally, we will describe HFS and the consequences of HFS-associated mutations in CMG2 at the molecular and cellular level. PMID:22215446

  6. Effect of air-entry angle on performance of a 2-stroke-cycle compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Earle, Sherod L; Dutee, Francis J

    1937-01-01

    An investigation was made to determine the effect of variations in the horizontal and vertical air-entry angles on the performance characteristics of a single-cylinder 2-stroke-cycle compression-ignition test engine. Performance data were obtained over a wide range of engine speed, scavenging pressure, fuel quantity, and injection advance angle with the optimum guide vanes. Friction and blower-power curves are included for calculating the indicated and net performances. The optimum horizontal air-entry angle was found to be 60 degrees from the radial and the optimum vertical angle to be zero, under which conditions a maximum power output of 77 gross brake horsepower for a specific fuel consumption of 0.52 pound per brake horsepower-hour was obtained at 1,800 r.p.m. and 16-1/2 inches of Hg scavenging pressure. The corresponding specific output was 0.65 gross brake horsepower per cubic inch of piston displacement. Tests revealed that the optimum scavenging pressure increased linearly with engine speed. The brake mean effective pressure increased uniformly with air quantity per cycle for any given vane angle and was independent of engine speed and scavenging pressure.

  7. Effect of Foam on Liquid Phase Mobility in Porous Media

    NASA Astrophysics Data System (ADS)

    Eftekhari, A. A.; Farajzadeh, R.

    2017-03-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge.

  8. Mechanism of oil bank formation, coalescence in porous media and emulsion and foam stability. Quarterly research progress report, July 1, 1984-September 30, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasan, D.T.

    The relative permeability model for two phase flow in porous media (Wasan 1983; Ramakrishnan and Wasan 1984) provides the necessary fractional flow curves at a given capillary number. These curves can be utilized in modeling both enhanced secondary and tertiary recovery processes. Important parameters in the fractional flow curves of our relative permeability model are the residual wetting and nonwetting phase saturations in a low capillary number flooding process. To understand, what constitutes the residual saturations, this quarter we have studied the displacement of one incompressible fluid by another in a porous medium using the network representation. The Bernoulli percolationmore » model for an infinite lattice graph is utilized in the interpretation of the capillary behavior of the medium, which ultimately determines residual saturations. The calculated capillary pressure-saturation relationship using Bethe lattice results agrees qualitatively with experimental data. 4 references, 2 figures.« less

  9. Treelike networks accelerating capillary flow.

    PubMed

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2014-05-01

    Transport in treelike networks has received wide attention in natural systems, oil recovery, microelectronic cooling systems, and textiles. Existing studies are focused on transport behaviors under a constant potential difference (including pressure, temperature, and voltage) in a steady state [B. Yu and B. Li, Phys. Rev. E 73, 066302 (2006); J. Chen, B. Yu, P. Xu, and Y. Li, Phys. Rev. E 75, 056301 (2007)]. However, dynamic (time-dependent) transport in such systems has rarely been concerned. In this work, we theoretically investigate the dynamics of capillary flow in treelike networks and design the distribution of radius and length of local branches for the fastest capillary flow. It is demonstrated that capillary flow in the optimized tree networks is faster than in traditional parallel tube nets under fixed constraints. As well, the flow time of the liquid is found to increase approximately linearly with penetration distance, which differs from Washburn's classic description that flow time increases as the square of penetration distance in a uniform tube.

  10. Microfluidic step-emulsification in a cylindrical geometry

    NASA Astrophysics Data System (ADS)

    Chakraborty, Indrajit; Leshansky, Alexander M.

    2016-11-01

    The model microfluidic device for high-throughput droplet generation in a confined cylindrical geometry is investigated numerically. The device comprises of core-annular pressure-driven flow of two immiscible viscous liquids through a cylindrical capillary connected co-axially to a tube of a larger diameter through a sudden expansion, mimicking the microfluidic step-emulsifier (1). To study this problem, the numerical simulations of axisymmetric Navier-Stokes equations have been carried out using an interface capturing procedure based on coupled level set and volume-of-fluid (CLSVOF) methods. The accuracy of the numerical method was favorably tested vs. the predictions of the linear stability analysis of core-annular two-phase flow in a cylindrical capillary. Three distinct flow regimes can be identified: the dripping (D) instability near the entrance to the capillary, the step- (S) and the balloon- (B) emulsification at the step-like expansion. Based on the simulation results we present the phase diagram quantifying transitions between various regimes in plane of the capillary number and the flow-rate ratio. MICROFLUSA EU H2020 project.

  11. On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction.

    PubMed

    Zhang, Qiang; Zhang, Peiran; Su, Yetian; Mou, Chunbo; Zhou, Teng; Yang, Menglong; Xu, Jian; Ma, Bo

    2014-12-21

    A simple, low-cost and on-demand microfluidic flow controlling platform was developed based on a unique capillary-tuned solenoid microvalve suction effect without any outer pressure source. The suction effect was innovatively employed as a stable and controllable driving force for the manipulation of the microfluidic system by connecting a piece of capillary between the microvalve and the microfluidic chip, which caused significant hydrodynamic resistance differences among the solenoid valve ports and changed the flowing mode inside the valve. The volume of sucked liquid could be controlled from microliters even down to picoliters either by decreasing the valve energized duration (from a maximum energized duration to the valve response time of 20 ms) or by increasing the inserted capillary length (i.e., its hydrodynamic resistance). Several important microfluidic unit operations such as cell/droplet sorting and on-demand size-controllable droplet generation have been demonstrated on the developed platform and both simulations and experiments confirmed that this platform has good controllability and stability.

  12. Capillary forces exerted by liquid drops caught between crossed cylinders. A 3-D meniscus problem with free contact line

    NASA Technical Reports Server (NTRS)

    Patzek, T. W.; Scriven, L. E.

    1982-01-01

    The Young-Laplace equation is solved for three-dimensional menisci between crossed cylinders, with either the contact line fixed or the contact angle prescribed, by means of the Galerkin/finite element method. Shapes are computed, and with them the practically important quantities: drop volume, wetted area, capillary pressure force, surface tension force, and the total force exerted by the drop on each cylinder. The results show that total capillary force between cylinders increases with decreasing contact angle, i.e. with better wetting. Capillary force is also increases with decreasing drop volume, approaching an asymptotic limit. However, the wetted area on each cylinder decreases with decreasing drop volume, which raises the question of the optimum drop volume to strive for, when permanent bonding is sought from solidified liquid. For then the strength of the bond is likely to depend upon the area of contact, which is the wetted area when the bonding agent was introduced in liquid form.

  13. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply

    PubMed Central

    Gould, Ian Gopal; Tsai, Philbert; Kleinfeld, David

    2016-01-01

    The cortical angioarchitecture is a key factor in controlling cerebral blood flow and oxygen metabolism. Difficulties in imaging the complex microanatomy of the cortex have so far restricted insight about blood flow distribution in the microcirculation. A new methodology combining advanced microscopy data with large scale hemodynamic simulations enabled us to quantify the effect of the angioarchitecture on the cerebral microcirculation. High-resolution images of the mouse primary somatosensory cortex were input into with a comprehensive computational model of cerebral perfusion and oxygen supply ranging from the pial vessels to individual brain cells. Simulations of blood flow, hematocrit and oxygen tension show that the wide variation of hemodynamic states in the tortuous, randomly organized capillary bed is responsible for relatively uniform cortical tissue perfusion and oxygenation. Computational analysis of microcirculatory blood flow and pressure drops further indicates that the capillary bed, including capillaries adjacent to feeding arterioles (d < 10 µm), are the largest contributors to hydraulic resistance. PMID:27780904

  14. Effect of Foam on Liquid Phase Mobility in Porous Media

    PubMed Central

    Eftekhari, A. A.; Farajzadeh, R.

    2017-01-01

    We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge. PMID:28262795

  15. Characteristics of a capillary-discharge flash x-ray generator

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Usuki, Tatsumi; Sato, Koetsu; Takayama, Kazuyoshi; Ido, Hideaki

    2002-11-01

    The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments are primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 0.2 μF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damp oscillations. The peak values of the voltage and current increased when the charging voltage was increased and their maximum values were -10.8 kV and 4.7 kV, respectively. The x-ray durations observed by a 1.6 μm aluminum filter were less than 30 μs, and we detected the aluminum characteristic x-ray intensity using a 6.8 μm aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in teh condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted greatly after pass through two slits.

  16. Do Anesthetic Techniques Influence the Threshold for Glomerular Capillary Hemorrhage Induced in Rats by Contrast-Enhanced Diagnostic Ultrasound?

    PubMed

    Miller, Douglas L; Lu, Xiaofang; Fabiilli, Mario; Dou, Chunyan

    2016-02-01

    Glomerular capillary hemorrhage can be induced by ultrasonic cavitation during contrast-enhanced diagnostic ultrasound (US) exposure, an important nonthermal US bioeffect. Recent studies of pulmonary US exposure have shown that thresholds for another nonthermal bioeffect of US, pulmonary capillary hemorrhage, is strongly influenced by whether xylazine is included in the specific anesthetic technique. The objective of this study was to determine the influence of xylazine on contrast-enhanced diagnostic US-induced glomerular capillary hemorrhage. In this study, anesthesia with ketamine only was compared to ketamine plus xylazine for induction of glomerular capillary hemorrhage in rats by 1.6-MHz intermittent diagnostic US with a microsphere contrast agent (similar to Definity; Lantheus Medical Imaging, Inc, North Billerica, MA). Glomerular capillary hemorrhage was measured as a percentage of glomeruli with hemorrhage found in histologic sections for groups of rats scanned at different peak rarefactional pressure amplitudes. There was a significant difference between the magnitude of the glomerular capillary hemorrhage between the anesthetics at 2.3 MPa, with 45.6% hemorrhage for ketamine only, increasing to 63.2% hemorrhage for ketamine plus xylazine (P < .001). However, the thresholds for the two anesthetic methods were virtually identical at 1.0 MPa, based on linear regression of the exposure response data. Thresholds for contrast-enhanced diagnostic US-induced injury of the microvasculature appear to be minimally affected by anesthetic methods. © 2016 by the American Institute of Ultrasound in Medicine.

  17. Surface Properties of PEMFC Gas Diffusion Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WoodIII, David L; Rulison, Christopher; Borup, Rodney

    2010-01-01

    The wetting properties of PEMFC Gas Diffusion Layers (GDLs) were quantified by surface characterization measurements and modeling of material properties. Single-fiber contact-angle and surface energy (both Zisman and Owens-Wendt) data of a wide spectrum of GDL types is presented to delineate the effects of hydrophobic post-processing treatments. Modeling of the basic sessile-drop contact angle demonstrates that this value only gives a fraction of the total picture of interfacial wetting physics. Polar forces are shown to contribute 10-20 less than dispersive forces to the composite wetting of GDLs. Internal water contact angles obtained from Owens-Wendt analysis were measured at 13-19 highermore » than their single-fiber counterparts. An inverse relationship was found between internal contact angle and both Owens-Wendt surface energy and % polarity of the GDL. The most sophisticated PEMFC mathematical models use either experimentally measured capillary pressures or the standard Young-Laplace capillary-pressure equation. Based on the results of the Owens-Wendt analysis, an advancement to the Young-Laplace equation is proposed for use in these mathematical models, which utilizes only solid surface energies and fractional surface coverage of fluoropolymer. Capillary constants for the spectrum of analyzed GDLs are presented for the same purpose.« less

  18. Dynamic wetting failure in surfactant solutions

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Yu; Vandre, Eric; Carvalho, Marcio; Kumar, Satish

    2015-11-01

    The influence of insoluble surfactants on dynamic wetting failure during displacement of Newtonian fluids in a rectangular channel is studied in this work. A hydrodynamic model for steady Stokes flows of dilute surfactant solutions is developed and evaluated using three approaches: (i) a one-dimensional (1D) lubrication-type approach, (ii) a novel hybrid of a 1D description of the receding phase and a 2D description of the advancing phase, and (iii) an asymptotic theory of Cox. Steady-state solution families in the form of macroscopic contact angles as a function of the capillary number are determined and limit points are identified. When air is the receding fluid, Marangoni stresses are found to increase the receding-phase pressure gradients near the contact line by thinning the air film without significantly changing the capillary-pressure gradients there. As consequence, the limit points shift to lower capillary numbers and the onset of wetting failure is promoted. The model predictions are then used to interpret decades-old experimental observations concerning the influence of surfactants on air entrainment. The hybrid modeling approach developed here can readily be extended to more complicated geometries where a thin air layer is present near a contact line.

  19. Effective Wettability Measurements of CO2-Brine-Sandstone System at Different Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Al-Menhali, Ali; Krevor, Samuel

    2014-05-01

    The wetting properties of CO2-brine-rock systems will have a major impact on the management of CO2 injection processes. The wettability of a system controls the flow and trapping efficiency during the storage of CO2 in geological formations as well as the efficiency of enhanced oil recovery operations. Despite its utility in EOR and the continued development of CCS, little is currently known about the wetting properties of the CO2-brine system on reservoir rocks, and no investigations have been performed assessing the impact of these properties on CO2 flooding for CO2 storage or EOR. The wetting properties of multiphase fluid systems in porous media have major impacts on the multiphase flow properties such as the capillary pressure and relative permeability. While recent studies have shown CO2 to generally act as a non-wetting phase in siliciclastic rocks, some observations report that the contact angle varies with pressure, temperature and water salinity. Additionally, there is a wide range of reported contact angles for this system, from strongly to weakly water-wet. In the case of some minerals, intermediate wet contact angles have been observed. Uncertainty with regard to the wetting properties of CO2-brine systems is currently one of the remaining major unresolved issues with regards to reservoir management of CO2 storage. In this study, we make semi-dynamic capillary pressure measurements of supercritical CO2 and brine at reservoir conditions to observe shifts in the wetting properties. We utilize a novel core analysis technique recently developed by Pini et al in 2012 to evaluate a core-scale effective contact angle. Carbon dioxide is injected at constant flow rate into a core that is initially fully saturated with water, while maintaining a constant outlet pressure. In this scenario, the pressure drop across the core corresponds to the capillary pressure at the inlet face of the core. When compared with mercury intrusion capillary pressure measurements, core-scale effective contact angle can be determined. In addition to providing a quantitative measure of the core-averaged wetting properties, the technique allows for the observation of shifts in contact angle with changing conditions. We examine the wettability changes of the CO2-brine system in Berea sandstone with variations in reservoir conditions including supercritical, gaseous and liquid CO2injection. We evaluate wettability variation within a single rock with temperature, pressure, and salinity across a range of conditions relevant to subsurface CO2 storage. This study will include results of measurements in a Berea sandstone sample across a wide range of conditions representative of subsurface reservoirs suitable for CO2 storage (5-20 MPa, 25-90 oC, 0-5 mol kg-1). The measurement uses X-ray CT imaging in a state of the art core flooding laboratory designed to operate at high temperature, pressure, and concentrated brines.

  20. MRI investigation of water-oil two phase flow in straight capillary, bifurcate channel and monolayered glass bead pack.

    PubMed

    Liu, Yu; Jiang, Lanlan; Zhu, Ningjun; Zhao, Yuechao; Zhang, Yi; Wang, Dayong; Yang, Mingjun; Zhao, Jiafei; Song, Yongchen

    2015-09-01

    The study of immiscible fluid displacement between aqueous-phase liquids and non-aqueous-phase liquids in porous media is of great importance to oil recovery, groundwater contamination, and underground pollutant migration. Moreover, the attendant viscous, capillary, and gravitational forces are essential to describing the two-phase flows. In this study, magnetic resonance imaging was used to experimentally examine the detailed effects of the viscous, capillary, and gravitational forces on water-oil flows through a vertical straight capillary, bifurcate channel, and monolayered glass-bead pack. Water flooding experiments were performed at atmospheric pressure and 37.8°C, and the evolution of the distribution and saturation of the oil as well as the characteristics of the two-phase flow were investigated and analyzed. The results showed that the flow paths, i.e., the fingers of the displacing phase, during the immiscible displacement in the porous medium were determined by the viscous, capillary, and gravitational forces as well as the sizes of the pores and throats. The experimental results afford a fundamental understanding of immiscible fluid displacement in a porous medium. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    NASA Technical Reports Server (NTRS)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  2. Properties of pendular liquid bridges determined on Delaunay's roulettes

    NASA Astrophysics Data System (ADS)

    Mielniczuk, Boleslaw; Millet, Olivier; Gagneux, Gérard; El Youssoufi, Moulay Said

    2017-06-01

    This work addresses the study of capillary bridge properties between two grains, with use of recent analytical model, based on solutions of Young-Laplace equation from an inverse problem. A simple explicit criterion allows to classify the profile of capillary bridge as a surface of revolution with constant mean curvature (Delaunay roulette) using its measured geometrical parameters (gorge radius, contact angle, half-filling angle). Necessary data are obtained from experimental tests, realized on liquid bridges between two equal spherical grains. Sequences of images are recorded at several (fixed) volumes of liquid and different separations distances between the spheres (from contact to rupture), in laboratory and in micro-gravity conditions. For each configuration, an exact parametric representation of the meridian is revealed. Mean bridge curvature, internal pressure and intergranular capillary force are also determined.

  3. Mars 2020 Entry, Descent and Landing Instrumentation 2 (MEDLI2)

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Bose, Deepak; White, Todd R.; Wright, Henry S.; Schoenenberger, Mark; Kuhl, Christopher A.; Trombetta, Dominic; Santos, Jose A.; Oishi, Tomomi; Karlgaard, Christopher D.; hide

    2016-01-01

    The Mars Entry Descent and Landing Instrumentation 2 (MEDLI2) sensor suite will measure aerodynamic, aerothermodynamic, and TPS performance during the atmospheric entry, descent, and landing phases of the Mars 2020 mission. The key objectives are to reduce design margin and prediction uncertainties for the aerothermal environments and aerodynamic database. For MEDLI2, the sensors are installed on both the heatshield and backshell, and include 7 pressure transducers, 17 thermal plugs, and 3 heat flux sensors (including a radiometer). These sensors will expand the set of measurements collected by the highly successful MEDLI suite, collecting supersonic pressure measurements on the forebody, a pressure measurement on the aftbody, direct heat flux measurements on the aftbody, a radiative heating measurement on the aftbody, and multiple near-surface thermal measurements on the thermal protection system (TPS) materials on both the forebody and aftbody. To meet the science objectives, supersonic pressure transducers and heat flux sensors are currently being developed and their qualification and calibration plans are presented. Finally, the reconstruction targets for data accuracy are presented, along with the planned methodologies for achieving the targets.

  4. Application of low-pressure negative pressure wound therapy to ischaemic wounds.

    PubMed

    Kasai, Yoshiaki; Nemoto, Hitoshi; Kimura, Naohiro; Ito, Yoshinori; Sumiya, Noriyoshi

    2012-03-01

    Negative pressure wound therapy (NPWT) is a useful wound dressing that can be applied to a wide variety of wounds. Patients with ischaemic wounds, however, may experience further necrosis with NPWT at the commonly recommended pressure of -125 mm Hg. We hypothesized that with a suction pressure of -125 mm Hg, tissue pressure will likely occlude most of the capillaries adjacent to the wound edge. Therefore, we treated three patients with ischaemic wounds using low-pressure NPWT at -50 mm Hg. All wounds healed successfully without further necrosis at the wound edge. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. Pulsed free jet expansion system for high-resolution fluorescence spectroscopy of capillary gas chromatographic effluents

    NASA Astrophysics Data System (ADS)

    Pepich, Barry V.; Callis, James B.; Danielson, J. D. Sheldon; Gouterman, Martin

    1986-05-01

    A method for detection of capillary gas chromatographic (C-GC) effluent using supersonic jet spectroscopy is described. A novel concept is introduced which overcomes four major obstacles: (i) high temperature of the GC; (ii) low GC flow rate; (iii) low dead volume requirement; and (iv) duty factor mismatch to a pulsed laser. The effluent from the C-GC flows into a low dead volume antechamber into which a pulsed valve, operating at 5 Hz, discharges high-pressure inert gas for 600 μs. The antechamber feeds through a small orifice into a high-vacuum chamber; here an isentropic expansion takes place which causes marked cooling of the GC effluent. The fluorescence of the effluent is then excited by a synchronously pulsed dye laser. With iodine vapor in helium (2 ml/min) modeling the GC effluent, the fluorescence of the cooled molecules is monitored with different delay times between opening of the pulsed valve and firing of the laser. With a glass wool plug inserted in the antechamber to promote mixing between the high-pressure pulse gas and the iodine, the observed pressure variation with time follows a simple gas-dynamic model. Operating in this pulsed mode it is found that the effluent concentration increases by a factor of 7 while the rotational temperature drops from 373 to 7 K. The overall fluorescence intensity actually increases nearly 30-fold because the temperature drop narrows the absorption bands. Tests on acenaphthene chromatographed on a 15-m capillary column show that the antechamber does not degrade resolution and that the high-pressure pulses act to reduce C-GC retention times, presumably through a Venturi effect. The antechamber can be operated with GC effluent temperatures above 200 °C without adversely affecting the pulsed valve.

  6. Numerical analysis of flows of rarefied gases in long channels with octagonal cross section shapes

    NASA Astrophysics Data System (ADS)

    Szalmas, L.

    2014-12-01

    Isothermal, pressure driven rarefied gas flows through long channels with octagonal cross section shapes are analyzed computationally. The capillary is between inlet and outlet reservoirs. The cross section is constant along the axial direction. The boundary condition at the solid-gas interface is assumed to be diffuse reflection. Since the channel is long, the gaseous velocity is small compared to the average molecular speed. Consequently, a linearized description can be used. The flow is described by the linearized Bhatnagar-Gross-Krook kinetic model. The solution of the problem is divided into two stages. First, the local flow field is determined by assuming the local pressure gradient. Secondly, the global flow behavior is deduced by the consideration of the conservation of the mass along the axis of the capillary. The kinetic equation is solved by the discrete velocity method on the cross section. Both spatial and velocity spaces are discretized. A body fitted rectangular grid is used for the spatial space. Near the boundary, first-order, while in the interior part of the flow domain, second-order finite-differences are applied to approximate the spatial derivatives. This combination results into an efficient and straightforward numerical treatment. The velocity space is represented by a Gauss-Legendre quadrature. The kinetic equation is solved in an iterative manner. The local dimensionless flow rate is calculated and tabulated for a wide range of the gaseous rarefaction for octagonal cross sections with various geometrical parameters. It exhibits the Knudsen minimum phenomenon. The flow rates in the octagonal channel are compared to those through capillaries with circular and square cross sections. Typical velocity profiles are also shown. The mass flow rate and the distribution of the pressure are determined and presented for global pressure driven flows.

  7. Publications - GMC 87 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    : Unknown Publication Date: 1988 Publisher: Alaska Division of Geological & Geophysical Surveys Total . Bibliographic Reference Unknown, 1988, Capillary pressure test data for 14 North Slope wells: Alaska Division of

  8. Six-degree-of-freedom guidance and control-entry analysis of the HL-20

    NASA Technical Reports Server (NTRS)

    Powell, Richard W.

    1993-01-01

    The ability of the HL-20 lifting body to fly has been evaluated for an automated entry from atmospheric interface to landing. This evaluation was required to demonstrate that not only successful touchdown conditions would be possible for this low lift-to-drag-ratio vehicle, but also the vehicle would not exceed its design dynamic pressure limit of 400 psf during entry. This dynamic pressure constraint limit, coupled with limited available pitch-control authority at low supersonic speeds, restricts the available maneuvering capability for the HL-20 to acquire the runway. One result of this analysis was that this restrictive maneuvering capability does not allow the use of a model-following atmospheric entry-guidance algorithm, such as that used by the Space Shuttle, but instead requires a more adaptable guidance algorithm. Therefore, for this analysis, a predictor-corrector guidance algorithm was developed that would provide successful touchdown conditions while not violating the dynamic pressure constraint. A flight-control system was designed and incorporated, along with the predictor-corrector guidance algorithm, into a six-DOF simulation. which showed that the HL-20 remained controllable and could reach the landing site and execute a successful landing under all off-nominal conditions simulated.

  9. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders.

  10. Solid-Phase Microextraction Coupled to Capillary Atmospheric Pressure Photoionization-Mass Spectrometry for Direct Analysis of Polar and Nonpolar Compounds.

    PubMed

    Mirabelli, Mario F; Zenobi, Renato

    2018-04-17

    A novel capillary ionization source based on atmospheric pressure photoionization (cAPPI) was developed and used for the direct interfacing between solid-phase microextraction (SPME) and mass spectrometry (MS). The efficiency of the source was evaluated for direct and dopant-assisted photoionization, analyzing both polar (e.g., triazines and organophosphorus pesticides) and nonpolar (polycyclic aromatic hydrocarbons, PAHs) compounds. The results show that the range of compound polarity, which can be addressed by direct SPME-MS can be substantially extended by using cAPPI, compared to other sensitive techniques like direct analysis in real time (DART) and dielectric barrier discharge ionization (DBDI). The new source delivers a very high sensitivity, down to sub parts-per-trillion (ppt), making it a viable alternative when compared to previously reported and less comprehensive direct approaches.

  11. Hydraulic droplet coarsening in open-channel capillaries

    NASA Astrophysics Data System (ADS)

    Warren, Patrick B.

    2016-11-01

    Over a range of liquid-solid contact angles, an open-channel capillary with curved or angled sides can show a maximum in the Laplace pressure as a function of the filling state. Examples include double-angle wedges, grooves scored into flat surfaces, steps on surfaces, and the groove between touching parallel cylinders. The liquid in such a channel exhibits a beading instability if the channel is filled beyond the Laplace pressure maximum. The subsequent droplet coarsening takes place by hydraulic transport through the connecting liquid columns that remain in the groove. A mean-field scaling argument predicts the characteristic droplet radius R ˜t1 /7 , as a function of time t . This is confirmed by one-dimensional simulations of the coarsening kinetics. Some remarks are also made on the spreading kinetics of an isolated drop deposited in such a channel.

  12. New concept to describe three-phase capillary pressure-degree of saturation relationship in porous media.

    PubMed

    Nakamura, Keita; Kikumoto, Mamoru

    2018-07-01

    The Leverett concept is used conventionally to model the relationship between the capillary pressures and the degrees of saturation in the water-nonaqueous phase liquid (NAPL)-air three-phase system in porous media. In this paper, the limitation of the Leverett concept that the concept is not applicable in the case of nonspreading NAPLs is discussed through microscopic consideration. A new concept that can be applied in the case of nonspreading NAPLs as well as spreading NAPLs is then proposed. The validity of the proposed concept is confirmed by comparing with past experimental data and simulation results obtained using the conventional model based on the Leverett concept. It is confirmed that the proposed concept can correctly predict the observed distributions of NAPLs, including those of nonspreading ones. Copyright © 2018. Published by Elsevier B.V.

  13. [Left auricular hypertrophy in aortic stenosis in adults].

    PubMed

    Boschat, J; Le Mehaute, H; Le Potier, J; Roriz, R; Gilard, M; Bergez, C; Etienne, Y; Blanc, J J; Penther, P

    1990-02-01

    Left atrial hypertrophy (LAH) was noted from the electrocardiograms of 72 of 98 adult patients (81%) who underwent hemodynamic evaluation of calcified aortostenosis (CAS). The relations between LAH and clinical, echographic and hemodynamic findings are specified. The frequency of LAH was not higher in cases of a history of hypertension, angina pectoris, lipothymia or exercise-induced syncope. In contrast, dyspnea was more frequently associated with LAH (84%) than not (17%). An approximately linear relation was seen between LAH and the mean pulmonary capillary pressure, the mean rate of circumferential decrease (RCF), the coefficient of muscle rigidity (ks of Mirsky), the left ventricular mass (LVM) and the left ventricle-aorta gradient. LAH is, therefore, a frequent sign in patients presenting CAS. Its origin is multifactorial, with a predominance of increased mean capillary pressure in cases of clinical signs of poor safety.

  14. Pressure-accelerated azide-alkyne cycloaddition: micro capillary versus autoclave reactor performance.

    PubMed

    Borukhova, Svetlana; Seeger, Andreas D; Noël, Timothy; Wang, Qi; Busch, Markus; Hessel, Volker

    2015-02-01

    Pressure effects on regioselectivity and yield of cycloaddition reactions have been shown to exist. Nevertheless, high pressure synthetic applications with subsequent benefits in the production of natural products are limited by the general availability of the equipment. In addition, the virtues and limitations of microflow equipment under standard conditions are well established. Herein, we apply novel-process-window (NPWs) principles, such as intensification of intrinsic kinetics of a reaction using high temperature, pressure, and concentration, on azide-alkyne cycloaddition towards synthesis of Rufinamide precursor. We applied three main activation methods (i.e., uncatalyzed batch, uncatalyzed flow, and catalyzed flow) on uncatalyzed and catalyzed azide-alkyne cycloaddition. We compare the performance of two reactors, a specialized autoclave batch reactor for high-pressure operation up to 1800 bar and a capillary flow reactor (up to 400 bar). A differentiated and comprehensive picture is given for the two reactors and the three methods of activation. Reaction speedup and consequent increases in space-time yields is achieved, while the process window for favorable operation to selectively produce Rufinamide precursor in good yields is widened. The best conditions thus determined are applied to several azide-alkyne cycloadditions to widen the scope of the presented methodology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Incorporating high-pressure electroosmotic pump and a nano-flow gradient generator into a miniaturized liquid chromatographic system for peptide analysis.

    PubMed

    Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong

    2014-09-24

    We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.

  16. Isoproterenol attenuates high vascular pressure-induced permeability increases in isolated rat lungs.

    PubMed

    Parker, J C; Ivey, C L

    1997-12-01

    To separate the contributions of cellular and basement membrane components of the alveolar capillary barrier to the increased microvascular permeability induced by high pulmonary venous pressures (Ppv), we subjected isolated rat lungs to increases in Ppv, which increased capillary filtration coefficient (Kfc) without significant hemorrhage (31 cmH2O) and with obvious extravasation of red blood cells (43 cmH2O). Isoproterenol (20 microM) was infused in one group (Iso) to identify a reversible cellular component of injury, and residual blood volumes were measured to assess extravasation of red blood cells through ruptured basement membranes. In untreated lungs (High Ppv group), Kfc increased 6.2 +/- 1.3 and 38.3 +/- 15.2 times baseline during the 31 and 43 cmH2O Ppv states. In Iso lungs, Kfc was 36.2% (P < 0.05) and 64.3% of that in the High Ppv group at these Ppv states. Residual blood volumes calculated from tissue hemoglobin contents were significantly increased by 53-66% in the high Ppv groups, compared with low vascular pressure controls, but there was no significant difference between High Ppv and Iso groups. Thus isoproterenol significantly attenuated vascular pressure-induced Kfc increases at moderate Ppv, possibly because of an endothelial effect, but it did not affect red cell extravasation at higher vascular pressures.

  17. Fabrication of Artificial Leaf to Develop Fluid Pump Driven by Surface Tension and Evaporation

    NASA Astrophysics Data System (ADS)

    Lee, Minki; Lim, Hosub; Lee, Jinkee

    2017-11-01

    Plants transport water from roots to leaves via xylem through transpiration, which is an evaporation process that occurs at the leaves. During transpiration, negative pressure can be generated by the porous structure of mesophyll cells in the leaves. Here, an artificial leaf mimicking structure using hydrogel, which has a nanoporous structure is fabricated. The cryogel method is used to develop a hierarchy structure on the nano- and microscale in the hydrogel media that is similar to the mesophyll cells and veins of a leaf, respectively. The theoretical model is analyzed to calculate the flow resistance in the artificial leaf, and compare the model with the experimental results. The experiment involves connecting a glass capillary tube at the bottom of the artificial leaf to observe the fluid velocity in the glass capillary tube generated by the negative pressure. The use of silicone oil as fluid instead of water to increase the flow resistance enables the measurement of negative pressure. The negative pressure of the artificial leaf is affected by several variables (e.g., pore size, wettability of the structure). Finally, by decreasing the pore size and increasing the wettability, the maximum negative pressure of the artificial leaf, -7.9 kPa is obtained.

  18. Protective Effects of the Launch/Entry Suit (LES) and the Liquid Cooling Garment(LCG) During Re-entry and Landing After Spaceflight

    NASA Technical Reports Server (NTRS)

    Perez, Sondra A.; Charles, John B.; Fortner, G. William; Hurst, Victor, IV; Meck, Janice V.

    2002-01-01

    Heart rate and arterial pressure were measured during shuttle re-entry, landing and initial standing in crewmembers with and without inflated anti-g suits and with and without liquid cooling garments (LCG). Preflight, three measurements were obtained seated, then standing. Prior to and during re-entry, arterial pressure and heart rate were measured every five minutes until wheels stop (WS). Then crewmembers initiated three seated and three standing measurements. In subjects without inflated anti-g suits, SBP and DBP were significantly lower during preflight standing (P = 0.006; P = 0.001 respectively) and at touchdown (TD) (P = 0.001; P = 0.003 respectively); standing SBP was significantly lower after WS. on-LeG users developed significantly higher heart rates during re-entry (P = 0.029, maxG; P = 0.05, TD; P = 0.02, post-WS seated; P = 0.01, post-WS standing) than LCG users. Our data suggest that the anti-g suit is effective, but the combined anti-g suit with LCG is more effective.

  19. Nanowicks

    NASA Technical Reports Server (NTRS)

    Noca, Flavio; Bronikowski, Michael; Sansom, Elijah; Zhou, Jijie; Gharib, Morteza

    2007-01-01

    Nanowicks are dense mats of nanoscale fibers that are expected to enable the development of a variety of novel capillary pumps, filters, and fluidic control devices. Nanowicks make it possible obtain a variety of novel effects, including capillary pressures orders of magnitude greater than those afforded by microscale and conventional macroscale wicks. While wicking serves the key purpose of transporting fluid, the nanofiber geometry of a nanowick makes it possible to exploit additional effects -- most notably, efficient nanoscale mixing, fluidic effects for logic or control, and ultrafiltration (in which mats of nanofibers act as biomolecular sieves).

  20. Behavior of water in supercritical CO2: adsorption and capillary condensation in porous media

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Bryan, C. R.; Dewers, T. A.; Wang, Y.

    2011-12-01

    The chemical potential of water in supercritical CO2 (scCO2) may play an important role in water adsorption, capillary condensation, and evaporation under partially saturated conditions at geologic CO2 storage sites, especially if initially anhydrous CO2 is injected. Such processes may affect residual water saturations, relative permeability, shrink/swell of clays, and colloidal transport. We have developed a thermodynamic model of water or brine film thickness as a function of water relative humidity in scCO2. The model is based on investigations of liquid water configuration in the vadose zone and uses the augmented Young-Laplace equation, which incorporates both adsorptive and capillary components. The adsorptive component is based on the concept of disjoining pressure, which reflects force per area normal to the solid and water/brine-scCO2 interfaces. The disjoining pressure includes van der Waals, electrostatic, and structural interactions. The van der Waals term includes the effects of mutual dissolution of CO2 and water in the two fluid phases on partial molar volumes, dielectric coefficients, and refractive indices. Our approach treats the two interfaces as asymmetric surfaces in terms of charge densities and electrostatic potentials. We use the disjoining pressure isotherm to evaluate the type of wetting (e.g., total or partial wetting) for common reservoir and caprock minerals and kerogen. The capillary component incorporates water activity and is applied to simple pore geometries with slits and corners. Finally, we compare results of the model to a companion study by the coauthors on measurement of water adsorption to mineral phases using a quartz-crystal microbalance. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography.

    PubMed

    Horie, Kanta; Ikegami, Tohru; Hosoya, Ken; Saad, Nabil; Fiehn, Oliver; Tanaka, Nobuo

    2007-09-14

    Monolithic silica capillary columns for hydrophilic interaction liquid chromatography (HILIC) were prepared by on-column polymerization of acrylic acid on monolithic silica in a fused silica capillary modified with anchor groups. The products maintained the high permeability (K=5 x 10(-14)m(2)) and provided a plate height (H) of less than 10 microm at optimum linear velocity (u) and H below 20 microm at u=6mm/s for polar solutes including nucleosides and carbohydrates. The HILIC mode monolithic silica capillary column was able to produce 10000 theoretical plates (N) with column dead time (t(0)) of 20s at a pressure drop of 20 MPa or lower. The total performance was much higher than conventional particle-packed HILIC columns currently available. The gradient separations of peptides by a capillary LC-electrospray mass spectrometry system resulted in very different retention selectivity between reversed-phase mode separations and the HILIC mode separations with a peak capacity of ca. 100 in a 10 min gradient time in either mode. The high performance observed with the monolithic silica capillary column modified with poly(acrylic acid) suggests that the HILIC mode can be an alternative to the reversed-phase mode for a wide range of compounds, especially for those of high polarity in isocratic as well as gradient elution.

  2. Capillary pumping independent of the liquid surface energy and viscosity

    NASA Astrophysics Data System (ADS)

    Guo, Weijin; Hansson, Jonas; van der Wijngaart, Wouter

    2018-03-01

    Capillary pumping is an attractive means of liquid actuation because it is a passive mechanism, i.e., it does not rely on an external energy supply during operation. The capillary flow rate generally depends on the liquid sample viscosity and surface energy. This poses a problem for capillary-driven systems that rely on a predictable flow rate and for which the sample viscosity or surface energy are not precisely known. Here, we introduce the capillary pumping of sample liquids with a flow rate that is constant in time and independent of the sample viscosity and sample surface energy. These features are enabled by a design in which a well-characterized pump liquid is capillarily imbibed into the downstream section of the pump and thereby pulls the unknown sample liquid into the upstream pump section. The downstream pump geometry is designed to exert a Laplace pressure and fluidic resistance that are substantially larger than those exerted by the upstream pump geometry on the sample liquid. Hence, the influence of the unknown sample liquid on the flow rate is negligible. We experimentally tested pumps of the new design with a variety of sample liquids, including water, different samples of whole blood, different samples of urine, isopropanol, mineral oil, and glycerol. The capillary filling speeds of these liquids vary by more than a factor 1000 when imbibed to a standard constant cross-section glass capillary. In our new pump design, 20 filling tests involving these liquid samples with vastly different properties resulted in a constant volumetric flow rate in the range of 20.96-24.76 μL/min. We expect this novel capillary design to have immediate applications in lab-on-a-chip systems and diagnostic devices.

  3. Evaluation of capillary permeability and microcirculation in patients with chronic venous hypertension treated with venoruton by the vacuum suction chamber (VSC) device and laser-Doppler flowmetry.

    PubMed

    Belcaro, G; D'Aulerio, A; Rulo, A; Candiani, C

    1988-01-01

    A new system to study capillary permeability, the VSC (vacuum suction chamber) device has been developed to evaluate the variations of capillary permeability in postphlebitic limbs. The VSC device produces by negative pressure [obtained in a plastic chamber applied to the skin at the perimalleolar region] a wheal which disappears in normals in less than one hour. In twelve patients with moderate [superficial] venous hypertension and in twelve patients with postphlebitic limbs the time of disappearance of the wheals was significantly longer in comparison with ten normal limbs. There was also a significantly increased time of disappearance of the wheals in postphlebitic legs in comparison with those with superficial incompetence. The validation of the VSC technique with venous occlusion plethysmography (VOP) showed that the increase of time of disappearance of the wheals is well correlated with the increase of capillary permeability demonstrated by VOP. After 2 weeks treatment with Venoruton (at the dosage of 1000 mg t.i.d.) the time of disappearance of the wheal was significantly reduced in both groups of patients (while it was unchanged in normals). Laser-Doppler parameters used together with the VSC device to evaluate the microcirculatory changes associated with an altered capillary permeability also showed a significant improvement of the laser-Doppler parameters after treatment. In conclusion there is evidence by the VSC device that capillary permeability [which is abnormally increased] in chronic venous hypertension is improved [decreased] after treatment for two weeks with Venoruton. This study demonstrated also the efficacy of the VSC device to study capillary permeability and the effects of drugs active on capillary permeability.

  4. Liquid film drag out in the presence of molecular forces

    NASA Astrophysics Data System (ADS)

    Schmidhalter, I.; Cerro, R. L.; Giavedoni, M. D.; Saita, F. A.

    2013-03-01

    From a practical as well as a conceptual point of view, one of the most interesting problems of physicochemical hydrodynamics is the drag out of a liquid film by a moving solid out of a pool of liquid. The basic problem, sometimes denoted the Landau-Levich problem [L. Landau and B. Levich, "Dragging of a liquid by a moving plate," Acta Physicochim. USSR 17, 42-54 (1942)], involves an interesting blend of capillary and viscous forces plus a matching of the static solution for capillary rise with a numerical solution of the film evolution equation, neglecting gravity, on the downstream region of the flow field. The original solution describes experimental data for a wide range of Capillary numbers but fails to match results for large and very small Capillary numbers. Molecular level forces are introduced to create an augmented version of the film evolution equation to show the effect of van der Waals forces at the lower range of Capillary numbers. A closed form solution for static capillary rise, including molecular forces, was matched with a numerical solution of the augmented film evolution equation in the dynamic meniscus region. Molecular forces do not sensibly modify the static capillary rise region, since film thicknesses are larger than the range of influence of van der Waals forces, but are determinant in shaping the downstream dynamic meniscus of the very thin liquid films. As expected, a quantitatively different level of disjoining pressure for different values of molecular constants remains in the very thin liquid film far downstream. Computational results for a wide range of Capillary numbers and Hamaker constants show a clear transition towards a region where the film thickness becomes independent of the coating speed.

  5. Method for polymer synthesis in a reaction well

    DOEpatents

    Brennan, Thomas M.

    1998-01-01

    A method of synthesis for building a polymer chain, oligonucleotides in particular, by sequentially adding monomer units to at least one solid support for growing and immobilizing a polymer chain thereon in a liquid reagent solution. The method includes the step of: A) depositing a liquid reagent in a reaction well (26) in contact with at least one solid support and at least one monomer unit of the polymer chain affixed to the solid support. The well (26) includes at least one orifice (74) extending into the well (26), and is of a size and dimension to form a capillary liquid seal to retain the reagent solution in the well (26) to enable polymer chain growth on the solid support. The method further includes the step of B) expelling the reagent solution from the well (26), while retaining the polymer chain therein. This is accomplished by applying a first gas pressure to the reaction well such that a pressure differential between the first gas pressure and a second gas pressure exerted on an exit (80) of the orifice (74) exceeds a predetermined amount sufficient to overcome the capillary liquid seal and expel the reagent solution from the well (26) through the orifice exit (80).

  6. Method for polymer synthesis in a reaction well

    DOEpatents

    Brennan, T.M.

    1998-09-29

    A method of synthesis is described for building a polymer chain, oligonucleotides in particular, by sequentially adding monomer units to at least one solid support for growing and immobilizing a polymer chain thereon in a liquid reagent solution. The method includes the step of: (A) depositing a liquid reagent in a reaction well in contact with at least one solid support and at least one monomer unit of the polymer chain affixed to the solid support. The well includes at least one orifice extending into the well, and is of a size and dimension to form a capillary liquid seal to retain the reagent solution in the well to enable polymer chain growth on the solid support. The method further includes the step of (B) expelling the reagent solution from the well, while retaining the polymer chain therein. This is accomplished by applying a first gas pressure to the reaction well such that a pressure differential between the first gas pressure and a second gas pressure exerted on an exit of the orifice exceeds a predetermined amount sufficient to overcome the capillary liquid seal and expel the reagent solution from the well through the orifice exit. 9 figs.

  7. The Gravity of Giraffe Physiology

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Holton, Emily M. (Technical Monitor)

    1997-01-01

    By virtue of its tallness and terrestrial environment, the giraffe is a uniquely sensitive African animal to investigate tissue adaptations to gravitational stress. One decade ago, we studied transcapillary fluid balance and local tissue adaptations to high cardiovascular and musculoskeletal loads in adult and fetal giraffes. Previous studies by Goetz, Pattersson, Van Citters, Warren and their colleagues revealed that arterial pressure near the giraffe heart is about twice that in humans, to provide more normal blood pressure and perfusion to the brain. Another important question is how giraffes avoid pooling of blood and tissue fluid (edema) in dependent tissue of the extremities. As monitored by radiotelemetry, the blood and tissue fluid pressures that govern transcapillary exchange vary greatly with exercise. These pressures, combined with a tight skin layer, move fluid upward against gravity. Other mechanisms that prevent edema include precapillary vasoconstriction and low permeability of capillaries to plasma proteins. Other anatomical adaptations in dependent tissues of giraffes represent developmental adjustments to high and variable gravitational forces. These include vascular wall hypertrophy, thickened capillary basement membrane and other connective tissue adaptations. Our results in giraffe suggest avenues of future gravitational research in other animals including humans.

  8. An improved method for estimating capillary pressure from 3D microtomography images and its application to the study of disconnected nonwetting phase

    NASA Astrophysics Data System (ADS)

    Li, Tianyi; Schlüter, Steffen; Dragila, Maria Ines; Wildenschild, Dorthe

    2018-04-01

    We present an improved method for estimating interfacial curvatures from x-ray computed microtomography (CMT) data that significantly advances the potential for this tool to unravel the mechanisms and phenomena associated with multi-phase fluid motion in porous media. CMT data, used to analyze the spatial distribution and capillary pressure-saturation (Pc-S) relationships of liquid phases, requires accurate estimates of interfacial curvature. Our improved method for curvature estimation combines selective interface modification and distance weighting approaches. It was verified against synthetic (analytical computer-generated) and real image data sets, demonstrating a vast improvement over previous methods. Using this new tool on a previously published data set (multiphase flow) yielded important new insights regarding the pressure state of the disconnected nonwetting phase during drainage and imbibition. The trapped and disconnected non-wetting phase delimits its own hysteretic Pc-S curve that inhabits the space within the main hysteretic Pc-S loop of the connected wetting phase. Data suggests that the pressure of the disconnected, non-wetting phase is strongly modified by the pore geometry rather than solely by the bulk liquid phase that surrounds it.

  9. Development of cost-effective surfactant flooding technology. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Sepehrnoori, K.

    1996-11-01

    Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also availablemore » in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.« less

  10. Determination of vapor pressure of low-volatility compounds using a method to obtain saturated vapor with coated capillary columns.

    PubMed

    Rittfeldt, L

    2001-06-01

    The vapor pressures of O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), O-isobutyl S-2-diethylaminoethyl methylphosphonothiolate (RVX), and 2,4-dinitrotoluene (2,4-DNT) were determined with the gas saturation method in temperatures ranging from -12 to 103 degrees C. The saturated vapor was generated using a fused-silica column coated with the compound. This column was placed in a gas chromatograph, and the vapor pressure was determined directly from the detector signal or by sampling on Tenax tubes that were subsequently analyzed. From the linear relationships obtained by plotting log P vs 1/T, the enthalpies of vaporization (deltaHvap) and the vapor pressures at selected temperatures were determined. The vapor pressure of VX at 25 degrees C was 0.110 Pa and the deltaHvap 77.9 kJ x mol(-1). The corresponding results for RVX were 0.082 Pa and 76.6 kJ x mol(-1). The vapor pressure of 2,4-DNT at 72 degrees C (melting point) was determined to 6.0 Pa, and the enthalpies of the solid and the liquid state were 94.2 and 75.3 kJ x mol(-1), respectively. Using capillary columns to generate saturated vapors has three major advantages: short equilibrium time, low consumption of sample, and safe handling of toxic compounds.

  11. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements

    USGS Publications Warehouse

    Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan

    2013-01-01

    Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).

  12. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    NASA Astrophysics Data System (ADS)

    Kou, Jisheng; Sun, Shuyu

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.

  13. Interactive effect of chondroitin sulphate C and hyaluronan on fluid movement across rabbit synovium

    PubMed Central

    Sabaratnam, S; Coleman, P J; Badrick, E; Mason, R M; Levick, J R

    2002-01-01

    The polysaccharide hyaluronan (HA) conserves synovial fluid by keeping outflow low and almost constant over a wide pressure range (‘buffering’), but only at concentrations associated with polymer domain overlap. We therefore tested whether polymer interactions can cause buffering, using HA-chondroitin sulphate C (CSC) mixtures. Also, since it has been found that capillary filtration is insensitive to the Starling force interstitial osmotic pressure in frog mesenteries, this was assessed in synovium. Hyaluronan at non-buffering concentrations (0.50–0.75 mg ml−1) and/or 25 mg ml−1 CSC (osmotic pressure 68 cmH2O) was infused into knees of anaesthetised rabbits in vivo. Viscometry and chromatography confirmed that HA interacts with CSC. Pressure (Pj) versus trans-synovial flow (Q̇s) relations were measured. Q̇s was outwards for HA alone (1.2 ± 0.9 μl min−1 at 3 cmH2O, mean ± s.e.m.; n = 6). CSC diffused into synovium and changed Q̇s to filtration at low Pj (−4.1 μl min−1, 3 cmH2O, n = 5, P < 0.02, t test). Filtration ceased upon circulatory arrest (n = 3). At higher Pj, 0.75 mg ml−1 HA plus CSC buffered Q̇s to ∼3 μl min−1 over a wide range of Pj, with an outflow increase of only 0.04 ± 0.02 μl min−1 cmH2O−1 (n = 4). With HA or CSC alone, buffering was absent (slopes 0.57 ± 0.04 μl min−1 cmH2O−1 (n = 4) and 0.86 ± 0.05 μl min−1 cmH2O−1 (n = 5), respectively). Therefore, polymer interactions can cause outflow buffering in joints. Also, interstitial osmotic pressure promoted filtration in fenestrated synovial capillaries, so the results for frog mesentery capillaries cannot be generalised. The difference is attributed to differences in pore ultrastructure. PMID:11927686

  14. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kou, Jisheng; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from themore » microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.« less

  15. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Cox, Andrew R; Pelan, Eddie G

    2016-07-01

    Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in egg yolk solutions. The results reveal how the interfacial rigidity, as well as the bubble/wall and drop/wall adhesion forces, can be quantified and controlled in relation to optimizing the properties of foams and emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions.

    PubMed

    Chen, Yu; Li, Yaofa; Valocchi, Albert J; Christensen, Kenneth T

    2018-05-01

    We employed the color-fluid lattice Boltzmann multiphase model to simulate liquid CO 2 displacing water documented in experiments in a 2D heterogeneous micromodel at reservoir pressure conditions. The main purpose is to investigate whether lattice Boltzmann simulation can reproduce the CO 2 invasion patterns observed in these experiments for a range of capillary numbers. Although the viscosity ratio used in the simulation matches the experimental conditions, the viscosity of the fluids in the simulation is higher than that of the actual fluids used in the experiments. Doing so is required to enhance numerical stability, and is a common strategy employed in the literature when using the lattice Boltzmann method to simulate CO 2 displacing water. The simulations reproduce qualitatively similar trends of changes in invasion patterns as the capillary number is increased. However, the development of secondary CO 2 pathways, a key feature of the invasion patterns in the simulations and experiments, is found to occur at a much higher capillary number in the simulations compared with the experiments. Additional numerical simulations were conducted to investigate the effect of the absolute value of viscosity on the invasion patterns while maintaining the viscosity ratio and capillary number fixed. These results indicate that the use of a high viscosity (which significantly reduces the inertial effect in the simulations) suppresses the development of secondary CO 2 pathways, leading to a different fluid distribution compared with corresponding experiments at the same capillary number. Therefore, inertial effects are not negligible in drainage process with liquid CO 2 and water despite the low Reynolds number based on the average velocity, as the local velocity can be much higher due to Haines jump events. These higher velocities, coupled with the low viscosity of CO 2 , further amplifies the inertial effect. Therefore, we conclude that caution should be taken when using proxy fluids that only rely on the capillary number and viscosity ratio in both experiment and simulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Core analysis of heterogeneous rocks using experimental observations and digital whole core simulation

    NASA Astrophysics Data System (ADS)

    Jackson, S. J.; Krevor, S. C.; Agada, S.

    2017-12-01

    A number of studies have demonstrated the prevalent impact that small-scale rock heterogeneity can have on larger scale flow in multiphase flow systems including petroleum production and CO2sequestration. Larger scale modeling has shown that this has a significant impact on fluid flow and is possibly a significant source of inaccuracy in reservoir simulation. Yet no core analysis protocol has been developed that faithfully represents the impact of these heterogeneities on flow functions used in modeling. Relative permeability is derived from core floods performed at conditions with high flow potential in which the impact of capillary heterogeneity is voided. A more accurate representation would be obtained if measurements were made at flow conditions where the impact of capillary heterogeneity on flow is scaled to be representative of the reservoir system. This, however, is generally impractical due to laboratory constraints and the role of the orientation of the rock heterogeneity. We demonstrate a workflow of combined observations and simulations, in which the impact of capillary heterogeneity may be faithfully represented in the derivation of upscaled flow properties. Laboratory measurements that are a variation of conventional protocols are used for the parameterization of an accurate digital rock model for simulation. The relative permeability at the range of capillary numbers relevant to flow in the reservoir is derived primarily from numerical simulations of core floods that include capillary pressure heterogeneity. This allows flexibility in the orientation of the heterogeneity and in the range of flow rates considered. We demonstrate the approach in which digital rock models have been developed alongside core flood observations for three applications: (1) A Bentheimer sandstone with a simple axial heterogeneity to demonstrate the validity and limitations of the approach, (2) a set of reservoir rocks from the Captain sandstone in the UK North Sea targeted for CO2 storage, and for which the use of capillary pressure hysteresis is necessary, and (3) a secondary CO2-EOR production of residual oil from a Berea sandstone with layered heterogeneities. In all cases the incorporation of heterogeneity is shown to be key to the ultimate derivation of flow properties representative of the reservoir system.

  18. Post-flight Analysis of Mars Science Laboratory Entry Aerothermal Environment and Thermal Protection System Response

    NASA Technical Reports Server (NTRS)

    White, Todd Richard; Mahazari, Milad; Bose, Deepak; Santos, Jose Antonio

    2013-01-01

    The Mars Science Laboratory successfully landed on the Martian surface on August 5th, 2012. The rover was protected from the extreme heating environments of atmospheric entry by an ablative heatshield. This Phenolic Impregnated Carbon Ablator heatshield was instrumented with a suite of embedded thermocouples, isotherm sensors, and pressure transducers. The sensors monitored the in-depth ablator response, as well as the surface pressure at discrete locations throughout the hypersonic deceleration. This paper presents a comparison of the flight data with post-entry estimates. An assessment of the aerothermal environments, as well as the in-depth response of the heatshield material is made, and conclusions regarding the overall performance of the ablator at the suite locations are presented.

  19. Thermal Testing of Woven TPS Materials in Extreme Entry Environments

    NASA Technical Reports Server (NTRS)

    Gonzales, G.; Stackpoole, M.

    2014-01-01

    NASAs future robotic missions to Venus and outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of current mid density ablators (PICA or Avcoat). Therefore mission planners assume the use of a fully dense carbon phenolic heatshield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust TPS however its high density and thermal conductivity constrain mission planners to steep entries, high heat fluxes, high pressures and short entry durations, in order for CP to be feasible from a mass perspective. In 2012 the Game Changing Development Program in NASAs Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System to meet the needs of NASAs most challenging entry missions. The high entry conditions pose certification challenges in existing ground based test facilities. Recent updates to NASAs IHF and AEDCs H3 high temperature arcjet test facilities enable higher heatflux (2000 Wcm2) and high pressure (5 atm) testing of TPS. Some recent thermal tests of woven TPS will be discussed in this paper. These upgrades have provided a way to test higher entry conditions of potential outer planet and Venus missions and provided a baseline against carbon phenolic material. The results of these tests have given preliminary insight to sample configuration and physical recession profile characteristics.

  20. 49 CFR 195.264 - Impoundment, protection against entry, normal/emergency venting or pressure/vacuum relief for...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... devices must be provided for each low-pressure and high-pressure breakout tank. (e) For normal/emergency... and vacuum-relieving devices installed on high pressure tanks built to API Standard 2510 (incorporated.../emergency venting or pressure/vacuum relief for aboveground breakout tanks. 195.264 Section 195.264...

  1. The effect of pressure and mobile phase velocity on the retention properties of small analytes and large biomolecules in ultra-high pressure liquid chromatography.

    PubMed

    Fekete, Szabolcs; Veuthey, Jean-Luc; McCalley, David V; Guillarme, Davy

    2012-12-28

    A possible complication of ultra-high pressure liquid chromatography (UHPLC) is related to the effect of pressure and mobile phase velocity on the retention properties of the analytes. In the present work, numerous model compounds have been selected including small molecules, peptides, and proteins (such as monoclonal antibodies). Two instrumental setups were considered to attain elevated pressure drops, firstly the use of a post-column restrictor capillary at low mobile phase flow rate (pure effect of pressure) and secondly the increase of mobile phase flow rate without restrictor (i.e. a combined effect of pressure and frictional heating). In both conditions, the goal was to assess differences in retention behaviour, depending on the type or character of the analyte. An important conclusion is that the effect of pressure and mobile phase velocity on retention varied in proportion with the size of the molecule and in some cases showed very different behaviour. In isocratic mode, the pure effect of pressure (experiments with a post-column restrictor capillary) induces an increase in retention by 25-100% on small molecules (MW<300 g/mol), 150% for peptides (~1.3 kDa), 800% for insulin (~6 kDa) and up to >3000% for myoglobin (~17 kDa) for an increase in pressure from 100 bar up to 1100 bar. The important effect observed for the isocratic elution of proteins is probably related to conformational changes of the protein in addition to the effect of molecular size. Working in gradient elution mode, the pressure related effects on retention were found to be less pronounced but still present (an increase of apparent retention factor between 0.2 and 2.5 was observed). Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Lubrication Flows.

    ERIC Educational Resources Information Center

    Papanastasiou, Tasos C.

    1989-01-01

    Discusses fluid mechanics for undergraduates including the differential Navier-Stokes equations, dimensional analysis and simplified dimensionless numbers, control volume principles, the Reynolds lubrication equation for confined and free surface flows, capillary pressure, and simplified perturbation techniques. Provides a vertical dip coating…

  3. PULMONARY CIRCULATION AT EXERCISE

    PubMed Central

    NAEIJE, R; CHESLER, N

    2012-01-01

    The pulmonary circulation is a high flow and low pressure circuit, with an average resistance of 1 mmHg.min.L−1 in young adults, increasing to 2.5 mmHg.min.L−1 over 4–6 decades of life. Pulmonary vascular mechanics at exercise are best described by distensible models. Exercise does not appear to affect the time constant of the pulmonary circulation or the longitudinal distribution of resistances. Very high flows are associated with high capillary pressures, up to a 20–25 mmHg threshold associated with interstitial lung edema and altered ventilation/perfusion relationships. Pulmonary artery pressures of 40–50 mmHg, which can be achieved at maximal exercise, may correspond to the extreme of tolerable right ventricular afterload. Distension of capillaries that decrease resistance may be of adaptative value during exercise, but this is limited by hypoxemia from altered diffusion/perfusion relationships. Exercise in hypoxia is associated with higher pulmonary vascular pressures and lower maximal cardiac output, with increased likelihood of right ventricular function limitation and altered gas exchange by interstitial lung edema. Pharmacological interventions aimed at the reduction of pulmonary vascular tone have little effect on pulmonary vascular pressure-flow relationships in normoxia, but may decrease resistance in hypoxia, unloading the right ventricle and thereby improving exercise capacity. Exercise in patients with pulmonary hypertension is associated with sharp increases in pulmonary artery pressure and a right ventricular limitation of aerobic capacity. Exercise stress testing to determine multipoint pulmonary vascular pressures-flow relationships may uncover early stage pulmonary vascular disease. PMID:23105961

  4. Pseudolinear gradient ultrahigh-pressure liquid chromatography using an injection valve assembly.

    PubMed

    Xiang, Yanqiao; Liu, Yansheng; Stearns, Stanley D; Plistil, Alex; Brisbin, Martin P; Lee, Milton L

    2006-02-01

    The use of ultrahigh pressures in liquid chromatography (UHPLC) imposes stringent requirements on hardware such as pumps, valves, injectors, connecting tubing, and columns. One of the most difficult components of the UHPLC system to develop has been the sample injector. Static-split injection, which can be performed at pressures up to 6900 bar (100,000 psi), consumes a large sample volume and is very irreproducible. A pressure-balanced injection valve provided better reproducibility, shorter injection time, reduced sample consumption, and greater ease of use; however, it could only withstand pressures up to approximately 1000 bar (15,000 psi). In this study, a new injection valve assembly that can operate at pressures as high as 2070 bar (30,000 psi) was evaluated for UHPLC. This assembly contains six miniature electronically controlled needle valves to provide accurate and precise volumes for introduction into the capillary LC column. It was found that sample volumes as small as several tenths of a nanoliter can be injected, which are comparable to the results obtained from the static-split injector. The reproducibilities of retention time, efficiency, and peak area were investigated, and the results showed that the relative standard deviations of these parameters were small enough for quantitative analyses. Separation experiments using the UHPLC system with this new injection valve assembly showed that this new injector is suitable for both isocratic and gradient operation modes. A newly designed capillary connector was used at a pressure as high as 2070 bar (30,000 psi).

  5. Critical pressure and multiphase flow in Blake Ridge gas hydrates

    USGS Publications Warehouse

    Flemings, P.B.; Liu, Xiuying; Winters, W.J.

    2003-01-01

    We use core porosity, consolidation experiments, pressure core sampler data, and capillary pressure measurements to predict water pressures that are 70% of the lithostatic stress, and gas pressures that equal the lithostatic stress beneath the methane hydrate layer at Ocean Drilling Program Site 997, Blake Ridge, offshore North Carolina. A 29-m-thick interconnected free-gas column is trapped beneath the low-permeability hydrate layer. We propose that lithostatic gas pressure is dilating fractures and gas is migrating through the methane hydrate layer. Overpressured gas and water within methane hydrate reservoirs limit the amount of free gas trapped and may rapidly export methane to the seafloor.

  6. Dynamics and Stability of Capillary Surfaces: Liquid Switches at Small Scales

    NASA Technical Reports Server (NTRS)

    Steen, Paul H.; Bhandar, Anand; Vogel, Michael J.; Hirsa, Amir H.

    2004-01-01

    The dynamics and stability of systems of interfaces is central to a range of technologies related to the Human Exploration and Development of Space (HEDS). Our premise is that dramatic shape changes can be manipulated to advantage with minimal input, if the system is near instability. The primary objective is to develop the science base to allow novel approaches to liquid management in low-gravity based on this premise. HEDS requires efficient, reliable and lightweight technologies. Our poster will highlight our progress toward this goal using the capillary switch as an example. A capillary surface is a liquid/liquid or liquid/gas interface whose shape is determined by surface tension. For typical liquids (e.g., water) against gas on earth, capillary surfaces occur on the millimeterscale and smaller where shape deformation due to gravity is unimportant. In low gravity, they can occur on the centimeter scale. Capillary surfaces can be combined to make a switch a system with multiple stable states. A capillary switch can generate motion or effect force. To be practical, the energy barriers of such a switch must be tunable, its switching time (kinetics) short and its triggering mechanism reliable. We illustrate these features with a capillary switch that consists of two droplets, coupled by common pressure. As long as contact lines remained pinned, motions are inviscid, even at sub-millimeter scales, with consequent promise of low-power consumption at the device level. Predictions of theory are compared to experiment on i) a soap-film prototype at centimeter scale and ii) a liquid droplet switch at millimeter-scale.

  7. Mach-like capillary-gravity wakes.

    PubMed

    Moisy, Frédéric; Rabaud, Marc

    2014-08-01

    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.

  8. Molecular transport through capillaries made with atomic-scale precision

    NASA Astrophysics Data System (ADS)

    Radha, B.; Esfandiar, A.; Wang, F. C.; Rooney, A. P.; Gopinadhan, K.; Keerthi, A.; Mishchenko, A.; Janardanan, A.; Blake, P.; Fumagalli, L.; Lozada-Hidalgo, M.; Garaj, S.; Haigh, S. J.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.

    2016-10-01

    Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications. A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics. But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to ångström precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.

  9. Entry Descent and Landing Workshop Proceedings. Volume 1; The Mars Science Laboratory (MSL) Entry, Descent and Landing Instrumentation (MEDLI) Hardware

    NASA Technical Reports Server (NTRS)

    Munk, Michelle M.; Little, Alan; Kuhl, Chris; Bose, Deepak; Santos, Jose

    2013-01-01

    Objectives: Measure Pressure: a) Confirm spacecraft aerodynamics. b) Independently measure attitude. c) Determine density profile. d) Determine wind component. Measure Temperature: a) Verify heating levels on spacecraft surface. b) Determine recession amount and rate. c) Validate material response at Mars conditions. The better we understand the Mars entry environment, the better we can design the next spacecraft.

  10. Hyperfiltration-mediated injury in the remaining kidney of a transplant donor.

    PubMed

    Srivastava, Tarak; Hariharan, Sundaram; Alon, Uri S; McCarthy, Ellen T; Sharma, Ram; El-Meanawy, Ashraf; Savin, Virginia J; Sharma, Mukut

    2018-05-29

    Kidney donors face a small but definite risk of end-stage renal disease 15-30 years postdonation. The development of proteinuria, hypertension with gradual decrease in kidney function in the donor after surgical resection of 1 kidney has been attributed to hyperfiltration. Genetic variations, physiological adaptations, and co-morbidities exacerbate the hyperfiltration-induced loss of kidney function in the years following donation. A focus on glomerular hemodynamics and capillary pressure has led to the development of drugs that target the renin-angiotensin-aldosterone system (RAAS), but these agents yield mixed results in transplant recipients and donors. Recent work on glomerular biomechanical forces highlights the differential effects of tensile stress and fluid flow shear stress (FFSS) from hyperfiltration. Capillary wall stretch due to glomerular capillary pressure increases tensile stress on podocyte foot processes that cover the capillary. In parallel, increased flow of the ultrafiltrate due to single nephron glomerular filtration rate elevates FFSS on the podocyte cell body. While tensile stress invokes the RAAS, FFSS predominantly activates the COX2-PGE2-EP2 axis. Distinguishing these 2 mechanisms is critical, as current therapeutic approaches focus on the RAAS system. A better understanding of the biomechanical forces can lead to novel therapeutic agents to target FFSS through the COX2-PGE2-EP2 axis in hyperfiltration-mediated injury. We present an overview of several aspects of the risk to transplant donors and discuss the relevance of FFSS in podocyte injury, loss of glomerular barrier function leading to albuminuria and gradual loss of renal function, and potential therapeutic strategies to mitigate hyperfiltration-mediated injury to the remaining kidney.

  11. Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise.

    PubMed

    Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M; Stickland, Michael K

    2017-02-20

    Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease.

  12. Assessment of Pulmonary Capillary Blood Volume, Membrane Diffusing Capacity, and Intrapulmonary Arteriovenous Anastomoses During Exercise

    PubMed Central

    Tedjasaputra, Vincent; van Diepen, Sean; Collins, Sophie É; Michaelchuk, Wade M.; Stickland, Michael K.

    2017-01-01

    Exercise is a stress to the pulmonary vasculature. With incremental exercise, the pulmonary diffusing capacity (DLCO) must increase to meet the increased oxygen demand; otherwise, a diffusion limitation may occur. The increase in DLCO with exercise is due to increased capillary blood volume (Vc) and membrane diffusing capacity (Dm). Vc and Dm increase secondary to the recruitment and distension of pulmonary capillaries, increasing the surface area for gas exchange and decreasing pulmonary vascular resistance, thereby attenuating the increase in pulmonary arterial pressure. At the same time, the recruitment of intrapulmonary arteriovenous anastomoses (IPAVA) during exercise may contribute to gas exchange impairment and/or prevent large increases in pulmonary artery pressure. We describe two techniques to evaluate pulmonary diffusion and circulation at rest and during exercise. The first technique uses multiple-fraction of inspired oxygen (FIO2) DLCO breath holds to determine Vc and Dm at rest and during exercise. Additionally, echocardiography with intravenous agitated saline contrast is used to assess IPAVAs recruitment. Representative data showed that the DLCO, Vc, and Dm increased with exercise intensity. Echocardiographic data showed no IPAVA recruitment at rest, while contrast bubbles were seen in the left ventricle with exercise, suggesting exercise-induced IPAVA recruitment. The evaluation of pulmonary capillary blood volume, membrane diffusing capacity, and IPAVA recruitment using echocardiographic methods is useful to characterize the ability of the lung vasculature to adapt to the stress of exercise in health as well as in diseased groups, such as those with pulmonary arterial hypertension and chronic obstructive pulmonary disease. PMID:28287506

  13. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular ringsmore » within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.« less

  14. Physicochemical controls on adsorbed water film thickness in unsaturated geological media

    NASA Astrophysics Data System (ADS)

    Tokunaga, Tetsu K.

    2011-08-01

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here the problem of adsorbed water film thickness is examined by combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable and showed that pendular rings within drained porous media retain most of the "residual" water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double-layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double-layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (<10 mol m-3) on surfaces with higher-magnitude electrostatic potentials (more negative than ≈-50 mV). Adsorbed water films are predicted to usually range in thickness from ≈1 to 20 nm in drained pores and fractures of unsaturated environments.

  15. Drag reducing properties of microalgal exopolymers.

    PubMed

    Ramus, J; Kenney, B E; Shaughnessy, E J

    1989-01-25

    Dilute aqueous solutions of polymers released by marine phytoplankton (microalgae) were shown to effectively reduce drag in capillary pipe flow. Tests were performed in a capillary turbulent flow viscometer which extruded small samples under high pressures. In all, 22 species were screened, and the products of one chlorophyte and four rhodophyte species proved especially effective. The viscoelastic polymers produced by these species delayed the transition from laminar to turbulent flow to significantly higher Re. In general, polymeric regime segments come off the maximum drag reduction asymptote at characteristic retro-onset points, and come to lie approximately parallel to, but displaced upwards from the Prandtl-von Karman line. The delay to transition was shown to be dependent on additive polymer concentration, capillary diameter, and temperature. Ionic concentration, ionic composition, or pH had little effect on drag reducing properties.

  16. Interaction between blood and solid particles propagating through a capillary with slip effects.

    PubMed

    Zeeshan, A; Fatima, A; Khalid, F; Bhatti, M M

    2018-04-18

    This article describes the interaction between solid particles and blood propagating through a capillary. A slip condition is considered on the walls of the capillary. The rheological features of the blood are discussed by considering as a two-phase Newtonian fluid model, i.e., the suspension of cells in plasma. A perturbation method is successfully applied to obtain the series solution of the governing coupled differential equations. The series solution for both fluid and particle phase are presented up to second order approximation. The expressions for the velocity and pressure distributions under slip effects are determined within a tube. Furthermore, the current results are beneficial to understand the rheological features of blood which will be helpful to interpret and analyze more complex blood flow models. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Determination of Betaine in Forsythia Suspensa by High Performance Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Liu, Haixing; Dong, Guoliang; Wang, Lintong

    2017-12-01

    This paper presents the determination of betaine content of Forsythia suspensa by high performance capillary electrophoresis (HPCE) method. The borax solution was chosen as buffer solution, and its concentration was 40 mmol with capillary column (75μm×52/60cm) at a constant voltage of 20kV and injecting pressure time of 10s at 20°C. Linearity was kept in the concent ration range of 0.0113-1.45mg·ml-1 of betaine with correlation coefficient of 0.999. The recovery was in the range of 97%-117% (n=5), The content of betaine was 281.5 mg·g-1and RSD value of 9.6% (n=6) in Forsythia suspensa. This method has the advantage of rapid, accurate and good repeatability in separation and determination of betaine in Forsythia suspensa.

  18. Mars2020 Entry, Descent, and Landing Instrumentation (MEDLI2): Science Objectives and Instrument Requirements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; White, Todd; Schoenenberger, Mark; Karlgaard, Chris; Wright, Henry

    2015-01-01

    NASAs exploration and technology roadmaps call for capability advancements in Mars entry, descent, and landing (EDL) systems to enable increased landed mass, a higher landing precision, and a wider planetary access. It is also recognized that these ambitious EDL performance goals must be met while maintaining a low mission risk in order to pave the way for future human missions. As NASA is engaged in developing new EDL systems and technologies via testing at Earth, instrumentation of existing Mars missions is providing valuable engineering data for performance improvement, risk reduction, and an improved definition of entry loads and environment. The most notable recent example is the Mars Entry, Descent and Landing Instrument (MEDLI) suite hosted by Mars Science Laboratory for its entry in Aug 2012. The MEDLI suite provided a comprehensive dataset for Mars entry aerodynamics, aerothermodynamics and thermal protection system (TPS) performance. MEDLI data has since been used for unprecedented reconstruction of aerodynamic drag, vehicle attitude, in-situ atmospheric density, aerothermal heating, and transition to turbulence, in-depth TPS performance and TPS ablation. [1,2] In addition to validating predictive models, MEDLI data has demonstrated extra margin available in the MSL forebody TPS, which can potentially be used to reduce vehicle parasitic mass. The presentation will introduce a follow-on MEDLI instrumentation suite (called MEDLI2) that is being developed for Mars-2020 mission. MEDLI2 has an enhanced scope that includes backshell instrumentation, a wider forebody coverage, and instruments that specifically target supersonic aerodynamics. Similar to MEDLI, MEDLI2 uses thermal plugs with embedded thermocouples and ports through the TPS to measure surface pressure. MEDLI2, however, also includes heat flux sensors in the backshell and a low range pressure transducer to measure afterbody pressure.

  19. Integrative Conductance of Oxygen During Exercise at Altitude.

    PubMed

    Calbet, José A L; Lundby, Carsten; Boushel, Robert

    2016-01-01

    In the oxygen (O2) cascade downstream steps can never achieve higher flows of O2 than the preceding ones. At the lung the transfer of O2 is determined by the O2 gradient between the alveolar space and the lung capillaries and the O2 diffusing capacity (DLO2). While DLO2 may be increased several times during exercise by recruiting more lung capillaries and by increasing the oxygen carrying capacity of blood due to higher peripheral extraction of O2, the capacity to enhance the alveolocapillary PO2 gradient is more limited. The transfer of oxygen from the alveolar space to the hemoglobin (Hb) must overcome first the resistance offered by the alveolocapillary membrane (1/DM) and the capillary blood (1/θVc). The fractional contribution of each of these two components to DLO2 remains unknown. During exercise these resistances are reduced by the recruitment of lung capillaries. The factors that reduce the slope of the oxygen dissociation curve of the Hb (ODC) (i.e., lactic acidosis and hyperthermia) increase 1/θVc contributing to limit DLO2. These effects are accentuated in hypoxia. Reducing the size of the active muscle mass improves pulmonary gas exchange during exercise and reduces the rightward shift of the ODC. The flow of oxygen from the muscle capillaries to the mitochondria is pressumably limited by muscle O2 conductance (DmcO2) (an estimation of muscle oxygen diffusing capacity). However, during maximal whole body exercise in normoxia, a higher flow of O2 is achieved at the same pressure gradients after increasing blood [Hb], implying that in healthy humans exercising in normoxia there is a functional reserve in DmcO2. This conclusion is supported by the fact that during small muscle exercise in chronic hypoxia, peak exercise DmcO2 is similar to that observed during exercise in normoxia despite a markedly lower O2 pressure gradient driving diffusion.

  20. Field induced disintegration of glycerol solutions under vacuum and atmospheric pressure conditions studied by optical microscopy and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lüttgens, U.; Dülcks, Th.; Röllgen, F. W.

    1992-04-01

    The ion formation in both electrohydrodynamic (EH) and electrospray (ES) mass spectrometry (MS) is based on the electrohydrodynamic disintegration of sample solutions which are passed through a capillary biased at high potential. Vacuum is applied in EH and atmospheric pressure in ES MS. For glycerol applied as solvent in EH MS optical studies of its disintegration behavior revealed a change from axial spray modes to a rim emission mode in vacuum and a change from axial spray modes to a droplet ejection mode at atmospheric pressure conditions with increasing potential. EH MS investigations of the ion emission from only one or a few emission sites at the rim of the capillary showed a pulsed ion emission whose frequency increased with applied potential. The pulsed ion emission is attributed to an imbalance between the supply and loss of liquid at an emission site. By lowering the surface tension of glycerol with dodecyl sulfate sodium salt an increase of mass spectral ion intensity by more than one order of magnitude could be observed.

  1. Mars Exploration Rover Six-Degree-Of-Freedom Entry Trajectory Analysis

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Schoenenberger, Mark; Cheatwood, F. M.

    2003-01-01

    The Mars Exploration Rover mission will be the next opportunity for surface exploration of Mars in January 2004. Two rovers will be delivered to the surface of Mars using the same entry, descent, and landing scenario that was developed and successfully implemented by Mars Pathfinder. This investigation describes the trajectory analysis that was performed for the hypersonic portion of the MER entry. In this analysis, a six-degree-of-freedom trajectory simulation of the entry is performed to determine the entry characteristics of the capsules. In addition, a Monte Carlo analysis is also performed to statistically assess the robustness of the entry design to off-nominal conditions to assure that all entry requirements are satisfied. The results show that the attitude at peak heating and parachute deployment are well within entry limits. In addition, the parachute deployment dynamics pressure and Mach number are also well within the design requirements.

  2. Hood entry coefficients of compound exhaust hoods.

    PubMed

    Figueroa, Crescente E

    2011-12-01

    A traditional method for assessing the flow rate in ventilation systems is based on multiple readings of velocity or velocity pressure (VP) (usually 10 or 20 points) taken in ductwork sections located away from fittings (> seven × diameters of straight duct). This study seeks to eliminate the need for a multiple-point evaluation and replace it with a simplified method that requires only a single measurement of hood static pressure (SP(h)) taken at a more accessible location (< three × diameters of straight duct from the hood entry). The SP(h) method is widely used for the assessment of flow rate in simple hoods. However, industrial applications quite often use compound hoods that are regularly of the slot/plenum type. For these hoods, a "compound coefficient of entry" has not been published, which makes the use of the hood static pressure method unfeasible. This study proposes a model for the computation of a "compound coefficient of entry" and validates the use of this model to assess flow rate in two systems of well-defined geometry (multi-slotted/plenum and single-slotted/tapered or "fish-tail" types). When using a conservative value of the slot loss factor (1.78), the proposed model yielded an estimate of the volumetric flow rate within 10% of that provided by a more comprehensive method of assessment. The simplicity of the hood static pressure method makes it very desirable, even in the upper range of experimental error found in this study.

  3. Continuous electrophoretic purification of individual analytes from multicomponent mixtures.

    PubMed

    McLaren, David G; Chen, David D Y

    2004-04-15

    Individual analytes can be isolated from multicomponent mixtures and collected in the outlet vial by carrying out electrophoretic purification through a capillary column. Desired analytes are allowed to migrate continuously through the column under the electric field while undesired analytes are confined to the inlet vial by application of a hydrodynamic counter pressure. Using pressure ramping and buffer replenishment techniques, 18% of the total amount present in a bulk sample can be purified when the resolution to the adjacent peak is approximately 3. With a higher resolution, the yield could be further improved. Additionally, by periodically introducing fresh buffer into the sample, changes in pH and conductivity can be mediated, allowing higher purity (>or=99.5%) to be preserved in the collected fractions. With an additional reversed cycle of flow counterbalanced capillary electrophoresis, any individual component in a sample mixture can be purified providing it can be separated in an electrophoresis system.

  4. Speciation of selenium and arsenic compounds by capillary electrophoresis with hydrodynamically modified electroosmotic flow and on-line reduction of selenium(VI) to selenium(IV) with hydride generation inductively coupled plasma mass spectrometric detection.

    PubMed

    Magnuson, M L; Creed, J T; Brockhoff, C A

    1997-10-01

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV) by mixing the CE effluent with concentrated HCl. A microporous PTFE tube was used as a gas-liquid separator to eliminate the 40Ar37Cl and 40Ar35Cl interference from 77Se and 75As, respectively. The direction of the electroosmotic flow during CE was reversed with hydrodynamic pressure, which allowed increased freedom of buffer choice. For conventional pressure injection, method detection limits for SeIV and SeVI based on seven replicate injections were 10 and 24 pg, respectively. Recoveries of SeIV and SeVI in drinking water were measured.

  5. The VUV dimer spectra excited in condensed krypton

    NASA Astrophysics Data System (ADS)

    Gerasimov, Gennady N.; Krylov, Boris E.; Hallin, Reinhold

    2004-05-01

    The vacuum ultraviolet (VUV) emission spectra of krypton homonuclear molecules (dimers) were observed in the wavelength range 120-200 nm. The krypton dimers were excited in a DC capillary discharge and the wall of tube could be cooled with liquid nitrogen. The homogeneous DC discharge was a straight channel in the middle of capillary tube. The gas krypton pressure in the discharge channel could be stabilized in the pressure range from 3 hPa to 1000 hPa. The DC discharge current density and the electron concentration were ~ 10 A/cm2 and ~ 2-4 1014 cm-3, respectively. The VUV krypton spectra excited in vicinity of solid krypton were compared with the spectra recorded without condensed krypton. The VUV spectral lines intensities were observed as nonlinear function of the discharge length. This nonlinear increase of intensity with the length of the tube has still to be explained.

  6. Whole-body mathematical model for simulating intracranial pressure dynamics

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Penar, Paul L. (Inventor); Stevens, Scott A. (Inventor); Tranmer, Bruce I. (Inventor)

    2007-01-01

    A whole-body mathematical model (10) for simulating intracranial pressure dynamics. In one embodiment, model (10) includes 17 interacting compartments, of which nine lie entirely outside of intracranial vault (14). Compartments (F) and (T) are defined to distinguish ventricular from extraventricular CSF. The vasculature of the intracranial system within cranial vault (14) is also subdivided into five compartments (A, C, P, V, and S, respectively) representing the intracranial arteries, capillaries, choroid plexus, veins, and venous sinus. The body's extracranial systemic vasculature is divided into six compartments (I, J, O, Z, D, and X, respectively) representing the arteries, capillaries, and veins of the central body and the lower body. Compartments (G) and (B) include tissue and the associated interstitial fluid in the intracranial and lower regions. Compartment (Y) is a composite involving the tissues, organs, and pulmonary circulation of the central body and compartment (M) represents the external environment.

  7. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571

  8. Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices

    DOEpatents

    Nilson, Robert; Griffiths, Stewart

    2005-10-04

    The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.

  9. Mechanics of airway and alveolar collapse in human breath-hold diving.

    PubMed

    Fitz-Clarke, John R

    2007-11-15

    A computational model of the human respiratory tract was developed to study airway and alveolar compression and re-expansion during deep breath-hold dives. The model incorporates the chest wall, supraglottic airway, trachea, branched airway tree, and elastic alveoli assigned time-dependent surfactant properties. Total lung collapse with degassing of all alveoli is predicted to occur around 235 m, much deeper than estimates for aquatic mammals. Hysteresis of the pressure-volume loop increases with maximum diving depth due to progressive alveolar collapse. Reopening of alveoli occurs stochastically as airway pressure overcomes adhesive and compressive forces on ascent. Surface area for gas exchange vanishes at collapse depth, implying that the risk of decompression sickness should reach a plateau beyond this depth. Pulmonary capillary transmural stresses cannot increase after local alveolar collapse. Consolidation of lung parenchyma might provide protection from capillary injury or leakage caused by vascular engorgement due to outward chest wall recoil at extreme depths.

  10. Simultaneous separation of water- and fat-soluble vitamins in isocratic pressure-assisted capillary electrochromatography using a methacrylate-based monolithic column.

    PubMed

    Yamada, Hiroki; Kitagawa, Shinya; Ohtani, Hajime

    2013-06-01

    A method of simultaneous separation of water- and fat-soluble vitamins using pressure-assisted CEC with a methacrylate-based capillary monolithic column was developed. In the proposed method, water-soluble vitamins were mainly separated electrophoretically, while fat soluble-ones were separated chromatographically by the interaction with a methacrylate-based monolith. A mixture of six water-soluble and four fat-soluble vitamins was separated simultaneously within 20 min with an isocratic elution using 1 M formic acid (pH 1.9)/acetonitrile (30:70, v/v) containing 10 mM ammonium formate as a mobile phase. When the method was applied to a commercial multivitamin tablet and a spiked one, the vitamins were successfully analyzed, and no influence of the matrix contained in the tablet was observed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ghost peaks observed after AP-MALDI experiment may disclose new ionization mechanism of matrix assisted hypersonic velocity impact ionization

    PubMed Central

    Moskovets, Eugene

    2015-01-01

    RATIONALE Understanding the mechanisms of MALDI promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample has been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laserless matrix-assisted ionization. METHODS An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser was turned off and MALDI sample was removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly- and doubly-charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. RESULTS The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. CONCLUSIONS The observations were partially consistent with a model of the supersonic jet from the inlet capillary accelerating detached particles to kinetic energies suitable for matrix-assisted hypersonic-velocity impact ionization. PMID:26212165

  12. A composite smeared finite element for mass transport in capillary systems and biological tissue.

    PubMed

    Kojic, M; Milosevic, M; Simic, V; Koay, E J; Fleming, J B; Nizzero, S; Kojic, N; Ziemys, A; Ferrari, M

    2017-09-01

    One of the key processes in living organisms is mass transport occurring from blood vessels to tissues for supplying tissues with oxygen, nutrients, drugs, immune cells, and - in the reverse direction - transport of waste products of cell metabolism to blood vessels. The mass exchange from blood vessels to tissue and vice versa occurs through blood vessel walls. This vital process has been investigated experimentally over centuries, and also in the last decades by the use of computational methods. Due to geometrical and functional complexity and heterogeneity of capillary systems, it is however not feasible to model in silico individual capillaries (including transport through the walls and coupling to tissue) within whole organ models. Hence, there is a need for simplified and robust computational models that address mass transport in capillary-tissue systems. We here introduce a smeared modeling concept for gradient-driven mass transport and formulate a new composite smeared finite element (CSFE). The transport from capillary system is first smeared to continuous mass sources within tissue, under the assumption of uniform concentration within capillaries. Here, the fundamental relation between capillary surface area and volumetric fraction is derived as the basis for modeling transport through capillary walls. Further, we formulate the CSFE which relies on the transformation of the one-dimensional (1D) constitutive relations (for transport within capillaries) into the continuum form expressed by Darcy's and diffusion tensors. The introduced CSFE is composed of two volumetric parts - capillary and tissue domains, and has four nodal degrees of freedom (DOF): pressure and concentration for each of the two domains. The domains are coupled by connectivity elements at each node. The fictitious connectivity elements take into account the surface area of capillary walls which belongs to each node, as well as the wall material properties (permeability and partitioning). The overall FE model contains geometrical and material characteristics of the entire capillary-tissue system, with physiologically measurable parameters assigned to each FE node within the model. The smeared concept is implemented into our implicit-iterative FE scheme and into FE package PAK. The first three examples illustrate accuracy of the CSFE element, while the liver and pancreas models demonstrate robustness of the introduced methodology and its applicability to real physiological conditions.

  13. A Venus/Saturn Mission Study: 45deg Sphere-Cone Rigid Aeroshells and Ballistic Entries

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Allen, Gary A.; Cappuccio, Gelsomina

    2012-01-01

    The present study considers ballistic entries into the atmospheres of Saturn and Venus using a 45deg sphere-cone rigid aeroshell (a legacy shape that has been successfully used in the Pioneer Venus and Galileo missions). For a number of entry mass and diameter combinations (i.e., various entries ballistic coefficients), entry velocities, and heading angles, the trajectory space in terms of entry flight path angles between skip out and -30deg is explored with a 3DOF trajectory code, TRAJ. Assuming that the thermal protection material of choice is carbon phenolic of flight heritage, the entry flight path angle space is constrained a posteriori by the mechanical and thermal performance parameters of the material. For mechanical performance, a 200 g limit is place on the peak deceleration load and 10 bar is assumed as the spallation pressure threshold for the legacy material. It is shown that both constraints cannot be active simultaneously. For thermal performance, a minimum margined heat flux threshold of 2.5 kW/sq cm is assumed for the heritage material. Using these constraints, viable entry flight path angle corridors are determined. Analysis of the results also hints at the existence of a "critical" ballistic coefficient beyond which the steepest possible entries are determined by the spallation pressure threshold. The results are verified against known performance of the various probes used in the Galileo and Pioneer Venus missions. It is hoped that the results presented here will serve as a baseline in the development of a new class of ablative materials for Venus and Saturn missions being considered in a future New Frontiers class of NASA missions.

  14. Investigation of the capillary flow through open surface microfluidic structures

    NASA Astrophysics Data System (ADS)

    Taher, Ahmed; Jones, Benjamin; Fiorini, Paolo; Lagae, Liesbet

    2017-02-01

    The passive nature of capillary microfluidics for pumping and actuation of fluids is attractive for many applications including point of care medical diagnostics. For such applications, there is often the need to spot dried chemical reagents in the bottom of microfluidic channels after device fabrication; it is often more practical to have open surface devices (i.e., without a cover or lid). However, the dynamics of capillary driven flow in open surface devices have not been well studied for many geometries of interest. In this paper, we investigate capillary flow in an open surface microchannel with a backward facing step. An analytical model is developed to calculate the capillary pressure as the liquid-vapor interface traverses a backward facing step in an open microchannel. The developed model is validated against results from Surface Evolver liquid-vapor surface simulations and ANSYS Fluent two-phase flow simulations using the volume of fluid approach. Three different aspect ratios (inlet channel height by channel width) were studied. The analytical model shows good agreement with the simulation results from both modeling methods for all geometries. The analytical model is used to derive an expression for the critical aspect ratio (the minimum channel aspect ratio for flow to proceed across the backward facing step) as a function of contact angle.

  15. Microvasculature of the cerebral cortex: a vascular corrosion cast and immunocytochemical study.

    PubMed

    Scala, Gaetano

    2014-04-01

    In mammals, the cerebral cortex microvasculature (CCM) of the neopallium plays important roles in the physiological and pathological processes of the brain. The aim of the present work is to analyze the CCM by use of the SEM-vascular corrosion cast technique, and to examine the immunocytochemical characteristics of the CCM in adult domestic ruminants (cattle, buffalo, and sheep) by using the SEM-immunogold technique. The CCM originated from the very small, finger-like terminal branches of the macrovasculature of the brain. The superficial cortical arterioles were more numerous than the deep straight arterioles which proceeded toward the white matter. The surface casts of the arterioles and capillaries of the cerebral cortex showed ring-shaped formations in the arterioles and at the origin of the capillaries. All capillaries down-stream from these ring-shaped formations were flaccid. Casts of the capillaries showed wrinkles due to the presence of endothelial folds, which is characteristic of varying blood pressure. Formations having intense anti-GIFAP immunoreactivity were frequently evident along the course of the blood capillaries in the cerebral cortex. These formations were probably astrocytes that might regulate the cerebral microcirculation based on physiological and pathological stimuli, such as neuronal activation. Copyright © 2014 Wiley Periodicals, Inc.

  16. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue

    PubMed Central

    Lücker, Adrien; Secomb, Timothy W.; Weber, Bruno; Jenny, Patrick

    2016-01-01

    Objective Oxygen transport to parenchymal cells occurs mainly at the microvascular level, and depends on convective red blood cell (RBC) flux, which is proportional in an individual capillary to the product of capillary hematocrit and red blood cell velocity. This study investigates the relative influence of these two factors on tissue oxygen partial pressure (Po2). Methods A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity and flow on tissue oxygenation around capillaries. Predicted tissue Po2 levels are compared with a detailed computational model. Results Hematocrit is shown to have a larger influence on tissue Po2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained and the discrepancies are explained. Significant dependence of mass transfer coefficients on RBC velocity at low hematocrit is demonstrated. Conclusions For a given RBC flux in a capillary, the Po2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing intravascular resistance to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as occur in functional hyperemia in the brain. PMID:27893186

  17. The CE-Way of Thinking: "All Is Relative!".

    PubMed

    Schmitt-Kopplin, Philippe; Fekete, Agnes

    2016-01-01

    Over the last two decades the development of capillary electrophoresis instruments lead to systems with programmable sampler, separation column, separation buffer, and detection devices comparable visually in many aspects to the setup of classical chromatography.Two processes make capillary electrophoresis essentially different from chromatography and are the basis of the CE-way of thinking, namely, the injection type and the liquid flow within the capillary. (1) When the injection is made hydrodynamically (such as in most of the found applications in the literature), the injected volumes are directly dependent on the type and size of the separation capillary. (2) The buffer velocity is not pressure driven as in liquid chromatography but electrokinetically governed by the quality of the capillary surface (separation buffer dependant surface charge) inducing an electroosmotic flow (EOF). The EOF undergoes small variations and is not necessarily identical from one separation or day to the other. The direct consequence is an apparent nonreproducible migration time of the analytes, even though the own velocity of the ions is the same.The effective mobility (field strength normalized velocity) of the ions is a possible parameterization from acquired timescale to effective mobility-scale electropherograms leading to a reproducible visualization and better quantification with a direct relation to structural characters of the analytes (i.e., charge and size-see chapter on semiempirical modelization).

  18. Micro-engineered remote palpation device for assessing tissue compliance.

    PubMed

    Hien, M; Yang, T H J; Leung, S K W; Reuben, R L; Habib, F K; McNeill, S A; Schneider, A; McBride, G; Stevens, R; Else, R W

    2008-01-01

    This paper concerns the operation of the actuator for a prototype micro-engineered mechanical palpation device for deployment via a cystoscope to measure the dynamic mechanical properties of the prostate gland in vivo. The subassembly consists of a 400x200 microm silicon (Si) piston manufactured using deep reactive ion etching (DRIE) housed within an anodically bonded glass-Si-glass sandwiched housing. The micro-channel on the Si layer was formed by powder blasting and contains the micro-piston with one end pointing to the side of the housing and the other facing a via hole leading to a capillary tube. The opening on the side of the housing was sealed by a 5 microm thick silicone membrane which acts to retain the micro-piston and act as a return spring. A 320 microm diameter capillary forms the connection between the micro-channel and a micro-syringe which is operated by a programmable syringe pump to produce a reciprocating action. A pressure sensor is connected along the capillary tube to measure the dynamic pressure within the system. The micro-piston has already been used, separately actuated to measure the dynamic mechanical properties of known viscoelastic materials and prostate tissue. The purpose of the present work is to assess the functionality of the actuator assembly.

  19. Characterizing Drainage Multiphase Flow in Heterogeneous Sandstones

    NASA Astrophysics Data System (ADS)

    Jackson, Samuel J.; Agada, Simeon; Reynolds, Catriona A.; Krevor, Samuel

    2018-04-01

    In this work, we analyze the characterization of drainage multiphase flow properties on heterogeneous rock cores using a rich experimental data set and mm-m scale numerical simulations. Along with routine multiphase flow properties, 3-D submeter scale capillary pressure heterogeneity is characterized by combining experimental observations and numerical calibration, resulting in a 3-D numerical model of the rock core. The uniqueness and predictive capability of the numerical models are evaluated by accurately predicting the experimentally measured relative permeability of N2—DI water and CO2—brine systems in two distinct sandstone rock cores across multiple fractional flow regimes and total flow rates. The numerical models are used to derive equivalent relative permeabilities, which are upscaled functions incorporating the effects of submeter scale capillary pressure. The functions are obtained across capillary numbers which span four orders of magnitude, representative of the range of flow regimes that occur in subsurface CO2 injection. Removal of experimental boundary artifacts allows the derivation of equivalent functions which are characteristic of the continuous subsurface. We also demonstrate how heterogeneities can be reorientated and restructured to efficiently estimate flow properties in rock orientations differing from the original core sample. This analysis shows how combined experimental and numerical characterization of rock samples can be used to derive equivalent flow properties from heterogeneous rocks.

  20. Whisker growth of l-menthol in coexistence with various excipients.

    PubMed

    Yuasa, H; Ooi, M; Takashima, Y; Kanaya, Y

    2000-08-10

    The purpose of the present study was to clarify the mechanism for l-menthol whisker growth. l-Menthol was mixed with an excipient, and the interaction was examined by IR measurement, thermal analysis and powder X-ray diffraction. Then we examined the involvement of the capillary condensation using the pore size distribution measurement. By mixing l-menthol with an excipient with whisker growth, the hydroxyl group stretching band of l-menthol was shifted to the higher wavenumber in the IR spectrum, the melting point and heat of fusion of l-menthol became lower in the thermal analysis, and the diffraction intensity of l-menthol became lower in the powder X-ray diffraction. The excipients with whisker growth showed the tendency to have the meso-pore involved in the capillary condensation in the pore size distribution measurement. From the above results, the whisker growth mechanism is considered as follows. When l-menthol was mixed with an excipient with whisker growth, the crystallinity of l-menthol was lowered and the vapor pressure was increased by the interaction mainly consisting of the hydrogen bond. The generated l-menthol vapor entered meso-pore, the saturated vapor pressure was lowered by the capillary condensation, and the nucleation occurred. The vapor was further supplied, generating the growth of whisker.

  1. Challenges in automated estimation of capillary refill time in dogs

    NASA Astrophysics Data System (ADS)

    Cugmas, Blaž; Spigulis, Janis

    2018-02-01

    Capillary refill time (CRT) is a part of the cardiorespiratory examination in dogs. Changes in CRT can reflect pathological conditions like shock or anemia. Visual CRT estimation has low repeatability; therefore, optical systems for automated estimation have recently appeared. Since existing systems are unsuitable for use in dogs, we designed a simple, small and portable device, which could be easily used at veterinary clinic. The device was preliminarily tested on several measurement sites in two dogs. Not all measurement sites were suitable for CRT measurements due to underlying tissue optical and mechanical properties. The CRT measurements were possible on the labial mucosa, above the sternum and on the digit where CRT was in the range of values, retrieved from the color video of the visual CRT measurement. It seems that light penetration predominantly governs tissue optical response when the pressure is applied. Therefore, it is important to select a proper light, which reaches only superficial capillaries and does not penetrate deeper. Blue or green light is probably suitable for light skin or mucosa, on the other hand, red or near-infrared might be used for skin with pigmented or thick epidermis. Additionally, further improvements of the device design are considered, like adding a calibrated spring, which would insure application of consistent pressure.

  2. Gas adsorption and capillary condensation in nanoporous alumina films.

    PubMed

    Casanova, Fèlix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  3. Novel concept of washing for microfluidic paper-based analytical devices based on capillary force of paper substrates.

    PubMed

    Mohammadi, Saeed; Busa, Lori Shayne Alamo; Maeki, Masatoshi; Mohamadi, Reza M; Ishida, Akihiko; Tani, Hirofumi; Tokeshi, Manabu

    2016-11-01

    A novel washing technique for microfluidic paper-based analytical devices (μPADs) that is based on the spontaneous capillary action of paper and eliminates unbound antigen and antibody in a sandwich immunoassay is reported. Liquids can flow through a porous medium (such as paper) in the absence of external pressure as a result of capillary action. Uniform results were achieved when washing a paper substrate in a PDMS holder which was integrated with a cartridge absorber acting as a porous medium. Our study demonstrated that applying this washing technique would allow μPADs to become the least expensive microfluidic device platform with high reproducibility and sensitivity. In a model μPAD assay that utilized this novel washing technique, C-reactive protein (CRP) was detected with a limit of detection (LOD) of 5 μg mL -1 . Graphical Abstract A novel washing technique for microfluidic paper-based analytical devices (μPADs) that is based on the spontaneous capillary action of paper and eliminates unbound antigen and antibody in a sandwich immunoassay is reported.

  4. Steroids in porcine follicular fluid: analysis by HPLC, capillary CG and capillary CG/MS after purification on SEP-PAK C18 and ion exchange chromatography.

    PubMed

    Khalil, M W; Lawson, V

    1983-04-01

    Steroids in porcine follicular fluid have been concentrated by reverse phase chromatography in SEP-PAK C18 and purified further on the cation exchanger SP-Sephadex C-25. Fractionation into unconjugated neutral and phenolic steroids, glucuronides and sulfates was carried out on triethylaminohydroxypropyl Sephadex LH-20 (TEAP-LH-20). The unconjugated neutral fraction was analysed by high pressure liquid chromatography (HPLC) on a C18 radial cartridge 5 mm I.D.; 10 mu, or on a C18 5 mu RESOLVE column, and by capillary gas chromatography (GC) on a 12 M OV-1 cross linked fused silica column. Testosterone, progesterone and androstenedione were the major steroids detected by HPLC monitored at 254 nm, although 17- hydroxy-, 20 alpha-dihydro- and 20 beta-dihydroprogesterone were also present. Pregnenolone, pregnanediol, dehydroepiandrosterone, 17-hydroxypregnenolone and androsterone were detected by capillary CG as their 0-methyloxime trimethylsilyether derivatives. Further confirmation of structure was provided by complete mass spectral data or by selective ion monitoring (SIM).

  5. Time resolved EUV spectra from Zpinching capillary discharge plasma

    NASA Astrophysics Data System (ADS)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  6. Dynamics and density distributions in a capillary-discharge waveguide with an embedded supersonic jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlis, N. H., E-mail: nmatlis@gmail.com; Gonsalves, A. J.; Steinke, S.

    We present an analysis of the gas dynamics and density distributions within a capillary-discharge waveguide with an embedded supersonic jet. This device provides a target for a laser plasma accelerator which uses longitudinal structuring of the gas-density profile to enable control of electron trapping and acceleration. The functionality of the device depends sensitively on the details of the density profile, which are determined by the interaction between the pulsed gas in the jet and the continuously-flowing gas in the capillary. These dynamics are captured by spatially resolving recombination light from several emission lines of the plasma as a function ofmore » the delay between the jet and the discharge. We provide a phenomenological description of the gas dynamics as well as a quantitative evaluation of the density evolution. In particular, we show that the pressure difference between the jet and the capillary defines three regimes of operation with qualitatively different longitudinal density profiles and show that jet timing provides a sensitive method for tuning between these regimes.« less

  7. An Osmotic Model of the Growing Pollen Tube

    PubMed Central

    Hill, Adrian E.; Shachar-Hill, Bruria; Skepper, Jeremy N.; Powell, Janet; Shachar-Hill, Yair

    2012-01-01

    Pollen tube growth is central to the sexual reproduction of plants and is a longstanding model for cellular tip growth. For rapid tip growth, cell wall deposition and hardening must balance the rate of osmotic water uptake, and this involves the control of turgor pressure. Pressure contributes directly to both the driving force for water entry and tip expansion causing thinning of wall material. Understanding tip growth requires an analysis of the coordination of these processes and their regulation. Here we develop a quantitative physiological model which includes water entry by osmosis, the incorporation of cell wall material and the spreading of that material as a film at the tip. Parameters of the model have been determined from the literature and from measurements, by light, confocal and electron microscopy, together with results from experiments made on dye entry and plasmolysis in Lilium longiflorum. The model yields values of variables such as osmotic and turgor pressure, growth rates and wall thickness. The model and its predictive capacity were tested by comparing programmed simulations with experimental observations following perturbations of the growth medium. The model explains the role of turgor pressure and its observed constancy during oscillations; the stability of wall thickness under different conditions, without which the cell would burst; and some surprising properties such as the need for restricting osmotic permeability to a constant area near the tip, which was experimentally confirmed. To achieve both constancy of pressure and wall thickness under the range of conditions observed in steady-state growth the model reveals the need for a sensor that detects the driving potential for water entry and controls the deposition rate of wall material at the tip. PMID:22615784

  8. Newly designed launch and entry suit (LES) modeled by technician

    NASA Image and Video Library

    1988-11-14

    Space shuttle orange launch and entry suit (LES), a partial pressure suit, is modeled by a technician. LES was designed for STS-26, the return to flight mission, and subsequent missions. Included in the crew escape system (CES) package are launch and entry helmet (LEH) with communications carrier (COMM CAP), parachute pack and harness, life raft, life preserver unit (LPU), LES gloves, suit oxygen manifold and valves, boots, and survival gear.

  9. Evaluation of SHM system produced by additive manufacturing via acoustic emission and other NDT methods.

    PubMed

    Strantza, Maria; Aggelis, Dimitrios G; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-10-21

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called "effective structural health monitoring" (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals.

  10. Evaluation of SHM System Produced by Additive Manufacturing via Acoustic Emission and Other NDT Methods

    PubMed Central

    Strantza, Maria; Aggelis, Dimitrios G.; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-01-01

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called “effective structural health monitoring” (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals. PMID:26506349

  11. Role of Complement Activation in a Model of Adult Respiratory Distress Syndrome

    PubMed Central

    Hosea, Stephen; Brown, Eric; Hammer, Carl; Frank, Michael

    1980-01-01

    The adult respiratory distress syndrome is characterized by arterial hypoxemia as a result of increased alveolar capillary permeability to serum proteins in the setting of normal capillary hydrostatic pressures. Because bacterial sepsis is prominent among the various diverse conditions associated with altered alveolar capillary permeability, we studied the effect of bacteremia with attendant complement activation on the sequestration of microorganisms and the leakage of albumin in the lungs of guinea pigs. Pneumococci were injected intravenously into guinea pigs and their localization was studied. Unlike normal guinea pigs, complement-depleted guinea pigs did not localize injected bacteria to the lungs. Preopsonization of organisms did not correct this defect in pulmonary localization of bacteria in complement-depleted animals, suggesting that a fluid-phase component of complement activation was required. Genetically C5-deficient mice showed no pulmonary localization of bacteria. C5-sufficient mice demonstrated the usual pulmonary localization, thus further suggesting that the activation of C5 might be important in this localization. The infusion of activated C5 increased alveolar capillary permeability to serum proteins as assayed by the amount of radioactive albumin sequestered in the lung. Neutropenic animals did not develop altered capillary permeability after challenge with activated C5. Thus, complement activation through C5, in the presence of neutrophils, induces alterations in pulmonary alveolar capillary permeability and causes localization of bacteria to the pulmonary parenchyma. Complement activation in other disease states could potentially result in similar clinical manifestations. PMID:7400321

  12. Direct measurements of the pressure distribution along the contact area during droplet impact

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Vinh; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-11-01

    We report direct measurements of the pressure distribution on the contact area during the impact of a droplet on a micropillar array. The measurements were realized using an array of MEMS-based force sensors fabricated underneath the micropillars. We show that immediately after the droplet hits the surface, the pressure becomes maximum at the center of the contact area and this maximum pressure value is more than 10 times larger than the dynamic pressure. This result emphasizes the effect of water-hammer-type pressure during the early stage of the impact. Furthermore, our measurement results demonstrate that the critical pressure associated with Cassie-Wenzel transition agrees well with the maximum capillary pressure of the micropillar array.

  13. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamura, Hideto; Suzuki, Yoshiaki; Yamamura, Hisao

    The blood-brain barrier (BBB) is mainly composed of brain capillary endothelial cells (BCECs), astrocytes and pericytes. Brain ischemia causes hypoxic encephalopathy and damages BBB. However, it remains still unclear how hypoxia affects BCECs. In the present study, t-BBEC117 cells, an immortalized bovine brain endothelial cell line, were cultured under hypoxic conditions at 4–5% oxygen for 72 h. This hypoxic stress caused hyperpolarization of resting membrane potential. Patch-clamp recordings revealed a marked increase in Ba{sup 2+}-sensitive inward rectifier K{sup +} current in t-BBEC117 cells after hypoxic culture. Western blot and real-time PCR analyses showed that Kir2.1 expression was significantly up-regulated at protein level butmore » not at mRNA level after the hypoxic culture. Ca{sup 2+} imaging study revealed that the hypoxic stress enhanced store-operated Ca{sup 2+} (SOC) entry, which was significantly reduced in the presence of 100 μM Ba{sup 2+}. On the other hand, the expression of SOC channels such as Orai1, Orai2, and transient receptor potential channels was not affected by hypoxic stress. MTT assay showed that the hypoxic stress significantly enhanced t-BBEC117 cell proliferation, which was inhibited by approximately 60% in the presence of 100 μM Ba{sup 2+}. We first show here that moderate cellular stress by cultivation under hypoxic conditions hyperpolarizes membrane potential via the up-regulation of functional Kir2.1 expression and presumably enhances Ca{sup 2+} entry, resulting in the facilitation of BCEC proliferation. These findings suggest potential roles of Kir2.1 expression in functional changes of BCECs in BBB following ischemia. -- Highlights: •Hypoxic culture of brain endothelial cells (BEC) caused membrane hyperpolarization. •This hyperpolarization was due to the increased expression of Kir2.1 channels. •Hypoxia enhanced store-operated Ca{sup 2+} (SOC) entry via Kir2.1 up-regulation. •Expression levels of putative SOC channels were not affected by hypoxia. •Kir2.1 up-regulation is responsible for hypoxia-enhanced BEC proliferation.« less

  14. On-line Analysis of Catalytic Reaction Products Using a High-Pressure Tandem Micro-reactor GC/MS.

    PubMed

    Watanabe, Atsushi; Kim, Young-Min; Hosaka, Akihiko; Watanabe, Chuichi; Teramae, Norio; Ohtani, Hajime; Kim, Seungdo; Park, Young-Kwon; Wang, Kaige; Freeman, Robert R

    2017-01-01

    When a GC/MS system is coupled with a pressurized reactor, the separation efficiency and the retention time are directly affected by the reactor pressure. To keep the GC column flow rate constant irrespective of the reaction pressure, a restrictor capillary tube and an open split interface are attached between the GC injection port and the head of a GC separation column. The capability of the attached modules is demonstrated for the on-line GC/MS analysis of catalytic reaction products of a bio-oil model sample (guaiacol), produced under a pressure of 1 to 3 MPa.

  15. Unusual effect of water vapor pressure on dehydration of dibasic calcium phosphate dihydrate.

    PubMed

    Kaushal, Aditya M; Vangala, Venu R; Suryanarayanan, Raj

    2011-04-01

    Dibasic calcium phosphate occurs as an anhydrate (DCPA; CaHPO₄) and as a dihydrate (DCPD; CaHPO₄•2H₂O). Our objective was to investigate the unusual behavior of these phases. Dibasic calcium phosphate dihydrate was dehydrated in a (i) differential scanning calorimeter (DSC) in different pan configurations; (ii) variable-temperature X-ray diffractometer (XRD) at atmospheric and under reduced pressure, and in sealed capillaries; and (iii) water vapor sorption analyzer at varying temperature and humidity conditions. Dehydration was complete by 210°C in an open DSC pan and under atmospheric pressure in the XRD. Unlike "conventional" hydrates, the dehydration of DCPD was facilitated in the presence of water vapor. Variable-temperature XRD in a sealed capillary and DSC in a hermetic pan with pinhole caused complete dehydration by 100°C and 140°C, respectively. Under reduced pressure, conversion to the anhydrate was incomplete even at 300°C. The increase in dehydration rate with increase in water vapor pressure has been explained by the Smith-Topley effect. Under "dry" conditions, a coating of poorly crystalline product is believed to form on the surface of particles and act as a barrier to further dehydration. However, in the presence of water vapor, recrystallization occurs, creating cracks and channels and facilitating continued dehydration. Copyright © 2010 Wiley-Liss, Inc.

  16. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs.

    PubMed

    Parker, J C; Ivey, C L; Tucker, J A

    1998-04-01

    To determine the initial signaling event in the vascular permeability increase after high airway pressure injury, we compared groups of lungs ventilated at different peak inflation pressures (PIPs) with (gadolinium group) and without (control group) infusion of 20 microM gadolinium chloride, an inhibitor of endothelial stretch-activated cation channels. Microvascular permeability was assessed by using the capillary filtration coefficient (Kfc), a measure of capillary hydraulic conductivity. Kfc was measured after ventilation for 30-min periods with 7, 20, and 30 cmH2O PIP with 3 cmH2O positive end-expiratory pressure and with 35 cmH2O PIP with 8 cmH2O positive end-expiratory pressure. In control lungs, Kfc increased significantly to 1.8 and 3.7 times baseline after 30 and 35 cmH2O PIP, respectively. In the gadolinium group, Kfc was unchanged from baseline (0.060 +/- 0.010 ml . min-1 . cmH2O-1 . 100 g-1) after any PIP ventilation period. Pulmonary vascular resistance increased significantly from baseline in both groups before the last Kfc measurement but was not different between groups. These results suggest that microvascular permeability is actively modulated by a cellular response to mechanical injury and that stretch-activated cation channels may initiate this response through increases in intracellular calcium concentration.

  17. Gene delivery by direct injection (microinjection) using a controlled-flow system.

    PubMed

    Dean, David A

    2006-12-01

    INTRODUCTIONThis protocol describes a method for constant-flow microinjection using the Pneumatic PicoPump (World Precision Instruments). This type of system is very simple and can be assembled on a relatively low budget. In this method, a constant flow of sample is delivered from the tip of the pipette, and the amount of sample injected into the cell is determined by how long the pipette remains in the cell. A typical system is composed of a pressure regulator that can be adjusted for two pressures (back pressure and injection pressure), a capillary holder, and a coarse and fine micromanipulator.

  18. Measurement of Xenon Viscosity as a Function of Low Temperature and Pressure

    NASA Technical Reports Server (NTRS)

    Grisnik, Stanley P.

    1998-01-01

    The measurement of xenon gas viscosity at low temperatures (175-298 K) and low pressures (350 torr-760 torr) has been performed in support of Hall Thruster testing at NASA Lewis Research Center. The measurements were taken using the capillary flow technique. Viscosity measurements were repeatable to within 3%. The results in this paper are in agreement with data from Hanley and Childs and suggest that the data from Clarke and Smith is approximately 2% low. There are no noticeable pressure effects on xenon absolute viscosity for the pressure range from 350 torr to 760 torr.

  19. Who's really hypertensive?--Quality control issues in the assessment of blood pressure for randomized trials.

    PubMed

    Reid, Christopher M; Ryan, Philip; Miles, Helen; Willson, Kristyn; Beilin, Laurence J; Brown, Mark A; Jennings, Garry L; Johnston, Colin I; Macdonald, Graham J; Marley, John E; McNeil, John J; Morgan, Trefor O; West, Malcolm J; Wing, Lindon M H

    2005-01-01

    The characterization of blood pressure in treatment trials assessing the benefits of blood pressure lowering regimens is a critical factor for the appropriate interpretation of study results. With numerous operators involved in the measurement of blood pressure in many thousands of patients being screened for entry into clinical trials, it is essential that operators follow pre-defined measurement protocols involving multiple measurements and standardized techniques. Blood pressure measurement protocols have been developed by international societies and emphasize the importance of appropriate choice of cuff size, identification of Korotkoff sounds, and digit preference. Training of operators and auditing of blood pressure measurement may assist in reducing the operator-related errors in measurement. This paper describes the quality control activities adopted for the screening stage of the 2nd Australian National Blood Pressure Study (ANBP2). ANBP2 is cardiovascular outcome trial of the treatment of hypertension in the elderly that was conducted entirely in general practices in Australia. A total of 54 288 subjects were screened; 3688 previously untreated subjects were identified as having blood pressure >140/90 mmHg at the initial screening visit, 898 (24%) were not eligible for study entry after two further visits due to the elevated reading not being sustained. For both systolic and diastolic blood pressure recording, observed digit preference fell within 7 percentage points of the expected frequency. Protocol adherence, in terms of the required minimum blood pressure difference between the last two successive recordings, was 99.8%. These data suggest that adherence to blood pressure recording protocols and elimination of digit preferences can be achieved through appropriate training programs and quality control activities in large multi-centre community-based trials in general practice. Repeated blood pressure measurement prior to initial diagnosis and study entry is essential to appropriately characterize hypertension in these elderly patients.

  20. Water movement in glass bead porous media: 1. Experiments of capillary rise and hysteresis

    NASA Astrophysics Data System (ADS)

    Lu, T. X.; Biggar, J. W.; Nielsen, D. R.

    1994-12-01

    Experimental observations of capillary rise and hysteresis of water or ethanol in glass beads are presented to improve our understanding of those physical processes in porous media. The results provide evidence that capillary rise into porous media cannot be fully explained by a model of cylinders. They further demonstrate that the "Ink bottle" model does not provide an adequate explanation of hysteresis. Glass beads serving as a model for ideal soil are enclosed in a rectangular glass chamber model. A TV camera associated with a microscope was used to record the processes of capillary rise and drainage. It is clearly shown during capillary rise that the fluid exhibits a "jump" behavior at the neck of the pores in an initially dry profile or at the bottom of the water film in an initially wet profile. Under an initially dry condition, the jump initiates at the particle with smallest diameter. The jump process continues to higher elevations until at equilibrium the surface tensile force is balanced by the hydrostatic force. The wetting front at that time is readily observed as flat and saturated. Under an initially wet condition, capillary rise occurs as a water film thickening process associated with the jump process. Trapped air behind the wetting front renders the wetting front irregular and unsaturated. The capillary rise into an initially wet porous medium can be higher than that into an initially dry profile. During the drying process, large surface areas associated with the gas-liquid interface develop, allowing the porous medium to retain more water than during the wetting process at the same pressure. That mechanism explains better the hysteresis phenomenon in porous media in contrast to other mechanisms that now prevail.

Top