Sample records for capillary filtration coefficient

  1. Effect of hypothermic pulmonary artery flushing on capillary filtration coefficient.

    PubMed

    Andrade, R S; Wangensteen, O D; Jo, J K; Tsai, M Y; Bolman, R M

    2000-07-27

    We previously demonstrated that surfactant dilution and inhibition occur immediately after pulmonary artery flushing with hypothermic modified Euro-Collins solution. Consequently, we speculated that increased capillary permeability contributed to these surfactant changes. To test this hypothesis, we evaluated the effects of hypothermic pulmonary artery flushing on the pulmonary capillary filtration coefficient (Kfc), and additionally performed a biochemical analysis of surfactant. We used a murine isolated, perfused lung model to measure the pulmonary capillary filtration coefficient and hemodynamic parameters, to determine the wet to dry weight ratio, and to evaluate surfactant by biochemical analysis of lung lavage fluid. We defined three study groups. In group I (controls), we harvested lungs without hypothermic pulmonary artery flushing, and measured Kfc immediately. In group II (in situ flush), we harvested lungs after hypothermic pulmonary artery flushing with modified Euro-Collins solution, and then measured Kfc. Experiments in groups I and II were designed to evaluate persistent changes in Kfc after pulmonary artery flushing. In group III (ex vivo flush), we flushed lungs ex vivo to evaluate transient changes in Kfc during hypothermic pulmonary artery flushing. Groups I and II did not differ significantly in capillary filtration coefficient and hemodynamics. Group II showed significant alterations on biochemical surfactant analysis and a significant increase in wet-to-dry weight ratio, when compared with group I. In group III, we observed a significant transient increase in capillary filtration coefficient during pulmonary artery flushing. Hypothermic pulmonary artery flushing transiently increases the capillary filtration coefficient, leads to an increase in the wet to dry weight ratio, and induces biochemical surfactant changes. These findings could be explained by the effects of hypothermic modified Euro-Collins solution on pulmonary capillary permeability.

  2. Microvascular pressures and filtration coefficients in the cat mesentery.

    PubMed Central

    Fraser, P A; Smaje, L H; Verrinder, A

    1978-01-01

    1. Filtration coefficient and hydrostatic pressure have been measured in single capillaries and venules in the cat mesentery using a modification of the Landis (1927) single vessel occlusion technique. 2. Venules were found to be filtering fluid, not absorbing it as is often supposed. 3. The mean filtration coefficient in capillaries was 0.018 micrometers . s-1 . mmHg-1 (1.35 X 10(-10)m . s-1 . Pa-1) while that in venules, was 0.027 micrometers . s-1 . mmHg-1 (2.02 X 10(-10)m . s-1 . Pa-1). 4. In both capillaries and venules, filtration coefficient increased with decreasing pressure. 5. The difference between directly measured venular pressure and that calculated from the occlusion data was used to determine the contribution of the interstitium to fluid exchange. In the mesentery superfused with Krebs solution the tissue pressure so determined was found to be zero or subatmospheric initially but became increasingly positive with lengthening exposure of the mesentery. PMID:722585

  3. Partial liquid ventilation reduces fluid filtration of isolated rabbit lungs with acute hydrochloric acid-induced edema.

    PubMed

    Loer, S A; Tarnow, J

    2001-06-01

    Hydrochloric acid aspiration increases pulmonary microvascular permeability. The authors tested the hypothesis that partial liquid ventilation has a beneficial effect on filtration coefficients in acute acid-induced lung injury. Isolated blood-perfused rabbit lungs were assigned randomly to one of four groups. Group 1 (n = 6) served as a control group without edema. In group 2 (n = 6), group 3 (n = 6), and group 4 (n = 6), pulmonary edema was induced by intratracheal instillation of hydrochloric acid (0.1 N, 2 ml/kg body weight). Filtration coefficients were determined 30 min after this injury (by measuring loss of perfusate after increase of left atrial pressure). Group 2 lungs were gas ventilated, and group 3 lungs received partial liquid ventilation (15 ml perfluorocarbon/kg body weight). In group 4 lungs, the authors studied the immediate effects of bronchial perfluorocarbon instillation on ongoing filtration. Intratracheal instillation of hydrochloric acid markedly increased filtration coefficients when compared with non-injured control lungs (2.3 +/- 0.7 vs. 0.31 +/- 0.08 ml.min(-1). mmHg(-1).100 g(-1) wet lung weight, P < 0.01). Partial liquid ventilation reduced filtration coefficients of the injured lungs (to 0.9 +/- 0.3 ml.min(-1).mmHg(-1).100 g(-1) wet lung weight, P = 0.022). Neither pulmonary artery nor capillary pressures (determined by simultaneous occlusion of inflow and outflow of the pulmonary circulation) were changed by hydrochloric acid instillation or by partial liquid ventilation. During ongoing filtration, bronchial perfluorocarbon instillation (5 ml/kg body weight) immediately reduced the amount of filtered fluid by approximately 50% (P = 0.027). In the acute phase after acid injury, partial liquid ventilation reduced pathologic fluid filtration. This effect started immediately after bronchial perfluorocarbon instillation and was not associated with changes in mean pulmonary artery, capillary, or airway pressures. The authors suggest that in the early phase of acid injury, reduction of fluid filtration contributes to the beneficial effects of partial liquid ventilation on gas exchange and lung mechanics.

  4. Blood flow vs. venous pressure effects on filtration coefficient in oleic acid-injured lung.

    PubMed

    Anglade, D; Corboz, M; Menaouar, A; Parker, J C; Sanou, S; Bayat, S; Benchetrit, G; Grimbert, F A

    1998-03-01

    On the basis of changes in capillary filtration coefficient (Kfc) in 24 rabbit lungs, we determined whether elevations in pulmonary venous pressure (Ppv) or blood flow (BF) produced differences in filtration surface area in oleic acid-injured (OA) or control (Con) lungs. Lungs were cyclically ventilated and perfused under zone 3 conditions by using blood and 5% albumin with no pharmacological modulation of vascular tone. Pulmonary arterial, venous, and capillary pressures were measured by using arterial, venous, and double occlusion. Before and during each Kfc-measurement maneuver, microvascular/total vascular compliance was measured by using venous occlusion. Kfc was measured before and 30 min after injury, by using a Ppv elevation of 7 cmH2O or a BF elevation from 1 to 2 l . min-1 . 100 g-1 to obtain a similar double occlusion pressure. Pulmonary arterial pressure increased more with BF than with Ppv in both Con and OA lungs [29 +/- 2 vs. 19 +/- 0.7 (means +/- SE) cmH2O; P < 0. 001]. In OA lungs compared with Con lungs, values of Kfc (200 +/- 40 vs. 83 +/- 14%, respectively; P < 0.01) and microvascular/total vascular compliance ratio (86 +/- 4 vs. 68 +/- 5%, respectively; P < 0.01) increased more with BF than with Ppv. In conclusion, for a given OA-induced increase in hydraulic conductivity, BF elevation increased filtration surface area more than did Ppv elevation. The steep pulmonary pressure profile induced by increased BF could result in the recruitment of injured capillaries and could also shift downstream the compression point of blind (zone 1) and open injured vessels (zone 2).

  5. Hepatic Warm Ischemia-Reperfusion-Induced Increase in Pulmonary Capillary Filtration Is Ameliorated by Administration of a Multidrug Resistance-Associated Protein 1 Inhibitor and Leukotriene D4 Antagonist (MK-571) Through Reducing Neutrophil Infiltration and Pulmonary Inflammation and Oxidative Stress in Rats.

    PubMed

    Yeh, D Y-W; Yang, Y-C; Wang, J-J

    2015-05-01

    Hepatopulmonary syndrome (HPS) is the major complication subsequent to liver ischemia and reperfusion (I/R) injury after resection or transplantation of liver. Hallmarks of HPS include increases in pulmonary leukotrienes and neutrophil recruitment and infiltrating across capillaries. We aimed to investigate the protective efficacy of MK-571, a multidrug resistance-associated protein 1 inhibitor and leukotriene D4 agonist, against hepatic I/R injury-associated change in capillary filtration. Eighteen Sprague-Dawley male rats were evenly divided into a sham-operated group, a hepatic I/R group, and an MK-571-treated I/R group. MK-571 was administered intraperitoneally 15 min before hepatic ischemia and every 12 hours during reperfusion. Ischemia was conducted by occluding the hepatic artery and portal vein for 30 min, followed by removing the clamps and closing the incision. Forty-eight hours after hepatic ischemia, we assessed the pulmonary capillary filtration coefficient (Kfc) through the use of in vitro-isolated, perfused rat lung preparation. We also measured the lung wet-to-dry weight ratio (W/D) and protein concentration in broncho-alveolar lavage fluid (PCBAL). Lung inflammation and oxidative stress were evaluated by use of tissue tumor necrosis factor (TNF)-α and malondialdehyde levels and lavage differential macrophage and neutrophil cell count. Hepatic I/R injury markedly increased Kfc, W/D, PCBAL, tissue TNF-α level, and differential neutrophil cell count (P < .05). MK-571 treatment reduced neutrophil infiltration and lung inflammation and improved pulmonary capillary filtration, collectively suggesting lung protection. Treatment with MK-571 before and during hepatic ischemia and reperfusion protects lung against pulmonary capillary barrier function impairment through decreasing pulmonary lung inflammation and lavage neutrophils. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Capillary filtration in venous hypertension. Comparison between the vacuum suction chamber (VSC) device and straingauge phlethysmography.

    PubMed

    Belcaro, G; Rulo, A; Renton, S

    1992-01-01

    To evaluate capillary filtration a group of normal subjects and two groups of subjects with venous incompetence (50 with deep and 50 with superficial incompetence) were studied with the vacuum suction chamber (VSC) device applied onto the internal perimalleolar region. This method was compared with straingauge plethysmography rate of ankle swelling (RAS). By the VSC the time taken for the weal to disappear (VSC time) was considered indicative of capillary filtration. The values obtained with the two methods were well related (r < 0.742) and there was a good separation between patients and normals. The separation between the two groups of patients was significantly better (p < 0.05) with the VSC time. In conclusion VSC time is a good indication of capillary filtration in comparison with straingauge plethysmography RAS. It may be used to assess variations in capillary filtration in venous hypertension and possibly to follow up the effects of treatments.

  7. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration.

    PubMed

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch

    2015-03-01

    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Thromboxane plays a role in postprandial jejunal oxygen uptake and capillary exchange.

    PubMed

    Alemayehu, A; Chou, C C

    1990-09-01

    The effects of a thromboxane A2 (TxA2)-endoperoxide receptor antagonist, SQ 29548, on jejunal blood flow, oxygen uptake, and capillary filtration coefficient (Kfc) were determined in anesthetized dogs under resting conditions and during the presence of predigested food in the jejunal lumen in three series of experiments. In series 1, 2.0 micrograms intra-arterial administration of SQ 29548 was found to abolish completely the vasoconstrictor action of graded doses (0.05-2.0 micrograms) of intra-arterial injection of a TxA2-endoperoxide analogue, U44069. SQ 29548 (2.0 micrograms ia) per se did not significantly alter resting jejunal blood flow, oxygen uptake, capillary pressure, or Kfc. Before SQ 29548, placement of food plus bile into the jejunal lumen increased blood flow +42 +/- 9%, oxygen uptake +28 +/- 7%, and Kfc +24 +/- 6%. After SQ 29548, the food placement increased blood flow +37 +/- 8%, oxygen uptake +52 +/- 11%, and Kfc +63 +/- 20%. The food-induced increases in oxygen uptake and Kfc after SQ 29548 were significantly greater than those induced before the blocking of TxA2-endoperoxide receptors by SQ 29548. Our study indicates that endogenous thromboxane does not play a role in regulating jejunal blood flow, capillary filtration, and oxygen uptake under resting conditions. However, it plays a role in limiting the food-induced increases in jejunal oxygen uptake and capillary exchange capacity without influencing the food-induced hyperemia.

  9. A Physical Interpretation of the Phenomenological Coefficients of Membrane Permeability

    PubMed Central

    Kedem, O.; Katchalsky, A.

    1961-01-01

    A "translation" of the phenomenological permeability coefficients into friction and distribution coefficients amenable to physical interpretation is presented. Expressions are obtained for the solute permeability coefficient ω and the reflection coefficient σ for both non-electrolytic and electrolytic permeants. An analysis of the coefficients is given for loose membranes as well as for dense natural membranes where transport may go through capillaries or by solution in the lipoid parts of the membrane. Water diffusion and filtration and the relation between these and capillary pore radius of the membrane are discussed. For the permeation of ions through the charged membranes equations are developed for the case of zero electrical current in the membrane. The correlation of σ with ω and Lp for electrolytes resembles that for non-electrolytes. In this case ω and σ depend markedly on ion concentration and on the charge density of the membrane. The reflection coefficient may assume negative values indicating anomalous osmosis. An analysis of the phenomena of anomalous osmosis was carried out for the model of Teorell and Meyer and Sievers and the results agree with the experimental data of Loeb and of Grim and Sollner. A set of equations and reference curves are presented for the evaluation of ω and σ in the transport of polyvalent ions through charged membranes. PMID:13752127

  10. Interstitial distribution of charged macromolecules in the dog lung: a kinetic model.

    PubMed

    Parker, J C; Miniati, M; Pitt, R; Taylor, A E

    1987-01-01

    A mathematic model was constructed to investigate conflicting physiologic data concerning the charge effect of continuous capillaries to macromolecules in the lung. We simulated the equilibration kinetics of lactate dehydrogenase (MR 4.2 nM) isozymes LDH 1 (pI = 5.0) and LDH 5 (pI = 7.9) between plasma and lymph using previously measured permeability coefficients, lung tissue distribution volumes (VA) and plasma concentrations (CP) in lung tissue. Our hypothesis is that the fixed anionic charges in interstitium, basement membrane, and cell surfaces determine equilibration rather than charged membrane effects at the capillary barrier, so the same capillary permeability coefficients were used for both isozymes. Capillary filtration rates and protein fluxes were calculated using conventional flux equations. Initial conditions at baseline and increased left atrial pressures (PLA) were those measured in animal studies. Simulated equilibration of isozymes over 30 h in the model at baseline capillary pressures accurately predicted the observed differences in lymph/plasma concentration ratios (CL/CP) between isotopes at 4 h and equilibration of these ratios at 24 h. Quantitative prediction of isozyme CL/CP ratios was also obtained at increased PLA. However, an additional cation selective compartment representing the surface glycocalyx was required to accurately simulate the initial higher transcapillary clearances of cationic LDH 5. Thus experimental data supporting the negative barrier, positive barrier, and no charge barrier hypotheses were accurately reproduced by the model using only the observed differences in interstitial partitioning of isozymes without differences in capillary selectivity.

  11. The Dynamics of Glomerular Ultrafiltration in the Rat

    PubMed Central

    Brenner, Barry M.; Troy, Julia L.; Daugharty, Terrance M.

    1971-01-01

    Using a unique strain of Wistar rats endowed with glomeruli situated directly on the renal cortical surface, we measured glomerular capillary pressures using servo-nulling micropipette transducer techniques. Pressures in 12 glomerular capillaries from 7 rats averaged 60 cm H2O, or approximately 50% of mean systemic arterial values. Wave form characteristics for these glomerular capillaries were found to be remarkably similar to those of the central aorta. From similarly direct estimates of hydrostatic pressures in proximal tubules, and colloid osmotic pressures in systemic and efferent arteriolar plasmas, the net driving force for ultrafiltration was calculated. The average value of 14 cm H2O is lower by some two-thirds than the majority of estimates reported previously based on indirect techniques. Single nephron GFR (glomerular filtration rate) was also measured in these rats, thereby permitting calculation of the glomerular capillary ultrafiltration coefficient. The average value of 0.044 nl sec−1 cm H2O−1 glomerulus−1 is at least fourfold greater than previous estimates derived from indirect observations. PMID:5097578

  12. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar

    1995-01-01

    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethysmography of supine healthy male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n = 6) and during placebo infusion (n = 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 +/- 4 to 2,568 +/- 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion: mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3%, respectively, relative to preinfusion baseline values (p less than 0.05). Mean calf filtration, however, was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20% with ANP infusion, whereas blood pressure was unchanged. Calf conductance (blood flow/ arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, pharmacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchnic sites or both, while having the opposite effect in the leg.

  13. The effect of adhesion molecule blockade on pulmonary reperfusion injury.

    PubMed

    Levine, Adrian J; Parkes, Karen; Rooney, Stephen J; Bonser, Robert S

    2002-04-01

    Selectins are the molecules involved in the initial adhesion of the activated neutrophil on pulmonary endothelium. We investigated the efficacy of selectin blockade in a selective (monoclonal antibody RMP-1) and nonselective (Fucoidin) manner in pulmonary reperfusion injury. Groups of six rat lungs were flushed with University of Wisconsin solution then stored at 4 degrees C for 4 hours. They then underwent sanguinous reperfusion for 30 minutes during which functional measures (gas exchange, pulmonary artery pressure, and airway pressure) of lung performance were made. After reperfusion we estimated their capillary filtration coefficient (Kfc units g/cm water/minute/g wet lung tissue) using a gravimetric technique. Four groups were studied: group I had no reperfusion, group II had 30 minutes of reperfusion, group III had infusion of 20 mg/kg Fucoidin before reperfusion, and group IV had infusion of 20 microg/mL RMP-1 before reperfusion. Reperfusion injury was found between groups I and II by an increase in capillary filtration coefficient (1.048 +/- 0.316 to 3.063 +/- 0.466, p < 0.01). Groups III and IV had a significantly lower Kfc than group II (0.967 +/- 0.134 and 1.205 +/- 0.164, respectively, p < 0.01). There was no significant functional difference between groups II, III, and IV. Reperfusion-induced hyperpermeability was ameliorated by selective (RMP-1) and nonselective (Fucoidin) selectin blockade.

  14. Ischemia and reperfusion of the lung tissues induced increase of lung permeability and lung edema is attenuated by dimethylthiourea (PP69).

    PubMed

    Chen, K H; Chao, D; Liu, C F; Chen, C F; Wang, D

    2010-04-01

    This study sought to determine whether oxygen radical scavengers of dimethylthiourea (DMTU), superoxide dismutase (SOD), or catalase (CAT) pretreatment attenuated ischemia-reperfusion (I/R)-induced lung injury. After isolation from a Sprague-Dawley rat, the lungs were perfused through the pulmonary artery cannula with rat whole blood diluted 1:1 with a physiological salt solution. An acute lung injury was induced by 10 minutes of hypoxia with 5% CO2-95% N2 followed by 65 minutes of ischemia and then 65 minutes of reperfusion. I/R significantly increased microvascular permeability as measured by the capillary filtration coefficient (Kfc), lung weight-to-body weight ratio (LW/BW), and protein concentration in bronchoalveolar lavage fluid (PCBAL). DMTU pretreatment significantly attenuated the acute lung injury. The capillary filtration coefficient (P<.01), LW/BW (P<.01) and PCBAL (P<.05) were significantly lower among the DMTU-treated rats than hosts pretreated with SOD or CAT. The possible mechanisms of the protective effect of DMTU in I/R-induced lung injury may relate to the permeability of the agent allowing it to scavenge intracellular hydroxyl radicals. However, whether superoxide dismutase or catalase antioxidants showed protective effects possibly due to their impermeability of the cell membrane not allowing scavenging of intracellular oxygen radicals. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  15. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar

    1995-01-01

    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethys-mography of supine health male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n equals 6) and during placebo infusion (n equals 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 plus or minus 4 to 2,568 plus or minus 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion; mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3 percent respectively, relative to pre-infusion baseline values (p is less than 0.05). Mean calf filtration, however was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20 percent with ANP infusion, wheras blood pressure was unchanged. Calf conductance (blood flow/arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, phamacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchic sites or both, while having the opposite effect in the leg.

  16. Atrial natriuretic factor increases splenic microvascular pressure and fluid extravasation in the rat.

    PubMed

    Sultanian, R; Deng, Y; Kaufman, S

    2001-05-15

    The spleen is an important site of atrial natriuretic factor (ANF)-induced fluid extravasation into the systemic lymphatic system. The mechanism underlying this process was studied in a blood-perfused (1 ml min(-1)) rat spleen using the double occlusion technique. To ensure that our observations were spleen specific, a similar protocol was repeated in the hindquarters. Rat ANF(1-28), infused into the splenic artery of anaesthetized male rats, caused a dose-dependent (0.3-59 pmol min(-1)) increase in microvascular pressure from 11.3 +/- 0.7 to 14.9 +/- 0.5 mmHg and in post-capillary resistance from 7.2 +/- 0.6 to 10.1 +/- 1.1 mmHg ml(-1). ANF elicited no change in splenic pre-capillary resistance or in hindquarter haemodynamics. Intrasplenic ANF (6.5 pmol min(-1)) caused a sustained increase in intrasplenic fluid efflux from 0.1 +/- 0.1 to 0.3 +/- 0.1 ml min(-1), and in capillary filtration coefficient (Kf) from 1.2 +/- 0.5 to 2.4 +/- 0.6 ml mmHg-1 min-1 (100 g tissue)-1. Mechanical elevation of splenic intravascular pressure (from 11.3 +/- 0.7 to 22.4 +/- 0.2 mmHg) significantly increased intrasplenic fluid extravasation (from 0.4 +/- 0.3 to 1.4 +/- 0.3 ml min(-1)). The natriuretic peptide receptor-C (NPRC)-specific agonist C-ANF(4-23) (12.5 and 125 pmol min(-1)) did not alter splenic intravascular pressure or pre-/post-capillary resistance. The ANF antagonist A71915 (8.3 and 83 pmol min-1), which blocks ANF-stimulated cGMP production via natriuretic peptide receptor-A (NPRA), inhibited the ANF-induced changes in splenic microvascular pressure and post-capillary resistance. It is concluded that ANF enhances the extravasation of isoncotic fluid from the splenic vasculature both by raising intrasplenic microvascular pressure (increased post-capillary resistance) and by increasing filtration area. The constrictive activity of ANF on the splenic vasculature is mediated through NPRA.

  17. Passing on the Legacy: Teaching Capillary Filtration and Developing Presentation Skills Using Classic Papers

    ERIC Educational Resources Information Center

    McGeown, J. Graham

    2006-01-01

    Capillary filtration is a key area in the understanding of cardiovascular function and has both physiological and pathophysiological relevance in nearly every organ system. This article describes how classic papers in the Legacy collection of American Physiological Society publications can be used in a teaching symposium exploring the evidence…

  18. A comparison of capillary hydraulic conductivities in postural and locomotor muscle.

    PubMed

    McDonagh, P F; Gore, R W

    1982-09-01

    In a comparative skeletal muscle study Folkow and Halicka (Microvasc. Res. 1: 1-14, 1968) reported that the capillary filtration coefficient (CFC) of postural (red) muscle was two times the CFC of locomotor (white) muscle. It was concluded that the twofold difference in CFC was due solely to a difference in the perfused capillary surface areas (Sf) of red vs. white muscle. However, CFC is the product of capillary hydraulic conductivity (LP) and Sf. Hence their conclusion assumed that the average LP of red muscle capillaries is exactly equal to the average LP of white muscle capillaries. The following study was undertaken to test the validity of this assumption. The microocclusion procedures and analytical model described by Lee et al. (Circ. Res. 28: 358-370, 1971) and Gore [Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H268-H287, 1982] were used to determine LP. Independent measurements of LP were recorded from single capillaries in red, anterior latissimus dorsi (ALD) and white, posterior latissimus dorsi (PLD) muscles of chickens anesthetized with L.A. Thesia. We found that the mean capillary hydraulic conductivity in postural muscle [(LP)ALD = 0.20 +/- 0.06 (SE) micrometers . s-1 . cmH2O-1 (n = 11)] was significantly different from the mean capillary hydraulic conductivity in locomotor muscle [(LP)PLD = 0.061 +/- 0.01 micrometers . s-1 . cmH2O-1 (n = 14)] (P less than 0.05). These results provide direct evidence that observed differences in red vs. white muscle CFC's may not be due solely to different perfused capillary surface areas but may also be due to differences in capillary hydraulic conductivity.

  19. A three-compartment model of osmotic water exchange in the lung microvasculature.

    PubMed

    Seale, K T; Harris, T R

    2000-08-01

    A bolus injection of hypertonic NaCl into the pulmonary arterial circulation of an isolated perfused dog lung causes the osmotic movement of water first into, and then out of the capillary. The associated changes in blood constituent concentrations and density are referred to as the osmotic transient (OT). Measurement of the sound conduction velocity of effluent blood during an OT is a highly sensitive way to monitor water movement between the vascular and extravascular spaces. It was our objective to develop a mathematical model that adequately describes this transient change in the sound conduction velocity and evaluate its application under conditions of homogeneous and heterogeneous capillary flow distributions. The model accounts for osmotic water exchange between the capillary and two parallel extravascular compartments, and includes as parameters the osmotic conductances (sigmaK1 ,sigmaK2) of the two compartments. The osmotic conductance parameters incorporate the filtration coefficient for water and reflection coefficient for salt for the two pathways of water exchange. The partition of total extravascular lung water (EVLW) between the two extravascular compartments is a third parameter of the model. The homogeneous model parameter estimates (per gram wet lung weight +/-95% confidence limits) from the best-fit analysis of a typical curve were sigmaK1=2.15 +/-0.07, sigmaK2 = 0.03 + 0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)] and V1 = 23.83+/-0.12 ml, with a coefficient of variation (CV) of 0.08. The heterogeneous parameter estimates for a capillary transit time distribution with mean transit time (MTTc) = 1.72 s, and relative dispersion (RDc) = 0.35 were KI = 2.38+/-0.05, or K2 = 0.03+/-0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)], V1 = 23.91+/-0.08 ml, and CV=0.05. EVLW was 42.1 ml for both models. We conclude that the three-compartment mathematical model adequately describes a typical OT under both homogeneous and heterogeneous blood flow assumptions.

  20. Transport of Spherical Particles Through Fibrous Media and a Row of Parallel Cylinders: Applications to Glomerular Filtration.

    PubMed

    Punyaratabandhu, Numpong; Kongoup, Pimkhwan; Dechadilok, Panadda; Katavetin, Pisut; Triampo, Wannapong

    2017-12-01

    Viewed in renal physiology as a refined filtration device, the glomerulus filters large volumes of blood plasma while keeping proteins within blood circulation. Effects of macromolecule size and macromolecule hydrodynamic interaction with the nanostructure of the cellular layers of the glomerular capillary wall on the glomerular size selectivity are investigated through a mathematical simulation based on an ultrastructural model. The epithelial slit, a planar arrangement of fibers connecting the epithelial podocytes, is represented as a row of parallel cylinders with nonuniform spacing between adjacent fibers. The mean and standard deviation of gap half-width between its fibers are based on values recently reported from electron microscopy. The glomerular basement membrane (GBM) is represented as a fibrous medium containing fibers of two different sizes: the size of type IV collagens and that of glycosaminoglycans (GAGs). The endothelial cell layer is modeled as a layer full of fenestrae that are much larger than solute size and filled with GAGs. The calculated total sieving coefficient agrees well with the sieving coefficients of ficolls obtained from in vivo urinalysis in humans, whereas the computed glomerular hydraulic permeability also falls within the range estimated from human glomerular filtration rate (GFR). Our result indicates that the endothelial cell layer and GBM significantly contribute to solute and fluid restriction of the glomerular barrier, whereas, based on the structure of the epithelial slit obtained from electron microscopy, the contribution of the epithelial slit could be smaller than previously believed.

  1. Technical characterization of dialysis fluid flow and mass transfer rate in dialyzers with various filtration coefficients using dimensionless correlation equation.

    PubMed

    Fukuda, Makoto; Yoshimura, Kengo; Namekawa, Koki; Sakai, Kiyotaka

    2017-06-01

    The objective of the present study is to evaluate the effect of filtration coefficient and internal filtration on dialysis fluid flow and mass transfer coefficient in dialyzers using dimensionless mass transfer correlation equations. Aqueous solution of vitamin B 12 clearances were obtained for REXEED-15L as a low flux dialyzer, and APS-15EA and APS-15UA as high flux dialyzers. All the other design specifications were identical for these dialyzers except for filtration coefficient. The overall mass transfer coefficient was calculated, moreover, the exponents of Reynolds number (Re) and film mass transfer coefficient of the dialysis-side fluid (k D ) for each flow rate were derived from the Wilson plot and dimensionless correlation equation. The exponents of Re were 0.4 for the low flux dialyzer whereas 0.5 for the high flux dialyzers. Dialysis fluid of the low flux dialyzer was close to laminar flow because of its low filtration coefficient. On the other hand, dialysis fluid of the high flux dialyzers was assumed to be orthogonal flow. Higher filtration coefficient was associated with higher k D influenced by mass transfer rate through diffusion and internal filtration. Higher filtration coefficient of dialyzers and internal filtration affect orthogonal flow of dialysis fluid.

  2. Thromboxane synthesis inhibitors and postprandial jejunal capillary exchange capacity.

    PubMed

    Mangino, M J; Chou, C C

    1988-05-01

    The effects of thromboxane synthesis inhibitors (imidazole and U 63557A; Upjohn) and the cyclooxygenase inhibitor, mefenamic acid, on jejunal capillary filtration coefficients (Kfc) were determined in dogs before and during the presence of predigested food in the jejunal lumen. The jejunal Kfc increased significantly soon after the placement of a predigested test food containing all major constituents of diet. The Kfc remained elevated as long as the food was present in the lumen (15 min). Mefenamic acid (10 mg/kg iv) did not significantly alter resting jejunal Kfc or alter the food-induced increase in Kfc. Imidazole (5.0 mg/min ia) or U 63557A (5.0 mg/kg iv) per se significantly increased jejunal Kfc. Placement of digested food further increased the Kfc to levels significantly higher than those observed before administration of the two thromboxane synthase inhibitors. Production of thromboxane B2 by jejunal tissue was significantly reduced and 6-ketoprostaglandin F1 alpha (the stable hydrolysis product of prostacyclin) production was significantly increased after administration of U 63557A. Our study indicates that the relative production of endogenous thromboxanes and other prostanoids modulates jejunal capillary exchange capacity in the absence or presence of digested food in the jejunal lumen.

  3. Expanded uncertainty estimation methodology in determining the sandy soils filtration coefficient

    NASA Astrophysics Data System (ADS)

    Rusanova, A. D.; Malaja, L. D.; Ivanov, R. N.; Gruzin, A. V.; Shalaj, V. V.

    2018-04-01

    The combined standard uncertainty estimation methodology in determining the sandy soils filtration coefficient has been developed. The laboratory researches were carried out which resulted in filtration coefficient determination and combined uncertainty estimation obtaining.

  4. Rugged large volume injection for sensitive capillary LC-MS environmental monitoring

    NASA Astrophysics Data System (ADS)

    Roberg-Larsen, Hanne; Abele, Silvija; Demir, Deniz; Dzabijeva, Diana; Amundsen, Sunniva F.; Wilson, Steven R.; Bartkevics, Vadims; Lundanes, Elsa

    2017-08-01

    A rugged and high throughput capillary column (cLC) LC-MS switching platform using large volume injection and on-line automatic filtration and filter back-flush (AFFL) solid phase extraction (SPE) for analysis of environmental water samples with minimal sample preparation is presented. Although narrow columns and on-line sample preparation are used in the platform, high ruggedness is achieved e.g. injection of 100 non-filtrated water samples would did not result in a pressure rise/clogging of the SPE/capillary columns (inner diameter 300 µm). In addition, satisfactory retention time stability and chromatographic resolution were also features of the system. The potential of the platform for environmental water samples was demonstrated with various pharmaceutical products, which had detection limits (LOD) in the 0.05 - 12.5 ng/L range. Between-day and within-day repeatability of selected analytes were < 20% RSD.

  5. When does the lung die? Kfc, cell viability, and adenine nucleotide changes in the circulation-arrested rat lung.

    PubMed

    Jones, D R; Becker, R M; Hoffmann, S C; Lemasters, J J; Egan, T M

    1997-07-01

    Lungs harvested from cadaveric circulation-arrested donors may increase the donor pool for lung transplantation. To determine the degree and time course of ischemia-reperfusion injury, we evaluated the effect of O2 ventilation on capillary permeability [capillary filtration coefficient (Kfc)], cell viability, and total adenine nucleotide (TAN) levels in in situ circulation-arrested rat lungs. Kfc increased with increasing postmortem ischemic time (r = 0.88). Lungs ventilated with O2 1 h postmortem had similar Kfc and wet-to-dry ratios as controls. Nonventilated lungs had threefold (P < 0.05) and sevenfold (P < 0.0001) increases in Kfc at 30 and 60 min postmortem compared with controls. Cell viability decreased in all groups except for 30-min postmortem O2-ventilated lungs. TAN levels decreased with increasing ischemic time, particularly in nonventilated lungs. Loss of adenine nucleotides correlated with increasing Kfc values (r = 0.76). This study indicates that lungs retrieved 1 h postmortem may have normal Kfc with preharvest O2 ventilation. The relationship between Kfc and TAN suggests that vascular permeability may be related to lung TAN levels.

  6. Synergism between endotoxin priming and exotoxin challenge in provoking severe vascular leakage in rabbit lungs.

    PubMed

    Schütte, H; Rosseau, S; Czymek, R; Ermert, L; Walmrath, D; Krämer, H J; Seeger, W; Grimminger, F

    1997-09-01

    Lipopolysaccharides (LPS) of gram-negative bacteria prime rabbit lungs for enhanced thromboxane-mediated vasoconstriction upon subsequent challenge with the exotoxin Escherichia coli hemolysin (HlyA) (Walmrath et al. J. Exp. Med. 1994;180:1437-1443). We investigated the impact of endotoxin priming and subsequent HlyA challenge on lung vascular permeability while maintaining constancy of capillary pressure. Rabbit lungs were perfused in a pressure-controlled mode in the presence of the thromboxane receptor antagonist BM 13.505, with continuous monitoring of flow. Perfusion for 180 min with 10 ng/ml LPS did not provoke vasoconstriction or alteration of capillary filtration coefficient (Kfc) values. HlyA (0.021 hemolytic units/ml) induced thromboxane release and a transient decrease in perfusion flow in the absence of significant changes in Kfc. Similar results were obtained when LPS and HlyA were coapplied simultaneously. However, when the HlyA challenge was undertaken after 180 min of LPS priming, a manifold increase in Kfc values was noted, with concomitant severe lung edema formation, although capillary pressure remained unchanged. Thus, endotoxin primes the lung vasculature to respond with a severe increase in vascular permeability to a subsequent low-dose application of HlyA. Such synergism between endotoxin priming and exotoxin challenge in provoking lung vascular leakage may contribute to the pathogenesis of respiratory failure in sepsis and severe lung infection.

  7. Manipulations of core temperatures in ischemia-reperfusion lung injury in rabbits.

    PubMed

    Chang, Hung; Huang, Kun-Lun; Li, Min-Hui; Hsu, Ching-Wang; Tsai, Shih-Hung; Chu, Shi-Jye

    2008-01-01

    The present study was designed to determine the effect of various core temperatures on acute lung injury induced by ischemia-reperfusion (I/R) in our isolated rabbit lung model. Typical acute lung injury was successfully induced by 30 min of ischemia followed by 90 min of reperfusion observation. The I/R elicited a significant increase in pulmonary arterial pressure, microvascular permeability (measured by using the capillary filtration coefficient, Kfc), Delta Kfc ratio, lung weight gain and the protein concentration of the bronchoalveolar lavage fluid. Mild hypothermia significantly attenuated acute lung injury induced by I/R, all parameters having decreased significantly (p<0.05); conversely, mild hyperthermia did not further exacerbate acute lung injury. These experimental data suggest that mild hypothermia significantly ameliorated acute lung injury induced by ischemia-reperfusion in rabbits.

  8. Capillary isoelectric focusing with whole column imaging detection (iCIEF): A new approach to the characterization and quantification of salivary α-amylase.

    PubMed

    Zarabadi, Atefeh S; Huang, Tiemin; Mielke, John G

    2017-05-15

    Saliva is an easily collected biological fluid with potentially important diagnostic value. While gel electrophoresis is generally used for salivary analysis, we employed the capillary isoelectric focusing technique to allow for a rapid, automated mode of electrophoresis. Capillary isoelectric focusing coupled with UV whole column imaging detection (iCIEF) was used to develop a robust protocol to characterize salivary α-amylase collected from various glands. Notably, three sample preparation methods were examined: ultrafiltration, gel-filtration, and starch affinity interaction with salivary amylase. Salivary α-amylase separated into two major peaks before sample treatment; while both filtration methods and starch affinity interaction of salivary amylase enhanced the resolution of isozymes, desalting with gel-filtration displayed the best recovery and the highest resolution of isozymes. Good agreement existed between the observed isoelectric points and the values reported in the literature. In addition, a high level of precision was apparent, and the relative standard deviation for replicates was less than 0.5% for pIs (peak positions) and below 10% for peak area. Furthermore, saliva secreted from the parotid gland proved to have a higher amylase content compared to either secretions from the submandibular/sublingual complex, or whole saliva, as well as amylase enhancement under stimulation. The results suggest that the iCIEF technique can be used to accurately resolve and quantitate amylase isozymes in a rapid and automated fashion, and that gel-filtration should be applied to saliva samples beforehand to allow for optimal purification and characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Microgravity Investigation of Capillary Driven Imbibition

    NASA Astrophysics Data System (ADS)

    Dushin, V. R.; Nikitin, V. F.; Smirnov, N. N.; Skryleva, E. I.; Tyurenkova, V. V.

    2018-05-01

    The goal of the present paper is to investigate the capillary driven filtration in porous media under microgravity conditions. New mathematical model that allows taking into account the blurring of the front due to the instability of the displacement that is developing at the front is proposed. The constants in the mathematical model were selected on the basis of the experimental data on imbibition into unsaturated porous media under microgravity conditions. The flow under the action of a combination of capillary forces and a constant pressure drop or a constant flux is considered. The effect of capillary forces and the type of wettability of the medium on the displacement process is studied. A criterion in which case the capillary effects are insignificant and can be neglected is established.

  10. Highly sensitive oligosaccharide analysis in capillary electrophoresis using large-volume sample stacking with an electroosmotic flow pump.

    PubMed

    Kawai, Takayuki; Watanabe, Masato; Sueyoshi, Kenji; Kitagawa, Fumihiko; Otsuka, Koji

    2012-04-06

    To obtain high sensitivity in capillary electrophoresis of oligosaccharide without reducing the high resolution with an easy experimental procedure, large-volume sample stacking with an electroosmotic flow pump (LVSEP) was investigated. As a fundamental study, effect of the conductivity of a sample solution in LVSEP was examined. It was revealed that LVSEP was successfully carried out even in using a sample solution with the ionic strength of 150 μM and the conductivity ratio of 20, indicating a good applicability of LVSEP to the analysis of real samples containing salts. When glucose oligomer was analyzed as a model sample in LVSEP-capillary zone electrophoresis (CZE), all peaks were well resolved with decreasing only 5% of the peak-to-peak distance, which suggested 95% of the whole capillary could be used for the effective separation. In the analysis of maltoheptaose, a good calibration line with correlation coefficient of 0.9995 was obtained. The limit of detection was estimated as 2 pM, which was 500-fold lower than that in the conventional CZE. N-linked glycans released from three glycoproteins, bovine ribonuclease B, bovine fetuin, and human α(1)-acid glycoprotein were also analyzed by LVSEP-CZE. By the sample purification with a gel filtration column, further sample dilution to reduce the sample conductivity for LVSEP was not needed. All glycan samples were well concentrated and separated with up to a 770-fold sensitivity increase. The run-to-run repeatabilities of the migration time, peak height, and peak area were good with relative standard deviations of 0.1-1.3%, 1.2-1.7%, and 2.8-4.9%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Filtration rate dependence of hyaluronan reflection by joint-to-lymph barrier: evidence for concentration polarisation

    PubMed Central

    Sabaratnam, S; Mason, RM; Levick, JR

    2004-01-01

    Hyaluronan (HA), a component of synovial fluid, buffers fluid loss from joints. To explain this, a quantitative theory for HA concentration polarisation at a partially sieving synovial lining was developed. The theory predicts a fall in HA reflected fraction R with increased filtration rate. To test this, knees of anaesthetised rabbits were infused with HA and fluorescein–dextran (FD) at constant trans-synovial filtration rates of 6–89 μl min−1. Samples of femoral lymph, mixed intra-articular fluid and subsynovial fluid after ≥ 3 h were analysed by high-performance liquid chromatography. R was calculated as (1 – downstream/upstream concentration), using [FD] to adjust for joint lymph dilution in femoral lymph. Intra-articular HA concentration after ≥ 3 h, 0.47 ± 0.02 mg ml−1 (mean ±s.e.m., n = 31), exceeded the infusate concentration, 0.20 mg ml−1, while subsynovial and lymph [HA] were reduced relative to [FD]. The changes in [HA] demonstrated synovial molecular sieving of HA. R from cavity to lymph (Rlymph) fell monotonically from 0.93 at 6 μl min−1 to 0.14 at 89 μl min−1 (P < 0.0001, regression analysis, n = 33). R values calculated from the intra-articular HA accumulation (Rasp) or the low subsynovial concentrations (Rsyn) were similar negative functions of filtration rate. R for lymphatic capillary endothelium (Rendo), calculated from lymph/subsynovial concentration ratios, was effectively zero (−0.03 ± 0.18, n = 21), confirming that synovium, not initial lymphatic endothelium, is the reflection site. Logarithmic linearisation of the results evaluated the synovial HA reflection coefficient as 0.91. In conclusion, the existence of concentration polarisation during joint fluid drainage was supported by the demonstration of a negative relation between filtration rate and Rlymph, Rasp and Rsyn. PMID:15073278

  12. Filtration coefficient of the axon membrane as measured with hydrostatic and osmotic methods.

    PubMed

    Vargas, F F

    1968-01-01

    The hydraulic conductivity of the membranes surrounding the giant axon of the squid, Dosidicus gigas, was measured. In some axons the axoplasm was partially removed by suction. Perfusion was then established by insertion of a second pipette. In other axons the axoplasm was left intact and only one pipette was inserted. In both groups hydrostatic pressure was applied by means of a water column in a capillary manometer. Displacement of the meniscus in time gave the rate of fluid flowing across the axon sheath. In both groups osmotic differences across the membrane were established by the addition of a test molecule to the external medium which was seawater. The hydraulic conductivity determined by application of hydrostatic pressure was 10.6 +/- 0.8.10(-8) cm/sec cm H(2)O in perfused axons and 3.2 +/- 0.6.10(-8) cm/sec cm H(2)O in intact axons. When the driving force was an osmotic pressure gradient the conductivity was 4.5 +/- 0.6 x 10(-10) cm/sec cm H(2)O and 4.8 +/- 0.9 x 10(-10) cm/sec cm H(2)O in perfused and intact axons, respectively. A comparable result was found when the internal solution was made hyperosmotic. The fluid flow was a linear function of the hydrostatic pressure up to 70 cm of water. Glycerol outflux and membrane conductance were increased 1.6 and 1.1 times by the application of hydrostatic pressure. These increments do not give an explanation of the difference between the filtration coefficients. Other possible explanations are suggested and discussed.

  13. The trace analysis of microorganisms in real samples by combination of a filtration microcartridge and capillary isoelectric focusing.

    PubMed

    Horká, Marie; Horký, Jaroslav; Kubesová, Anna; Zapletalová, Eva; Slais, Karel

    2011-07-01

    Trace analysis of microorganisms in real biological samples needs very sensitive methods for their detection. Most procedures for detecting and quantifying pathogens require a sample preparation step including concentrating microorganisms from large sample volumes with high and reproducible efficiency. Electromigration techniques have great potential to include the preconcentration, separation, and detection of whole cells and therefore they can rapidly indicate the presence of pathogens. The preconcentration and separation of microorganisms from real suspensions utilising a combination of filtration and capillary isoelectric focusing was developed and the possibility for its application to real samples was verified. For our experiments, spores of Monilinia species and of Penicillium expansum were selected as model bioparticles, as they cause major losses in agrosystems. The isoelectric points of the spores of M. laxa, M. fructigena, M. fruticola, and P. expansum were determined and the method was verified using real samples taken directly from infected apples. The coupling of a filtration cartridge with a separation capillary can improve the detection limit of isoelectric focusing with UV detection by at least 4 orders of magnitude. Spores of M. fructigena and of M. laxa in numbers of hundreds of particles per milliliter were detected on a visually noninfected apple surface which was cross-contaminated during handling and storage. The efficiency of preconcentration and a preliminary identification was verified by the phenotyping technique after cultivation of the spores sampled from the apple surface.

  14. Physicochemical application of capillary chromatography

    NASA Astrophysics Data System (ADS)

    Vasil'ev, A. V.; Aleksandrov, E. N.

    1992-04-01

    The application of capillary gas chromatography in the determination of the free energy, enthalpy, and entropy of sorption, the saturated vapour pressure and activity coefficients, the assessment of the lipophilicity of volatile compounds, and the study of the properties of polymers and liquid crystals is described. The use of reaction cappillary chromatography in kinetic studies of conformational conversions, thermal degradation, and photochemical reactions is examined. Studies on the use of capillary columns for determination of the second virial coefficients and viscosity of gases and the diffusion coefficients in gases, liquids, supercritical fluids, and polymers are analysed. The bibliography includes 114 references.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renkin, E.M.; Gustafson-Sgro, M.; Sibley, L.

    Bovine serum albumin (BSA) labeled with /sup 131/I or /sup 125/I was injected intravenously in pentobarbital sodium-anesthetized rats, and tracer clearances into leg skin and muscles were measured over 30, 60, and 120 min. BSA labeled with the alternate tracer was used as vascular volume reference. Two minutes before injection of the tracer, a ligature was tied around one femoral vein to occlude outflow partially and raise capillary pressure in that leg. The unoccluded leg served as control. Skin and muscles of the occluded leg had variably and substantially higher water contents (delta W) than paired control tissues and slightlymore » but consistently increased albumin clearances (CA). The delta CA/delta W, equivalent to the albumin concentration of capillary filtrate relative to plasma determined by linear regression, were as follows: leg skin 0.004 (95% confidence limits -0.001 to +0.009), muscle biceps femoris 0.005 (0.001-0.010), muscle gastrocnemius 0.011 (0.004-0.019), muscle tibialis anterior 0.016 (0.012-0.021). All these values are significantly less than 0.10, which corresponds to a reflection coefficient for serum albumin (sigma A) of 0.90. Convective coupling of albumin flux to volume flux in skin and muscles of intact, anesthetized rats is low, with sigma AS in the range 0.98 to greater than 0.99.« less

  16. Isoproterenol attenuates high vascular pressure-induced permeability increases in isolated rat lungs.

    PubMed

    Parker, J C; Ivey, C L

    1997-12-01

    To separate the contributions of cellular and basement membrane components of the alveolar capillary barrier to the increased microvascular permeability induced by high pulmonary venous pressures (Ppv), we subjected isolated rat lungs to increases in Ppv, which increased capillary filtration coefficient (Kfc) without significant hemorrhage (31 cmH2O) and with obvious extravasation of red blood cells (43 cmH2O). Isoproterenol (20 microM) was infused in one group (Iso) to identify a reversible cellular component of injury, and residual blood volumes were measured to assess extravasation of red blood cells through ruptured basement membranes. In untreated lungs (High Ppv group), Kfc increased 6.2 +/- 1.3 and 38.3 +/- 15.2 times baseline during the 31 and 43 cmH2O Ppv states. In Iso lungs, Kfc was 36.2% (P < 0.05) and 64.3% of that in the High Ppv group at these Ppv states. Residual blood volumes calculated from tissue hemoglobin contents were significantly increased by 53-66% in the high Ppv groups, compared with low vascular pressure controls, but there was no significant difference between High Ppv and Iso groups. Thus isoproterenol significantly attenuated vascular pressure-induced Kfc increases at moderate Ppv, possibly because of an endothelial effect, but it did not affect red cell extravasation at higher vascular pressures.

  17. Role of Aquaporin-4 in Airspace-to-Capillary Water Permeability in Intact Mouse Lung Measured by a Novel Gravimetric Method

    PubMed Central

    Song, Yuanlin; Ma, Tonghui; Matthay, Michael A.; Verkman, A.S.

    2000-01-01

    The mammalian peripheral lung contains at least three aquaporin (AQP) water channels: AQP1 in microvascular endothelia, AQP4 in airway epithelia, and AQP5 in alveolar epithelia. In this study, we determined the role of AQP4 in airspace-to-capillary water transport by comparing water permeability in wild-type mice and transgenic null mice lacking AQP1, AQP4, or AQP1/AQP4 together. An apparatus was constructed to measure lung weight continuously during pulmonary artery perfusion of isolated mouse lungs. Osmotically induced water flux (Jv) between the airspace and capillary compartments was measured from the kinetics of lung weight change in saline-filled lungs in response to changes in perfusate osmolality. Jv in wild-type mice varied linearly with osmotic gradient size (4.4 × 10−5 cm3 s−1 mOsm−1) and was symmetric, independent of perfusate osmolyte size, weakly temperature dependent, and decreased 11-fold by AQP1 deletion. Transcapillary osmotic water permeability was greatly reduced by AQP1 deletion, as measured by the same method except that the airspace saline was replaced by an inert perfluorocarbon. Hydrostatically induced lung edema was characterized by lung weight changes in response to changes in pulmonary arterial inflow or pulmonary venous outflow pressure. At 5 cm H2O outflow pressure, the filtration coefficient was 4.7 cm3 s−1 mOsm−1 and reduced 1.4-fold by AQP1 deletion. To study the role of AQP4 in lung water transport, AQP1/AQP4 double knockout mice were generated by crossbreeding of AQP1 and AQP4 null mice. Jv were (cm3 s−1 mOsm−1 × 10−5, SEM, n = 7–12 mice): 3.8 ± 0.4 (wild type), 0.35 ± 0.02 (AQP1 null), 3.7 ± 0.4 (AQP4 null), and 0.25 ± 0.01 (AQP1/AQP4 null). The significant reduction in P f in AQP1 vs. AQP1/AQP4 null mice was confirmed by an independent pleural surface fluorescence method showing a 1.6 ± 0.2-fold (SEM, five mice) reduced P f in the AQP1/AQP4 double knockout mice vs. AQP1 null mice. These results establish a simple gravimetric method to quantify osmosis and filtration in intact mouse lung and provide direct evidence for a contribution of the distal airways to airspace-to-capillary water transport. PMID:10613915

  18. Measurement of net whole-body transcapillary fluid transport and effective vascular compliance in humans

    NASA Technical Reports Server (NTRS)

    Watenpaugh, D. E.; Gaffney, F. A.; Schneider, S. M. (Principal Investigator)

    1998-01-01

    BACKGROUND: Net whole-body transcapillary fluid transport (TFT) between the circulation and the interstitial (extravascular) space may be calculated as: IV - deltaPV - UV - IL, where IV=infused or ingested volume (when applicable), deltaPV = change in plasma volume, UV=urine volume, and IL=insensible loss. RESULTS: Infusion of 30 mL/kg isotonic saline over 25 minutes increased supine TFT from a basal capillary reabsorption of -106+/-24 mL/h (mean+/-SE) to a net filtration of 1,229+/-124 mL/h. One hour after infusion, reabsorption of -236+/-102 mL/h was seen, and control reabsorption levels returned by 3 hours. Four hours of 30 mm Hg lower body negative pressure (LBNP) elicited no net TFT, probably because of upper body reabsorptive compensation for lower body capillary filtration. When ingestion of 1 L of isotonic saline accompanied LBNP, filtration of 145+/-10 mL/h occurred. Reabsorption of extravascular fluid into the circulation always followed LBNP. CONCLUSION: Application of this technique could aid understanding of physiologic conditions, experimental interventions, disease states, and therapies that cause or are influenced by fluid shifts between intravascular and interstitial compartments.

  19. Interactive effect of chondroitin sulphate C and hyaluronan on fluid movement across rabbit synovium

    PubMed Central

    Sabaratnam, S; Coleman, P J; Badrick, E; Mason, R M; Levick, J R

    2002-01-01

    The polysaccharide hyaluronan (HA) conserves synovial fluid by keeping outflow low and almost constant over a wide pressure range (‘buffering’), but only at concentrations associated with polymer domain overlap. We therefore tested whether polymer interactions can cause buffering, using HA-chondroitin sulphate C (CSC) mixtures. Also, since it has been found that capillary filtration is insensitive to the Starling force interstitial osmotic pressure in frog mesenteries, this was assessed in synovium. Hyaluronan at non-buffering concentrations (0.50–0.75 mg ml−1) and/or 25 mg ml−1 CSC (osmotic pressure 68 cmH2O) was infused into knees of anaesthetised rabbits in vivo. Viscometry and chromatography confirmed that HA interacts with CSC. Pressure (Pj) versus trans-synovial flow (Q̇s) relations were measured. Q̇s was outwards for HA alone (1.2 ± 0.9 μl min−1 at 3 cmH2O, mean ± s.e.m.; n = 6). CSC diffused into synovium and changed Q̇s to filtration at low Pj (−4.1 μl min−1, 3 cmH2O, n = 5, P < 0.02, t test). Filtration ceased upon circulatory arrest (n = 3). At higher Pj, 0.75 mg ml−1 HA plus CSC buffered Q̇s to ∼3 μl min−1 over a wide range of Pj, with an outflow increase of only 0.04 ± 0.02 μl min−1 cmH2O−1 (n = 4). With HA or CSC alone, buffering was absent (slopes 0.57 ± 0.04 μl min−1 cmH2O−1 (n = 4) and 0.86 ± 0.05 μl min−1 cmH2O−1 (n = 5), respectively). Therefore, polymer interactions can cause outflow buffering in joints. Also, interstitial osmotic pressure promoted filtration in fenestrated synovial capillaries, so the results for frog mesentery capillaries cannot be generalised. The difference is attributed to differences in pore ultrastructure. PMID:11927686

  20. Filtration Coefficient of the Axon Membrane As Measured with Hydrostatic and Osmotic Methods

    PubMed Central

    Vargas, Fernando F.

    1968-01-01

    The hydraulic conductivity of the membranes surrounding the giant axon of the squid, Dosidicus gigas, was measured. In some axons the axoplasm was partially removed by suction. Perfusion was then established by insertion of a second pipette. In other axons the axoplasm was left intact and only one pipette was inserted. In both groups hydrostatic pressure was applied by means of a water column in a capillary manometer. Displacement of the meniscus in time gave the rate of fluid flowing across the axon sheath. In both groups osmotic differences across the membrane were established by the addition of a test molecule to the external medium which was seawater. The hydraulic conductivity determined by application of hydrostatic pressure was 10.6 ± 0.8.10-8 cm/sec cm H2O in perfused axons and 3.2 ± 0.6.10-8 cm/sec cm H2O in intact axons. When the driving force was an osmotic pressure gradient the conductivity was 4.5 ± 0.6 x 10-10 cm/sec cm H2O and 4.8 ± 0.9 x 10-10 cm/sec cm H2O in perfused and intact axons, respectively. A comparable result was found when the internal solution was made hyperosmotic. The fluid flow was a linear function of the hydrostatic pressure up to 70 cm of water. Glycerol outflux and membrane conductance were increased 1.6 and 1.1 times by the application of hydrostatic pressure. These increments do not give an explanation of the difference between the filtration coefficients. Other possible explanations are suggested and discussed. PMID:5642470

  1. A simple expression for quantifying bacterial chemotaxis using capillary assay data: application to the analysis of enhanced chemotactic responses from growth-limited cultures.

    PubMed

    Ford, R M; Lauffenburger, D A

    1992-05-01

    An individual cell-based mathematical model of Rivero et al. provides a framework for determining values of the chemotactic sensitivity coefficient chi 0, an intrinsic cell population parameter that characterizes the chemotactic response of bacterial populations. This coefficient can theoretically relate the swimming behavior of individual cells to the resulting migration of a bacterial population. When this model is applied to the commonly used capillary assay, an approximate solution can be obtained for a particular range of chemotactic strengths yielding a very simple analytical expression for estimating the value of chi 0, [formula: see text] from measurements of cell accumulation in the capillary, N, when attractant uptake is negligible. A0 and A infinity are the dimensionless attractant concentrations initially present at the mouth of the capillary and far into the capillary, respectively, which are scaled by Kd, the effective dissociation constant for receptor-attractant binding. D is the attractant diffusivity, and mu is the cell random motility coefficient. NRM is the cell accumulation in the capillary in the absence of an attractant gradient, from which mu can be determined independently as mu = (pi/4t)(NRM/pi r2bc)2, with r the capillary tube radius and bc the bacterial density initially in the chamber. When attractant uptake is significant, a slightly more involved procedure requiring a simple numerical integration becomes necessary. As an example, we apply this approach to quantitatively characterize, in terms of the chemotactic sensitivity coefficient chi 0, data from Terracciano indicating enhanced chemotactic responses of Escherichia coli to galactose when cultured under growth-limiting galactose levels in a chemostat.

  2. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs.

    PubMed

    Parker, J C; Ivey, C L; Tucker, J A

    1998-04-01

    To determine the initial signaling event in the vascular permeability increase after high airway pressure injury, we compared groups of lungs ventilated at different peak inflation pressures (PIPs) with (gadolinium group) and without (control group) infusion of 20 microM gadolinium chloride, an inhibitor of endothelial stretch-activated cation channels. Microvascular permeability was assessed by using the capillary filtration coefficient (Kfc), a measure of capillary hydraulic conductivity. Kfc was measured after ventilation for 30-min periods with 7, 20, and 30 cmH2O PIP with 3 cmH2O positive end-expiratory pressure and with 35 cmH2O PIP with 8 cmH2O positive end-expiratory pressure. In control lungs, Kfc increased significantly to 1.8 and 3.7 times baseline after 30 and 35 cmH2O PIP, respectively. In the gadolinium group, Kfc was unchanged from baseline (0.060 +/- 0.010 ml . min-1 . cmH2O-1 . 100 g-1) after any PIP ventilation period. Pulmonary vascular resistance increased significantly from baseline in both groups before the last Kfc measurement but was not different between groups. These results suggest that microvascular permeability is actively modulated by a cellular response to mechanical injury and that stretch-activated cation channels may initiate this response through increases in intracellular calcium concentration.

  3. Effects of Bisphenol A Metabolite 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene on Lung Function and Type 2 Pulmonary Alveolar Epithelial Cell Growth

    PubMed Central

    Liu, Shing-Hwa; Su, Chin-Chuan; Lee, Kuan-I; Chen, Ya-Wen

    2016-01-01

    Bisphenol A (BPA) is recognized as a major pollutant worldwide. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is a major active metabolite of BPA. The epidemiological and animal studies have reported that BPA is harmful to lung function. The role of MBP in lung dysfunction after BPA exposure still remains unclear. This study investigated whether MBP would induce lung alveolar cell damage and evaluated the role of MBP in the BPA exposure-induced lung dysfunction. An in vitro type 2 alveolar epithelial cell (L2) model and an ex vivo isolated reperfused rat lung model were used to determine the effects of BPA or MBP on cell growth and lung function. MBP, but not BPA, dose-dependently increased the mean artery pressure (Pa), pulmonary capillary pressure (Pc), pulmonary capillary filtration coefficient (Kfc), and wet/dry weight ratio in isolated reperfused rat lungs. MBP significantly reduced cell viability and induced caspases-3/7 cleavage and apoptosis and increased AMP-activated protein kinas (AMPK) phosphorylation and endoplasmic reticulum (ER) stress-related molecules expression in L2 cells, which could be reversed by AMPK-siRNA transfection. These findings demonstrated for the first time that MBP exposure induced type 2 alveolar cell apoptosis and lung dysfunction through an AMPK-regulated ER stress signaling pathway. PMID:27982077

  4. Effects of Bisphenol A Metabolite 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene on Lung Function and Type 2 Pulmonary Alveolar Epithelial Cell Growth.

    PubMed

    Liu, Shing-Hwa; Su, Chin-Chuan; Lee, Kuan-I; Chen, Ya-Wen

    2016-12-16

    Bisphenol A (BPA) is recognized as a major pollutant worldwide. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is a major active metabolite of BPA. The epidemiological and animal studies have reported that BPA is harmful to lung function. The role of MBP in lung dysfunction after BPA exposure still remains unclear. This study investigated whether MBP would induce lung alveolar cell damage and evaluated the role of MBP in the BPA exposure-induced lung dysfunction. An in vitro type 2 alveolar epithelial cell (L2) model and an ex vivo isolated reperfused rat lung model were used to determine the effects of BPA or MBP on cell growth and lung function. MBP, but not BPA, dose-dependently increased the mean artery pressure (Pa), pulmonary capillary pressure (Pc), pulmonary capillary filtration coefficient (K fc ), and wet/dry weight ratio in isolated reperfused rat lungs. MBP significantly reduced cell viability and induced caspases-3/7 cleavage and apoptosis and increased AMP-activated protein kinas (AMPK) phosphorylation and endoplasmic reticulum (ER) stress-related molecules expression in L2 cells, which could be reversed by AMPK-siRNA transfection. These findings demonstrated for the first time that MBP exposure induced type 2 alveolar cell apoptosis and lung dysfunction through an AMPK-regulated ER stress signaling pathway.

  5. Cellular proliferation after experimental glaucoma filtration surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jampel, H.D.; McGuigan, L.J.; Dunkelberger, G.R.

    1988-01-01

    We used light microscopic autoradiography to determine the time course of cellular incorporation of tritiated thymidine (a correlate of cell division) following glaucoma filtration surgery in seven eyes of four cynomolgus monkeys with experimental glaucoma. Incorporation of tritiated thymidine was detected as early as 24 hours postoperatively. Peak incorporation occurred five days postoperatively and had returned to baseline levels by day 11. Cells incorporating tritiated thymidine included keratocytes, episcleral cells, corneal and capillary endothelial cells, and conjunctival and corneal epithelial cells. Transmission electron microscopy was correlated with the autoradiographic results to demonstrate that fibroblasts were dividing on the corneoscleral margin.more » These findings have potential clinical implications for the use of antiproliferative agents after filtration surgery.« less

  6. Activation of rho is involved in the mechanism of hydrogen-peroxide-induced lung edema in isolated perfused rabbit lung.

    PubMed

    Chiba, Y; Ishii, Y; Kitamura, S; Sugiyama, Y

    2001-09-01

    Acute lung injury is attributed primarily to increased vascular permeability caused by reactive oxygen species derived from neutrophils, such as hydrogen peroxide (H2O2). Increased permeability is accompanied by the contraction and cytoskeleton reorganization of endothelial cells, resulting in intercellular gap formation. The Rho family of Ras-like GTPases is implicated in the regulation of the cytoskeleton and cell contraction. We examined the role of Rho in H2O2-induced pulmonary edema with the use of isolated perfused rabbit lungs. To our knowledge, this is the first study to examine the role of Rho in increased vascular permeability induced by H2O2 in perfused lungs. Vascular permeability was evaluated on the basis of the capillary filtration coefficient (Kfc, ml/min/cm H2O/100 g). We found that H2O2 (300 microM) increased lung weight, Kfc, and pulmonary capillary pressure. These effects of H2O2 were abolished by treatment with Y-27632 (50 microM), an inhibitor of the Rho effector p160 ROCK. In contrast, the muscular relaxant papaverine inhibited the H2O2-induced rise in pulmonary capillary pressure, but did not suppress the increases in lung weight and Kfc. These findings indicate that H2O2 causes pulmonary edema by elevating hydrostatic pressure and increasing vascular permeability. Y-27632 inhibited the formation of pulmonary edema by blocking both of these H2O2-induced effects. Our results suggest that Rho-related pathways have a part in the mechanism of H2O2-induced pulmonary edema. Copyright 2001 Academic Press.

  7. Study of the therapeutic benefit of cationic copolymer administration to vascular endothelium under mechanical stress

    PubMed Central

    Giantsos-Adams, Kristina; Lopez-Quintero, Veronica; Kopeckova, Pavla; Kopecek, Jindrich; Tarbell, John M.; Dull, Randal

    2015-01-01

    Pulmonary edema and the associated increases in vascular permeability continue to represent a significant clinical problem in the intensive care setting, with no current treatment modality other than supportive care and mechanical ventilation. Therapeutic compound(s) capable of attenuating changes in vascular barrier function would represent a significant advance in critical care medicine. We have previously reported the development of HPMA-based copolymers, targeted to endothelial glycocalyx that are able to enhance barrier function. In this work, we report the refinement of copolymer design and extend our physiological studies todemonstrate that the polymers: 1) reduce both shear stress and pressure-mediated increase in hydraulic conductivity, 2) reduce nitric oxide production in response to elevated hydrostatic pressure and, 3) reduce the capillary filtration coefficient (Kfc) in an isolated perfused mouse lung model. These copolymers represent an important tool for use in mechanotransduction research and a novel strategy for developing clinically useful copolymers for the treatment of vascular permeability. PMID:20932573

  8. Effects of plasma proteins on sieving of tracer macromolecules in glomerular basement membrane.

    PubMed

    Lazzara, M J; Deen, W M

    2001-11-01

    It was found previously that the sieving coefficients of Ficoll and Ficoll sulfate across isolated glomerular basement membrane (GBM) were greatly elevated when BSA was present at physiological levels, and it was suggested that most of this increase might have been the result of steric interactions between BSA and the tracers (5). To test this hypothesis, we extended the theory for the sieving of macromolecular tracers to account for the presence of a second, abundant solute. Increasing the concentration of an abundant solute is predicted to increase the equilibrium partition coefficient of a tracer in a porous or fibrous membrane, thereby increasing the sieving coefficient. The magnitude of this partitioning effect depends on solute size and membrane structure. The osmotic reduction in filtrate velocity caused by an abundant, mostly retained solute will also tend to elevate the tracer sieving coefficient. The osmotic effect alone explained only about one-third of the observed increase in the sieving coefficients of Ficoll and Ficoll sulfate, whereas the effect of BSA on tracer partitioning was sufficient to account for the remainder. At physiological concentrations, predictions for tracer sieving in the presence of BSA were found to be insensitive to the assumed shape of the protein (sphere or prolate spheroid). For protein mixtures, the theoretical effect of 6 g/dl BSA on the partitioning of spherical tracers was indistinguishable from that of 3 g/dl BSA and 3 g/dl IgG. This suggests that for partitioning and sieving studies in vitro, a good experimental model for plasma is a BSA solution with a mass concentration matching that of total plasma protein. The effect of plasma proteins on tracer partitioning is expected to influence sieving not only in isolated GBM but also in intact glomerular capillaries in vivo.

  9. Determination of gas-liquid partition coefficients of several organic solutes in trihexyl(tetradecyl)phosphonium bromide using capillary gas chromatography columns.

    PubMed

    Ronco, Nicolás R; Menestrina, Fiorella; Romero, Lílian M; Castells, Cecilia B

    2017-06-09

    In this paper, we report gas-liquid partition constants for thirty-five volatile organic solutes in the room temperature ionic liquid trihexyl(tetradecyl)phosphonium bromide measured by gas-liquid chromatography using capillary columns. The relative contribution of gas-liquid partition and interfacial adsorption to retention was evaluated through the use of columns with different the phase ratio. Four capillary columns with exactly known phase ratios were constructed and employed to measure the solute retention factors at four temperatures between 313.15 and 343.15K. The partition coefficients were calculated from the slopes of the linear regression between solute retention factors and the reciprocal of phase ratio at a given temperature according to the gas-liquid chromatographic theory. Gas-liquid interfacial adsorption was detected for a few solutes and it has been considered for the calculations of partition coefficient. Reliable solute's infinite dilution activity coefficients can be obtained when retention data are determined by a unique partitioning mechanism. The partial molar excess enthalpies at infinite dilution have been estimated from the dependence of experimental values of solute activity coefficients with the column temperature. A thorough discussion of the uncertainties of the experimental measurements and the main advantages of the use of capillary columns to acquire the aforementioned relevant thermodynamic information was performed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Accuracy of the HumaSensplus point-of-care uric acid meter using capillary blood obtained by fingertip puncture.

    PubMed

    Fabre, Stéphanie; Clerson, Pierre; Launay, Jean-Marie; Gautier, Jean-François; Vidal-Trecan, Tiphaine; Riveline, Jean-Pierre; Platt, Adam; Abrahamsson, Anna; Miner, Jeffrey N; Hughes, Glen; Richette, Pascal; Bardin, Thomas

    2018-05-02

    The uric acid (UA) level in patients with gout is a key factor in disease management and is typically measured in the laboratory using plasma samples obtained after venous puncture. This study aimed to assess the reliability of immediate UA measurement with capillary blood samples obtained by fingertip puncture with the HumaSens plus point-of-care meter. UA levels were measured using both the HumaSens plus meter in the clinic and the routine plasma UA method in the biochemistry laboratory of 238 consenting diabetic patients. HumaSens plus capillary and routine plasma UA measurements were compared by linear regression, Bland-Altman plots, intraclass correlation coefficient (ICC), and Lin's concordance coefficient. Values outside the dynamic range of the meter, low (LO) or high (HI), were analyzed separately. The best capillary UA thresholds for detecting hyperuricemia were determined by receiver operating characteristic (ROC) curves. The impact of potential confounding factors (demographic and biological parameters/treatments) was assessed. Capillary and routine plasma UA levels were compared to reference plasma UA measurements by liquid chromatography-mass spectrometry (LC-MS) for a subgroup of 67 patients. In total, 205 patients had capillary and routine plasma UA measurements available. ICC was 0.90 (95% confidence interval (CI) 0.87-0.92), Lin's coefficient was 0.91 (0.88-0.93), and the Bland-Altman plot showed good agreement over all tested values. Overall, 17 patients showed values outside the dynamic range. LO values were concordant with plasma values, but HI values were considered uninterpretable. Capillary UA thresholds of 299 and 340 μmol/l gave the best results for detecting hyperuricemia (corresponding to routine plasma UA thresholds of 300 and 360 μmol/l, respectively). No significant confounding factor was found among those tested, except for hematocrit; however, this had a negligible influence on the assay reliability. When capillary and routine plasma results were discordant, comparison with LC-MS measurements showed that plasma measurements had better concordance: capillary UA, ICC 0.84 (95% CI 0.75-0.90), Lin's coefficient 0.84 (0.77-0.91); plasma UA, ICC 0.96 (0.94-0.98), Lin's coefficient 0.96 (0.94-0.98). UA measurements with the HumaSens plus meter were reasonably comparable with those of the laboratory assay. The meter is easy to use and may be useful in the clinic and in epidemiologic studies.

  11. Hollow fiber membranes for advanced life support systems. [permeable capillaries for medical filtration

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Lysaght, M. J.

    1977-01-01

    This paper describes an investigation of the practicability of utilizing hollow fiber membranes in vehicular and portable life support system applications. A preliminary screening of potential advanced life support applications resulted in the selection of five applications for feasibility study and testing. As a result of the feasibility study and testing, three applications, heat rejection, deaeration, and bacteria filtration, were chosen for breadboard development testing. Breadboard hardware has been manufactured and tested, and the physical properties of the three hollow fiber membrane assemblies applicable to use aboard future spacecraft have been characterized.

  12. Capillary Tube and Thermostatic Expansion Valve Comparative Analysis in Water Chiller Air Conditioning

    NASA Astrophysics Data System (ADS)

    Wijaya Sunu, Putu; Made Rasta, I.; Anakottapary, Daud Simon; Made Suarta, I.; Cipta Santosa, I. D. M.

    2018-01-01

    The aims of this study to compares the performance characteristics of a water chiller air conditioning simulation equipped with thermostatic expansion valve (TEV) with those of a capillary tube. Water chiller system filled with the same charge of refrigerant. Comparative analyses were performed based on coefficient of performance (COP) and performance parameter of the refrigeration system, carried out at medium cooling load level with the ambient temperature of 29-31°C, constant compressor speed and fixed chilled water volume flowrate at 15 lpm. It was shown that the TEV system showed better energy consumption compared to that of capillary tube. From the coefficient of performance perspective, the thermostatic expansion valve system showed higher COP (± 21.4%) compared to that of capillary tube system.

  13. Amino-Functionalized Ceramic Capillary Membranes for Controlled Virus Retention.

    PubMed

    Bartels, Julia; Souza, Marina N; Schaper, Amelie; Árki, Pál; Kroll, Stephen; Rezwan, Kurosch

    2016-02-16

    A straightforward chemical functionalization strategy using aminosilanes for high-flux yttria-stabilized zirconia capillary membranes is presented (macroporous, d50 = 144 nm, open porosity =49%, membrane flux ∼150 L/(m(2)hbar)). Three different aminosilanes with one, two or three amino groups per silane molecule, namely 3-aminopropyltriethoxysilane (APTES), N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AE-APTES) and N-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA), are used to generate the amino-functionalized membranes. With a higher number of amino groups per silane molecule increased loading capacities between 0.44 and 1.01 accessible amino groups/nm(2) membrane are achieved. Streaming potential measurements confirm that the zeta-potential of the membrane surface is converted from negative (non-functionalized) to positive (amino-functionalized). By operation in dead-end filtration mode using the model virus MS2 (diameter = 25 nm, IEP = 3.9) the virus retention capacity of the amino-functionalized membranes is significantly increased and log reduction values (LRVs) of up to 9.6 ± 0.3 (TPDA) are obtained whereas a LRV < 0.3 is provided by the non-functionalized membranes. Long-term dead-end filtration experiments for 1 week reveal a high stability of immobilized aminosilanes (TPDA), being robust against leaching. By iterative backflushing with desorption buffer MS2-loaded membranes are successfully regenerated being reusable for a new filtration cycle. The presented functionalization platform is highly promising for controlled virus retention.

  14. Gas filtration and separation with nano-size ceramics

    NASA Astrophysics Data System (ADS)

    Lysenko, V. I.; Trufanov, D. Yu.; Bardakhanov, S. P.

    2011-06-01

    Filtration and separation properties were studied for filters made from open-porosity ceramics (sintered from authors-developed silicon dioxide nanopowder "tarkosil". Key parameters were measured for samples of ceramics produced at different sintering temperatures: porosity, gas permeability coefficient, relative time of standard volume fill-up, gas mixture separation coefficient. The possibility of using the described ceramics for helium enrichment was demonstrated with examples of helium-nitrogen and helium-methane mixtures.

  15. Fast filtration sampling protocol for mammalian suspension cells tailored for phosphometabolome profiling by capillary ion chromatography - tandem mass spectrometry.

    PubMed

    Kvitvang, Hans F N; Bruheim, Per

    2015-08-15

    Capillary ion chromatography (capIC) is the premium separation technology for low molecular phosphometabolites and nucleotides in biological extracts. Removal of excessive amounts of salt during sample preparation stages is a prerequisite to enable high quality capIC separation in combination with reproducible and sensitive MS detection. Existing sampling protocols for mammalian cells used for GC-MS and LC-MS metabolic profiling can therefore not be directly applied to capIC separations. Here, the development of a fast filtration sampling protocol for mammalian suspension cells tailored for quantitative profiling of the phosphometabolome on capIC-MS/MS is presented. The whole procedure from sampling the culture to transfer of filter to quenching and extraction solution takes less than 10s. To prevent leakage it is critical that a low vacuum pressure is applied, and satisfactorily reproducibility was only obtained by usage of a vacuum pressure controlling device. A vacuum of 60mbar was optimal for filtration of multiple myeloma Jjn-3 cell cultures through 5μm polyvinylidene (PVDF) filters. A quick deionized water (DI-water) rinse step prior to extraction was tested, and significantly higher metabolite yields were obtained during capIC-MS/MS analyses in this extract compared to extracts prepared by saline and reduced saline (25%) washing steps only. In addition, chromatographic performance was dramatically improved. Thus, it was verified that a quick DI-water rinse is tolerated by the cells and can be included as the final stage during filtration. Over 30 metabolites were quantitated in JJN-3 cell extracts by using the optimized sampling protocol with subsequent capIC-MS/MS analysis, and up to 2 million cells can be used in a single filtration step for the chosen filter and vacuum pressure. The technical set-up is also highly advantageous for microbial metabolome filtration protocols after optimization of vacuum pressure and washing solutions, and the reduced salt content of the extract will also improve the quality of LC-MS analysis due to lower salt adduct ion formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    DOE PAGES

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θ D ofmore » 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less

  17. Fully packed capillary electrochromatographic microchip with self-assembly colloidal silica beads.

    PubMed

    Park, Jongman; Lee, Dami; Kim, Won; Horiike, Shigeyoshi; Nishimoto, Takahiro; Lee, Se Hwan; Ahn, Chong H

    2007-04-15

    A fully packed capillary electrochromatographic (CEC) microchip showing improved solution and chip handling was developed. Microchannels for the CEC microchip were patterned on a cyclic olefin copolymer substrate by injection molding and packed fully with 0.8-microm monodisperse colloidal silica beads utilizing a self-assembly packing technique. The silica packed chip substrate was covered and thermally press-bonded. After fabrication, the chip was filled with buffer solution by self-priming capillary action. The self-assembly packing at each channel served as a built-in nanofilter allowing quick loading of samples and running buffer solution without filtration. Because of a large surface area-to-volume ratio of the silica packing, reproducible control of electroosmotic flow was possible without leveling of the solutions in the reservoirs resulting 1.3% rsd in migration rate. The capillary electrophoretic separation characteristics of the chip were studied using fluorescein isothiocyanate (FITC)-derivatized amino acids as probe molecules. A mixture of FITC and four FITC-derivatized amino acids was successfully separated with 2-mm separation channel length.

  18. Meniscus formation in a capillary and the role of contact line friction.

    PubMed

    Andrukh, Taras; Monaenkova, Daria; Rubin, Binyamin; Lee, Wah-Keat; Kornev, Konstantin G

    2014-01-28

    We studied spontaneous formation of an internal meniscus by dipping glass capillaries of 25 μm to 350 μm radii into low volatile hexadecane and tributyl phosphate. X-ray phase contrast and high speed optical microscopy imaging were employed. We showed that the meniscus completes its formation when the liquid column is still shorter than the capillary radius. After that, the meniscus travels about ten capillary radii at a constant velocity. We demonstrated that the experimental observations can be explained by introducing a friction force linearly proportional to the meniscus velocity with a friction coefficient depending on the air/liquid/solid triplet. It was demonstrated that the friction coefficient does not depend on the capillary radius. Numerical solution of the force balance equation revealed four different uptake regimes that can be specified in a phase portrait. This phase portrait was found to be in good agreement with the experimental results and can be used as a guide for the design of thin porous absorbers.

  19. PO2 modulation of paraquat-induced microvascular injury in isolated dog lungs.

    PubMed

    Shibamoto, T; Taylor, A E; Parker, J C

    1990-05-01

    We determined the effects of paraquat (PQ) concentrations ranging from 10(-3) to 10(-2) M and three levels of venous PO2 [hypoxia (41 +/- 3 Torr), normoxia (147 +/- 8 Torr), and hyperoxia (444 +/- 17 Torr)] in the presence of 4 x 10(-3) M PQ on microvascular permeability in isolated blood-perfused dog lungs. Capillary filtration coefficient (Kf,c) increased and isogravimetric capillary pressure (Pc,i) decreased 3 h after perfusion with 10(-2) M PQ (n = 7) and 5 h after perfusion with 4 x 10(-3) M PQ (n = 6) but not with 10(-3) M PQ (n = 4). In hyperoxic lungs perfused with 4 x 10(-3) M PQ, Kf,c increased to nine times the base-line value 5 h after PQ [0.15 +/- 0.01 to 1.35 +/- 0.25 (SE) ml.min-1.cmH2O-1.100 g-1]. Pc,i significantly decreased from a base-line value of 9.4 +/- 0.2 to 7.1 +/- 0.4 cmH2O at 3 h. In hypoxic lungs perfused with 4 x 10(-3) M PQ (n = 5), Pc,i and Kf,c changes were not significantly different from those in normoxic lungs treated with PQ. Thus both hyperoxia and an increased dose of PQ shortened the latent period and increased the severity of the PQ-induced microvascular permeability lesion, but hypoxia failed to prevent the PQ damage.

  20. Percutaneous excretion of iron and ferritin (through Al-hijamah) as a novel treatment for iron overload in beta-thalassemia major, hemochromatosis and sideroblastic anemia.

    PubMed

    El Sayed, Salah Mohamed; Abou-Taleb, Ashraf; Mahmoud, Hany Salah; Baghdadi, Hussam; Maria, Reham A; Ahmed, Nagwa Sayed; Nabo, Manal Mohamed Helmy

    2014-08-01

    Iron overload is a big challenge when treating thalassemia (TM), hemochromatosis and sideroblastic anemia. It persists even after cure of TM with bone marrow transplantation. Iron overload results from increased iron absorption and repeated blood transfusions causing increased iron in plasma and interstitial fluids. Iron deposition in tissues e.g. heart, liver, endocrine glands and others leads to tissue damage and organ dysfunction. Iron chelation therapy and phlebotomy for iron overload have treatment difficulties, side effects and contraindications. As mean iron level in skin of TM patients increases by more than 200%, percutaneous iron excretion may be beneficial. Wet cupping therapy (WCT) is a simple, safe and economic treatment. WCT is a familiar treatment modality in some European countries and in Chinese hospitals in treating different diseases. WCT was reported to clear both blood plasma and interstitial spaces from causative pathological substances (CPS). Standard WCT method is Al-hijamah (cupping, puncturing and cupping, CPC) method of WCT that was reported to clear blood and interstitial fluids better than the traditional WCT (puncturing and cupping method, PC method of WCT). In other word, traditional WCT may be described as scarification and suction method (double S technique), while Al-hijamah may be described as suction, scarification and suction method (triple S technique). Al-hijamah is a more comprehensive treatment modality that includes all steps and therapeutic benefits of traditional dry cupping therapy and WCT altogether according to the evidence-based Taibah mechanism (Taibah theory). During the first cupping step of Al-hijamah, a fluid mixture is collected inside skin uplifting due to the effect of negative pressure inside sucking cups. This fluid mixture contains collected interstitial fluids with CPS (iron, ferritin and hemolyzed RBCs in thalassemia), filtered fluids (from blood capillaries) with iron and hemolyzed blood cells (hemolyzed RBCs, WBCs and platelets). That fluid mixture does not contain intact blood cells (having diameters in microns) that are too big to pass through pores of skin capillaries (6-12nm in diameter) and cannot be filtered. Puncturing skin upliftings and applying second cupping step excrete collected fluids. Skin scarifications (shartat mihjam in Arabic) should be small, superficial (0.1mm in depth), short (1-2mm in length), multiple, evenly distributed and confined to skin upliftings. Sucking pressure inside cups (-150 to -420mmHg) applied to skin is transmitted to around skin capillaries to be added to capillary hydrostatic pressure (-33mmHg at arterial end of capillaries and -13mmHg at venous end of capillaries) against capillary osmotic pressure (+20mmHg). This creates a pressure gradient and a traction force across skin and capillaries and increases filtration at arterial end of capillaries at net pressure of -163 to -433mmHg and at venous end of capillaries at net pressure of -143 to -413mmHg resulting in clearance of blood from CPS (iron, ferritin and hemolyzed blood cells). Net filtration pressure at renal glomeruli is 10mmHg i.e. Al-hijamah exerts a more pressure-dependent filtration than renal glomeruli. Al-hijamah may benefit patients through inducing negative iron balance. Interestingly, Al-hijamah was reported to decrease serum ferritin significantly (by about 22%) in healthy subjects while excessive traditional WCT was reported to cause iron deficiency anemia. Al-hijamah is a highly recommended treatment in prophetic medicine. In conclusion, Al-hijamah may be a promising adjuvant treatment for iron overload in TM, hemochromatosis and sideroblastic anemia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. [Effects of Cultivation Soil Properties on the Transport of Genetically Engineered Microorganism in Huabei Plain].

    PubMed

    Zhang, Jing; Liu, Ping; Liu, Chun; Chen, Xiao-xuan; Zhang, Lei

    2015-12-01

    The transport of genetically engineered microorganism (GEM) in the soil is considered to be the important factor influencing the enhanced bioremediation of polluted soil. The transport of an atrazine-degrading GEM and its influencing factors were investigated in the saturated cultivation soil of Huabei Plain. The results showed that horizontal infiltration was the main mechanism of GEM transport in the saturated cultivation soil. The transport process could be simulated using the filtration model. Soil properties showed significant effects on pore water flow and GEM transport in saturated soil. When particle size, porosity and sand component of the soil increased, the hydraulic conductivity constant increased and filtration coefficient of GEM decreased in saturated soil, indicating the reduced retention of GEM in the soil. An increase in infiltration flow also increased hydraulic conductivity constant in saturated soil and consequently decreased filtration coefficient of GEM. When hydraulic conductivity constants ranged from 5.02 m · d⁻¹ to 6.70 m · d⁻¹ in the saturated soil, the filtration coefficients of GEM varied from 0.105 to 0.274. There was a significantly negative correlation between them.

  2. Suspended Microchannel Resonators for Ultralow Volume Universal Detection

    PubMed Central

    Son, Sungmin; Grover, William H.; Burg, Thomas P.; Manalis, Scott R.

    2008-01-01

    Universal detectors that maintain high sensitivity as the detection volume is reduced to the subnanoliter scale can enhance the utility of miniaturized total analysis systems (μ-TAS). Here the unique scaling properties of the suspended microchannel resonator (SMR) are exploited to show universal detection in a 10 pL analysis volume with a density detection limit of ∼1 μg/cm3 (10 Hz bandwidth) and a dynamic range of 6 decades. Analytes with low UV extinction coefficients such as polyethylene glycol (PEG) 8 kDa, glucose, and glycine are measured with molar detection limits of 0.66, 13.5, and 31.6 μM, respectively. To demonstrate the potential for real-time monitoring, gel filtration chromatography was used to separate different molecular weights of PEG as the SMR acquired a chromatogram by measuring the eluate density. This work suggests that the SMR could offer a simple and sensitive universal detector for various separation systems from liquid chromatography to capillary electrophoresis. Moreover, since the SMR is itself a microfluidic channel, it can be directly integrated into μ-TAS without compromising overall performance. PMID:18489125

  3. Protective effect of U74500A on phorbol myristate acetate-induced acute lung injury.

    PubMed

    Chu, Shi-Jye; Chang, Deh-Ming; Wang, David; Lin, Hen-I; Lin, Shih-Hua; Hsu, Kang

    2004-08-01

    1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats.

  4. Hindered transport of macromolecules in isolated glomeruli. II. Convection and pressure effects in basement membrane.

    PubMed

    Edwards, A; Daniels, B S; Deen, W M

    1997-01-01

    The filtration rates for water and a polydisperse mixture of Ficoll across films of isolated glomerular basement membrane (GBM) were measured to characterize convective transport across this part of the glomerular capillary wall. Glomeruli were isolated from rat kidneys and the cells were removed by detergent lysis, leaving a preparation containing almost pure GBM that could be consolidated into a layer at the base of a small ultrafiltration cell. A Ficoll mixture with Stokes-Einstein radii ranging from about 2.0 to 7.0 nm was labeled with fluorescein, providing a set of rigid, spherical test macromolecules with little molecular charge. Filtration experiments were performed at two physiologically relevant hydraulic pressure differences (delta P), 35 and 60 mmHg. The sieving coefficient (filtrate-to-retentate concentration ratio) for a given size of Ficoll tended to be larger at 35 than at 60 mmHg, the changes being greater for the smaller molecules. The Darcy permeability also varied inversely with pressure, averaging 1.48 +/- 0.10 nm2 at 35 mmHg and 0.82 +/- 0.07 nm2 at 60 mmHg. Both effects could be explained most simply by postulating that the intrinsic permeability properties of the GBM change in response to compression. The sieving data were consistent with linear declines in the hindrance factors for convection and diffusion with increasing pressure, and correlations were derived to relate those hindrance factors to molecular size and delta P. Comparisons with previous Ficoll sieving data for rats in vivo suggest that the GBM is less size-restrictive than the cell layers, but that its contribution to the overall size selectivity of the barrier is not negligible. Theoretical predictions of the Darcy permeability based on a model in which the GBM is a random fibrous network consisting of two populations of fibers were in excellent agreement with the present data and with ultrastructural observations in the literature.

  5. Nonequilibrium capillarity effects in multiphase flow through small volume fractured porous media

    NASA Astrophysics Data System (ADS)

    Tang, M.; Zhan, H.; Lu, S.

    2017-12-01

    Analyzing and understanding the capillary pressure curves in fractured porous media is a crucial subject in a number of industrial applications, such as crude oil recovery in the fractured reservoir, CO2 sequestration in fractured brine aquifers and shale gas development. Many studies have observed the significant nonequilibrium capillarity effects in multiphase flow through porous media and proposed that conventional equilibrium capillary pressure may not accurately describe transient two-phase flow behavior under dynamical conditions. To date, only several laboratory experiments and numerical models have been conducted into investigating the characteristic of nonequilibrium capillary pressure in unfractured porous media, a clear picture of the effects of fractures on the dynamic capillary pressure in fractured porous media remains elusive. In this study, four digital porous models were built based on CT image data from ZEISS Xradia 520 Versa CT scanning, a series of direct simulations of multiphase flow in fractured porous media were carried out based on lattice Boltzmann method and three-dimensional porous models. The results show that both the aperture and orientation of the fractures have significant effects on the nonequilibrium capillary pressure coefficients and multiphase flow behaviors. The nonequilibrium capillary pressure coefficients in fractured porous media are one to two orders of magnitude lower than unfractured porous media. This study presents a new direct simulation based methodology for the detailed analysis of nonequilibrium capillary pressure in fractured porous media.

  6. Removal Efficiencies and Attachment Coefficients for Cryptosporidium in Sandy Alluvial Riverbank Sediment

    EPA Science Inventory

    Riverbank filtration has been shown to be effective at removing viable Cryptosporidium parvum oocysts and, therefore, drinking water systems that employ riverbank filtration may receive additional treatment credits beyond that which they can obtain using traditional engineering a...

  7. Semi-automatic assessment of skin capillary density: proof of principle and validation.

    PubMed

    Gronenschild, E H B M; Muris, D M J; Schram, M T; Karaca, U; Stehouwer, C D A; Houben, A J H M

    2013-11-01

    Skin capillary density and recruitment have been proven to be relevant measures of microvascular function. Unfortunately, the assessment of skin capillary density from movie files is very time-consuming, since this is done manually. This impedes the use of this technique in large-scale studies. We aimed to develop a (semi-) automated assessment of skin capillary density. CapiAna (Capillary Analysis) is a newly developed semi-automatic image analysis application. The technique involves four steps: 1) movement correction, 2) selection of the frame range and positioning of the region of interest (ROI), 3) automatic detection of capillaries, and 4) manual correction of detected capillaries. To gain insight into the performance of the technique, skin capillary density was measured in twenty participants (ten women; mean age 56.2 [42-72] years). To investigate the agreement between CapiAna and the classic manual counting procedure, we used weighted Deming regression and Bland-Altman analyses. In addition, intra- and inter-observer coefficients of variation (CVs), and differences in analysis time were assessed. We found a good agreement between CapiAna and the classic manual method, with a Pearson's correlation coefficient (r) of 0.95 (P<0.001) and a Deming regression coefficient of 1.01 (95%CI: 0.91; 1.10). In addition, we found no significant differences between the two methods, with an intercept of the Deming regression of 1.75 (-6.04; 9.54), while the Bland-Altman analysis showed a mean difference (bias) of 2.0 (-13.5; 18.4) capillaries/mm(2). The intra- and inter-observer CVs of CapiAna were 2.5% and 5.6% respectively, while for the classic manual counting procedure these were 3.2% and 7.2%, respectively. Finally, the analysis time for CapiAna ranged between 25 and 35min versus 80 and 95min for the manual counting procedure. We have developed a semi-automatic image analysis application (CapiAna) for the assessment of skin capillary density, which agrees well with the classic manual counting procedure, is time-saving, and has a better reproducibility as compared to the classic manual counting procedure. As a result, the use of skin capillaroscopy is feasible in large-scale studies, which importantly extends the possibilities to perform microcirculation research in humans. © 2013.

  8. Lung heparan sulfates modulate Kfc during increased vascular pressure: evidence for glycocalyx-mediated mechanotransduction

    PubMed Central

    Cluff, Mark; Kingston, Joseph; Hill, Denzil; Chen, Haiyan; Hoehne, Soeren; Malleske, Daniel T.; Kaur, Rajwinederjit

    2012-01-01

    Lung endothelial cells respond to changes in vascular pressure through mechanotransduction pathways that alter barrier function via non-Starling mechanism(s). Components of the endothelial glycocalyx have been shown to participate in mechanotransduction in vitro and in systemic vessels, but the glycocalyx's role in mechanosensing and pulmonary barrier function has not been characterized. Mechanotransduction pathways may represent novel targets for therapeutic intervention during states of elevated pulmonary pressure such as acute heart failure, fluid overload, and mechanical ventilation. Our objective was to assess the effects of increasing vascular pressure on whole lung filtration coefficient (Kfc) and characterize the role of endothelial heparan sulfates in mediating mechanotransduction and associated increases in Kfc. Isolated perfused rat lung preparation was used to measure Kfc in response to changes in vascular pressure in combination with superimposed changes in airway pressure. The roles of heparan sulfates, nitric oxide, and reactive oxygen species were investigated. Increases in capillary pressure altered Kfc in a nonlinear relationship, suggesting non-Starling mechanism(s). nitro-l-arginine methyl ester and heparanase III attenuated the effects of increased capillary pressure on Kfc, demonstrating active mechanotransduction leading to barrier dysfunction. The nitric oxide (NO) donor S-nitrosoglutathione exacerbated pressure-mediated increase in Kfc. Ventilation strategies altered lung NO concentration and the Kfc response to increases in vascular pressure. This is the first study to demonstrate a role for the glycocalyx in whole lung mechanotransduction and has important implications in understanding the regulation of vascular permeability in the context of vascular pressure, fluid status, and ventilation strategies. PMID:22160307

  9. Diffusion in cementitious materials. 2: Further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30%PFA pastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngala, V.T.; Page, C.L.; Parrott, L.J.

    1995-05-01

    Steady-state diffusion of dissolved oxygen and chloride ions in hydrated OPC and OPC/30%PFA pastes, hydrated for 2 weeks at 20 C and 10 weeks at 38 C, was studied at water/binder (w/s) ratios 0.4, 0.5, 0.6 and 0.7. Total porosity and a simple measure of capillary porosity, the volume fractions of the water lost in specimens from a saturated surface dry condition to a near-constant weight at 90.7% relative humidity, were also determined. The diffusion rate of chloride ions diminished markedly, to very low values, as the capillary porosity approached zero. For a given w/s ratio or capillary porosity themore » chloride ion diffusion coefficient for OPC/30%PFA pastes was about one order of magnitude smaller than that to OPC pastes. The rate of diffusion of dissolved oxygen also diminished as the capillary porosity reduced but it was still significant as the capillary porosity approached zero. For a given capillary porosity the oxygen diffusion coefficient for OPC/30%PFA pastes was about 30% smaller than that for OPC pastes. The results support the view that chloride ion diffusion in pastes of low capillary porosity is retarded by the surface charge of the hydrated cement gel. In contrast, the hydrated cement gel is much more permeable to the similarly-sized, neutral oxygen molecule.« less

  10. Ischaemic Strokes in Patients with Pulmonary Arteriovenous Malformations and Hereditary Hemorrhagic Telangiectasia: Associations with Iron Deficiency and Platelets

    PubMed Central

    Shovlin, Claire L.; Chamali, Basel; Santhirapala, Vatshalan; Livesey, John A.; Angus, Gillian; Manning, Richard; Laffan, Michael A.; Meek, John; Tighe, Hannah C.; Jackson, James E.

    2014-01-01

    Background Pulmonary first pass filtration of particles marginally exceeding ∼7 µm (the size of a red blood cell) is used routinely in diagnostics, and allows cellular aggregates forming or entering the circulation in the preceding cardiac cycle to lodge safely in pulmonary capillaries/arterioles. Pulmonary arteriovenous malformations compromise capillary bed filtration, and are commonly associated with ischaemic stroke. Cohorts with CT-scan evident malformations associated with the highest contrast echocardiographic shunt grades are known to be at higher stroke risk. Our goal was to identify within this broad grouping, which patients were at higher risk of stroke. Methodology 497 consecutive patients with CT-proven pulmonary arteriovenous malformations due to hereditary haemorrhagic telangiectasia were studied. Relationships with radiologically-confirmed clinical ischaemic stroke were examined using logistic regression, receiver operating characteristic analyses, and platelet studies. Principal Findings Sixty-one individuals (12.3%) had acute, non-iatrogenic ischaemic clinical strokes at a median age of 52 (IQR 41–63) years. In crude and age-adjusted logistic regression, stroke risk was associated not with venous thromboemboli or conventional neurovascular risk factors, but with low serum iron (adjusted odds ratio 0.96 [95% confidence intervals 0.92, 1.00]), and more weakly with low oxygen saturations reflecting a larger right-to-left shunt (adjusted OR 0.96 [0.92, 1.01]). For the same pulmonary arteriovenous malformations, the stroke risk would approximately double with serum iron 6 µmol/L compared to mid-normal range (7–27 µmol/L). Platelet studies confirmed overlooked data that iron deficiency is associated with exuberant platelet aggregation to serotonin (5HT), correcting following iron treatment. By MANOVA, adjusting for participant and 5HT, iron or ferritin explained 14% of the variance in log-transformed aggregation-rate (p = 0.039/p = 0.021). Significance These data suggest that patients with compromised pulmonary capillary filtration due to pulmonary arteriovenous malformations are at increased risk of ischaemic stroke if they are iron deficient, and that mechanisms are likely to include enhanced aggregation of circulating platelets. PMID:24586400

  11. Experimental verification of the capillary plasma triggered long spark gap under the extremely low working coefficient in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, D.; Yang, L. J., E-mail: yanglj@mail.xjtu.edu.cn; Ma, J. B.

    The paper has proposed a new triggering method for long spark gap based on capillary plasma ejection and conducted the experimental verification under the extremely low working coefficient, which represents that the ratio of the spark gap charging voltage to the breakdown voltage is particularly low. The quasi-neutral plasma is ejected from the capillary and develops through the axial direction of the spark gap. The electric field in the spark gap is thus changed and its breakdown is incurred. It is proved by the experiments that the capillary plasma ejection is effective in triggering the long spark gap under themore » extremely low working coefficient in air. The study also indicates that the breakdown probabilities, the breakdown delay, and the delay dispersion are all mainly determined by the characteristics of the ejected plasma, including the length of the plasma flow, the speed of the plasma ejection, and the ionization degree of the plasma. Moreover, the breakdown delay and the delay dispersion increase with the length of the long spark gap, and the polarity effect exists in the triggering process. Lastly, compared with the working patterns of the triggering device installed in the single electrode, the working pattern of the devices installed in both the two electrodes, though with the same breakdown process, achieves the ignition under longer gap distance. To be specific, at the gap length of 14 cm and the working coefficient of less than 2%, the spark gap is still ignited accurately.« less

  12. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  13. Printed microfluidic filter for heparinized blood.

    PubMed

    Bilatto, Stanley E R; Adly, Nouran Y; Correa, Daniel S; Wolfrum, Bernhard; Offenhäusser, Andreas; Yakushenko, Alexey

    2017-05-01

    A simple lab-on-a-chip method for blood plasma separation was developed by combining stereolithographic 3D printing with inkjet printing, creating a completely sealed microfluidic device. In some approaches, one dilutes the blood sample before separation, reducing the concentration of a target analyte and increasing a contamination risk. In this work, a single drop (8  μ l) of heparinized whole blood could be efficiently filtered using a capillary effect without any external driving forces and without dilution. The blood storage in heparin tubes during 24 h at 4 °C initiated the formation of small crystals that formed auto-filtration structures in the sample upon entering the 3D-printed device, with pores smaller than the red blood cells, separating plasma from the cellular content. The total filtration process took less than 10 s. The presented printed plasma filtration microfluidics fabricated with a rapid prototyping approach is a miniaturized, fast and easy-to-operate device that can be integrated into healthcare/portable systems for point-of-care diagnostics.

  14. Filtration Isolation of Nucleic Acids: A Simple and Rapid DNA Extraction Method.

    PubMed

    McFall, Sally M; Neto, Mário F; Reed, Jennifer L; Wagner, Robin L

    2016-08-06

    FINA, filtration isolation of nucleic acids, is a novel extraction method which utilizes vertical filtration via a separation membrane and absorbent pad to extract cellular DNA from whole blood in less than 2 min. The blood specimen is treated with detergent, mixed briefly and applied by pipet to the separation membrane. The lysate wicks into the blotting pad due to capillary action, capturing the genomic DNA on the surface of the separation membrane. The extracted DNA is retained on the membrane during a simple wash step wherein PCR inhibitors are wicked into the absorbent blotting pad. The membrane containing the entrapped DNA is then added to the PCR reaction without further purification. This simple method does not require laboratory equipment and can be easily implemented with inexpensive laboratory supplies. Here we describe a protocol for highly sensitive detection and quantitation of HIV-1 proviral DNA from 100 µl whole blood as a model for early infant diagnosis of HIV that could readily be adapted to other genetic targets.

  15. Accuracy of Transcutaneous CO2 Values Compared With Arterial and Capillary Blood Gases.

    PubMed

    Lambert, Laura L; Baldwin, Melissa B; Gonzalez, Cruz Velasco; Lowe, Gary R; Willis, J Randy

    2018-05-08

    Transcutaneous monitors are utilized to monitor a patient's respiratory status. Some patients have similar values when comparing transcutaneous carbon dioxide ( P tcCO 2 ) values with blood gas analysis, whereas others show extreme variability. A retrospective review of data was performed to determine how accurately P tcCO 2 correlated with CO 2 values obtained by arterial blood gas (ABG) or capillary blood gas. To determine whether P tcCO 2 values correlated with ABG or capillary blood gas values, subjects' records were retrospectively reviewed. Data collected included the P tcCO 2 value at the time of blood gas procurement and the ABG or capillary blood gas P CO 2 value. Agreement of pairs of methods (ABG vs P tcCO 2 and capillary blood gas vs P tcCO 2 ) was assessed with the Bland-Altman approach with limits of agreement estimated with a mixed model to account for serial measurements per subject. A total of 912 pairs of ABG/ P tcCO 2 values on 54 subjects and 307 pairs of capillary blood gas/ P tcCO 2 values on 34 subjects were analyzed. The P CO 2 range for ABG was 24-106 mm Hg, and P tcCO 2 values were 27-133 mm Hg. The P CO 2 range for capillary blood gas was 29-108 mm Hg, and P tcCO 2 values were 30-103 mm Hg. For ABG/ P tcCO 2 comparisons, the Pearson correlation coefficient was 0.82, 95% CI was 0.80-0.84, and P was <.001. For capillary blood gas/ P tcCO 2 comparisons, the Pearson correlation coefficient was 0.77, 95% CI was 0.72-0.81, and P was <.001. For ABG/ P tcCO 2 , the estimated difference ± SD was -6.79 t± 7.62 mm Hg, and limits of agreement were -22.03 to 8.45. For capillary blood gas/ P tcCO 2 , the estimated difference ± SD was -1.61 ± 7.64 mm Hg, and limits of agreement were -16.88 to 13.66. The repeatability coefficient was about 30 mm Hg. Based on these data, capillary blood gas comparisons showed less variation and a slightly lower correlation with P tcCO 2 than did ABG comparisons. After accounting for serial measurements per patient, due to the wide limits of agreement and poor repeatability, the utility of relying on P tcCO 2 readings for this purpose is questionable. Copyright © 2018 by Daedalus Enterprises.

  16. High hydrostatic pressures in traumatic joints require elevated synovial capillary pressure probably associated with arteriolar vasodilatation.

    PubMed

    Ahlqvist, J; Harilainen, A; Aalto, K; Sarna, S; Lalla, M; Osterlund, K

    1994-11-01

    Three out of the four Starling pressures were determined at arthroscopy of traumatic effusions of the knee. The range of the joint fluid hydrostatic pressure Pjoint was 5-83 cmH2O (0.5-8.1 kPa, 4-61 mmHg), that of the colloid osmotic pressure difference COPplasma-COPjoint 0-21.7 cmH2O. In 11 of 15 cases the sum Pjoint+COP difference exceeded 32.6 cmH2O (3.19 kPa, 24 mmHg), a high estimate of average capillary pressure at the level of the heart. The number of 'exceeding' cases was 8/15 if only 80% of the COP difference was considered effective. Pjoint and the COP difference oppose filtration of fluid from plasma into joints, indicating that mean capillary pressure, the only Starling pressure not determined, was elevated unless the effusions were being resorbed back into the blood. The findings can be explained by tamponade compensated by arteriolar vasodilatation, suspected to be metabolically mediated.

  17. Effect of wave action on near-well zone cleaning

    NASA Astrophysics Data System (ADS)

    Pen'kovskii, V. I.; Korsakova, N. K.

    2017-10-01

    Drilling filtrate invasion into the producing formation and native water accumulating of the near-well zone in well operation reduce the well productivity. As a result of that, depending on characteristic capillary pressure scale and differential pressure drawdown, oil production rate may become lower than expected one. In this paper, it is considered the hysteresis effects of capillary pressure after reversion of displacement. As applied to laboratory experiment conditions, the solution of problem of oil flow in formation model with a pressure drop on the model sides harmonically varied with time is presented. It was estimated a range of fluid vibration effective action on the near-well zone cleaning from capillary locking water. The plant simulating extraction of oil from formation using widely practised sucker-rod pump has been created. Formation model is presented as a slot filled with broken glass between two plates. In the process, natural oil and sodium chloride solution were used as working fluids. The experiments qualitatively confirm a positive effect of jack pumps on the near-well zone cleaning.

  18. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory.

    PubMed

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-12-15

    Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Characteristic of Nano-Cu Film Prepared by Energy Filtrating Magnetron Sputtering Technique and Its Optical Property

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyong; Hu, Xing; Yao, Ning

    2015-03-01

    At the optimized deposition parameters, Cu film was deposited by the direct current magnetron sputtering (DMS) technique and the energy filtrating magnetron sputtering (EFMS) technique. The nano-structure was charactered by x-ray diffraction. The surface morphology of the film was observed by atomic force microscopy. The optical properties of the film were measured by spectroscopic ellipsometry. The refractive index, extinction coefficient and the thickness of the film were obtained by the fitted spectroscopic ellipsometry data using the Drude-Lorentz oscillator optical model. Results suggested that a Cu film with different properties was fabricated by the EFMS technique. The film containing smaller particles is denser and the surface is smoother. The average transmission coefficient, the refractive index and the extinction coefficients are higher than those of the Cu film deposited by the DMS technique. The average transmission coefficient (400-800 nm) is more than three times higher. The refractive index and extinction coefficient (at 550 nm) are more than 36% and 14% higher, respectively.

  20. Vasopeptidase inhibition with omapatrilat increases fluid and protein microvascular permeability in cat skeletal muscle.

    PubMed

    Persson, Johan; Morsing, Peter; Grände, Per-Olof

    2004-03-01

    Vasopeptidase inhibition is a new antihypertensive approach combining inhibition of angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), but severe oedema, mainly angio-oedema, has been reported. As ACE and NEP catalyse degradation of the permeability-increasing peptide bradykinin, and NEP also catalyses degradation of permeability-increasing peptides such as atrial natriuretic peptide, substance P, endothelin-1 and angiotensin II, vasopeptidase inhibition may increase microvascular permeability. To analyse the effects of vasopeptidase inhibition on permeability. The study was performed on the autoperfused cat calf skeletal muscle, evaluating the effects on fluid and protein permeability of a clinically relevant dose of the vasopeptidase inhibitor, omapatrilat. The effects were compared with those of the vehicle, of selective ACE and NEP inhibition, and of omapatrilat during bradykinin receptor blockade. Effects on fluid permeability were determined with a capillary filtration coefficient (CFC) technique, and effects on protein permeability were assessed from changes in the osmotic reflection coefficient for albumin. After 1.5 h of intravenous infusion of omapatrilat (0.35 mg/kg per hour), mean arterial pressure was reduced from 114 mmHg to 86 mmHg (P < 0.01) and skeletal muscle vascular resistance was reduced from 14.5 peripheral resistance units (PRU) to 11.5 PRU (P < 0.05). CFC was increased by 22% (P < 0.01) and the reflection coefficient was decreased by 17% (P < 0.01). Infusion of vehicle had no effects. Inhibition of NEP increased permeability without affecting blood pressure, whereas ACE inhibition decreased blood pressure without affecting permeability. The increase in permeability associated with omapatrilat was reduced by bradykinin blockade. A clinically relevant antihypertensive dose of omapatrilat reduces vascular resistance and increases fluid and protein permeability, the permeability effect more by inhibition of NEP than by inhibition of ACE, by a mechanism involving bradykinin.

  1. Hyperbaric oxygen treatment for air or gas embolism.

    PubMed

    Moon, R E

    2014-01-01

    Gas can enter arteries (arterial gas embolism) due to alveolar-capillary disruption (caused by pulmonary overpressurization, e.g., breath-hold ascent by divers) or veins (venous gas embolism, VGE) as a result of tissue bubble formation due to decompression (diving, altitude exposure) or during certain surgical procedures where capillary hydrostatic pressure at the incision site is sub-atmospheric. Both AGE and VGE can be caused by iatrogenic gas injection. AGE usually produces strokelike manifestations, such as impaired consciousness, confusion, seizures and focal neurological deficits. Small amounts of VGE are often tolerated due to filtration by pulmonary capillaries. However, VGE can cause pulmonary edema, cardiac "vapor lock" and AGE due to transpulmonary passage or right-to-left shunt through a patent foramen ovale. Intravascular gas can cause arterial obstruction or endothelial damage and secondary vasospasm and capillary leak. Vascular gas is frequently not visible with radiographic imaging, which should not be used to exclude the diagnosis of AGE. Isolated VGE usually requires no treatment; AGE treatment is similar to decompression sickness (DCS), with first aid oxygen then hyperbaric oxygen. Although cerebral AGE (CAGE) often causes intracranial hypertension, animal studies have failed to demonstrate a benefit of induced hypocapnia. An evidence-based review of adjunctive therapies is presented.

  2. Development and study of a heat pipe with dielectric properties

    NASA Astrophysics Data System (ADS)

    Semena, M. G.; Gershuni, A. N.; Chepurnoi, A. B.

    Requirements for the structural elements of heat pipes with dielectric properties are examined. To obtain information necessary for the thermal analysis of heat pipes, a study is made of the capillary-transport characteristics of a dielectric capillary structure consisting of quartz fibers; the capillary pressure and the liquid penetration coefficient are determined. The results of the study are used to develop dielectric heat pipes for the cooling of a vacuum electronic instrument. Experimentally determined characteristics of the heat pipes are presented.

  3. [Improving venous tone and capillary sealing. Effect of a combination of Ruscus extract and hesperidine methyl chalcone in healthy probands in heat stress].

    PubMed

    Rudofsky, G

    1989-06-30

    The drug combination of Ruscus-extract and hesperidine methyl chalcone (HMC) involves two basic mechanisms in the treatment of venous diseases: increase in venous tonicity and edema protection. This was shown in a double-blind study on 20 healthy volunteers by comparing the effectiveness of the individual substances, the combination and a placebo on the venous hemodynamics and the volume of the foot. Ruscus-extract augments the tonicity of the venous wall. This is expressed by a decrease in venous capacity (p less than 0.01), a reduction in the blood pool in the lower leg under orthostatic conditions, and a decrease in tissue volume of the foot and ankle (p less than 0.01). HMC lowers the capillary filtration rate (p less than 0.01) but augmented the blood pool. The increase in blood volume can be explained by dehydration of the tissue of the lower leg lowering the pressure of tissue on the venous system and increasing the blood pool in the limb. After administration of the combination, the blood volume was between the Ruscus and HMC volumes, while the effects on filtration rate, venous capacity and tissue volume corresponded to the changes seen after administration of HMC and Ruscus extract alone.

  4. Assessment of the binding performance of histamine-imprinted microspheres by frontal analysis capillary electrophoresis.

    PubMed

    Romano, Edwin F; Quirino, Joselito P; Holdsworth, John L; So, Regina C; Holdsworth, Clovia I

    2017-05-01

    Frontal analysis capillary electrophoresis was used to evaluate the binding performance of molecularly imprinted microspheres (MIM) toward its template histamine and analogs at pH 7, and compared to the high performance liquid chromatographic method. In both methods, batch binding was employed and the binding parameters were calculated from the measured concentration of unbound amine analytes and afforded comparable histamine equilibrium dissociation constants (K d ∼ 0.4 mM). FACE was easily carried out at shorter binding equilibration time (i.e. 30 min) and without the need to separate the microspheres, circumventing laborious and, in the case of the system under study, inefficient sample filtration. It also allowed for competitive binding studies by virtue of its ability to distinctly separate intact microspheres and all tested amines which could not be resolved in HPLC. K d 's for nonimprinted (control) microspheres (NIM) from FACE and HPLC were also comparable (∼ 0.6 mM) but at higher histamine concentrations, HPLC gave lower histamine binding. This discrepancy was attributed to inefficient filtration of the batch binding samples prior to HPLC analysis resulting in an over-estimation of the concentration of free histamine brought about by the presence of unfiltered histamine-bound microspheres. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Implementation of digital optical capillaroscopy for quantifying and estimating the microvascular abnormalities in type 2 diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yu. I.; Suchkova, O. V.; Sasonko, M. L.; Priezzhev, A. V.

    2016-04-01

    This study is aimed to define the extent of digital capillaroscopy possibilities for the quantification and estimation of microvascular abnormalities in type 2 diabetes mellitus (T2DM). A total of 196 adult persons were enrolled in the study including the group of compensated T2DM (n = 52), decompensated diabetics (n = 68), and healthy volunteers (n = 76) with normal blood glucose and without signs of cardiovascular pathology. All participants of the study were examined with the digital optical capillaroscope ("AET", Russia). This instrument is equipped with an image-processing program allowing for quantifying the diameters of the arterial and venous segments of the capillaries and their ratio (coefficient of remodeling), perivascular zone size, capillary blood velocity, and the degree of arterial loops narrowing and the density of the capillary network. Also we estimated the relative amount of coil-shaped capillaries. The study revealed significant difference in the capillary density and the remodeling coefficient in comparison of T2DM patients with non-diabetic individuals. Significant changes are found in the decompensated T2DM group compared to the compensated group of diabetic patients. Furthermore, the number of coil-shaped capillaries differed greatly in T2DM patients as compared to the healthy subjects. The study did not reveal any statistically significant differences in the capillary density between the patients with compensated and decompensated T2DM. The digital optical capillaroscope equipped with the advanced image-processing algorithm opens up new possibilities for obtaining clinically important information on microvascular abnormalities in patients suffering from diabetes mellitus.

  6. Removal of Inclusions from Molten Aluminum by Supergravity Filtration

    NASA Astrophysics Data System (ADS)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing

    2016-12-01

    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  7. Effect of Mannitol on Glomerular Ultrafiltration in the Hydropenic Rat

    PubMed Central

    Blantz, Roland C.

    1974-01-01

    The effect of mannitol upon glomerular ultrafiltration was examined in hydropenic Munich-Wistar rats. Superficial nephron filtration rate (sngfr) rose from 32.0±0.9 nl/min/g kidney wt to 42.0±1.6 (P < 0.001) in eight rats. Hydrostatic pressure gradients acting across the glomerular capillary (ΔP) were measured in glomerular capillaries and Bowman's space with a servo-nulling device, systemic (πA) and efferent arteriolar oncotic pressures (πE) were determined by microprotein analysis. These data were applied to a computer-based mathematical model of glomerular ultrafiltration to determine the profile of effective filtration pressure (EFP = ΔP — π) and total glomerular permeability (LpA) in both states. Filtration equilibrium obtained in hydropenia (LpA ≥ 0.099±0.006 nl/s/g kidney wt/mm Hg) and sngfr rose because EFP increased from a maximum value of 4.2±1.1 to 12.8±0.5 mm Hg after mannitol (P <0.01). This increase was due to both increased nephron plasma flow and decreased πA. Computer analysis of these data revealed that more than half (>58%) of this increase was due to decreased πA, consequent to dilution of protein. Since EFP was disequilibrated after mannitol, LpA could be calculated accurately (0.065 ± 0.003 nl/s/g kidney wt/mm Hg) and was significantly lower than the minimum estimate in hydropenia. Therefore, sngfr does increase with mannitol and this increase is not wholly dependent upon an increase in nephron plasma flow since the major factor increasing EFP was decreased πA. PMID:4418509

  8. Oligomeric protein complexes of apolipoproteins stabilize the internal fluid environment of organism in redfins of the Tribolodon genus [Pisces; Cypriniformes, Cyprinidae].

    PubMed

    Andreeva, Alla M; Serebryakova, Marina V; Lamash, Nina E

    2017-06-01

    One of the most important functions of plasma proteins in vertebrates is their participation in osmotic homeostasis in the organism. Modern concepts about plasma proteins and their capillary filtration are based on a model of large monomeric proteins that are able to penetrate the interstitial space. At the same time, it was revealed that a considerable amount of oligomeric complexes are present in the low-molecular-weight (LM) protein fraction in the extracellular fluids of fishes. The functions of these complexes are unknown. In the present study, we investigated the LM-fraction proteins in the plasma and interstitial fluid (IF) of redfins of the genus Tribolodon. This fish alternatively spends parts of its life cycle in saline and fresh waters. We identified the protein Wap65, serpins and apolipoproteins in this fraction. By combining the methods of 2D-E under native and denaturing conditions with MALDI, we demonstrated that only apolipoproteins formed complexes. We showed that serum apolipoproteins (АроА-I, Аро-14) were present in the form of homooligomeric complexes that were dissociated with the release of monomeric forms of proteins in the course of capillary filtration to IF. Dissociation of homooligomers is not directly correlated with the change in salinity but is correlated with seasonal dynamics. We found that there was a significant decrease in the total protein concentration in IF relative to plasma. Therefore, we suggested that dissociation of homooligomeric complexes from various apolipoproteins supports the isoosmoticity of extracellular fluids relative to capillary wall stabilization through a fluid medium in fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Light-induced cross transport phenomena in a single-component gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chermyaninov, I. V.; Chernyak, V. G., E-mail: Vladimir.Chernyak@usu.ru

    2013-07-15

    The cross transport processes that occur in a single-component gas in a capillary and are caused by resonance laser radiation and pressure and temperature gradients are studied. An expression for entropy production is derived using a system of kinetic Boltzmann equations in a linear approximation. The kinetic coefficients that determine the transport processes are shown to satisfy the Onsager reciprocal relations at any Knudsen numbers and any character of the elastic interaction of gas particles with the capillary surface. The light-induced baro- and thermoeffects that take place in a closed heat-insulated system in the field of resonance laser radiation aremore » considered. Analytical expressions are obtained for the Onsager coefficients in an almost free-molecular regime. The light-induced pressure and temperature gradients that appear in a closed heat-insulated capillary under typical experimental conditions are numerically estimated.« less

  10. Phosphotyrosine phosphatase and tyrosine kinase inhibition modulate airway pressure-induced lung injury.

    PubMed

    Parker, J C; Ivey, C L; Tucker, A

    1998-11-01

    We determined whether drugs which modulate the state of protein tyrosine phosphorylation could alter the threshold for high airway pressure-induced microvascular injury in isolated perfused rat lungs. Lungs were ventilated for successive 30-min periods with peak inflation pressures (PIP) of 7, 20, 30, and 35 cmH2O followed by measurement of the capillary filtration coefficient (Kfc), a sensitive index of hydraulic conductance. In untreated control lungs, Kfc increased by 1.3- and 3.3-fold relative to baseline (7 cmH2O PIP) after ventilation with 30 and 35 cmH2O PIP. However, in lungs treated with 100 microM phenylarsine oxide (a phosphotyrosine phosphatase inhibitor), Kfc increased by 4.7- and 16.4-fold relative to baseline at these PIP values. In lungs treated with 50 microM genistein (a tyrosine kinase inhibitor), Kfc increased significantly only at 35 cmH2O PIP, and the three groups were significantly different from each other. Thus phosphotyrosine phosphatase inhibition increased the susceptibility of rat lungs to high-PIP injury, and tyrosine kinase inhibition attenuated the injury relative to the high-PIP control lungs.

  11. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs.

    PubMed

    Funakoshi, T; Ishibe, Y; Okazaki, N; Miura, K; Liu, R; Nagai, S; Minami, Y

    2004-04-01

    Re-expansion pulmonary oedema is a rare complication caused by rapid re-expansion of a chronically collapsed lung. Several cases of pulmonary oedema associated with one-lung ventilation (OLV) have been reported recently. Elevated levels of pro-inflammatory cytokines in pulmonary oedema fluid are suggested to play important roles in its development. Activation of cytokines after re-expansion of collapsed lung during OLV has not been thoroughly investigated. Here we investigated the effects of re-expansion of the collapsed lung on pulmonary oedema formation and pro-inflammatory cytokine expression. Lungs isolated from female white Japanese rabbits were perfused and divided into a basal (BAS) group (n=7, baseline measurement alone), a control (CONT) group (n=9, ventilated without lung collapse for 120 min) and an atelectasis (ATEL) group (n=9, lung collapsed for 55 min followed by re-expansion and ventilation for 65 min). Pulmonary vascular resistance (PVR) and the coefficient of filtration (Kfc) were measured at baseline and 60 and 120 min. At the end of perfusion, bronchoalveolar lavage fluid/plasma protein ratio (B/P), wet/dry lung weight ratio (W/D) and mRNA expressions of tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta and myeloperoxidase (MPO) were determined. TNF-alpha and IL-1beta mRNA were significantly up-regulated in lungs of the ATEL group compared with BAS and CONT, though no significant differences were noted in PVR, Kfc, B/P and W/D within and between groups. MPO increased at 120 min in CONT and ATEL groups. Pro-inflammatory cytokines were up-regulated upon re-expansion and ventilation after short-period lung collapse, though no changes were noted in pulmonary capillary permeability.

  12. Impact of arachidonic versus eicosapentaenoic acid on exotonin-induced lung vascular leakage: relation to 4-series versus 5-series leukotriene generation.

    PubMed

    Grimminger, F; Wahn, H; Mayer, K; Kiss, L; Walmrath, D; Seeger, W

    1997-02-01

    Escherichia coli hemolysin (HlyA) is a proteinaceous pore-forming exotoxin that is implicated as a significant pathogenicity factor in extraintestinal E. coli infections including sepsis. In perfused rabbit lungs, subcytolytic concentrations of the toxin evoke thromboxane-mediated vasoconstriction and prostanoid-independent protracted vascular permeability increase (11). In the present study, the influence of submicromolar concentrations of free arachidonic acid (AA) and eicosapentaenoic acid (EPA) on the HlyA-induced leakage response was investigated. HlyA at concentration from 0.02 to 0.06 hemolytic units/ml provoked a dose-dependent, severalfold increase in the capillary filtration coefficient (Kfc), accompanied by the release of leukotriene(LT)B4, LTC4, and LTE4 into the recirculating buffer fluid. Simultaneous application of 100 nmol/L AA markedly augmented the HlyA-elicited leakage response, concomitant with an amplification of LTB4 release and a change in the kinetics of cysteinyl-LT generation. In contrast, 50 to 200 nmol/L EPA suppressed in a dose-dependent manner the HlyA-induced increase in Kfc values. This was accompanied by a blockage of 4-series LT generation and a dose-dependent appearance of LTB5, LTC5, and LTE5. In addition, EPA fully antagonized the AA-induced amplification of the HlyA-provoked Kfc increase, again accompanied by a shift from 4-series to 5-series LT generation. We conclude that the vascular leakage provoked by HlyA in rabbit lungs is differentially influenced by free AA versus free EPA, related to the generation of 4- versus 5-series leukotrienes. The composition of lipid emulsions used for parenteral nutrition may thus influence inflammatory capillary leakage.

  13. Chest wall restriction limits high airway pressure-induced lung injury in young rabbits.

    PubMed

    Hernandez, L A; Peevy, K J; Moise, A A; Parker, J C

    1989-05-01

    High peak inspiratory pressures (PIP) during mechanical ventilation can induce lung injury. In the present study we compare the respective roles of high tidal volume with high PIP in intact immature rabbits to determine whether the increase in capillary permeability is the result of overdistension of the lung or direct pressure effects. New Zealand White rabbits were assigned to one of three protocols, which produced different degrees of inspiratory volume limitation: intact closed-chest animals (CC), closed-chest animals with a full-body plaster cast (C), and isolated excised lungs (IL). The intact animals were ventilated at 15, 30, or 45 cmH2O PIP for 1 h, and the lungs of the CC and C groups were placed in an isolated lung perfusion system. Microvascular permeability was evaluated using the capillary filtration coefficient (Kfc). Base-line Kfc for isolated lungs before ventilation was 0.33 +/- 0.31 ml.min-1.cmH2O-1.100g-1 and was not different from the Kfc in the CC group ventilated with 15 cmH2O PIP. Kfc increased by 850% after ventilation with only 15 cmH2O PIP in the unrestricted IL group, and in the CC group Kfc increased by 31% after 30 cmH2O PIP and 430% after 45 cmH2O PIP. Inspiratory volume limitation by the plaster cast in the C group prevented any significant increase in Kfc at the PIP values used. These data indicate that volume distension of the lung rather than high PIP per se produces microvascular damage in the immature rabbit lung.

  14. Propofol attenuates oxidant-induced acute lung injury in an isolated perfused rabbit-lung model.

    PubMed

    Yumoto, Masato; Nishida, Osamu; Nakamura, Fujio; Katsuya, Hirotada

    2005-01-01

    Reactive oxygen species have been strongly implicated in the pathogenesis of acute lung injury (ALI). Some animal studies suggest that free radical scavengers inhibit the onset of oxidant-induced ALI. Propofol (2,6-diisopropylphenol) is chemically similar to phenol-based free radical scavengers such as the endogenous antioxidant vitamin E. Both in vivo and in vitro studies have suggested that propofol has antioxidant potential. We hypothesized that propofol may attenuate ALI by acting as a free-radical scavenger. We investigated the effects of propofol on oxidant-induced ALI induced by purine and xanthine oxidase (XO), in isolated perfused rabbit lung, in two series of experiments. In series 1, we examined the relationship between the severity of ALI and the presence of hydrogen peroxide (H2O2). In series 2, we evaluated the effects of propofol on attenuating ALI and the dose dependence of these effects. The lungs were perfused for 90 min, and we evaluated the effects on the severity of ALI by monitoring the pulmonary capillary filtration coefficient (Kfc), pulmonary arterial pressure (Ppa), and the pulmonary capillary hydrostatic pressure (Ppc). In series 1, treatment with catalase (an H2O2 scavenger) prior to the addition of purine and XO resulted in complete prevention of ALI, suggesting that H2O2 may be involved closely in the pathogenesis of ALI. In series 2, pretreatment with propofol at concentrations in excess of 0.5 mM significantly inhibited the increases in the Kfc values, and that in excess of 0.75 mM significantly inhibited the increase in the Ppa values. Propofol attenuates oxidant-induced ALI in an isolated perfused rabbit lung model, probably due to its antioxidant action.

  15. Modulatory effect of neuropeptide Y on acetylcholine-induced oedema and vasoconstriction in isolated perfused lungs of rabbit.

    PubMed Central

    Delaunois, A; Gustin, P; Dessy-Doize, C; Ansay, M

    1994-01-01

    1. The modulatory role of neuropeptide Y (NPY) on pulmonary oedema induced by acetylcholine and capsaicin was investigated. The effects of NPY on the haemodynamic response to acetylcholine, phenylephrine and substance P were also investigated. 2. Isolated, ventilated, exsanguinated lungs of the rabbit were perfused with a constant flow of recirculating blood-free perfusate. The double/arterial/venous occlusion method was used to partition the total pressure gradient (delta Pt) into four components: the arterial gradient (delta Pa), the pre- and post-capillary gradients (respectively delta Pa' and delta Pv') and the venous pressure gradient (delta Pv). Endothelial permeability was evaluated by measuring the capillary filtration coefficient (Kf,c). 3. Acetylcholine (10(-8) M to 10(-4) M) and substance P (SP, 10(-10) M to 10(-6) M) induced a concentration-dependent increase in the Kf,c. Capsaicin (10(-4) M) and 5-hydroxytryptamine (5-HT) (10(-4) M) also increased this parameter. NPY (10(-8) M) completely inhibited the effects of acetylcholine and capsaicin on the Kf,c, without preventing the effects of substance P and 5-HT. 4. Acetylcholine induced concentration-dependent vasoconstriction in the precapillary segment. The effect was inhibited by NPY and aspirin, an inhibitor of cyclo-oxygenase, while ketanserin, a 5-HT2 receptor antagonist, and SR140333, a new NK1 antagonist, had no protective effect. Phenylephrine increased delta Pa at high concentration, an effect also inhibited by NPY and aspirin. Substance P had no significant haemodynamic effect. When injected together with NPY, substance P (10(-6) M) induced a significant increase in the total pressure gradient.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 PMID:7532083

  16. Improvements to water vapor transmission and capillary absorption measurements in porous materials

    Treesearch

    Samuel L. Zelinka; Samuel V. Glass; Charles R. Boardman

    2016-01-01

    The vapor permeability (or equivalently the vapor diffusion resistance factor) and the capillary absorption coefficient are frequently used as inputs to hygrothermal or heat, air, and moisture (HAM) models. However, it has been well documented that the methods used to determine these properties are sensitive to the operator, and wide variations in the properties have...

  17. Direct measurement of capillary blood pressure in the human lip

    NASA Technical Reports Server (NTRS)

    Parazynski, S. E.; Tucker, B. J.; Aratow, M.; Crenshaw, A.; Hargens, A. R.

    1993-01-01

    In this study, we developed and tested a new procedure for measuring microcirculatory blood pressures above heart level in humans. Capillary and postcapillary venule blood pressures were measured directly in 13 human subjects by use of the servonulling micropressure technique adapted for micropuncture of lip capillaries. Pressure waveforms were recorded in 40 separate capillary vessels and 14 separate postcapillary venules over periods ranging from 5 to 64 s. Localization and determination of capillary and postcapillary vessels were ascertained anatomically before pressure measurements. Capillary pressure was 33.2 +/- 1.5 (SE) mm Hg in lips of subjects seated upright. Repeated micropunctures of the same vessel gave an average coefficient of variation of 0.072. Postcapillary venule pressure was 18.9 +/- 1.6 mm Hg. This procedure produces a direct and reproducible means of measuring microvascular blood pressures in a vascular bed above heart level in humans.

  18. Field-Scale Modeling of Local Capillary Trapping During CO2 Injection into a Saline Aquifer

    NASA Astrophysics Data System (ADS)

    Ren, B.; Lake, L. W.; Bryant, S. L.

    2015-12-01

    Local capillary trapping is the small-scale (10-2 to 10+1 m) CO2 trapping that is caused by the capillary pressure heterogeneity. The benefit of LCT, applied specially to CO2 sequestration, is that saturation of stored CO2 is larger than the residual gas, yet these CO2 are not susceptible to leakage through failed seals. Thus quantifying the extent of local capillary trapping is valuable in design and risk assessment of geologic storage projects. Modeling local capillary trapping is computationally expensive and may even be intractable using a conventional reservoir simulator. In this paper, we propose a novel method to model local capillary trapping by combining geologic criteria and connectivity analysis. The connectivity analysis originally developed for characterizing well-to-reservoir connectivity is adapted to this problem by means of a newly defined edge weight property between neighboring grid blocks, which accounts for the multiphase flow properties, injection rate, and gravity effect. Then the connectivity is estimated from shortest path algorithm to predict the CO2 migration behavior and plume shape during injection. A geologic criteria algorithm is developed to estimate the potential local capillary traps based only on the entry capillary pressure field. The latter is correlated to a geostatistical realization of permeability field. The extended connectivity analysis shows a good match of CO2 plume computed by the full-physics simulation. We then incorporate it into the geologic algorithm to quantify the amount of LCT structures identified within the entry capillary pressure field that can be filled during CO2 injection. Several simulations are conducted in the reservoirs with different level of heterogeneity (measured by the Dykstra-Parsons coefficient) under various injection scenarios. We find that there exists a threshold Dykstra-Parsons coefficient, below which low injection rate gives rise to more LCT; whereas higher injection rate increases LCT in heterogeneous reservoirs. Both the geologic algorithm and connectivity analysis are very fast; therefore, the integrated methodology can be used as a quick tool to estimate local capillary trapping. It can also be used as a potential complement to the full-physics simulation to evaluate safe storage capacity.

  19. DEVELOPMENT OF DEWATERING AIDS FOR MINERALS AND COAL FINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roe-Hoam Yoon; Ramazan Asmatulu; Ismail Yildirim

    2004-07-01

    MCT has developed a suite of novel dewatering chemicals (or aids) that are designed to cause a decrease in the capillary pressures of the water trapped in a filter cake by (1) decreasing the surface tension of water, (2) increasing the contact angles of the particles to be dewatered, and (3) causing the particles to coagulate, all at the same time. The decrease in capillary pressure in turn causes an increase in the rate filtration, an increase in throughput, and a decrease in pressure drop requirement for filtration. The reagents are used frequently as blends of different chemicals in ordermore » to bring about the changes in all of the process variables noted above. The minerals and coal samples tested in the present work included copper sulfide, lead sulfide, zinc sulfide, kaolin clay, talc, and silica. The laboratory-scale test work included studies of reagent types, drying cycle times, cake thickness, slurry temperature, conditioning intensity and time, solid content, and reagent dosages. To better understand the mechanisms involved, fundamental studies were also conducted. These included the measurements of the contact angles of the particles to be dewatered (which are the measures of particle hydrophobicity) and the surface tensions of the filtrates produced from dewatering tests. The results of the laboratory-scale filtration experiments showed that the use of the novel dewatering aids can reduce the moistures of the filter cake by 30 to 50% over what can be achieved using no dewatering aids. In many cases, such high levels of moisture reductions are sufficient to obviate the needs for thermal drying, which is costly and energy intensive. Furthermore, the use of the novel dewatering aids cause a substantial increase in the kinetics of dewatering, which in turn results in increased throughput. As a result of these technological advantages, the novel dewatering aids have been licensed to Nalco, which is one of the largest mining chemicals companies of the world. At least one mineral company is currently using the technology in full-scale plant operation, which has resulted in the shutdown of a thermal dryer.« less

  20. Determinations of gas-liquid partition coefficients using capillary chromatographic columns. Alkanols in squalane.

    PubMed

    Tascon, Marcos; Romero, Lílian M; Acquaviva, Agustín; Keunchkarian, Sonia; Castells, Cecilia

    2013-06-14

    This study focused on an investigation into the experimental quantities inherent in the determination of partition coefficients from gas-liquid chromatographic measurements through the use of capillary columns. We prepared several squalane - (2,6,10,15,19,23-hexamethyltetracosane) - containing columns with very precisely known phase ratios and determined solute retention and hold-up times at 30, 40, 50 and 60°C. We calculated infinite dilution partition coefficients from the slopes of the linear regression of retention factors as a function of the reciprocal of the phase ratio by means of fundamental chromatographic equations. In order to minimize gas-solid and liquid-solid interface contributions to retention, the surface of the capillary inner wall was pretreated to guarantee a uniform coat of stationary phase. The validity of the proposed approach was first tested by estimating the partition coefficients of n-alkanes between n-pentane and n-nonane, for which compounds data from the literature were available. Then partition coefficients of sixteen aliphatic alcohols in squalane were determined at those four temperatures. We deliberately chose these highly challenging systems: alcohols in the reference paraffinic stationary phase. These solutes exhibited adsorption in the gas-liquid interface that contributed to retention. The corresponding adsorption constant values were estimated. We fully discuss here the uncertainties associated with each experimental measurement and how these fundamental determinations can be performed precisely by circumventing the main drawbacks. The proposed strategy is reliable and much simpler than the classical chromatographic method employing packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Lymphatic Regeneration Within Porous VEGF-C Hydrogels for Secondary Lymphedema

    DTIC Science & Technology

    2004-07-01

    A Lymphedema, however, strictly occurs when A B C swelling is due to a failure of lymph drainage in circumstances in which capillary filtration is not...increased. Figure 1: Schematic representation of Secondary Lymphedema. A) Normal lymphatic flow from the hand to the Thoracic duct (arrow). B ...of in vitro Proliferation and migration Assays of LEC in a Bodin chamber at 7 days. A) Ang-2 concentration of 0.22 jig/ml, B ) Ang-2 concentration of

  2. Transdiaphragmatic transport of tracer albumin from peritoneal to pleural liquid measured in rats.

    PubMed

    Lai-Fook, Stephen J; Houtz, Pamela K; Jones, Philip D

    2005-12-01

    In conscious Wistar-Kyoto rats, we studied the uptake of radioactive tracer (125)I-albumin into the pleural space and circulation after intraperitoneal (IP) injections with 1 or 5 ml of Ringer solution (3 g/dl albumin). Postmortem, we sampled pleural liquid, peritoneal liquid, and blood plasma 2-48 h after IP injection and measured their radioactivity and protein concentration. Tracer concentration was greater in pleural liquid than in plasma approximately 3 h after injection with both IP injection volumes. This behavior indicated transport of tracer through the diaphragm into the pleural space. A dynamic analysis of the tracer uptake with 5-ml IP injections showed that at least 50% of the total pleural flow was via the diaphragm. A similar estimate was derived from an analysis of total protein concentrations. Both estimates were based on restricted pleural capillary filtration and unrestricted transdiaphragmatic transport. The 5-ml IP injections did not change plasma protein concentration but increased pleural and peritoneal protein concentrations from control values by 22 and 30%, respectively. These changes were consistent with a small (approximately 8%) increase in capillary filtration and a small (approximately 20%) reduction in transdiaphragmatic flow from control values, consistent with the small (3%) decrease in hydration measured in diaphragm muscle. Thus the pleural uptake of tracer via the diaphragm with the IP injections occurred by the near-normal transport of liquid and protein.

  3. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.

    PubMed

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping

    2017-03-01

    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  4. Assessment of Nephroprotective Potential of Histochrome during Induced Arterial Hypertension.

    PubMed

    Agafonova, I G; Bogdanovich, R N; Kolosova, N G

    2015-12-01

    Magnetic resonance tomography was employed to verify endothelial dysfunction of renal arteries in Wistar and OXYS rats under conditions of induced arterial hypertension. Angiography revealed changes in the size and form of renal arteries of hypertensive animals. In hypertensive rats, histochrome exerted a benevolent therapeutic effect in renal arteries: it decreased BP, diminished thrombus formation in fi ne capillaries and arterioles, demonstrated the anticoagulant properties, partially improved endothelial dysfunction of small renal arteries, and up-regulated the glomerular filtration.

  5. Implications of changes in solids retention time on long term evolution of sludge filterability in anaerobic membrane bioreactors treating high strength industrial wastewater.

    PubMed

    Dereli, Recep Kaan; Grelot, Aurelie; Heffernan, Barry; van der Zee, Frank P; van Lier, Jules B

    2014-08-01

    Long-term experiments were conducted to assess the impact of changing the solids retention time (SRT) on sludge filterability in anaerobic membrane bioreactors (AnMBRs), treating corn-based bioethanol thin stillage. Well established parameters, such as capillary suction time (CST) and specific resistance to filtration (SRF), developed for sludge dewatering, were used to evaluate the SRT effect on sludge filterability. Our results clearly demonstrated that SRT is one of the most important factors influencing sludge filterability in AnMBRs. SRT effects the accumulation of fine particles and solutes, which were found to affect attainable flux and fouling, in reactor broth. A better filterability was observed at a SRT of 20 days compared to elevated SRTs, i.e. 50 days. A clear correlation between sludge filtration characteristics and membrane filtration resistance could not be established especially at short SRTs, whereas many parameters such as total suspended solids (TSS), CST, soluble microbial products (SMP) and supernatant filterability were found to be mutually correlated. Net membrane fluxes between 9 and 13 L m(-2) h(-1) were obtained at 0.5 m s(-1) cross-flow velocity and the long term fouling was controlled by using frequent filtration and backwash cycles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Analytical characterization of wine and its precursors by capillary electrophoresis.

    PubMed

    Gomez, Federico J V; Monasterio, Romina P; Vargas, Verónica Carolina Soto; Silva, María F

    2012-08-01

    The accurate determination of marker chemical species in grape, musts, and wines presents a unique analytical challenge with high impact on diverse areas of knowledge such as health, plant physiology, and economy. Capillary electromigration techniques have emerged as a powerful tool, allowing the separation and identification of highly polar compounds that cannot be easily separated by traditional HPLC methods, providing complementary information and permitting the simultaneous analysis of analytes with different nature in a single run. The main advantage of CE over traditional methods for wine analysis is that in most cases samples require no treatment other than filtration. The purpose of this article is to present a revision on capillary electromigration methods applied to the analysis of wine and its precursors over the last decade. The current state of the art of the topic is evaluated, with special emphasis on the natural compounds that have allowed wine to be considered as a functional food. The most representative revised compounds are phenolic compounds, amino acids, proteins, elemental species, mycotoxins, and organic acids. Finally, a discussion on future trends of the role of capillary electrophoresis in the field of analytical characterization of wines for routine analysis, wine classification, as well as multidisciplinary aspects of the so-called "from soil to glass" chain is presented. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Normal versus sickle red blood cells: hemodynamic and permeability characteristics in reperfusion lung injury.

    PubMed

    Haynes, J; Seibert, A; Shah, A; Taylor, A

    1990-01-01

    Decreased deformability and increased internal viscosity of the sickle red blood cell (SRBC) contribute to abnormal flow in the microcirculation. Since the lungs are commonly affected in sickle cell disease, we compared the hemodynamics of the normal human red blood cell (NRBC) with the SRBC in the pulmonary circulation. The SRBC has decreased antioxidant enzyme activities compared with the NRBC. Thus, using the capillary filtration coefficient (Kfc), we determined the ability of the NRBC and the SRBC to attenuate the increased permeability and resulting edema seen in the oxidant stress of reperfusion lung injury (RLI). We found that lungs perfused with a 5% SRBC perfusate had higher pulmonary arterial pressures (Ppa) and resistances than lungs perfused with a 5% NRBC perfusate. Lungs made ischemic and reperfused with a physiologic cell-free perfusate resulted in a significant increase (P less than .05) in Kfc compared with the preischemic Kfc (.45 +/- .06 to 1.4 +/- 22 mL.min-1.cm H2O.100 g-1). In lungs reperfused with 5% RBC-containing perfusates, the Kfc did not change from preischemic Kfc with NRBCs and decreased from the preischemic Kfc with SRBCs. These findings suggest that the SRBC causes physiologically significant increases in Ppa and resistances and the SRBC, like the NRBC, offers apparent protection in RLI.

  8. Restoration of normal pH triggers ischemia-reperfusion injury in lung by Na+/H+ exchange activation.

    PubMed

    Moore, T M; Khimenko, P L; Taylor, A E

    1995-10-01

    The effects of acidotic extracellular pH and Na+/H+ exchange inhibition on ischemia-reperfusion (I/R)-induced microvascular injury were studied in the isolated, buffer-perfused rat lung. When lungs were subjected to 45 min of ischemia followed by 30 min of reperfusion, the capillary filtration coefficient (Kfc) increased significantly, resulting in a change in Kfc (delta Kfc) of 0.360 +/- 0.09 ml.min-1.cmH2O-1.100 g-1. Addition of hydrochloric acid to the perfusate before ischemia at a concentration sufficient to reduce perfusate pH from 7.38 +/- 0.03 to 7.09 +/- 0.04 completely prevented the increase in Kfc associated with I/R (delta Kfc = 0.014 +/- 0.034 ml.min-1.cmH2O-1.100 g-1). Addition of a Na+/H+ exchange inhibitor, 5-(N,N-dimethyl)-amiloride, to the perfusate either before ischemia or at reperfusion also prevented the I/R-induced permeability increase (delta Kfc = 0.01 +/- 0.02 and -0.001 +/- 0.02 ml.min-1.cmH2O-1.100 g-1, respectively). We conclude that restoration of flow at physiological pH to the postischemic lung activates the Na+/H+ exchange system, which may represent the "triggering mechanism" responsible for initiating reperfusion-induced microvascular injury.

  9. Effects of anti-tumor necrosis factor-alpha and anti-intercellular adhesion molecule-1 antibodies on ischemia/reperfusion lung injury.

    PubMed

    Chiang, Chi-Huei

    2006-10-31

    Inhibition of neutrophil activation and adherence to endothelium by antibodies to tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecules (ICAM-1), respectively, might attenuate ischemia-reperfusion injury (I/R). I/R was conducted in an isolated rat lung model. Anti-TNF-alpha antibody and/or anti-ICAM-1 antibody were added before ischemia or after reperfusion. Hemodynamic changes, lung weight gain (LWG), capillary filtration coefficients (Kfc), and pathologic changes were assessed to evaluate the severity of I/R. The LWG, Kfc, pathological changes and lung injury score of treatment groups with anti-TNF-alpha antibody treatment, either pre-ischemia or during reperfusion, were less than those observed in control groups. Similar findings were found in group treated with anti-ICAM-1 antibody or combination therapy during reperfusion. In contrast, pre-I/R treatment with anti-ICAM-1 antibody induced severe lung edema and failure to complete the experimental procedure. No additional therapeutic effect was found in combination therapy. We conclude that TNF-alpha and ICAM-1 play important roles in I/R. Anti-TNF-alpha antibody has therapeutic and preventive effects on I/R. However, combined therapy with anti-TNF-alpha antibody and anti-ICAM-1 antibody may have no additive effect and need further investigation.

  10. Cell biology of mesangial cells: the third cell that maintains the glomerular capillary.

    PubMed

    Kurihara, Hidetake; Sakai, Tatsuo

    2017-03-01

    The renal glomerulus consists of glomerular endothelial cells, podocytes, and mesangial cells, which cooperate with each other for glomerular filtration. We have produced monoclonal antibodies against glomerular cells in order to identify different types of glomerular cells. Among these antibodies, the E30 clone specifically recognizes the Thy1.1 molecule expressed on mesangial cells. An injection of this antibody into rats resulted in mesangial cell-specific injury within 15 min, and induced mesangial proliferative glomerulonephritis in a reproducible manner. We examined the role of mesangial cells in glomerular function using several experimental tools, including an E30-induced nephritis model, mesangial cell culture, and the deletion of specific genes. Herein, we describe the characterization of E30-induced nephritis, formation of the glomerular capillary network, mesangial matrix turnover, and intercellular signaling between glomerular cells. New molecules that are involved in a wide variety of mesangial cell functions are also introduced.

  11. Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values.

    PubMed

    Tofts, Paul S; Cutajar, Marica; Mendichovszky, Iosif A; Peters, A Michael; Gordon, Isky

    2012-06-01

    To model the uptake phase of T(1)-weighted DCE-MRI data in normal kidneys and to demonstrate that the fitted physiological parameters correlate with published normal values. The model incorporates delay and broadening of the arterial vascular peak as it appears in the capillary bed, two distinct compartments for renal intravascular and extravascular Gd tracer, and uses a small-vessel haematocrit value of 24%. Four physiological parameters can be estimated: regional filtration K ( trans ) (ml min(-1) [ml tissue](-1)), perfusion F (ml min(-1) [100 ml tissue](-1)), blood volume v ( b ) (%) and mean residence time MRT (s). From these are found the filtration fraction (FF; %) and total GFR (ml min(-1)). Fifteen healthy volunteers were imaged twice using oblique coronal slices every 2.5 s to determine the reproducibility. Using parenchymal ROIs, group mean values for renal biomarkers all agreed with published values: K ( trans ): 0.25; F: 219; v ( b ): 34; MRT: 5.5; FF: 15; GFR: 115. Nominally cortical ROIs consistently underestimated total filtration (by ~50%). Reproducibility was 7-18%. Sensitivity analysis showed that these fitted parameters are most vulnerable to errors in the fixed parameters kidney T(1), flip angle, haematocrit and relaxivity. These renal biomarkers can potentially measure renal physiology in diagnosis and treatment. • Dynamic contrast-enhanced magnetic resonance imaging can measure renal function. • Filtration and perfusion values in healthy volunteers agree with published normal values. • Precision measured in healthy volunteers is between 7 and 15%.

  12. Optical measurements of lung microvascular filtration coefficient using polysulfone fibers.

    PubMed

    Klaesner, J W; Roselli, R J; Evans, S; Pou, N A; Parker, R E; Tack, G; Parham, M

    1994-01-01

    Lung fluid balance, which is governed by the product of net transvascular pressure difference and lung filtration coefficient, can be altered in pulmonary diseases. A simple measurement of the lung filtration coefficient (Kfc) would be clinically useful and has been examined by several researchers. Current methods of determining Kfc include gravimetric measurement in isolated lungs and lymph node cannulation, neither of which can be extended to human use. Optical measurements of protein concentration changes in venous blood can be combined with pressure measurements to calculate Kfc. Blood, though, contains red corpuscles, which tend to absorb and scatter light, obscuring these optical measurements. In this study, an optical system was developed in which a polysulfone filter cartridge was used to remove red blood cells before the filtrate was passed through a spectrophotometer. Absorbance changes caused by changes in concentration of albumin labeled with Evans Blue were monitored at 620 nm after venous pressure was elevated by about 13 cm H2O. Optical measurements of Kfc averaged 0.401 +/- 0.074 (ml/min cm H2O 100 g DLW) for an isolated canine lung. Optical measurements of Kfc (0.363 +/- 0.120 ml/min cm H2O 100 g DLW) were made for the first time in an intact, closed chest sheep in which pulmonary pressure was altered by inflating a Foley balloon in the left atrium. We conclude that absorbance and scattering artifacts introduced by red blood cells can be eliminated by first filtering the blood through polysulfone fibers. Kfc measurements using the optical method are similar to values obtained by others using gravimetric methods. Finally, we have demonstrated that the technique can be used to estimate Kfc in an intact animal.

  13. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis

    PubMed Central

    Lenoir, Olivia; Jasiek, Magali; Hénique, Carole; Guyonnet, Léa; Hartleben, Björn; Bork, Tillmann; Chipont, Anna; Flosseau, Kathleen; Bensaada, Imane; Schmitt, Alain; Massé, Jean-Marc; Souyri, Michèle; Huber, Tobias B; Tharaux, Pierre-Louis

    2015-01-01

    The glomerulus is a highly specialized capillary tuft, which under pressure filters large amounts of water and small solutes into the urinary space, while retaining albumin and large proteins. The glomerular filtration barrier (GFB) is a highly specialized filtration interface between blood and urine that is highly permeable to small and midsized solutes in plasma but relatively impermeable to macromolecules such as albumin. The integrity of the GFB is maintained by molecular interplay between its 3 layers: the glomerular endothelium, the glomerular basement membrane and podocytes, which are highly specialized postmitotic pericytes forming the outer part of the GFB. Abnormalities of glomerular ultrafiltration lead to the loss of proteins in urine and progressive renal insufficiency, underlining the importance of the GFB. Indeed, albuminuria is strongly predictive of the course of chronic nephropathies especially that of diabetic nephropathy (DN), a leading cause of renal insufficiency. We found that high glucose concentrations promote autophagy flux in podocyte cultures and that the abundance of LC3B II in podocytes is high in diabetic mice. Deletion of Atg5 specifically in podocytes resulted in accelerated diabetes-induced podocytopathy with a leaky GFB and glomerulosclerosis. Strikingly, genetic alteration of autophagy on the other side of the GFB involving the endothelial-specific deletion of Atg5 also resulted in capillary rarefaction and accelerated DN. Thus autophagy is a key protective mechanism on both cellular layers of the GFB suggesting autophagy as a promising new therapeutic strategy for DN. PMID:26039325

  14. Lymphatic regulation in nonmammalian vertebrates.

    PubMed

    Hedrick, Michael S; Hillman, Stanley S; Drewes, Robert C; Withers, Philip C

    2013-08-01

    All vertebrate animals share in common the production of lymph through net capillary filtration from their closed circulatory system into their tissues. The balance of forces responsible for net capillary filtration and lymph formation is described by the Starling equation, but additional factors such as vascular and interstitial compliance, which vary markedly among vertebrates, also have a significant impact on rates of lymph formation. Why vertebrates show extreme variability in rates of lymph formation and how nonmammalian vertebrates maintain plasma volume homeostasis is unclear. This gap hampers our understanding of the evolution of the lymphatic system and its interaction with the cardiovascular system. The evolutionary origin of the vertebrate lymphatic system is not clear, but recent advances suggest common developmental factors for lymphangiogenesis in teleost fishes, amphibians, and mammals with some significant changes in the water-land transition. The lymphatic system of anuran amphibians is characterized by large lymphatic sacs and two pairs of lymph hearts that return lymph into the venous circulation but no lymph vessels per se. The lymphatic systems of reptiles and some birds have lymph hearts, and both groups have extensive lymph vessels, but their functional role in both lymph movement and plasma volume homeostasis is almost completely unknown. The purpose of this review is to present an evolutionary perspective in how different vertebrates have solved the common problem of the inevitable formation of lymph from their closed circulatory systems and to point out the many gaps in our knowledge of this evolutionary progression.

  15. Podocyte is the major culprit accounting for the progression of chronic renal disease.

    PubMed

    Kriz, Wilhelm

    2002-05-15

    The concept that the podocyte is the major culprit underlying development and progression of glomerular diseases leading to chronic renal failure is well established. The essential steps in this process are (1) the establishment of tuft adhesions to Bowman's capsule; (2) the formation by capillaries contained in a tuft adhesion of a filtrate that is delivered, instead into Bowman's space, towards the interstitium; and (3) the spreading of this filtrate on the outer aspect of the affected nephron leading to the degeneration of this nephron. The present review summarizes the pros and cons concerning the relevance of misdirected filtration for a nephron-to-nephron transfer of the disease at the level of the tubular interstitium. Surprisingly, the histopathology clearly shows that interstitial proliferation surrounding degenerating nephrons tends to encapsulate the degenerative process, confining it to the already affected nephron. No evidence is available that the disease, mediated by interstitial proliferation and matrix deposition, may jump to a neighboring, so far unaffected, nephron. It appears that the process that leads to the degeneration of a nephron in the context of "classic" FSGS always starts separately in the respective glomerulus by severe podocyte injury. Copyright 2002 Wiley-Liss, Inc.

  16. Optimization of protein and peptide drugs based on the mechanisms of kidney clearance.

    PubMed

    Huang, Jiaguo; Wu, Huizi

    2018-05-30

    Development of proteins and peptides into drugs has been considered as a promising strategy to target certain diseases. However, only few proteins and peptides has been approved as new drugs into the market each year. One major problem is that proteins and peptides often exhibit short plasma half-life times, which limits the application for their clinical use. In most cases a short half-life time is not effective to deliver sufficient amount of drugs to the target organs and tissues, which is generally caused by fast renal clearance and low plasma stability due to proteolytic degradation during systemic circulation, because the most common clearance pathway of small proteins and peptides is through glomerular filtration by the kidneys. In this review, enzymatic degradation of proteins and peptides were discussed. Furthermore, several approaches to lengthen the half-life of peptides and proteins drugs based on the unique structures of glomerular capillary wall and the mechanisms of glomerular filtration were summarized, such as increasing the size and hydrodynamic diameter; increasing the negative charge to delay the filtration; increasing plasma protein binding to decrease plasma clearance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Water imbibition by mica pores: what happens when capillary flow is suppressed?

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Qiao, Rui

    2017-11-01

    The imbibition of liquids into porous media plays a critical role in numerous applications. Most prior studies focused on imbibition driven by capillary flows. In this work, we study the imbibition of water into slit-shaped mica pores filled with pressurized methane using molecular simulations. Despite that capillary flow is suppressed by the high gas pressure, water is imbibed into the pore as monolayer liquid films. Since the classical hydrodynamic flow is not readily applicable for the monolayer water film propagating on the mica wall and the imbibition is driven by the strong affinity of water molecules to the mica walls, the observed imbibition is best taken as surface hydration. We show that the dynamics of water's imbibition front follows a simple diffusive scaling law. The effective diffusion coefficient of the imbibition front, however, is more than ten times larger than the diffusion coefficient of the water molecules in the water film adsorbed on the mica walls. Using a molecular theory originally developed for the spreading of monolayer films on solid substrates, we clarify the mechanism underlying the rapid water imbibition observed here.

  18. Capillary flow enhancement in rectangular polymer microchannels with a deformable wall.

    PubMed

    Anoop, R; Sen, A K

    2015-07-01

    We report the capillary flow enhancement in rectangular polymer microchannels, when one of the channel walls is a deformable polymer membrane. We provide detailed insight into the physics of elastocapillary interaction between the capillary flow and elastic membrane, which leads to significant improvements in capillary flow performance. As liquid flows by capillary action in such channels, the deformable wall deflects inwards due to the Young-Laplace pressure drop across the liquid meniscus. This, in turn, decreases the radius of curvature of the meniscus and increases the driving capillary pressure. A theoretical model is proposed to predict the resultant increase in filling speed and rise height, respectively, in deformable horizontal and vertical microchannels having large aspect ratios. A non-dimensional parameter J, which represents the ratio of the capillary force to the mechanical restoring force, is identified to quantify the elastocapillary effects in terms of the improvement in filling speed (for J>0.238) and the condition for channel collapse (J>1). The theoretical predictions show good agreement with experimental data obtained using deformable rectangular poly(dimethylsiloxane) microchannels. Both model predictions and experimental data show that over 15% improvement in the Washburn coefficient in horizontal channels, and over 30% improvement in capillary rise height in vertical channels, are possible prior to channel collapse. The proposed technique of using deformable membranes as channel walls is a viable method for capillary flow enhancement in microfluidic devices.

  19. The measurement of solute diffusion coefficients in dilute liquid alloys: the influence of unit gravity and g-jitter on buoyancy convection.

    PubMed

    Smith, R W; Yang, B J; Huang, W D

    2004-11-01

    Liquid diffusion experiments conducted on the MIR space station using the Canadian Space Agency QUELD II processing facility and the microgravity isolation mount (MIM) showed that g-jitter significantly increased the measured solute diffusion coefficients. In some experiments, milli-g forced vibration was superimposed on the sample when isolated from the ambient g-jitter; this resulted in markedly increased solute transport. To further explore the effects arising in these long capillary diffusion couples from the absence of unit-gravity and the presence of the forced g-jitter, the effects of a 1 milli-g forcing vibration on the mass transport in a 1.5 mm diameter long capillary diffusion couple have been simulated. In addition, to increase understanding of the role of unit gravity in determining the extent to which gravity can influence measured diffusion coefficient values, comparative experiments involving gold, silver, and antimony diffusing in liquid lead have been carried out using a similar QUELD II facility to that employed in the QUELD II/MIM/MIR campaign but under terrestrial conditions. It was found that buoyancy-driven convection may still persist in the liquid even when conditions are arranged for a continuously decreasing density gradient up the axis of a vertical long capillary diffusion couple due to the presence of small radial temperature gradients.

  20. Multiscale modeling of fluid transport in tumors.

    PubMed

    Chapman, S Jonathan; Shipley, Rebecca J; Jawad, Rossa

    2008-11-01

    A model for fluid flow through the leaky neovasculature and porous interstitium of a solid tumor is developed. A network of isolated capillaries is analyzed in the limit of small capillary radius, and analytical expressions for the hydraulic conductivities and fractional leakage coefficients derived. This model is then homogenized to give a continuum description in terms of the vascular density. The resulting equations comprise a double porous medium with coupled Darcy flow through the interstitium and vasculature.

  1. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements

    USGS Publications Warehouse

    Lu, Wanjun; Guo, Huirong; Chou, I.-Ming; Burruss, R.C.; Li, Lanlan

    2013-01-01

    Accurate values of diffusion coefficients for carbon dioxide in water and brine at reservoir conditions are essential to our understanding of transport behavior of carbon dioxide in subsurface pore space. However, the experimental data are limited to conditions at low temperatures and pressures. In this study, diffusive transfer of carbon dioxide in water at pressures up to 45 MPa and temperatures from 268 to 473 K was observed within an optical capillary cell via time-dependent Raman spectroscopy. Diffusion coefficients were estimated by the least-squares method for the measured variations in carbon dioxide concentration in the cell at various sample positions and time. At the constant pressure of 20 MPa, the measured diffusion coefficients of carbon dioxide in water increase with increasing temperature from 268 to 473 K. The relationship between diffusion coefficient of carbon dioxide in water [D(CO2) in m2/s] and temperature (T in K) was derived with Speedy–Angell power-law approach as: D(CO2)=D0[T/Ts-1]m where D0 = 13.942 × 10−9 m2/s, Ts = 227.0 K, and m = 1.7094. At constant temperature, diffusion coefficients of carbon dioxide in water decrease with pressure increase. However, this pressure effect is rather small (within a few percent).

  2. Recombination-pumped XUV lasing in capillary discharges and dynamic z-pinches

    NASA Astrophysics Data System (ADS)

    Pöckl, M.; Hebenstreit, M.; Fertner, R.; Neger, T.; Aumayr, F.

    1996-08-01

    A fully time-dependent collisional - radiative model is employed to calculate relevant population densities in a recombining carbon/hydrogen z-pinch plasma. In particular, the dependence of the small signal gain G on the maximum electron temperature and cooling rate, as well as the influence of Lyman-0022-3727/29/8/005/img8 reabsorption, are studied. Although in conditions typical for dynamic z-pinches the maximum electron temperature and cooling rates would, in principle, be sufficiently high, gain on the Balmer-0022-3727/29/8/005/img8 transition is strongly reduced by Lyman-0022-3727/29/8/005/img8 reabsorption. In order to investigate vacuum spark capillary discharges, the system of rate equations is coupled with balance equations of the plasma energy and the total number of heavy particles. The resulting set of equations is solved self-consistently. Results are presented that show the systematic dependence of the small signal gain on electrical input power, wall material, and capillary geometry. High gain coefficients 0022-3727/29/8/005/img11 could be achieved by modelling high-voltage discharges with short ringing periods through capillaries containing boron or carbon. While the maximum achievable gain coefficient for lithium is rather poor 0022-3727/29/8/005/img12 the duration of population inversion would be long enough (a few tens of nanoseconds) to make multi-pass operation possible.

  3. Shear strength of wet granular materials: Macroscopic cohesion and effective stress : Discrete numerical simulations, confronted to experimental measurements.

    PubMed

    Badetti, Michel; Fall, Abdoulaye; Chevoir, François; Roux, Jean-Noël

    2018-05-28

    Rheometric measurements on assemblies of wet polystyrene beads, in steady uniform quasistatic shear flow, for varying liquid content within the small saturation (pendular) range of isolated liquid bridges, are supplemented with a systematic study by discrete numerical simulations. The numerical results agree quantitatively with the experimental ones provided that the intergranular friction coefficient is set to the value [Formula: see text], identified from the behaviour of the dry material. Shear resistance and solid fraction [Formula: see text] are recorded as functions of the reduced pressure [Formula: see text], which, defined as [Formula: see text], compares stress [Formula: see text], applied in the velocity gradient direction, to the tensile strength [Formula: see text] of the capillary bridges between grains of diameter a, and characterizes cohesion effects. The simplest Mohr-Coulomb relation with [Formula: see text]-independent cohesion c applies as a good approximation for large enough [Formula: see text] (typically [Formula: see text]. Numerical simulations extend to different values of μ and, compared to experiments, to a wider range of [Formula: see text]. The assumption that capillary stresses act similarly to externally applied ones onto the dry granular contact network (effective stresses) leads to very good (although not exact) predictions of the shear strength, throughout the numerically investigated range [Formula: see text] and [Formula: see text]. Thus, the internal friction coefficient [Formula: see text] of the dry material still relates the contact force contribution to stresses, [Formula: see text], while the capillary force contribution to stresses, [Formula: see text], defines a generalized Mohr-Coulomb cohesion c, depending on [Formula: see text] in general. c relates to [Formula: see text] , coordination numbers and capillary force network anisotropy. c increases with liquid content through the pendular regime interval, to a larger extent, the smaller the friction coefficient. The simple approximation ignoring capillary shear stress [Formula: see text] (referred to as the Rumpf formula) leads to correct approximations for the larger saturation range within the pendular regime, but fails to capture the decrease of cohesion for smaller liquid contents.

  4. Distributed modeling of diffusive solute transport in peritoneal dialysis.

    PubMed

    Waniewski, Jacek

    2002-01-01

    The diffusive transport between blood and an ex-tissue medium (dialysis fluid) is evaluated using a mathematical model that takes into account the (quasicontinuous) distribution of capillaries within the tissue at various distances from the tissue surface, and includes diffusive-convective transport through the capillary wall and lymphatic absorption from the tissue. General formulas for solute penetration depth, lambda, and for the diffusive mass transport coefficient for the transport between blood and dialysis fluid, K(BD), are provided in terms of local transport coefficients for capillary wall, tissue, and lymphatic absorption. For pure diffusive transport between blood and dialysis fluid and thick tissue layers (i.e., if the solute penetration depth is much lower than the tissue thickness) these formulas yield previously known expressions. It is shown that apparent tissue layers, with widths lambdaTBL and lambdaT, respectively, may be defined according to the values of local transport parameters in such a way that K(BD) is equal to the solute clearance K(TBL) from the tissue by blood and lymph for a layer with width lambdaTBL or to the solute clearance K(T) from blood to dialysate by diffusion through the tissue layer with width lambdaT. For tissue layers with width much higher than the penetration depth: lambdaT approximately = lambdaTBL approximately = lambda. These characteristic width lengths depend on the transport parameters (and thus on the size) of solutes. Effective blood flow, which may be related to the exchange of the solute between blood and dialysate, is defined using an analogy to the extraction/absorption coefficients for blood-tissue exchange. Various approximations for the distributed model formula for diffusive mass transport coefficient (K(BD)) are possible. The appropriate range for their application is obtained from the general formula.

  5. Simulation of the Flow Through Porous Layers Composed of Converging-Diverging Capillary Fissures or Tubes

    NASA Astrophysics Data System (ADS)

    Walicka, A.

    2018-02-01

    In this paper, a porous medium is modelled by a network of converging-diverging capillaries which may be considered as fissures or tubes. This model makes it necessary to consider flows through capillary fissures or tubes. Therefore an analytical method for deriving the relationships between pressure drops, volumetric flow rates and velocities for the following fluids: Newtonian, polar, power-law, pseudoplastic (DeHaven and Sisko types) and Shulmanian, was developed. Next, considerations on the models of pore network for Newtonian and non-Newtonian fluids were presented. The models, similar to the schemes of central finite differences may provide a good basis for transforming the governing equations of a flow through the porous medium into a set of linear or quasi-linear algebraic equations. It was shown that the some coefficients in these algebraic equations depend on the kind of the capillary convergence.

  6. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network

    PubMed Central

    Sosa, Jose M.; Nielsen, Nathan D.; Vignes, Seth M.; Chen, Tanya G.; Shevkoplyas, Sergey S.

    2013-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0% – 0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks. Further development of biomimetic tools for measuring RBC deformability (e.g. the AMVN) could enable a more functionally relevant testing of RBC mechanical properties. PMID:23603326

  7. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.

    PubMed

    Sosa, Jose M; Nielsen, Nathan D; Vignes, Seth M; Chen, Tanya G; Shevkoplyas, Sergey S

    2014-01-01

    The ability of red blood cells (RBC) to undergo a wide range of deformations while traversing the microvasculature is crucial for adequate perfusion. Interpretation of RBC deformability measurements performed in vitro in the context of microvascular perfusion has been notoriously difficult. This study compares the measurements of RBC deformability performed using micropore filtration and ektacytometry with the RBC ability to perfuse an artificial microvascular network (AMVN). Human RBCs were collected from healthy consenting volunteers, leukoreduced, washed and exposed to graded concentrations (0-0.08%) of glutaraldehyde (a non-specific protein cross-linker) and diamide (a spectrin-specific protein cross-linker) to impair the deformability of RBCs. Samples comprising cells with two different levels of deformability were created by adding non-deformable RBCs (hardened by exposure to 0.08% glutaraldehyde) to the sample of normal healthy RBCs. Ektacytometry indicated a nearly linear decline in RBC deformability with increasing glutaraldehyde concentration. Micropore filtration showed a significant reduction only for concentrations of glutaraldehyde higher than 0.04%. Neither micropore filtration nor ektacytometry measurements could accurately predict the AMVN perfusion. Treatment with diamide reduced RBC deformability as indicated by ektacytometry, but had no significant effect on either micropore filtration or the AMVN perfusion. Both micropore filtration and ektacytometry showed a linear decline in effective RBC deformability with increasing fraction of non-deformable RBCs in the sample. The corresponding decline in the AMVN perfusion plateaued above 50%, reflecting the innate ability of blood flow in the microvasculature to bypass occluded capillaries. Our results suggest that in vitro measurements of RBC deformability performed using either micropore filtration or ektacytometry may not represent the ability of same RBCs to perfuse microvascular networks. Further development of biomimetic tools for measuring RBC deformability (e.g. the AMVN) could enable a more functionally relevant testing of RBC mechanical properties.

  8. Interfacial spreading effects on one-dimensional organic liquid imbibition in water-wetted porous media

    NASA Astrophysics Data System (ADS)

    McBride, J. F.; Simmons, C. S.; Cary, J. W.

    1992-10-01

    The spreading coefficient, Csp, determines whether an organic immiscible liquid, OIL, will form a lens ( Csp < 0) or will spread spontaneously ( Csp > 0) on a water surface. An OIL that forms a lens does not perfectly wet the water surface and therefore has a contact angle greater than 0°. The one-dimensional rate at which an OIL spreads spontaneously on a water surface is proportional to the square root of Csp. Of the OIL's that pose a contaminant threat to the subsurface, the majority has a non-zero Csp. To test the influence of such interfacial spreading phenomena on OIL infiltration in a pristine vadose zone, upward OIL and water imbibition infiltration experiments were performed in glass-bead columns, moistened with water, by using OIL's with different Csp. An analytical model for saturated liquid front rise was used to inversely estimate the effective capillary pressure head at the front and the average liquid conductivity. A nonspreading OIL ( Csp ≪ 0) exhibited a reduced capillary pressure head in the water-wetted glass beads. A spontaneously spreading OIL ( Csp ≫0) manifested an enhanced capillary pressure head. Reduced capillary pressure head was associated with an increase in average conductivity, and enhanced capillary pressure head was associated with a decrease in average conductivity when compared to the average water conductivity during water imbibition. The employed experimental method and mathematical analysis of dynamic flow, subject to interfacial spreading phenomena, are practical for quantifying parameters for use in sharp-front OIL infiltration models, but more research is needed to determine how to incorporate the spreading coefficient in numerical multiphase flow models.

  9. Fast DNA sieving through submicrometer cylindrical glass capillary matrix.

    PubMed

    Cao, Zhen; Yobas, Levent

    2014-01-07

    Here, we report on DNA electrophoresis through a novel artificial sieving matrix based on the highly regular submicrometer cylindrical glass capillary segments alternatingly arranged with wells. Such round capillaries pose a higher-order confinement resulting in a lower partition coefficient and greater entropic energy barrier while limiting the driving field strength to a small fraction of the applied electric field. In return, the separation can be performed at high average field strengths (up to 1.6 kV/cm) without encountering the field-dependent loss of resolving power. This leads to fast DNA sieving as demonstrated here on the capillaries of 750 nm in diameter. The 600 bp to 21 kbp long chains are shown to resolve within 4 min after having undergone a fairly limited number of entropic barriers (128 in total). The capillary matrix also exhibits a critical field threshold below which DNA bands fail to launch, and this occurs at a considerably greater magnitude than in other matrixes. The submicrometer capillaries are batch-fabricated on silicon through a fabrication process that does not require high-resolution advanced lithography or well-controlled wafer bonding techniques to define their critical dimension.

  10. Standardization of the capillary electrophoresis procedures Capillarys® CDT and Minicap® CDT in comparison to the IFCC reference measurement procedure.

    PubMed

    Schellenberg, François; Humeau, Camille

    2017-06-01

    CDT is at present the most relevant routinely available biological marker of alcohol use and is widely used for screening and monitoring of patients. The lack of standardization leads to specific reference intervals for each procedure. The IFCC working group devoted to CDT demonstrated that the standardization is possible using calibrators assigned to the reference measurement procedure. In this study, we compare the capillary electrophoresis (CE) techniques Capillarys® CDT and Minicap® CDT (Sebia, Lisses, France) to the reference procedure before and after standardization in 126 samples covering the range of CDT measurement. Both capillary electrophoresis procedures show a high correlation (r=0,997) with the reference procedure and the concordance correlation coefficient evaluated according to Mc Bride is "almost perfect" (>0.997 for both CE procedures). The number of results with a relative difference higher than the acceptable difference limit is only 1 for Capillarys® CDT and 5 for Minicap® CDT. These results demonstrate the efficiency of the standardization of CDT measurements for both CE techniques from Sebia, achieved using calibrators assigned to the reference measurement procedure.

  11. Investigation of the Hydraulic Characteristics of Capillary Elements of the Injector Head of Jet Engines under Conditions of Isothermal Flow of A Liquid

    NASA Astrophysics Data System (ADS)

    Nigodjuk, V. E.; Sulinov, A. V.

    2018-01-01

    The article presents the results of an experimental study of the hydraulic characteristics of capillary elements of the injector head of jet engines in isothermal fluid flow and the proposed method of their calculation. The main geometric dimensions of the capillaries in the experiment were changed in the following range: Inner diameter from 0.16 to 0.36 mm, length from 4.3 to 158 mm and relative length from 25 to 614 and the inlet edge of the capillaries: sharp or smooth the leading edge. As the working fluid during the tests were distilled water, acetone and ethyl alcohol. Based on the results of a study of the dependences for calculation of ultimate losses in laminar and turbulent flow regimes in capillary tubes with smooth and sharp edges input. The influence of surface tension forces on loss of input on a sharp cutting edge. Experimentally confirmed the possibility of calculating the linear coefficient of hydraulic resistance of capillary tubes with a diameter of 0.16-0.36 mm in isothermal stable during the known dependencies that are valid for hydrodynamically smooth round tube.

  12. Effect of lysophosphatidylcholine on the filtration coefficient in intact dog lungs

    NASA Technical Reports Server (NTRS)

    Butler, B. D.; Davies, I.; Drake, R. E.

    1989-01-01

    Lysophosphatidylcholine (lyso-Pc) is a lysophospholipid normally found in low concentrations in the lung. At high concentrations lyso-Pc, instilled into the airways, causes pulmonary edema. The hypothesis was tested that the edema caused by lyso-Pc was due to an increase in pulmonary microvascular membrane permeability. In 11 anesthetized dogs, the left lower lobes (LLL) were continuously weighed while lyso-Pc (20 mM) was instilled into the LLL airways. After 30 min, the microvascular membrane fluid filtration coefficient (Kf) was determined from the relationship between the rate of LLL weight gain and the pulmonary microvascular pressure. Kf was not significantly different between the lyso-Pc-treated lobes vs control lobes. The data do not support the hypothesis that lyso-Pc, instilled into the airways, causes an increase in pulmonary microvascular permeability.

  13. Divergent dispersion behavior of ssDNA fragments during microchip electrophoresis in pDMA and LPA entangled polymer networks

    PubMed Central

    Fredlake, Christopher P.; Hert, Daniel G.; Niedringhaus, Thomas P.; Lin, Jennifer S.; Barron, Annelise E.

    2015-01-01

    Resolution of DNA fragments separated by electrophoresis in polymer solutions (“matrices”) is determined by both the spacing between peaks and the width of the peaks. Prior research on the development of high-performance separation matrices has been focused primarily on optimizing DNA mobility and matrix selectivity, and gave less attention to peak broadening. Quantitative data are rare for peak broadening in systems in which high electric field strengths are used (> 150 V/cm), which is surprising since capillary and microchip-based systems commonly run at these field strengths. Here, we report results for a study of band broadening behavior for ssDNA fragments on a glass microfluidic chip, for electric field strengths up to 320 V/cm. We compare dispersion coefficients obtained in a poly(N,N-dimethylacrylamide) (pDMA) separation matrix that was developed for chip-based DNA sequencing with a commercially available linear polyacrylamide (LPA) matrix commonly used in capillaries. Much larger DNA dispersion coefficients were measured in the LPA matrix as compared to the pDMA matrix, and the dependences of dispersion coefficient on DNA size and electric field strength were found to differ quite starkly in the two matrices. These observations lead us to propose that DNA migration mechanisms differ substantially in our custom pDMA matrix compared to the commercially available LPA matrix. We discuss the implications of these results in terms of developing optimal matrices for specific separation (microchip or capillary) platforms. PMID:22648809

  14. Repeatability of intravital capillaroscopic measurement of capillary density.

    PubMed

    Lamah, M; Chaudhry, H; Mortimer, P S; Dormandy, J A

    1996-01-01

    The reliability of intravital capillaroscopy for determining capillary density (CD) of skin has been questioned because it depends upon the variability of the measuring process and subjective interpretation of data as well as the intrinsic heterogeneity of capillary spacing. The aim of this study was to assess the repeatability of a standardised method for measuring CD of the skin of the dorsum of foot. In each of 30 subjects (10 controls and 20 patients with peripheral vascular disease), the foot was systematically mapped by examining 20 sites on the dorsum of foot and 2 sites on each toe, using white light (native) videomicroscopy at 40 x magnification. Off-line analysis of videoprints was then undertaken to determine CD at each site, by counting capillaries within areas of acceptable photographic quality only, having first defined the criteria for counting capillaries. The mean values were then calculated and taken to represent the CD of the foot or toes. Repeatability of the measuring equipment was first assessed by noting the presence or absence of each corresponding capillary in 2 prints, taken at intervals of hours or days (in 10 subjects) or months (in 2 patients), of an identical area of skin which was marked by a microtattoo on the first occasion. On average, 95% of corresponding capillaries were identified in both prints (from controls and patients), thus implying little intrinsic temporal variation of capillary anatomy as well as excellent repeatability of the measuring equipment. Repeatability of data analysis was assessed by the same observer reading the same 20 prints in a blinded manner on three separate occasions (intraobserver repeatability), and 2 observers reading the same 24 prints (interobserver repeatability). The mean coefficient of intraobserver variation of CD estimate was 5.6% and the interobserver correlation coefficient was 0.94. Finally, overall repeatability of the method was assessed by repeating the procedure on a subsequent occasion (mean time interval of 5 days) in 10 subjects. The rate of agreement in mean CD between the two procedures [defined as 100- (difference between the two measurements/mean of the two measurements) x 100]% ranged from 86.4 to 97.1% (mean 93.5%). Thus using the above methodological technique, native capillaroscopy can be reliably used to determine CD of the dorsum of foot in comparing patient subgroups, as well as in longitudinal studies.

  15. Nanoscale mechanochemical wear of phosphate laser glass against a CeO2 particle in humid air

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; He, Hongtu; Zhang, Yafeng; Hu, Hailong

    2017-01-01

    Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO2 particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO2 pair in air was found to be 5-7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65-79%. The capillary water bridge further induced a serious material removal of glass and CeO2 particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Cesbnd Osbnd P bond, accelerating the reaction between water and the glass/CeO2 pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.

  16. The effect of image alignment on capillary blood flow measurement of the neuroretinal rim using the Heidelberg retina flowmeter

    PubMed Central

    Sehi, M; Flanagan, J G

    2004-01-01

    Aim: To examine the influence of image alignment on the repeatability of blood flow measurements of the optic nerve. Methods: 10 normal subjects were examined. Heidelberg retina tomograph imaging was performed to establish best location and focus for the temporal neuroretinal rim. Two high quality Heidelberg retina flowmeter (HRF) images were acquired for three methods of alignment: central, nasal, and temporal. A 10×10 pixel measurement window was selected and exactly reproduced on all images. The interquartile pixel values were used to calculate capillary flow. ANOVA, intraclass correlation coefficients (ICC) and the coefficient of repeatability (CoR) were used for analysis. Results: There was no difference between methods (p = 0.47) or between visits (p = 0.51). The ICCs were 0.83 for the central, 0.34 for the nasal, and 0.42 for the temporal alignment. The CoR was 31.5 for central (mean effect 235.1), 234.6 for nasal, and 256.7 for temporal alignment. Conclusion: Central alignment was the most repeatable method for the measurement of neuroretinal rim capillary blood flow using the HRF. PMID:14736775

  17. Numerical investigations of two-phase flow with dynamic capillary pressure in porous media via a moving mesh method

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zegeling, Paul Andries

    2017-09-01

    Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow in porous media incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a traveling wave ansatz and efficient numerical methods. The traveling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behavior. Special attention is paid to the non-monotonic profiles. The traveling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.

  18. Open-tubular capillary electrochromatographic determination of ten sulfonamides in tap water and milk by a metal-organic framework-coated capillary column.

    PubMed

    Wang, Xuan; Ye, Nengsheng; Hu, Xiaoyu; Liu, Qingye; Li, Jian; Peng, Lin; Ma, Xiaotong

    2018-05-25

    In this study, a metal-organic framework (MOF), [Mn(cam)(bpy)], was synthesized and characterized by thermogravimetric analysis, scanning electron microscopy, and Fourier transform infrared spectrometry. An open-tubular capillary column was fabricated from [Mn(cam)(bpy)] via the amide coupling method. Ten types of sulfonamides were separated through the fabricated capillary column, which showed a good limits of detection (< 0.07 μg·mL -1 ) and a linear ranges (1-100 μg·mL -1 or 5-100 μg·mL -1 ) with a high correlation coefficients (R 2 > 0.9987). The intra-day, inter-day and column-to-column relative standard deviations (RSDs) in the migration times ranged from 0.44% to 4.87%, and the peak area RSDs ranged from 0.80% to 7.28%. The developed capillary electrochromatography method can be successfully utilized for the determination of sulfonamides in tap water and milk samples. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Separation methods applicable to urinary creatine and creatinine.

    PubMed

    Smith-Palmer, Truis

    2002-12-05

    Urinary creatinine has been analyzed for many years as an indicator of glomerular filtration rate. More recently, interest in studying the uptake of creatine as a result of creatine supplementation, a practice increasingly common among bodybuilders and athletes, has lead to a need to measure urinary creatine concentrations. Creatine levels are of the same order of magnitude as creatinine levels when subjects have recently ingested creatine, while somewhat elevated urinary creatine concentrations in non-supplementing subjects can be an indication of a degenerative disease of the muscle. Urinary creatine and creatinine can be analyzed by HPLC using a variety of columns. Detection methods include absorption, fluorescence after post-column derivatization, and mass spectrometry, and some methods have been automated. Capillary zone electrophoresis and micellar electrokinetic capillary chromatography have also been used to analyze urinary creatine and creatinine. Creatine and creatinine have also been analyzed in serum and tissue using HPLC and CE, and many of these separations could also be applicable to urinary analysis.

  20. Pleural liquid and its exchanges.

    PubMed

    Agostoni, Emilio; Zocchi, Luciano

    2007-12-15

    After an account on morphological features of visceral and parietal pleura, mechanical coupling between lung and chest wall is outlined. Volume of pleural liquid is considered along with its thickness in various regions, and its composition. Pleural liquid pressure (P(liq)) and pressure exerted by lung recoil in various species and postures are then compared, and the vertical gradient of P(liq) considered. Implications of lower P(liq) in the lung zone than in the costo-phrenic sinus at iso-height are pointed out. Mesothelial permeability to H(2)O, Cl(-), Na(+), mannitol, sucrose, inulin, albumin, and various size dextrans is provided, along with paracellular "pore" radius of mesothelium. Pleural liquid is produced by filtration from parietal pleura capillaries according to Starling forces. It is removed by absorption in visceral pleura capillaries according to Starling forces (at least in some species), lymphatic drainage through stomata of parietal mesothelium (essential to remove cells, particles, and large macromolecules), solute-coupled liquid absorption, and transcytosis through mesothelium.

  1. Anuran amphibians as comparative models for understanding extreme dehydration tolerance: a negative feedback lymphatic mechanism for blood volume regulation.

    PubMed

    Hillman, Stanley S

    2018-06-06

    Anurans are the most terrestrial order of amphibians. Couple the high driving forces for evaporative loss in terrestrial environments and their low resistance to evaporation, dehydration is an inevitable stress on their water balance. Anurans have the greatest tolerances for dehydration of any vertebrate group, some species can tolerate evaporative losses up to 45% of their standard body mass. Anurans have remarkable capacities to regulate blood volume with hemorrhage and dehydration compared to mammals. Stabilization of blood volume is central to extending dehydration tolerance, since it avoids both the hypovolemic and hyperviscosity stresses on cardiac output and its consequential effects on aerobic capacity. Anurans, in contrast to mammals, seem incapable of generating a sufficient pressure difference, either oncotically or via interstitial compliance, to move fluid from the interstitium into the capillaries. Couple this inability to generate a sufficient pressure difference for transvascular uptake to a circulatory system with high filtration coefficients and a high rate of plasma turnover is the consequence. The novel lymphatic system of anurans is critical to a remarkable capacity for blood volume regulation. This review summarizes what is known about the anatomical and physiological specializations which are involved in explaining differential blood volume regulation and dehydration tolerance involving a true centrally mediated negative feedback of lymphatic function involving baroreceptors as sensors and lymph hearts, AVT, pulmonary ventilation and specialized skeletal muscles as effectors.

  2. Static inflation attenuates ischemia/reperfusion injury in an isolated rat lung in situ.

    PubMed

    Kao, Shang Jyh; Wang, David; Yeh, Diana Yu-Wung; Hsu, Kang; Hsu, Yung Hsiang; Chen, Hsing I

    2004-08-01

    Ischemia (I)/reperfusion (R) lung injury is an important clinical issue in lung transplantation. In the present study, we observed the effects of lung static inflation, different perfusates, and ventilatory gas with nitrogen or oxygen on the I/R-induced pulmonary damage. A total of 96 male Sprague-Dawley rats were used. The lung was isolated in situ. In an isolated lung, the capillary filtration coefficient (Kfc), lung weight gain (LWG), lung weight (LW)/body weight (BW) ratio, and protein concentration in BAL fluid (PCBAL) were measured or calculated to evaluate the degree of lung injury. Histologic examinations with hematoxylin-eosin staining were performed. I/R caused lung injury, as reflected by increases in Kfc, LWG, LW/BW, and PCBAL. The histopathologic picture revealed the presence of hyaline membrane formation and the infiltration of inflammatory cells. These values were significantly attenuated by static lung inflation. The I/R lung damage appeared to be less in the lung perfused with whole blood than in the lung perfused with an isotonic solution. Therapy with ventilatory air (ie, nitrogen or oxygen) did not alter the I/R lung damage. The data suggest that lung inflation is protective to I/R injury, irrespective of the type of ventilatory air used for treatment. The preservation of the lung for transplantation is better kept at a static inflation state and perfused with whole blood instead of an isotonic physiologic solution.

  3. Friction and wear of hydrogenated and hydrogen-free diamond-like carbon films: Relative humidity dependent character

    NASA Astrophysics Data System (ADS)

    Shi, Jing; Gong, Zhenbin; Wang, Yongfu; Gao, Kaixiong; Zhang, Junyan

    2017-11-01

    In this study, tribological properties of hydrogenated and hydrogen free diamond-like carbon films at various relative humidity (RH) were investigated to understand the friction mechanism in the presence of water molecules. At normal load of 2N, DLC-H film's friction coefficient was 0.06 at RH14% while DLC film's friction coefficient was 0.19 at RH17%. With the increase of RH, their friction coefficient converged to about 0.15. This character remained unaltered when the normal load was 5N. Results show that low friction of DLC-H film at low RH was attributed to the low shear force aroused by graphitic tribofilm at wear care center. However, the high friction of DLC film was mainly endowed by the high adhesive force aroused by σ dangling bonds. At high RH, solid-to-solid contact was isolated by water molecules confined between the counterfaces, where capillary was a dominant factor for friction. In addition to the capillary force, the absence of tribofilm was also accountable. These two factors lead to the level off of friction coefficient for DLC-H and DLC films. Moreover, for both DLC-H and DLC films, tribo-oxidization was proved to be closely related to wear rate with the assist of H2O molecules during sliding.

  4. Serological cross-reactivity among Sporothrix schenckii, Ceratocystis, Europhium, and Graphium species.

    PubMed Central

    Ishizaki, H; Wheat, R W; Kiel, D P; Conant, N F

    1978-01-01

    Ethanol-precipitable culture filtrate antigens of 100 strains of 75 species of the Sporothrix-Ceratocystis-Europhium-Graphium complex and 1 species of Botrytis were examined for neutral sugar components and for serological cross-reactivity with S. schenckii rabbit antiserum and human sporotrichosis sera by capillary precipitin and double immunodiffusion assay. Results revealed that cross-reactive species (60 of 77, ca. 80%) produced exoconidial forms and rhamnose- and mannose-containing polysaccharides and included Ceratocystis, the three known Europhium, and several Graphium-form species. Endoconidial-form Ceratocystis species did not cross-react. Images PMID:99369

  5. Determination of optimum fin profile for a zero-G capillary drained condenser

    NASA Technical Reports Server (NTRS)

    Mccormick, John A.; Valenzuela, Javier A.; Choudhury, Dipanker

    1990-01-01

    This paper presents the analytical formulation and numerical results for heat transfer in a high heat flux condenser that relies on capillary flow along shaped fins (Gregorig surfaces) and a drainage network embedded in the condenser walls. Results are shown for a variety of fin profile shapes in order to show the geometric trade-offs involved in seeking a maximum effective heat transfer coefficient for the fin. Predictions of the model show excellent agreement with previously reported measurements for steam. Based on this work, a profile has been selected for a 2 kW ammonia condenser currently under development for use in space. In that design the fin half width is 0.5 mm and the model predicts a heat transfer coefficient referred to the base of the fin of 9 W/sq cm deg C for a heat flux of 10/W sq cm at the base.

  6. Numerical simulation of flow for viscoelastic neutrophil models in a rectangular capillary network: effects of capillary shape and cell stiffness on transit time.

    PubMed

    Shirai, Atsushi; Fujita, Ryo; Hayase, Toshiyuki

    2007-01-01

    The concentration of neutrophils in the pulmonary microvasculature is higher than in large systemic vessels. It is thought that the high concentration of neutrophils facilitates their effective recruitment to sites of inflammation. Thus, in order to understand the role of neutrophils in the immune system, it is important to clarify their flow characteristics in the pulmonary microvasculature. In a previous study, we developed a model to simulate the flow of neutrophils in a capillary network, in which the cells were modeled as spheres of a Maxwell material with a cortical tension and the capillary segments were modeled as arc-shaped constrictions in straight pipes. In the present paper, the flow of neutrophils in a simplified alveolar capillary network model is investigated for various constriction shapes and cell stiffnesses. Finally, it is shown that both the coefficient of variation of the transit time of the cells, which is the standard deviation divided by the mean transit time, and the mean transit time increase as the capillary segments become steep or tight, or when the cells become hard. The mean value of the transit time exceeds the median for all of the conditions that occur in real lungs, although the difference between them is small.

  7. Hyperfiltration-mediated injury in the remaining kidney of a transplant donor.

    PubMed

    Srivastava, Tarak; Hariharan, Sundaram; Alon, Uri S; McCarthy, Ellen T; Sharma, Ram; El-Meanawy, Ashraf; Savin, Virginia J; Sharma, Mukut

    2018-05-29

    Kidney donors face a small but definite risk of end-stage renal disease 15-30 years postdonation. The development of proteinuria, hypertension with gradual decrease in kidney function in the donor after surgical resection of 1 kidney has been attributed to hyperfiltration. Genetic variations, physiological adaptations, and co-morbidities exacerbate the hyperfiltration-induced loss of kidney function in the years following donation. A focus on glomerular hemodynamics and capillary pressure has led to the development of drugs that target the renin-angiotensin-aldosterone system (RAAS), but these agents yield mixed results in transplant recipients and donors. Recent work on glomerular biomechanical forces highlights the differential effects of tensile stress and fluid flow shear stress (FFSS) from hyperfiltration. Capillary wall stretch due to glomerular capillary pressure increases tensile stress on podocyte foot processes that cover the capillary. In parallel, increased flow of the ultrafiltrate due to single nephron glomerular filtration rate elevates FFSS on the podocyte cell body. While tensile stress invokes the RAAS, FFSS predominantly activates the COX2-PGE2-EP2 axis. Distinguishing these 2 mechanisms is critical, as current therapeutic approaches focus on the RAAS system. A better understanding of the biomechanical forces can lead to novel therapeutic agents to target FFSS through the COX2-PGE2-EP2 axis in hyperfiltration-mediated injury. We present an overview of several aspects of the risk to transplant donors and discuss the relevance of FFSS in podocyte injury, loss of glomerular barrier function leading to albuminuria and gradual loss of renal function, and potential therapeutic strategies to mitigate hyperfiltration-mediated injury to the remaining kidney.

  8. Transcapillary fluid shifts in head and neck tissues during and after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Parazynski, S. E.; Hargens, Alan R.; Tucker, B.; Aratow, M.; Styf, J.; Crenshaw, A.

    1991-01-01

    To understand the mechanism, magnitude, and time course of facial puffiness that occurs in microgravity, seven male subjects were tilted 6 degrees head down for 8 hr, and all four Starling transcapillary pressures were directly measured before, during, and after tilt. Head-down tilt (HDT) caused facial edema and a significant elevation of microvascular pressures measured in the lower lip: capillary pressures increased from 27.2 +/- 5 mm Hg pre-HDT to 33.9 +/- 1.7 mm Hg by the end of tilt. Subcutaneous and intramuscular interstitial fluid pressures in the neck also increased as a result of HDT, while interstitial fluid colloid osmotic pressures remained unchanged. Plasma colloid osmotic pressures dropped significantly after 4 hr of HDT, suggesting a transition from fluid filtration to absorption in capillary beds between the heart and feet during HDT. After 4 hr of seated recovery from HDT, microvascular pressures remained significantly elevated by 5 to 8 mm Hg above baseline values, despite a significant HDT diuresis and the orthostatic challenge of an upright, seated posture. During the control (baseline) period, urine output was 46.7 ml/hr; during HDT, it was 126.5 ml/hr. These results indicate that facial edema resulting from HDT is primarily caused by elevated capillary pressures and decreased plasma colloid osmotic pressures. Elevation of cephalic capillary pressures sustained for 4 hr after HDT suggests that there is a compensatory vasodilation to maintain microvascular perfusion. The negativity of interstitial fluid pressures above heart level also has implications for the maintenance of tissue fluid balance in upright posture.

  9. Ultrafiltration of pegylated proteins

    NASA Astrophysics Data System (ADS)

    Molek, Jessica R.

    There is considerable clinical interest in the use of "second-generation" therapeutics produced by conjugation of a native protein with various polymers including polyethylene glycol (PEG). PEG--protein conjugates, so-called PEGylated proteins, can exhibit enhanced stability, half-life, and bioavailability. One of the challenges in the commercial production of PEGylated proteins is the purification required to remove unreacted polymer, native protein, and in many cases PEGylated proteins with nonoptimal degrees of conjugation. The overall objective of this thesis was to examine the use of ultrafiltration for the purification of PEGylated proteins. This included: (1) analysis of size-based separation of PEGylated proteins using conventional ultrafiltration membranes, (2) use of electrically-charged membranes to exploit differences in electrostatic interactions, and (3) examination of the effects of PEGylation on protein fouling. The experimental results were analyzed using appropriate theoretical models, with the underlying physical properties of the PEGylated proteins evaluated using size exclusion chromatography, capillary electrophoresis, dynamic light scattering, and reverse phase chromatography. PEGylated proteins were produced by covalent attachment of activated PEG to a protein via primary amines on the lysine residues. A simple model was developed for the reaction kinetics, which was used to explore the effect of reaction conditions and mode of operation on the distribution of PEGylated products. The effective size of the PEGylated proteins was evaluated using size exclusion chromatography, with appropriate correlations developed for the size in terms of the molecular weight of the native protein and attached PEG. The electrophoretic mobility of the PEGylated proteins were evaluated by capillary electrophoresis with the data in good agreement with a simple model accounting for the increase in protein size and the reduction in the number of protonated amine groups in the PEGylated proteins. Ultrafiltration experiments were performed using PEGylated alpha-lactalbumin, ovalbumin, and bovine serum albumin. In contrast to the size exclusion chromatography data, the sieving coefficient of the PEGylated proteins depended upon both the number and size of the attached PEG chains due to the elongation or deformation of the PEG associated with the filtrate flux. Sieving coefficients at low filtrate flux were in good agreement with predictions of available hydrodynamic models, with significant elongation occurring when the Deborah number for the PEG chain exceeded 0.001. The effects of electrostatic interactions on the ultrafiltration of PEGylated proteins were examined using electrically-charged membranes generated by covalent attachment of sulphonic acid groups to the base cellulosic membrane. Transmission of PEGylated proteins through charged membranes was dramatically reduced at low ionic strength due to strong electrostatic interactions, despite the presence of the neutral PEG. The experimental results were in good agreement with model calculations developed for the partitioning of charged spheres into charged cylindrical pores. The experimental and theoretical results provide the first quantitative analysis of the effects of PEGylation on transport through semipermeable ultrafiltration membranes. The results from small-scale ultrafiltration experiments were used to develop a two-stage diafiltration process to purify PEGylated alpha-lactalbumin. The first-stage used a neutral membrane to remove the unreacted protein by exploiting differences in size. The second stage used a negatively-charged membrane to remove hydrolyzed PEG, with the PEGylated product retained by strong electrostatic interactions. This process provided a purification factor greater than 1000 with respect to the unreacted protein and greater than 20-fold with respect to the PEG with an overall yield of PEGylated alpha-lactalbumin of 78%. These results provide the first demonstration of the potential of using ultrafiltration for the purification of protein-polymer conjugates.

  10. N2 and CO2 capillary breakthrough experiments on Opalinus Clay

    NASA Astrophysics Data System (ADS)

    Amann, Alexandra; Busch, Andreas; Krooss, Bernhard M.

    2013-04-01

    The aim of this project was to identify the critical capillary pressures on the drainage and the imbibition path for clay-rich rocks, at a burial depth of 1500 m (30 MPa confining pressure, 45°C). The experiments were performed on fully water-saturated sample plugs of 38 mm diameter and 5 to 20 mm length. The capillary breakthrough pressure was determined by step-wise increase of the differential pressure (drainage), the capillary snap-off pressure was determined from the final pressure difference at the end of a spontaneous imbibition phase. The confining pressure was kept constant throughout the experiment, which resulted in a continuous change of effective stress. The measurements were performed in a closed system and the pressure response was interpreted in terms of different flow mechanisms (diffusion-controlled vs. viscous flow). In total, four breakthrough experiments with N2 and five experiments with CO2 were conducted. Because of very low flow rates and high critical capillary pressures the experiments took rather long. In some cases the experiments were allowed to run for half a year (drainage experiments). Substantial differences were observed between gas breakthrough (drainage) and snap-off (imbibition) pressures. As expected, breakthrough pressures were always higher than the snap-off pressures. For three samples a pbreakthrough/psnap-off ratio of 1.6 to 1.9 was observed, for one sample a ratio of 4. A clear permeability-capillary pressure relationship could not be identified. Based on (omnidirectional) Hg-injection porosimetry results, and assuming perfectly water wet mineral surfaces, gas breakthrough pressures were predicted to occur at approximately 16 MPa for N2 and 5.7 MPa for CO2. The gas breakthrough experiments, however, produced different results. Even though a relatively homogeneous sample set was chosen, with permeability coefficients ranging between 1E-21 and 6E-21 m², the critical capillary breakthrough pressures for nitrogen ranged between 3.4 and 12.3 MPa and snap-off pressures from 0.5 to 6.4 MPa. The CO2 experiments yielded breakthrough pressures of 14.0 to 17.5 MPa and snap-off pressures of 3.5 to 10 MPa. No significant changes in single-phase water permeability coefficients before and after the gas breakthrough experiments were observed. In our contribution we will discuss the following points: 1. Gas fluxes occurring during gas breakthrough experiments may be extremely low. Therefore an unambigous identification of gas breakthrough is not always possible. Besides viscous or diffusive transport, dissolution of CO2 in the pore water may affect the observed pressure changes in the upstream and downstream compartments. All of these processes occur simultaneously and can only be partly discriminated. Gas fluxes detected during the diffusion-controlled flow regimes result in nominal effective gas permeability coefficients as low as 6E-25 m² to 7E-24m². 2. The application of purely capillary-controlled flow models may not be justified. o Gas breakthrough is controlled by effective stress, i.e. the opening of pores or small fissures. o Assumptions about wettability (completely water-wet mineral surfaces) may be incorrect.

  11. SU-F-I-75: Half-Value Layer Thicknesses and Homogeneity Coefficients for Fluoroscopic X-Ray Beam Spectra Incorporating Spectral Filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunderle, K; Wayne State University School of Medicine, Detroit, MI; Godley, A

    Purpose: The purpose of this investigation is to quantify various first half-value-layers (HVLs), second HVLs and homogeneity coefficients (HCs) for a state-of-the-art fluoroscope utilizing spectral (copper) filtration. Methods: A Radcal (Monrovia, Ca) AccuPro dosimeter with a 10×6-6 calibrated ionization chamber was used to measure air kerma for radiographic x-ray exposures made on a Siemens (Erlangen, Germany) Artis ZeeGo fluoroscope operated in the service mode. The ionization chamber was centered in the x-ray beam at 72 cm from the focal spot with a source-to-image-distance of 120 cm. The collimators were introduced to limit the x-ray field to approximately 5 cm ×more » 5 cm at the ionization chamber plane. Type-1100 aluminum filters, in 0.5 mm increments, were used to determine the HVL. Two HVL calculation methods were used, log-linear interpolation and Lambert-W interpolation as described by Mathieu [Med Phys, 38(8), 4546 (2011)]. Multiple measurements were made at 60, 80, 100, 120 kVp at spectral filtration thicknesses of 0, 0.1, 0.3, 0.6 and 0.9 mm. Results: First HVL, second HVL, and HCs are presented for the fluoroscopic x-ray beam spectra indicated above, with nearly identical results from the two interpolation methods. Accuracy of the set kVp was also determined and deviated less than 2%. First HVLs for fluoroscopic x-ray beam spectra without spectral filtration determined in our study were 7%–16% greater than previously published data by Fetterly et al. [Med Phys, 28, 205 (2001)]. However, the FDA minimum HVL requirements changed since that publication, requiring larger HVLs as of 2006. Additionally, x-ray tube and generator architecture have substantially changed over the last 15 years providing different beam spectra. Conclusion: X-ray beam quality characteristics for state-of-the-art fluoroscopes with spectral filtration have not been published. This study provides reference data which will be useful for defining beam qualities encountered on fluoroscopes using spectral filtration.« less

  12. Hemoglobin measured by Hemocue and a reference method in venous and capillary blood: a validation study.

    PubMed

    Neufeld, Lynnette; García-Guerra, Armando; Sánchez-Francia, Domingo; Newton-Sánchez, Oscar; Ramírez-Villalobos, María Dolores; Rivera-Dommarco, Juan

    2002-01-01

    To assess the comparability of hemoglobin concentration (Hb) in venous and capillary blood measured by Hemocue and an automated spectrophotometer (Celldyn) and to document the influence of type of blood (capillary or venous) and analysis method on anemia prevalence estimates. Between February and May 2000, capillary and venous samples were collected from 72 adults and children at Hospital del Niño Morelense (Morelos State Children's Hospital) in Cuernavaca, Morelos, Mexico, and assessed for Hb using the Hemocue and Celldyn methods. Estimated Hb levels were compared using the concordance correlation coefficient and Student's t test for paired data. The sensitivity and specificity for anemia diagnosis were estimated and compared between type of blood and method of assessment. Capillary blood had higher Hb (+0.5 g/dl) than venous blood in adults and children, as did samples assessed by Celldyn compared to Hemocue (+0.3 g/dl). Specificity to detect anemia was adequate (> 0.90) but sensitivity was low for capillary blood assessed by Hemocue (< 0.80). The difference in Hb between venous and capillary blood is likely related to biological variability. Hemoglobin concentration in capillary blood assessed by Hemocue provides an adequate estimation of population anemia prevalence but may result in excess false negative diagnoses among individuals. The results of this study stress the importance of sample collection technique, particularly for children. Method of analysis and sampling site need to be taken into consideration in field studies. The English version of this paper is available too at: http://www.insp.mx/salud/index.html.

  13. Transport of water and ions in partially water-saturated porous media. Part 2. Filtration effects

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2017-05-01

    A new set of constitutive equations describing the transport of the ions and water through charged porous media and considering the effect of ion filtration is applied to the problem of reverse osmosis and diffusion of a salt. Starting with the constitutive equations derived in Paper 1, I first determine specific formula for the osmotic coefficient and effective diffusion coefficient of a binary symmetric 1:1 salt (such as KCl or NaCl) as a function of a dimensionless number Θ corresponding to the ratio between the cation exchange capacity (CEC) and the salinity. The modeling is first carried with the Donnan model used to describe the concentrations of the charge carriers in the pore water phase. Then a new model is developed in the thin double layer approximation to determine these concentrations. These models provide explicit relationships between the concentration of the ionic species in the pore space and those in a neutral reservoir in local equilibrium with the pore space and the CEC. The case of reverse osmosis and diffusion coefficient are analyzed in details for the case of saturated and partially saturated porous materials. Comparisons are done with experimental data from the literature obtained on bentonite. The model predicts correctly the influence of salinity (including membrane behavior at high salinities), porosity, cation type (K+ versus Na+), and water saturation on the osmotic coefficient. It also correctly predicts the dependence of the diffusion coefficient of the salt with the salinity.

  14. Correlation of refrigerant mass flow rate through adiabatic capillary tubes using mixture refrigerant carbondioxide and ethane for low temperature applications

    NASA Astrophysics Data System (ADS)

    Nasruddin, Syaka, Darwin R. B.; Alhamid, M. Idrus

    2012-06-01

    Various binary mixtures of carbon dioxide and hydrocarbons, especially propane or ethane, as alternative natural refrigerants to Chlorofluorocarbons (CFCs) or Hydro fluorocarbons (HFCs) are presented in this paper. Their environmental performance is friendly, with an ozone depletion potential (ODP) of zero and Global-warming potential (GWP) smaller than 20. The capillary tube performance for the alternative refrigerant HFC HCand mixed refrigerants have been widely studied. However, studies that discuss the performance of the capillary tube to a mixture of natural refrigerants, in particular a mixture of azeotrope carbon dioxide and ethane is still undeveloped. A method of empirical correlation to determine the mass flow rate and pipe length has an important role in the design of the capillary tube for industrial refrigeration. Based on the variables that effect the rate of mass flow of refrigerant in the capillary tube, the Buckingham Pi theorem formulated eight non-dimensional parameters to be developed into an empirical equations correlation. Furthermore, non-linear regression analysis used to determine the co-efficiency and exponent of this empirical correlation based on experimental verification of the results database.

  15. Capillary sieving electrophoresis and micellar electrokinetic capillary chromatography produce highly correlated separation of tryptic digests

    PubMed Central

    Dickerson, Jane A.; Dovichi, Norman J.

    2011-01-01

    We perform two-dimensional capillary electrophoresis on fluorescently labeled proteins and peptides. Capillary sieving electrophoresis was performed in the first dimension and micellar electrokinetic capillary chromatography was performed in the second. A cellular homogenate was labeled with the fluorogenic reagent FQ and separated using the system. This homogenate generated a pair of ridges; the first had essentially constant migration time in the CSE dimension, while the second had essentially constant migration time in the MEKC dimension. In addition a few spots were scattered through the electropherogram. The same homogenate was digested using trypsin, and then labeled and subjected to the two dimensional separation. In this case, the two ridges observed from the original two-dimensional separation disappeared, and were replaced by a set of spots that fell along the diagonal. Those spots were identified using a local-maximum algorithm and each was fit using a two-dimensional Gaussian surface by an unsupervised nonlinear least squares regression algorithm. The migration times of the tryptic digest components were highly correlated (r = 0.862). When the slowest migrating components were eliminated from the analysis, the correlation coefficient improved to r = 0.956. PMID:20564272

  16. Capillary pressure spectrometry: Toward a new method for the measurement of the fractional wettability of porous media

    NASA Astrophysics Data System (ADS)

    Sygouni, Varvara; Tsakiroglou, Christos D.; Payatakes, Alkiviades C.

    2006-05-01

    A transparent porous medium of controlled fractional wettability is fabricated by mixing intermediate-wet glass microspheres with strongly oil-wet polytetrafluouroethylene microspheres, and packing them between two transparent glass plates. Silicon oil is displaced by water, the growth pattern is video-recorded, and the transient response of the pressure drop across the pore network is measured for various fractions of oil-wet particles. The measured global capillary pressure fluctuates as the result of the variation of the equilibrium curvature of menisci between local maxima and local minima. With the aid of wavelets, the transient response of the capillary pressure is transformed to a capillary pressure spectrum (CPS). The peaks of the CPS are used to identify the most significant flow events and correlate their amplitude with the spatial distribution of fractional wettability. The flow events are closely related with the fluctuations of the capillary pressure and are classified into three main categories: motion in pore clusters, generation/expansion of capillary fingers, coalescence of interfaces. The amplitude of the peaks of CPS is related quasilinearly with a local coefficient of fractional wettability presuming that the same class of flow events is concerned. Approximate calculations of the maximum meniscus curvature in pores of converging-diverging geometry and uniform wettability in combination with simple mixing laws predict satisfactorily the experimentally measured average prebreakthrough capillary pressure as a function of the fraction of the oil-wet particles.

  17. Laboratory-based performance evaluation of PIMA CD4+ T-lymphocyte count point-of-care by lay-counselors in Kenya.

    PubMed

    Zeh, Clement; Rose, Charles E; Inzaule, Seth; Desai, Mitesh A; Otieno, Fredrick; Humwa, Felix; Akoth, Benta; Omolo, Paul; Chen, Robert T; Kebede, Yenew; Samandari, Taraz

    2017-09-01

    CD4+ T-lymphocyte count testing at the point-of-care (POC) may improve linkage to care of persons diagnosed with HIV-1 infection, but the accuracy of POC devices when operated by lay-counselors in the era of task-shifting is unknown. We examined the accuracy of Alere's Pima™ POC device on both capillary and venous blood when performed by lay-counselors and laboratory technicians. In Phase I, we compared the perfomance of POC against FACSCalibur™ for 280 venous specimens by laboratory technicians. In Phase II we compared POC performance by lay-counselors versus laboratory technicians using 147 paired capillary and venous specimens, and compared these to FACSCalibur™. Statistical analyses included Bland-Altman analyses, concordance correlation coefficient, sensitivity, and specificity at treatment eligibility thresholds of 200, 350, and 500cells/μl. Phase I: POC sensitivity and specificity were 93.0% and 84.1% at 500cells/μl, respectively. Phase II: Good agreement was observed for venous POC results from both lay-counselors (concordance correlation coefficient (CCC)=0.873, bias -86.4cells/μl) and laboratory technicians (CCC=0.920, bias -65.7cells/μl). Capillary POC had good correlation: lay-counselors (CCC=0.902, bias -71.2cells/μl), laboratory technicians (CCC=0.918, bias -63.0cells/μl). Misclassification at the 500 cells/μl threshold for venous blood was 13.6% and 10.2% for lay-counselors and laboratory technicians and 12.2% for capillary blood in both groups. POC tended to under-classify the CD4 values with increasingly negative bias at higher CD4 values. Pima™ results were comparable to FACSCalibur™ for both venous and capillary specimens when operated by lay-counselors. POC CD4 testing has the potential to improve linkage to HIV care without burdening laboratory technicians in resource-limited settings. Published by Elsevier B.V.

  18. Influence of tissue metabolism and capillary oxygen supply on arteriolar oxygen transport: a computational model.

    PubMed

    Moschandreou, T E; Ellis, C G; Goldman, D

    2011-07-01

    We present a theoretical model for steady-state radial and longitudinal oxygen transport in arterioles containing flowing blood (plasma and red blood cells) and surrounded by living tissue. This model combines a detailed description of convective and diffusive oxygen transport inside the arteriole with a novel boundary condition at the arteriolar lumen surface, and the results provide new mass transfer coefficients for computing arteriolar O(2) losses based on far-field tissue O(2) tension and in the presence of spatially distributed capillaries. A numerical procedure is introduced for calculating O(2) diffusion from an arteriole to a continuous capillary-tissue matrix immediately adjacent to the arteriole. The tissue O(2) consumption rate is assumed to be constant and capillaries act as either O(2) sources or sinks depending on the local O(2) environment. Using the model, O(2) saturation (SO(2)) and tension (PO(2)) are determined for the intraluminal region of the arteriole, as well as for the extraluminal region in the neighbouring tissue. Our model gives results that are consistent with available experimental data and previous intraluminal transport models, including appreciable radial decreases in intraluminal PO(2) for all vessel diameters considered (12-100 μm) and slower longitudinal decreases in PO(2) for larger vessels than for smaller ones, and predicts substantially less diffusion of O(2) from arteriolar blood than do models with PO(2) specified at the edge of the lumen. The dependence of the new mass transfer coefficients on vessel diameter, SO(2) and far-field PO(2) is calculated allowing their application to a wide range of physiological situations. This novel arteriolar O(2) transport model will be a vital component of future integrated models of microvascular regulation of O(2) supply to capillary beds and the tissue regions they support. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Chitosan use in chemical conditioning for dewatering municipal-activated sludge.

    PubMed

    Zemmouri, H; Mameri, N; Lounici, H

    2015-01-01

    This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.

  20. Maintenance of cAMP in non-heart-beating donor lungs reduces ischemia-reperfusion injury.

    PubMed

    Hoffmann, S C; Bleiweis, M S; Jones, D R; Paik, H C; Ciriaco, P; Egan, T M

    2001-06-01

    Studies suggest that pulmonary vascular ischemia-reperfusion injury (IRI) can be attenuated by increasing intracellular cAMP concentrations. The purpose of this study was to determine the effect of IRI on capillary permeability, assessed by capillary filtration coeficient (Kfc), in lungs retrieved from non-heart-beating donors (NHBDs) and reperfused with the addition of the beta(2)-adrenergic receptor agonist isoproterenol (iso), and rolipram (roli), a phosphodiesterase (type IV) inhibitor. Using an in situ isolated perfused lung model, lungs were retrieved from NHBD rats at varying intervals after death and either ventilated with O(2) or not ventilated. The lungs were reperfused with Earle's solution with or without a combination of iso (10 microM) and roli (2 microM). Kfc, lung viability, and pulmonary hemodynamics were measured. Lung tissue levels of adenine nucleotides and cAMP were measured by HPLC. Combined iso and roli (iso/roli) reperfusion decreased Kfc significantly (p < 0.05) compared with non-iso/roli-reperfused groups after 2 h of postmortem ischemia. Total adenine nucleotide (TAN) levels correlated with Kfc in non-iso/roli-reperfused (r = 0.89) and iso/roli-reperfused (r = 0.97) lungs. cAMP levels correlated with Kfc (r = 0.93) in iso/roli-reperfused lungs. Pharmacologic augmentation of tissue TAN and cAMP levels might ameliorate the increased capillary permeability observed in lungs retrieved from NHBDs.

  1. Estimation of Glomerular Filtration Rate from Plasma Clearance of 51-Chromium Edetic Acid

    PubMed Central

    Chantler, C.; Barratt, T. M.

    1972-01-01

    The glomerular filtration rate was estimated by a single compartment analysis of the rate of fall of plasma concentration of 51-chromium edetic acid after a single intravenous injection. This slope clearance consistently overestimated the simultaneously determined standard urinary clearance, but could be used to predict the latter with an accuracy of ±9% (95% confidence limits). The coefficient of variation of replicate estimates of the slope clearance in the same individual was 3·9%; thus two estimates of glomerular filtration rate by this technique which differ by 11% have a 95% probability of reflecting a genuine difference. The method requires an intravenous injection and blood samples at 2 and 4 hours; urine samples are not required. It is simple, safe, and precise, and is applicable to children. PMID:4625784

  2. Determination of Betaine in Forsythia Suspensa by High Performance Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Liu, Haixing; Dong, Guoliang; Wang, Lintong

    2017-12-01

    This paper presents the determination of betaine content of Forsythia suspensa by high performance capillary electrophoresis (HPCE) method. The borax solution was chosen as buffer solution, and its concentration was 40 mmol with capillary column (75μm×52/60cm) at a constant voltage of 20kV and injecting pressure time of 10s at 20°C. Linearity was kept in the concent ration range of 0.0113-1.45mg·ml-1 of betaine with correlation coefficient of 0.999. The recovery was in the range of 97%-117% (n=5), The content of betaine was 281.5 mg·g-1and RSD value of 9.6% (n=6) in Forsythia suspensa. This method has the advantage of rapid, accurate and good repeatability in separation and determination of betaine in Forsythia suspensa.

  3. CE-UV/VIS and CE-MS for monitoring organic impurities during the downstream processing of fermentative-produced lactic acid from second-generation renewable feedstocks.

    PubMed

    Laube, Hendrik; Matysik, Frank-Michael; Schmidberger, Andreas; Mehlmann, Kerstin; Toursel, Andreas; Boden, Jana

    2016-01-01

    During the downstream process of bio-based bulk chemicals, organic impurities, mostly residues from the fermentation process, must be separated to obtain a pure and ready-to-market chemical. In this study, capillary electrophoresis was investigated for the non-targeting downstream process monitoring of organic impurities and simultaneous quantitative detection of lactic acid during the purification process of fermentatively produced lactic acid. The downstream process incorporated 11 separation units, ranging from filtration, adsorption and ion exchange to electrodialysis and distillation, and 15 different second-generation renewable feedstocks were processed into lactic acid. The identification of organic impurities was established through spiking and the utilization of an advanced capillary electrophoresis mass spectrometry system. A total of 53 % of the organic impurities were efficiently removed via bipolar electrodialysis; however, one impurity, pyroglutamic acid, was recalcitrant to separation. It was demonstrated that the presence of pyroglutamic acid disrupts the polymerization of lactic acid into poly lactic acid. Pyroglutamic acid was present in all lactic acid solutions, independent of the type of renewable resource or the bacterium applied. Pyroglutamic acid, also known as 5-oxoproline, is a metabolite in the glutathione cycle, which is present in all living microorganisms. pyroglutamic acid is found in many proteins, and during intracellular protein metabolism, N-terminal glutamic acid and glutamine residues can spontaneously cyclize to become pyroglutamic acid. Hence, the concentration of pyroglutamic acid in the lactic acid solution can only be limited to a certain amount. The present study proved the capillary electrophoresis system to be an important tool for downstream process monitoring. The high product concentration encountered in biological production processes did not hinder the capillary electrophoresis from separating and detecting organic impurities, even at minor concentrations. The coupling of the capillary electrophoresis with a mass spectrometry system allowed for the straightforward identification of the remaining critical impurity, pyroglutamic acid. Although 11 separation units were applied during the downstream process, the pyroglutamic acid concentration remained at 12,900 ppm, which was comparatively high. All organic impurities found were tracked by the capillary electrophoresis, allowing for further separation optimization.

  4. Experimental investigation of virus and clay particles cotransport in partially saturated columns packed with glass beads.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2015-02-15

    Suspended clay particles in groundwater can play a significant role as carriers of viruses, because, depending on the physicochemical conditions, clay particles may facilitate or hinder the mobility of viruses. This experimental study examines the effects of clay colloids on the transport of viruses in variably saturated porous media. All cotransport experiments were conducted in both saturated and partially saturated columns packed with glass beads, using bacteriophages MS2 and ΦX174 as model viruses, and kaolinite (KGa-1b) and montmorillonite (STx-1b) as model clay colloids. The various experimental collision efficiencies were determined using the classical colloid filtration theory. The experimental data indicated that the mass recovery of viruses and clay colloids decreased as the water saturation decreased. Temporal moments of the various breakthrough concentrations collected, suggested that the presence of clays significantly influenced virus transport and irreversible deposition onto glass beads. The mass recovery of both viruses, based on total effluent virus concentrations, was shown to reduce in the presence of suspended clay particles. Furthermore, the transport of suspended virus and clay-virus particles was retarded, compared to the conservative tracer. Under unsaturated conditions both clay particles facilitated the transport of ΦX174, while hindered the transport of MS2. Moreover, the surface properties of viruses, clays and glass beads were employed for the construction of classical DLVO and capillary potential energy profiles, and the results suggested that capillary forces play a significant role on colloid retention. It was estimated that the capillary potential energy of MS2 is lower than that of ΦX174, and the capillary potential energy of KGa-1b is lower than that of STx-1b, assuming that the protrusion distance through the water film is the same for each pair of particles. Moreover, the capillary potential energy is several orders of magnitude greater than the DLVO potential energy. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Pressure-viscosity measurements for several lubricants to 5.5 x 10 to the 8th power Newtons per square meter (8 x 10 to the 4th psi) and 149 C (300 F)

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Johnson, R. L.; Winer, W. O.; Sanborn, D. M.

    1974-01-01

    A capillary viscometer was used to measure viscosity as a function of pressure, temperature, and shear stress for a number of lubricants. The conditions under which the measurements were made are specified. The results obtained for each material are analyzed. It was determined that all pressure-viscosity coefficients decreased with increasing temperature. Data from other techniques such as optical elastohydrodynamics, oscillating crystal, and low shear capillary viscometry were compared with the results obtained.

  6. Optical measurement of isolated canine lung filtration coefficients after alloxan infusion.

    PubMed

    Klaesner, J W; Pou, N A; Parker, R E; Finney, C; Roselli, R J

    1998-04-01

    In this study, lung filtration coefficient (Kfc) was measured in eight isolated canine lung preparations by using three methods: standard gravimetric (Std), blood-corrected gravimetric (BC), and optical. The lungs were held in zone III conditions and were subjected to an average venous pressure increase of 8.79 +/- 0.93 (mean +/- SD) cmH2O. The permeability of the lungs was increased with an infusion of alloxan (75 mg/kg). The resulting Kfc values (in milliliters . min-1 . cmH2O-1 . 100 g dry lung weight-1) measured by using Std and BC gravimetric techniques before vs. after alloxan infusion were statistically different: Std, 0.527 +/- 0.290 vs. 1. 966 +/- 0.283; BC, 0.313 +/- 0.290 vs. 1.384 +/- 0.290. However, the optical technique did not show any statistical difference between pre- and postinjury with alloxan, 0.280 +/- 0.305 vs. 0.483 +/- 0. 297, respectively. The alloxan injury, quantified by using multiple-indicator techniques, showed an increase in permeability and a corresponding decrease in reflection coefficient for albumin (sigmaf). Because the optical method measures the product of Kfc and sigmaf, this study shows that albumin should not be used as an intravascular optical filtration marker when permeability is elevated. However, the optical technique, along with another means of measuring Kfc (such as BC), can be used to calculate the sigmaf of a tracer (in this study, sigmaf of 0.894 at baseline and 0.348 after injury). Another important finding of this study was that the ratio of baseline-to-injury Kfc values was not statistically different for Std and BC techniques, indicating that the percent contribution of slow blood-volume increases does not change because of injury.

  7. Determination of relative phase permeabilities in stochastic model of pore channel distribution by diameter

    NASA Astrophysics Data System (ADS)

    Zemenkova, M. Y.; Shabarov, A.; Shatalov, A.; Puldas, L.

    2018-05-01

    The problem of the pore space description and the calculation of relative phase permeabilities (RPP) for two-phase filtration is considered. A technique for constructing a pore-network structure for constant and variable channel diameters is proposed. A description of the design model of RPP based on the capillary pressure curves is presented taking into account the variability of diameters along the length of pore channels. By the example of the calculation analysis for the core samples of the Urnenskoye and Verkhnechonskoye deposits, the possibilities of calculating RPP are shown when using the stochastic distribution of pores by diameters and medium-flow diameters.

  8. Intravital Imaging Reveals Angiotensin II–Induced Transcytosis of Albumin by Podocytes

    PubMed Central

    Schießl, Ina Maria; Hammer, Anna; Kattler, Veronika; Gess, Bernhard; Theilig, Franziska; Witzgall, Ralph

    2016-01-01

    Albuminuria is a hallmark of kidney disease of various etiologies and usually caused by deterioration of glomerular filtration barrier integrity. We recently showed that angiotensin II (Ang II) acutely increases albumin filtration in the healthy kidney. Here, we used intravital microscopy to assess the effects of Ang II on podocyte function in rats. Acute infusion of 30, 60, or 80 ng/kg per minute Ang II enhanced the endocytosis of albumin by activation of the type 1 Ang II receptor and resulted in an average (±SEM) of 3.7±2.2, 72.3±18.6 (P<0.001), and 239.4±34.6 µm3 (P<0.001) albumin-containing vesicles per glomerulus, respectively, compared with none at baseline or 10 ng/kg per minute Ang II. Immunostaining of Ang II–infused kidneys confirmed the presence of albumin-containing vesicles, which colocalized with megalin, in podocin-positive cells. Furthermore, podocyte endocytosis of albumin was markedly reduced in the presence of gentamicin, a competitive inhibitor of megalin-dependent endocytosis. Ang II infusion increased the concentration of albumin in the subpodocyte space, a potential source for endocytic protein uptake, and gentamicin further increased this concentration. Some endocytic vesicles were acidified and colocalized with LysoTracker. Most vesicles migrated from the capillary to the apical aspect of the podocyte and were eventually released into the urinary space. This transcytosis accounted for approximately 10% of total albumin filtration. In summary, the transcellular transport of proteins across the podocyte constitutes a new pathway of glomerular protein filtration. Ang II enhances the endocytosis and transcytosis of plasma albumin by podocytes, which may eventually impair podocyte function. PMID:26116357

  9. Arabinoxylan from finger millet (Eleusine coracana, v. Indaf 15) bran: purification and characterization.

    PubMed

    Savitha Prashanth, M R; Muralikrishna, G

    2014-01-01

    Water unextractable portion from finger millet bran was sequentially extracted with saturated barium hydroxide (BE) and 1M potassium hydroxide (KE) solutions. They consisted preponderantly of arabinose and xylose in different ratios. Ferulic, caffeic, coumaric and vanillic acids were identified as major bound phenolic acids. BE and KE were purified on DEAE-cellulose column by eluting successively with different eluants. The major fractions (0.1 M ammonium carbonate) were resolved into one (BE) and two subfractions (KE1 and KE2) respectively on Sephacryl S-400 gel filtration chromatography and their homogeneity was ascertained by gel filtration, cellulose acetate membrane electrophoresis and capillary electrophoresis. The average molecular weight of BE, KE1 and KE2 were found to be 430, 1028 and 40 kDa respectively. The structural elucidation of the purified polysaccharides by (1)H and (13)C NMR analysis indicated the backbone to be 1,4-β-D-linked xylan with substitution mainly at O-2 or O-3 and/or both by α-l-arabinose residues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Pleural mechanics and fluid exchange.

    PubMed

    Lai-Fook, Stephen J

    2004-04-01

    The pleural space separating the lung and chest wall of mammals contains a small amount of liquid that lubricates the pleural surfaces during breathing. Recent studies have pointed to a conceptual understanding of the pleural space that is different from the one advocated some 30 years ago in this journal. The fundamental concept is that pleural surface pressure, the result of the opposing recoils of the lung and chest wall, is the major determinant of the pressure in the pleural liquid. Pleural liquid is not in hydrostatic equilibrium because the vertical gradient in pleural liquid pressure, determined by the vertical gradient in pleural surface pressure, does not equal the hydrostatic gradient. As a result, a viscous flow of pleural liquid occurs in the pleural space. Ventilatory and cardiogenic motions serve to redistribute pleural liquid and minimize contact between the pleural surfaces. Pleural liquid is a microvascular filtrate from parietal pleural capillaries in the chest wall. Homeostasis in pleural liquid volume is achieved by an adjustment of the pleural liquid thickness to the filtration rate that is matched by an outflow via lymphatic stomata.

  11. Extraction parameters and capillary electrophoresis analysis of limonin glucoside and phlorin in citrus byproducts.

    PubMed

    Braddock, R J; Bryan, C R

    2001-12-01

    Limonin glucoside (LG) and phlorin were extracted from citrus fruit tissues and assayed by capillary electrophoresis (CE). LG was determined in dried [1.20 +/- 0.10 mg of dry weight (dw)] and wet peel residues (1.16 +/- 0.04 mg of dw), orange juice finisher pulp (0.58 +/- 0.03 mg of dw), dried grapefruit seeds (2.70 +/- 0.15 mg of dw), and 50 degrees Brix molasses (2225 +/- 68 mg/L). Phlorin was purified from orange peel residue and grapefruit albedo, and concentrations were determined in some citrus products. Phlorin and LG were extracted from residues with water/pectinase or with water solutions of methanol and ethanol. Efficient LG extraction from grapefruit seeds (2.40 +/- 0.15 mg/g) was achieved with 50-65% methanol, solvent polarity P' approximately equal to 7-8. Extracts were purified and concentrated by adsorptive resins and HPLC to obtain 95% pure compounds of LG and phlorin. CE analysis did not require extract purification beyond filtration. LG and phlorin migrated as anions in electropherograms containing peaks representing other citrus flavonoids and limonoid glucosides.

  12. Intra-and inter-observer reliability of nailfold videocapillaroscopy - A possible outcome measure for systemic sclerosis-related microangiopathy.

    PubMed

    Dinsdale, Graham; Moore, Tonia; O'Leary, Neil; Tresadern, Philip; Berks, Michael; Roberts, Christopher; Manning, Joanne; Allen, John; Anderson, Marina; Cutolo, Maurizio; Hesselstrand, Roger; Howell, Kevin; Pizzorni, Carmen; Smith, Vanessa; Sulli, Alberto; Wildt, Marie; Taylor, Christopher; Murray, Andrea; Herrick, Ariane L

    2017-07-01

    Our aim was to assess the reliability of nailfold capillary assessment in terms of image evaluability, image severity grade ('normal', 'early', 'active', 'late'), capillary density, capillary (apex) width, and presence of giant capillaries, and also to gain further insight into differences in these parameters between patients with systemic sclerosis (SSc), patients with primary Raynaud's phenomenon (PRP) and healthy control subjects. Videocapillaroscopy images (magnification 300×) were acquired from all 10 digits from 173 participants: 101 patients with SSc, 22 with PRP and 50 healthy controls. Ten capillaroscopy experts from 7 European centres evaluated the images. Custom image mark-up software allowed extraction of the following outcome measures: overall grade ('normal', 'early', 'active', 'late', 'non-specific', or 'ungradeable'), capillary density (vessels/mm), mean vessel apical width, and presence of giant capillaries. Observers analysed a median of 129 images each. Evaluability (i.e. the availability of measures) varied across outcome measures (e.g. 73.0% for density and 46.2% for overall grade in patients with SSc). Intra-observer reliability for evaluability was consistently higher than inter- (e.g. for density, intra-class correlation coefficient [ICC] was 0.71 within and 0.14 between observers). Conditional on evaluability, both intra- and inter-observer reliability were high for grade (ICC 0.93 and 0.78 respectively), density (0.91 and 0.64) and width (0.91 and 0.85). Evaluability is one of the major challenges in assessing nailfold capillaries. However, when images are evaluable, the high intra- and inter-reliabilities suggest that overall image grade, capillary density and apex width have potential as outcome measures in longitudinal studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Pulmonary preservation studies: effects on endothelial function and pulmonary adenine nucleotides.

    PubMed

    Paik, Hyo Chae; Hoffmann, Steven C; Egan, Thomas M

    2003-02-27

    Lung transplantation is an effective therapy plagued by a high incidence of early graft dysfunction, in part because of reperfusion injury. The optimal preservation solution for lung transplantation is unknown. We performed experiments using an isolated perfused rat lung model to test the effect of lung preservation with three solutions commonly used in clinical practice. Lungs were retrieved from Sprague-Dawley rats and flushed with one of three solutions: modified Euro-Collins (MEC), University of Wisconsin (UW), or low potassium dextran and glucose (LPDG), then stored cold for varying periods before reperfusion with Earle's balanced salt solution using the isolated perfused rat lung model. Outcome measures were capillary filtration coefficient (Kfc), wet-to-dry weight ratio, and lung tissue levels of adenine nucleotides and cyclic AMP. All lungs functioned well after 4 hr of storage. By 6 hr, UW-flushed lungs had a lower Kfc than LPDG-flushed lungs. After 8 hr of storage, only UW-flushed lungs had a measurable Kfc. Adenine nucleotide levels were higher in UW-flushed lungs after prolonged storage. Cyclic AMP levels correlated with Kfc in all groups. Early changes in endothelial permeability seemed to be better attenuated in lungs flushed with UW compared with LPDG or MEC; this was associated with higher amounts of adenine nucleotides. MEC-flushed lungs failed earlier than LPDG-flushed or UW-flushed lungs. The content of the solution may be more important for lung preservation than whether the ionic composition is intracellular or extracellular.

  14. Isoproterenol reduces ischemia-reperfusion lung injury despite beta-blockade.

    PubMed

    Takashima, Seiki; Schlidt, Scott A; Koukoulis, Giovanna; Sevala, Mayura; Egan, Thomas M

    2005-06-01

    If lungs could be retrieved from non-heart-beating donors (NHBDs), the shortage of lungs for transplantation could be alleviated. The use of lungs from NHBDs is associated with a mandatory warm ischemic interval, which results in ischemia-reperfusion injury upon reperfusion. In an earlier study, rat lungs retrieved 2-h postmortem from NHBDs had reduced capillary leak measured by filtration coefficient (Kfc) when reperfused with isoproterenol (iso), associated with an increase in lung tissue levels of cyclic AMP (cAMP). The objective was to determine if this decrease in Kfc was because of beta-stimulation, or would persist despite beta-blockade. Donor rats were treated intraperitoneally with beta-blockade (propranolol or pindolol) or carrier, sacrificed, and lungs were retrieved immediately or 2 h postmortem. The lungs were reperfused with or without iso and the beta-blockers in the reperfusate. Outcome measures were Kfc, wet:dry weight ratio (W/D), lung levels of adenine nucleotides and cAMP. Lungs retrieved immediately after death had normal Kfc and W/D. After 2 h of ischemia, Kfc and W/D were markedly elevated in controls (no drug) and lungs reperfused with beta-blockers alone. Isoproterenol-reperfusion decreased Kfc and W/D significantly (P < 0.01) even in the presence of beta-blockade. Lung cAMP levels were increased only with iso in the absence of beta-blockade. The attenuation of ischemia-reperfusion injury because of iso occurs even in the presence of beta-blockade, and may not be a result of beta-stimulated increased cAMP.

  15. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue

    PubMed Central

    Lücker, Adrien; Secomb, Timothy W.; Weber, Bruno; Jenny, Patrick

    2016-01-01

    Objective Oxygen transport to parenchymal cells occurs mainly at the microvascular level, and depends on convective red blood cell (RBC) flux, which is proportional in an individual capillary to the product of capillary hematocrit and red blood cell velocity. This study investigates the relative influence of these two factors on tissue oxygen partial pressure (Po2). Methods A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity and flow on tissue oxygenation around capillaries. Predicted tissue Po2 levels are compared with a detailed computational model. Results Hematocrit is shown to have a larger influence on tissue Po2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained and the discrepancies are explained. Significant dependence of mass transfer coefficients on RBC velocity at low hematocrit is demonstrated. Conclusions For a given RBC flux in a capillary, the Po2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing intravascular resistance to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as occur in functional hyperemia in the brain. PMID:27893186

  16. Kinetic Limited Water Evaporation in Hydrophilic Nanofluidic Channels

    NASA Astrophysics Data System (ADS)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Xie, Quan; Duan, Chuanhua

    2015-11-01

    Capillary evaporation is one of the most efficient approaches for heat and mass transfer, but the interfacial resistance in capillary evaporation governed by the kinetic theory has remained poorly understood. Here we report experimental studies of the kinetic-limited water capillary evaporation in 2-D hydrophilic nanochannels. A novel hybrid nanochannel design is employed to guarantee sufficient water supply to the liquid/vapor evaporation interface and to enable precise evaporation rate measurements. We study the effects of confinement (16 ~ 105nm), temperature (20 ~ 40 °C), and relative humidity (0% ~ 60%) on the evaporation rate and the evaporation coefficient. A maximum evaporation flux of 21287 micron/s is obtained in 16-nm nanochannels at 40°C and RH =0%, which corresponds to a heat flux of 4804 W/cm°. The evaporation coefficient is found to be independent on geometrical confinement, but shows a clear dependence on temperature, decreasing from 0.55 at 20°C to 0.5 at 40 °C. These findings have implications for understanding heat and mass transport in nanofluidic devices and porous media, and shed light on further development of evaporation-based technologies for thermal management, membrane purification and lab-on-a-chip devices. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  17. A prototype heat pipe heat exchanger for the capillary pumped loop flight experiment

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Yun, Seokgeun; Kroliczek, Edward J.

    1992-01-01

    A Capillary Pumped Two-Phase Heat Transport Loop (CAPL) Flight Experiment, currently planned for 1993, will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. CAPL employs a heat pipe heat exchanger (HPHX) to couple the condenser section of the CPL to the radiator assembly. A prototype HPHX consisting of a heat exchanger (HX), a header heat pipe (HHP), a spreader heat pipe (SHP), and a flow regulator has been designed and tested. The HX transmits heat from the CPL condenser to the HHP, while the HHP and SHP transport heat to the radiator assembly. The flow regulator controls flow distribution among multiple parallel HPHX's. Test results indicated that the prototype HPHX could transport up to 800 watts with an overall heat transfer coefficient of more than 6000 watts/sq m-deg C. Flow regulation among parallel HPHX's was also demonstrated.

  18. Precision of a dry-chemistry method of lipid screening.

    PubMed

    Bowden, Rodney G; Kingery, Paul M; Long, Lindsey

    2006-06-01

    The purpose of this study was to compare total capillary cholesterol values acquired using the Reflotron with a venous sample taken simultaneously, to determine if the Reflotron meets the guidelines of the National Cholesterol Education Program (NCEP) for accuracy. An announcement and a registration form for a cholesterol screening programme were distributed with employee pay slips at a large southern university. Approximately 15 employees were scheduled for each screening date, with walk-ins allowed at the health assessment site as space allowed. Capillary and venous samples were collected from screening participants (n=285). Approximately 20 ml of blood was collected from each participant, after fasting for 12 h, using standardized venepuncture techniques in the antecubital vein in the bend of the elbow. In order to overcome technician error, two drops of blood (30 microl) were collected immediately from the previously drawn venous sample by drawing blood into the capillary tube from the opening in the top of the venous tube before centrifuging the venous sample, rather than 'sticking' the finger. A Kolmogorov-Smirnov (KS) test of normality was calculated for total capillary cholesterol (KS=1.27, P=0.79) and total venous cholesterol (KS=0.99, P=0.28), which revealed insufficient evidence that the distributions were not normal. Participants' total capillary cholesterol values averaged 213.27 mg/dl [standard deviation (SD)=44.66 mg/dl)] when analysed on the Reflotron, and slightly higher (228.86 mg/dl, SD=40.50 mg/dl) for venepuncture. A paired t-test for variance between groups revealed significant differences in total capillary and total venous cholesterol values (t=-41.93, P<0.0001). A mean centered coefficient of variation was performed, revealing a 3.3% error rate, i.e. greater than the 3% allowable by the NCEP III guidelines. The mean percent bias was -7.28% (SD=3.10%) and the absolute mean percent bias was 7.46% (SD=2.64%). The percentage of participants with total cholesterol misclassified was 16.85%. Concomitantly, Spearman correlation coefficients were high (r2=0.94, P=0.01). Although the Reflotron met most of the NCEP III guidelines for accuracy, the portable analyser provided clinically relevant underestimations of total cholesterol values, especially for the lower and upper values. Consequently, lipid values obtained using the Reflotron may be useful for screening, but the Reflotron should not be used as a diagnostic and management tool.

  19. Separation of electrolyte solutions by reverse osmosis.

    PubMed

    Starov, V M; Churaev, N V

    1993-05-09

    The paper presented is subdivided into two parts. The first one includes a survey of current notions concerning the physico-chemical nature of interaction potential phi between dissolved molecules or ions and water with a membrane material. Special attention is paid to the structural potential and the potential of image forces. The main conclusion is that the potential of interaction phi determines the major part of phenomena which are relevant for reverse osmosis (RO) separation. In the second part the distribution coefficient gamma = exp (phi) is supposed to be known and a survey of theoretical investigations of RO processes is undertaken. The so called homogeneous model of RO membranes is employed and concentration polarization is taken into account. Two main points in this investigation should be emphasized, that is, taking into account concentration polarization and a theory of RO separation of electrolyte mixtures. The maximum value of rejection coefficient and corresponding optimum velocity of filtration are calculated. Negative rejection of some ions from the mixture is explained, as well as a change in pH of filtrate. The streaming potential is calculated as a function of Peclet number, distribution coefficients, membrane charge and so on in all cases. The suggested theory gives the possibility to explain a number of phenomena in RO separation of electrolyte solutions.

  20. Development of Multiple-Locus Variable-Number Tandem-Repeat Analysis for Molecular Subtyping of Campylobacter jejuni by Using Capillary Electrophoresis

    PubMed Central

    Techaruvichit, Punnida; Vesaratchavest, Mongkol; Keeratipibul, Suwimon; Kuda, Takashi; Kimura, Bon

    2015-01-01

    Campylobacter jejuni is a common cause of the frequently reported food-borne diseases in developed and developing nations. This study describes the development of multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) using capillary electrophoresis as a novel typing method for microbial source tracking and epidemiological investigation of C. jejuni. Among 36 tandem repeat loci detected by the Tandem Repeat Finder program, 7 VNTR loci were selected and used for characterizing 60 isolates recovered from chicken meat samples from retail shops, samples from chicken meat processing factory, and stool samples. The discrimination ability of MLVA was compared with that of multilocus sequence typing (MLST). MLVA (diversity index of 0.97 with 31 MLVA types) provided slightly higher discrimination than MLST (diversity index of 0.95 with 25 MLST types). The overall concordance between MLVA and MLST was estimated at 63% by adjusted Rand coefficient. MLVA predicted MLST type better than MLST predicted MLVA type, as reflected by Wallace coefficient (Wallace coefficient for MLVA to MLST versus MLST to MLVA, 86% versus 51%). MLVA is a useful tool and can be used for effective monitoring of C. jejuni and investigation of epidemics caused by C. jejuni. PMID:26025899

  1. A Review of Podocyte Biology.

    PubMed

    Garg, Puneet

    2018-05-31

    Podocyte biology is a developing science that promises to help improve understanding of the mechanistic nature of multiple diseases associated with proteinuria. Proteinuria in nephrotic syndrome has been linked to mechanistic dysfunctions in the renal glomerulus involving the function of podocyte epithelial cells, including podocyte foot process effacement. Developments in imaging technology are improving knowledge of the detailed structure of the human renal glomerulus and cortex. Podocyte foot processes attach themselves to the glomerular capillaries at the glomerular basement membrane (GBM) forming intercellular junctions that form slit diaphragm filtration barriers that help maintain normal renal function. Damage in this area has been implicated in glomerular disease. Injured podocytes undergo effacement whereby they lose their structure and spread out, leading to a reduction in filtration barrier function. Effacement is typically associated with the presence of proteinuria in focal segmental glomerulosclerosis, minimal change disease, and diabetes. It is thought to be due to a breakdown in the actin cytoskeleton of the foot processes, complex contractile apparatuses that allow podocytes to dynamically reorganize according to changes in filtration requirements. The process of podocyte depletion correlates with the development of glomerular sclerosis and chronic kidney disease. Focal adhesion complexes that interact with the underlying GBM bind the podocytes within the glomerular structure and prevent their detachment. Key Messages: Knowledge of glomerular podocyte biology is helping to advance our understanding of the science and mechanics of the glomerular filtering process, opening the way to a variety of new potential applications for clinical targeting. © 2018 S. Karger AG, Basel.

  2. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy

    PubMed Central

    2009-01-01

    An important part of characterizing any protein molecule is to determine its size and shape. Sedimentation and gel filtration are hydrodynamic techniques that can be used for this medium resolution structural analysis. This review collects a number of simple calculations that are useful for thinking about protein structure at the nanometer level. Readers are reminded that the Perrin equation is generally not a valid approach to determine the shape of proteins. Instead, a simple guideline is presented, based on the measured sedimentation coefficient and a calculated maximum S, to estimate if a protein is globular or elongated. It is recalled that a gel filtration column fractionates proteins on the basis of their Stokes radius, not molecular weight. The molecular weight can be determined by combining gradient sedimentation and gel filtration, techniques available in most biochemistry laboratories, as originally proposed by Siegel and Monte. Finally, rotary shadowing and negative stain electron microscopy are powerful techniques for resolving the size and shape of single protein molecules and complexes at the nanometer level. A combination of hydrodynamics and electron microscopy is especially powerful. PMID:19495910

  3. Separation of plant hormones from biofertilizer by capillary electrophoresis using a capillary coated dynamically with polycationic polymers.

    PubMed

    Jiang, Ting-Fu; Lv, Zhi-Hua; Wang, Yuan-Hong; Yue, Mei-E

    2006-06-01

    A new, simple and rapid capillary electrophoresis (CE) method, using hexadimethrine bromide (HDB) as electroosmotic flow (EOF) modifier, was developed for the identification and quantitative determination of four plant hormones, including gibberellin A3 (GA3), indole-3-acetic acid (IAA), alpha-naphthaleneacetic acid (NAA) and 4-chlorophenoxyacetic acid (4-CA). The optimum separation was achieved with 20 mM borate buffer at pH 10.00 containing 0.005% (w/v) of HDB. The applied voltage was -25 kV and the capillary temperature was kept constant at 25 degrees C. Salicylic acid was used as internal standard for quantification. The calibration dependencies exhibited good linearity within the ratios of the concentrations of standard samples and internal standard and the ratios of the peak areas of samples and internal standard. The correlation coefficients were from 0.9952 to 0.9997. The relative standard deviations of migration times and peak areas were < 1.93 and 6.84%, respectively. The effects of buffer pH, the concentration of HDB and the voltage on the resolution were studied systematically. By this method, the contents of plant hormone in biofertilizer were successfully determined within 7 min, with satisfactory repeatability and recovery.

  4. Effect of interfacial slip on the thin film drainage time for two equal-sized, surfactant-free drops undergoing a head-on collision: A scaling analysis

    NASA Astrophysics Data System (ADS)

    Ramachandran, A.; Leal, L. G.

    2016-10-01

    Using a scaling analysis, we assess the impact of interfacial slip on the time required for the thin liquid film between two drops undergoing a head-on collision to drain to the critical thickness for rupture by van der Waals forces. Interfacial slip is included in our continuum development using a Navier slip boundary condition, with the slip coefficient modeled using previous theories [Helfand and Tagami, J. Chem. Phys. 57, 1812 (1972), 10.1063/1.1678491; Goveas and Fredrickson, Eur. Phys. J. B 2, 79 (1998), 10.1007/s100510050228]. Slip decreases hydrodynamic resistance and speeds up film drainage. It renders the dependence of the drainage time on capillary number stronger in the spherical-film regime, but, interestingly, this dependence is altered only weakly in the dimpled-film regime. A subtle effect of slip is that it increases the range of capillary numbers in which the film remains predominantly spherical in shape during drainage (as opposed to being dimpled), leading to significantly faster drainage for these capillary numbers. Slip also leads to an increase in the critical capillary number beyond which coalescence is not possible in a head-collision.

  5. The distribution of 99mTc-EHDP in the tissues of the dog and its application in the assessment of fracture healing.

    PubMed

    Hughes, S

    1977-07-01

    Technetium-labelled ethane hydroxydiphosphonate (99mTc-EHDP) is a commonly used bone-scanning agent. After injection it leaves the circulation to enter bone and to be cleared by the kidney. The transcapillary exchange of 99mTc-EHDP in bone was examined and found to be low. The capillary movement was compared with that of sucrose, a freely diffusible substance, and it was found that the permeability ratio of 99mTc-EHDP to 14C-sucrose was similar to the diffusion coefficient ratio, suggesting that 99mTc-EHDP passes through the capillaries by the process of passive diffusion. The renal clearance of 99mTc-EHDP was 24 ml/min and was unaffected by the action of parathyroid hormone. After a fracture the bone blood flow increases, although the transcapillary extraction of 99mTc-EHDP does not change. This is because there is an increase, from recruitment and dilatation of capillaries, in the surface area available for exchange. Therefore the increased isotopic activity seen on a bone scan after a fracture is primarily related to an increase in bone blood supply from capillary enhancement within the cortex.

  6. Study of a high performance evaporative heat transfer surface

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hamasaki, R. H.

    1977-01-01

    An evaporative surface is described for heat pipes and other two-phase heat transfer applications that consists of a hybrid composition of V-grooves and capillary wicking. Characteristics of the surface include both a high heat transfer coefficient and high heat flux capability relative to conventional open-faced screw thread surfaces. With a groove density of 12.6 cm/1 and ammonia working fluid, heat transfer coefficients in the range of 1 to 2 W/sq cm have been measured along with maximum heat flux densities in excess of 20 W/sq cm. A peak heat transfer coefficient in excess of 2.3 W/sq cm was measured with a 37.8 cm/1 hybrid surface.

  7. Predicting the size-dependent tissue accumulation of agents released from vascular targeted nanoconstructs

    NASA Astrophysics Data System (ADS)

    de Tullio, Marco D.; Singh, Jaykrishna; Pascazio, Giuseppe; Decuzzi, Paolo

    2014-03-01

    Vascular targeted nanoparticles have been developed for the delivery of therapeutic and imaging agents in cancer and cardiovascular diseases. However, at authors' knowledge, a comprehensive systematic analysis on their delivery efficiency is still missing. Here, a computational model is developed to predict the vessel wall accumulation of agents released from vascular targeted nanoconstructs. The transport problem for the released agent is solved using a finite volume scheme in terms of three governing parameters: the local wall shear rate , ranging from to ; the wall filtration velocity , varying from to ; and the agent diffusion coefficient , ranging from to . It is shown that the percentage of released agent adsorbing on the vessel walls in the vicinity of the vascular targeted nanoconstructs reduces with an increase in shear rate , and with a decrease in filtration velocity and agent diffusivity . In particular, in tumor microvessels, characterized by lower shear rates () and higher filtration velocities (), an agent with a diffusivity (i.e. a 50 nm particle) is predicted to deposit on the vessel wall up to of the total released dose. Differently, drug molecules, exhibiting a smaller size and much higher diffusion coefficient (), are predicted to accumulate up to . In healthy vessels, characterized by higher and lower , the largest majority of the released agent is redistributed directly in the circulation. These data suggest that drug molecules and small nanoparticles only can be efficiently released from vascular targeted nanoconstructs towards the diseased vessel walls and tissue.

  8. Aldosterone and glomerular filtration--observations in the general population.

    PubMed

    Hannemann, Anke; Rettig, Rainer; Dittmann, Kathleen; Völzke, Henry; Endlich, Karlhans; Nauck, Matthias; Wallaschofski, Henri

    2014-03-10

    Increasing evidence suggests that aldosterone promotes renal damage. Since data on the association between aldosterone and renal function in the general population are sparse, we chose to address this issue. We investigated the associations between the plasma aldosterone concentration (PAC) or the aldosterone-to-renin ratio (ARR) and the estimated glomerular filtration rate (eGFR) in a sample of adult men and women from Northeast Germany. A study population of 1921 adult men and women who participated in the first follow-up of the Study of Health in Pomerania was selected. None of the subjects used drugs that alter PAC or ARR. The eGFR was calculated according to the four-variable Modification of Diet in Renal Disease formula. Chronic kidney disease (CKD) was defined as an eGFR < 60 ml/min/1.73 m2. Linear regression models, adjusted for sex, age, waist circumference, diabetes mellitus, smoking status, systolic and diastolic blood pressures, serum triglyceride concentrations and time of blood sampling revealed inverse associations of PAC or ARR with eGFR (ß-coefficient for log-transformed PAC -3.12, p < 0.001; ß-coefficient for log-transformed ARR -3.36, p < 0.001). Logistic regression models revealed increased odds for CKD with increasing PAC (odds ratio for a one standard deviation increase in PAC: 1.35, 95% confidence interval: 1.06-1.71). There was no statistically significant association between ARR and CKD. Our study demonstrates that PAC and ARR are inversely associated with the glomerular filtration rate in the general population.

  9. Mitigation of radon and thoron decay products by filtration.

    PubMed

    Wang, Jin; Meisenberg, Oliver; Chen, Yongheng; Karg, Erwin; Tschiersch, Jochen

    2011-09-01

    Inhalation of indoor radon ((222)Rn) and thoron ((220)Rn) decay products is the most important source of exposure to ionizing radiation for the human respiratory tract. Decreasing ventilation rates due to energy saving reasons in new buildings suggest additional active mitigation techniques to reduce the exposure in homes with high radon and thoron concentrations but poor ventilation. Filtration techniques with HEPA filters and simple surgical mask material have been tested for their potential to reduce the indoor exposure in terms of the total effective dose for mixed radon and thoron indoor atmospheres. The tests were performed inside an experimental room providing stable conditions. Filtration (at filtration rates of 0.2 h(-1) and larger) removes attached radon and thoron decay products effectively but indoor aerosol as well. Therefore the concentration of unattached decay products (which have a higher dose coefficient) may increase. The decrease of the attached decay product concentrations could be theoretically described by a slowly decreasing exponential process. For attached radon decay products, it exhibited a faster but weaker removal process compared to attached thoron decay products (-70% for attached radon decay products and -80% for attached thoron decay products at a filtration rate of 0.5 h(-1) with an HEPA filter). The concentration of unattached thoron decay products increased distinctly during the filtration process (+300%) while that of unattached radon decay products rose only slightly though at a much higher level (+17%). In the theoretical description these observed differences could be attributed to the different half-lives of the nuclides. Considering both effects, reduced attached and increased unattached decay product concentrations, filtration could significantly decrease the total effective dose from thoron whereas the overall effect on radon dose is small. A permanent filtration is recommended because of the slow decrease of the thoron decay product concentrations. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Tale of two sites: capillary versus arterial blood glucose testing in the operating room.

    PubMed

    Akinbami, Felix; Segal, Scott; Schnipper, Jeffrey L; Stopfkuchen-Evans, Matthias; Mills, Jonathan; Rogers, Selwyn O

    2012-04-01

    Pre- and intraoperative glycemic control has been identified as a putative target to improve outcomes of surgical patients. Glycemic control requires frequent monitoring of blood glucose levels with appropriate adjustments. However, monitoring standards have been called into question, especially in cases in which capillary samples are used. Point-of-care testing (POCT) using capillary samples and glucometers has been noted to give relatively accurate results for critically ill patients. However, the package inserts of most glucometers warn that they should not be used for patients in shock. This has led clinicians to doubt their accuracy in the operating room. The accuracy of capillary samples when tested in patients undergoing surgical procedures has not been proven. This study aims to determine the accuracy of intraoperative blood glucose values using capillary samples relative to arterial samples. A prospective study was conducted by collecting paired capillary and arterial samples of patients undergoing major operations at a tertiary medical center from August 2009 to May 2011. Subjects were a convenience sample of patients who had arterial lines and needed glucose testing while undergoing the procedure. Precision Xceed Pro (Abbott) handheld glucometers were used to obtain the blood glucose values. Our primary outcome of interest was the degree of correlation between capillary and arterial blood glucose values or the degree to which arterial glucose levels can be predicted by capillary glucose samples. We used linear regression and the Student t tests for statistical analyses. Seventy-two-paired samples were collected. Of the cases, 54% were major abdominal operations, whereas 24% were vascular operations. The mean values ± standard deviation for glucose levels were 146 ± 35 mg/dL (capillary) and 147 ± 36 mg/dL (arterial). The mean time ± standard deviation between the collection of both samples was 3.5 ± 1.3 minutes. The regression coefficient showed a strong positive correlation of .91 between capillary glucose values and arterial values (P < .001) although correlation was less stringent at the hyperglycemic range of values. The R(2) statistic was 84%. Differences in values between capillary and arterial samples would not have altered the diagnosis of hypo- and hyperglycemia using typical thresholds. Capillary samples collected intraoperatively are strongly correlated with arterial samples. Glucose monitoring in the operating room can be safely performed by collecting capillary samples for POCT. However, clinicians should still be cautious when interpreting glucose levels that are high, either by repeating the blood glucose test or by having samples sent to the laboratory. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Surface capillary currents: Rediscovery of fluid-structure interaction by forced evolving boundary theory

    NASA Astrophysics Data System (ADS)

    Wang, Chunbai; Mitra, Ambar K.

    2016-01-01

    Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.

  12. An approximate theoretical treatment of ion transfer processes at asymmetric microscopic and nanoscopic liquid-liquid interfaces: Single and double potential pulse techniques

    NASA Astrophysics Data System (ADS)

    Molina, A.; Laborda, E.; Compton, R. G.

    2014-03-01

    Simple theory for the electrochemical study of reversible ion transfer processes at micro- and nano-liquid|liquid interfaces supported on a capillary is presented. Closed-form expressions are obtained for the response in normal pulse and differential double pulse voltammetries, which describe adequately the particular behaviour of these systems due to the ‘asymmetric’ ion diffusion inside and outside the capillary. The use of different potential pulse techniques for the determination of the formal potential and diffusion coefficients of the ion is examined. For this, very simple analytical expressions are presented for the half-wave potential in NPV and the peak potential in DDPV.

  13. Drainage and impregnation capillary pressure curves calculated by the X-ray CT model of Berea sandstone using Lattice Boltzmann's method

    NASA Astrophysics Data System (ADS)

    Zakirov, T.; Galeev, A.; Khramchenkov, M.

    2018-05-01

    The study deals with the features of the technique for simulating the capillary pressure curves of porous media on their X-ray microtomographic images. The results of a computational experiment on the immiscible displacement of an incompressible fluid by another in the pore space represented by a digital image of the Berea sandstone are presented. For the mathematical description of two-phase fluid flow we use Lattice Boltzmann Equation (LBM), and phenomena at the fluids interface are described by the color-gradient model. Compared with laboratory studies, the evaluation of capillary pressure based on the results of a computational filtration experiment is a non-destructive method and has a number of advantages: the absence of labor for preparation of fluids and core; the possibility of modeling on the scale of very small core fragments (several mm), which is difficult to realize under experimental conditions; three-dimensional visualization of the dynamics of filling the pore space with a displacing fluid during drainage and impregnation; the possibility of carrying out multivariate calculations for specified parameters of multiphase flow (density and viscosity of fluids, surface tension, wetting contact angle). A satisfactory agreement of the capillary pressure curves during drainage with experimental results was obtained. It is revealed that with the increase in the volume of the digital image, the relative deviation of the calculated and laboratory data decreases and for cubic digital cores larger than 1 mm it does not exceed 5%. The behavior of the non-wetting fluid flow during drainage is illustrated. It is shown that flow regimes under which computational and laboratory experiments are performed the distribution of the injected phase in directions different from the gradient of the hydrodynamic drop, including the opposite ones, is characteristic. Experimentally confirmed regularities are obtained when carrying out calculations for drainage and imbibition at different values of interfacial tension. There is a close coincidence in the average diameters of permeable channels, estimated by capillary curves for different interfacial tension and pore network model. The differences do not exceed 15%.

  14. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids.

    PubMed

    Hu, Bin; Kieweg, Sarah L

    2012-07-15

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.

  15. Diffuse interface method for a compressible binary fluid.

    PubMed

    Liu, Jiewei; Amberg, Gustav; Do-Quang, Minh

    2016-01-01

    Multicomponent, multiphase, compressible flows are very important in real life, as well as in scientific research, while their modeling is in an early stage. In this paper, we propose a diffuse interface model for compressible binary mixtures, based on the balance of mass, momentum, energy, and the second law of thermodynamics. We show both analytically and numerically that this model is able to describe the phase equilibrium for a real binary mixture (CO_{2} + ethanol is considered in this paper) very well by adjusting the parameter which measures the attraction force between molecules of the two components in the model. We also show that the calculated surface tension of the CO_{2} + ethanol mixture at different concentrations match measurements in the literature when the mixing capillary coefficient is taken to be the geometric mean of the capillary coefficient of each component. Three different cases of two droplets in a shear flow, with the same or different concentration, are simulated, showing that the higher concentration of CO_{2} the smaller the surface tension and the easier the drop deforms.

  16. Co-Transplantation of Nanofat Enhances Neovascularization and Fat Graft Survival in Nude Mice.

    PubMed

    Yu, Qian; Cai, Yizuo; Huang, He; Wang, Zhenxing; Xu, Peng; Wang, Xiangsheng; Zhang, Lu; Zhang, Wenjie; Li, Wei

    2018-05-15

    Autologous fat grafting is commonly used for soft-tissue augmentation and reconstruction. However, this technique is limited by a high rate of graft absorption. Thus, approaches to improve fat graft survival that promote neovascularization are of great interest. Nanofat has several beneficial features that may render it more suitable for clinical applications than other stem-cell based approaches. We aimed to determine whether nanofat could enhance new vessel formation and improve the long-term retention of fat grafts. Nanofat was processed via mechanical emulsification and filtration. Fat grafts were transplanted subcutaneously under the scalps of nude mice with different nanofat volumes or without nanofat. The grafted fat was dissected 12 weeks after transplantation. Graft weight and volume were measured, and histological evaluations, including capillary density measurement, were performed. The co-transplantation of fat with nanofat showed higher graft weight and volume retention, better histological structure, and higher capillary density compared to that in controls. However, there were no significant differences between the two nanofat volumes utilized. Nanofat can enhance neovascularization and improve fat graft survival, providing a potential clinically viable approach to fat graft supplementation in plastic and reconstructive surgery.

  17. The results of the study of compact gas-puff and vacuum spark plasma sources of SXR with Glass-Capillary Converters (GCC)

    NASA Astrophysics Data System (ADS)

    Shlyaptseva, Alla; Kantsyrev, Victor; Inozemtsev, Andrei; Petrukhin, Oleg

    1994-06-01

    The results are presented dealing with the working out and study of the SXR compact plasma source. The experimental set up included a compact new 'gas-puff' source with parameters being better than the traditional ones and a new type of SXR source - low-inductance vacuum spark (LIVS) with glass-capillary converters (GCC) of SXR. The compact plasma 'gas-puff' source had the high value of the z approx. (1-2) 10(exp -2) (conversion coefficient of initial energy supply into SXR); a small effective size of emission region and greater resource. The characteristics of LIVS with GCC were studied. GCC consisting of about several hundreds of glass capillaries allowed us to focus SXR, to change the cross section of SXR beams to plasma sources, and to change SXR spectrum. The possibility was shown of using of GCC in plasma diagnostics of powerful plasma devices: for X-ray microscopy and to study the influence of SXR on the solid state surface.

  18. Electrokinetic coupling in unsaturated porous media.

    PubMed

    Revil, A; Linde, N; Cerepi, A; Jougnot, D; Matthäi, S; Finsterle, S

    2007-09-01

    We consider a charged porous material that is saturated by two fluid phases that are immiscible and continuous on the scale of a representative elementary volume. The wetting phase for the grains is water and the nonwetting phase is assumed to be an electrically insulating viscous fluid. We use a volume-averaging approach to derive the linear constitutive equations for the electrical current density as well as the seepage velocities of the wetting and nonwetting phases on the scale of a representative elementary volume. These macroscopic constitutive equations are obtained by volume-averaging Ampère's law together with the Nernst-Planck equation and the Stokes equations. The material properties entering the macroscopic constitutive equations are explicitly described as functions of the saturation of the water phase, the electrical formation factor, and parameters that describe the capillary pressure function, the relative permeability functions, and the variation of electrical conductivity with saturation. New equations are derived for the streaming potential and electro-osmosis coupling coefficients. A primary drainage and imbibition experiment is simulated numerically to demonstrate that the relative streaming potential coupling coefficient depends not only on the water saturation, but also on the material properties of the sample, as well as the saturation history. We also compare the predicted streaming potential coupling coefficients with experimental data from four dolomite core samples. Measurements on these samples include electrical conductivity, capillary pressure, the streaming potential coupling coefficient at various levels of saturation, and the permeability at saturation of the rock samples. We found very good agreement between these experimental data and the model predictions.

  19. Characterization of Natural Organic Matter in Conventional Water Treatment Processes and Evaluation of THM Formation with Chlorine

    PubMed Central

    Özdemır, Kadir

    2014-01-01

    This study investigates the fractions of natural organic matter (NOM) and trihalomethane (THM) formation after chlorination in samples of raw water and the outputs from ozonation, coagulation-flocculation, and conventional filtration treatment units. All the water samples are passed through various ultrafiltration (UF) membranes. UF membranes with different molecular size ranges based on apparent molecular weight (AMW), such as 1000, 3000, 10,000, and 30,000 Daltons (Da), are commonly used. The NOM fraction with AMW < 1000 Da (1 K) is the dominant fraction within all the fractionated water samples. Its maximum percentage is 85.86% after the filtration process and the minimum percentage is 65.01% in raw water samples. The total THM (TTHM) yield coefficients range from 22.5 to 42 μg-TTHM/mg-DOC in all fractionated samples, which is related to their specific ultraviolet Absorbance (SUVA) levels. As the molecular weight of the fractions decreased, the TTHM yield coefficients increased. The NOM fractions with AMW values less than 1 K had lower SUVA values (<3 L/mg·m) for all treatment stages and also they had higher yield of TTHM per unit of DOC. The NOM fraction with AMW < 1 K for chlorinated raw water samples has the highest yield coefficient (42 μg-TTHM/mg-DOC). PMID:24558323

  20. Optical measurement of isolated canine lung filtration coefficients at normal hematocrits.

    PubMed

    Klaesner, J W; Pou, N A; Parker, R E; Finney, C; Roselli, R J

    1997-12-01

    In this study, lung filtration coefficient (Kfc) values were measured in eight isolated canine lung preparations at normal hematocrit values using three methods: gravimetric, blood-corrected gravimetric, and optical. The lungs were kept in zone 3 conditions and subjected to an average venous pressure increase of 10.24 +/- 0.27 (SE) cmH2O. The resulting Kfc (ml . min-1 . cmH2O-1 . 100 g dry lung wt-1) measured with the gravimetric technique was 0.420 +/- 0.017, which was statistically different from the Kfc measured by the blood-corrected gravimetric method (0.273 +/- 0.018) or the product of the reflection coefficient (sigmaf) and Kfc measured optically (0. 272 +/- 0.018). The optical method involved the use of a Cellco filter cartridge to separate red blood cells from plasma, which allowed measurement of the concentration of the tracer in plasma at normal hematocrits (34 +/- 1.5). The permeability-surface area product was measured using radioactive multiple indicator-dilution methods before, during, and after venous pressure elevations. Results showed that the surface area of the lung did not change significantly during the measurement of Kfc. These studies suggest that sigmafKfc can be measured optically at normal hematocrits, that this measurement is not influenced by blood volume changes that occur during the measurement, and that the optical sigmafKfc agrees with the Kfc obtained via the blood-corrected gravimetric method.

  1. Shapes and dynamics of miscible liquid/liquid interfaces in horizontal capillary tubes.

    PubMed

    Stevar, M S P; Vorobev, A

    2012-10-01

    We report optical observations of the dissolution behaviour of glycerol/water, soybean oil/hexane, and isobutyric acid (IBA)/water binary mixtures within horizontal capillary tubes. Tubes with diameters as small as 0.2mm were initially filled with one component of the binary mixture (solute) and then immersed into a solvent-filled thermostatic bath. Both ends of the tubes were open, and no pressure difference was applied between the ends. In the case of glycerol/water and soybean oil/hexane mixtures, we managed to isolate the dissolution (the interfacial mass transfer) from the hydrodynamic motion. Two phase boundaries moving from the ends into the middle section of the tube with the speeds v∼D(1/3)t(-2/3)d(2) (D,t and d are the coefficient of diffusion, time and the diameter of the tube, respectively) were observed. The boundaries slowly smeared but their smearing occurred considerably slower than their motion. The motion of the phase boundaries cannot be explained by the dependency of the diffusion coefficient on concentration, and should be explained by the effect of barodiffusion. The shapes of the solute/solvent boundaries are defined by the balance between gravity and surface tension effects. The contact line moved together with the bulk interface: no visible solute remained on the walls after the interface passage. Changes in temperature and in the ratio between gravity and capillary forces altered the apparent contact angles. The IBA/water system had different behaviour. Below the critical (consolute) point, no dissolution was observed: IBA and water behaved like two immiscible liquids, with the IBA phase being displaced from the tube by capillary pressure (the spontaneous imbibition process). Above the critical point, two IBA/water interfaces could be identified, however the interfaces did not penetrate much into the tube. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Quantification of bulk solution limits for liquid and interfacial transport in nanoconfinements.

    PubMed

    Kelly, Shaina; Balhoff, Matthew T; Torres-Verdín, Carlos

    2015-02-24

    Liquid imbibition, the capillary-pressure-driven flow of a liquid into a gas, provides a mechanism for studying the effects of solid-liquid and solid-liquid-gas interfaces on nanoscale transport. Deviations from the classic Washburn equation for imbibition are generally observed for nanoscale imbibition, but the identification of the origin of these irregularities in terms of transport variables varies greatly among investigators. We present an experimental method and corresponding image and data analysis scheme that enable the determination of independent effective values of nanoscale capillary pressure, liquid viscosity, and interfacial gas partitioning coefficients, all critical transport variables, from imbibition within nanochannels. Experiments documented herein are performed within two-dimensional siliceous nanochannels of varying size and as small as 30 nm × 60 nm in cross section. The wetting fluid used is the organic solvent isopropanol and the nonwetting fluid is air, but investigations are not limited to these fluids. Optical data of dynamic flow are rare in geometries that are nanoscale in two dimensions due to the limited resolution of optical microscopy. We are able to capture tracer-free liquid imbibition with reflected differential interference contrast microscopy. Results with isopropanol show a significant departure from bulk transport values in the nanochannels: reduced capillary pressures, increased liquid viscosity, and nonconstant interfacial mass-transfer coefficients. The findings equate to the nucleation of structured, quasi-crystalline boundary layers consistently ∼10-25 nm in extent. This length is far thicker than the boundary layer range prescribed by long-range intermolecular force interactions. Slower but linear imbibition in some experimental cases suggests that structured boundary layers may inhibit viscous drag at confinement walls for critical nanochannel dimensions. Probing the effects of nanoconfinement on the definitions of capillary pressure, viscosity, and interfacial mass transfer is critical in determining and improving the functionality and fluid transport efficacy of geological, biological, and synthetic nanoporous media and materials.

  3. Effects of Sildenafil and Tadalafil on Edema and Reactive Oxygen Species Production in an Experimental Model of Lung Ischemia-Reperfusion Injury.

    PubMed

    Guerra-Mora, J R; Perales-Caldera, E; Aguilar-León, D; Nava-Sanchez, C; Díaz-Cruz, A; Díaz-Martínez, N E; Santillán-Doherty, P; Torres-Villalobos, G; Bravo-Reyna, C C

    Lung ischemia-reperfusion injury is characterized by formation of reactive oxygen species and cellular swelling leading to pulmonary edema and primary graft dysfunction. Phosphodiesterase 5 inhibitors could ameliorate lung ischemia-reperfusion injury by interfering in many molecular pathways. The aim of this work was to evaluate and compare the effects of sildenafil and tadalafil on edema and reactive oxygen species formation in an ex vivo nonhuman animal model of lung ischemia-reperfusion injury. Thirty-two Wistar rats were distributed, treated, perfused and the cardiopulmonary blocks were managed as follows: control group: immediate excision and reperfusion without pretreatment; ischemia reperfusion group: treatment with dimethylsulfoxide 0.9% and excision 1 hour later; sildenafil group: treatment with sildenafil (0.7 mg/kg) and excision 1 hour later; and tadalafil group: treatment with tadalafil (0.15 mg/kg) and excision 2 hours later. All cardiopulmonary blocks except control group were preserved for 8 hours and then reperfused. Pulmonary arterial pressure, pulmonary venous pressure, and capillary filtration coefficient were measured. Reactive oxygen species were measured. Edema was similar between control and sildenafil groups, but significantly greater in the ischemia-reperfusion (P ≤ .04) and tadalafil (P ≤ .003) groups compared with the sildenafil group. The malondialdehyde levels were significantly lower in the sildenafil (P ≤ .001) and tadalafil (P ≤ .001) groups than the ischemia-reperfusion group. Administration of sildenafil, but not tadalafil, decreased edema in lung ischemia-reperfusion injury. Both drugs decreased reactive oxygen species formation in a lung ischemia-reperfusion injury model. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Barotrauma and microvascular injury in lungs of nonadult rabbits: effect of ventilation pattern.

    PubMed

    Peevy, K J; Hernandez, L A; Moise, A A; Parker, J C

    1990-06-01

    To study the pulmonary microvascular injury produced by ventilation barotrauma, the isolated perfused lungs of 4 to 6-wk-old New Zealand white rabbits were ventilated by one of the following methods: peak inspiratory pressure (PIP) 23 cm H2O, gas flow rate 1.1 L/min (group 1); PIP 27 cm H2O, gas flow rate 6.9 L/min (group 2); PIP 50 cm H2O, gas flow rate 1.9 L/min (group 3); or PIP 53 cm H2O, gas flow rate 8.3 L/min (group 4). Microvascular permeability was assessed using the capillary filtration coefficient (Kfc) before and 5, 30, and 60 min after a 15-min period of ventilation. Baseline Kfc was not significantly different between groups. A significant increase over the baseline Kfc was noted at 60 min in group 2 and in all postventilation Kfc values in groups 3 and 4 (p less than .05). Group 1 Kfc values did not change significantly after ventilation. At all post-ventilation times, values for Kfc were significantly greater in groups 3 and 4 than in group 1 (p less than .05). Group 4 Kfc values were significantly greater than those in group 2 at 5 and 30 min postventilation. These data indicate that high PIP, and to a lesser extent, high gas flow rates cause microvascular injury in the compliant nonadult lung and suggest that the combination of high PIP and high gas flow rates are the most threatening to microvascular integrity.

  5. Effect of venous and lymphatic congestion on lymph capillary pressure of the skin in healthy volunteers and patients with lymph edema.

    PubMed

    Gretener, S B; Läuchli, S; Leu, A J; Koppensteiner, R; Franzeck, U K

    2000-01-01

    The aim of the present study was to assess the influence of venous and lymphatic congestion on lymph capillary pressure (LCP) in the skin of the foot dorsum of healthy volunteers and of patients with lymph edema. LCP was measured at the foot dorsum of 12 patients with lymph edema and 18 healthy volunteers using the servo-nulling technique. Glass micropipettes (7-9 microm) were inserted under microscopic control into lymphatic microvessels visualized by fluorescence microlymphography before and during venous congestion. Venous and lymphatic congestion was attained by cuff compression (50 mm Hg) at the thigh level. Simultaneously, the capillary filtration rate was measured using strain gauge plethysmography. The mean LCP in patients with lymph edema increased significantly (p < 0.05) during congestion (15.7 +/- 8.8 mm Hg) compared to the control value (12.2 +/- 8.9 mm Hg). The corresponding values of LCP in healthy volunteers were 4.3 +/- 2.6 mm Hg during congestion and 2.6 +/- 2.8 mm Hg during control conditions (p < 0.01). The mean increase in LCP in patients with lymph edema was 3.4 +/- 4.1 mm Hg, and 1.7 +/- 2.0 mm Hg in healthy volunteers (NS). The maximum spread of the lymph capillary network in patients increased from 13.9 +/- 6.8 mm before congestion to 18.8 +/- 8.2 mm during thigh compression (p < 0.05). No increase could be observed in healthy subjects. In summary, venous and lymphatic congestion by cuff compression at the thigh level results in a significant increase in LCP in healthy volunteers as well as in patients with lymph edema. The increased spread of the contrast medium in the superficial microlymphatics in lymph edema patients indicates a compensatory mechanism for lymphatic drainage during congestion of the veins and lymph collectors of the leg. Copyright 2000 S. Karger AG, Basel

  6. Protecting Podocytes: A Key Target for Therapy of Focal Segmental Glomerulosclerosis.

    PubMed

    Campbell, Kirk N; Tumlin, James A

    2018-05-31

    Focal segmental glomerulosclerosis (FSGS) is a histologic pattern of injury demonstrated by renal biopsy that can arise from a diverse range of causes and mechanisms. It has an estimated incidence of 7 per 1 million and is the most common primary glomerular disorder leading to end-stage renal disease in the United States. This review focuses on damage to the podocyte and the consequences of this injury in patients with FSGS, the genetics of FSGS, and approaches to treatment with a focus on the effects on podocytes. The podocyte is central to the glomerular filtration barrier and is particularly vulnerable because of its highly differentiated post-mitotic phenotype. The progressive structural changes involved in the pathology of FSGS include podocyte foot process effacement, death of podocytes and exposure of the glomerular basement membrane, filtration of nonspecific plasma proteins, expansion of capillaries, misdirected filtration at points of synechiae, and mesangial matrix proliferation. Although damage to and death of podocytes can result from single-gene disorders, evidence also suggests a role for soluble factors, such as soluble urokinase-type plasminogen activator receptor, cardiotrophin-like cytokine-1, and anti-CD40 antibodies, that promote FSGS recurrence post transplant. Several classes of medications, including corticosteroids, calcineurin inhibitors, endothelin receptor antagonists, adrenocorticotropic hormone, and rituximab, have been shown to be effective for the treatment of FSGS and have been demonstrated to have significant protective effects on podocytes. Key Messages: Greater understanding of podocyte biology is essential to the identification of new treatment targets and medications for the management of patients with FSGS. © 2018 S. Karger AG, Basel.

  7. Design and fabrication of thin microvascularised polymer matrices inspired from secondary lamellae of fish gills

    NASA Astrophysics Data System (ADS)

    Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak

    2016-04-01

    Gills are one of the most primitive gas, solute exchange organs available in fishes. They facilitate exchange of gases, solutes and ions with a surrounding water medium through their functional unit called secondary lamella. These lamellae through their extraordinary morphometric features and peculiar arrangement in gills, achieve remarkable mass transport properties. Therefore, in the current study, modeling and simulation of convection-diffusion transport through a two dimensional model of secondary lamella and theoretical analysis of morphometric features of fish gills were carried out. Such study suggested an evolutionary conservation of parametric ratios across fishes of different weights. Further, we have also fabricated a thin microvascularised PDMS matrices mimicking secondary lamella by use of micro-technologies like electrospinning. In addition, we have also demonstrated the fluid flow by capillary action through these thin microvascularised PDMS matrices. Eventually, we also illustrated the application of these thin microvascularied PDMS matrices in solute exchange process under capillary flow conditions. Thus, our study suggested that fish gills have optimized parameteric ratios, at multiple length scale, throughout an evolution to achieve an organ with enhanced mass transport capabilities. Thus, these defined parametric ratios could be exploited to design and develop efficient, scaled-up gas/solute exchange microdevices. We also proposed an inexpensive and scalable method of fabrication of thin microvascularised polymer matrices and demonstrated its solute exchange capabilities under capillary flow conditions. Thus, mimicking the microstructures of secondary lamella will enable fabrication of microvascularised thin polymer systems through micro manufacturing technologies for potential applications in filtration, self-healing/cooling materials and bioengineering.

  8. Nailfold capillaroscopy for day-to-day clinical use: construction of a simple scoring modality as a clinical prognostic index for digital trophic lesions.

    PubMed

    Smith, Vanessa; De Keyser, Filip; Pizzorni, Carmen; Van Praet, Jens T; Decuman, Saskia; Sulli, Alberto; Deschepper, Ellen; Cutolo, Maurizio

    2011-01-01

    Construction of a simple nailfold videocapillaroscopic (NVC) scoring modality as a prognostic index for digital trophic lesions for day-to-day clinical use. An association with a single simple (semi)-quantitatively scored NVC parameter, mean score of capillary loss, was explored in 71 consecutive patients with systemic sclerosis (SSc), and reliable reduction in the number of investigated fields (F32-F16-F8-F4). The cut-off value of the prognostic index (mean score of capillary loss calculated over a reduced number of fields) for present/future digital trophic lesions was selected by receiver operating curve (ROC) analysis. Reduction in the number of fields for mean score of capillary loss was reliable from F32 to F8 (intraclass correlation coefficient of F16/F32: 0.97; F8/F32: 0.90). Based on ROC analysis, a prognostic index (mean score of capillary loss as calculated over F8) with a cut-off value of 1.67 is proposed. This value has a sensitivity of 72.22/70.00, specificity of 70.59/69.77, positive likelihood ratio of 2.46/2.32 and a negative likelihood ratio of 0.39/0.43 for present/future digital trophic lesions. A simple prognostic index for digital trophic lesions for daily use in SSc clinics is proposed, limited to the mean score of capillary loss as calculated over eight fields (8 fingers, 1 field per finger).

  9. Determination of clebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry.

    PubMed

    Robinson, P R; Jones, M D; Maddock, J

    1988-11-18

    A procedure for the analysis of clebopride in plasma using capillary gas chromatography-negative-ion chemical ionization mass spectrometry has been developed. Employing an ethoxy analogue as internal standard, the two compounds were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyryl imidazole produced volatile monoheptafluorobutyryl derivatives whose ammonia negative-ion mass spectra proved ideal for selected-ion monitoring. The recovery of clebopride from plasma at 0.536 nmol/l was found to be 85.5 +/- 0.9% (n = 3) whilst measurement down to 0.268 nmol/l was possible with a coefficient of variation of 7.9%. Plasma levels of the compound are reported in two volunteers following ingestion of 1 mg of clebopride as the malate salt.

  10. Electrostatic coupling between DNA and its counterions modulates the observed translational diffusion coefficients.

    PubMed

    Stellwagen, Earle; Stellwagen, Nancy C

    2015-09-01

    Free solution capillary electrophoresis (CE) is a useful technique for measuring the translational diffusion coefficients of charged analytes. The measurements are relatively fast if the polarity of the electric field is reversed to drive the analyte back and forth past the detection window during each run. We have tested the validity of the resulting diffusion coefficients using double-stranded DNA molecules ranging in size from 20 to 960 base pairs as the model system. The diffusion coefficients of small DNAs are equal to values in the literature measured by other techniques. However, the diffusion coefficients of DNA molecules larger than ∼30 base pairs are anomalously high and deviate increasingly from the literature values with increasing DNA molar mass. The anomalously high diffusion coefficients are due to electrostatic coupling between the DNA and its counterions. As a result, the measured diffusion coefficients vary with the diffusion coefficient of the counterion, as well as with cation concentration and electric field strength. These effects can be reduced or eliminated by measuring apparent diffusion coefficients of the DNA at several different electric field strengths and extrapolating the results to zero electric field.

  11. Aldosterone and glomerular filtration – observations in the general population

    PubMed Central

    2014-01-01

    Background Increasing evidence suggests that aldosterone promotes renal damage. Since data on the association between aldosterone and renal function in the general population are sparse, we chose to address this issue. We investigated the associations between the plasma aldosterone concentration (PAC) or the aldosterone-to-renin ratio (ARR) and the estimated glomerular filtration rate (eGFR) in a sample of adult men and women from Northeast Germany. Methods A study population of 1921 adult men and women who participated in the first follow-up of the Study of Health in Pomerania was selected. None of the subjects used drugs that alter PAC or ARR. The eGFR was calculated according to the four-variable Modification of Diet in Renal Disease formula. Chronic kidney disease (CKD) was defined as an eGFR <60 ml/min/1.73 m2. Results Linear regression models, adjusted for sex, age, waist circumference, diabetes mellitus, smoking status, systolic and diastolic blood pressures, serum triglyceride concentrations and time of blood sampling revealed inverse associations of PAC or ARR with eGFR (ß-coefficient for log-transformed PAC −3.12, p < 0.001; ß-coefficient for log-transformed ARR −3.36, p < 0.001). Logistic regression models revealed increased odds for CKD with increasing PAC (odds ratio for a one standard deviation increase in PAC: 1.35, 95% confidence interval: 1.06-1.71). There was no statistically significant association between ARR and CKD. Conclusion Our study demonstrates that PAC and ARR are inversely associated with the glomerular filtration rate in the general population. PMID:24612948

  12. Hybrid Upwinding for Two-Phase Flow in Heterogeneous Porous Media with Buoyancy and Capillarity

    NASA Astrophysics Data System (ADS)

    Hamon, F. P.; Mallison, B.; Tchelepi, H.

    2016-12-01

    In subsurface flow simulation, efficient discretization schemes for the partial differential equations governing multiphase flow and transport are critical. For highly heterogeneous porous media, the temporal discretization of choice is often the unconditionally stable fully implicit (backward-Euler) method. In this scheme, the simultaneous update of all the degrees of freedom requires solving large algebraic nonlinear systems at each time step using Newton's method. This is computationally expensive, especially in the presence of strong capillary effects driven by abrupt changes in porosity and permeability between different rock types. Therefore, discretization schemes that reduce the simulation cost by improving the nonlinear convergence rate are highly desirable. To speed up nonlinear convergence, we present an efficient fully implicit finite-volume scheme for immiscible two-phase flow in the presence of strong capillary forces. In this scheme, the discrete viscous, buoyancy, and capillary spatial terms are evaluated separately based on physical considerations. We build on previous work on Implicit Hybrid Upwinding (IHU) by using the upstream saturations with respect to the total velocity to compute the relative permeabilities in the viscous term, and by determining the directionality of the buoyancy term based on the phase density differences. The capillary numerical flux is decomposed into a rock- and geometry-dependent transmissibility factor, a nonlinear capillary diffusion coefficient, and an approximation of the saturation gradient. Combining the viscous, buoyancy, and capillary terms, we obtain a numerical flux that is consistent, bounded, differentiable, and monotone for homogeneous one-dimensional flow. The proposed scheme also accounts for spatially discontinuous capillary pressure functions. Specifically, at the interface between two rock types, the numerical scheme accurately honors the entry pressure condition by solving a local nonlinear problem to compute the numerical flux. Heterogeneous numerical tests demonstrate that this extended IHU scheme is non-oscillatory and convergent upon refinement. They also illustrate the superior accuracy and nonlinear convergence rate of the IHU scheme compared with the standard phase-based upstream weighting approach.

  13. Protein osmotic pressure gradients and microvascular reflection coefficients.

    PubMed

    Drake, R E; Dhother, S; Teague, R A; Gabel, J C

    1997-08-01

    Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration.

  14. Statistical analysis and digital processing of the Mössbauer spectra

    NASA Astrophysics Data System (ADS)

    Prochazka, Roman; Tucek, Pavel; Tucek, Jiri; Marek, Jaroslav; Mashlan, Miroslav; Pechousek, Jiri

    2010-02-01

    This work is focused on using the statistical methods and development of the filtration procedures for signal processing in Mössbauer spectroscopy. Statistical tools for noise filtering in the measured spectra are used in many scientific areas. The use of a pure statistical approach in accumulated Mössbauer spectra filtration is described. In Mössbauer spectroscopy, the noise can be considered as a Poisson statistical process with a Gaussian distribution for high numbers of observations. This noise is a superposition of the non-resonant photons counting with electronic noise (from γ-ray detection and discrimination units), and the velocity system quality that can be characterized by the velocity nonlinearities. The possibility of a noise-reducing process using a new design of statistical filter procedure is described. This mathematical procedure improves the signal-to-noise ratio and thus makes it easier to determine the hyperfine parameters of the given Mössbauer spectra. The filter procedure is based on a periodogram method that makes it possible to assign the statistically important components in the spectral domain. The significance level for these components is then feedback-controlled using the correlation coefficient test results. The estimation of the theoretical correlation coefficient level which corresponds to the spectrum resolution is performed. Correlation coefficient test is based on comparison of the theoretical and the experimental correlation coefficients given by the Spearman method. The correctness of this solution was analyzed by a series of statistical tests and confirmed by many spectra measured with increasing statistical quality for a given sample (absorber). The effect of this filter procedure depends on the signal-to-noise ratio and the applicability of this method has binding conditions.

  15. Revisiting Maxwell’s accommodation coefficient: A study of nitrogen flow in a silica microtube across all flow regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Wenwen, E-mail: wlei@physics.usyd.edu.au; McKenzie, David R., E-mail: d.mckenzie@physics.usyd.edu.au

    2014-12-15

    Gas flows have been studied quantitatively for more than a hundred years and have relevance in modern fields such as the control of gas inputs to processes, the measurement of leak rates and the separation of gaseous species. Cha and McCoy have derived a convenient formula for the flow of an ideal gas applicable across a wide range of Knudsen numbers (Kn) that approaches the Navier–Stokes equations at small Kn and the Smoluchowski extension of the Knudsen flow equation at large Kn. Smoluchowski’s result relies on the Maxwell definition of the tangential momentum accommodation coefficient α, recently challenged by Aryamore » et al. We measure the flow rate of nitrogen gas in a smooth walled silica tube across a wide range of Knudsen numbers from 0.0048 to 12.4583. We find that the nitrogen flow obeys the Cha and McCoy equation with a large value of α, unlike carbon nanotubes which show flows consistent with a small value of α. Silica capillaries are therefore not atomically smooth. The flow at small Kn has α=0.91 and at large Kn has α close to one, consistent with the redefinition of accommodation coefficient by Arya et al., which also resolves a problem in the literature where there are many observations of α of less than one at small Kn and many equal to one at large Kn. Silica capillaries are an excellent choice for an accurate flow control system. - Highlights: • First experimental study on flow rate across all flow regimes in a well-defined microtube. • Extend Cha and McCoy theory for molecular flow regime. • Demonstrate the Maxwell accommodation coefficient is different in the slip and molecular flow regimes.« less

  16. Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria

    DTIC Science & Technology

    2009-11-01

    absorption coefficients (260nm) of 173,100 M cm–1. Desired stock solutions were freshly prepared with tris- borate ethylenediaminetetraacetic acid (EDTA... McMasters , and Paul M. Pellegrino ARL-TR-5015 November 2009 Approved for public release...Aptamer Binding to Campylobacter jejuni Bacteria Dimitra N. Stratis-Cullum, Sun McMasters , and Paul M. Pellegrino Sensors and Electron Devices

  17. Enriching and Separating Primary Copper Impurity from Pb-3 Mass Pct Cu Melt by Super-Gravity Technology

    NASA Astrophysics Data System (ADS)

    Yang, Yuhou; Song, Bo; Song, Gaoyang; Yang, Zhanbing; Xin, Wenbin

    2016-10-01

    In this study, super-gravity technology was introduced in the lead bullion-refining process to investigate the enriching and separating laws of copper impurity from Pb-3 mass pct Cu melt. With the gravity coefficient G = 700 at the cooling rate of ν = 5 K min-1, the entire copper phase gathers at the upper area of the sample, and it is hard to find any copper particles at the bottom area of the sample. The floatation movement of copper phase was greatly intensified by super gravity and the mass pct of copper in tailing lead is up to 8.631 pct, while that in the refined lead is only 0.113 pct. The refining rate of lead bullion reached up to 94.27 pct. Copper-phase impurity can be separated effectively from Pb-3 mass pct Cu melt by filtration method in super-gravity field, and the separation efficiency increased with the increasing gravity coefficient in the range of G ≥ 10. After filtration at 613 K (340 °C) with gravity coefficient G = 100 for 10 minutes, the refined lead, with just 0.157 mass pct copper impurity, was separated to the bottom of the crucible, and the copper dross containing only 23.56 mass pct residual lead was intercepted by the carbon fiber felt, leading to the separation efficiency up to 96.18 pct (meaning a great reduction in metal loss).

  18. Reliability of plasma polar metabolite concentrations in a large-scale cohort study using capillary electrophoresis-mass spectrometry.

    PubMed

    Harada, Sei; Hirayama, Akiyoshi; Chan, Queenie; Kurihara, Ayako; Fukai, Kota; Iida, Miho; Kato, Suzuka; Sugiyama, Daisuke; Kuwabara, Kazuyo; Takeuchi, Ayano; Akiyama, Miki; Okamura, Tomonori; Ebbels, Timothy M D; Elliott, Paul; Tomita, Masaru; Sato, Asako; Suzuki, Chizuru; Sugimoto, Masahiro; Soga, Tomoyoshi; Takebayashi, Toru

    2018-01-01

    Cohort studies with metabolomics data are becoming more widespread, however, large-scale studies involving 10,000s of participants are still limited, especially in Asian populations. Therefore, we started the Tsuruoka Metabolomics Cohort Study enrolling 11,002 community-dwelling adults in Japan, and using capillary electrophoresis-mass spectrometry (CE-MS) and liquid chromatography-mass spectrometry. The CE-MS method is highly amenable to absolute quantification of polar metabolites, however, its reliability for large-scale measurement is unclear. The aim of this study is to examine reproducibility and validity of large-scale CE-MS measurements. In addition, the study presents absolute concentrations of polar metabolites in human plasma, which can be used in future as reference ranges in a Japanese population. Metabolomic profiling of 8,413 fasting plasma samples were completed using CE-MS, and 94 polar metabolites were structurally identified and quantified. Quality control (QC) samples were injected every ten samples and assessed throughout the analysis. Inter- and intra-batch coefficients of variation of QC and participant samples, and technical intraclass correlation coefficients were estimated. Passing-Bablok regression of plasma concentrations by CE-MS on serum concentrations by standard clinical chemistry assays was conducted for creatinine and uric acid. In QC samples, coefficient of variation was less than 20% for 64 metabolites, and less than 30% for 80 metabolites out of the 94 metabolites. Inter-batch coefficient of variation was less than 20% for 81 metabolites. Estimated technical intraclass correlation coefficient was above 0.75 for 67 metabolites. The slope of Passing-Bablok regression was estimated as 0.97 (95% confidence interval: 0.95, 0.98) for creatinine and 0.95 (0.92, 0.96) for uric acid. Compared to published data from other large cohort measurement platforms, reproducibility of metabolites common to the platforms was similar to or better than in the other studies. These results show that our CE-MS platform is suitable for conducting large-scale epidemiological studies.

  19. Capillary electrophoresis with electrochemiluminescence detection for the simultaneous determination of cisatracurium besylate and its degradation products in pharmaceutical preparations.

    PubMed

    Zuo, Ming; Gao, Jieying; Zhang, Xiaoqing; Cui, Yue; Fan, Zimian; Ding, Min

    2015-07-01

    Capillary electrophoresis with electrochemiluminescence detection for the simultaneous analysis of cisatracurium besylate and its degradation products (laudanosine, quaternary monoacrylate) in pharmaceutical preparation was developed and fully validated. The significant parameters that influence capillary electrophoresis separation and electrochemiluminescence detection were optimized. The total analysis time of the analytes was 15 min. The linearities of the method were 0.1∼40.0 μg/mL for cisatracurium besylate and 0.04∼8.00 μg/mL for laudanosine, with correlation coefficients (r) of 0.999 and 0.998, respectively. The detection limits (S/N = 3) were 83.0 ng/mL for cisatracurium besylate and 32.0 ng/mL for laudanosine. The intraday relative standard deviations of the analytes were <3.0%, and the interday relative standard deviations were <8.0%. The developed method was cost-effective, sensitive, fast, and resource-saving, which was suitable for the ingredient analysis in pharmaceutical preparation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quality control of benserazide-levodopa and carbidopa-levodopa tablets by capillary zone electrophoresis.

    PubMed

    Fanali, S; Pucci, V; Sabbioni, C; Raggi, M A

    2000-07-01

    In modern practice, the treatment of Parkinson's disease and syndrome is carried out using pharmaceutical formulations containing a combination of levodopa and a decarboxylation inhibitor (carbidopa or benserazide). Two pharmaceutical formulations were quantified by capillary zone electrophoresis using two procedures which differed only in the kind of background electrolyte used. One procedure used a 25 mM phosphate buffer, pH 2.5, while the second one used a 25 mM borate buffer, pH 8.5. The electrophoretic analysis was carried out using an uncoated fused- silica capillary, a separation voltage of 20 kV with currents typically less than 60 microA, and spectrophotometric detection at 205 nm. Calibration curves were performed for levodopa (concentration range 1-100 microg/mL), for carbidopa and benserazide (1-50 microg/mL), and the plots of the peak area versus concentration were found to be linear with a correlation coefficient better than 0.9990. Satisfactory results were obtained when commercial tablets were analyzed in terms of accuracy (98-102%), repeatability (0.6-2.0%), and intermediate precision (1.1-2.6%).

  1. Chronic kidney disease: Pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging.

    PubMed

    Mao, Wei; Zhou, Jianjun; Zeng, Mengsu; Ding, Yuqin; Qu, Lijie; Chen, Caizhong; Ding, Xiaoqiang; Wang, Yaqiong; Fu, Caixia

    2018-05-01

    Because chronic kidney disease (CKD) is a worldwide problem, accurate pathological and functional evaluation is required for planning treatment and follow-up. Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) can assess both capillary perfusion and tissue diffusion and may be helpful in evaluating renal function and pathology. To evaluate functional and pathological alterations in CKD by applying IVIM-DWI. Prospective study. In all, 72 CKD patients who required renal biopsy and 20 healthy volunteers. 1.5T. All subjects underwent IVIM-DWI of the kidneys, and image analysis was performed by two radiologists. The mean values of true diffusion coefficient (D), pseudo diffusion coefficient (D*), and perfusion fraction (f) were acquired from renal parenchyma. Correlation between IVIM-DWI parameters and estimated glomerular filtration rate (eGFR), as well as pathological damage, were assessed. One-way analysis of variance (ANOVA), paired sample t-test and Spearman correlation analysis. The paired sample t-test revealed that IVIM-DWI parameters were significantly lower in medulla than cortex for both patients and controls (P < 0.01). Regardless of whether eGFR was reduced, ANOVA revealed that f values of renal parenchyma were significantly lower in patients than controls (P < 0.05). Spearman correlation analysis revealed that there were positive correlations between eGFR and D (cortex, r = 0.466, P < 0.001; medulla, r = 0.491, P < 0.001), and between eGFR and f (cortex, r = 0.713, P < 0.001; medulla, r = 0.512, P < 0.001). Negative correlations were found between f and glomerular injury (cortex, r = -0.773, P < 0.001; medulla, r = -0.629, P < 0.001), and between f and tubulointerstitial lesion (cortex, r = -0.728, P < 0.001; medulla, r = -0.547, P < 0.001). IVIM-DWI might be feasible for noninvasive evaluation of renal function and pathology of CKD, especially in detection of renal insufficiency at an early stage. 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1251-1259. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Investigation of the role of flocculation conditions in recuperative thickening on dewatering performance and biogas production.

    PubMed

    Cobbledick, Jeffrey; Zhang, Victor; Rollings-Scattergood, Sasha; Latulippe, David R

    2017-11-01

    There is considerable interest in recuperative thickening (RT), the recycling of partially digested solids in an anaerobic digester outlet stream back into the incoming feed, as a 'high-performance' process to increase biogas production, increase system capacity, and improve biosolids stabilization. While polymer flocculation is commonly used in full-scale RT operations, no studies have investigated the effect of flocculation conditions on RT process performance. Our goal was to investigate the effect of polymer type and dosage conditions on dewatering performance and biogas production in a lab-scale RT system. The type of polymer flocculant significantly affected dewatering performance. For example, the 440 LH polymer (low molecular weight (MW) polyacrylamide) demonstrated lower capillary suction time (CST) and filtrate total suspended solids (TSS) values than the C-6267 polymer (high MW polyacrylamide). An examination of the dewatering performance of RT digesters with different polymers found a strong correlation between CST and filtrate TSS. The type of polymer flocculant had no significant effect on biogas productivity or composition; the methane content was greater than 60% in good agreement with typical results. The optimization of the polymer flocculation conditions is a critical task for which the lab-scale RT system used in this work is ideally suited.

  3. Studies of the permeation properties of glomerular basement membrane: cross-linking renders glomerular basement membrane permeable to protein.

    PubMed

    Walton, H A; Byrne, J; Robinson, G B

    1992-03-20

    Cross-linking glomerular basement membrane (GBM) has been shown to render it more permeable to protein. Isolated pig GBM was cross-linked with dimethylmalonimidate which reacts selectively with lysine epsilon-NH2 groups or with glutaraldehyde, a less selective cross-linking agent. Studies of the ultrafiltration properties of these materials in vitro using cytochrome c, myoglobin, bovine serum albumin and immunoglobulin showed that cross-linking had markedly increased solvent and protein fluxes as compared with native membranes particularly at higher pressures. Filtration studies with serum demonstrated that the cross-linked membranes were more permeable to serum proteins. Thickness measurements under pressure indicated that cross-linked membrane was less compressed than native membrane as pressure was increased. Pore theory did not provide a suitable model for analysis of the results, but analysis of the results using the fibre-matrix hypothesis indicated that cross-linking had the effect of bundling together the fibres (type IV collagen) in the GBM matrix. The effect of cross-linking on filtration could be explained by a combination of contraction of the membrane, fibre bundling and increased rigidity compared with native membrane. Cross-linking of GBM might lead to long-term damage of the glomerular capillary wall in nephritis, so promoting proteinuria.

  4. Simultaneous determination of dextrose, sucrose, maltose, and lactose in sausage products by liquid chromatography.

    PubMed

    Ali, M S

    1988-01-01

    A liquid chromatographic (LC) method for the simultaneous determination of dextrose, sucrose, maltose, and lactose in sausage products has been developed. Dextrose, sucrose, maltose, and lactose are extracted from comminuted meat products with 52% ethanol. After filtration, the extracts are purified by passing them through a C18 Sep-Pak cartridge and 2 ion exchange resin Econo-columns in series. After concentration and filtration, extracts are analyzed by LC using a normal phase amino column and a differential refractometer detector. Homogeneously ground samples of cooked and fresh sausages are fortified with dextrose, sucrose, maltose, and lactose at 4 different concentrations. Average recovery for dextrose, sucrose, maltose, and lactose at all 4 levels of fortification was greater than 80% with a coefficient of variation less than 10%.

  5. Determination of Betaine in Jujube by Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Han, Likun; Liu, Haixing; Peng, Xuewei

    2017-12-01

    This paper presents the determination of betaine content in jujube by high performance capillary electrophoresis (HPCE) method. The borax solution was chosen as buffer solution, and its concentration was 40 mmol at a constant voltage of 20kV and injecting pressure time of 10s at 14°C. Linearity was kept in the concent ration range of 0.0113∼1.45mg of betaine with correlation coefficient of 0.9. The content of betaine in jujube was 85.91 mg/g (RSD = 16.6%) (n = 6). The recovery of betaine in jujube sample was in the range of 86.2% - 116.6% (n=3). This method is specific, simple and rapid and accurate, which is suitable for the detection of the content of betaine in jujube.

  6. Determination of Betaine in Lycii Cortex by Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Peng, Xuewei; Liu, Haixing

    2017-12-01

    This paper presents the determination of betaine content in Lycii Cortex by high performance capillary electrophoresis (HPCE) method. The borax solution was chosen as buffer solution, and its concentration was 40 mmol at a constant voltage of 20kV and injecting pressure time of 10s at 14°C. Linearity was kept in the concent ration range of 0.0113∼1.45mg of betaine with correlation coefficient of 0.9. The content of betaine in Lycii Cortex was 61.9 mg/g (RSD = 13.4%) (n = 7). The recovery was in the range of 86.6% - 118.1% (n=4). This method is specific, simple and rapid and accurate, which is suitable for the detection of the content of betaine in Lycii Cortex.

  7. Determination of Betaine in Lycium Barbarum L. by High Performance Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Liu, Haixing; Wang, Chunyan; Peng, Xuewei

    2017-12-01

    This paper presents the determination of betaine content in Lycium barbarum L. by high performance capillary electrophoresis (HPCE) method. The borax solution was chosen as buffer solution, and its concentration was 40 mmol at a constant voltage of 20kV and injecting pressure time of 10s at 20°C. Linearity was kept in the concent ration range of 0.0113∼1.45mg of betaine with correlation coefficient of 0.9. The recovery was in the range of 97.95%∼126% (n=4). The sample content of betaine was 29.3mg/g and RSD 6.4% (n=6). This method is specific, simple and rapid and accurate, which is suitable for the detection of the content of betaine in Lycium barbarum L.

  8. The kidney in congestive heart failure: 'are natriuresis, sodium, and diuretics really the good, the bad and the ugly?'.

    PubMed

    Verbrugge, Frederik H; Dupont, Matthias; Steels, Paul; Grieten, Lars; Swennen, Quirine; Tang, W H Wilson; Mullens, Wilfried

    2014-02-01

    This review discusses renal sodium handling in heart failure. Increased sodium avidity and tendency to extracellular volume overload, i.e. congestion, are hallmark features of the heart failure syndrome. Particularly in the case of concomitant renal dysfunction, the kidneys often fail to elicit potent natriuresis. Yet, assessment of renal function is generally performed by measuring serum creatinine, which has inherent limitations as a biomarker for the glomerular filtration rate (GFR). Moreover, glomerular filtration only represents part of the nephron's function. Alterations in the fractional reabsorptive rate of sodium are at least equally important in emerging therapy-refractory congestion. Indeed, renal blood flow decreases before the GFR is affected in congestive heart failure. The resulting increased filtration fraction changes Starling forces in peritubular capillaries, which drive sodium reabsorption in the proximal tubules. Congestion further stimulates this process by augmenting renal lymph flow. Consequently, fractional sodium reabsorption in the proximal tubules is significantly increased, limiting sodium delivery to the distal nephron. Orthosympathetic activation probably plays a pivotal role in those deranged intrarenal haemodynamics, which ultimately enhance diuretic resistance, stimulate neurohumoral activation with aldosterone breakthrough, and compromise the counter-regulatory function of natriuretic peptides. Recent evidence even suggests that intrinsic renal derangements might impair natriuresis early on, before clinical congestion or neurohumoral activation are evident. This represents a paradigm shift in heart failure pathophysiology, as it suggests that renal dysfunction-although not by conventional GFR measurements-is driving disease progression. In this respect, a better understanding of renal sodium handling in congestive heart failure is crucial to achieve more tailored decongestive therapy, while preserving renal function. © 2013 The Authors. European Journal of Heart Failure © 2013 European Society of Cardiology.

  9. Light-induced phenomena in one-component gas: The transport phenomena

    NASA Astrophysics Data System (ADS)

    Chermyaninov, I. V.; Chernyak, V. G.

    2016-09-01

    The article presents the theory of transport processes in a one-component gas located in the capillary under the action of resonant laser radiation and the temperature and pressure gradients. The expressions for the kinetic coefficients determining heat and mass transport in the gas are obtained on the basis of the modified Boltzmann equations for the excited and unexcited particles. The Onsager reciprocal relations for cross kinetic coefficients are proven for all Knudsen numbers and for any law interaction of gas particles with each other and boundary surface. Light-induced phenomena associated with the possible non-equilibrium stationary states of system are analyzed.

  10. Differential-Integral method in polymer processing: Taking melt electrospinning technique for example

    NASA Astrophysics Data System (ADS)

    Haoyi, Li; Weimin, Yang; Hongbo, Chen; Jing, Tan; Pengcheng, Xie

    2016-03-01

    A concept of Differential-Integral (DI) method applied in polymer processing and molding was proposed, which included melt DI injection molding, DI nano-composites extrusion molding and melt differential electrospinning principle and equipment. Taking the melt differential electrospinning for example to introduce the innovation research progress, two methods preparing polymer ultrafine fiber have been developed: solution electro-spinning and melt electro-spinning, between which solution electro-spinning is much simpler to realize in lab. More than 100 institutions have endeavored to conduct research on it and more than 30 thousand papers have been published. However, its industrialization was restricted to some extend because of the existence of toxic solvent during spinning process and poor mechanical strength of resultant fibers caused by small pores on fiber surface. Solvent-free melt electrospinning is environmentally friendly and highly productive. However, problems such as the high melt viscosity, thick fiber diameter and complex equipment makes it relatively under researched compared with solution electrospinning. With the purpose of solving the shortage of traditional electro-spinning equipment with needles or capillaries, a melt differential electro-spinning method without needles or capillaries was firstly proposed. Nearly 50 related patents have been applied since 2005, and systematic method innovations and experimental studies have also been conducted. The prepared fiber by this method had exhibited small diameter and smooth surface. The average fiber diameter can reach 200-800 nm, and the single nozzle can yield two orders of magnitude more than the capillaries. Based on the above principle, complete commercial techniques and equipment have been developed to produce ultra-fine non-woven fabrics for the applications in air filtration, oil spill recovery and water treatment, etc.

  11. Continuous-Flow In-Line Solvent-Swap Crystallization of Vitamin D3

    PubMed Central

    2017-01-01

    A continuous tandem in-line evaporation–crystallization is presented. The process includes an in-line solvent-swap step, suitable to be coupled to a capillary based cooler. As a proof of concept, this setup is tested in a direct in-line acetonitrile mediated crystallization of Vitamin D3. This configuration is suitable to be coupled to a new end-to-end continuous microflow synthesis of Vitamin D3. By this procedure, vitamin particles can be crystallized in continuous flow and isolated using an in-line continuous filtration step. In one run in just 1 min of cooling time, ∼50% (w/w) crystals of Vitamin D3 are directly obtained. Furthermore, the polymorphic form as well as crystals shape and size properties are described in this paper.

  12. Physical characteristics of the gonadotropin receptor-hormone complexes formed in vivo and in vitro.

    PubMed Central

    Dufau, M L; Podesta, E J; Catt, K J

    1975-01-01

    The physical properties of detergent-solubilized gonadotropin receptor-hormone complexes, determined by density gradient centrifugation and gel filtration, were compared after in vivo and in vitro labeling of specific ovarian binding sites with radioiodinated human chorionic gonadotropin (hCG). Following intravenous administration of biologically active 125I-labeled hCG, up to 50% of the gonadotropin tracer was bound to the luteinized ovaries of immature female rats treated with pregnant mare serum/human chorionic gonadotropin. Comparable binding of 125I-labeled hCG was observed after equilibration of ovarian particles with the labeled hormone in vitro. The sedimentation properties of the solubilized receptor-hormone complexes formed in vivo were identical with those derived for the corresponding complexes formed in vitro and extracted with Triton X-100 and Lubrol PX, with sedimentation constants of 8.8 S for the Triton-solubilized complex and 7.0 S for the complex extracted with Lubrol PX. During analytical gel filtration of the Triton-solubilized receptor-hormone complex on Sepharose 6B in 0.1% Triton X-100, the partition coefficient (Kav) of the "in vivo" complex (0.32) was not significantly different from that of the complex formed in vitro (0.29). Gel filtration of the Lubrol-solubilized ovarian particles on Sepharose 6B in 0.5% Lubrol PX gave Kav values for the "in vivo" and "in vitro" labeled complexes of 0.36 and 0.32, respectively. These findings demonstrate that the physical properties of size and shape which determine the partition coefficient and sedimentation characteristics of detergent-solubilized gonadotropin receptor-hormone complexes formed in vitro are not distinguishable from those of the complexes extracted after specific interaction of the ovarian gonadotropin receptors with radioiodinated hCG in vivo. PMID:165502

  13. The performance of flash glucose monitoring in critically ill patients with diabetes.

    PubMed

    Ancona, Paolo; Eastwood, Glenn M; Lucchetta, Luca; Ekinci, Elif I; Bellomo, Rinaldo; Mårtensson, Johan

    2017-06-01

    Frequent glucose monitoring may improve glycaemic control in critically ill patients with diabetes. We aimed to assess the accuracy of a novel subcutaneous flash glucose monitor (FreeStyle Libre [Abbott Diabetes Care]) in these patients. We applied the FreeStyle Libre sensor to the upper arm of eight patients with diabetes in the intensive care unit and obtained hourly flash glucose measurements. Duplicate recordings were obtained to assess test-retest reliability. The reference glucose level was measured in arterial or capillary blood. We determined numerical accuracy using Bland- Altman methods, the mean absolute relative difference (MARD) and whether the International Organization for Standardization (ISO) and Clinical and Laboratory Standards Institute Point of Care Testing (CLSI POCT) criteria were met. Clarke error grid (CEG) and surveillance error grid (SEG) analyses were used to determine clinical accuracy. We compared 484 duplicate flash glucose measurements and observed a Pearson correlation coefficient of 0.97 and a coefficient of repeatability of 1.6 mmol/L. We studied 185 flash readings paired with arterial glucose levels, and 89 paired with capillary glucose levels. Using the arterial glucose level as the reference, we found a mean bias of 1.4 mmol/L (limits of agreement, -1.7 to 4.5 mmol/L). The MARD was 14% (95% CI, 12%-16%) and the proportion of measurements meeting ISO and CLSI POCT criteria was 64.3% and 56.8%, respectively. The proportions of values within a low-risk zone on CEG and SEG analyses were 97.8% and 99.5%, respectively. Using capillary glucose levels as the reference, we found that numerical and clinical accuracy were lower. The subcutaneous FreeStyle Libre blood glucose measurement system showed high test-retest reliability and acceptable accuracy when compared with arterial blood glucose measurement in critically ill patients with diabetes.

  14. Determination of Five Major 8-Prenylflavones in Leaves of Epimedium by Solid-Phase Extraction Coupled with Capillary Electrophoresis

    PubMed Central

    Xie, Juan-ping; Xiang, Ji-ming; Zhu, Zhong-liang

    2016-01-01

    A simple, accurate and reproducible method which is based on the capillary electrophoresis, coupled with solid-phase extraction, has been developed for simultaneous determination of multiple 8-prenylflavones from Chinese Herba Epimedii. In this study, the author has mainly illustrated the experimental process and research results of five major components including epimedin C, icariin, diphylloside A, epimedoside A and icarisoside A that have been extracted and identified from Herba Epimedii for the first time. Experimental conditions have been optimized to achieve the best separation efficiency for the following factors: the buffer pH, buffer concentration and applied voltage. The experiment can be conducted through two separable stages: the first stage is to obtain the crude extracts through the solid-phase extraction; and the second stage is to further separate five major components by using the capillary electrophoresis. The separation of the five components and the analysis of the experiment are relatively fast and can be completed within 20 min. The concentration ranges of the construction of standard curves of five major 8-prenylflavones are 32.0–395.0, 23.4–292.0, 42.1–526.0, 18.8–233.5 and 29.7–371.0 µg mL−1 respectively, which have showed acceptable linearity with a correlation coefficient, r ≥ 0.999. The coefficient varies within 2.0% for both intra- and inter-days tests. The recoveries of five components range from 92.3 to 104.1%. The relative standard deviations of recoveries of five components range from 1.2 and 2.8%. This new method will facilitate the extraction and expedite the determination of medical components from Herba Epimedii. PMID:26865656

  15. Analytical methods for the determination of urinary 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid in occupationally exposed subjects and in the general population.

    PubMed

    Aprea, C; Sciarra, G; Bozzi, N

    1997-01-01

    Two methods for the quantitative analysis of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in urine were compared. The first was an high-performance liquid chromatography method using a C8 column with ion suppression and diode array detection. The urine extracts were first purified by solid-phase extraction (SPE) on silica capillary columns. The detection limit of the method was 15 micrograms/L for both compounds. The percentage coefficient of variation of the whole analysis evaluated at a concentration of 125.0 micrograms/L was 6.2% for 2,4-D and 6.8% for MCPA. The mean recovery of analysis was 81% for 2,4-D and 85% for MCPA. The second was a gas chromatographic (GC) method in which the compounds were first derivatized with pentafluorobenzylbromide to pentafluorobenzyl esters, which were determined with a slightly polar capillary column and electron capture detection. Before GC analysis, the urine extracts were purified by SPE on silica capillary columns. This method had a detection limit of 1 microgram/L for both compounds and a percentage coefficient of variation of the whole analysis, evaluated at a concentration of 30.0 micrograms/L, of 8% for 2,4-D, and of 5.5% for MCPA. the mean recovery was 87% for 2,4-D and 94% for MCPA. The low detection limit made the second method suitable for assaying the two herbicides in the general population. Duplicate analysis of ten urine samples from occupationally exposed subjects by the two methods gave identical results for a wide range of concentrations.

  16. The Study of Compact Plasma Source of SXR of Vacuum Spark Type with Capillary Concentrator and It's Application

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Kopytok, K. I.; Shlyaptseva, A. S.

    1994-03-01

    The results are presented dealing with the working out and study of the plasma source of soft X-ray (SXR) of the new type. Experimental set up included compact low-inductance vacuum spark (LIVS) with initial energy supply equal up to 2.5 kJ and glass-capillary concentrator (GCC) of SXR. The characteristics of SXR of vacuum spark and properties of SXR were studied using diagnostic complex. The coefficient of conversion of initial energy supply into SXR (η) amounted to 0.01 in range 1.2nm. Value η had peak dependence on atomic number of anode Za. The spectra were recorded belonging to Ne-like, F-like ions of Fe, Cu ions and He-like, H-like ions of Al, Ti, Fe. Glass capillary concentrator consists of about several hundreds glass capillaries Flux density of SXR in focusing spot was up to 105-106 Wt/cm, density of energy is up to 20-30 mJ/cm2 at diameter of SXR focusing spot equal to about 2-3mm in the range 0.7-1.0 nm. The plasma source of the new type is intended for X-ray microscopy, study of influence of SXR on the surface of solid state. It allows to carry out experiments making only on electron synchrotronic sources of SXR.

  17. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media.

    PubMed

    Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina

    2017-02-01

    Experimental and modeling studies were performed to investigate bacteria deposition behavior in unsaturated porous media. The coupled effect of different forces, acting on bacteria at solid-air-water interfaces and their relative importance on bacteria deposition mechanisms was explored by calculating Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions such as hydrophobic, capillary and hydrodynamic forces. Negatively charged non-motile bacteria and quartz sands were used in packed column experiments. The breakthrough curves and retention profiles of bacteria were simulated using the modified Mobile-IMmobile (MIM) model, to identify physico-chemical attachment or physical straining mechanisms involved in bacteria retention. These results indicated that both mechanisms might occur in both sand. However, the attachment was found to be a reversible process, because attachment coefficients were similar to those of detachment. DLVO calculations supported these results: the primary minimum did not exist, suggesting no permanent retention of bacteria to solid-water and air-water interfaces. Calculated hydrodynamic and resisting torques predicted that bacteria detachment in the secondary minimum might occur. The capillary potential energy was greater than DLVO, hydrophobic and hydrodynamic potential energies, suggesting that film straining by capillary forces might largely govern bacteria deposition under unsaturated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Chiral separation of benzoporphyrin derivative mono- and diacids by laser induced fluorescence-capillary electrophoresis.

    PubMed

    Peng, Xuejun; Sternberg, Ethan; Dolphin, David

    2002-01-01

    A method for the separation of benzoporphyrin derivative mono- and diacid (BPDMA, BPDDA) enantiomers by laser induced fluorescence-capillary electrophoresis (LIF-CE) has been developed. By using 300 mM borate buffer, pH 9.2, 25 mM sodium cholate and 10% acetronitrile as electrolyte, +10 kV electrokinetic sampling injection of 2 s and an applied +20 kV voltage across the ends of a 37 cm capillary (30 cm to the detector, 50 microm ID), all six BPD stereoisomers were baseline-separated within 20 min. Formation constants, free electrophoretic and complexation mobilities with borate and cholate were determined based on dynamic complexation capillary electrophoresis theory. The BPD enantiomers can be quantitatively determined in the range of 10(-2)-10(-5) mg mL(-1). The correlation coefficients (r2) of the least-squares linear regression analysis of the BPD enantiomers are in the range of 0.9914-0.9997. Their limits of detection are 2.18-3.5 x 10(-3) mg mL(-1). The relative standard deviations for the separation were 2.90-4.64% (n = 10). In comparison with high-performance liquid chromatography (HPLC), CE has better resolution and efficiency. This separation method was successfully applied to the BPD enantiomers obtained from a matrix of bovine serum and from liposomally formulated material as well as from studies with rat, dog and human microsomes.

  19. Science of Water Leaks: Validated Theory for Moisture Flow in Microchannels and Nanochannels.

    PubMed

    Lei, Wenwen; Fong, Nicole; Yin, Yongbai; Svehla, Martin; McKenzie, David R

    2015-10-27

    Water is ubiquitous; the science of its transport in micro- and nanochannels has applications in electronics, medicine, filtration, packaging, and earth and planetary science. Validated theory for water vapor and two-phase water flows is a "missing link"; completing it enables us to define and quantify flow in a set of four standard leak configurations with dimensions from the nanoscale to the microscale. Here we report the first measurements of water vapor flow rates through four silica microchannels as a function of humidity, including under conditions when air is present as a background gas. An important finding is that the tangential momentum accommodation coefficient (TMAC) is strongly modified by surface layers of adsorbed water molecules, in agreement with previous work on the TMAC for nitrogen molecules impacting a silica surface in the presence of moisture. We measure enhanced flow rates for two-phase flows in silica microchannels driven by capillary filling. For the measurement of flows in nanochannels we use heavy water mass spectrometry. We construct the theory for the flow rates of the dominant modes of water transport through each of the four standard configurations and benchmark it against our new measurements in silica and against previously reported measurements for nanochannels in carbon nanotubes, carbon nanopipes, and porous alumina. The findings show that all behavior can be described by the four standard leak configurations and that measurements of leak behavior made using other molecules, such as helium, are not reliable. Single-phase water vapor flow is overestimated by a helium measurement, while two-phase flows are greatly underestimated for channels larger than 100 nm or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid-phase flows.

  20. Segmental microvascular permeability in ischemia-reperfusion injury in rat lung.

    PubMed

    Khimenko, P L; Taylor, A E

    1999-06-01

    Segmental microvascular permeabilities were measured using pre- and postalveolar vessel capillary filtration coefficient (Kfc) values (ml. min-1. cmH2O-1. 100 g-1) in isolated rat lungs subjected to ischemia-reperfusion (I/R). Total Kfc values measured in flowing and nonflowing lungs were highly correlated (r = 0.98, P < 0.0001). Kfc values were then measured in another group of lungs under no-flow conditions when airway pressure was increased to 20 cmH2O and either the arterial or venous pressure was elevated to 7-8 cmH2O to measure the prealveolar and postalveolar Kfc values. Control total and postalveolar Kfc values were 0.0225 +/- 0.001 and 0.0219 +/- 0.001 ml. min-1. cmH2O-1. 100 g-1, respectively, and the prealveolar permeability was extremely small (0.00003 +/- 0.00005 ml. min-1. cmH2O-1. 100 g-1). Kfc values were again made in nonflowing lungs that had been subjected to 45 min of ischemia followed by 30 min of reperfusion. After I/R, the total membrane Kfc increased 10-fold to 0.2597 +/- 0.006 ml. min-1. cmH2O-1. 100 g-1, the prealveolar Kfc increased to 0.0677 +/- 0.003 ml. min-1. cmH2O-1. 100 g-1, and the postalveolar Kfc increased to 0.1354 +/- 0.008 ml. min-1. cmH2O-1. 100 g-1 (P < 0.05 for all I/R values). These data indicate that normal solvent microvascular permeability was predominantly postalveolar, and after I/R damage, the postalveolar (venular) permeability comprised 52% of the total, whereas the prealveolar and alveolar vessels comprised only 27 and 23%, respectively, of the total Kfc.

  1. Inhaled nitric oxide pretreatment but not posttreatment attenuates ischemia-reperfusion-induced pulmonary microvascular leak.

    PubMed

    Chetham, P M; Sefton, W D; Bridges, J P; Stevens, T; McMurtry, I F

    1997-04-01

    Ischemia-reperfusion (I/R) pulmonary edema probably reflects a leukocyte-dependent, oxidant-mediated mechanism. Nitric oxide (NO) attenuates leukocyte-endothelial cell interactions and I/R-induced microvascular leak. Cyclic adenosine monophosphate (cAMP) agonists reverse and prevent I/R-induced microvascular leak, but reversal by inhaled NO (INO) has not been tested. In addition, the role of soluble guanylyl cyclase (sGC) activation in the NO protection effect is unknown. Rat lungs perfused with salt solution were grouped as either I/R, I/R with INO (10 or 50 ppm) on reperfusion, or time control. Capillary filtration coefficients (Kfc) were estimated 25 min before ischemia (baseline) and after 30 and 75 min of reperfusion. Perfusate cell counts and lung homogenate myeloperoxidase activity were determined in selected groups. Additional groups were treated with either INO (50 ppm) or isoproterenol (ISO-10 microM) after 30 min of reperfusion. Guanylyl cyclase was inhibited with 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ-15 microM), and Kfc was estimated at baseline and after 30 min of reperfusion. (1) Inhaled NO attenuated I/R-induced increases in Kfc. (2) Cell counts were similar at baseline. After 75 min of reperfusion, lung neutrophil retention (myeloperoxidase activity) and decreased perfusate neutrophil counts were similar in all groups. (3) In contrast to ISO, INO did not reverse microvascular leak. (4) 8-bromoguanosine 3',5'-cyclic monophosphate (8-br-cGMP) prevented I/R-induced microvascular leak in ODQ-treated lungs, but INO was no longer effective. Inhaled NO attenuates I/R-induced pulmonary microvascular leak, which requires sGC activation and may involve a mechanism independent of inhibition of leukocyte-endothelial cell interactions. In addition, INO is ineffective in reversing I/R-induced microvascular leak.

  2. Ischemia-reperfusion injury in the isolated rat lung. Role of flow and endogenous leukocytes.

    PubMed

    Seibert, A F; Haynes, J; Taylor, A

    1993-02-01

    Microvascular lung injury caused by ischemia-reperfusion (IR) may occur via leukocyte-dependent and leukocyte-independent pathways. Leukocyte-endothelial adhesion may be a rate-limiting step in IR lung injury. Leukocyte adhesion to microvascular endothelium occurs when the attractant forces between leukocyte and endothelium are greater than the kinetic energy of the leukocyte and the vascular wall shear rate. We hypothesized (1) that isolated, buffer-perfused rat lungs are not free of endogenous leukocytes, (2) that endogenous leukocytes contribute to IR-induced microvascular injury as measured by the capillary filtration coefficient (Kfc), and (3) that a reduction of perfusate flow rate would potentiate leukocyte-dependent IR injury. Sixty lungs were divided into four groups: (1) low-flow controls, (2) high-flow controls, (3) low-flow IR, and (4) high-flow IR. Microvascular injury was linearly related to baseline perfusate leukocyte concentrations at both low (r = 0.78) and high (r = 0.82) flow rates. Kfc in the high-flow IR group (0.58 +/- 0.03 ml/min/cm H2O/100 g) was less (p < 0.05) than Kfc in the low-flow IR group (0.82 +/- 0.07), and in both groups Kfc values were significantly greater than low-flow (0.34 +/- 0.03) and high-flow (0.31 +/- 0.01) control Kfc values after 75 min. Retention of leukocytes in the lung, evaluated by a tissue myeloperoxidase assay, was greatest in the low-flow IR group. We conclude (1) that isolated, buffer-perfused rat lungs contain significant quantities of leukocytes and that these leukocytes contribute to IR lung injury, and (2) that IR-induced microvascular injury is potentiated by low flow.

  3. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction.

    PubMed

    Ketabchi, Farzaneh; Ghofrani, Hossein A; Schermuly, Ralph T; Seeger, Werner; Grimminger, Friedrich; Egemnazarov, Bakytbek; Shid-Moosavi, S Mostafa; Dehghani, Gholam A; Weissmann, Norbert; Sommer, Natascha

    2012-01-31

    Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability. In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W. Hypercapnia with and without acidosis increased HPV during conditions of sustained hypoxia. The increase of sustained HPV and endothelial permeability in hypoxic hypercapnia without acidosis was iNOS dependent.

  4. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory.

    PubMed

    Pellegrino, J; Wright, S; Ranvill, J; Amy, G

    2005-01-01

    Flow-Field Flow Fractionation (FI-FFF) is an idealization of the cross flow membrane filtration process in that, (1) the filtration flux and crossflow velocity are constant from beginning to end of the device, (2) the process is a relatively well-defined laminar-flow hydrodynamic condition, and (3) the solutes are introduced as a pulse-input that spreads due to interactions with each other and the membrane in the dilute-solution limit. We have investigated the potential for relating FI-FFF measurements to membrane fouling. An advection-dispersion transport model was used to provide 'ideal' (defined as spherical, non-interacting solutes) solute residence time distributions (RTDs) for comparison with 'real' RTDs obtained experimentally at different cross-field velocities and solution ionic strength. An RTD moment analysis based on a particle diameter probability density function was used to extract "effective" characteristic properties, rather than uniquely defined characteristics, of the standard solute mixture. A semi-empirical unsteady-state, flux decline model was developed that uses solute property parameters. Three modes of flux decline are included: (1) concentration polarization, (2) cake buildup, and (3) adsorption on/in pores, We have used this model to test the hypothesis-that an analysis of a residence time distribution using FI-FFF can describe 'effective' solute properties or indices that can be related to membrane flux decline in crossflow membrane filtration. Constant flux filtration studies included the changes of transport hydrodynamics (solvent flux to solute back diffusion (J/k) ratios), solution ionic strength, and feed water composition for filtration using a regenerated cellulose ultrafiltration membrane. Tests of the modeling hypothesis were compared with experimental results from the filtration measurements using several correction parameters based on the mean and variance of the solute RTDs. The corrections used to modify the boundary layer mass transfer coefficient and the specific resistance of cake or adsorption layers demonstrated that RTD analysis is potentially useful technique to describe colloid properties but requires improvements.

  5. Clinical Relevance of Differences in Glomerular Filtration Rate Estimations in Frail Older People by Creatinine- vs. Cystatin C-Based Formulae.

    PubMed

    Jacobs, Anne; Benraad, Carolien; Wetzels, Jack; Rikkert, Marcel Olde; Kramers, Cornelis

    2017-06-01

    The risk of incorrect medication dosing is high in frail older people. Therefore, accurate assessment of the glomerular filtration rate is important. The objective of this study was to compare the estimated glomerular filtration rate using creatinine- and cystatin C-based formulae, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations, in frail older people. We hypothesized that frailty determines the difference between the creatinine- and cystatin C-based formulae. The mean difference between CKD-EPI creatinine and cystatin C was determined using (cross-sectional) data of 55 patients (mean age 73 years) admitted to a psychiatric ward for older adults. The level of agreement of these estimations was assessed by a Bland-Altman analysis. In all patients, the Rockwood's Frailty Index was derived and correlated with the mean difference between CKD-EPI creatinine and cystatin C. The mean difference between CKD-EPI creatinine (mean 71.2 mL/min/1.73 m 2 ) and CKD-EPI cystatin C (mean 57.6 mL/min/1.73 m 2 ) was 13.6 mL/min/1.73 m 2 (p < 0.0001). The two standard deviation limit in the Bland-Altman plot was large (43.2 mL/min/1.73 m 2 ), which represents a low level of agreement. The Frailty Index did not correlate with the mean difference between the creatinine- and cystatin C-based glomerular filtration rate (Pearson correlation coefficient 0.182, p = 0.184). There was a significant gap between a creatinine- and cystatin C-based estimation of glomerular filtration rate, irrespective of frailty. The range of differences between the commonly used estimated glomerular filtration rate formulae might result in clinically relevant differences in drug prescription and differences in chronic kidney disease staging.

  6. Determining lead, cadmium and mercury in cosmetics using sweeping via dynamic chelation by capillary electrophoresis.

    PubMed

    Chen, Kuan-Ling; Jiang, Shiuh-Jen; Chen, Yen-Ling

    2017-03-01

    International limits have been established for metal impurities in cosmetics to prevent overexposure to heavy metal ions. Sweeping via dynamic chelation was developed using capillary electrophoresis to analyze lead (Pb), cadmium (Cd) and mercury (Hg) impurities in cosmetics. The sweeping via dynamic chelation mechanism involves a large volume of metal ions being swept by a small quantity of chelating agents that were electrokinetically injected into the capillary to chelate metal ions and increase the detection sensitivity. The optimized conditions were as follows: Firstly, the capillary was rinsed by a 0.6 mM TTAB solution to reverse the EOF. The sample solution, which was diluted using 25 mM ammonium acetate (pH 6.0), was injected into the capillary using a pressure of 3.5 psi for 99.9 s. Then, EDTA was injected at -25 kV for 1 min from the EDTA buffer (25 mM ammonium acetate containing 0.6 mM TTAB and 5 mM EDTA), and the metal ions were swept and stacked simultaneously. Finally, the separation was performed at -20 kV using a separation buffer (100 mM ammonium acetate (pH 6.0)). A small quantity of chelating agents introduced into the capillary could yield 33-, 50- and 100-fold detection improvements for Pb, Cd and Hg, respectively, more sensitive than conventional capillary zone electrophoresis. Correlation coefficients greater than 0.998 indicated that this method exhibited good linearity. The relative standard deviation and relative error were less than 8.7%, indicating high precision and accuracy. The recovery value of the homemade lotion, which was employed to simulate the real sample matrix, was 93-104%, which indicated that the sample matrix does not affect the quantitative results. Finally, commercial cosmetics were employed to demonstrate the feasibility of the method to determine Pb, Cd and Hg without complicated sample pretreatment. Graphical Abstract The procedure of analyzing metal ions in cosmetics by sweeping via dynamic chelation.

  7. [Capillary HbA1c determination on type 2 diabetes patients in a primary health centre].

    PubMed

    Font, María Teresa Carrera; Brichs, María Claustre Solé; Álvarez, María Clara Sala; Olivella, Jose María Navarro; Turó, Josefina Servent; Fernández, María Pilar Felipe

    2011-10-01

    To determine the reliability and practicability of the point-of-care- test (POCT) analyzer, Afinion, for capillary HbA1c testing. To assess the benefits of its implementation on the intra-annual follow up of type 2 diabetic patients. Descriptive cross-sectional study. Analytical validation of the Afinion reader. Primary Health Care (CAP Carmel and Bon Pastor Clinic Laboratory). A total of 94 type 2 diabetic patients selected according to their previous HbA1c value. We performed one capillary puncture and one venous extraction on each visit. The capillary sample was assessed in real time on the Afinion in the Primary Health Care Centre and the venous sample was sent to Bon Pastor Clinic Laboratory for assessment on an Afinion analyzer and by a high performance liquid chromatrography (HPLC) reference method. Practicability was assesses by both by the operators of the Afinion and the patients using an 11 question questionnaire. The efficiency in terms of process timings was also evaluated. Intra-serial coefficient of variation (CV) was lower than 1% and inter-serial lower than 3%. The regression analysis showed: Afinion capillary sample=0.95 Afinion venous+0.21. No systematic or proportional error was detected in the 95% confidence interval (95% CI). The comparison between venous HPLC and Afinion showed: Afinion capillary sample=0.80 HPLC+1.14. A statistically significant difference was shown for these values at the 95% CI. Practicability was valued by users from 7 to 9.2 (professionals) and from 7.7 to 9.2 (patients). Implementation of the Afinion capillary method for intra-annual testing in follow up of diabetic patients could result in the saving of 600-900 professional hours/year. Afinion seems to be a good choice for the intra-annual determination of HbA1c when compared to the traditional process due to its accessibility, practicability and efficiency. Professionals should know the limitations of the POCT method in order to consider the validity of the results. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  8. Serum Creatinine: Not So Simple!

    PubMed

    Delanaye, Pierre; Cavalier, Etienne; Pottel, Hans

    2017-01-01

    Measuring serum creatinine is cheap and commonly done in daily practice. However, interpretation of serum creatinine results is not always easy. In this review, we will briefly remind the physiological limitations of serum creatinine due notably to its tubular secretion and the influence of muscular mass or protein intake on its concentration. We mainly focus on the analytical limitations of serum creatinine, insisting on important concept such as reference intervals, standardization (and IDMS traceability), analytical interferences, analytical coefficient of variation (CV), biological CV and critical difference. Because the relationship between serum creatinine and glomerular filtration rate is hyperbolic, all these CVs will impact not only the precision of serum creatinine but still more the precision of different creatinine-based equations, especially in low or normal-low creatinine levels (or high or normal-high glomerular filtration rate range). © 2017 S. Karger AG, Basel.

  9. Performance of the chronic kidney disease-epidemiology study equations for estimating glomerular filtration rate before and after nephrectomy.

    PubMed

    Lane, Brian R; Demirjian, Sevag; Weight, Christopher J; Larson, Benjamin T; Poggio, Emilio D; Campbell, Steven C

    2010-03-01

    Accurate renal function determination before and after nephrectomy is essential for proper prevention and management of chronic kidney disease due to nephron loss and ischemic injury. We compared the estimated glomerular filtration rate using several serum creatinine based formulas against the measured rate based on (125)I-iothalamate clearance to determine which most accurately reflects the rate in this setting. Of 7,611 patients treated at our institution since 1975 the measured glomerular filtration rate was selectively determined before and after nephrectomy in 268 and 157, respectively. Performance of the Cockcroft-Gault, Modification of Diet in Renal Disease Study, re-expressed Modification of Diet in Renal Disease Study and Chronic Kidney Disease-Epidemiology Study equations, each of which estimates the glomerular filtration rate, were determined using serum creatinine, age, gender, weight and body surface area. The performance of serum creatinine, reciprocal serum creatinine and the 4 formulas was compared with the measured rate using Pearson's correlation, Lin's concordance coefficient and residual plots. Median serum creatinine was 1.4 mg/dl and the median measured glomerular filtration rate was 50 ml per minute per 1.73 m(2). The correlation between serum creatinine and the measured rate was poor (-0.66) compared with that of reciprocal serum creatinine (0.78) and the 4 equations (0.82 to 0.86). The Chronic Kidney Disease-Epidemiology Study equation performed with greatest precision and accuracy, and least bias of all equations. Stage 3 or greater chronic kidney disease ((125)I-iothalamate glomerular filtration rate 60 ml per minute per 1.73 m(2) or less) was present in 44% of patients with normal serum creatinine (1.4 mg/dl or less) postoperatively. Such missed diagnoses of chronic kidney disease decreased 42% using the Chronic Kidney Disease-Epidemiology Study equation. Glomerular filtration rate estimation equations outperform serum creatinine and better identify patients with perinephrectomy compromised renal function. The newly developed, serum creatinine based, Chronic Kidney Disease-Epidemiology Study equation has sufficient accuracy to render direct glomerular filtration rate measurement unnecessary before and after nephrectomy for cause in most circumstances. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. [Left auricular hypertrophy in aortic stenosis in adults].

    PubMed

    Boschat, J; Le Mehaute, H; Le Potier, J; Roriz, R; Gilard, M; Bergez, C; Etienne, Y; Blanc, J J; Penther, P

    1990-02-01

    Left atrial hypertrophy (LAH) was noted from the electrocardiograms of 72 of 98 adult patients (81%) who underwent hemodynamic evaluation of calcified aortostenosis (CAS). The relations between LAH and clinical, echographic and hemodynamic findings are specified. The frequency of LAH was not higher in cases of a history of hypertension, angina pectoris, lipothymia or exercise-induced syncope. In contrast, dyspnea was more frequently associated with LAH (84%) than not (17%). An approximately linear relation was seen between LAH and the mean pulmonary capillary pressure, the mean rate of circumferential decrease (RCF), the coefficient of muscle rigidity (ks of Mirsky), the left ventricular mass (LVM) and the left ventricle-aorta gradient. LAH is, therefore, a frequent sign in patients presenting CAS. Its origin is multifactorial, with a predominance of increased mean capillary pressure in cases of clinical signs of poor safety.

  11. Measuring the Coefficient of Friction of a Small Floating Liquid Marble

    PubMed Central

    Ooi, Chin Hong; Nguyen, Anh Van; Evans, Geoffrey M.; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-01-01

    This paper investigates the friction coefficient of a moving liquid marble, a small liquid droplet coated with hydrophobic powder and floating on another liquid surface. A floating marble can easily move across water surface due to the low friction, allowing for the transport of aqueous solutions with minimal energy input. However, the motion of a floating marble has yet to be systematically characterised due to the lack of insight into key parameters such as the coefficient of friction between the floating marble and the carrier liquid. We measured the coefficient of friction of a small floating marble using a novel experimental setup that exploits the non-wetting properties of a liquid marble. A floating liquid marble pair containing a minute amount magnetite particles were immobilised and then released in a controlled manner using permanent magnets. The capillarity-driven motion was analysed to determine the coefficient of friction of the liquid marbles. The “capillary charge” model was used to fit the experimental results. We varied the marble content and carrier liquid to establish a relationship between the friction correction factor and the meniscus angle. PMID:27910916

  12. Myocardial serotonin exchange: negligible uptake by capillary endothelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffett, T.C.; Chan, I.S.; Bassingthwaighte, J.B.

    1988-03-01

    The extraction of serotonin from the blood during transorgan passage through the heart was studied using Langendorff-perfused rabbit hearts. Outflow dilution curves of /sup 131/I- or /sup 125/I-labeled albumin, (/sup 14/C)sucrose, and (3H)serotonin injected simultaneously into the inflow were fitted with an axially distributed blood-tissue exchange model to examine the extraction process. The model fits of the albumin and sucrose outflow dilution curves were used to define flow heterogeneity, intravascular dispersion, capillary permeability, and the volume of the interstitial space, which reduced the degrees of freedom in fitting the model to the serotonin curves. Serotonin extractions, measured against albumin, duringmore » single transcapillary passage, ranged from 24 to 64%. The ratio of the capillary permeability-surface area products for serotonin and sucrose, based on the maximum instantaneous extraction, was 1.37 +/- 0.2 (n = 18), very close to the predicted value of 1.39, the ratio of free diffusion coefficients calculated from the molecular weights. This result shows that the observed uptake of serotonin can be accounted for solely on the basis of diffusion between endothelial cells into the interstitial space. Thus it appears that the permeability of the luminal surface of the endothelial cell is negligible in comparison to diffusion through the clefts between endothelial cells. In 18 sets of dilution curves, with and without receptor and transport blockers or competitors (ketanserin, desipramine, imipramine, serotonin), the extractions and estimates of the capillary permeability-surface area product were not reduced, nor were the volumes of distribution. The apparent absence of transporters and receptors in rabbit myocardial capillary endothelium contrasts with their known abundance in the pulmonary vasculature.« less

  13. Quantifying retinal microvascular changes in uveitis using spectral domain optical coherence tomography angiography (SD-OCTA)

    PubMed Central

    Kim, Alice Y.; Rodger, Damien C.; Shahidzadeh, Anoush; Chu, Zhongdi; Koulisis, Nicole; Burkemper, Bruce; Jiang, Xuejuan; Pepple, Kathryn L.; Wang, Ruikang K.; Puliafito, Carmen A.; Rao, Narsing A.; Kashani, Amir H.

    2016-01-01

    Purpose To quantify retinal capillary density and morphology in uveitis using SD-OCTA. Design Cross-sectional, observational study Methods Healthy and uveitic subjects were recruited from two tertiary care eye centers. Prototype SD-OCTA devices (Cirrus, Carl Zeiss Meditec, Inc., Dublin, CA) were used to generate 3×3 mm2 OCTA images centered on the fovea. Subjects were placed into 3 groups based on the type of optical microangiography (OMAG) algorithm used for image processing (intensity-and/or phase) and type of retinal segmentation (automatic or manual). A semi-automated method was used to calculate skeleton density (SD), vessel density (VD), fractal dimension (FD), and vessel diameter index (VDI). Retinal vasculature was assessed in the superficial retinal layer (SRL), deep retinal layer (DRL), and non-segmented retinal layer (NS-RL). A generalized estimating equations model was used to analyze associations between the OCTA measures and disease status within each retinal layer. A P value < 0.05 was accepted as significant. Reproducibility and repeatability were assessed using the Intraclass Correlation Coefficient (ICC). Results The SD, VD, and FD of the parafoveal capillaries were lower in uveitic eyes compared to healthy eyes in all retinal segments. In addition, SD and VD were significantly lower in the DRL of subjects with uveitic macular edema. There was no correlation in any capillary parameters and anatomic classification of uveitis. Conclusions Quantitative analysis of parafoveal capillary density and morphology in uveitis demonstrates significantly lower capillary density and complexity. SD-OCTA algorithms are robust enough to detect these changes and can provide a novel diagnostic index of disease for uveitis subjects. PMID:27594138

  14. Estimation of water absorption coefficient using the TDR method

    NASA Astrophysics Data System (ADS)

    Suchorab, Zbigniew; Majerek, Dariusz; Brzyski, Przemysław; Sobczuk, Henryk; Raczkowski, Andrzej

    2017-07-01

    Moisture accumulation and transport in the building barriers is an important feature that influences building performance, causing serious exploitation problems as increased energy use, mold and bacteria growth, decrease of indoor air parameters that may lead to sick building syndrome (SBS). One of the parameters that is used to describe moisture characteristic of the material is water absorption coefficient being the measure of capillary behavior of the material as a function of time and the surface area of the specimen. As usual it is determined using gravimetric methods according to EN 1925:1999 standard. In this article we demonstrate the possibility of determination of water absorption coefficient of autoclaved aerated concrete (AAC) using the Time Domain Reflectometry (TDR) method. TDR is an electric technique that had been adopted from soil science and can be successfully used for real-time monitoring of moisture transport in building materials and envelopes. Data achieved using TDR readouts show high correlation with standard method of moisture absorptivity coefficient determination.

  15. Control of optical transport parameters of 'porous medium – supercritical fluid' systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A

    2015-11-30

    The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined bymore » the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)« less

  16. The Constrained Vapor Bubble Experiment - Interfacial Flow Region

    NASA Technical Reports Server (NTRS)

    Kundan, Akshay; Wayner, Peter C., Jr.; Plawsky, Joel L.

    2015-01-01

    Internal heat transfer coefficient of the CVB correlated to the presence of the interfacial flow region. Competition between capillary and Marangoni flow caused Flooding and not a Dry-out region. Interfacial flow region growth is arrested at higher power inputs. 1D heat model confirms the presence of interfacial flow region. 1D heat model confirms the arresting phenomena of interfacial flow region Visual observations are essential to understanding.

  17. Electrohydrodynamic properties of succinoglycan as probed by fluorescence correlation spectroscopy, potentiometric titration and capillary electrophoresis.

    PubMed

    Duval, Jérôme F L; Slaveykova, Vera I; Hosse, Monika; Buffle, Jacques; Wilkinson, Kevin J

    2006-10-01

    The electrostatic, hydrodynamic and conformational properties of aqueous solutions of succinoglycan have been analyzed by fluorescence correlation spectroscopy (FCS), proton titration, and capillary electrophoresis (CE) over a large range of pH values and electrolyte (NaCl) concentrations. Using the theoretical formalism developed previously for the electrokinetic properties of soft, permeable particles, a quantitative analysis for the electro-hydrodynamics of succinoglycan is performed by taking into account, in a self-consistent manner, the measured values of the diffusion coefficients, electric charge densities, and electrophoretic mobilities. For that purpose, two limiting conformations for the polysaccharide in solution are tested, i.e. succinoglycan behaves as (i) a spherical, random coil polymer or (ii) a rodlike particle with charged lateral chains. The results show that satisfactory modeling of the titration data for ionic strengths larger than 50 mM can be accomplished using both geometries over the entire range of pH values. Electrophoretic mobilities measured for sufficiently large pH values (pH > 5-6) are in line with predictions based on either model. The best manner to discriminate between these two conceptual models is briefly discussed. For low pH values (pH < 5), both models indicate aggregation, resulting in an increase of the hydrodynamic permeability and a decrease of the diffusion coefficient.

  18. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater

    NASA Astrophysics Data System (ADS)

    Arya, A.; Sarafraz, M. M.; Shahmiri, S.; Madani, S. A. H.; Nikkhah, V.; Nakhjavani, S. M.

    2018-04-01

    Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m2. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.

  19. Non-aqueous capillary electrophoresis for separation and simultaneous determination of fraxin, esculin and esculetin in Cortex fraxini and its medicinal preparations.

    PubMed

    Li, Cunhong; Chen, Anjia; Chen, Xiaofeng; Ma, Xiao; Chen, Xingguo; Hu, Zhide

    2005-11-01

    A non-aqueous capillary electrophoresis method has been developed for the separation and simultaneous determination of fraxin, esculin and esculetin in Cortex fraxini and its preparation for the first time. Optimum separation of the analytes was obtained on a 47 cm x 75 microm i.d. fused-silica capillary using a non-aqueous buffer system of 60 mM sodium cholate, 20 mM ammonium acetate, 20% acetonitrile and 3% acetic acid at 20 kV and 292 K, respectively. The relative standard deviations (RSDs) of the migration times and the peak heights of the three analytes were in the range of 0.23-0.28 and 2.12-2.60%, respectively. Detection limits of fraxin, esculin and esculetin were 0.1557, 0.4073 and 0.5382 microg/mL, respectively. In the tested concentration range, good linear relationships (correlation coefficients 0.9995 for fraxin, 0.9999 for esculin and 0.9992 for esculetin) between peak heights and concentrations of the analytes were observed. This method has been successfully applied to simultaneous determination of the three bioactive components with the recoveries from 90.2 to 109.2% in the five samples.

  20. A mixture theory model of fluid and solute transport in the microvasculature of normal and malignant tissues. I. Theory.

    PubMed

    Schuff, M M; Gore, J P; Nauman, E A

    2013-05-01

    In order to better understand the mechanisms governing transport of drugs, nanoparticle-based treatments, and therapeutic biomolecules, and the role of the various physiological parameters, a number of mathematical models have previously been proposed. The limitations of the existing transport models indicate the need for a comprehensive model that includes transport in the vessel lumen, the vessel wall, and the interstitial space and considers the effects of the solute concentration on fluid flow. In this study, a general model to describe the transient distribution of fluid and multiple solutes at the microvascular level was developed using mixture theory. The model captures the experimentally observed dependence of the hydraulic permeability coefficient of the capillary wall on the concentration of solutes present in the capillary wall and the surrounding tissue. Additionally, the model demonstrates that transport phenomena across the capillary wall and in the interstitium are related to the solute concentration as well as the hydrostatic pressure. The model is used in a companion paper to examine fluid and solute transport for the simplified case of an axisymmetric geometry with no solid deformation or interconversion of mass.

  1. Determination of dopamine, epinephrine, and norepinephrine by open-tubular capillary electrochromatography using graphene oxide molecularly imprinted polymers as the stationary phase.

    PubMed

    Ye, Nengsheng; Li, Jian

    2014-08-01

    A novel capillary electrochromatography method was developed for the determination of dopamine (DA), epinephrine (EP), and norepinephrine (NE) by using a graphene oxide (GO) molecularly imprinted polymers (MIPs) coated capillary. In this article, GO was introduced as supporting matrix to synthesize MIPs in the presence of DA as template molecule. Then GO MIPs were used as the stationary phase in electrochromatography for the determination of DA, EP, and NE. The separation of these three analytes was achieved under the optimal conditions with a satisfactory correlation coefficients (R(2) ) > 0.9957 in the range of 5.0-200.0 μg/mL for EP and NE, and 20.0-200.0 μg/mL for DA, respectively. The RSDs for the determination of three analytes were <6.19%, and the detection limits were 1.25 μg/mL for EP and NE, and 10.0 μg/mL for DA, respectively. Finally, this method was used for the determination of DA, EP, and NE in human serum and DA hydrochloride injection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Use of vancomycin silica stationary phase in packed capillary electrochromatography. II. Enantiomer separation of venlafaxine and O-desmethylvenlafaxine in human plasma.

    PubMed

    Fanali, S; Rudaz, S; Veuthey, J L; Desiderio, C

    2001-06-01

    A capillary electrochromatography method, using vancomycin chiral stationary phase packed capillary, was optimized for the simultaneous chiral separation of the antidepressant drug venlafaxine and its main active metabolite O-desmethylvenlafaxine. Simultaneous baseline enantiomeric separation of the two compounds was obtained using a mobile phase composed of 100 mM ammonium acetate buffer pH 6/water/acetonitrile (5:5:90, v/v). The electrokinetic injection for sample introduction provided a limit of quantitation for both the compounds of 0.05 microg/ml racemate concentration suitable for the analysis of venlafaxine and metabolite in biological samples. The acetonitrile mobile phase concentration was found to modulate the analytes elution times, the enantiomeric resolution and the efficiency of the separation. The column was tested for repeatability and linearity showing RSD values (%) in the range of 0.13-0.24, 2.47-3.66 and 1.35-2.50 for migration time, sample/internal standard peak area ratio and enantiomeric resolution, respectively and correlation coefficients higher than 0.9990. The method was applied to the analysis of clinical samples of patients under depression therapy showing a stereoselective metabolism for venlafaxine.

  3. A rapid quantitative determination of phenolic acids in Brassica oleracea by capillary zone electrophoresis.

    PubMed

    Lee, Iris S L; Boyce, Mary C; Breadmore, Michael C

    2011-07-15

    A simple and rapid capillary zone electrophoresis method to quantitatively determine the phenolic acid contents in brassica vegetables is described. Phenolic compounds were extracted from broccoli, broccolini, Brussels sprouts, cabbage and cauliflower and the main hydroxycinnamic acids (sinapic, ferulic, p-coumaric and caffeic acids) were isolated by solid phase extraction with C18 cartridges. Using an optimised method, the four analytes were separated in less than 7min in a 50μm×60cm capillary with a 15mM borate buffer (pH=9.13) and a separation voltage of 30kV at 30°C. A linear relationship was observed for the method (r=0.9997-0.9999) with detection limits ranging from 1.1 to 2.3mg/kg of vegetables for the analytes. This method demonstrated good reproducibility with coefficients of variation of less than 5% for peak area and less than 1% for migration time (n=7). The method was successfully applied to quantitatively determine the phenolic acid contents in a range of brassica vegetables and the results were in good agreement when compared to those from high performance liquid chromatography analysis. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  4. The Micromechanics of the Moving Contact Line

    NASA Technical Reports Server (NTRS)

    Lichter, Seth

    1999-01-01

    A transient moving contact line is investigated experimentally. The dynamic interface shape between 20 and 800 microns from the contact line is compared with theory. A novel experiment is devised, in which the contact line is set into motion by electrically altering the solid-liquid surface tension gamma(sub SL). The contact line motion simulates that of spontaneous wetting along a vertical plate with a maximum capillary number Ca approx. = 4 x 10(exp -2). The images of the dynamic meniscus are analyzed as a funtion of Ca. For comparison, the steady-state hydrodynamic equation based on the creeping flow model in a wedge geometry and the three-region uniform perturbation expansion of Cox (1986) is adopted. The interface shape is well depicted by the uniform solutions for Ca <= 10(exp -3). However, for Ca > 10(exp -3), the uniform solution over-predicts the viscous bending. This over-prediction can be accounted for by modifying the slip coefficient within the intermediate solution. With this correction, the measured interface shape is seen to match the theoretical prediction for all capillary numbers. The amount of slip needed to fit the measurements does not scale with the capillary number.

  5. On-line coupling of immobilized cytochrome P450 microreactor and capillary electrophoresis: A promising tool for drug development.

    PubMed

    Schejbal, Jan; Řemínek, Roman; Zeman, Lukáš; Mádr, Aleš; Glatz, Zdeněk

    2016-03-11

    In this work, the combination of an immobilized enzyme microreactor (IMER) based on the clinically important isoform cytochrome P450 2C9 (CYP2C9) with capillary electrophoresis (CE) is presented. The CYP2C9 was attached to magnetic SiMAG-carboxyl microparticles using the carbodiimide method. The formation of an IMER in the inlet part of the separation capillary was ensured by two permanent magnets fixed in a cassette from the CE apparatus in the repulsive arrangement. The resulting on-line system provides an integration of enzyme reaction mixing and incubation, reaction products separation, detection and quantification into a single fully automated procedure with the possibility of repetitive use of the enzyme and minuscule amounts of reactant consumption. The on-line kinetic and inhibition studies of CYP2C9's reaction with diclofenac as a model substrate and sulfaphenazole as a model inhibitor were conducted in order to demonstrate its practical applicability. Values of the apparent Michalis-Menten constant, apparent maximum reaction velocity, Hill coefficient, apparent inhibition constant and half-maximal inhibition concentration were determined on the basis of the calculation of the effective substrate and inhibitor concentrations inside the capillary IMER using a model described by the Hagen-Poisseulle law and a novel enhanced model that reflects the influence of the reactants' diffusion during the injection process. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The effect of a microscale fracture on dynamic capillary pressure of two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Tang, Mingming; Lu, Shuangfang; Zhan, Hongbin; Wenqjie, Guo; Ma, Huifang

    2018-03-01

    Dynamic capillary pressure (DCP) effects, which is vital for predicting multiphase flow behavior in porous media, refers to the injection rate dependence capillary pressure observed during non-equilibrium displacement experiments. However, a clear picture of the effects of microscale fractures on DCP remains elusive. This study quantified the effects of microscale fractures on DCP and simulated pore-scale force and saturation change in fractured porous media using the multiphase lattice Boltzmann method (LBM). Eighteen simulation cases were carried out to calculate DCP as a function of wetting phase saturation. The effects of viscosity ratio and fracture orientation, aperture and length on DCP and DCP coefficient τ were investigated, where τ refers to the ratio of the difference of DCP and static capillary pressure (SCP) over the rate of wetting-phase saturation change versus time. Significant differences in τ values were observed between unfractured and fractured porous media. The τ values of fractured porous media were 1.1  × 104 Pa ms to 5.68 × 105 Pa ms, which were one or two orders of magnitude lower than those of unfractured porous media with a value of 4 × 106 Pa. ms. A horizontal fracture had greater effects on DCP and τ than a vertical fracture, given the same fracture aperture and length. This study suggested that a microscale fracture might result in large magnitude changes in DCP for two-phase flow.

  7. Pleural effusions and diseases of the pleura.

    PubMed

    Noone, K E

    1985-09-01

    There are four factors that govern fluid movement to or from the pleural space: hydrostatic pressure, colloid osmotic pressure, filtration coefficient, and lymphatic function. When any of these factors are altered, fluid accumulates within the pleural space. Congestive heart failure, pancreatitis, neoplasia, hypoalbuminemia, and pulmonary thromboembolism can evoke pleural effusions by altering normal fluid transport mechanisms. This approach to pleural effusion helps to explain fluid accumulation. Chylothorax, hemothorax, and empyema are also covered in the article.

  8. Computing the shape of brain networks using graph filtration and Gromov-Hausdorff metric.

    PubMed

    Lee, Hyekyoung; Chung, Moo K; Kang, Hyejin; Kim, Boong-Nyun; Lee, Dong Soo

    2011-01-01

    The difference between networks has been often assessed by the difference of global topological measures such as the clustering coefficient, degree distribution and modularity. In this paper, we introduce a new framework for measuring the network difference using the Gromov-Hausdorff (GH) distance, which is often used in shape analysis. In order to apply the GH distance, we define the shape of the brain network by piecing together the patches of locally connected nearest neighbors using the graph filtration. The shape of the network is then transformed to an algebraic form called the single linkage matrix. The single linkage matrix is subsequently used in measuring network differences using the GH distance. As an illustration, we apply the proposed framework to compare the FDG-PET based functional brain networks out of 24 attention deficit hyperactivity disorder (ADHD) children, 26 autism spectrum disorder (ASD) children and 11 pediatric control subjects.

  9. [Evaluation of DCA vantage for rapid in-clinic measurement of HbA1c on capillary blood in young type 1 diabetic patients].

    PubMed

    El Arabi, H; Willems, D; Mélot, C; Dorchy, H

    2013-01-01

    Rapid in clinic measurement of glycated hemoglogin (HbA1c) allows to determine the level of metabolic control within a few minutes on capillary blood. We have evaluated the new DCA Vantage (Siemens) based on an immunological technique, replacing the DCA 2000+ (Siemens). The study included 120 unselected young type 1 diabetic patients, with different degrees of metabolic control. The DCA Vantage was compared with the HPLC system (Menarini HA 8160) whose deviation from the DCCT was < 0.1% across the clinical range. The mean underestimation of the DCA Vantage was -0.40%. The agreement limits (+/- 1.96 SD) were between 0.14% and -0.93%; this means +/- 0.53% around -0.40%. In conclusion, the DCA Vantage underestimates HbA1c levels; however it met the acceptance criteria of having a coefficient of variation < 3%.

  10. Investigation of electrical and magnetic properties of ferro-nanofluid on transformers

    PubMed Central

    2011-01-01

    This study investigated a simple model of transformers that have liquid magnetic cores with different concentrations of ferro-nanofluids. The simple model was built on a capillary by enamel-insulated wires and with ferro-nanofluid loaded in the capillary. The ferro-nanofluid was fabricated by a chemical co-precipitation method. The performances of the transformers with either air core or ferro-nanofluid at different concentrations of nanoparticles of 0.25, 0.5, 0.75, and 1 M were measured and simulated at frequencies ranging from 100 kHz to 100 MHz. The experimental results indicated that the inductance and coupling coefficient of coils grew with the increment of the ferro-nanofluid concentration. The presence of ferro-nanofluid increased resistance, yielding to the decrement of the quality factor, owing to the phase lag between the external magnetic field and the magnetization of the material. PMID:21711784

  11. Investigation of electrical and magnetic properties of ferro-nanofluid on transformers.

    PubMed

    Tsai, Tsung-Han; Chen, Ping-Hei; Lee, Da-Sheng; Yang, Chin-Ting

    2011-03-28

    This study investigated a simple model of transformers that have liquid magnetic cores with different concentrations of ferro-nanofluids. The simple model was built on a capillary by enamel-insulated wires and with ferro-nanofluid loaded in the capillary. The ferro-nanofluid was fabricated by a chemical co-precipitation method. The performances of the transformers with either air core or ferro-nanofluid at different concentrations of nanoparticles of 0.25, 0.5, 0.75, and 1 M were measured and simulated at frequencies ranging from 100 kHz to 100 MHz. The experimental results indicated that the inductance and coupling coefficient of coils grew with the increment of the ferro-nanofluid concentration. The presence of ferro-nanofluid increased resistance, yielding to the decrement of the quality factor, owing to the phase lag between the external magnetic field and the magnetization of the material.

  12. Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol in pharmaceuticals and human urine by capillary electrophoresis.

    PubMed

    Sirichai, Somsak; Khanatharana, Proespichaya

    2008-09-15

    Capillary electrophoresis (CE) with UV detection for the simultaneous and short-time analysis of clenbuterol, salbutamol, procaterol, fenoterol is described and validated. Optimized conditions were found to be a 10 mmoll(-1) borate buffer (pH 10.0), an separation voltage of 19 kV, and a separation temperature of 32 degrees C. Detection was set at 205 nm. Under the optimized conditions, analyses of the four analytes in pharmaceutical and human urine samples were carried out in approximately 1 min. The interference of the sample matrix was not observed. The LOD (limits of detection) defined at S/N of 3:1 was found between 0.5 and 2.0 mgl(-1) for the analytes. The linearity of the detector response was within the range from 2.0 to 30 mgl(-1) with correlation coefficient >0.996.

  13. Heat and Mass Transfer with Condensation in Capillary Porous Bodies

    PubMed Central

    2014-01-01

    The purpose of this present work is related to wetting process analysis caused by condensation phenomena in capillary porous material by using a numerical simulation. Special emphasis is given to the study of the mechanism involved and the evaluation of classical theoretical models used as a predictive tool. A further discussion will be given for the distribution of the liquid phase for both its pendular and its funicular state and its consequence on diffusion coefficients of the mathematical model used. Beyond the complexity of the interaction effects between vaporisation-condensation processes on the gas-liquid interfaces, the comparison between experimental and numerical simulations permits to identify the specific contribution and the relative part of mass and energy transport parameters. This analysis allows us to understand the contribution of each part of the mathematical model used and to simplify the study. PMID:24688366

  14. Miscible displacement of a non-Newtonian fluid in a capillary tube

    NASA Astrophysics Data System (ADS)

    Soori, Tejaswi; Ward, Thomas

    2017-11-01

    This talk focuses on experiments conducted to further our understanding of how to displace an aqueous polymer within a capillary tube (diameter < 1 mm) using a Newtonian fluid. Estimates of the residual film were measured as a function of Reynolds (Re), viscous Atwood (At) and Péclet (Pé) numbers. Aqueous polymers were prepared by mixing ϕ = 0.01-0.1% (wt/wt) Carboxymethyl Cellulose (CMC) in water. We measure the shear viscosity of the aqueous polymer over a broad range of shear rates and fit the data obtained to the Carreau fluid parameters. Separately we measure the average bulk diffusion coefficient of the aqueous polymer and water in water and aqueous polymer phases respectively. Previous studies on the immiscible displacement of polymers have shown residual film thickness to be dependent on the tube diameter. We will investigate if this is true when the two fluids are miscible in nature. American Chemical Society Petroleum Research Fund.

  15. Dispersive effects on multicomponent transport through porous media

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Daripa, Prabir

    2017-11-01

    We use a hybrid numerical method to solve a global pressure based porous media flow model of chemical enhanced oil recovery. This is an extension of our recent work. The numerical method is based on the use of a discontinuous finite element method and the modified method of characteristics. The impact of molecular diffusion and mechanical dispersion on the evolution of scalar concentration distributions are studied through numerical simulations of various flooding schemes. The relative importance of the advective, capillary diffusive and dispersive fluxes are compared over different flow regimes defined in the parameter space of Capillary number, Peclet number, longitudinal and transverse dispersion coefficients. Such studies are relevant for the design of effective injection policies and determining optimal combinations of chemical components for improving recovery. This work has been possible due to financial support from the U.S. National Science Foundation Grant DMS-1522782.

  16. [Comparative study of respiratory exchanging surfaces in birds and mammals].

    PubMed

    Jammes, Y

    1975-01-01

    Anatomical studies of the respiratory apparatus of birds show evidences for a gas exchanging tubular system (parabronchi and air capillaries); these exchanging structures are entirely dissociated from the ventilatory drive acting on the air sacs. A "cross-current" gas exchanging system (perpendicular disposition of air and blood capillaries) allow a good wash-out of carbon dioxide (PaCO2 lower than PECO2). The great efficiency of this lung is allowed by its very large diffusive surface (ASa) and by the high values of lung specific oxygen diffusing capacity (DO2/ASa) and of O2 extraction coefficient in inspired air. The ventilatory pattern of birds is characterized by a greater tidal volume and a smaller respiratory frequency than in mammals of same weight. Respiratory centers of birds receive afferences from lung stretch receptors, CO2-sensitive lung receptors and arterial chemoreceptors.

  17. High resolution coherence domain depth-resolved nailfold capillaroscopy based on correlation mapping optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; O'Gorman, Sean; Neuhaus, Kai; Leahy, Martin

    2014-03-01

    In this paper we demonstrate a novel application of correlation mapping optical coherence tomography (cm-OCT) for volumetric nailfold capillaroscopy (NFC). NFC is a widely used non-invasive diagnostic method to analyze capillary morphology and microvascular abnormalities of nailfold area for a range of disease conditions. However, the conventional NFC is incapable of providing volumetric imaging, when volumetric quantitative microangiopathic parameters such as plexus morphology, capillary density, and morphologic anomalies of the end row loops most critical. cm-OCT is a recently developed well established coherence domain magnitude based angiographic modality, which takes advantage of the time-varying speckle effect, which is normally dominant in the vicinity of vascular regions compared to static tissue region. It utilizes the correlation coefficient as a direct measurement of decorrelation between two adjacent B-frames to enhance the visibility of depth-resolved microcirculation.

  18. Effects of Constant Flow vs. Constant Pressure Perfusion on Fluid Filtration in Severe Hypothermic Isolated Blood-Perfused Rat Lungs.

    PubMed

    Halsøy, Kathrine; Kondratiev, Timofey; Tveita, Torkjel; Bjertnaes, Lars J

    2016-01-01

    Victims of severe accidental hypothermia are prone to fluid extravasation but rarely develop lung edema. We hypothesize that combined hypothermia-induced increase in pulmonary vascular resistance (PVR) and a concomitant fall in cardiac output protect the lungs against edema development. Our aim was to explore in hypothermic-isolated blood-perfused rat lungs whether perfusion at constant pressure influences fluid filtration differently from perfusion at constant flow. Isolated blood-perfused rat lungs were hanging freely in a weight transducer for measuring weight changes (ΔW). Fluid filtration coefficient (Kfc), was determined by transiently elevating left atrial pressure (Pla) by 5.8 mmHg two times each during normothermia (37°C) and during hypothermia (15°C). The lung preparations were randomized to two groups. One group was perfused with constant flow (Constant flow group) and the other group with constant pulmonary artery pressure (Constant PPA group). Microvascular pressure (Pmv) was determined before and during elevation of Pla (ΔPmv) by means of the double occlusion technique. Kfc was calculated with the formula Kfc = ΔW/ΔPmv/min. All Kfc values were normalized to predicted lung weight (P LW ), which was based on body weight (BW) according to the formula: P LW  = 0.0053 BW - 0.48 and presented as Kfc PLW in mg/min/mmHg/g. At cessation, bronchoalveolar lavage (BAL) fluid/perfusate protein concentration (B/P) ratio was determined photometrically. Data were analyzed with parametric or non-parametric tests as appropriate. p  < 0.05 considered as significant. Perfusate flow remained constant in the Constant flow group, but was more than halved during hypothermia in the Constant PPA group concomitant with a more fold increase in PVR. In the Constant flow group, Kfc PLW and B/P ratio increased significantly by more than 10-fold during hypothermia concerted by visible signs of edema in the trachea. Hemoglobin and hematocrit increased within the Constant flow group and between the groups at cessation of the experiments. In hypothermic rat lungs perfused at constant flow, fluid filtration coefficient per gram P LW and B/P ratio increased more than 10-fold concerted by increased hemoconcentration, but the changes were less in hypothermic lungs perfused at constant PPA.

  19. Measurement of β-hydroxybutyrate in capillary blood obtained from an ear to detect hyperketonemia in dairy cows by using an electronic handheld device.

    PubMed

    Süss, D; Drillich, M; Klein-Jöbstl, D; Wagener, K; Krieger, S; Thiel, A; Meyer, L; Schwendenwein, I; Iwersen, M

    2016-09-01

    The primary objective of the present study was to test whether capillary blood obtained by puncturing the skin of an ear with a minimal invasive lancet technique is able to detect hyperketonemia (HYK) in dairy cows. Furthermore, test characteristics of a new available handheld device, the FreeStyle Precision Neo (FSP-Neo, Abbott GmbH & Co. KG, Wiesbaden, Germany) for determination of β-hydroxybutyrate (BHB) concentrations in bovine blood were evaluated by comparing the measurements with a laboratory reference. The BHB concentration was determined with the FSP-Neo device in 720 capillary blood samples from 3 different sampling sites (left, right ear, and repeated measurement) and in 240 samples from a coccygeal vessel. The concentration of BHB in serum harvested from the coccygeal blood samples was analyzed at the laboratory and was used as reference. The Spearman correlation coefficient (ρs) between the BHB concentrations in capillary blood measured with the handheld device and the reference test was between 0.76 and 0.81. Using capillary blood, the mean ± standard deviation BHB difference compared with the reference test was 0.20±0.47 mmol/L for all 3 sampling locations at the ears. The receiver operating characteristic analyses for the FSP-Neo device resulted in an optimized threshold for the detection of subclinical ketosis (SCK) in capillary blood of 1.3 mmol/L (left and right ear) and 1.2 mmol/L (repeated measurements). Applying these adjusted threshold sensitivities (Se) for all 3 capillary sampling sites at the ear were 100%, and specificities (Sp) ranged between 93 and 94%. Hence, we conclude that all sampling locations were suitable to identify cows suffering from SCK. The reference test compared with BHB measurements in coccygeal blood resulted in a ρs of 0.92 with a mean ± standard deviation of 0.02±0.21 mmol/L. The receiver operating characteristic analyses for the FSP-Neo device resulted in an optimized threshold for the detection of SCK in coccygeal blood of 1.1 mmol/L, with a corresponding Se and Sp of 100 and 95%, respectively. Because capillary blood is easily achievable from an ear, particularly if animals are fixed in headlocks for routine checkups, this technique is considered as an additional minimally invasive method for the identification of dairy cows suffering from HYK. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. KNT-artificial neural network model for flux prediction of ultrafiltration membrane producing drinking water.

    PubMed

    Oh, H K; Yu, M J; Gwon, E M; Koo, J Y; Kim, S G; Koizumi, A

    2004-01-01

    This paper describes the prediction of flux behavior in an ultrafiltration (UF) membrane system using a Kalman neuro training (KNT) network model. The experimental data was obtained from operating a pilot plant of hollow fiber UF membrane with groundwater for 7 months. The network was trained using operating conditions such as inlet pressure, filtration duration, and feed water quality parameters including turbidity, temperature and UV254. Pre-processing of raw data allowed the normalized input data to be used in sigmoid activation functions. A neural network architecture was structured by modifying the number of hidden layers, neurons and learning iterations. The structure of KNT-neural network with 3 layers and 5 neurons allowed a good prediction of permeate flux by 0.997 of correlation coefficient during the learning phase. Also the validity of the designed model was evaluated with other experimental data not used during the training phase and nonlinear flux behavior was accurately estimated with 0.999 of correlation coefficient and a lower error of prediction in the testing phase. This good flux prediction can provide preliminary criteria in membrane design and set up the proper cleaning cycle in membrane operation. The KNT-artificial neural network is also expected to predict the variation of transmembrane pressure during filtration cycles and can be applied to automation and control of full scale treatment plants.

  1. Evaluation of gravimetric techniques to estimate the microvascular filtration coefficient

    PubMed Central

    Dongaonkar, R. M.; Laine, G. A.; Stewart, R. H.

    2011-01-01

    Microvascular permeability to water is characterized by the microvascular filtration coefficient (Kf). Conventional gravimetric techniques to estimate Kf rely on data obtained from either transient or steady-state increases in organ weight in response to increases in microvascular pressure. Both techniques result in considerably different estimates and neither account for interstitial fluid storage and lymphatic return. We therefore developed a theoretical framework to evaluate Kf estimation techniques by 1) comparing conventional techniques to a novel technique that includes effects of interstitial fluid storage and lymphatic return, 2) evaluating the ability of conventional techniques to reproduce Kf from simulated gravimetric data generated by a realistic interstitial fluid balance model, 3) analyzing new data collected from rat intestine, and 4) analyzing previously reported data. These approaches revealed that the steady-state gravimetric technique yields estimates that are not directly related to Kf and are in some cases directly proportional to interstitial compliance. However, the transient gravimetric technique yields accurate estimates in some organs, because the typical experimental duration minimizes the effects of interstitial fluid storage and lymphatic return. Furthermore, our analytical framework reveals that the supposed requirement of tying off all draining lymphatic vessels for the transient technique is unnecessary. Finally, our numerical simulations indicate that our comprehensive technique accurately reproduces the value of Kf in all organs, is not confounded by interstitial storage and lymphatic return, and provides corroboration of the estimate from the transient technique. PMID:21346245

  2. Measurement of the filtration coefficient (Kfc) in the lung of Gallus domesticus and the effects of increased microvascular permeability.

    PubMed

    Weidner, W Jeffrey; Waddell, David S; Furlow, J David

    2006-08-01

    The filtration coefficient (Kfc) is a sensitive measure of microvascular hydraulic conductivity and has been reported for the alveolar lungs of many mammalian species, but not for the parabronchial avian lung. This study reports the Kfc in the isolated lungs of normal chickens and in the lungs of chickens given the edemogenic agents oleic acid (OA) or dimethyl amiloride (DMA). The control Kfc =0.04+/-0.01 ml min(-1) kPa(-1) g(-1). This parameter increased significantly following the administration of both OA (0.12+/-0.02 ml min(-1) kPa(-1) g(-1)) and DMA (0.07+/-0.01 ml min kPa(-1) g(-1)). As endothelial cadherins are thought to play a role in the dynamic response to acute lung injury, we utilized Western blot analysis to assess lung cadherin content and Northern blot analysis to assess pulmonary vascular endothelial (VE) cadherin expression following drug administration. Lung cadherin content decreases markedly following DMA, but not OA administration. VE cadherin expression increases as a result of DMA treatment, but is unchanged following OA. Our results suggest that the permeability characteristics of the avian lung are more closely consistent with those of the mammalian rather than the reptilian lung, and, that cadherins may play a significant role in the response to acute increases in avian pulmonary microvascular permeability.

  3. Performance evaluation of the microINR® point-of-care INR-testing system.

    PubMed

    Joubert, J; van Zyl, M C; Raubenheimer, J

    2018-04-01

    Point-of-care International Normalised Ratio (INR) testing is used frequently. We evaluated the microINR ® POC system for accuracy, precision and measurement repeatability, and investigated instrument and test chip variability and error rates. Venous blood INRs of 210 patients on warfarin were obtained with Thromborel ® S on the Sysmex CS-2100i ® analyser and compared with capillary blood microINR ® values. Precision was assessed using control materials. Measurement repeatability was calculated on 51 duplicate finger-prick INRs. Triplicate finger-prick INRs using three different instruments (30 patients) and three different test chip lots (29 patients) were used to evaluate instrument and test chip variability. Linear regression analysis of microINR ® and Sysmex CS2100i ® values showed a correlation coefficient of 0.96 (P < .0001) and a positive proportional bias of 4.4%. Dosage concordance was 93.8% and clinical agreement 95.7%. All acceptance criteria based on ISO standard 17593:2007 system accuracy requirements were met. Control material coefficients of variation (CV) varied from 6.2% to 16.7%. The capillary blood measurement repeatability CV was 7.5%. No significant instrument (P = .93) or test chip (P = .81) variability was found, and the error rate was low (2.8%). The microINR ® instrument is accurate and precise for monitoring warfarin therapy. © 2017 John Wiley & Sons Ltd.

  4. Fibrinogen Reduction During Selective Plasma Exchange due to Membrane Fouling.

    PubMed

    Ohkubo, Atsushi; Okado, Tomokazu; Miyamoto, Satoko; Hashimoto, Yurie; Komori, Shigeto; Yamamoto, Motoki; Maeda, Takuma; Itagaki, Ayako; Yamamoto, Hiroko; Seshima, Hiroshi; Kurashima, Naoki; Iimori, Soichiro; Naito, Shotaro; Sohara, Eisei; Uchida, Shinichi; Rai, Tatemitsu

    2017-06-01

    Fibrinogen is substantially reduced by most plasmapheresis modalities but retained in selective plasma exchange using Evacure EC-4A10 (EC-4A). Although EC-4A's fibrinogen sieving coefficient is 0, a session of selective plasma exchange reduced fibrinogen by approximately 19%. Here, we investigated sieving coefficient in five patients. When the mean processed plasma volume was 1.15 × plasma volume, the mean reduction of fibrinogen during selective plasma exchange was approximately 15%. Fibrinogen sieving coefficient was 0 when the processed plasma volume was 1.0 L, increasing to 0.07 when the processed plasma volume was 3.0 L, with a mean of 0.03 during selective plasma exchange. When fibrinogen sieving coefficient was 0, selective plasma exchange reduced fibrinogen by approximately 10%. Scanning electron microscopy images revealed internal fouling of EC-4A's hollow fiber membrane by substances such as fibrinogen fibrils. Thus, fibrinogen reduction by selective plasma exchange may be predominantly caused by membrane fouling rather than filtration. © 2017 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  5. Electrosprayed synthesis of red-blood-cell-like particles with dual modality for magnetic resonance and fluorescence imaging.

    PubMed

    Hayashi, Koichiro; Ono, Kenji; Suzuki, Hiromi; Sawada, Makoto; Moriya, Makoto; Sakamoto, Wataru; Yogo, Toshinobu

    2010-11-05

    Red blood cells (RBCs) are able to avoid filtration in the spleen to prolong their half-time in the body because of their flexibility and unique shape, or a concave disk with diameter of some 10 μm. In addition, they can flow through capillary blood vessels, which are smaller than the diameter of RBCs, by morphing into a parachute-like shape. In this study, flexible RBC-like polymer particles are synthesized by electrospraying based on electrospinning. Furthermore, magnetite nanoparticles and fluorescent dye are encapsulated in the particles via in situ hydrolysis of an iron-organic compound in the presence of celluloses. The superparamagnetic behavior of the particles is confirmed by low-temperature magnetic measurements. The particles exhibited not only a dark contrast in magnetic resonance imaging (MRI), but also effective fluorescence. The RBC-like particles with flexibility are demonstrated to have a dual-modality for MRI and fluorescence imaging.

  6. Kidneys: Key Modulators of HDL Levels and Function

    PubMed Central

    Yang, Haichun; Fogo, Agnes B.; Kon, Valentina

    2016-01-01

    Purpose of review This review will examine advances in our understanding of the role kidneys play in HDL metabolism and the effect on levels, composition, and function of HDL particles. Recent findings Components of the HDL particles can cross the glomerular filtration barrier. Some of these components, including apolipoproteins and enzymes involved in lipid metabolism, are taken up by the proximal tubule and degraded, modified, salvaged/returned to the circulation, or lost in the urine. Injury of the glomerular capillaries or tubules can affect these intrarenal processes and modify HDL. Changes in the plasma and urine levels of HDL may be novel markers of kidney damage and/or mechanism(s) of kidney disease. Summary The kidneys have a significant role in metabolism of individual HDL components, which in turn modulate HDL levels, composition and functionality of HDL particles. These intrarenal effects may be useful markers of kidney damage and have consequences on kidney-related perturbations in HDL. PMID:27008596

  7. Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system

    USGS Publications Warehouse

    Rostad, C.E.; Pereira, W.E.; Hult, M.F.

    1985-01-01

    Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.

  8. Waste to wealth concept: Disposable RGO filter paper for flexible temperature sensor applications

    NASA Astrophysics Data System (ADS)

    Neella, Nagarjuna; Kedambaimoole, Vaishakh; Gaddam, Venkateswarlu; Nayak, M. M.; Rajanna, K.

    2018-04-01

    We have developed a flexible reduced graphene oxide (RGO) temperature sensor on filter paper based cellulose substrate using vacuum filtration method. One of the most commonly used synthesized methods for RGO thin films is vacuum filtration process. It has several advantages such as simple operation and good controllability. The structural analysis was carried out by FE-SEM, in which the surface morphology images confirm the formation of RGO nanostructures on the filter paper substrate. It was observed that the pores of the filter paper were completely filled with the RGO material during the filtration process, subsequently the formation of continuous RGO thin films. As a results, the RGO films exhibits a piezoresistive property. The resulted RGO based films on the filter paper reveals the semiconducting behavior having sensitivity of 0.278 Ω /°C and negative temperature coefficient (NTC) about -0.00254 Ω/ Ω / °C. Thus, we demonstrate a simplified way for the fabrication of RGO films on filter paper that possesses better and easier measurable macroscopic electrical properties. Our approach is for easy way of electronics, cost-effective and environment friendly fabrication route for flexible conducting graphene films on filter paper. This will enable for the potential applications in flexible electronics in various fields including biomedical, automobile and aerospace engineering.

  9. Effects of incubation time and filtration method on Kd of indigenous selenium and iodine in temperate soils.

    PubMed

    Almahayni, T; Bailey, E; Crout, N M J; Shaw, G

    2017-10-01

    In this study, the effects of incubation time and the method of soil solution extraction and filtration on the empirical distribution coefficient (K d ) obtained by de-sorbing indigenous selenium (Se) and iodine (I) from arable and woodland soils under temperate conditions were investigated. Incubation time had a significant soil- and element-dependent effect on the K d values, which tended to decrease with the incubation time. Generally, a four-week period was sufficient for the desorption K d value to stabilise. Concurrent solubilisation of soil organic matter (OM) and release of organically-bound Se and I was probably responsible for the observed decrease in K d with time. This contrasts with the conventional view of OM as a sink for Se and I in soils. Selenium and I K d values were not significantly affected by the method of soil solution extraction and filtration. The results suggest that incubation time is a key criterion when selecting Se and I K d values from the literature for risk assessments. Values derived from desorption of indigenous soil Se and I might be most appropriate for long-term assessments since they reflect the quasi-equilibrium state of their partitioning in soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Determination of permeability of ultra-fine cupric oxide aerosol through military filters and protective filters

    NASA Astrophysics Data System (ADS)

    Kellnerová, E.; Večeřa, Z.; Kellner, J.; Zeman, T.; Navrátil, J.

    2018-03-01

    The paper evaluates the filtration and sorption efficiency of selected types of military combined filters and protective filters. The testing was carried out with the use of ultra-fine aerosol containing cupric oxide nanoparticles ranging in size from 7.6 nm to 299.6 nm. The measurements of nanoparticles were carried out using a scanning mobility particle sizer before and after the passage through the filter and a developed sampling device at the level of particle number concentration approximately 750000 particles·cm-3. The basic parameters of permeability of ultra-fine aerosol passing through the tested material were evaluated, in particular particle size, efficiency of nanoparticle capture by filter, permeability coefficient and overall filtration efficiency. Results indicate that the military filter and particle filters exhibited the highest aerosol permeability especially in the nanoparticle size range between 100–200 nm, while the MOF filters had the highest permeability in the range of 200 to 300 nm. The Filter Nuclear and the Health and Safety filter had 100% nanoparticle capture efficiency and were therefore the most effective. The obtained measurement results have shown that the filtration efficiency over the entire measured range of nanoparticles was sufficient; however, it was different for particular particle sizes.

  11. Oxygen gradients in the microcirculation.

    PubMed

    Pittman, R N

    2011-07-01

    Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO(2) gradient and that the permeability for oxygen along the intervening pathway is sufficient. © 2011 The Author. Acta Physiologica © 2011 Scandinavian Physiological Society.

  12. Oxygen Gradients in the Microcirculation

    PubMed Central

    Pittman, Roland N.

    2010-01-01

    Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO2 gradient and that the permeability for oxygen along the intervening pathway is sufficient. PMID:21281453

  13. Automated capillary GC/NPD assay for the determination in plasma of McN-5707, a potential antidepressant drug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, M.L.; Uetz, J.A.; Ng, K.T.

    1986-03-01

    McN-5707 x HBr (trans-6-(2-chlorophenyl)-1,2,3,5,6,10b-hexa-hydropyrrolo(2,1-a)isoquinoline hydrobromide (1:1)) is a novel, potential antidepressant which is currently under pre-clinical evaluation. The present study reports the development of a sensitive and reproducible capillary gas chromatographic (GC) assay with nitrogen-phosphorus ionization detection (NPD) for McN-5707 in plasma. The assay includes a three step extraction as follows: McN-5707 and the internal standard (IS) are extracted from alkalinized plasma (1 mL) into hexane and back-extracted into 0.1 N HCl. Following alkalinization of the aqueous layer, McN-5707 and IS are re-extracted into hexane. The solvent is evaporated and the residue is reconstituted with 50 ..mu..L of a solutionmore » of 10% methanol in toluene. A 2.5 ..mu..L aliquot is injected into an HP 5880A capillary GC using the HP 7672A auto-sampler. Separation is accomplished using a 15 m x 0.32 mm i.d. DB-5 fused silica capillary column and temperature programming from 160 to 200/sup 0/C at 10/sup 0//min. Calibration curves are linear from 1 to 100 ng/mL. Accuracy and precision, expressed as relative deviation from the true value and coefficient of variation are < 10% at all concentrations in the linear range. The assay has been successfully used for pharmacokinetic studies in rats and dogs and has been cross-validated with a /sup 3/H-norepinephrine uptake inhibition assay.« less

  14. Urinary extracellular vesicles for RNA extraction: optimization of a protocol devoid of prokaryote contamination.

    PubMed

    Tataruch-Weinert, Dorota; Musante, Luca; Kretz, Oliver; Holthofer, Harry

    2016-01-01

    Urinary extracellular vesicles (UEVs) represent an ideal platform for biomarker discovery. They carry different types of RNA species, and reported profile discrepancies related to the presence/absence of 18s and 28s rRNA remain controversial. Moreover, sufficient urinary RNA yields and respective quality RNA profiles are still to be fully established. UEVs were enriched by hydrostatic filtration dialysis, and RNA content was extracted using 7 different commercially available techniques. RNA quantity was assessed using spectrophotometry and fluorometry, whilst RNA quality was determined by capillary electrophoresis. The presence of prokaryotic transcriptome was stressed when cellular RNA, as a control, was spiked into the UEVs samples before RNA extraction. The presence of bacteria in hydrostatic filtration dialysis above 1,000 kDa molecular weight cut-off and in crude urine was confirmed with growth media plates. The efficiency in removing urinary bacteria was evaluated by differential centrifugation, filtration (0.22 µm filters) and chemical pretreatment (water purification tablet). For volumes of urine >200 ml, the chemical treatment provides ease of handling without affecting vesicle integrity, protein and RNA profiles. This protocol was selected to enrich RNA with 7 methods, and its respective quality and quantity were assessed. The results were given as follows: (a) Fluorometry gave more repeatability and reproducibility than spectrophotometry to assess the RNA yields, (b) UEVs were enriched with small RNA, (c) Ribosomal RNA peaks were not observed for any RNA extraction method used and (d) RNA yield was higher for column-based method designed for urinary exosome, whilst the highest relative microRNA presence was obtained using TRIzol method. Our results show that the presence of bacteria can lead to misidentification in the electrophoresis peaks. Fluorometry is more reliable than spectrophotometry. RNA isolation method must be selected in conjunction with appropriate UEV collection procedure. We also suggested that a minimum 250 ml of urine should be processed to gather enough RNA for robust quantification, qualification and downstream analysis.

  15. Urinary extracellular vesicles for RNA extraction: optimization of a protocol devoid of prokaryote contamination

    PubMed Central

    Tataruch-Weinert, Dorota; Musante, Luca; Kretz, Oliver; Holthofer, Harry

    2016-01-01

    Background Urinary extracellular vesicles (UEVs) represent an ideal platform for biomarker discovery. They carry different types of RNA species, and reported profile discrepancies related to the presence/absence of 18s and 28s rRNA remain controversial. Moreover, sufficient urinary RNA yields and respective quality RNA profiles are still to be fully established. Methods UEVs were enriched by hydrostatic filtration dialysis, and RNA content was extracted using 7 different commercially available techniques. RNA quantity was assessed using spectrophotometry and fluorometry, whilst RNA quality was determined by capillary electrophoresis. Results The presence of prokaryotic transcriptome was stressed when cellular RNA, as a control, was spiked into the UEVs samples before RNA extraction. The presence of bacteria in hydrostatic filtration dialysis above 1,000 kDa molecular weight cut-off and in crude urine was confirmed with growth media plates. The efficiency in removing urinary bacteria was evaluated by differential centrifugation, filtration (0.22 µm filters) and chemical pretreatment (water purification tablet). For volumes of urine >200 ml, the chemical treatment provides ease of handling without affecting vesicle integrity, protein and RNA profiles. This protocol was selected to enrich RNA with 7 methods, and its respective quality and quantity were assessed. The results were given as follows: (a) Fluorometry gave more repeatability and reproducibility than spectrophotometry to assess the RNA yields, (b) UEVs were enriched with small RNA, (c) Ribosomal RNA peaks were not observed for any RNA extraction method used and (d) RNA yield was higher for column-based method designed for urinary exosome, whilst the highest relative microRNA presence was obtained using TRIzol method. Conclusion Our results show that the presence of bacteria can lead to misidentification in the electrophoresis peaks. Fluorometry is more reliable than spectrophotometry. RNA isolation method must be selected in conjunction with appropriate UEV collection procedure. We also suggested that a minimum 250 ml of urine should be processed to gather enough RNA for robust quantification, qualification and downstream analysis. PMID:27345058

  16. Analysis of hydroquinone and some of its ethers by using capillary electrochromatography.

    PubMed

    Desiderio, C; Ossicini, L; Fanali, S

    2000-07-28

    Capillary electrochromatography (CEC) was used for the analysis of relevant compounds in cosmetic preparation. Hydroquinone (HQ) and some of its ethers (methyl-, dimethyl-, benzyl-, phenyl-, propyl-HQ derivatives) were analyzed by using an octadecylsilica (ODS) stationary phase packed in fused-silica capillary (100 microm I.D.; 30 cm and 21.5 cm total and effective lengths, respectively). 20 mM Ammonium acetate pH 6-acetonitrile (50-70%) were the mobile phases used for the experiments. The acetonitrile (ACN) content strongly influenced the resolution of the studied compounds as well as the efficiency and the retention factor. Baseline resolution for the studied analytes was achieved at both the lowest and the highest percentage of ACN, the last one providing the shortest analysis time. Mobile phase containing 70% of ACN was therefore used for the analysis of an extract of skin-toning cream declared to contain HQ. Good repeatability of both retention times, peak areas and peak areas ratio (Asample/Ainternational standard) was found. The calibration graphs were linear in the concentration range studied (5-90 microg/ml) with correlation coefficients between 0.9975 and 09991. The analysis of the cosmetic preparation revealed the presence of HQ (1.72%, w/w) and of two additional peaks (not identified).

  17. Improved Method for the Establishment of an In Vitro Blood-Brain Barrier Model Based on Porcine Brain Endothelial Cells.

    PubMed

    Nielsen, Simone S E; Siupka, Piotr; Georgian, Ana; Preston, Jane E; Tóth, Andrea E; Yusof, Siti R; Abbott, N Joan; Nielsen, Morten S

    2017-09-24

    The aim of this protocol presents an optimized procedure for the purification and cultivation of pBECs and to establish in vitro blood-brain barrier (BBB) models based on pBECs in mono-culture (MC), MC with astrocyte-conditioned medium (ACM), and non-contact co-culture (NCC) with astrocytes of porcine or rat origin. pBECs were isolated and cultured from fragments of capillaries from the brain cortices of domestic pigs 5-6 months old. These fragments were purified by careful removal of meninges, isolation and homogenization of grey matter, filtration, enzymatic digestion, and centrifugation. To further eliminate contaminating cells, the capillary fragments were cultured with puromycin-containing medium. When 60-95% confluent, pBECs growing from the capillary fragments were passaged to permeable membrane filter inserts and established in the models. To increase barrier tightness and BBB characteristic phenotype of pBECs, the cells were treated with the following differentiation factors: membrane permeant 8-CPT-cAMP (here abbreviated cAMP), hydrocortisone, and a phosphodiesterase inhibitor, RO-20-1724 (RO). The procedure was carried out over a period of 9-11 days, and when establishing the NCC model, the astrocytes were cultured 2-8 weeks in advance. Adherence to the described procedures in the protocol has allowed the establishment of endothelial layers with highly restricted paracellular permeability, with the NCC model showing an average transendothelial electrical resistance (TEER) of 1249 ± 80 Ω cm 2 , and paracellular permeability (Papp) for Lucifer Yellow of 0.90 10 -6 ± 0.13 10 -6 cm sec -1 (mean ± SEM, n=55). Further evaluation of this pBEC phenotype showed good expression of the tight junctional proteins claudin 5, ZO-1, occludin and adherens junction protein p120 catenin. The model presented can be used for a range of studies of the BBB in health and disease and, with the highly restrictive paracellular permeability, this model is suitable for studies of transport and intracellular trafficking.

  18. Anisotropy indices and the effects on the hydric behaviour of natural stone

    NASA Astrophysics Data System (ADS)

    Fort, Rafael; Alvarez de Buergo, Monica; Varas, Maria Jose; Gomez-Heras, Miguel

    2010-05-01

    Building stone is an anisotropic material. Each type of rock (granite, limestone, slate, marble, etc.) has a different anisotropy, which is related to its own geological history, i.e. formation conditions and alteration processes. Knowing the anisotropy of natural stone is a matter of interest for determining the most adequate way to extract it from the quarry, for a better use during its manufacture or processing, to determine the quality of elements to be used as ashlars/masonry or as ornamental elements carving, as well to their arrangement in a structure. At the same time, materiaĺs anisotropy will condition the placing of, for instance, anchorages in dressing stone slabs. Anisotropy of natural stone controls water entry and its mobility, together with atmospheric pollutantśs, processes that favour the stone decay in building works, mainly those that shows a marked directional component, as it is the case of capillary water absorption. Water tends to be absorbed differently along the distinct main anisotropy directions, which are principally marked due to the arrangement and distribution of porosity in the rock. The aim of this study is to perform a comparative analysis of the various anisotropy indices commonly used when dealing with natural stone, determined by ultrasonic propagation techniques, in order to establish how anisotropy (by means of these indices) affect the process of capillary water absorption. Different type of natural stones have been selected, according to their traditional use for the construction of buildings in the region of Madrid (Spain). Their petrophysical properties have been determined (density, porosity, water absorption, etc), as well as ultrasonic transmission velocity has been measured along the three spatial directions of the test specimens (from 50 to 100 for each petrological type). According to this, the stone specimens were classified in different anisotropy levels or classes. Results show that stones with the highest anisotropy are those with the highest capillarity coefficient. It can also be observed that for each petrological variety, this capillarity coefficient is higher in the specimens classified as a high level anisotropy class. At the same time, when capillary water is absorbed along the direction perpendicular to the anisotropic planes, the absorption capacity diminishes, no matter the anisotropy level of the stone is. On the contrary, capillary coefficients are higher when measurements are performed in a parallel direction to that of the greatest anisotropy of the stone specimen, where absorption tends to be faster with higher coefficients according to the porosity size and its geometry. These increments are more significant in the stone varieties in which anisotropy is mainly due to fissuring or schistosity planes, or related to stromatolitic planes or oriented minerals accumulation. The arrangement and placing of rocks used as building materials with a significant anisotropy will highly condition the durability and lifetime of a considered element. For that reason, is essential to determine anisotropy indices to obtain the best and most adequate arrangement of stone elements in building works, minimizing water entry and thus, the material decay. Acknowledgements: to both MATERNAS (0505/MAT/0094) and GEOMATERIALES (2009-1629) research programmes, funded by the Regional Government of Madrid; to the CONSOLIDER-INGENIO programme (CSD2007-0058), funded by the Spanish Ministry of Education and Science; and to the Spanish Geological and Mining Institute (IGME) for the specimens preparation and hydric behaviour measurements.

  19. CD4 Lymphocyte Enumeration and Hemoglobin Assessment Aid for Priority Decisions: A Multisite Evaluation of the BD FACSPresto™ System

    PubMed Central

    Thakar, Madhuri; Angira, Francis; Pattanapanyasat, Kovit; Wu, Alan H.B.; O’Gorman, Maurice; Zeng, Hui; Qu, Chenxue; Mahajan, Bharati; Sukapirom, Kasama; Chen, Danying; Hao, Yu; Gong, Yan; Indig, Monika De Arruda; Graminske, Sharon; Orta, Diana; d’Empaire, Nicole; Lu, Beverly; Omana-Zapata, Imelda; Zeh, Clement

    2017-01-01

    Background: The BD FACSPresto™ system uses capillary and venous blood to measure CD4 absolute counts (CD4), %CD4 in lymphocytes, and hemoglobin (Hb) in approximately 25 minutes. CD4 cell count is used with portable CD4 counters in resource-limited settings to manage HIV/AIDS patients. A method comparison was performed using capillary and venous samples from seven clinical laboratories in five countries. The BD FACSPresto system was assessed for variability between laboratory, instrument/operators, cartridge lots and within-run at four sites. Methods: Samples were collected under approved voluntary consent. EDTA-anticoagulated venous samples were tested for CD4 and %CD4 T cells using the gold-standard BD FACSCalibur™ system, and for Hb, using the Sysmex® KX-21N™ analyzer. Venous and capillary samples were tested on the BD FACSPresto system. Matched data was analyzed for bias (Deming linear regression and Bland-Altman methods), and for concordance around the clinical decision point. The coefficient of variation was estimated per site, instrument/operator, cartridge-lot and between-runs. Results: For method comparison, 93% of the 720 samples were from HIV-positive and 7% from HIV-negative or normal subjects. CD4 and %CD4 T cells venous and capillary results gave slopes within 0.96–1.05 and R2 ≥0.96; Hb slopes were ≥1.00 and R2 ≥0.89. Variability across sites/operators gave %CV <5.8% for CD4 counts, <1.9% for %CD4 and <3.2% for Hb. The total %CV was <7.7% across instrument/cartridge lot. Conclusion: The BD FACSPresto system provides accurate, reliable, precise CD4/%CD4/Hb results compared to gold-standard methods, irrespective of venous or capillary blood sampling. The data showed good agreement between the BD FACSPresto, BD FACSCalibur and Sysmex systems. PMID:29290885

  20. CD4 Lymphocyte Enumeration and Hemoglobin Assessment Aid for Priority Decisions: A Multisite Evaluation of the BD FACSPresto™ System.

    PubMed

    Thakar, Madhuri; Angira, Francis; Pattanapanyasat, Kovit; Wu, Alan H B; O'Gorman, Maurice; Zeng, Hui; Qu, Chenxue; Mahajan, Bharati; Sukapirom, Kasama; Chen, Danying; Hao, Yu; Gong, Yan; Indig, Monika De Arruda; Graminske, Sharon; Orta, Diana; d'Empaire, Nicole; Lu, Beverly; Omana-Zapata, Imelda; Zeh, Clement

    2017-01-01

    The BD FACSPresto ™ system uses capillary and venous blood to measure CD4 absolute counts (CD4), %CD4 in lymphocytes, and hemoglobin (Hb) in approximately 25 minutes. CD4 cell count is used with portable CD4 counters in resource-limited settings to manage HIV/AIDS patients. A method comparison was performed using capillary and venous samples from seven clinical laboratories in five countries. The BD FACSPresto system was assessed for variability between laboratory, instrument/operators, cartridge lots and within-run at four sites. Samples were collected under approved voluntary consent. EDTA-anticoagulated venous samples were tested for CD4 and %CD4 T cells using the gold-standard BD FACSCalibur ™ system, and for Hb, using the Sysmex ® KX-21N ™ analyzer. Venous and capillary samples were tested on the BD FACSPresto system. Matched data was analyzed for bias (Deming linear regression and Bland-Altman methods), and for concordance around the clinical decision point. The coefficient of variation was estimated per site, instrument/operator, cartridge-lot and between-runs. For method comparison, 93% of the 720 samples were from HIV-positive and 7% from HIV-negative or normal subjects. CD4 and %CD4 T cells venous and capillary results gave slopes within 0.96-1.05 and R 2 ≥0.96; Hb slopes were ≥1.00 and R 2 ≥0.89. Variability across sites/operators gave %CV <5.8% for CD4 counts, <1.9% for %CD4 and <3.2% for Hb. The total %CV was <7.7% across instrument/cartridge lot. The BD FACSPresto system provides accurate, reliable, precise CD4/%CD4/Hb results compared to gold-standard methods, irrespective of venous or capillary blood sampling. The data showed good agreement between the BD FACSPresto, BD FACSCalibur and Sysmex systems.

  1. Microbial growth and transport in saturated and unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Hron, Pavel; Jost, Daniel; Bastian, Peter; Ippisch, Olaf

    2014-05-01

    There is a considerable ongoing effort aimed at understanding the behavior of microorganisms in porous media. Microbial activity is of significant interest in various environmental applications such as in situ bioremediation, protection of drinking water supplies and for subsurface geochemistry in general. The main limiting factors for bacterial growth are the availability of electron acceptors, nutrients and bio-available water. The capillary fringe, defined - in a wider sense than usual - as the region of the subsurface above the groundwater table, but still dominated by capillary rise, is a region where all these factors are abundantly available. It is thus a region where high microbial activity is to be expected. In a research unit 'Dynamic Capillary Fringes - A Multidisciplinary Approach (DyCap)' founded by the German Research Foundation (DFG), the growth of microorganisms in the capillary fringe was studied experimentally and with numerical simulations. Processes like component transport and diffusion, exchange between the liquid phase and the gas phase, microbial growth and cell attachment and detachment were incorporated into a numerical simulator. The growth of the facultative anaerobic Escherichia coli as a function of nutrient availability and oxygen concentration in the liquid phase is modeled with modified Monod-type models and modifications for the switch between aerobic and anaerobic growth. Laboratory batch experiments with aqueous solutions of bacteria have been carried out under various combinations of oxygen concentrations in the gas phase and added amounts of dissolved organic carbon to determine the growth model parameters by solution of a parameter estimation problem. For the transport of bacteria the adhesion to phase boundaries is also very important. As microorganisms are transported through porous media, they are removed from the pore fluid by physicochemical filtration (attachment to sediment grain surfaces) or are adhering to gas-water interface. The cell attachment and detachment model was based on flow-through experiments and the parameters were obtained by fitting the model to measured bacteria breakthrough curves. Experiments on bacterial growth in porous media with and without groundwater flow were performed in Hele-Shaw cells filled with quartz sands. The cell density was determined by the fluorescence of a special protein produced by the genetically modified strain of E. coli. The simulation results are compared to experimental data and different modeling approaches are discussed.

  2. Alport syndrome: its effects on the glomerular filtration barrier and implications for future treatment

    PubMed Central

    Savige, Judy

    2014-01-01

    The glomerular filtration barrier comprises a fenestrated capillary endothelium, glomerular basement membrane and podocyte slit diaphragm. Over the past decade we have come to realise that permselectivity depends on size and not necessarily charge, that the molecular sieve depends on the podocyte contractile apparatus and is highly dynamic, and that protein uptake by proximal tubular epithelial cells stimulates signalling and the production of transcription factors and inflammatory mediators. Alport syndrome is the second commonest monogenic cause of renal failure after autosomal dominant polycystic kidney disease. Eighty per cent of patients have X-linked disease caused by mutations in the COL4A5 gene. Most of these result in the replacement of the collagen IV α3α4α5 network with the α1α1α2 heterotrimer. Affected membranes also have ectopic laminin and increased matrix metalloproteinase levels, which makes them more susceptible to proteolysis. Mechanical stress, due to the less elastic membrane and hypertension, interferes with integrin-mediated podocyte–GBM adhesion. Proteinuria occurs when urinary levels exceed tubular reabsorption rates, and initiates tubulointerstitial fibrosis. The glomerular mesangial cells produce increased TGFβ and CTGF which also contribute to glomerulosclerosis. Currently there is no specific therapy for Alport syndrome. However treatment with angiotensin converting enzyme (ACE) inhibitors delays renal failure progression by reducing intraglomerular hypertension, proteinuria, and fibrosis. Our greater understanding of the mechanisms underlying the GBM changes and their consequences in Alport syndrome have provided us with further novel therapeutic targets. PMID:25107927

  3. The Role of “Leakage” of Tubular Fluid in Anuria Due to Mercury Poisoning*

    PubMed Central

    Bank, Norman; Mutz, Bertrand F.; Aynedjian, Hagop S.

    1967-01-01

    The role of “leakage” of tubular fluid in anuria produced by mercury poisoning was studied in rats by micropuncture techniques. After an initial brisk diuresis, almost all animals were completely anuric 24 hours after HgCl2 injection. Lissamine green injected intravenously in the early stage of anuria appeared in the beginning of the proximal tubule, but the color became progressively lighter as the dye traversed the proximal convolutions. The dye was barely visible in the terminal segments of the proximal tubule; it did not appear at all in the distal tubules. These observations suggest that the proximal epithelium had become abnormally permeable to Lissamine green. Tubular fluid to plasma inulin (TF/PIn) ratios and inulin clearance were measured in individual nephrons at three sites: early proximal tubule, late proximal tubule, and distal tubule. It was found that TF/PIn ratios were abnormally low in the late proximal and distal tubules. Inulin clearance was normal at the beginning of the proximal tubule but fell by more than 60% by the late proximal convolutions. Thus, the proximal tubule had also become permeable to inulin. We conclude from these observations that anuria in mercury poisoning can occur in the presence of a normal glomerular filtration rate. The absence of urine flow appears to be due to complete absorption of the filtrate through an excessively permeable tubular epithelium. The driving force affecting this fluid absorption is probably the colloid oncotic pressure of the peritubular capillary blood. Images PMID:6025476

  4. Macular thickness after glaucoma filtration surgery.

    PubMed

    Sesar, Antonio; Cavar, Ivan; Sesar, Anita Pusić; Geber, Mia Zorić; Sesar, Irena; Laus, Katia Novak; Vatavuk, Zoran; Mandić, Zdravko

    2013-09-01

    The aim of present study was to analyze early postoperative changes in the macular area using optical coherence tomography (OCT) after uncomplicated glaucoma filtration surgery. This prospective study included 32 patients (34 eyes) with open-angle glaucoma, which underwent trabeculectomy with or without use of mitomycin C. Exclusion criteria were macular edema, uveitis, age-related macular degeneration, blurred optical media, secondary glaucoma and angle-closure glaucoma. All standard clinical examinations were made before surgery, at the 2nd day, 1 week and 1 month after surgery. Tomography of the macula was performed during every examination using Cirrus HD OCT for the analysis of central subfield thickness. Results show that thickening of the macula was slightly higher 1 week and 1 month after operation in comparison with baseline end 2nd day postoperativelly. There was no significant difference in the change of macular thickness in patients who have used topical prostaglandins compared with those who have used other topical medications. Also, there was no difference in macular changes between patients treated with or without mitomycin C. In conclusion, we found a slight subclinical increase in macular thickness after uncomplicated trabeculectomy, for which we considered that was the result in reduction of intraocular pressure after glaucoma surgery. Macular thickening after glaucoma filtering surgery could be a physiological reaction to the stress of the retina caused by a sudden reduction of intraocular pressure and it is the consequence of altered relationship between capillary pressure and interstitial fluid pressure.

  5. Non-invasive method to detect the changes of glucose concentration in whole blood using photometric technique.

    PubMed

    Rajan, Shiny Amala Priya; Towe, Bruce C

    2014-01-01

    A non-invasive method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm, which is a peak absorbance of hemoglobin. As the glucose concentration in blood decreases, its osmolarity also decreases and the Red Blood Cells (RBCs) swell and decrease the path length absorption coefficient. Decreasing absorption coefficient increases the transmission of light through the whole blood. The system was tested with a constructed optical cell that held whole blood in a capillary tube. As expected the light transmitted to the photodiode increases with decreasing glucose concentration. The average response time of the system was between 30-40 seconds.

  6. Non-steady state simulation of BOM removal in drinking water biofilters: model development.

    PubMed

    Hozalski, R M; Bouwer, E J

    2001-01-01

    A numerical model was developed to simulate the non-steady-state behavior of biologically-active filters used for drinking water treatment. The biofilter simulation model called "BIOFILT" simulates the substrate (biodegradable organic matter or BOM) and biomass (both attached and suspended) profiles in a biofilter as a function of time. One of the innovative features of BIOFILT compared to previous biofilm models is the ability to simulate the effects of a sudden loss in attached biomass or biofilm due to filter backwash on substrate removal performance. A sensitivity analysis of the model input parameters indicated that the model simulations were most sensitive to the values of parameters that controlled substrate degradation and biofilm growth and accumulation including the substrate diffusion coefficient, the maximum rate of substrate degradation, the microbial yield coefficient, and a dimensionless shear loss coefficient. Variation of the hydraulic loading rate or other parameters that controlled the deposition of biomass via filtration did not significantly impact the simulation results.

  7. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    NASA Astrophysics Data System (ADS)

    Coso, Dusan

    The first part of the dissertation presents a study that implements micro and nano scale engineered surfaces for enhancement of evaporation and boiling phase change heat transfer in both capillary wick structures and pool boiling systems. Capillary wicking surfaces are integral components of heat pipes and vapor chamber thermal spreaders often used for thermal management of microelectronic devices. In addition, pool boiling systems can be encountered in immersion cooling systems which are becoming more commonly investigated for thermal management applications of microelectronic devices and even data centers. The latent heat associated with the change of state from liquid to vapor, and the small temperature differences required to drive this process yield great heat transfer characteristics. Additionally, since no external energy is required to drive the phase change process, these systems are great for portable devices and favorable for reduction of cost and energy consumption over alternate thermal management technologies. Most state of the art capillary wicks used in these devices are typically constructed from sintered copper media. These porous structures yield high surface areas of thin liquid film where evaporation occurs, thus promoting phase change heat transfer. However, thermal interfaces at particle point contacts formed during the sintering process and complex liquid/vapor flow within these wick structures yield high thermal and liquid flow resistances and limit the maximum heat flux they can dissipate. In capillary wicks the maximum heat flux is typically governed by the capillary or boiling limits and engineering surfaces that delay these limitations and yield structures with large surface areas of thin liquid film where phase change heat transfer is promoted is highly desired. In this study, biporous media consisting of microscale pin fins separated by microchannels are examined as candidate structures for the evaporator wick of a vapor chamber heat pipe. Smaller pores are used to generate high capillary suction, while larger microchannels are used to alleviate flow resistance. The heat transfer coefficient is found to depend on the area coverage of a liquid film with thickness on the order of a few microns near the meniscus of the triple phase contact line. We manipulate the area coverage and film thickness by varying the surface area-to-volume ratio through the use of microstructuring. In some samples, a transition from evaporative heat transfer to nucleate boiling is observed. While it is difficult to identify when the transition occurs, one can identify regimes where evaporation dominates over nucleate boiling and vice versa. Heat fluxes of 277.0 (+/- 9.7) W/cm2 can be dissipated by wicks with heaters of area 1 cm2, while heat fluxes up to 733.1 (+/- 103.4) W/cm2 can be dissipated by wicks with smaller heaters intended to simulate local hot-spots. In pool boiling systems that are encountered in immersion cooling applications, the heat transfer coefficient (HTC) is governed by the bubble nucleation site density and the agitation in the liquid/vapor flow these bubbles produce when they detach from the surface. The nucleation site density and release rate is usually determined by the surface morphology. Another important parameter in pool boiling systems is the maximum heat flux (CHF) that can safely be dissipated. In practice, this quantity is about two orders of magnitude smaller than limitations suggested by kinetic theory. For essentially infinite, smooth, well wetted surfaces, hydrodynamic instability theories capturing liquid/vapor interactions away from the heated surface have been successful in predicting CHF. On finite micro and nano structured surfaces where applying the hydrodynamic theory formulation is not easily justified, other effects may contribute to phase change heat transfer characteristics. Here, we also present a pool boiling study on biporous microstructured surfaces used in capillary wick experiments. Structures are manipulated by reduction of pore size to determine if increased capillary pressure can enhance rewetting from heater edges and delay CHF. A comparative study between the two experimental systems indicates that while the capillary limitation is significant in capillary wick experiments, for these well wetted microstructured surfaces used in pool boiling systems the hydrodynamic limitation defined based on heater size causes the occurrence of CHF. Other hierarchical nanowire surfaces containing periodic microscale cavities are investigated as well and are seen to yield a ˜2.4 fold increase in heat transfer coefficient characteristics while not compromising CHF compared to surfaces where cavities are not present. These studies indicate pathways for enhancement of heat transfer coefficient via implementing hierarchical structures, while no clear method in increasing CHF is determined for finite size surfaces of various morphologies. In the second part of this dissertation, solar energy storage is sought in 'phase change' of photochromic molecular systems: the storage of solar energy in the chemical bonds of photosensitive molecules (a photochemical reaction) and subsequent recovery of the energy in a back reaction in the form of heat, reversibly. These molecular systems are interesting alternatives to photovoltaic and solar thermal technologies which cannot satisfy the needs of load leveling, or for portable municipal heating applications. Typically made of organic compounds, these molecules have become known for rapid decomposition, short energy storage time scales and poor energy storing efficiencies. Thus, they have been abandoned as practical solar energy storage systems in the past several decades. On the other hand, organometallic molecular systems have not been extensively probed for these applications. Recent research has indicated that organometallic (fulvalene)diruthenium FvRu2 has demonstrated excellent energy storage characteristic and durability. Here, we report on a full cycle molecular solar thermal (MOST) microfluidic system based on a bis(1,1-dimethyltridecyl) substituted derivative of FvRu2 that allows for long term solar energy storage (110 J/g), and "on demand" energy release upon exposure to a catalyst. The microfluidic systems developed here are excellent for photoconversion characterization and scrutinizing potential catalysts and can be extended to studying many other molecular systems. The objective of the work presented here is to demonstrate that "on demand" solar energy storage and release in MOST systems is viable and motivate future research on other photochromic organometallic systems.

  8. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton's reagent and lime.

    PubMed

    Yu, Wenbo; Yang, Jiakuan; Shi, Yafei; Song, Jian; Shi, Yao; Xiao, Jun; Li, Chao; Xu, Xinyu; He, Shu; Liang, Sha; Wu, Xu; Hu, Jingping

    2016-05-15

    Conditioning sewage sludge with Fenton's reagent could effectively improve its dewaterability. However, drawbacks of conditioning with Fenton's reagent are requirement of acidic conditions to prevent iron precipitation and subsequent neutralization with alkaline additive to obtain the pH of the filtrate close to neutrality. In this study, roles of pH were thoroughly investigated in the acidification pretreatment, Fenton reaction, and the final filtrate after conditioning. Through the response surface methodology (RSM), the optimal dosages of H2SO4, Fe(2+), H2O2, and lime acted as a neutralizer were found to be 0 (no acidification), 47.9, 34.3 and 43.2 mg/g DS (dry solids). With those optimal doses, water content of the dewatered sludge cakes could be reduced to 55.8 ± 0.6 wt%, and pH of the final filtrate was 6.6 ± 0.2. Fenton conditioning without initial acidification can simplify the conditioning process and reduce the usage of lime. The Fe(3+) content in the sludge cakes showed a close correlation with the dewaterability of conditioned sludge, i.e., the water content of sludge cakes, SRF (specific resistance to filtration), CST (capillary suction time), bound water content, and specific surface area. It indicated that the coagulation by Fe(3+) species in Fenton reaction could play an important role, compared to traditional Fenton oxidation effect on sludge conditioning. Thus, a two-step mechanism of Fenton oxidation and Fe(III) coagulation was proposed in sewage sludge conditioning. The mechanisms include the following: (1) extracellular polymeric substances (EPS) were firstly degraded into dissolved organics by Fenton oxidation; (2) bound water was converted to free water due to degradation of EPS; (3) the sludge particles were disintegrated into small ones by oxidation; (4) Fe(3+) generated from Fenton reaction acted as a coagulant to agglomerate smaller sludge particles into larger dense particles with less bond water; (5) finally, the dewatered sludge cakes were obtained, with less small pores (1-10 nm) that contributed to water affinity, but with more large pores (>10 nm) that contributed to a permeable, rigid lattice structure. Morphology of the Fenton-conditioned sludge cake exhibited a porous structure. The estimated cost of the composite conditioner, Fenton's reagent and lime, is USD$ 43.8/t DS, which is less than that of ferric chloride and lime (USD$ 54/t DS). Furthermore, pH of the final filtrate using this composite conditioner is about 6.6. Comparatively, that using ferric chloride and lime is as high as 12.4. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Using measured 30-150 kVp polychromatic tungsten x-ray spectra to determine ion chamber calibration factors, Nx (Gy C(-1)).

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-10-01

    Two methods for determining ion chamber calibration factors (Nx) are presented for polychromatic tungsten x-ray beams whose spectra differ from beams with known Nx. Both methods take advantage of known x-ray fluence and kerma spectral distributions. In the first method, the x-ray tube potential is unchanged and spectra of differing filtration are measured. A primary standard ion chamber with known Nx for one beam is used to calculate the x-ray fluence spectrum of a second beam. Accurate air energy absorption coefficients are applied to the x-ray fluence spectra of the second beam to calculate actual air kerma and Nx. In the second method, two beams of differing tube potential and filtration with known Nx are used to bracket a beam of unknown Nx. A heuristically derived Nx interpolation scheme based on spectral characteristics of all three beams is described. Both methods are validated. Both methods improve accuracy over the current half value layer Nx estimating technique.

  10. Membrane fouling related to microbial community and extracellular polymeric substances at different temperatures.

    PubMed

    Gao, Da-Wen; Wen, Zhi-Dan; Li, Bao; Liang, Hong

    2013-09-01

    An anoxic-aerobic membrane bioreactor was established to investigate the role of microorganisms and microbial metabolites in membrane fouling at different temperatures. The results showed that the membrane fouling cycle at 303, 293, and 283 K were 30, 29, and 5.5 days, respectively. Polysaccharides dominated the extracellular polymeric substances (EPS) and soluble microbial products (SMP) at 303 and 293 K, instead, proteins was the predominant composition of metabolites at 283 K. The correlation coefficient (r(2)) was calculated to identify the relationship between temperature (T), filtration resistance (R) and compositions of EPS and SMP. In biocake, the EPS polysaccharides (EPSc) was the most correlative factor to temperature (T) and filtration resistance (R); in mixed liquor, the ratio of SMP polysaccharides to proteins (SMPc/p) was the most correlative factor. The microbial community structure and the dominant species was the major reason causing the change of EPS and SMP composition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effects of boundary conditions on the cleaning efficiency of riverbank filtration and artificial groundwater recharge systems regarding bulk parameters and trace pollutants.

    PubMed

    Storck, Florian R; Schmidt, Carsten K; Wülser, Richard; Brauch, Heinz-Jürgen

    2012-01-01

    Drinking water is often produced from surface water by riverbank filtration (RBF) or artificial groundwater recharge (AGR). In this study, an AGR system was exemplarily investigated and results were compared with those of RBF systems, in which the effects of redox milieu, temperature and surface water discharge on the cleaning efficiency were evaluated. Besides bulk parameters such as DOC (dissolved organic carbon), organic trace pollutants including iodinated X-ray contrast media, personal care products, complexing agents, and pharmaceuticals were investigated. At all studied sites, levels of TOC (total organic carbon), DOC, AOX (adsorbable organic halides), SAC (spectral absorption coefficient at 254 nm), and turbidity were reduced significantly. DOC removal was stimulated at higher groundwater temperatures during AGR. Several substances were generally easily removable during both AGR and RBF, regardless of the site, season, discharge or redox regime. For some more refractory substances, however, removal efficiency turned out to be significantly influenced by redox conditions.

  12. Determining tumor blood flow parameters from dynamic image measurements

    NASA Astrophysics Data System (ADS)

    Libertini, Jessica M.

    2008-11-01

    Many recent cancer treatments focus on preventing angiogenesis, the process by which a tumor promotes the growth of large and efficient capillary beds for the increased nourishment required to support the tumor's rapid growth[l]. To measure the efficacy of these treatments in a timely fashion, there is an interest in using data from dynamic sequences of contrast-enhanced medical imaging, such as MRI and CT, to measure blood flow parameters such as perfusion, permeability-surface-area product, and the relative volumes of the plasma and extracellular-extravascular space. Starting with a two compartment model presented by the radiology community[2], this work challenges the application of a simplification to this problem, which was originally developed to model capillary reuptake[3]. While the primary result of this work is the demonstration of the inaccuracy of this simplification, the remainder of the paper is dedicated to presenting alternative methods for calculating the perfusion and plasma volume coefficients. These methods are applied to model data sets based on real patient data, and preliminary results are presented.

  13. Counting polymers moving through a single ion channel

    NASA Astrophysics Data System (ADS)

    Bezrukov, Sergey M.; Vodyanoy, Igor; Parsegian, V. Adrian

    1994-07-01

    THE change in conductance of a small electrolyte-filled capillary owing to the passage of sub-micrometre-sized particles has long been used for particle counting and sizing. A commercial device for such measurements, the Coulter counter, is able to detect particles of sizes down to several tenths of a micrometre1-3. Nuclepore technology (in which pores are etched particle tracks) has extended the lower limit of size detection to 60-nm particles by using a capillary of diameter 0.45 μm (ref. 4). Here we show that natural channel-forming peptides incorporated into a bilayer lipid membrane can be used to detect the passage of single molecules with gyration radii as small as 5-15 Å. From our experiments with alamethicin pores we infer both the average number and the diffusion coefficients of poly(ethylene glycol) molecules in the pore. Our approach provides a means of observing the statistics and mechanics of flexible polymers moving within the confines of precisely defined single-molecule structures.

  14. [Determination of 44 organophosphorus pesticides in food by SPE disk extraction-capillary gas chromatography with pulsed flame photometric detection].

    PubMed

    Luo, Xiao-Fei; Yang, Yuan; Sun, Cheng-Jun

    2012-01-01

    To develop a method for the simultaneous determination of 44 organophosphorus pesticides in food by SPE disk extraction-capillary gas chromatography with pulsed flame photometric detection. Organophosphorus pesticides in food were extracted ultrasonically with water. Then the extract was cleaned-up with SPE disk and eluted with ethyl acetate. Finally the eluent was condensed to 1mL under N2 at 55 degrees C. Gas chromatography was applied for quantitative detection of the organophosphorus pesticides in the sample. The linear range of the method for all the pesticides were in the range of 0.01-0.5 mg/kg with correlation coefficients of 0.992-1.000. The detection limits of the method were in the range of 0.0005-0.01 mg/kg. The recoveries for most pesticides were 60%-120% with relative standard deviations of less than 15%. The method is simple, sensitive, environmentally friendly and suitable for the determination of organophosphorous pesticides in food.

  15. Simultaneous determination of rare earth elements in ore and anti-corrosion coating samples using a portable capillary electrophoresis instrument with contactless conductivity detection.

    PubMed

    Nguyen, Thi Anh Huong; Nguyen, Van Ri; Le, Duc Dung; Nguyen, Thi Thanh Binh; Cao, Van Hoang; Nguyen, Thi Kim Dung; Sáiz, Jorge; Hauser, Peter C; Mai, Thanh Duc

    2016-07-29

    The employment of an in-house-made capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C(4)D) as a simple and inexpensive solution for simultaneous determination of many rare earth elements (REEs) in ore samples from Vietnam, as well as in anti-corrosion coating samples is reported. 14 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) were determined using an electrolyte composed of 20mM arginine and 10mM α-hydroxyisobutyric acid adjusted to pH 4.2 with acetic acid. The best detection limit achieved was 0.24mg/L using the developed CE-C(4)D method. Good agreement between results from CE-C(4)D and the confirmation method (ICP-MS) was achieved, with a coefficient of determination (r(2)) for the two pairs of data of 0.998. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Some properties of electrolyte solutions in nanoconfinement revealed by the measurement of transient filtration potential after pressure switch off.

    PubMed

    Yaroshchuk, Andriy E; Boiko, Yuriy P; Makovetskiy, Alexandre L

    2005-08-16

    We have demonstrated that with a composite nanoporous ceramic membrane in a batch membrane cell it is technically feasible to switch off the trans-membrane hydrostatic pressure difference within tens of milliseconds. That enabled us to resolve practically the whole time evolution of transient filtration potential. Measurements of the latter have been complemented by measurements of steady-state salt rejection by the composite membrane and by measurements of the streaming potential and hydraulic permeability of membrane supports available separately. A theory has been developed in terms of network thermodynamics for the electrical response of a bilayer membrane to a pressure perturbation. In combination with the results of salt rejection measurements, from the time transients of filtration potential we could determine the ion transport numbers within the nanoporous layer. Besides that, from the dependence of steady-state salt rejection on the trans-membrane volume flow, we have determined the diffusion permeability of and the salt reflection coefficient in the nanoporous layer. This has enabled us to estimate the contributions of Donnan and non-Donnan mechanisms to the rejection of ions by the nanoporous membrane used in this study. It has been unexpectedly found that the Donnan exclusion played only a secondary role. Our hypothesis is that the non-Donnan exclusion of ions from the nanopores might be caused by changes in water properties in nanoconfinement. Proceeding from the results of steady-state filtration experiments with the membrane and the support, we also concluded that the nanoporous layer was imperfection-free and had a quite narrow pore size distribution, which made it a suitable object for fundamental studies of ion transfer mechanisms in nanopores.

  17. Prevalence of and risk factors for reduced serum bicarbonate in chronic kidney disease.

    PubMed

    Raphael, Kalani L; Zhang, Yingying; Ying, Jian; Greene, Tom

    2014-10-01

    The prevalence of metabolic acidosis increases as glomerular filtration rate falls. However, most patients with stage 4 chronic kidney disease have normal serum bicarbonate concentration while some with stage 3 chronic kidney disease have low serum bicarbonate, suggesting that other factors contribute to generation of acidosis. The purpose of this study is to identify risk factors, other than reduced glomerular filtration rate, for reduced serum bicarbonate in chronic kidney disease. This is a cross-sectional analysis of baseline data from the Chronic Renal Insufficiency Cohort Study. Multivariable logistic and linear regression models were used to relate predictor variables to the odds of low serum bicarbonate (< 22 mM) compared with normal serum bicarbonate (22-30 mM) and the coefficients of Δ serum bicarbonate concentration. The prevalence of low serum bicarbonate at baseline was 17.3%. Lower estimated glomerular filtration rate had the strongest relationship with low serum bicarbonate. Factors associated with higher odds of low serum bicarbonate, independent of estimated glomerular filtration rate, were urinary albumin/creatinine ≥ 10 mg/g, smoking, anaemia, hyperkalaemia, non-diuretic use and higher serum albumin. These and younger age, higher waist circumference, and use of angiotensin converting enzyme inhibitors or angiotensin receptor blockers associated with negative Δ serum bicarbonate in linear regression models. Several factors not typically considered to associate with reduced serum bicarbonate in chronic kidney disease were identified including albuminuria ≥ 10 mg/g, anaemia, smoking, higher serum albumin, higher waist circumference, and use of angiotensin converting enzyme inhibitors or angiotensin receptor blockers. Future studies should explore the longitudinal effect of these factors on serum bicarbonate concentration. © 2014 Asian Pacific Society of Nephrology.

  18. Filtration stability of living brush mattresses at navigable waterways

    NASA Astrophysics Data System (ADS)

    Sokopp, Manuel

    2017-04-01

    According to the guidelines of the Federal Waterways Engineering and Research Institute in Germany, waterway construction buildings, which include soil bioengineering structures, must be stable against soil displacements. Therefore, willow brush mattresses were tested for their filtration stability in a specially developed process which is based on the testing of geotextiles and armourstones used for navigable waterway constructions. In March 2016 willow brush mattresses made of white (Salix alba L.) or basket willows (Salix viminalis L.) were planted in 16 sample boxes, each with a cross-section area of 30x30 cm. For the tests on filtration stability, the upper 20 cm of the box were separated and placed upside down into a device in which the sample box could be flowed through from below. When a water column of 50 cm above the sample was reached, the water outlet was opened so the water flowed through the sample in the opposite direction, thus simulating drawdown. By the measurements of the pressure sensors above and below the sample, the coefficient of permeability k of the rooted soil during drawdown could be calculated. After this hydropeaking cycle, the soil material that was rinsed out through the willow branches was collected, weighed after drying until weight constancy, and compared with the dry mass of the retained soil material to calculate the share of the total mass. These filtration stability tests were carried out directly after planting the sample boxes, as well as one, three and six months afterwards, each test series with four reruns per willow species. Over time, the increasing root penetration resulted in a significant reduction in the permeability and in more retained soil material.

  19. Produced water re-injection in a non-fresh water aquifer with geochemical reaction, hydrodynamic molecular dispersion and adsorption kinetics controlling: model development and numerical simulation

    NASA Astrophysics Data System (ADS)

    Obe, Ibidapo; Fashanu, T. A.; Idialu, Peter O.; Akintola, Tope O.; Abhulimen, Kingsley E.

    2017-06-01

    An improved produced water reinjection (PWRI) model that incorporates filtration, geochemical reaction, molecular transport, and mass adsorption kinetics was developed to predict cake deposition and injectivity performance in hydrocarbon aquifers in Nigeria oil fields. Thus, the improved PWRI model considered contributions of geochemical reaction, adsorption kinetics, and hydrodynamic molecular dispersion mechanism to alter the injectivity and deposition of suspended solids on aquifer wall resulting in cake formation in pores during PWRI and transport of active constituents in hydrocarbon reservoirs. The injectivity decline and cake deposition for specific case studies of hydrocarbon aquifers in Nigeria oil fields were characterized with respect to its well geometry, lithology, and calibrations data and simulated in COMSOL multiphysics software environment. The PWRI model was validated by comparisons to assessments of previous field studies based on data and results supplied by operator and regulator. The results of simulation showed that PWRI performance was altered because of temporal variations and declinations of permeability, injectivity, and cake precipitation, which were observed to be dependent on active adsorption and geochemical reaction kinetics coupled with filtration scheme and molecular dispersion. From the observed results and findings, transition time t r to cake nucleation and growth were dependent on aquifer constituents, well capacity, filtration coefficients, particle-to-grain size ratio, water quality, and more importantly, particle-to-grain adsorption kinetics. Thus, the results showed that injectivity decline and permeability damage were direct contributions of geochemical reaction, hydrodynamic molecular diffusion, and adsorption kinetics to the internal filtration mechanism, which are largely dependent on the initial conditions of concentration of active constituents of produced water and aquifer capacity.

  20. Measurement of glomerular filtration rate using dynamic magnetic resonance imaging in patients with chronic kidney disease.

    PubMed

    Artunc, Ferruh; Yildiz, Serdar; Boss, Andreas; Frenzel, Thomas; Schlemmer, Heinz-Peter; Schick, Fritz; Risler, Teut; Häring, Hans-Ulrich; Rossi, Cristina

    2011-01-01

    Determination of glomerular filtration rate (GFR) using plasma disappearance curves requires the injection of a filtration marker and repeated timed blood collections. Gadolinium-containing contrast media are excreted exclusively by glomerular filtration and could provide a novel approach to quantifying GFR using magnetic resonance (MR) imaging. The aim of this study was to demonstrate the feasibility of measuring GFR by the clearance of gadolinium-containing contrast medium in patients with chronic kidney disease (CKD). Informed consent was obtained from stable CKD patients in stages 1, 2 or 3 (n=16; 5 women, 11 men; median age 54 years). GFR was measured after a bolus injection of gadobutrol (4 mL, approximately 0.05 mmol/kg) and calculated from the washout of the signal intensity obtained over the liver. The obtained MR-GFR was compared with simultaneously measured plasma clearance of inulin and gadobutrol. Technical failure occurred in 2 patients. The mean obtained MR-GFR was 71 ± 25 (SD) mL/min per 1.73 m² and agreed well with the mean inulin-GFR (70 ± 24 mL/min per 1.73 m²). Pearson's correlation coefficient was r=0.91. The mean of the paired differences was 1 ± 10 mL/min per 1.73 m² and not significantly different from zero. GFR obtained from gadobutrol plasma clearance also agreed well with inulin-GFR and MR-GFR (r=0.92 and r=0.75, respectively). We describe a novel method of determining GFR from MR imaging using a low dose of gadobutrol in patients with reduced GFR that enables the absolute quantification of GFR after routine contrast-enhanced MR imaging.

  1. Suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in dairy cows by using 3 different electronic hand-held devices.

    PubMed

    Kanz, P; Drillich, M; Klein-Jöbstl, D; Mair, B; Borchardt, S; Meyer, L; Schwendenwein, I; Iwersen, M

    2015-09-01

    The objective of this study was to evaluate the suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in 49 prepartum and 191 postpartum Holstein-Friesian cows using 3 different electronic hand-held devices [FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini), NovaVet (NOV, Nova Biomedical)]. The β-hydroxybutyrate (BHBA) concentration in serum harvested from coccygeal blood samples was analyzed in a laboratory and used as a reference value. Capillary samples were obtained from the skin of the exterior vulva by using 1 of 3 different lancets. In all samples, the concentration of BHBA was immediately analyzed with all 3 hand-held devices used in random order. All lancets used in the study were eligible for capillary blood collection but differed in the total number of incisions needed. Spearman correlation coefficients between the BHBA concentrations in capillary blood and the reference test were highly significant with 83% for the FSP, 73% for the NOV, and 63% for the GLX. Using capillary blood, the FSP overestimated the mean BHBA concentration compared with the reference test (+0.08 mmol/L), whereas the GLX and NOV underestimated the mean concentration (-0.07 and -0.01 mmol/L). When a BHBA concentration of 1.2 mmol/L in serum was used to define subclinical ketosis, the corresponding analyses of receiver operating characteristics resulted in optimized thresholds for capillary blood of 1.1 mmol/L for the NOV and GLX devices, and of 1.0 mmol/L for the FSP. Based on these thresholds, sensitivities (Se) and specificities (Sp) were 89 and 84% for the NOV, 80 and 89% for the GLX, and 100 and 76% for the FSP. Based on a serum BHBA concentration of 1.4 mmol/L, analyses of receiver operating characteristics resulted in optimized cut-offs of 1.4 mmol/L for the FSP (Se 100%, Sp 92%), 1.3 mmol/L for the NOV (Se 80%, Sp 95%), and 1.1 mmol/L (Se 90%, Sp 85%) for the GLX. Using these optimized thresholds for the specific hand-held meters, no significant differences between the devices in Se and Sp to detect subclinical ketosis in coccygeal blood were observed. Calculated test characteristics for analyzing capillary blood using the hand-held devices were numerically smaller compared with blood obtained from a coccygeal vessel, but overlapping confidence intervals indicate no statistical difference between the origin of the sample. Hence, this procedure seems to be suitable for ketosis monitoring in dairy cows, but further validation with more data from different farms is recommended. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina.

    PubMed

    Wannaz, Eduardo D; Carreras, Hebe A; Pérez, Carlos A; Pignata, María L

    2006-05-15

    The ability of Tillandsia capillaris Ruiz and Pav. f. capillaris and Tillandsia permutata A. Cast. to accumulate heavy metals was evaluated in relation to potential atmospheric emission sources in Argentina. The sampling areas (n=38) were chosen in the province of Córdoba, located in the center of Argentina, and categorized according to land use, anthropogenic activities and/or distance to potential heavy metal emission sources. In each sampling site, pools of 40-50 individuals of each species were made from plants collected along the four cardinal directions. The concentrations of V, Mn, Fe, Co, Ni, Cu, Zn, Pb and Br of these samples were measured by Total Reflection X-Ray Fluorescence (TXRF) analysis with Synchrotron Radiation. Each species was submitted to a cluster analysis in order to discriminate different groups of heavy metals as tracers of natural or anthropogenic sources. A Contamination Factor (CF) was calculated using the concentrations of the elements in each sample compared to their concentrations in the control samples. Finally, the rank coefficients of correlation between the CFs and the categorical variables characteristic of each site (land use and anthropogenic load) were analyzed. A positive correlation was found for T. capillaris between the CFs of V, Mn, Co, Ni, Cu and Zn and the urban-industrial category, whereas the CF values for Zn and Pb were positively correlated with the road category. In T. permutata there was a positive correlation between the CF of Zn and the urban-industrial category and the CF of Pb with the road category. We therefore conclude that T. capillaris is a more efficient metal accumulator in passive biomonitoring studies.

  3. Decreased retinal capillary flow is not a mediator of the protective myopia-diabetic retinopathy relationship.

    PubMed

    Man, Ryan Eyn Kidd; Sasongko, Muhammad Bayu; Xie, Jing; Best, William J; Noonan, Jonathan E; Lo, Tiffany Ching Shen; Wang, Jie Jin; Luu, Chi D; Lamoureux, Ecosse L

    2014-09-30

    The mechanisms supporting the protective relationship between a longer axial length (AL) and a decreased risk of diabetic retinopathy (DR) remain unclear. Previous studies have demonstrated reduced retinal blood flow in axial myopia, and it has been suggested that the compromised retinal capillaries in diabetes are less likely to leak and rupture as a result of this decreased flow. In this study, we therefore investigated if reduced retinal capillary flow (RCF) is a potential mechanism underpinning this protective relationship. Retinal capillary flow was assessed using the Heidelberg Retinal Flowmeter in 150 eyes of 85 patients with diabetes aged 18+ years from the Royal Victorian Eye and Ear Hospital and St. Vincent's Hospital (Melbourne), Australia. Axial length was measured using the Intraocular Lens Master. Diabetic retinopathy was graded from two-field retinal photographs into none, mild, moderate, and severe DR using the modified Airlie House classification system. A total of 74 out of 150 eyes (49.3%) had DR. A longer AL was associated with decreased odds of DR presence (per mm increase in AL, odds ratio [OR] 0.61, 95% confidence interval [CI] 0.41-0.91) and DR severity (OR: 0.65; 95% CI: 0.44-0.95). However, no association was found between AL and RCF (per mm increase in AL, regression coefficient [β] -1.80, 95% CI -13.50 to 9.50) or between RCF and DR (per unit increase in RCF, OR 1.00; 95% CI 0.99-1.00). Our finding suggests that diminished RCF may not be a major factor underlying the protective association between axial elongation and DR. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  4. Technical Note: Quantitative dynamic contrast-enhanced MRI of a 3-dimensional artificial capillary network.

    PubMed

    Gaass, Thomas; Schneider, Moritz Jörg; Dietrich, Olaf; Ingrisch, Michael; Dinkel, Julien

    2017-04-01

    Variability across devices, patients, and time still hinders widespread recognition of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as quantitative biomarker. The purpose of this work was to introduce and characterize a dedicated microchannel phantom as a model for quantitative DCE-MRI measurements. A perfusable, MR-compatible microchannel network was constructed on the basis of sacrificial melt-spun sugar fibers embedded in a block of epoxy resin. Structural analysis was performed on the basis of light microscopy images before DCE-MRI experiments. During dynamic acquisition the capillary network was perfused with a standard contrast agent injection system. Flow-dependency, as well as inter- and intrascanner reproducibility of the computed DCE parameters were evaluated using a 3.0 T whole-body MRI. Semi-quantitative and quantitative flow-related parameters exhibited the expected proportionality to the set flow rate (mean Pearson correlation coefficient: 0.991, P < 2.5e-5). The volume fraction was approximately independent from changes of the applied flow rate through the phantom. Repeatability and reproducibility experiments yielded maximum intrascanner coefficients of variation (CV) of 4.6% for quantitative parameters. All evaluated parameters were well in the range of known in vivo results for the applied flow rates. The constructed phantom enables reproducible, flow-dependent, contrast-enhanced MR measurements with the potential to facilitate standardization and comparability of DCE-MRI examinations. © 2017 American Association of Physicists in Medicine.

  5. Characterization of gold nanoparticles with different hydrophilic coatings via capillary electrophoresis and Taylor dispersion analysis. Part I: determination of the zeta potential employing a modified analytic approximation.

    PubMed

    Pyell, Ute; Jalil, Alaa H; Pfeiffer, Christian; Pelaz, Beatriz; Parak, Wolfgang J

    2015-07-15

    Taking gold nanoparticles with different hydrophilic coatings as an example, it is investigated whether capillary electrophoresis in combination with Taylor dispersion analysis allows for the precise determination of mean electrophoretic mobilities, electrophoretic mobility distributions, and zeta potentials in a matrix of exactly known composition and the calibration-free determination of number-weighted mean hydrodynamic radii. Our experimental data confirm that the calculation of the zeta potential for colloidal nanoparticles with ζ>25 mV requires to take the relaxation effect into account. Because of the requirement to avoid particle-wall interactions, a solution of disodiumtetraborate decahydrate (borax) in deionized water had been selected as suitable electrolyte. Measurements of the electrophoretic mobility at different ionic strength and application of the analytic approximation developed by Ohshima show that in the present case of a buffered solution with a weak electrolyte co-ion and a strong electrolyte counterion, the effective ionic drag coefficient should be approximated with the ionic drag coefficient of the counterion. The obtained results are in good agreement with theoretical expectations regarding the dependence of the zeta potential and the electrokinetic surface charge density on the ionic strength. We also show that Taylor dispersion analysis (besides estimation of the number-weighted mean hydrodynamic radius) provides additional information on the type and width of the number-weighted particle distribution. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Aerosolized PGE1, PGI2 and nitroprusside protect against vascular leakage in lung ischaemia-reperfusion.

    PubMed

    Schütte, H; Löckinger, A; Seeger, W; Grimminger, F

    2001-07-01

    High permeability oedema is an important feature in lung injury secondary to ischaemia-reperfusion. This study investigated the influence of aerosolized prostaglandin E1 (PGE1), prostaglandin I2 (PCI2) and the nitric oxide (NO)-donor, sodium nitroprusside (SNP) on microvascular barrier function in pulmonary ischaemia-reperfusion. Buffer-perfused rabbit lungs were exposed to 180 or 210 min of warm ischaemia while maintaining anoxic ventilation and a positive intravascular pressure. Reperfusion provoked a transient, mostly precapillary elevation of vascular resistance, followed by a severe increase of the capillary filtration coefficient (Kfc) versus nonischaemic controls (3.17+/-0.34 versus 0.85+/-0.05 cm3 x s(-1) cmH2O(-1) x g(-1) x 10(-4) after 30 min of reperfusion), and progressive oedema formation. Short-term aerosolization of SNP, PGE1 or PGI2 at the beginning of ischaemia largely suppressed the Kfc increase (1.36+/-0.22, 1.32+/-0.23 and 1.32+/-0.22 cm3 x s(-1) x cmH2O(-1) x g(-1) x 10(-4), respectively) and oedema formation. In contrast, application prior to reperfusion was much less effective, with some reduction of Kfc increase by PGI2 and SNP and no effect of PGE, (1.79+/-0.31, 2.2+/-0.53 and 3.2+/-0.05 cm3 x s(-1) x cmH2O(-1) x g(-1) x 10(-4), respectively). Haemodynamics, including microvascular pressure, were only marginally affected by the chosen doses of aerosolized vasodilators. It is concluded that short-term aerosolization of prostaglandin E1, prostaglandin I2 and sodium nitroprusside at the onset of ischaemia is highly effective in maintaining endothelial barrier properties in pulmonary ischaemia-reperfusion. This effect is apparently attributable to nonvasodilatory mechanisms exerted by these agents. Alveolar deposition of prostaglandins and/or nitric oxide donors by the aerosol technique may offer pulmonary protection in ischaemia-reperfusion injury.

  7. Effects of hypercapnia and NO synthase inhibition in sustained hypoxic pulmonary vasoconstriction

    PubMed Central

    2012-01-01

    Background Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction. This study investigated, if the beneficial effects of hypercapnia with acidosis are preserved during sustained hypoxia as it occurs, e.g in permissive hypercapnic ventilation in intensive care units. Furthermore, the effects of NO synthase inhibitors under such conditions were examined. Method We employed isolated perfused and ventilated rabbit lungs to determine the influence of hypercapnia with or without acidosis (pH corrected with sodium bicarbonate), and inhibitors of endothelial as well as inducible NO synthase on acute or sustained HPV (180 min) and endothelial permeability. Results In hypercapnic acidosis, HPV was intensified in sustained hypoxia, in contrast to hypercapnia without acidosis when HPV was amplified during both phases. L-NG-Nitroarginine (L-NNA), a non-selective NO synthase inhibitor, enhanced acute as well as sustained HPV under all conditions, however, the amplification of sustained HPV induced by hypercapnia with or without acidosis compared to normocapnia disappeared. In contrast 1400 W, a selective inhibitor of inducible NO synthase (iNOS), decreased HPV in normocapnia and hypercapnia without acidosis at late time points of sustained HPV and selectively reversed the amplification of sustained HPV during hypercapnia without acidosis. Hypoxic hypercapnia without acidosis increased capillary filtration coefficient (Kfc). This increase disappeared after administration of 1400 W. Conclusion Hypercapnia with and without acidosis increased HPV during conditions of sustained hypoxia. The increase of sustained HPV and endothelial permeability in hypoxic hypercapnia without acidosis was iNOS dependent. PMID:22292558

  8. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin.

    PubMed

    Wagner, Mark C; Campos-Bilderback, Silvia B; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M; Wean, Sarah E; Wei, Yuan; Satlin, Lisa M; Wiggins, Roger C; Witzmann, Frank A; Molitoris, Bruce A

    2016-02-01

    Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. Copyright © 2016 by the American Society of Nephrology.

  9. Proximal Tubules Have the Capacity to Regulate Uptake of Albumin

    PubMed Central

    Wagner, Mark C.; Campos-Bilderback, Silvia B.; Chowdhury, Mahboob; Flores, Brittany; Lai, Xianyin; Myslinski, Jered; Pandit, Sweekar; Sandoval, Ruben M.; Wean, Sarah E.; Wei, Yuan; Satlin, Lisa M.; Wiggins, Roger C.; Witzmann, Frank A.

    2016-01-01

    Evidence from multiple studies supports the concept that both glomerular filtration and proximal tubule (PT) reclamation affect urinary albumin excretion rate. To better understand these roles of glomerular filtration and PT uptake, we investigated these processes in two distinct animal models. In a rat model of acute exogenous albumin overload, we quantified glomerular sieving coefficients (GSC) and PT uptake of Texas Red-labeled rat serum albumin using two-photon intravital microscopy. No change in GSC was observed, but a significant decrease in PT albumin uptake was quantified. In a second model, loss of endogenous albumin was induced in rats by podocyte-specific transgenic expression of diphtheria toxin receptor. In these albumin-deficient rats, exposure to diphtheria toxin induced an increase in albumin GSC and albumin filtration, resulting in increased exposure of the PTs to endogenous albumin. In this case, PT albumin reabsorption was markedly increased. Analysis of known albumin receptors and assessment of cortical protein expression in the albumin overload model, conducted to identify potential proteins and pathways affected by acute protein overload, revealed changes in the expression levels of calreticulin, disabled homolog 2, NRF2, angiopoietin-2, and proteins involved in ATP synthesis. Taken together, these results suggest that a regulated PT cell albumin uptake system can respond rapidly to different physiologic conditions to minimize alterations in serum albumin level. PMID:26054544

  10. Edemagenic gain and interstitial fluid volume regulation.

    PubMed

    Dongaonkar, R M; Quick, C M; Stewart, R H; Drake, R E; Cox, C S; Laine, G A

    2008-02-01

    Under physiological conditions, interstitial fluid volume is tightly regulated by balancing microvascular filtration and lymphatic return to the central venous circulation. Even though microvascular filtration and lymphatic return are governed by conservation of mass, their interaction can result in exceedingly complex behavior. Without making simplifying assumptions, investigators must solve the fluid balance equations numerically, which limits the generality of the results. We thus made critical simplifying assumptions to develop a simple solution to the standard fluid balance equations that is expressed as an algebraic formula. Using a classical approach to describe systems with negative feedback, we formulated our solution as a "gain" relating the change in interstitial fluid volume to a change in effective microvascular driving pressure. The resulting "edemagenic gain" is a function of microvascular filtration coefficient (K(f)), effective lymphatic resistance (R(L)), and interstitial compliance (C). This formulation suggests two types of gain: "multivariate" dependent on C, R(L), and K(f), and "compliance-dominated" approximately equal to C. The latter forms a basis of a novel method to estimate C without measuring interstitial fluid pressure. Data from ovine experiments illustrate how edemagenic gain is altered with pulmonary edema induced by venous hypertension, histamine, and endotoxin. Reformulation of the classical equations governing fluid balance in terms of edemagenic gain thus yields new insight into the factors affecting an organ's susceptibility to edema.

  11. Distribution of polycyclic aromatic hydrocarbons in southern Chesapeake Bay surface water: Evaluation of three methods for determining freely dissolved water concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, K.E.; Dickhut, R.M.

    1997-03-01

    Gas sparging, semipermeable-membrane devices (SPMDs), and filtration with sorption of dissolved polycyclic aromatic hydrocarbons (PAHs) to XAD-2 resin were evaluated for determining the concentrations of freely dissolved PAHs in estuarine waters of southern Chesapeake Bay at sites ranging from rural to urban and highly industrialized. Gas sparging had significant sampling artifacts due to particle scavenging by rising bubbles, and SPMDs were kinetically limited for four-ring and larger PAHs relative to short-term temporal changes in water concentrations. Filtration with sorption of the dissolved contaminant fraction to XAD-2 resin was found to be the most accurate and feasible method for determining concentrationsmore » of freely dissolved PAHs in estuarine water. Concentrations and distribution coefficients of dissolved and particulate PAHs were measured using the filtration/XAD-2 method. Concentrations of PAHs in surface waters of southern Chesapeake Bay were higher than those reported for the northern bay; concentrations in the Elizabeth River were elevated relative to all other sites. A gradient for particulate PAHs was observed from urban to remote sites. No seasonal trends were observed in dissolved or particle-bound PAH fractions at any site. Distributions of dissolved and particulate PAHs in surface waters of the Chesapeake Bay are near equilibrium at all locations and during all seasons.« less

  12. Quantitative analysis of pyoluteorin in anti-fungal fermentation liquor of Pseudomonas species by capillary zone electrophoresis with UV-vis detector.

    PubMed

    Wang, Qiu-Ling; Zhang, Xue-Hong; Fan, Liu-Yin; Zhang, Wei; Xu, Yu-Qian; Hu, Hong-Bo; Cao, Cheng-Xi

    2005-11-05

    This paper investigated potential utility of capillary zone electrophoresis (CZE) for very succinct but robust quantitative analysis of pyoluteorin (Plt) in anti-fungal fermentation liquor of Pseudomonas species. The experimental conditions for the separation and quantification of Plt were optimized at first. The optimized conditions are: 80 mmol/L pH 8.40 Gly-NaOH buffer, 51 cm total length (42 cm effective) and 75 microm I.D. capillary, 230 nm wavelength, 25 kV, 13 mbar 10s pressure sample injection and 24 degrees C air-cooling. Under the optimized conditions, the migration times of Plt and the internal standard phenobarbital are 2.09 and 2.49 min, respectively, the linear response of Plt concentration ranges from 5.0 to 1000 microg/mL with high correlation coefficient (r=0.99977, n=9), the limits of detection (LOD) and quantification (LOQ) for Plt are 0.66 and 2.2 microg/mL, the precision values (expressed as R.S.D.) of intra- and inter-day are 1.19-1.94% and 1.55-6.21%, respectively, the recoveries of Plt at three concentration levels of 750, 250 and 50 microg/mL range from 90.31% to 97.85% and to 98.96%, respectively. The developed method can be well used for the quantification of Plt in the fermentation liquor.

  13. Capillary-HPLC with tandem mass spectrometry in analysis of alkaloid dyestuffs - a new approach.

    PubMed

    Dąbrowski, Damian; Lech, Katarzyna; Jarosz, Maciej

    2018-05-01

    Development of the identification method of alkaloid compounds in Amur cork tree as well as not examined so far Oregon grape and European Barberry shrubs are presented. The novel approach to separation of alkaloids was applied and the capillary-high-performance liquid chromatography (capillary-HPLC) system was used, which has never previously been reported for alkaloid-based dyestuffs analysis. Its optimization was conducted with three different stationary phases (unmodified octadecylsilane-bonded silica, octadecylsilane modified with polar groups and silica-bonded pentaflourophenyls) as well as with different solvent buffers. Detection of the isolated compounds was carried out using diode-array detector (DAD) and tandem mass spectrometer with electrospray ionization (ESI MS/MS). The working parameters of ESI were optimized, whereas the multiple reactions monitoring (MRM) parameters of MS/MS detection were chosen based on the product ion spectra of the quasi-molecular ions. Calibration curve of berberine has been estimated (y = 1712091x + 4785.03 with the correlation coefficient 0.9999). Limit of detection and limit of quantification were calculated to be 3.2 and 9.7 ng/mL, respectively. Numerous alkaloids (i.e., berberine, jatrorrhizine and magnoflorine, as well as phellodendrine, menisperine and berbamine) were identified in the extracts from alkaloid plants and silk and wool fibers dyed with these dyestuffs, among them their markers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Experimentally determined spectral optimization for dedicated breast computed tomography.

    PubMed

    Prionas, Nicolas D; Huang, Shih-Ying; Boone, John M

    2011-02-01

    The current study aimed to experimentally identify the optimal technique factors (x-ray tube potential and added filtration material/thickness) to maximize soft-tissue contrast, microcalcification contrast, and iodine contrast enhancement using cadaveric breast specimens imaged with dedicated breast computed tomography (bCT). Secondarily, the study aimed to evaluate the accuracy of phantom materials as tissue surrogates and to characterize the change in accuracy with varying bCT technique factors. A cadaveric breast specimen was acquired under appropriate approval and scanned using a prototype bCT scanner. Inserted into the specimen were cylindrical inserts of polyethylene, water, iodine contrast medium (iodixanol, 2.5 mg/ml), and calcium hydroxyapatite (100 mg/ml). Six x-ray tube potentials (50, 60, 70, 80, 90, and 100 kVp) and three different filters (0.2 mm Cu, 1.5 mm Al, and 0.2 mm Sn) were tested. For each set of technique factors, the intensity (linear attenuation coefficient) and noise were measured within six regions of interest (ROIs): Glandular tissue, adipose tissue, polyethylene, water, iodine contrast medium, and calcium hydroxyapatite. Dose-normalized contrast to noise ratio (CNRD) was measured for pairwise comparisons among the six ROIs. Regression models were used to estimate the effect of tube potential and added filtration on intensity, noise, and CNRD. Iodine contrast enhancement was maximized using 60 kVp and 0.2 mm Cu. Microcalcification contrast and soft-tissue contrast were maximized at 60 kVp. The 0.2 mm Cu filter achieved significantly higher CNRD for iodine contrast enhancement than the other two filters (p = 0.01), but microcalcification contrast and soft-tissue contrast were similar using the copper and aluminum filters. The average percent difference in linear attenuation coefficient, across all tube potentials, for polyethylene versus adipose tissue was 1.8%, 1.7%, and 1.3% for 0.2 mm Cu, 1.5 mm Al, and 0.2 mm Sn, respectively. For water versus glandular tissue, the average percent difference was 2.7%, 3.9%, and 4.2% for the three filter types. Contrast-enhanced bCT, using injected iodine contrast medium, may be optimized for maximum contrast of enhancing lesions at 60 kVp with 0.2 mm Cu filtration. Soft-tissue contrast and microcalcification contrast may also benefit from lower tube potentials (60 kVp). The linear attenuation coefficients of water and polyethylene slightly overestimate the values of their corresponding tissues, but the reported differences may serve as guidance for dosimetry and quality assurance using tissue equivalent phantoms.

  15. Improved diffusivity of NaOH solution in autohydrolyzed poplar sapwood chips for chemi-mechanical pulp production.

    PubMed

    Zhang, Honglei; Hou, Qingxi; Liu, Wei; Yue, Zhen; Jiang, Xiaoya; Ma, Xixi

    2018-07-01

    This work investigated the changes in the physical structure of autohydrolyzed poplar sapwood chips and the effect on the subsequent alkali liquor diffusion properties for chemi-mechanical pulping (CMP). An alkali impregnation process was conducted by using the autohydrolyzed poplar sapwood with different levels of autohydrolysis intensity. The results showed that the volume porosity, water constraint capacity, and saturated water absorption of the autohydrolyzed poplar sapwood chips increased. Also, the effective capillary cross-sectional area (ECCSA) in the radial direction and the diffusion coefficients of NaOH solution in both the radial and axial directions all increased. Autohydrolysis pretreatment enhanced the alkali liquor diffusion properties in poplar sapwood chips, and the diffusion coefficient was increased more greatly in the radial direction than that in the axial direction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Surface Deformation by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Eckart; Dreyer, Michael E.

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The scientific aims are to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat transfer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. Correlations for the effective contact angle and the heat transfer coefficient shall be delivered as a function of the relevant dimensionsless parameters. The data will be used for benchmarking of commercial CFD codes and the tank design (using these codes) of future cryogenic upper stages.

  17. Effectiveness of MiniMed 640G with SmartGuard® System for prevention of hypoglycemia in pediatric patients with type 1 diabetes mellitus.

    PubMed

    Villafuerte Quispe, Beatriz; Martín Frías, María; Roldán Martín, M Belén; Yelmo Valverde, Rosa; Álvarez Gómez, M Ángeles; Barrio Castellanos, Raquel

    2017-04-01

    Treatment with the MiniMed 640G-SmartGuard ® system (640G-SG, sensor-augmented insulin pump system with low predicted glucose suspension feature) has been shown to decrease risk of hypoglycemia without altering metabolic control in patients with T1DM. The study purpose was to assess the impact of 640G-SG on hipoglycemia frequency and on metabolic control in a pediatric population with T1DM. A retrospective study on 21 children treated with 640G-SG. HbA1C, mean blood glucose (mg/dl), glucose variation coefficient, frequency of hypoglycemia (<70mg/dl) and hyperglycemia (>180mg/dl), daily capillary blood glucose measurements, ketosis/diabetic ketoacidosis, and severe hypoglycemic episodes were analyzed and compared before and during use of the system. Fasting blood glucose, frequency of sensor use and number and duration of system suspension events were also assessed in the last month of use of the system. All patients used the system continuously (5.0±2.1 months), with a median sensor use of 92%. Significant decreases were seen in hypoglycemia frequency (10.4±5.2% to 7.6±3.3%, p=.044) and number of capillary blood glucose measurements (11.3±2,2 to 8.1±2,1, p<.001), and there was no increase in hyperglycemia frequency (p=.65). Mean system suspension time was 3.1±1.2hours/day (37.3% of overnight stops). Changes in HbA1c, mean blood glucose, and variation coefficient were not significant. No patient experienced diabetic ketoacidosis or severe hypoglycemia. The sensor-augmented pump with the predictive low glucose suspension management system, as implemented in the 640G-SG system, can help avoid risk of hypoglycemia without significantly affecting metabolic control or causing diabetic ketoacidosis, and decrease the burden of additional capillary blood glucose measurements in our pediatric cohort. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Resonant Acoustic Measurement of Vapor Phase Transport Phenomenon

    NASA Astrophysics Data System (ADS)

    Schuhmann, R. J.; Garrett, S. L.; Matson, J. V.

    2002-12-01

    A major impediment to accurate non steady-state diffusion measurements is the ability to accurately measure and track a rapidly changing gas concentration without disturbing the system. Non-destructive methods that do not interfere with system dynamics have been developed in the past. These methods, however, have tended to be cumbersome or inaccurate at low concentrations. A new experimental approach has been developed to measure gaseous diffusion in free air and through porous materials. The method combines the traditional non steady-state laboratory methodology with resonant acoustic gas analysis. A phase-locked-loop (PLL) resonance frequency tracker is combined with a thermally insulated copper resonator. A piston sealed with a metal bellows excites the fundamental standing wave resonance of the resonator. The PLL maintains a constant phase difference (typically 90§) between the accelerometer mounted on the piston and a microphone near the piston to track the resonance frequency in real time. A capillary or glass bead filled core is fitted into an o-ring sealed opening at the end of the resonator opposite the bellows. The rate at which the tracer gas is replaced by air within the resonator is controlled by the diffusion coefficient of the gas in free air through the capillary (DA) or by the effective diffusion coefficient of the gas through the core (De). The mean molecular weight of the gas mixture in the resonator is directly determined six times each minute from the ratio of the absolute temperature to the square of the fundamental acoustic resonance frequency. Average system stability (temperature divided by frequency squared) is better than 350 ppm. DA values for a 0.3-inch diameter capillary were in excellent agreement with published values. De values for porous media samples (0.5 mm glass beads) of four different lengths (1 through 4 inches) using three different tracer gases (He, CH4, Kr) will be reported. Comments will be offered regarding tracer gas selection and device orientation and their effect on experimental results. [Work supported by the Office of Naval Research.

  19. Defining the Molecular Character of the Developing and Adult Kidney Podocyte

    PubMed Central

    Brunskill, Eric W.; Georgas, Kylie; Rumballe, Bree; Little, Melissa H.; Potter, S. Steven

    2011-01-01

    Background The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Although mesodermal in origin it sends out axonal like projections that wrap around the capillaries. These extend yet finer projections, the foot processes, which interdigitate, leaving between them the slit diaphragms, through which the glomerular filtrate must pass. The podocytes are a subject of keen interest because of their key roles in kidney development and disease. Methodology/Principal Findings In this report we identified and characterized a novel transgenic mouse line, MafB-GFP, which specifically marked the kidney podocytes from a very early stage of development. These mice were then used to facilitate the fluorescent activated cell sorting based purification of podocytes from embryos at E13.5 and E15.5, as well as adults. Microarrays were then used to globally define the gene expression states of podocytes at these different developmental stages. A remarkable picture emerged, identifying the multiple sets of genes that establish the neuronal, muscle, and phagocytic properties of podocytes. The complete combinatorial code of transcription factors that create the podocyte was characterized, and the global lists of growth factors and receptors they express were defined. Conclusions/Significance The complete molecular character of the in vivo podocyte is established for the first time. The active molecular functions and biological processes further define their unique combination of features. The results provide a resource atlas of gene expression patterns of developing and adult podocytes that will help to guide further research of these incredible cells. PMID:21931791

  20. Use of a water treatment sludge in a sewage sludge dewatering process

    NASA Astrophysics Data System (ADS)

    Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata

    2018-02-01

    The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

  1. Novel silicon microchannels device for use in red blood cell deformability studies

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Lin; Liao, Yan-Jian; Zhang, Wen-Xian

    2001-10-01

    Currently, a number of techniques are used to access cell deformability. We study a novel silicon microchannels device for use in red blood cell deformability. The channels are produced in silicon substrate using microengineering technology. The microgrooves formed in the surface of a single-crystal silicon substrate. They were converted to channels by tightly covering them with an optical flat glass plate. An array of flow channels (number 950 in parallel) have typical dimensions of 5 micrometers width X 5.5 Xm depth, and 30 micrometers length. There the RBC's are forced to pass through channels. Thus, the microchannels are used to simulate human blood capillaries. It provides a specific measurement of individual cell in terms of both flow velocity profile and an index of cell volume while the cell flow through the channels. It dominates the complex cellular flow behavior, such as, the viscosity of whole blood is a nonlinear function of shear rate, index of filtration, etc.

  2. A novel approach for mitigation of membrane fouling: Concomitant use of flocculant and magnetic powder.

    PubMed

    Wang, Hongyu; Chen, Zhouzhou; Miao, Jia; Li, Yaozhong

    2016-06-01

    Membrane fouling alleviation by addition of poly dimethyl diallyl ammonium chloride (PDMDAAC) and magnetic powder (Fe3O4) was investigated. It was found that magnetic powder associated with PDMDAAC had a good performance on mitigation of membrane fouling, improvement in dehydrogenase activity and enhancement of biomass growth. The optimal dose of PDMDAAC was determined by using constant pressure dead-end filtration unit. Maximum permeate flux was attained at 400mg/L of PDMDAAC addition. Continuous experiment was conducted in a submerged membrane bioreactor (MBR) system and biomass parameters such as soluble microbial products (SMP), extracellular polymeric substances (EPS), dehydrogenase activity, zeta potential, and capillary suction time (CST) were analyzed. Best results were obtained with a combination of 120mg/L of magnetic powder and 400mg/L of PDMDAAC. This study results demonstrated that PDMDAAC played a major role in SMPc and EPSc reduction, whereas magnetic powder had better performance in decreasing SMPc and EPSp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Quantifying domain-ligand affinities and specificities by high-throughput holdup assay

    PubMed Central

    Vincentelli, Renaud; Luck, Katja; Poirson, Juline; Polanowska, Jolanta; Abdat, Julie; Blémont, Marilyne; Turchetto, Jeremy; Iv, François; Ricquier, Kevin; Straub, Marie-Laure; Forster, Anne; Cassonnet, Patricia; Borg, Jean-Paul; Jacob, Yves; Masson, Murielle; Nominé, Yves; Reboul, Jérôme; Wolff, Nicolas; Charbonnier, Sebastian; Travé, Gilles

    2015-01-01

    Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this aim, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to a thousand domain-motif equilibrium binding affinities per day. Extracts of overexpressed domains are incubated with peptide-coated resins and subjected to filtration. Binding affinities are deduced from microfluidic capillary electrophoresis of flow-throughs. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from Human Papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human PDZome. We obtained exquisite sequence-dependent binding profiles, describing quantitatively the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has a wide potential for quantifying the specificities of interactomes. PMID:26053890

  4. aPKCλ/ι and aPKCζ Contribute to Podocyte Differentiation and Glomerular Maturation

    PubMed Central

    Hartleben, Björn; Widmeier, Eugen; Suhm, Martina; Worthmann, Kirstin; Schell, Christoph; Helmstädter, Martin; Wiech, Thorsten; Walz, Gerd; Leitges, Michael; Schiffer, Mario

    2013-01-01

    Precise positioning of the highly complex interdigitating podocyte foot processes is critical to form the normal glomerular filtration barrier, but the molecular programs driving this process are unknown. The protein atypical protein kinase C (aPKC)—a component of the Par complex, which localizes to tight junctions and interacts with slit diaphragm proteins—may play a role. Here, we found that the combined deletion of the aPKCλ/ι and aPKCζ isoforms in podocytes associated with incorrectly positioned centrosomes and Golgi apparatus and mislocalized molecules of the slit diaphragm. Furthermore, aPKC-deficient podocytes failed to form the normal network of foot processes, leading to defective glomerular maturation with incomplete capillary formation and mesangiolysis. Our results suggest that aPKC isoforms orchestrate the formation of the podocyte processes essential for normal glomerular development and kidney function. Defective aPKC signaling results in a dramatically simplified glomerular architecture, causing severe proteinuria and perinatal death. PMID:23334392

  5. Determination of solid-liquid partition coefficients (Kd) for the herbicides isoproturon and trifluralin in five UK agricultural soils.

    PubMed

    Cooke, Cindy M; Shaw, George; Collins, Chris D

    2004-12-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14C-isoproturon and 14C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (Kd values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (Kd range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (Kd range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography.

  6. Extensive database of liquid phase diffusion coefficients of some frequently used test molecules in reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography.

    PubMed

    Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre

    2016-07-15

    Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Pulmonary Catherization Data Correlate Poorly with Renal Function in Heart Failure.

    PubMed

    Masha, Luke; Stone, James; Stone, Danielle; Zhang, Jun; Sheng, Luo

    2018-04-10

    The mechanisms of renal dysfunction in heart failure are poorly understood. We chose to explore the relationship of cardiac filling pressures and cardiac index (CI) in relation to renal dysfunction in advanced heart failure. To determine the relationship between renal function and cardiac filling pressures using the United Network of Organ Sharing (UNOS) pulmonary artery catherization registry. Patients over the age of 18 years who were listed for single-organ heart transplantation were included. Exclusion criteria included a history of mechanical circulatory support, previous transplantation, any use of renal replacement therapy, prior history of malignancy, and cardiac surgery, amongst others. Correlations between serum creatinine (SCr) and CI, pulmonary capillary wedge pressure (PCWP), pulmonary artery systolic pressure (PASP), and pulmonary artery diastolic pressure (PADP) were assessed by Pearson correlation coefficients and simple linear regression coefficients. Pearson correlation coefficients between SCr and PCWP, PASP, and PADP were near zero with values of 0.1, 0.07, and 0.08, respectively (p < 0.0001). A weak negative correlation coefficient between SCr and CI was found (correlation coefficient, -0.045, p = 0.027). In a subgroup of young patients unlikely to have noncardiac etiologies, no significant correlations between these values were identified. These findings suggest that, as assessed by pulmonary artery catherization, none of the factors - PCWP, PASP, PADP, or CI - play a prominent role in cardiorenal syndromes. © 2018 S. Karger AG, Basel.

  8. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods.

    PubMed

    Liu, Fenwu; Zhou, Jun; Wang, Dianzhan; Zhou, Lixiang

    2012-01-01

    The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121 degrees C for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4(+)-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4(+)-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of sludge filtrate and resulting dewatered sludge cakes, bioleaching has potential as an approach for improving sludge dewaterability and reducing the cost of subsequent reutilization or disposal of dewatered sludge.

  9. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples.

    PubMed

    Souza, Israel D; Melo, Lidervan P; Jardim, Isabel C S F; Monteiro, Juliana C S; Nakano, Ana Marcia S; Queiroz, Maria Eugênia C

    2016-08-17

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL(-1) (LLOQ) to 400 ng mL(-1) with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from -1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Determination of nitrosourea compounds in brain tissue by gas chromatography and electron capture detection.

    PubMed

    Hassenbusch, S J; Colvin, O M; Anderson, J H

    1995-07-01

    A relatively simple, high-sensitivity gas chromatographic assay is described for nitrosourea compounds, such as BCNU [1,3-bis(2-chloroethyl)-1-nitrosourea] and MeCCNU [1-(2-chloroethyl)-3-(trans-4-methylcyclohexyl)-1-nitrosourea], in small biopsy samples of brain and other tissues. After extraction with ethyl acetate, secondary amines in BCNU and MeCCNU are derivatized with trifluoroacetic anhydride. Compounds are separated and quantitated by gas chromatography using a capillary column with temperature programming and an electron capture detector. Standard curves of BCNU indicate a coefficient of variance of 0.066 +/- 0.018, a correlation coefficient of 0.929, and an extraction efficiency from whole brain of 68% with a minimum detectable amount of 20 ng in 5-10 mg samples. The assay has been facile and sensitive in over 1000 brain biopsy specimens after intravenous and intraarterial infusions of BCNU.

  11. Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance.

    PubMed

    Callaghan, P T; Jolley, K W; Lelievre, J

    1979-10-01

    Pulsed field gradient nuclear magnetic resonance has been used to measure water self-diffusion coefficients in the endosperm tissue of wheat grains as a function of the tissue water content. A model that confines the water molecules to a randomly oriented array of capillaries with both transverse dimension less than 100 nm has been used to fit the data and give a unique diffusion coefficient at each water content. The diffusion rates vary from 1.8 x 10(-10) m2s-1 at the lowest to 1.2 x 10(-9) m2s-1 at the highest moisture content. This variation can be explained in terms of an increase in water film thickness from approximately 0.5 to approximately 2.5 nm over the moisture range investigated (200-360 mg g-1).

  12. Fluid and solute transfer characteristics in a dialyzer with a high-performance membrane.

    PubMed

    Mineshima, Michio

    2011-01-01

    To date, many types of high-flux dialyzers with high-performance membranes have been developed. They seem to have a higher internal filtration flow rate (Q(IF)) because of a higher ultrafiltration coefficient. In the health reimbursement system in Japan, commercially available dialyzers are categorized into five types based on their β(2)-microglobulin clearance (K(BMG)) values. Although the K(BMG) value was not correlated strongly with the Q(IF) value for 26 types of commercially available dialyzers, almost all the dialyzers with a higher Q(IF) value had a higher KBMG value. These dialyzers seem to have a higher convective transport because of internal filtration in addition to diffusive transport. We measured the blood flow velocity in a cross-sectional plane of the dialyzer using pulse Doppler ultra-sonography to evaluate QIF. It is a useful method for the bedside monitoring because it is noninvasive to the patient and produces reliable data with a higher reproducibility. On the other hand, membrane fouling occurs more easily in higher Q(IF) dialyzers, compared with conventional dialyzers, because of the higher degree of membrane fouling. Internal filtration-enhanced hemodialysis (IFEHD) using these dialyzers, therefore, has the advantage of increasing solute removal efficiency by enhancing convective transport and the simultaneous disadvantage of decreasing solute removal efficiency by causing membrane fouling. Thus, IFEHD treatment should be performed using a dialyzer with a high-performance membrane to ensure that the advantage is superior to the disadvantage. Copyright © 2011 S. Karger AG, Basel.

  13. Comparative study on occurrence characteristics of matrix water in static and gas double-dynamic solid-state fermentations using low-field NMR and MRI.

    PubMed

    He, Qin; Chen, Hong-zhang

    2015-12-01

    The water in a solid substrate is generally divided into three forms: hygroscopic, capillary, and free. However, there are few methods available for detecting the contents of different states of water in substrates. In this paper, low-field NMR and MRI were used to analyze the water occurrence characteristics of steam-exploded corn straw in solid-state fermentation (SSF). A significant linear relationship was found between the total NMR peak areas and the total water contents with a correlation coefficient of 0.993. It was further proved to be successful in comparing the contents and distributions of different states of water in static SSF and gas double-dynamic SSF (GDD-SSF). The results showed that among the three states of water, capillary water was the main form of water present and lost in substrates during fermentation. Total water and capillary water contents did not significantly differ as a result of different sample treatments, but hygroscopic water and free water contents in static SSF were respectively 0.38 and 2.98 times that in GDD-SSF with a packing height of 3 cm after fermentation. A relatively uniform water distribution and deep-depth region for microbial growth were found in GDD-SSF, suggesting that GDD-SSF was more suitable for industrialization. This technology has great potential for achieving efficient on-line water supply through water loss detection in SSF.

  14. Determination of low molecular weight alcohols including fusel oil in various samples by diethyl ether extraction and capillary gas chromatography.

    PubMed

    Woo, Kang-Lyung

    2005-01-01

    Low molecular weight alcohols including fusel oil were determined using diethyl ether extraction and capillary gas chromatography. Twelve kinds of alcohols were successfully resolved on the HP-FFAP (polyethylene glycol) capillary column. The diethyl ether extraction method was very useful for the analysis of alcohols in alcoholic beverages and biological samples with excellent cleanliness of the resulting chromatograms and high sensitivity compared to the direct injection method. Calibration graphs for all standard alcohols showed good linearity in the concentration range used, 0.001-2% (w/v) for all alcohols. Salting out effects were significant (p < 0.01) for the low molecular weight alcohols methanol, isopropanol, propanol, 2-butanol, n-butanol and ethanol, but not for the relatively high molecular weight alcohols amyl alcohol, isoamyl alcohol, and heptanol. The coefficients of variation of the relative molar responses were less than 5% for all of the alcohols. The limits of detection and quantitation were 1-5 and 10-60 microg/L for the diethyl ether extraction method, and 10-50 and 100-350 microg/L for the direct injection method, respectively. The retention times and relative retention times of standard alcohols were significantly shifted in the direct injection method when the injection volumes were changed, even with the same analysis conditions, but they were not influenced in the diethyl ether extraction method. The recoveries by the diethyl ether extraction method were greater than 95% for all samples and greater than 97% for biological samples.

  15. Measurement of tafenoquine (WR 238605) in human plasma and venous and capillary blood by high-pressure liquid chromatography.

    PubMed

    Kocisko, D A; Walsh, D S; Eamsila, C; Edstein, M D

    2000-04-01

    A simple, rapid, and accurate high-pressure liquid chromatographic method with fluorescence detection is described for the measurement of tafenoquine (TQ) (also known as WR 238605) from human plasma and venous and capillary blood. Tafenoquine was measured in plasma and venous blood following protein precipitation. Chromatographic separation was achieved using a Waters S5P Spherisorb phenyl analytical cartridge (150 mm x 4.6 mm I.D., 5 microm particle size) (Waters, Milford, MA, USA) and a mobile phase of 22 mM ammonium acetate, pH 4:acetonitrile (45:55, vol/vol). The flow rate was 1.5 mL/min and the retention times were approximately 3.5 min for WR VIIIAc (internal standard) and approximately 7.8 min for TQ. The interday and intraday coefficients of variation of TQ over a concentration range of 20-1000 ng/mL in plasma were < or =8.4% and in venous blood were < or =9.6%. The mean percent difference between added concentration and obtained concentration was 7.3% in plasma and 8.5% in venous blood over the corresponding concentration range. The limit of quantitation for both fluids was 10 ng/mL. Tafenoquine concentrations were comparable between capillary and venous blood with no significant difference between measurement in both biological fluids. The clinical application of the method was demonstrated by measuring plasma and whole blood concentrations of TQ from participants in a chemosuppression trial of the drug against malaria infections in Thailand.

  16. Quality evaluation of Guan-Xin-Ning injection based on fingerprint analysis and simultaneous separation and determination of seven bioactive constituents by capillary electrophoresis.

    PubMed

    Xu, Liying; Chang, Ruimiao; Chen, Meng; Li, Lou; Huang, Yayun; Zhang, Hongfen; Chen, Anjia

    2017-12-01

    The purpose of this study was to develop a comprehensive, rapid and practical capillary electrophoresis (CE) method for quality control (QC) of Guan-Xin-Ning (GXN) injection based on fingerprint analysis and simultaneous separation and determination of seven constituents. In fingerprint analysis, a capillary zone electrophoresis (CZE) method with a running buffer of 30 mM borate solution (pH 9.3) was established. Meanwhile, ten batches of samples were used to establish the fingerprint electropherogram and 34 common peaks were obtained within 20 min. The RSD of relative migration times (RMT) and relative peak areas (RPA) were less than 5%. In order to further evaluate the quality of GXN injection, a micellar electrokinetic chromatography (MEKC) method was developed for simultaneous separation and determination of bioactive constituents. Seven components reached baseline separation with a running buffer containing 35 mM SDS and 45 mM borate solution (pH 9.3). A good linearity was obtained with correlation coefficients from 0.9906 to 0.9997. The LOD and LOQ ranged from 0.12 to 1.50 μg/mL and from 0.40 to 4.90 μg/mL, respectively. The recoveries ranged between 99.0 and 104.4%. Therefore, it was concluded that the proposed method can be used for full-scale quality analysis of GXN injection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Carotenoids concentration of Gac (Momordica cochinchinensis Spreng.) fruit oil using cross-flow filtration technology.

    PubMed

    Mai, Huỳnh Cang; Truong, Vinh; Debaste, Frédéric

    2014-11-01

    Gac (Momordica cochinchinensis Spreng.) fruit, a traditional fruit in Vietnam and other countries of eastern Asia, contains an oil rich in carotenoids, especially lycopene and β-carotene. Carotenoids in gac fruit oil were concentrated using cross-flow filtration. In total recycle mode, effect of membrane pore size, temperature, and transmembrane pressure (TMP) on permeate flux and on retention coefficients has been exploited. Resistance of membrane, polarization concentration, and fouling were also analyzed. Optimum conditions for a high permeate flux and a good carotenoids retention are 5 nm, 2 bars, and 40 °C of membrane pore size, TMP, and temperature, respectively. In batch mode, retentate was analyzed through index of acid, phospholipids, total carotenoids content (TCC), total antioxidant activity, total soluble solids, total solid content, color measurement, and viscosity. TCC in retentate is higher 8.6 times than that in feeding oil. Lipophilic antioxidant activities increase 6.8 times, while hydrophilic antioxidant activities reduce 40%. The major part of total resistance is due to polarization (55%) while fouling and intrinsic membrane contribute about 30% and 24%, respectively. © 2014 Institute of Food Technologists®

  18. Adsorption and bioadsorption of granular activated carbon (GAC) for dissolved organic carbon (DOC) removal in wastewater.

    PubMed

    Xing, W; Ngo, H H; Kim, S H; Guo, W S; Hagare, P

    2008-12-01

    In this study, the performances of GAC adsorption and GAC bioadsorption in terms of dissolved organic carbon (DOC) removal were investigated with synthetic biologically treated sewage effluent (BTSE), synthetic primary treated sewage effluent (PTSE), real BTSE and real PTSE. The main aims of this study are to verify and compare the efficiency of DOC removal by GAC (adsorption) and acclimatized GAC (bioadsorption). The results indicated that the performance of bioadsorption was significantly better than that of adsorption in all cases, showing the practical use of biological granular activated carbon (BGAC) in filtration process. The most significance was observed at a real PTSE with a GAC dose of 5g/L, having 54% and 96% of DOC removal by adsorption and bioadsorption, respectively. In addition, it was found that GAC adsorption equilibrium was successfully predicted by a hybrid Langmuir-Freundlich model whilst integrated linear driving force approximation (LDFA)+hybrid isotherm model could describe well the adsorption kinetics. Both adsorption isotherm and kinetic coefficients determined by these models will be useful to model the adsorption/bioadsorption process in DOC removal of BGAC filtration system.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavira, José A.; Jesus, Walleska de; Camara-Artigas, Ana

    The haemoglobin II from the clam L. pectinata has been crystallized using counter-diffusion in single capillary in the presence of agarose to improve crystal quality. Initial phases have been obtained by molecular replacement. Haemoglobin II is one of three haemoglobins present in the cytoplasm of the Lucina pectinata mollusc that inhabits the Caribbean coast. Using HBII purified from its natural source, crystallization screening was performed using the counter-diffusion method with capillaries of 0.2 mm inner diameter. Crystals of HbII suitable for data collection and structure determination were grown in the presence of agarose at 0.1%(w/v) in order to improve theirmore » quality. The crystals belong to the tetragonal space group P4{sub 2}2{sub 1}2, with unit-cell parameters a = b = 73.92, c = 152.35 Å, and diffracted X-rays to a resolution of better than 2.0 Å. The asymmetric unit is a homodimer with a corresponding Matthews coefficient (V{sub M}) of 3.15 Å{sup 3} Da{sup −1} and a solvent content of 61% by volume.« less

  20. Capillary zone electrophoresis for fatty acids with chemometrics for the determination of milk adulteration by whey addition.

    PubMed

    de Oliveira Mendes, Thiago; Porto, Brenda Lee Simas; Bell, Maria José Valenzuela; Perrone, Ítalo Tuler; de Oliveira, Marcone Augusto Leal

    2016-12-15

    Adulteration of milk with whey is difficult to detect because these two have similar physical and chemical characteristics. The traditional methodologies to monitor this fraud are based on the analysis of caseinomacropeptide. The present study proposes a new approach to detect and quantify this fraud using the fatty acid profiles of milk and whey. Fatty acids C14:0, C16:0, C18:0, C18:1, C18:2 and C18:3 were selected by gas chromatography associated with discriminant analysis to differentiate milk and whey, as they are present in quite different amounts. These six fatty acids were quantified within a short time by capillary zone electrophoresis in a set of adulterated milk samples. The correlation coefficient between the true values of whey addition and the experimental values obtained by this technique was 0.973. The technique is thus useful for the evaluation of milk adulteration with whey, contributing to the quality control of milk in the dairy industry. Copyright © 2016. Published by Elsevier Ltd.

  1. Qualitative analysis of mycotoxins using micellar electrokinetic capillary chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, R.D.; Sepaniak, M.J.

    1993-05-01

    Naturally occurring mycotoxins are separated using micellar electrokinetic capillary chromatography. Trends in the retention of these toxins, resulting from changes in mobile-phase composition and pH, are reported and presented as a means of alleviating coelution problems. Two sets of mobile-phase conditions are determined that provide unique separation selectivity. The facile manner by which mobile-phase conditions can be altered, without changes in instrumental configuration, allowed the acquisition of two distinctive, fully resolved chromatograms of 10 mycotoxins in a period of approximately 45 min. By adjusting retention times, using indigenous or added components in mycotoxin samples as normalization standards, it is possiblemore » to obtain coefficients of variation in retention time that average less than 1%. The qualitative capabilities of this methodology are evaluated by separating randomly generated mycotoxin-interferent mixtures. In this study, the utilization of normalized retention times applied to separations obtained with two sets of mobile-phase conditions permitted the identification of all the mycotoxins in five unknown samples without any misidentifications. 24 refs., 3 figs., 2 tabs.« less

  2. Scaling law on formation and rupture of a dynamical liquid bridge

    NASA Astrophysics Data System (ADS)

    Zhang, Huang; Zhang, Zehao; Liu, Qianfeng; Li, Shuiqing; Department of Thermal Engineering, Tsinghua University Collaboration; Institute of Nuclear Energy; Technology, Tsinghua University Collaboration

    2017-11-01

    The formation and breakup of a pendular liquid bridge in dynamic state is investigated experimentally. The experimental setup arises from a system to measure the coefficient of restitution (COR) of a glass sphere impacting and bouncing on a wetted surface. We compare the effect of surface tension and gravity on the liquid bridge rupture by the capillary length κ-1. For water and liquid 1 (50% water mixed with 50% glycerol), the gravity is dominant on the liquid bridge breakup. And we find that the rupture distance is in good linear trend with the non-dimensional number G by the scaling law analysis. Further, for liquid 2 (25% water mixed with 75% glycerol) that is relatively high viscous, the linear changing of the rupture distance with the capillary number Ca is found. The relation of the rupture distance with G and Ca would be helpful in understanding the complex behavior of the dynamical liquid bridge. This work was funded by the Major State Basic Research Development Program of China (Grant No. 2016YFC0203705) and the China Postdoctoral Science Foundation (Grant No. 2016M601024).

  3. Determination of penicillamine in pharmaceuticals and human plasma by capillary electrophoresis with in-column fiber optics light-emitting diode induced fluorescence detection.

    PubMed

    Yang, Xiupei; Yuan, Hongyan; Wang, Chunling; Su, Xiaodong; Hu, Li; Xiao, Dan

    2007-10-18

    In this paper, a capillary electrophoresis (CE) system with in-column fiber optics light-emitting diode (LED) induced fluorescence detection was developed for the determination of penicillamine (PA). The influence of buffer concentration, buffer pH, applied voltage and injection time was systematically investigated. Optimum separation conditions were obtained with 10 mM borate buffer at pH 9.1, applied voltage 20 kV and 8 s hydrodynamic injection at 30 mbar. The detection system displayed linear dynamic range from 3.2 x 10(-7) to 4.8 x 10(-5) mol L(-1) with a correlation coefficient of 0.9991 and good repeatability (R.S.D.=2.46%). The method was applied to the determination of PA in commercial tablets and human plasma, which the recoveries of standard PA added to tablets and human plasma sample were found to be in the range of 96.26-102.68 and 91.10-99.35%, respectively. The proposed method is cheap, rapid, easy, and accurate, and can be successfully applied to the formulation analysis and bioanalysis.

  4. Determination of food colorants in a wide variety of food matrices by microemulsion electrokinetic capillary chromatography. Considerations on the found concentrations and regulated consumption limits.

    PubMed

    Bordagaray, Ane; Garcia-Arrona, Rosa; Vidal, Maider; Ostra, Miren

    2018-10-01

    Color additives are used widely by the food industry to confer a desirable appearance. Some of the most used colorants (Tartrazine (E102), Sunset Yellow (E110), Red Allure (E129) and Blue Brilliant (E133)) were determined in this study using microemulsion electrokinetic capillary chromatography (MEEKC). Regression coefficients were greater than 0.9981; intra- and inter-day precisions, in terms of percentage RSD, were less than 7.01% and 8.55%, respectively; recoveries were between 90 and 100% in most cases. LODs and LOQs ranged from 0.24 to 1.21 mg L -1 and from 0.80 to 4.03 mg L -1 , respectively. Moreover, MEEKC consumed less solvent than HPLC, making the analysis more environmentally friendly. The proposed method is suitable for the determination of colorants in a wide variety of foods. Results showed that consumers should be aware of colorants to avoid consumption exceeding recommended amounts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Simultaneous determination of clebopride and a major metabolite N-desbenzylclebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry.

    PubMed

    Robinson, P R; Jones, M D; Maddock, J; Rees, L W

    1991-03-08

    A procedure for the simultaneous assay of clebopride and its major metabolite N-desbenzylclebopride in plasma has been developed. The method utilizes capillary gas chromatography-negative-ion chemical ionization mass spectrometry with selected-ion monitoring of characteristic ions. Employing 2-ethoxy analogues as internal standards, the benzamides were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyric anhydride produced volatile mono- and diheptafluorobutyryl derivatives of clebopride and N-desbenzylclebopride, respectively. The methane negative-ion mass spectra of these derivatives exhibited intense high-mass ions ideal for specific quantitation of low levels in biological fluids. Using this procedure the recovery of the drug and metabolite from human plasma was found to be 84.4 +/- 1.5% (n = 3) and 77.4 +/- 4.7% (n = 3), respectively, at 0.5 ng/ml. Measurement of both compounds down to 0.10 ng/ml with a coefficient of variation of less than 10.5% is described. Plasma levels are reported in four volunteers up to 24 h following oral administration of 1 mg of clebopride malate salt.

  6. A microanalytical method for ammonium and short-chain primary aliphatic amines using precolumn derivatization and capillary liquid chromatography.

    PubMed

    Moliner-Martínez, Y; Herráez-Hernández, R; Campíns-Falcó, P

    2007-09-14

    A new microscale method is presented for the determination of ammonium and primary short-chain aliphatic amines (methylamine, ethylamine, propylamine, n-butylamine and n-pentylamine) in water. The assay uses precolumn derivatization with the reagent o-phthaldialdehyde (OPA) in combination with the thiol N-acetyl-L-cysteine (NAC), and capillary liquid chromatography with UV detection at 330 nm. The described method is very simple and rapid as no preconcentration of the analytes is necessary, and the volume of sample required is only 0.1 mL. Under the proposed conditions good linearity has been obtained up to a concentration of the analytes of 10.0 mgL(-1), the limits of detection being of 8-50 microgL(-1). No matrix effect was found, and recoveries between 97 and 110% were obtained. The precision of the method was good, and the achieved variation coefficients were below 12%. The reliability of the proposed approach has been tested by analyzing a microsample of fogwater collected from leaf surfaces.

  7. Screening determination of four amphetamine-type drugs in street-grade illegal tablets and urine samples by portable capillary electrophoresis with contactless conductivity detection.

    PubMed

    Nguyen, Thi Anh Huong; Pham, Thi Ngoc Mai; Ta, Thi Thao; Nguyen, Xuan Truong; Nguyen, Thi Lien; Le, Thi Hong Hao; Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C; Mai, Thanh Duc

    2015-12-01

    A simple and inexpensive method for the identification of four substituted amphetamines, namely, 3,4-methylenedioxy methamphetamine (MDMA), methamphetamine (MA), 3,4-methylenedioxy amphetamine (MDA) and 3,4-methylenedioxy-N-ethylamphetamine (MDEA) was developed using an in-house constructed semi-automated portable capillary electrophoresis instrument (CE) with capacitively coupled contactless conductivity detection (C(4)D). Arginine 10mM adjusted to pH4.5 with acetic acid was found to be the optimal background electrolyte for the CE-C(4)D determination of these compounds. The best detection limits achieved with and without a sample preconcentration process were 10ppb and 500ppb, respectively. Substituted amphetamines were found in different seized illicit club drug tablets and urine samples collected from different suspected users. Good agreement between results from CE-C(4)D and those with the confirmation method (GC-MS) was achieved, with correlation coefficients for the two pairs of data of more than 0.99. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  8. [Determination of penicillin intermediate and three penicillins in milk by high performance capillary electrophoresis].

    PubMed

    Tian, Chunqiu; Tan, Huarong; Gao, Liping; Shen, Huqin; Qi, Kezong

    2011-11-01

    A high performance capillary electrophoresis (HPCE) method was developed for the simultaneous determination of penicillin intermediate and penicillins in milk, including 6-amino-penicillanic acid (6-APA), penicillin G (PEN), ampicillin (AMP) and amoxicillin (AMO). The main parameters including the ion concentration and pH value of running buffer, separation voltage and column temperature were optimized systematically by orthogonal test. The four penicillins (PENs) were baseline separated within 4.5 min with the running buffer of 40 mmol/L potassium dihydrogen phosphate-20 mmol/L borax solution (pH 7.8), separation voltage of 28 kV and column temperature of 30 degrees C. The calibration curves showed good linearity in the range of 1.56 - 100 mg/L, and the correlation coefficients (r2) were between 0.9979 and 0.9998. The average recoveries at three spiked levels were in the range of 84.91% - 96.72% with acceptable relative standard deviations (RSDs) of 1.11% - 9.11%. The method is simple, fast, accurate and suitable for the determination of penicillins in real samples.

  9. Investigation of six bioactive anthraquinones in slimming tea by accelerated solvent extraction and high performance capillary electrophoresis with diode-array detection.

    PubMed

    Wang, Ning; Su, Ming; Liang, Shuxuan; Sun, Hanwen

    2016-05-15

    A rapid and effective method for effective separation and rapid simultaneous determination of six bioactive anthraquinones by capillary zone electrophoresis was developed. An accelerated solvent extraction procedure was used for the extraction of anthraquinones from slimming tea. Under the optimized conditions, the effective separation of six anthraquinones was achieved within 8 min. Good linearity was achieved, with a correlation coefficient (r) of ⩾ 0.999. The limit of detection ranged from 0.33 to 1.40 μg mL(-1). The intra- and inter-day relative standard deviation (RSD) of the six analytes was in the range of 2.3-3.9% and 3.2-4.9%, respectively. The average recovery of the six analytes from real tea samples was in the range of 86.15-98.30% with the RSD of 1.04-4.99%. The developed and validated method has speediness, high sensitivity, recovery and precision, and can be applied for the quality control of slimming tea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Accurate determination of the diffusion coefficient of proteins by Fourier analysis with whole column imaging detection.

    PubMed

    Zarabadi, Atefeh S; Pawliszyn, Janusz

    2015-02-17

    Analysis in the frequency domain is considered a powerful tool to elicit precise information from spectroscopic signals. In this study, the Fourier transformation technique is employed to determine the diffusion coefficient (D) of a number of proteins in the frequency domain. Analytical approaches are investigated for determination of D from both experimental and data treatment viewpoints. The diffusion process is modeled to calculate diffusion coefficients based on the Fourier transformation solution to Fick's law equation, and its results are compared to time domain results. The simulations characterize optimum spatial and temporal conditions and demonstrate the noise tolerance of the method. The proposed model is validated by its application for the electropherograms from the diffusion path of a set of proteins. Real-time dynamic scanning is conducted to monitor dispersion by employing whole column imaging detection technology in combination with capillary isoelectric focusing (CIEF) and the imaging plug flow (iPF) experiment. These experimental techniques provide different peak shapes, which are utilized to demonstrate the Fourier transformation ability in extracting diffusion coefficients out of irregular shape signals. Experimental results confirmed that the Fourier transformation procedure substantially enhanced the accuracy of the determined values compared to those obtained in the time domain.

  11. Halogenated methyl-phenyl ethers (anisoles) in the environment: determination of vapor pressures, aqueous solubilities, Henry's law constants, and gas/water- (Kgw), n-octanol/water- (Kow) and gas/n-octanol (Kgo) partition coefficients.

    PubMed

    Pfeifer, O; Lohmann, U; Ballschmiter, K

    2001-11-01

    Halogenated methyl-phenyl ethers (methoxybenzenes, anisoles) are ubiquitous organics in the environment although they are not produced in industrial quantities. Modelling the fate of organic pollutants such as halogenated anisoles requires a knowledge of the fundamental physico-chemical properties of these compounds. The isomer-specific separation and detection of 60 of the 134 possible congeners allowing an environmental fingerprinting are reported in this study. The vapor pressure p0(L) of more than 60 and further physico-chemical properties of 26 available congeners are given. Vapor pressures p0(L), water solubilities S(L)W, and n-octanol/water partition coefficients Kow were determined by capillary HR-GC (High Resolution Gas Chromatography) on a non-polar phase and by RP-HPLC (Reversed Phase High Performance Liquid Chromatography) on a C18 phase with chlorobenzenes as reference standards. From these experimental data the Henry's law constants H, and the gas/water Kgw and gas/n-octanol Kgo partition coefficients were calculated. We found that vapor pressures, water solubilities, and n-octanol/water partition coefficients of the halogenated anisoles are close to those of the chlorobenzenes. A similar environmental fate of both groups can, therefore, be predicted.

  12. Increase of Total Nephron Albumin Filtration and Reabsorption in Diabetic Nephropathy.

    PubMed

    Mori, Keita P; Yokoi, Hideki; Kasahara, Masato; Imamaki, Hirotaka; Ishii, Akira; Kuwabara, Takashige; Koga, Kenichi; Kato, Yukiko; Toda, Naohiro; Ohno, Shoko; Kuwahara, Koichiro; Endo, Tomomi; Nakao, Kazuwa; Yanagita, Motoko; Mukoyama, Masashi; Mori, Kiyoshi

    2017-01-01

    The amount of albumin filtered through the glomeruli and reabsorbed at the proximal tubules in normal and in diabetic kidneys is debated. The megalin/cubilin complex mediates protein reabsorption, but genetic knockout of megalin is perinatally lethal. To overcome current technical problems, we generated a drug-inducible megalin-knockout mouse line, megalin(lox/lox);Ndrg1-CreER T2 (iMegKO), in which megalin expression can be shut off at any time by administration of tamoxifen (Tam). Tam administration in adult iMegKO mice decreased the expression of renal megalin protein by 92% compared with that in wild-type C57BL/6J mice and almost completely abrogated renal reabsorption of intravenously injected retinol-binding protein. Furthermore, urinary albumin excretion increased to 175 μg/d (0.46 mg albumin/mg creatinine) in Tam-treated iMegKO mice, suggesting that this was the amount of total nephron albumin filtration. By comparing Tam-treated, streptozotocin-induced diabetic iMegKO mice with Tam-treated nondiabetic iMegKO mice, we estimated that the development of diabetes led to a 1.9-fold increase in total nephron albumin filtration, a 1.8-fold increase in reabsorption, and a significant reduction in reabsorption efficiency (86% efficiency versus 96% efficiency in nondiabetic mice). Insulin treatment normalized these abnormalities. Akita;iMegKO mice, another model of type 1 diabetes, showed equivalent results. Finally, nondiabetic iMegKO mice had a glomerular sieving coefficient of albumin of 1.7×10 -5 , which approximately doubled in diabetic iMegKO mice. This study reveals actual values and changes of albumin filtration and reabsorption in early diabetic nephropathy in mice, bringing new insights to our understanding of renal albumin dynamics associated with the hyperfiltration status of diabetic nephropathy. Copyright © 2016 by the American Society of Nephrology.

  13. A comparative evaluation of the analytical performances of Capillarys 2 Flex Piercing, Tosoh HLC-723 G8, Premier Hb9210, and Roche Cobas c501 Tina-quant Gen 2 analyzers for HbA1c determination.

    PubMed

    Wu, Xiaobin; Chao, Yan; Wan, Zemin; Wang, Yunxiu; Ma, Yan; Ke, Peifeng; Wu, Xinzhong; Xu, Jianhua; Zhuang, Junhua; Huang, Xianzhang

    2016-10-15

    Haemoglobin A 1c (HbA 1c ) is widely used in the management of diabetes. Therefore, the reliability and comparability among different analytical methods for its detection have become very important. A comparative evaluation of the analytical performances (precision, linearity, accuracy, method comparison, and interferences including bilirubin, triglyceride, cholesterol, labile HbA 1c (LA 1c ), vitamin C, aspirin, fetal haemoglobin (HbF), and haemoglobin E (Hb E)) were performed on Capillarys 2 Flex Piercing (Capillarys 2FP) (Sebia, France), Tosoh HLC-723 G8 (Tosoh G8) (Tosoh, Japan), Premier Hb9210 (Trinity Biotech, Ireland) and Roche Cobas c501 (Roche c501) (Roche Diagnostics, Germany). A good precision was shown at both low and high HbA 1c levels on all four systems, with all individual CVs below 2% (IFCC units) or 1.5% (NGSP units). Linearity analysis for each analyzer had achieved a good correlation coefficient (R 2 > 0.99) over the entire range tested. The analytical bias of the four systems against the IFCC targets was less than ± 6% (NGSP units), indicating a good accuracy. Method comparison showed a great correlation and agreement between methods. Very high levels of triglycerides and cholesterol (≥ 15.28 and ≥ 8.72 mmol/L, respectively) led to falsely low HbA 1c concentrations on Roche c501. Elevated HbF induced false HbA 1c detection on Capillarys 2FP (> 10%), Tosoh G8 (> 30%), Premier Hb9210 (> 15%), and Roche c501 (> 5%). On Tosoh G8, HbE induced an extra peak on chromatogram, and significantly lower results were reported. The four HbA 1c methods commonly used with commercial analyzers showed a good reliability and comparability, although some interference may falsely alter the result.

  14. Behavior of water in supercritical CO2: adsorption and capillary condensation in porous media

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Bryan, C. R.; Dewers, T. A.; Wang, Y.

    2011-12-01

    The chemical potential of water in supercritical CO2 (scCO2) may play an important role in water adsorption, capillary condensation, and evaporation under partially saturated conditions at geologic CO2 storage sites, especially if initially anhydrous CO2 is injected. Such processes may affect residual water saturations, relative permeability, shrink/swell of clays, and colloidal transport. We have developed a thermodynamic model of water or brine film thickness as a function of water relative humidity in scCO2. The model is based on investigations of liquid water configuration in the vadose zone and uses the augmented Young-Laplace equation, which incorporates both adsorptive and capillary components. The adsorptive component is based on the concept of disjoining pressure, which reflects force per area normal to the solid and water/brine-scCO2 interfaces. The disjoining pressure includes van der Waals, electrostatic, and structural interactions. The van der Waals term includes the effects of mutual dissolution of CO2 and water in the two fluid phases on partial molar volumes, dielectric coefficients, and refractive indices. Our approach treats the two interfaces as asymmetric surfaces in terms of charge densities and electrostatic potentials. We use the disjoining pressure isotherm to evaluate the type of wetting (e.g., total or partial wetting) for common reservoir and caprock minerals and kerogen. The capillary component incorporates water activity and is applied to simple pore geometries with slits and corners. Finally, we compare results of the model to a companion study by the coauthors on measurement of water adsorption to mineral phases using a quartz-crystal microbalance. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Eco-friendly ionic liquid assisted capillary electrophoresis and α-acid glycoprotein-assisted liquid chromatography for simultaneous determination of anticancer drugs in human fluids.

    PubMed

    Abd El-Hady, Deia; Albishri, Hassan M; Rengarajan, Rajesh

    2015-06-01

    In the current work, two eco-friendly analytical methods based on capillary electrophoresis (CE) and reversed phase liquid chromatography (RPLC) were developed for simultaneous determination of the most commonly used anticancer drugs for Hodgkin's disease: methotrexate (MTX), vinblastine, chlorambucil and dacarbazine. A background electrolyte (BGE) of 12.5 mmol/L phosphate buffer at pH 7.4 and 0.1 µmol/L 1-butyl-3-methyl imidazolium bromide (BMImBr) ionic liquid (IL) was used for CE measurements at 250 nm detection wavelength, 20 kV applied voltage and 25 °C. The rinsing protocol was significantly improved to reduce the adsorption of IL on the interior surface of capillary. Moreover, RPLC method was developed on α-1-acid glycoprotein (AGP) column. Mobile phase was 10 mmol/L phosphate buffer at pH 6.0 (100% v/v) and flow rate at 0.1 mL/min. As AGP is a chiral column, it was successfully separated l-MTX from its enantiomer impurity d-MTX. Good linearity of quantitative analysis was achieved with coefficients of determinations (r(2) ) >0.995. The stability of drugs measurements was investigated with adequate recoveries up to 24 h storage time under ambient temperature. The limits of detection were <50 and 90 ng/mL by CE and RPLC, respectively. The using of short-chain IL as an additive in BGE achieved 600-fold sensitivity enhancement compared with conventional Capillary Zone Electrophoresis (CZE). Therefore, for the first time, the proposed methods were successfully applied to determine simultaneously the analytes in human plasma and urine samples at clinically relevant concentrations with fast and simple pretreatments. Developed IL-assisted CE and RPLC methods were also applied to measure MTX levels in patients' samples over time. Copyright © 2014 John Wiley & Sons, Ltd.

  16. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  17. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  18. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  19. Evaluation of the Correlation Coefficient of Polyethylene Glycol Treated and Direct Prolactin Results and Comparability with Different Assay System Results.

    PubMed

    Pal, Shyamali

    2017-12-01

    The presence of Macro prolactin is a significant cause of elevated prolactin resulting in misdiagnosis in all automated systems. Poly ethylene glycol (PEG) pretreatment is the preventive process but such process includes the probability of loss of a fraction of bioactive prolactin. Surprisingly, PEG treated EQAS & IQAS samples in Cobas e 411 are found out to be correlating with direct results of at least 3 immunoassay systems and treated and untreated Cobas e 411 results are comparable by a correlation coefficient. Comparison of EQAS, IQAS and patient samples were done to find out the trueness of such correlation factor. Study with patient's results have established the correlation coefficient is valid for very small concentration of prolactin also. EQAS, IQAS and 150 patient samples were treated with PEG and prolactin results of treated and untreated samples obtained from Roche Cobas e 411. 25 patient's results (treated) were compared with direct results in Advia Centaur, Architect I & Access2 systems. Correlation coefficient was obtained from trend line of the treated and untreated results. Two tailed p-value obtained from regression coefficient(r) and sample size. The correlation coefficient is in the range (0.761-0.771). Reverse correlation range is (1.289-1.301). r value of two sets of calculated results were 0.995. Two tailed p- value is zero approving dismissal of null hypothesis. The z-score of EQAS does not always assure authenticity of resultsPEG precipitation is correlated by the factor 0.761 even in very small concentrationsAbbreviationsGFCgel filtration chromatographyPEGpolyethylene glycolEQASexternal quality assurance systemM-PRLmacro prolactinPRLprolactinECLIAelectro-chemiluminescence immunoassayCLIAclinical laboratory improvement amendmentsIQASinternal quality assurance systemrregression coefficient.

  20. Effects of Arg-Gly-Asp sequence peptide and hyperosmolarity on the permeability of interstitial matrix and fenestrated endothelium in joints.

    PubMed

    Poli, A; Mason, R M; Levick, J R

    2004-09-01

    The aims were to assess the contribution of arg-gly-asp (RGD) mediated cell integrin-matrix bonds to interstitial hydraulic resistance and to fenestrated endothelial permeability in joints. Joint fluid is generated by filtration from fenestrated capillaries and drains through a fibronectin-rich synovial intercellular matrix. The role of parenchymal cell-matrix bonding in determining tissue hydraulic resistance is unknown. The knee cavity of anesthetized rabbits was infused with saline or the competitive hexapeptide blocker GRGDTP, with or without added osmotic stress (600 mosm saline). Intra-articular pressure Pj, net trans-synovial drainage rate s, and the permeation of Evans blue-labeled albumin (EVA) from plasma into the joint cavity were measured. GRGDTP increased the hydraulic conductance of the synovial drainage pathway, ds/dPj, by 71% (p =.02, paired t test, n = 6 animals). Synovial plasma EVA clearance (control 7.1 +/- 0.8 microL h-1, mean +/- SEM, n = 15) was unaffected by GRGDTP (7.0 +/- 2.3 microL h(-1), n = 6) or hyperosmolarity (4.9 +/- 1.5 microL h(-1), n = 8) but was increased by GRGDTP and hyperosmolarity together (15.9 +/- 4.8 microL h(-1), n = 5) (p =.01, ANOVA). Changes in dPj/dt evoked by GRGDTP plus hyperosmolarity, but neither alone, demonstrated increased microvascular filtration into the joint cavity (p <.001, ANOVA), as did changes in fluid absorption from the infusion system at fixed Pj. RGD-mediated bonds between the parenchymal cells and interstitial polymers reduce the interstitial hydraulic conductance by 42%. This helps to retain the lubricating fluid inside a joint cavity. RGD-mediated bonds also support the macromolecular barrier function of fenestrated endothelium, but in vivo this is evident only in stressed endothelium (cf. in vitro).

  1. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function.

    PubMed

    Drummond, I A; Majumdar, A; Hentschel, H; Elger, M; Solnica-Krezel, L; Schier, A F; Neuhauss, S C; Stemple, D L; Zwartkruis, F; Rangini, Z; Driever, W; Fishman, M C

    1998-12-01

    The zebrafish pronephric kidney provides a simplified model of nephron development and epithelial cell differentiation which is amenable to genetic analysis. The pronephros consists of two nephrons with fused glomeruli and paired pronephric tubules and ducts. Nephron formation occurs after the differentiation of the pronephric duct with both the glomeruli and tubules being derived from a nephron primordium. Fluorescent dextran injection experiments demonstrate that vascularization of the zebrafish pronephros and the onset of glomerular filtration occurs between 40 and 48 hpf. We isolated fifteen recessive mutations that affect development of the pronephros. All have visible cysts in place of the pronephric tubule at 2-2.5 days of development. Mutants were grouped in three classes: (1) a group of twelve mutants with defects in body axis curvature and manifesting the most rapid and severe cyst formation involving the glomerulus, tubule and duct, (2) the fleer mutation with distended glomerular capillary loops and cystic tubules, and (3) the mutation pao pao tang with a normal glomerulus and cysts limited to the pronephric tubules. double bubble was analyzed as a representative of mutations that perturb the entire length of the pronephros and body axis curvature. Cyst formation begins in the glomerulus at 40 hpf at the time when glomerular filtration is established suggesting a defect associated with the onset of pronephric function. Basolateral membrane protein targeting in the pronephric duct epithelial cells is also severely affected, suggesting a failure in terminal epithelial cell differentiation and alterations in electrolyte transport. These studies reveal the similarity of normal pronephric development to kidney organogenesis in all vertebrates and allow for a genetic dissection of genes needed to establish the earliest renal function.

  2. Nephrin Tyrosine Phosphorylation Is Required to Stabilize and Restore Podocyte Foot Process Architecture

    PubMed Central

    New, Laura A.; Martin, Claire E.; Scott, Rizaldy P.; Platt, Mathew J.; Keyvani Chahi, Ava; Stringer, Colin D.; Lu, Peihua; Samborska, Bozena; Eremina, Vera; Takano, Tomoko; Simpson, Jeremy A.; Quaggin, Susan E.

    2016-01-01

    Podocytes are specialized epithelial cells of the kidney blood filtration barrier that contribute to permselectivity via a series of interdigitating actin–rich foot processes. Positioned between adjacent projections is a unique cell junction known as the slit diaphragm, which is physically connected to the actin cytoskeleton via the transmembrane protein nephrin. Evidence indicates that tyrosine phosphorylation of the intracellular tail of nephrin initiates signaling events, including recruitment of cytoplasmic adaptor proteins Nck1 and Nck2 that regulate actin cytoskeletal dynamics. Nephrin tyrosine phosphorylation is altered in human and experimental renal diseases characterized by pathologic foot process remodeling, prompting the hypothesis that phosphonephrin signaling directly influences podocyte morphology. To explore this possibility, we generated and analyzed knockin mice with mutations that disrupt nephrin tyrosine phosphorylation and Nck1/2 binding (nephrinY3F/Y3F mice). Homozygous nephrinY3F/Y3F mice developed progressive proteinuria accompanied by structural changes in the filtration barrier, including podocyte foot process effacement, irregular thickening of the glomerular basement membrane, and dilated capillary loops, with a similar but later onset phenotype in heterozygous animals. Furthermore, compared with wild-type mice, nephrinY3F/Y3F mice displayed delayed recovery in podocyte injury models. Profiling of nephrin tyrosine phosphorylation dynamics in wild-type mice subjected to podocyte injury indicated site-specific differences in phosphorylation at baseline, injury, and recovery, which correlated with loss of nephrin-Nck1/2 association during foot process effacement. Our results define an essential requirement for nephrin tyrosine phosphorylation in stabilizing podocyte morphology and suggest a model in which dynamic changes in phosphotyrosine-based signaling confer plasticity to the podocyte actin cytoskeleton. PMID:26802179

  3. TGF-β–Activated Kinase 1 Is Crucial in Podocyte Differentiation and Glomerular Capillary Formation

    PubMed Central

    Lee, So-Young; Wang, Zhibo; Ding, Yan; Haque, Nadeem; Zhang, Jiwang; Zhou, Jing

    2014-01-01

    TGF-β–activated kinase 1 (TAK1) is a key intermediate in signal transduction induced by TGF-β or inflammatory cytokines, such as TNF-α and IL-1, which are potent inducers of podocyte injury responses that lead to proteinuria and glomerulosclerosis. Nevertheless, little is known about the physiologic and pathologic roles of TAK1 in podocytes. To examine the in vivo role of TAK1, we generated podocyte-specific Tak1 knockout mice (Nphs2-Cre+:Tak1fx/fx; Tak1∆/∆). Targeted deletion of Tak1 in podocytes resulted in perinatal lethality, with approximately 50% of animals dying soon after birth and 90% of animals dying within 1 week of birth. Tak1∆/∆ mice developed proteinuria from P1 and exhibited delayed glomerulogenesis and reduced expression of Wilms’ tumor suppressor 1 and nephrin in podocytes. Compared with Tak1fx/fx mice, Tak1∆/∆ mice exhibited impaired formation of podocyte foot processes that caused disruption of the podocyte architecture with prominent foot process effacement. Intriguingly, Tak1∆/∆ mice displayed increased expression of vascular endothelial growth factor within the glomerulus and abnormally enlarged glomerular capillaries. Furthermore, 4- and 7-week-old Tak1∆/∆ mice with proteinuria had increased collagen deposition in the mesangium and the adjacent tubulointerstitial area. Thus, loss of Tak1 in podocytes is associated with the development of proteinuria and glomerulosclerosis. Taken together, our data show that TAK1 regulates the expression of Wilms’ tumor suppressor 1, nephrin, and vascular endothelial growth factor and that TAK1 signaling has a crucial role in podocyte differentiation and attainment of normal glomerular microvasculature during kidney development and glomerular filtration barrier homeostasis. PMID:24652804

  4. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of Wastewater Compounds by Polystyrene-Divinylbenzene Solid-Phase Extraction and Capillary-Column Gas Chromatography/Mass Spectrometry

    USGS Publications Warehouse

    Zaugg, Steven D.; Smith, Steven G.; Schroeder, Michael P.; Barber, Larry B.; Burkhardt, Mark R.

    2002-01-01

    A method for the determination of 67 compounds typically found in domestic and industrial wastewater is described. The method was developed in response to increasing concern over the impact of endocrine-disrupting chemicals in wastewater on aquatic organisms. This method also may be useful for evaluating the impact of combined sanitary and storm-sewer overflow on the water quality of urban streams. The method focuses on the determination of compounds that are an indicator of wastewater or that have been chosen on the basis of their endocrine-disrupting potential or toxicity. These compounds include the alkylphenol ethoxylate nonionic surfactants and their degradates, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclicaromatic hydrocarbons, and high-use domestic pesticides. Water samples are filtered to remove suspended particulate matter and then are extracted by vacuum through disposable solid-phase cartridges that contain polystyrene-divinylbenzene resin. Cartridges are dried with nitrogen gas, and then sorbed compounds are eluted with dichloromethane-diethyl ether (4:1) and determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-water samples fortified at 4 micrograms per liter averaged 74 percent ? 7 percent relative standard deviation for all method compounds. Initial method detection limits for single-component compounds (excluding hormones and sterols) averaged 0.15 microgram per liter. Samples are preserved by filtration, the addition of 60 grams NaCl, and storage at 4 degrees Celsius. The laboratory has established a sample-holding time (prior to sample extraction) of 14 days from the date of sample collection until a statistically accepted method can be used to determine the effectiveness of these sample-preservation procedures.

  5. Seasonal variations on the residence times and partitioning of short-lived radionuclides (234Th, 7Be and 210Pb) and depositional fluxes of 7Be and 210Pb in Tampa Bay, Florida

    USGS Publications Warehouse

    Baskaran, M.; Swarzenski, P.W.

    2007-01-01

    Historically, Tampa Bay has been impacted heavily by a wide range of anthropogenic perturbations that may include, agricultural-, shipping-, phosphate mining/distribution-related activities, as well as a burgeoning coastal population. Due to the presence of U-rich underlying sediments, elevated activities of U- and Th-series daughter products may be naturally released into this system. This region is also known for summer thunderstorms and corresponding increases in precipitation and surface water runoff. Only limited work has been conducted on the partitioning of particle-reactive radionuclides (such as 7Be, 210Pb, and 234Th) in such a dynamic coastal system. We investigated both the removal residence time and partitioning of these radionuclides between filter-retained particulate matter (≥ 0.5 μm) and the filtrate ( Our results indicate that the partitioning of 7Be, 210Pb, and 234Th between filtrate and filter-retained phase is controlled foremost by enhanced bottom resuspension events during summer thunderstorms. As a consequence, no significant relationship exists between the distribution coefficients (Kd values) of these isotopes and the concentration of suspended particulate matter (SPM). Relatively faster recycling rates of atmospheric water vapor derived from the ocean results in lower atmospheric depositional fluxes of 210Pb to the study site than predicted. The relationship between 7Be and 210Pb in bulk (wet + dry) deposition is compared to their respective water column activities. The residence times of particulate and dissolved 234Th, 7Be and 210Pb, as well the distribution coefficients of these radionuclides, are then compared to values reported in other coastal systems.

  6. Measurement of Murine Single-Kidney Glomerular Filtration Rate Using Dynamic Contrast-Enhanced MRI.

    PubMed

    Jiang, Kai; Tang, Hui; Mishra, Prasanna K; Macura, Slobodan I; Lerman, Lilach O

    2018-06-01

    To develop and validate a method for measuring murine single-kidney glomerular filtration rate (GFR) using dynamic contrast-enhanced MRI (DCE-MRI). This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T 1 ) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two-compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model-derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)-inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland-Altman analysis. The compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE-MRI method offered assessment of single-kidney GFR and perfusion, comparable to the FITC-inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference -7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods. The proposed DCE-MRI method may be useful for reliable noninvasive measurements of single-kidney GFR and perfusion in mice. Magn Reson Med 79:2935-2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. [Concordance of glomerular filtration rate with creatinine clearance in 24-hour urine and Schwartz and Schwartz updated].

    PubMed

    Salazar-Gutiérrez, María Luisa; Ochoa-Ponce, Cristina; Lona-Reyes, Juan Carlos; Gutiérrez-Íñiguez, Sara Ivonne

    Reference methods for the quantification of the glomerular filtration rate (GFR) are difficult to use in clinical practice; formulas for evaluating GFR based on serum creatinine (SCr) and/or creatinine clearance are used. The aim of this study was to quantify the correlation and concordance of GFR with creatinine clearance in 24-hour urine (GFR24) and Schwartz and Schwartz updated formulas. Cross-sectional study involving healthy pediatric patients and with chronic kidney disease (CKD) from 5 to 16.9 years. Linear correlation between GFR 24 and two formulas was evaluated with the Pearson correlation coefficient (r) and intraclass correlation coefficient (ICC). We studied 134 patients, of which 59.7% were male. Mean age was 10.8 years. The average GFR24 was 140.34ml/min/1.73m 2 ; 34.3% (n=46) had GFR <90ml/min/1.73m 2 . Moderate linear correlation between GFR24 and Schwartz (r= 0.63) and Schwartz updated (r= 0.65) formulas was observed. There was good concordance between the GFR24 and Schwartz (ICC= 0.77) and updated Schwartz (ICC= 0.77) formulas. Schwartz classical formula in patients with GFR24 ≥ 90ml/min/1.73m 2 estimated higher values, while Schwartz updated underestimated values. There is moderate correlation and good concordance between the GFR24 and Schwartz and Schwartz updated formulas. The concordance was better in patients with obesity and lower in women, patients with hyperfiltration and normal weight. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  8. Laser system for measuring small changes in plasma tracer concentrations.

    PubMed

    Klaesner, J W; Pou, N A; Parker, R E; Galloway, R L; Roselli, R J

    1996-01-01

    The authors developed a laser-diode system that can be used for on-line optical concentration measurements in physiologic systems. Previous optical systems applied to whole blood have been hampered by artifacts introduced by red blood cells (RBCs). The system introduced here uses a commercially available filter cartridge to separate RBCs from plasma before plasma concentration measurements are made at a single wavelength. The filtering characteristics of the Cellco filter cartridge (#4007-10, German-town, MD) were adequate for use in the on-line measurement system. The response time of the filter cartridge was less than 40 seconds, and the sieving characteristics of the filter for macromolecules were excellent, with filtrate-to-plasma albumin ratios of 0.98 +/- 0.11 for studies in sheep and 0.94 +/- 0.15 for studies in dogs. The 635-nm laser diode system developed was shown to be more sensitive than the spectrophotometer used in previous studies (Klaesner et al., Annals of Biomedical Engineering, 1994; 22, 660-73). The new system was used to measure the product of filtration coefficient (Kfc) and reflection coefficient for albumin (delta f) in an isolated canine lung preparation. The delta fKfc values [mL/(cmH2O.min.100 g dry lung weight)] measured with the laser diode system (0.33 +/- 0.22) compared favorably with the delta fKfc obtained using a spectrophotometer (0.27 +/- 0.20) and with the Kfc obtained using the blood-corrected gravimetric method (0.32 +/- 0.23). Thus, this new optical system was shown to accurately measure plasma concentration changes in whole blood for physiologic levels of Kfc. The same system can be used with different optical tracers and different source wavelengths to make optical plasma concentration measurements for other physiologic applications.

  9. Estimating glomerular filtration rate in black South Africans by use of the modification of diet in renal disease and Cockcroft-Gault equations.

    PubMed

    van Deventer, Hendrick E; George, Jaya A; Paiker, Janice E; Becker, Piet J; Katz, Ivor J

    2008-07-01

    The 4-variable Modification of Diet in Renal Disease (4-v MDRD) and Cockcroft-Gault (CG) equations are commonly used for estimating glomerular filtration rate (GFR); however, neither of these equations has been validated in an indigenous African population. The aim of this study was to evaluate the performance of the 4-v MDRD and CG equations for estimating GFR in black South Africans against measured GFR and to assess the appropriateness for the local population of the ethnicity factor established for African Americans in the 4-v MDRD equation. We enrolled 100 patients in the study. The plasma clearance of chromium-51-EDTA ((51)Cr-EDTA) was used to measure GFR, and serum creatinine was measured using an isotope dilution mass spectrometry (IDMS) traceable assay. We estimated GFR using both the reexpressed 4-v MDRD and CG equations and compared it to measured GFR using 4 modalities: correlation coefficient, weighted Deming regression analysis, percentage bias, and proportion of estimated GFR within 30% of measured GFR (P(30)). The Spearman correlation coefficient between measured and estimated GFR for both equations was similar (4-v MDRD R(2) = 0.80 and CG R(2) = 0.79). Using the 4-v MDRD equation with the ethnicity factor of 1.212 as established for African Americans resulted in a median positive bias of 13.1 (95% CI 5.5 to 18.3) mL/min/1.73 m(2). Without the ethnicity factor, median bias was 1.9 (95% CI -0.8 to 4.5) mL/min/1.73 m(2). The 4-v MDRD equation, without the ethnicity factor of 1.212, can be used for estimating GFR in black South Africans.

  10. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review.

    PubMed

    Earley, Amy; Miskulin, Dana; Lamb, Edmund J; Levey, Andrew S; Uhlig, Katrin

    2012-06-05

    Clinical laboratories are increasingly reporting estimated glomerular filtration rate (GFR) by using serum creatinine assays traceable to a standard reference material. To review the performance of GFR estimating equations to inform the selection of a single equation by laboratories and the interpretation of estimated GFR by clinicians. A systematic search of MEDLINE, without language restriction, between 1999 and 21 October 2011. Cross-sectional studies in adults that compared the performance of 2 or more creatinine-based GFR estimating equations with a reference GFR measurement. Eligible equations were derived or reexpressed and validated by using creatinine measurements traceable to the standard reference material. Reviewers extracted data on study population characteristics, measured GFR, creatinine assay, and equation performance. Eligible studies compared the MDRD (Modification of Diet in Renal Disease) Study and CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equations or modifications thereof. In 12 studies in North America, Europe, and Australia, the CKD-EPI equation performed better at higher GFRs (approximately >60 mL/min per 1.73 m(2)) and the MDRD Study equation performed better at lower GFRs. In 5 of 8 studies in Asia and Africa, the equations were modified to improve their performance by adding a coefficient derived in the local population or removing a coefficient. Methods of GFR measurement and study populations were heterogeneous. Neither the CKD-EPI nor the MDRD Study equation is optimal for all populations and GFR ranges. Using a single equation for reporting requires a tradeoff to optimize performance at either higher or lower GFR ranges. A general practice and public health perspective favors the CKD-EPI equation. Kidney Disease: Improving Global Outcomes.

  11. Geochemical hosts of solubilized radionuclides in uranium mill tailings

    USGS Publications Warehouse

    Landa, E.R.; Bush, C.A.

    1990-01-01

    The solubilization and subsequent resorption of radionuclides by ore components or by reaction products during the milling of uranium ores may have both economic and environmental consequences. Particle-size redistribution of radium during milling has been demonstrated by previous investigators; however, the identification of sorbing components in the tailings has received little experimental attention. In this study, uranium-bearing sandstone ore was milled, on a laboratory scale, with sulfuric acid. At regular intervals, filtrate from this suspension was placed in contact with mixtures of quartz sand and various potential sorbents which occur as gangue in uranium ores; the potential sorbents included clay minerals, iron and aluminum oxides, feldspar, fluorspar, barite, jarosite, coal, and volcanic glass. After equilibration, the quartz sand-sorbent mixtures were separated from the filtrate and radioassayed by gamma-spectrometry to determine the quantities of 238U, 230Th, 226Ra, and 210Pb sorbed, and the radon emanation coefficients. Sorption of 238U was low in all cases, with maximal sorptions of 1-2% by the bentonite- and coal-bearing samples. 230Th sorption also was generally less than 1%; maximal sorption here was observed in the fluorspar-bearing sample and appears to be associated with the formation of gypsum during milling. 226Ra and 210 Pb generally showed higher sorption than the other nuclides - more than 60% of the 26Ra solubilized from the ore was sorbed on the barite-bearing sample. The mechanism (s) for this sorption by a wide variety of substrates is not yet understood. Radon emanation coefficients of the samples ranged from about 5 to 30%, with the coal-bearing samples clearly demonstrating an emanating power higher than any of the other materials. ?? 1990.

  12. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.

    PubMed

    Chen, Longquan; Bonaccurso, Elmar

    2014-08-01

    In this paper, we experimentally investigated the dynamic spreading of liquid drops on solid surfaces. Drop of glycerol water mixtures and pure water that have comparable surface tensions (62.3-72.8 mN/m) but different viscosities (1.0-60.1 cP) were used. The size of the drops was 0.5-1.2 mm. Solid surfaces with different lyophilic and lyophobic coatings (equilibrium contact angle θ(eq) of 0°-112°) were used to study the effect of surface wettability. We show that surface wettability and liquid viscosity influence wetting dynamics and affect either the coefficient or the exponent of the power law that describes the growth of the wetting radius. In the early inertial wetting regime, the coefficient of the wetting power law increases with surface wettability but decreases with liquid viscosity. In contrast, the exponent of the power law does only depend on surface wettability as also reported in literature. It was further found that surface wettability does not affect the duration of inertial wetting, whereas the viscosity of the liquid does. For low viscosity liquids, the duration of inertial wetting corresponds to the time of capillary wave propagation, which can be determined by Lamb's drop oscillation model for inviscid liquids. For relatively high viscosity liquids, the inertial wetting time increases with liquid viscosity, which may due to the viscous damping of the surface capillary waves. Furthermore, we observed a viscous wetting regime only on surfaces with an equilibrium contact angle θ(eq) smaller than a critical angle θ(c) depending on viscosity. A scaling analysis based on Navier-Stokes equations is presented at the end, and the predicted θ(c) matches with experimental observations without any additional fitting parameters.

  13. Phase-field modeling of mixing/demixing of regular binary mixtures with a composition-dependent viscosity

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2017-04-01

    We simulate the mixing (demixing) process of a quiescent binary liquid mixture with a composition-dependent viscosity which is instantaneously brought from the two-phase (one-phase) to the one-phase (two-phase) region of its phase diagram. Our theoretical approach follows a standard diffuse-interface model of partially miscible regular binary mixtures wherein convection and diffusion are coupled via a nonequilibrium capillary force, expressing the tendency of the phase-separating system to minimize its free energy. Based on 2D simulation results, we discuss the influence of viscosity ratio on basic statistics of the mixing (segregation) process triggered by a rapid heating (quench), assuming that the ratio of capillary to viscous forces (a.k.a. the fluidity coefficient) is large. We show that, for a phase-separating system, at a fixed value of the fluidity coefficient (with the continuous phase viscosity taken as a reference), the separation depth and the characteristic length of single-phase microdomains decrease monotonically for increasing values of the viscosity of the dispersed phase. This variation, however, is quite small, in agreement with experimental results. On the other hand, as one might expect, at a fixed viscosity of the dispersed phase both of the above statistics increase monotonically as the viscosity of the continuous phase decreases. Finally, we show that for a mixing system the attainment of a single-phase equilibrium state by coalescence and diffusion is retarded by an increase in the viscosity ratio at a fixed fluidity for the dispersed phase. In fact, for large enough values of the viscosity ratio, a thin film of the continuous phase becomes apparent when two drops of the minority phase approach each other, which further retards coalescence.

  14. Mass transfer study on the electrochemical removal of copper ions from synthetic effluents using reticulated vitreous carbon.

    PubMed

    Britto-Costa, Pedro H; Ruotolo, Luís Augusto M

    2013-01-01

    Porous electrodes have been successfully used for metal electrodeposition from diluted aqueous solution due to their high porosity and specific surface area, which lead to high mass transfer rates. This work studies the mass transfer of copper electrodeposition on reticulated vitreous carbon in a flow reactor without membrane. The flow configuration, otherwise the filter-press electrochemical reactors, was designed in order to minimize the pressure drop. The mass transfer coefficient was determined by voltammetric and galvanostatic electrodeposition. In the voltammetric experiments a Luggin capillary was used to measure the current-potential curves and to determine the limiting current (and, consequently, the mass transfer coefficient). In the galvanostatic experiments the concentration-time curves were obtained and considering a limiting current kinetics model, the mass transfer coefficient (k(m)) was determined for different flow velocities. The results showed that both methods give similar values of k(m), thus the voltammetric method can be recommended because it is faster and simpler. Finally, the reactor performance was compared with others from literature, and it was observed that the proposed reactor design has high Sherwood numbers similar to other reactor configurations using membranes and reticulated vitreous carbon electrodes.

  15. Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices.

    PubMed

    Mair, B; Drillich, M; Klein-Jöbstl, D; Kanz, P; Borchardt, S; Meyer, L; Schwendenwein, I; Iwersen, M

    2016-02-24

    Dairy cows have a massive demand for glucose at the onset of lactation. A poor adaption to this period leads to an excessive negative energy balance with an increased risk for ketosis and impaired animal health and production. Besides the measurement of ketones, analysing the glucose concentration in blood is reported as helpful instrument for diagnosis and differentiation of ketosis. Monitoring metabolic parameters requires multiple blood sampling. In other species, new blood sampling techniques have been introduced in which small amounts of blood are rapidly analysed using electronic hand-held devices. The objective of this study was to evaluate the suitability of capillary blood for blood glucose measurement in dairy cows using the hand-held devices FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini) and the WellionVet GLUCO CALEA, (WGC, MED TRUST). In total, 240 capillary blood samples were obtained from dry and fresh lactating Holstein-Friesian cows. Blood was collected from the skin of the exterior vulva by using a lancet. For method comparison, additional blood samples were taken from a coccygeal vessel and analyzed in a laboratory. Glucose concentrations measured by a standard laboratory method were defined as the criterion standard. The Pearson correlation coefficients between the glucose concentrations analyzed in capillary blood with the devices and the reference were 73% for the FSP, 81% for the GLX and 41% for the WGC. Bland-Altman plots showed biases of -18.8 mg/dL for the FSP, -11.2 mg/dL for the GLX and +20.82 mg/dL for the WGC. The optimized threshold determined by a Receiver Operating Characteristics analysis to detect hyperglycemia using the FSP was 43 mg/dL with a sensitivity (Se) and specificity (Sp) of 76 and 80%. Using the GLX and WGC optimized thresholds were 49 mg/dL (Se = 92%, Sp = 85%) and 95 mg/dL (Se = 39%, Sp = 92%). The results of this study demonstrate good performance characteristics for the GLX and moderate for the FSP to detect hyperglycemia in dairy cows using capillary blood. With the study settings, the WGC was not suitable for determination of glucose concentrations.

  16. Clinical Evaluation of the BD FACSPresto™ Near-Patient CD4 Counter in Kenya

    PubMed Central

    Angira, Francis; Akoth, Benta; Omolo, Paul; Opollo, Valarie; Bornheimer, Scott; Judge, Kevin; Tilahun, Henok; Lu, Beverly; Omana-Zapata, Imelda; Zeh, Clement

    2016-01-01

    Background The BD FACSPresto™ Near-Patient CD4 Counter was developed to expand HIV/AIDS management in resource-limited settings. It measures absolute CD4 counts (AbsCD4), percent CD4 (%CD4), and hemoglobin (Hb) from a single drop of capillary or venous blood in approximately 23 minutes, with throughput of 10 samples per hour. We assessed the performance of the BD FACSPresto system, evaluating accuracy, stability, linearity, precision, and reference intervals using capillary and venous blood at KEMRI/CDC HIV-research laboratory, Kisumu, Kenya, and precision and linearity at BD Biosciences, California, USA. Methods For accuracy, venous samples were tested using the BD FACSCalibur™ instrument with BD Tritest™ CD3/CD4/CD45 reagent, BD Trucount™ tubes, and BD Multiset™ software for AbsCD4 and %CD4, and the Sysmex™ KX-21N for Hb. Stability studies evaluated duration of staining (18–120-minute incubation), and effects of venous blood storage <6–24 hours post-draw. A normal cohort was tested for reference intervals. Precision covered multiple days, operators, and instruments. Linearity required mixing two pools of samples, to obtain evenly spaced concentrations for AbsCD4, total lymphocytes, and Hb. Results AbsCD4 and %CD4 venous/capillary (N = 189/ N = 162) accuracy results gave Deming regression slopes within 0.97–1.03 and R2 ≥0.96. For Hb, Deming regression results were R2 ≥0.94 and slope ≥0.94 for both venous and capillary samples. Stability varied within 10% 2 hours after staining and for venous blood stored less than 24 hours. Reference intervals results showed that gender—but not age—differences were statistically significant (p<0.05). Precision results had <3.5% coefficient of variation for AbsCD4, %CD4, and Hb, except for low AbsCD4 samples (<6.8%). Linearity was 42–4,897 cells/μL for AbsCD4, 182–11,704 cells/μL for total lymphocytes, and 2–24 g/dL for Hb. Conclusions The BD FACSPresto system provides accurate, precise clinical results for capillary or venous blood samples and is suitable for near-patient CD4 testing. Trial Registration ClinicalTrials.gov NCT02396355 PMID:27483008

  17. A Multicenter Evaluation of the Performance and Usability of a Novel Glucose Monitoring System in Chinese Adults With Diabetes.

    PubMed

    Ji, Linong; Guo, Xiaohui; Guo, Lixin; Ren, Qian; Yu, Nan; Zhang, Jie

    2017-03-01

    Flash glucose monitoring is a new glucose sensing technique that measures interstitial glucose levels for up to 14 days and does not require any calibration. The aim of this study is to evaluate the performance of the new system in Chinese patients with diabetes. A multicenter, prospective, masked study was performed in a total of 45 subjects with diabetes. Subjects wore 2 sensors at the same time, for up to 14 days. The accuracy was evaluated against capillary blood glucose (BG) and venous Yellow Springs Instrument (YSI; Yellow Springs, OH) measurements. During all 14 days, subjects were asked to perform at least 8 capillary BG tests per day. Each subject attended 3 days of 8-hour clinic sessions to measure YSI and sensor readings every 15 minutes. Forty subjects had evaluable glucose readings, with 6687 of 6696 (99.9%) sensor and capillary BG pairs within consensus error grid zones A and B, including 5824 (87.0%) in zone A. The 6969 sensor and venous YSI pairs resulted in 6965 (99.9%) pairs within zones A and B, including 5755 (82.6%) in zone A. The sensor pairs with BG and YSI result in mean absolute relative difference (MARD) of 10.0% and 10.7%, respectively. Overall between-sensor coefficient of variation (CV) was 8.0%, and the mean lag time was 3.1 (95% confidence interval 2.54 to 4.29) minutes. The system works well for people with diabetes in China, and it is easy to wear and use.

  18. A Comprehensive Texture Segmentation Framework for Segmentation of Capillary Non-Perfusion Regions in Fundus Fluorescein Angiograms

    PubMed Central

    Zheng, Yalin; Kwong, Man Ting; MacCormick, Ian J. C.; Beare, Nicholas A. V.; Harding, Simon P.

    2014-01-01

    Capillary non-perfusion (CNP) in the retina is a characteristic feature used in the management of a wide range of retinal diseases. There is no well-established computation tool for assessing the extent of CNP. We propose a novel texture segmentation framework to address this problem. This framework comprises three major steps: pre-processing, unsupervised total variation texture segmentation, and supervised segmentation. It employs a state-of-the-art multiphase total variation texture segmentation model which is enhanced by new kernel based region terms. The model can be applied to texture and intensity-based multiphase problems. A supervised segmentation step allows the framework to take expert knowledge into account, an AdaBoost classifier with weighted cost coefficient is chosen to tackle imbalanced data classification problems. To demonstrate its effectiveness, we applied this framework to 48 images from malarial retinopathy and 10 images from ischemic diabetic maculopathy. The performance of segmentation is satisfactory when compared to a reference standard of manual delineations: accuracy, sensitivity and specificity are 89.0%, 73.0%, and 90.8% respectively for the malarial retinopathy dataset and 80.8%, 70.6%, and 82.1% respectively for the diabetic maculopathy dataset. In terms of region-wise analysis, this method achieved an accuracy of 76.3% (45 out of 59 regions) for the malarial retinopathy dataset and 73.9% (17 out of 26 regions) for the diabetic maculopathy dataset. This comprehensive segmentation framework can quantify capillary non-perfusion in retinopathy from two distinct etiologies, and has the potential to be adopted for wider applications. PMID:24747681

  19. Variability in sublingual microvessel density and flow measurements in healthy volunteers.

    PubMed

    Hubble, Sheena M A; Kyte, Hayley L; Gooding, Kim; Shore, Angela C

    2009-02-01

    As sublingual microvascular indices are increasingly heralded as new resuscitation end-points, better population data are required to power clinical studies. This paper describes improved methods to quantify sublingual microvessel flow and density in images obtained by sidestream dark field (SDF) technology in healthy volunteers, including vessels under 10 microm in diameter. Measurements of sublingual capillary density and flow were obtained by recording three 15-second images in 20 healthy volunteers over three days. Two independent observers quantified capillary density by using two methods: total vessel length (mm/mm2) and counting (number/mm). Both intraoral and temporal variabilities within subject and observer reproducibilities were determined by using coefficients of variability and reproducibility indices. For small (1-10 microm), medium (11-20 microm), and large (21-50 microm) diameter, mean vessel density with standard deviations (SDs) in volunteers was 21.3(+/- 4.9), 5.2 (+/- 1.2), and 2.7 (+/- 0.9) mm/mm2, respectively. Also, 94.0 +/- 1.4% of small vessels, 94.5 +/- 1.4% of medium vessels, and 94.5+/- 4.0% of large vessels had continuous perfusion. Within subjects, the means of all measurements over three days varied less than 13, 22, and 35% in small, medium, and large vessels, respectively. Interobserver reproducibility was good, especially for capillary (1-10 microm) density and flow measurements. Our methods of microvessel flow and density quantification have low observer variability and confirm the stability of microcirculatory measurements over time. These results facilitate the development of SDF-acquired sublingual microvascular indices as feasible microperfusion markers in shock resuscitation.

  20. On-line solid phase extraction coupled to capillary LC-ESI-MS for determination of fluoxetine in human blood plasma.

    PubMed

    Saber, Amr L

    2009-04-15

    An instrumental setup including on-line solid phased extraction coupled to capillary liquid chromatography-electrospray ionization-mass spectrometry (SPE-capLC-ESI-MS) has been constructed to improve the sensitivity for quantification of fluoxetine hydrochloride in human plasma. Prior to injection, 0.5 mL of plasma spiked with metronidazole (internal standard) was mixed with ammonium formate buffer for effective chloroform liquid-liquid extraction. The method was validated in the range 5-60 ng mL(-1) fluoxetine, yielding a correlation coefficient of 0.999 (r(2)). The within-assay and between-assay precisions were between (8.5 and 11%) and (6.6 and 7.5%), respectively. The method was used to determine the amount of fluoxetine in a healthy male 14 h after an intake of one capsule of the antidepressant and anorectic Flutin, which contains 20mg fluoxetine per each capsule. Fluoxetine was detected, and the concentration was calculated to 9.0 ng mL(-1) plasma. In the preliminary experiments, conventional LC-UV instrumentation was employed. However, it was found that employing a capillary column with an inner diameter of (0.3mm I.D. x 50 mm, Zorbax C(18)) increased the sensitivity by a factor of approximately 100, when injecting the same mass of analyte. Incorporating an easily automated C(18) reversed phase column switching system with SPE (1.0mm I.D. x 5.0mm, 5 microm) made it possible to inject up to 100 microL of solution, and the total analysis time was 5.5 min.

  1. Automated Quantitative Analysis of Retinal Microvasculature in Normal Eyes on Optical Coherence Tomography Angiography.

    PubMed

    Lupidi, Marco; Coscas, Florence; Cagini, Carlo; Fiore, Tito; Spaccini, Elisa; Fruttini, Daniela; Coscas, Gabriel

    2016-09-01

    To describe a new automated quantitative technique for displaying and analyzing macular vascular perfusion using optical coherence tomography angiography (OCT-A) and to determine a normative data set, which might be used as reference in identifying progressive changes due to different retinal vascular diseases. Reliability study. A retrospective review of 47 eyes of 47 consecutive healthy subjects imaged with a spectral-domain OCT-A device was performed in a single institution. Full-spectrum amplitude-decorrelation angiography generated OCT angiograms of the retinal superficial and deep capillary plexuses. A fully automated custom-built software was used to provide quantitative data on the foveal avascular zone (FAZ) features and the total vascular and avascular surfaces. A comparative analysis between central macular thickness (and volume) and FAZ metrics was performed. Repeatability and reproducibility were also assessed in order to establish the feasibility and reliability of the method. The comparative analysis between the superficial capillary plexus and the deep capillary plexus revealed a statistically significant difference (P < .05) in terms of FAZ perimeter, surface, and major axis and a not statistically significant difference (P > .05) when considering total vascular and avascular surfaces. A linear correlation was demonstrated between central macular thickness (and volume) and the FAZ surface. Coefficients of repeatability and reproducibility were less than 0.4, thus demonstrating high intraobserver repeatability and interobserver reproducibility for all the examined data. A quantitative approach on retinal vascular perfusion, which is visible on Spectralis OCT angiography, may offer an objective and reliable method for monitoring disease progression in several retinal vascular diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.

    PubMed

    Foley, Joe P; Blackney, Donna M; Ennis, Erin J

    2017-11-10

    The origins of the peak capacity concept are described and the important contributions to the development of that concept in chromatography and electrophoresis are reviewed. Whereas numerous quantitative expressions have been reported for one- and two-dimensional separations, most are focused on chromatographic separations and few, if any, quantitative unbiased expressions have been developed for capillary or microchip zone electrophoresis. Making the common assumption that longitudinal diffusion is the predominant source of zone broadening in capillary electrophoresis, analytical expressions for the peak capacity are derived, first in terms of migration time, diffusion coefficient, migration distance, and desired resolution, and then in terms of the remaining underlying fundamental parameters (electric field, electroosmotic and electrophoretic mobilities) that determine the migration time. The latter expressions clearly illustrate the direct square root dependence of peak capacity on electric field and migration distance and the inverse square root dependence on solute diffusion coefficient. Conditions that result in a high peak capacity will result in a low peak capacity per unit time and vice-versa. For a given symmetrical range of relative electrophoretic mobilities for co- and counter-electroosmotic species (cations and anions), the peak capacity increases with the square root of the electric field even as the temporal window narrows considerably, resulting in a significant reduction in analysis time. Over a broad relative electrophoretic mobility interval [-0.9, 0.9], an approximately two-fold greater amount of peak capacity can be generated for counter-electroosmotic species although it takes about five-fold longer to do so, consistent with the well-known bias in migration time and resolving power for co- and counter-electroosmotic species. The optimum lower bound of the relative electrophoretic mobility interval [μ r,Z , μ r,A ] that provides the maximum peak capacity per unit time is a simple function of the upper bound, but its direct application is limited to samples with analytes whose electrophoretic mobilities can be varied independently of electroosmotic flow. For samples containing both co- and counter-electroosmotic ions whose electrophoretic mobilities cannot be easily manipulated, comparable levels of peak capacity and peak capacity per unit time for all ions can be obtained by adjusting the EOF to devote the same amount of time to the separation of each class of ions; this corresponds to μ r,Z =-0.5. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Heat Transfer by Thermo-capillary Convection -Sounding Rocket COMPERE Experiment SOURCE

    NASA Astrophysics Data System (ADS)

    Dreyer, Michael; Fuhrmann, Eckart

    The sounding rocket COMPERE experiment SOURCE was successfully flown on MASER 11, launched in Kiruna (ESRANGE), May 15th, 2008. SOURCE has been intended to partly ful-fill the scientific objectives of the European Space Agency (ESA) Microgravity Applications Program (MAP) project AO-2004-111 (Convective boiling and condensation). Three parties of principle investigators have been involved to design the experiment set-up: ZARM for thermo-capillary flows, IMFT (Toulouse, France) for boiling studies, EADS Astrium (Bremen, Ger-many) for depressurization. The topic of this paper is to study the effect of wall heat flux on the contact line of the free liquid surface and to obtain a correlation for a convective heat trans-fer coefficient. The experiment has been conducted along a predefined time line. A preheating sequence at ground was the first operation to achieve a well defined temperature evolution within the test cell and its environment inside the rocket. Nearly one minute after launch, the pressurized test cell was filled with the test liquid HFE-7000 until a certain fill level was reached. Then the free surface could be observed for 120 s without distortion. Afterwards, the first depressurization was started to induce subcooled boiling, the second one to start saturated boiling. The data from the flight consists of video images and temperature measurements in the liquid, the solid, and the gaseous phase. Data analysis provides the surface shape versus time and the corresponding apparent contact angle. Computational analysis provides information for the determination of the heat transfer coefficient in a compensated gravity environment where a flow is caused by the temperature difference between the hot wall and the cold liquid. The paper will deliver correlations for the effective contact angle and the heat transfer coefficient as a function of the relevant dimensionsless parameters as well as physical explanations for the observed behavior. The data will be used for benchmarking of commercial CFD codes and the tank design (using these codes) of future cryogenic upper stages. References Eckart Fuhrmann, Michael E. Dreyer, Description of the Sounding Rocket Experiment SOURCE, Microgravity sci. technol., 20/3-4, 206 (2008)

  4. Transcapillary fluid shifts in tissues of the head and neck during and after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Tucker, B.; Aratow, M.; Styf, J.; Crenshaw, A.; Parazynski, S. E.

    1991-01-01

    To understand the mechanism, magnitude, and time course of facial puffiness that occurs in microgravity, seven male subjects were tilted 6 degrees head down for 8 hr, and all four Starling transcapillary pressures were directly measured before, during , and after tilt. Head-down tilt (HDT) caused facial edema and a significant elevation of microvascular pressures measured in the lower lip. Subcutaneous and intramuscular interstitial fluid pressures in the neck also increased as a result of HDT, while interstitial fluid colloid osmotic pressures remained unchanged. Plasma colloid osmotic pressures dropped significantly after 4 hr of HDT, suggesting a transition from fluid filtration to absorption in capillary beds between the heart and feet during HDT. After 4 hr of seated recovery from HDT, microvascular pressures remained significantly elevated by 5 to 8 mm Hg above baseline values despite a significant HDT diuresis and the orthostatic challenge of an upright, seated posture. During the control (baseline) period, urine output was 46.7 ml/hr; during HDT, it was 126.5 ml/hr.

  5. Ground-water contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, Wilfred E.; Rostad, Colleen E.; Garbarino, John R.; Hult, Marc F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed.

  6. Groundwater contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Garbarino, J.R.; Hult, M.F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed. ?? 1983.

  7. Extracellular polymers of ozonized waste activated sludge.

    PubMed

    Liu, J C; Lee, C H; Lai, J Y; Wang, K C; Hsu, Y C; Chang, B V

    2001-01-01

    Effect of ozonation on characteristics of waste activated sludge was investigated in the current study. Concentrations of cell-bound extracellular polymers (washed ECPs) did not change much upon ozonation, whereas the sum of cell-bound and soluble extracellular polymers (unwashed ECPs) increased with increasing ozone dose. Washed ECPs in original sludge as divided by molecular weight distribution was 39% < 1,000 Da (low MW), 30% from 1,000 to 10,000 Da (medium MW), and 31% > 10,000 Da (high MW). It was observed that the low-MW fraction decreased, and the high-MW fraction increased in ozonized sludge. The unwashed ECPs were characterized as 44% in low MW, 30% in medium MW, and 26% in high MW. Both low-MW and medium-MW fractions of unwashed ECPs decreased while high-MW fraction increased in ozonized sludge. The dewaterability of ozonized sludge, assessed by capillary suction time (CST) and specific resistance to filtration (SRF), deteriorated with ozone dose. The optimal dose of cationic polyelectrolyte increased with increasing ozone dose. The production rate and the accumulated amount of methane gas of ozonized sludge were also higher.

  8. Uric acid is a main electron donor to peroxidases in human blood plasma.

    PubMed

    Padiglia, Alessandra; Medda, Rosaria; Longu, Silvia; Pedersen, Jens Z; Floris, Giovanni

    2002-11-01

    Peroxidases are widely distributed and have been isolated from many higher-order plants, animal tissues, yeast and microorganisms. During measurements of peroxidase activities in samples of human plasma, we noticed the presence of a compound in the plasma which was interfering with the peroxidase assay. In this paper we describe the purification and characterization of this factor, which was identified as uric acid. The procedure used to purify uric acid from plasma involved ultra-filtration of the plasma, heat denaturation, DEAE-cellulose chromatography, and high performance liquid chromatography. The lyophilized powder was tested for homogeneity using an HPLC apparatus and capillary electrophoresis. Genuine uric acid samples were used for comparison. The compound obtained by the above-reported purification procedure was identified as uric acid by spectrophotometric analysis through comparison with genuine uric acid samples. Spectrophotometric measurements indicated that uric acid was degraded by HRP in the presence of H2O2. The experimental procedures described above allowed us to isolate and identify uric acid as the component in human plasma that acts as a true substrate for peroxidases.

  9. Renin-angiotensin system within the diabetic podocyte.

    PubMed

    Márquez, Eva; Riera, Marta; Pascual, Julio; Soler, María José

    2015-01-01

    Diabetic kidney disease is the leading cause of end-stage renal disease. Podocytes are differentiated cells necessary for the development and maintenance of the glomerular basement membrane and the capillary tufts, as well as the function of the glomerular filtration barrier. The epithelial glomerular cells express a local renin-angiotensin system (RAS) that varies in different pathological situations such as hyperglycemia or mechanical stress. RAS components have been shown to be altered in diabetic podocytopathy, and their modulation may modify diabetic nephropathy progression. Podocytes are a direct target for angiotensin II-mediated injury by altered expression and distribution of podocyte proteins. Furthermore, angiotensin II promotes podocyte injury indirectly by inducing cellular hypertrophy, increased apoptosis, and changes in the anionic charge of the glomerular basement membrane, among other effects. RAS blockade has been shown to decrease the level of proteinuria and delay the progression of chronic kidney disease. This review summarizes the local intraglomerular RAS and its imbalance in diabetic podocytopathy. A better understanding of the intrapodocyte RAS might provide a new approach for diabetic kidney disease treatment. Copyright © 2015 the American Physiological Society.

  10. Head-to-head comparison of B-type natriuretic peptide (BNP) and NT-proBNP in daily clinical practice.

    PubMed

    Mair, Johannes; Gerda, Falkensammer; Renate, Hiemetzberger; Ulmer, Hanno; Andrea, Griesmacher; Pachinger, Otmar

    2008-02-29

    B-type natriuretic peptide (BNP; Abbott Diagnostics) and N-terminal proBNP (NT-proBNP, Roche Diagnostics) were compared in consecutive samples of 458 patients (mean age 60 years+/-16 years; 159 female, 299 male) sent for NT-proBNP measurement to investigate influences on both markers. BNP and NT-proBNP showed a close correlation with each other (r=0.89, p<0.0001). Using age- and gender-adjusted upper reference values the inter-rater agreement of both parameters was satisfactory (83%, Cohen's kappa coefficient=0.7). The combination of normal BNP and elevated NT-proBNP was significantly more frequent than vice versa (61 vs. 16 patients), and a calculated glomerular filtration rate<60 ml/min/1.73 m(2) was found in 39% of these patients. Multiple linear regression analysis revealed a significant influence of a reduced ejection fraction (<50%), renal dysfunction (calculated glomerular filtration rate<60 ml/min/1.73 m(2)), anemia, hypertension, age, and gender on both BNP and NT-proBNP. In conclusion, despite a close correlation and a satisfactory agreement between both markers in classification, frequent discrepancies in individual patients demonstrate that both markers are clinically not completely equivalent.

  11. Multiple Factors Influence Glomerular Albumin Permeability in Rats

    PubMed Central

    Sandoval, Ruben M.; Wagner, Mark C.; Patel, Monica; Campos-Bilderback, Silvia B.; Rhodes, George J.; Wang, Exing; Wean, Sarah E.; Clendenon, Sherry S.

    2012-01-01

    Different laboratories recently reported incongruous results describing the quantification of albumin filtration using two-photon microscopy. We investigated the factors that influence the glomerular sieving coefficient for albumin (GSCA) in an effort to explain these discordant reports and to develop standard operating procedures for determining GSCA. Multiple factors influenced GSCA, including the kidney depth of image acquisition (10–20 μm was appropriate), the selection of fluorophore (probes emitting longer wavelengths were superior), the selection of plasma regions for fluorescence measurements, the size and molecular dispersion characteristics of dextran polymers if used, dietary status, and the genetic strain of rat. Fasting reduced the GSCA in Simonsen Munich Wistar rats from 0.035±0.005 to 0.016±0.004 (P<0.01). Frömter Munich Wistar rats had a much lower GSCA in both the fed and the fasted states. Finally, we documented extensive albumin transcytosis with vesicular and tubular delivery to and fusion with the basolateral membrane in S1 proximal tubule cells. In summary, these results help explain the previously conflicting microscopy and micropuncture data describing albumin filtration and highlight the dynamic nature of glomerular albumin permeability. PMID:22223875

  12. Combination of nano-material enrichment and dead-end filtration for uniform and rapid sample preparation in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Wu, Zengnan; Khan, Mashooq; Mao, Sifeng; Lin, Ling; Lin, Jin-Ming

    2018-05-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a fast analysis tool for the detection of a wide range of analytes. However, heterogeneous distribution of matrix/analyte cocrystal, variation in signal intensity and poor experimental reproducibility at different locations of the same spot means difficulty in quantitative analysis. In this work, carbon nanotubes (CNTs) were employed as adsorbent for analyte cum matrix on a conductive porous membrane as a novel mass target plate. The sample pretreatment step was achieved by enrichment and dead-end filtration and dried by a solid-liquid separation. This approach enables the homogeneous distribution of analyte in the matrix, good shot-to-shot reproducibility in signals and quantitative detection of peptide and protein at different concentrations with correlation coefficient (R 2 ) of 0.9920 and 0.9909, respectively. The simple preparation of sample in a short time, uniform distribution of analyte, easy quantitative detection, and high reproducibility makes this technique useful and may diversify the application of MALDI-MS for quantitative detection of a variety of proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Method development for the determination of coumarin compounds by capillary electrophoresis with indirect laser-induced fluorescence detection.

    PubMed

    Wang, Weiping; Tang, Jianghong; Wang, Shumin; Zhou, Lei; Hu, Zhide

    2007-04-27

    A capillary zone electrophoresis (CZE) with indirect laser-induced fluorescence detection (ILIFD) method is described for the simultaneous determination of esculin, esculetin, isofraxidin, genistein, naringin and sophoricoside. The baseline separation was achieved within 5 min with running buffer (pH 9.4) composed of 5mM borate, 20% methanol (v/v) as organic modifier, 10(-7)M fluorescein sodium as background fluorophore and 20 kV of applied voltage at 30 degrees C of cartridge temperature. Good linearity relationships (correlation coefficients >0.9900) between the second-order derivative peak-heights (RFU) and concentrations of the analytes (mol L(-1)) were obtained. The detection limits for all analytes in second-order derivative electrophoregrams were in the range of 3.8-15 microM. The RSD data of intra-day for migration times and second-order derivative peak-height were less than 0.95 and 5.02%, respectively. This developed method was applied to the analysis of the courmin compounds in herb plants with recoveries in the range of 94.7-102.1%. In this work, although the detection sensitivity was lower than that of direct LIF, yet the method would extend the application range of LIF detection.

  14. Separation and simultaneous determination of rutin, puerarin, daidzein, esculin and esculetin in medicinal preparations by non-aqueous capillary.

    PubMed

    Li, Cunhong; Chen, Anjia; Chen, Xiaofeng; Chen, Xingguo; Hu, Zhide

    2005-09-01

    A simple method for the simultaneous determination of five bioactive components (rutin, puerarin, daidzein esculin and esculetin) in traditional medicinal preparations by non-aqueous capillary electrophoresis with UV detection has been developed for the first time. A running buffer composed of 15% acetonitrile, 2.5% acetic acid and 90 mM sodium cholate in methanol was found to be the most suitable for this separation. The limits of detection for five analytes were over the range of 0.050-1.216 microg ml(-1). The relative standard deviations (R.S.Ds.) of the migration times and the peak areas of the analytes were in the range of 1.3-2.9% and 2.2-2.7% (intraday), 1.7-1.9% and 2.8-3.6% (interday), respectively. In the tested concentration range, linear relationships (correlation coefficients: 0.9974 for rutin, 0.9976 for puerarin, 0.9981 for daidzein, 0.9972 for esculin and 0.9929 for esculetin) between peak areas and concentrations of the analytes were obtained. This method has been successfully applied to simultaneous determination of the five bioactive components with recoveries over the range of 89.4-107.4%.

  15. Capillary Corner Flows With Partial and Nonwetting Fluids

    NASA Technical Reports Server (NTRS)

    Bolleddula, D. A.; Weislogel, M. M.

    2009-01-01

    Capillary flow in containers or conduits with interior corners are common place in nature and industry. The majority of investigations addressing such flows solve the problem numerically in terms of a friction factor for flows along corners with contact angles below the Concus-Finn critical wetting condition for the particular conduit geometry of interest. This research effort provides missing numerical data for the flow resistance function F(sub i) for partially and nonwetting systems above the Concus-Finn condition. In such cases the fluid spontaneously de-wets the interior corner and often retracts into corner-bound drops. A banded numerical coefficient is desirable for further analysis and is achieved by careful selection of length scales x(sub s) and y(sub s) to nondimensionalize the problem. The optimal scaling is found to be identical to the wetting scaling, namely x(sub s) = H and y(sub s) = Htan (alpha), where H is the height from the corner to the free surface and a is the corner half-angle. Employing this scaling produces a relatively weakly varying flow resistance F(sub i) and for subsequent analyses is treated as a constant. Example solutions to steady and transient flow problems are provided that illustrate applications of this result.

  16. Determination of parabens in human milk and other food samples by capillary electrophoresis after dispersive liquid-liquid microextraction with back-extraction.

    PubMed

    Alshana, Usama; Ertaş, Nusret; Göğer, Nilgün G

    2015-08-15

    Dispersive liquid-liquid microextraction (DLLME) with back-extraction was used prior to capillary electrophoresis (CE) for the extraction of four parabens. Optimum extraction conditions were: 200 μL chloroform (extraction solvent), 1.0 mL acetonitrile (disperser solvent) and 1 min extraction time. Back-extraction of parabens from chloroform into a 50mM sodium hydroxide solution within 10s facilitated their direct injection into CE. The analytes were separated at 12°C and 25 kV with a background electrolyte of 25 mM borate buffer containing 5.0% (v/v) acetonitrile. Enrichment factors were in the range of 4.3-10.7 and limits of detection ranged from 0.1 to 0.2 μg mL(-1). Calibration graphs showed good linearity with coefficients of determination (R(2)) higher than 0.9957 and relative standard deviations (%RSDs) lower than 3.5%. DLLME-CE was demonstrated to be a simple and rapid method for the determination of parabens in human milk and food with relative recoveries in the range of 86.7-103.3%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Trace Level Determination of Mesityl Oxide and Diacetone Alcohol in Atazanavir Sulfate Drug Substance by a Gas Chromatography Method.

    PubMed

    Raju, K V S N; Pavan Kumar, K S R; Siva Krishna, N; Madhava Reddy, P; Sreenivas, N; Kumar Sharma, Hemant; Himabindu, G; Annapurna, N

    2016-01-01

    A capillary gas chromatography method with a short run time, using a flame ionization detector, has been developed for the quantitative determination of trace level analysis of mesityl oxide and diacetone alcohol in the atazanavir sulfate drug substance. The chromatographic method was achieved on a fused silica capillary column coated with 5% diphenyl and 95% dimethyl polysiloxane stationary phase (Rtx-5, 30 m x 0.53 mm x 5.0 µm). The run time was 20 min employing programmed temperature with a split mode (1:5) and was validated for specificity, sensitivity, precision, linearity, and accuracy. The detection and quantitation limits obtained for mesityl oxide and diacetone alcohol were 5 µg/g and 10 µg/g, respectively, for both of the analytes. The method was found to be linear in the range between 10 µg/g and 150 µg/g with a correlation coefficient greater than 0.999, and the average recoveries obtained in atazanavir sulfate were between 102.0% and 103.7%, respectively, for mesityl oxide and diacetone alcohol. The developed method was found to be robust and rugged. The detailed experimental results are discussed in this research paper.

  18. Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β-CD and chiral ionic liquid ([TBA] [L-ASP]) as selectors.

    PubMed

    Yujiao, Wu; Guoyan, Wang; Wenyan, Zhao; Hongfen, Zhang; Huanwang, Jing; Anjia, Chen

    2014-05-01

    In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl-phenylalanine; dl-tryptophan) using β-Cyclodextrin and chiral ionic liquid ([TBA] [l-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β-CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β-CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA-I, 18AA-II and 3AA.

  19. Separation and determination of epinephrine and dopamine in traditional Chinese medicines by micellar electrokinetic capillary chromatography with laser induced fluorescence detection.

    PubMed

    Dong, Yuming; Chen, Hongli; Chen, Yonglei; Hui, Yang; Chen, Xingguo; Hu, Zhide

    2006-08-01

    A micellar electrokinetic capillary chromatography method with laser-induced fluorescence detection was developed for the analysis of epinephrine and dopamine after derivatization with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. The optimum derivatization conditions were: 30 mM sodium borate (pH adjusted to 8.0 with 1.0 M HCl), reaction time 30 min at 60 degrees C. Baseline separation was achieved within 14 min with a running buffer composed of 10 mM sodium borate + 25 mM sodium dodecyl sulfate (pH adjusted to 9.5 with 0.1 M NaOH) and an applied voltage of 15 kV. Good linearity relationships (correlation coefficients: 0.9991 for epinephrine and 0.9985 for dopamine) between peak areas and concentrations of the analytes were obtained. The detection limits and quantification limits for epinephrine and dopamine were 0.0038 mg/L and 0.013 mg/L, and 0.065 mg/L and 0.020 mg/L, respectively. The method was applied to the analysis of the two compounds in two Chinese medicines with recoveries in the range of 92.6-108.7%.

  20. [Fast separation and analysis of water-soluble vitamins in spinach by capillary electrophoresis with high voltage].

    PubMed

    Hu, Xiaoqin; You, Huiyan

    2009-11-01

    In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.

  1. Gravity–capillary waves in finite depth on flows of constant vorticity

    PubMed Central

    Hsu, Hung-Chu; Francius, Marc; Kharif, Christian

    2016-01-01

    This paper considers two-dimensional periodic gravity–capillary waves propagating steadily in finite depth on a linear shear current (constant vorticity). A perturbation series solution for steady periodic waves, accurate up to the third order, is derived using a classical Stokes expansion procedure, which allows us to include surface tension effects in the analysis of wave–current interactions in the presence of constant vorticity. The analytical results are then compared with numerical computations with the full equations. The main results are (i) the phase velocity is strongly dependent on the value of the vorticity; (ii) the singularities (Wilton singularities) in the Stokes expansion in powers of wave amplitude that correspond to a Bond number of 1/2 and 1/3, which are the consequences of the non-uniformity in the ordering of the Fourier coefficients, are found to be influenced by vorticity; (iii) different surface profiles of capillary–gravity waves are computed and the effect of vorticity on those profiles is shown to be important, in particular that the solutions exhibit type-2-like wave features, characterized by a secondary maximum on the surface profile with a trough between the two maxima. PMID:27956873

  2. Simultaneous separation and determination of four uncaria alkaloids by capillary electrophoresis using dual cyclodextrin system.

    PubMed

    Li, Lou; Xu, Liying; Chen, Meng; Zhang, Guangbin; Zhang, Hongfen; Chen, Anjia

    2017-07-15

    The purpose of this study was to develop a simple, quick and precise capillary zone electrophoresis method (CZE) for the separation and determination of uncaria alkaloids using dual cyclodextrins as additives for the separation. The four analytes were baseline separated within 15min at the applied voltage of 15kV with a running buffer (pH 5.7) consisting of 40.0mM phosphate buffer, 161.7mM 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and 2.21mM mono-(6-ethylenediamine-6-deoxy)-β-cyclodextrin (ED-β-CD). Under the optimum conditions, a good linearity was achieved with correlation coefficients from 0.9989 to 0.9992. The detection limits and the quantitation limits ranged from 0.63 to 0.98μg/mL and from 2.08 to 3.28μg/mL, respectively. Excellent accuracy and precision were obtained. Recoveries of the analytes varied from 97.1 to 103.2%. This method was suitable for the quantitative determination of these alkaloids in the stem with hook of Uncaria rhynchophylla and the formulations of Uncaria rhynchophylla. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Wellbore stability in oil and gas drilling with chemical-mechanical coupling.

    PubMed

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale.

  4. Wellbore Stability in Oil and Gas Drilling with Chemical-Mechanical Coupling

    PubMed Central

    Deng, Jingen

    2013-01-01

    Wellbore instability in oil and gas drilling is resulted from both mechanical and chemical factors. Hydration is produced in shale formation owing to the influence of the chemical property of drilling fluid. A new experimental method to measure diffusion coefficient of shale hydration is given, and the calculation method of experimental results is introduced. The diffusion coefficient of shale hydration is measured with the downhole temperature and pressure condition, then the penetration migrate law of drilling fluid filtrate around the wellbore is calculated. Furthermore, the changing rules of shale mechanical properties affected by hydration and water absorption are studied through experiments. The relationships between shale mechanical parameters and the water content are established. The wellbore stability model chemical-mechanical coupling is obtained based on the experimental results. Under the action of drilling fluid, hydration makes the shale formation softened and produced the swelling strain after drilling. This will lead to the collapse pressure increases after drilling. The study results provide a reference for studying hydration collapse period of shale. PMID:23935430

  5. Occurrence and fate of pharmaceuticals and personal care products in drinking water in southern China.

    PubMed

    Qiao, Tiejun; Yu, Zhengrong; Zhang, Xihui; Au, Doris W T

    2011-11-01

    Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in drinking water was investigated in southern China. Fifteen and twelve PPCPs were detected with concentrations of 0-36 ng L(-1) in source water and of 0-20 ng L(-1) in treated water, respectively. Four PPCPs were detected with concentrations of approximately 1 ng L(-1) in drinking water of distribution network. Conventional water treatment processes removed the types and average concentrations of PPCPs by 30% and above 50%, respectively. Advanced water treatment processes were more efficient in the removal of most PPCPs, with the types and concentrations reduced by 50% and approximately 90%, respectively. Molecular properties of PPCPs had an important influence on their behaviors during water treatment. pK(a) (acidity coefficient) and K(oc) (organic carbon partition coefficient) of PPCPs appeared to have a combined effect on PPCPs removal during coagulation and oxidation. Adsorption and biodegradation were two possible mechanisms responsible for PPCPs removal during sand filtration.

  6. Computational Material Processing in Microgravity

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Working with Professor David Matthiesen at Case Western Reserve University (CWRU) a computer model of the DPIMS (Diffusion Processes in Molten Semiconductors) space experiment was developed that is able to predict the thermal field, flow field and concentration profile within a molten germanium capillary under both ground-based and microgravity conditions as illustrated. These models are coupled with a novel nonlinear statistical methodology for estimating the diffusion coefficient from measured concentration values after a given time that yields a more accurate estimate than traditional methods. This code was integrated into a web-based application that has become a standard tool used by engineers in the Materials Science Department at CWRU.

  7. Transport properties of nonelectrolyte liquid mixtures—VI. Viscosimetric study of binary mixtures of hexafluorobenzene with aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Dymond, J. H.; Robertson, J.

    1985-01-01

    Viscosity coefficients for binary mixtures of hexafluorobenzene with benzene, toluene, para-xylene, and mesitylene have been measured along the saturation line at temperatures from 15 to 120°C using specially designed capillary viscometers. Densities were measured using a pyknometer and volume-change apparatus. Deviations of the viscosities from a rectilinear dependence on mole fraction are consistent with enhanced interactions between unlike species, which increase with increasing number of methyl groups on the aromatic hydrocarbon and decrease with increasing temperature. The application of the Grunberg and Nissan equation, the Hildebrand equation, and energy of activation theories to these results is examined.

  8. Acoustic waves in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison

    2013-09-01

    Seminal papers by Brutsaert (1964) and Brutsaert and Luthin (1964) provided the first rigorous theoretical framework for examining the poroelastic behavior of unsaturated soils, including an important application linking acoustic wave propagation to soil hydraulic properties. Theoretical developments during the 50 years that followed have led Lo et al., (2005) to a comprehensive model of these phenomena, but the relationship of its elasticity parameters to standard poroelasticity parameters measured in hydrogeology has not been established. In the present study, we develop this relationship for three key parameters, the Gassman modulus, Skempton coefficient, and Biot-Willis coefficient by generalizing them to an unsaturated porous medium. We demonstrate the remarkable result that well-known and widely applied relationships among these parameters for a porous medium saturated by a single fluid are also valid under very general conditions for unsaturated soils. We show further that measurement of the Biot-Willis coefficient along with three of the six elasticity coefficients in the model of Lo et al. (2005) is sufficient to characterize poroelastic behavior. The elasticity coefficients in the model of Lo et al. (2005) are sensitive to the dependence of capillary pressure on water saturation and its viscous-drag coefficients are functions of relative permeability, implying that hysteresis in the water retention curve and hydraulic conductivity function should affect acoustic wave behavior in unsaturated soils. To quantify these as-yet unknown effects, we performed numerical simulations for Dune sand at two representative wave excitation frequencies. Our results show that the acoustic wave investigated by Brutsaert and Luthin (1964) propagates at essentially the same speed during imbibition and drainage, but is attenuated more during drainage than imbibition. Overall, effects on acoustic wave behavior caused by hysteresis become more significant as the excitation frequency increases.

  9. MUTUAL DIFFUSION OF PAIRS OF RARE GASES AT DIFFERENT TEMPERATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, B.N.; Srivastava, K.P.

    1959-04-01

    The eoefficient of mutual diffusion of the binary gas mixtures Ne--Ar, Ar--Krs and Ne--Kr has been determined at 0, 15, 30s and 45 C. Diffusion is allowed to take place between two diffusion bulbs through a precision capillary tube and samples of gas are withdrawn from one bulb at different times and analyzed by a differential conductivity analyzer. From the experimentally determined values of the diffusion coefficient at different temperatures the unlike interaction parameters for the above gas pairs have been calculated by two different methods on the Lennard-Jones I2:6 model. These values of the force parameters are found tomore » be in good agreement with those obtained from the usual combination rules and also from the thermal diffusion data following the method of Srivastava and Madan. These values are found to reproduce the experimental data on mutual diffusion quite satisfactorily. With Kelvin's method, these data have also been utilized to calculate the self-diffusion coefficient of neon, argons and krypton. (auth)« less

  10. Dragging a floating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Lee, Duck-Gyu; Kim, Ho-Young

    2010-11-01

    A cylinder immersed in a fluid stream experiences a drag, and it is well known that the drag coefficient is a function of the Reynolds number only. Here we study the force exerted on a long horizontal cylinder that is dragged perpendicular to its axis while floating on an air-water interface with a high Reynolds number. In addition to the flow-induced drag, the floating body is subjected to capillary forces along the contact line where the three phases of liquid/solid/gas meet. We first theoretically predict the meniscus profile around the horizontally moving cylinder assuming the potential flow, and show that the profile is in good agreement with that obtained experimentally. Then we compare our theoretical predictions and experimental measurement results for the drag coefficient of a floating horizontal cylinder that is given by a function of the Weber number and the Bond number. This study can help us to understand the horizontal motion of partially submerged objects at air-liquid interface, such as semi-aquatic insects and marine plants.

  11. Shear thinning in non-Brownian suspensions.

    PubMed

    Chatté, Guillaume; Comtet, Jean; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Ducouret, Guylaine; Lequeux, François; Lenoir, Nicolas; Ovarlez, Guillaume; Colin, Annie

    2018-02-14

    We study the flow of suspensions of non-Brownian particles dispersed into a Newtonian solvent. Combining capillary rheometry and conventional rheometry, we evidence a succession of two shear thinning regimes separated by a shear thickening one. Through X-ray radiography measurements, we show that during each of those regimes, the flow remains homogeneous and does not involve particle migration. Using a quartz-tuning fork based atomic force microscope, we measure the repulsive force profile and the microscopic friction coefficient μ between two particles immersed into the solvent, as a function of normal load. Coupling measurements from those three techniques, we propose that (1) the first shear-thinning regime at low shear rates occurs for a lubricated rheology and can be interpreted as a decrease of the effective volume fraction under increasing particle pressures, due to short-ranged repulsive forces and (2) the second shear thinning regime after the shear-thickening transition occurs for a frictional rheology and can be interpreted as stemming from a decrease of the microscopic friction coefficient at large normal load.

  12. Uniform Laser Excitation And Detection In Capillary Array Electrophoresis System And Method.

    DOEpatents

    Li, Qingbo; Zhou, Songsan; Liu, Changsheng

    2003-10-07

    A capillary electrophoresis system comprises capillaries positioned in parallel to each other forming a plane. The capillaries are configured to allow samples to migrate. A light source is configured to illuminate the capillaries and the samples therein. This causes the samples to emit light. A lens is configured to receive the light emitted by the samples and positioned directly over a first group of the capillaries and obliquely over a second group of the capillaries. The light source is further configured to illuminate the second group of capillaries more than the first group of the capillaries such that amount of light received by the lens from the first group of capillaries is substantially identical to amount of light received from the second group of capillaries when an identical amount of the samples is migrating through the first and second group capillaries.

  13. Niacinamide mitigated the acute lung injury induced by phorbol myristate acetate in isolated rat's lungs

    PubMed Central

    2012-01-01

    Background Phorbol myristate acetate (PMA) is a strong neutrophil activator and has been used to induce acute lung injury (ALI). Niacinamide (NAC) is a compound of B complex. It exerts protective effects on the ALI caused by various challenges. The purpose was to evaluate the protective effects of niacinamide (NAC) on the PMA-induced ALI and associated changes. Methods The rat's lungs were isolated in situ and perfused with constant flow. A total of 60 isolated lungs were randomized into 6 groups to received Vehicle (DMSO 100 μg/g), PMA 4 μg/g (lung weight), cotreated with NAC 0, 100, 200 and 400 mg/g (lung weight). There were 10 isolated lungs in each group. We measured the lung weight and parameters related to ALI. The pulmonary arterial pressure and capillary filtration coefficient (Kfc) were determined in isolated lungs. ATP (adenotriphosphate) and PARP [poly(adenosine diphophate-ribose) polymerase] contents in lung tissues were detected. Real-time PCR was employed to display the expression of inducible and endothelial NO synthases (iNOS and eNOS). The neutrophil-derived mediators in lung perfusate were determined. Results PMA caused increases in lung weight parameters. This agent produced pulmonary hypertension and increased microvascular permeability. It resulted in decrease in ATP and increase in PARP. The expression of iNOS and eNOS was upregulated following PMA. PMA increased the neutrophil-derived mediators. Pathological examination revealed lung edema and hemorrhage with inflammatory cell infiltration. Immunohistochemical stain disclosed the presence of iNOS-positive cells in macrophages and endothelial cells. These pathophysiological and biochemical changes were diminished by NAC treatment. The NAC effects were dose-dependent. Conclusions Our results suggest that neutrophil activation and release of neutrophil-derived mediators by PMA cause ALI and associated changes. NO production through the iNOS-producing cells plays a detrimental role in the PMA-induced lung injury. ATP is beneficial, while PARP plays a deteriorative effect on the PMA-induced ALI. NAC exerts protective effects on the inflammatory cascade leading to pulmonary injury. This B complex compound may be applied for clinical usage and therapeutic regimen. PMID:22375599

  14. Niacinamide mitigated the acute lung injury induced by phorbol myristate acetate in isolated rat's lungs.

    PubMed

    Lin, Chia-Chih; Hsieh, Nan-Kuang; Liou, Huey Ling; Chen, Hsing I

    2012-03-01

    Phorbol myristate acetate (PMA) is a strong neutrophil activator and has been used to induce acute lung injury (ALI). Niacinamide (NAC) is a compound of B complex. It exerts protective effects on the ALI caused by various challenges. The purpose was to evaluate the protective effects of niacinamide (NAC) on the PMA-induced ALI and associated changes. The rat's lungs were isolated in situ and perfused with constant flow. A total of 60 isolated lungs were randomized into 6 groups to received Vehicle (DMSO 100 μg/g), PMA 4 μg/g (lung weight), cotreated with NAC 0, 100, 200 and 400 mg/g (lung weight). There were 10 isolated lungs in each group. We measured the lung weight and parameters related to ALI. The pulmonary arterial pressure and capillary filtration coefficient (Kfc) were determined in isolated lungs. ATP (adenotriphosphate) and PARP [poly(adenosine diphophate-ribose) polymerase] contents in lung tissues were detected. Real-time PCR was employed to display the expression of inducible and endothelial NO synthases (iNOS and eNOS). The neutrophil-derived mediators in lung perfusate were determined. PMA caused increases in lung weight parameters. This agent produced pulmonary hypertension and increased microvascular permeability. It resulted in decrease in ATP and increase in PARP. The expression of iNOS and eNOS was upregulated following PMA. PMA increased the neutrophil-derived mediators. Pathological examination revealed lung edema and hemorrhage with inflammatory cell infiltration. Immunohistochemical stain disclosed the presence of iNOS-positive cells in macrophages and endothelial cells. These pathophysiological and biochemical changes were diminished by NAC treatment. The NAC effects were dose-dependent. Our results suggest that neutrophil activation and release of neutrophil-derived mediators by PMA cause ALI and associated changes. NO production through the iNOS-producing cells plays a detrimental role in the PMA-induced lung injury. ATP is beneficial, while PARP plays a deteriorative effect on the PMA-induced ALI. NAC exerts protective effects on the inflammatory cascade leading to pulmonary injury. This B complex compound may be applied for clinical usage and therapeutic regimen.

  15. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  16. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  17. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  18. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  19. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  20. Comparison of EML 105 and advantage analysers measuring capillary versus venous whole blood glucose in neonates.

    PubMed

    McNamara, P J; Sharief, N

    2001-09-01

    Near-patient blood glucose monitoring is an essential component of neonatal intensive care but the analysers currently used are unreliable and inaccurate. The aim of this study was to compare a new glucose electrode-based analyser (EML 105) and a non-wipe reflectance photometry method (Advantage) as opposed to a recognized laboratory reference method (Hexokinase). We also investigated the effect of sample route and haematocrit on the accuracy of the glucose readings obtained by each method of analysis. Whole blood glucose concentrations ranging from 0 to 3.5 mmol/l were carefully prepared in a laboratory setting and blood samples from each respective solution were then measured by EML 105 and Advantage analysers. The results obtained were then compared with the corresponding plasma glucose reading obtained by the Hexokinase method, using linear regression analysis. An in vivo study was subsequently performed on 103 neonates, over a 1-y period, using capillary and venous whole blood samples. Whole blood glucose concentration was estimated from each sample using both analysers and compared with the corresponding plasma glucose concentration estimated by the Hexokinase method. Venous blood was centrifuged and haematocrit was estimated using standardized curves. The effect of haematocrit on the agreement between whole blood and plasma glucose was investigated, estimating the degree of correlation on a scatterplot of the results and linear regression analysis. Both the EML 105 and Hexokinase methods were highly accurate, in vitro, with small proportional biases of 2% and 5%, respectively. However, in vivo, both study analysers overestimated neonatal plasma glucose, ranging from at best 0.45 mmol/l (EML 105 venous) to 0.69 mmol/l (EML capillary). There was no significant difference in the agreement of capillary (GD = 0.12, 95% CI, [-0.32,0.08], p = 0.2) or venous samples (GD = 0.05, 95% CI. [0.09, 0.19], p = 0.49) with plasma glucose when analysed by either study method (GD = glucose difference between study analyser and reference method) However, the venous samples analysed by EML 105 estimated plasma glucose significantly better than capillary samples using the same method of analysis (GD = 0.24, 95% CI. [0.09,0.38], p < 0.01). The relationship between haematocrit and the resultant glucose differences was non-linear with correlation coefficients of r = -0.057 (EML 105 capillary), r = 0.145 (EML 105 venous), r = -0.127 (Advantage capillary) and r = -0.275 (Advantage venous). There was no significant difference in the effect of haematocrit on the performance of EML 105 versus Advantage, regardless of the sample route. Both EML 105 and Advantage overestimated plasma glucose, with no significant difference in the performance of either analyser, regardless of the route of analysis. Agreement with plasma glucose was better for venous samples but this was only statistically significant when EML 105 capillary and venous results were compared. Haematocrit is not a significant confounding factor towards the performance of either EML 105 or Advantage in neonates, regardless of the route of sampling. The margin of overestimation of blood glucose prohibits the recommendation of both EML 105 and Advantage for routine neonatal glucose screening. The consequences include failure accurately to diagnose hypoglycaemia and delays in the instigation of therapeutic measures, both of which may potentially result in an adverse, long-term, neurodevelopmental outcome.

  1. Soil-Moisture Retention Curves, Capillary Pressure Curves, and Mercury Porosimetry: A Theoretical and Computational Investigation of the Determination of the Geometric Properties of the Pore Space

    NASA Astrophysics Data System (ADS)

    Strand, T. E.; Wang, H. F.

    2003-12-01

    Immiscible displacement protocols have long been used to infer the geometric properties of the void space in granular porous media. The three most commonly used experimental techniques are the measurement of soil-moisture retention curves and relative permeability-capillary pressure-saturation relations, as well as mercury intrusion porosimetry experiments. A coupled theoretical and computational investigation was performed that provides insight into the limitations associated with each technique and quantifies the relationship between experimental observations and the geometric properties of the void space. It is demonstrated that the inference of the pore space geometry from both mercury porosimetry experiments and measurements of capillary pressure curves is influenced by trapping/mobilization phenomena and subject to scaling behavior. In addition, both techniques also assume that the capillary pressure at a location on the meniscus can be approximated by a pressure difference across a region or sample. For example, when performing capillary pressure measurements, the capillary pressure, taken to be the difference between the injected fluid pressure at the inlet and the defending fluid pressure at the outlet, is increased in a series of small steps and the fluid saturation is measured each time the system reaches steady. Regions of defending fluid that become entrapped by the invading fluid can be subsequently mobilized at higher flow rates (capillary pressures), contributing to a scale-dependence of the capillary pressure-saturation curve that complicates the determination of the properties of the pore space. This scale-dependence is particularly problematic for measurements performed at the core scale. Mercury porosimetry experiments are subject to similar limitations. Trapped regions of defending fluid are also present during the measurement of soil-moisture retention curves, but the effects of scaling behavior on the evaluation of the pore space properties from the immiscible displacement structure are much simpler to account for due to the control of mobilization phenomena. Some mobilization may occur due to film flow, but this can be limited by keeping time scales relatively small or exploited at longer time scales in order to quantify the rate of film flow. Computer simulations of gradient-stabilized drainage and imbibition to the (respective) equilibrium positions were performed using a pore-scale modified invasion percolation (MIP) model in order to quantify the relationship between the saturation profile and the geometric properties of the void space. These simulations are similar to the experimental measurement of soil-moisture retention curves. Results show that the equilibrium height and the width of the equilibrium fringe depend on two length scale distributions, one controlling the imbibition equilibrium structure and the other controlling the drainage structure. The equilibrium height is related to the mean value of the appropriate distribution as described by Jurin's law, and the width of the equilibrium fringe scales as a function of a combined parameter, the Bond number, Bo, divided by the coefficient of variation (cov). Simulations also demonstrate that the apparent radius distribution obtained from saturation profiles using direct inversion by Jurin's law is a subset of the actual distribution in the porous medium. The relationship between the apparent and actual radius distributions is quantified in terms of the combined parameter, Bo/cov, and the mean coordination number of the porous medium.

  2. Differential effects of DEAE negative mode chromatography and gel-filtration chromatography on the charge status of Helicobacter pylori neutrophil-activating protein

    PubMed Central

    Pan, Timothy; Tzeng, Huey-Fen

    2017-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification. PMID:28328957

  3. Differential effects of DEAE negative mode chromatography and gel-filtration chromatography on the charge status of Helicobacter pylori neutrophil-activating protein.

    PubMed

    Hong, Zhi-Wei; Yang, Yu-Chi; Pan, Timothy; Tzeng, Huey-Fen; Fu, Hua-Wen

    2017-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification.

  4. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale

    NASA Astrophysics Data System (ADS)

    Seetha, N.; Raoof, Amir; Mohan Kumar, M. S.; Majid Hassanizadeh, S.

    2017-05-01

    Transport and deposition of nanoparticles in porous media is a multi-scale problem governed by several pore-scale processes, and hence, it is critical to link the processes at pore scale to the Darcy-scale behavior. In this study, using pore network modeling, we develop correlation equations for deposition rate coefficients for nanoparticle transport under unfavorable conditions at the Darcy scale based on pore-scale mechanisms. The upscaling tool is a multi-directional pore-network model consisting of an interconnected network of pores with variable connectivities. Correlation equations describing the pore-averaged deposition rate coefficients under unfavorable conditions in a cylindrical pore, developed in our earlier studies, are employed for each pore element. Pore-network simulations are performed for a wide range of parameter values to obtain the breakthrough curves of nanoparticle concentration. The latter is fitted with macroscopic 1-D advection-dispersion equation with a two-site linear reversible deposition accounting for both equilibrium and kinetic sorption. This leads to the estimation of three Darcy-scale deposition coefficients: distribution coefficient, kinetic rate constant, and the fraction of equilibrium sites. The correlation equations for the Darcy-scale deposition coefficients, under unfavorable conditions, are provided as a function of measurable Darcy-scale parameters, including: porosity, mean pore throat radius, mean pore water velocity, nanoparticle radius, ionic strength, dielectric constant, viscosity, temperature, and surface potentials of the particle and grain surfaces. The correlation equations are found to be consistent with the available experimental results, and in qualitative agreement with Colloid Filtration Theory for all parameters, except for the mean pore water velocity and nanoparticle radius.

  5. Enhanced performance of crumb rubber filtration for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2009-03-01

    Waste-tire-derived crumb rubber was utilized as filter media to develop an efficient filter for ballast water treatment. In this study, the effects of coagulation, pressure filtration and dual-media (gravity) filtration on the performance of the crumb rubber filtration were investigated. The removal efficiencies of turbidity, phytoplankton and zooplankton, and head loss development were monitored during the filtration process. The addition of a coagulant enhanced the removal efficiencies of all targeted matter, but resulted in substantial increase of head loss. Pressure filtration increased filtration rates to 220 m(3)h(-1)m(-2) for 8-h operation and improved the zooplankton removal. Dual-media (crumb rubber/sand) gravity filtration also improved the removal efficiencies of phytoplankton and zooplankton over mono-media gravity crumb rubber filtration. However, these filtration techniques alone did not meet the criteria for removing indigenous organisms from ballast water. A combination of filtration and disinfection is suggested for future studies.

  6. Monolith filter apparatus and membrane apparatus, and method using same

    DOEpatents

    Goldsmith, Robert L [Wayland, MA

    2012-04-03

    A filtration apparatus that separates a liquid feedstock mixed with a gas into filtrate and retentate, the apparatus including at least one filtration device comprised of at least one monolith segment of porous material that defines a plurality of passageways extending longitudinally from a feed face of the structure to a retentate end face. The filtration device contains at least one filtrate conduit within it for carrying filtrate toward a filtrate collection zone, the filtrate conduit providing a path of lower flow resistance than that of alternative flow paths through the porous material of the device. The filtration device can also be utilized as a membrane support for a device for microfiltration, ultrafiltration, nanofiltration, reverse osmosis, or pervaporation. Also disclosed is a method for using such a filtration apparatus.

  7. Performance in Measurement of Serum Cystatin C by Laboratories Participating in the College of American Pathologists 2014 CYS Survey.

    PubMed

    Eckfeldt, John H; Karger, Amy B; Miller, W Greg; Rynders, Gregory P; Inker, Lesley A

    2015-07-01

    Cystatin C is becoming an increasingly popular biomarker for estimating glomerular filtration rate, and accurate measurements of cystatin C concentrations are necessary for accurate estimates of glomerular filtration rate. To assess the accuracy of cystatin C concentration measurements in laboratories participating in the College of American Pathologists CYS Survey. Two fresh frozen serum pools, the first from apparently healthy donors and the second from patients with chronic kidney disease, were prepared and distributed to laboratories participating in the CYS Survey along with the 2 usual processed human plasma samples. Target values were established for each pool by using 2 immunoassays and ERM DA471/IFCC international reference material. For the normal fresh frozen pool (ERM-DA471/IFCC-traceable target of 0.960 mg/L), the all-method mean (SD, % coefficient of variation [CV]) reported by all of the 123 reporting laboratories was 0.894 mg/L (0.128 mg/L, 14.3%). For the chronic kidney disease pool (ERM-DA471/IFCC-traceable target of 2.37 mg/L), the all-method mean (SD, %CV) was 2.258 mg/L (0.288 mg/L, 12.8%). There were substantial method-specific biases (mean milligram per liter reported for the normal pool was 0.780 for Siemens, 0.870 for Gentian, 0.967 for Roche, 1.061 for Diazyme, and 0.970 for other/not specified reagents; and mean milligram per liter reported for the chronic kidney disease pool was 2.052 for Siemens, 2.312 for Gentian, 2.247 for Roche, 2.909 for Diazyme, and 2.413 for other/not specified reagents). Manufacturers need to improve the accuracy of cystatin C measurement procedures if cystatin C is to achieve its full potential as a biomarker for estimating glomerular filtration rate.

  8. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish.

    PubMed

    Eichmiller, Jessica J; Miller, Loren M; Sorensen, Peter W

    2016-01-01

    Few studies have examined capture and extraction methods for environmental DNA (eDNA) to identify techniques optimal for detection and quantification. In this study, precipitation, centrifugation and filtration eDNA capture methods and six commercially available DNA extraction kits were evaluated for their ability to detect and quantify common carp (Cyprinus carpio) mitochondrial DNA using quantitative PCR in a series of laboratory experiments. Filtration methods yielded the most carp eDNA, and a glass fibre (GF) filter performed better than a similar pore size polycarbonate (PC) filter. Smaller pore sized filters had higher regression slopes of biomass to eDNA, indicating that they were potentially more sensitive to changes in biomass. Comparison of DNA extraction kits showed that the MP Biomedicals FastDNA SPIN Kit yielded the most carp eDNA and was the most sensitive for detection purposes, despite minor inhibition. The MoBio PowerSoil DNA Isolation Kit had the lowest coefficient of variation in extraction efficiency between lake and well water and had no detectable inhibition, making it most suitable for comparisons across aquatic environments. Of the methods tested, we recommend using a 1.5 μm GF filter, followed by extraction with the MP Biomedicals FastDNA SPIN Kit for detection. For quantification of eDNA, filtration through a 0.2-0.6 μm pore size PC filter, followed by extraction with MoBio PowerSoil DNA Isolation Kit was optimal. These results are broadly applicable for laboratory studies on carps and potentially other cyprinids. The recommendations can also be used to inform choice of methodology for field studies. © 2015 John Wiley & Sons Ltd.

  9. Tangential Flow Filtration of Hemoglobin

    PubMed Central

    Sun, Guoyong; Harris, David R.

    2009-01-01

    Bovine and human hemoglobin (bHb and hHb, respectively) was purified from bovine and human red blood cells (bRBCs and hRBCs, respectively) via tangential flow filtration (TFF) in four successive stages. TFF is a fast and simple method to purify Hb from RBCs using filtration through hollow fiber (HF) membranes. Most of the Hb was retained in stage III (100 kDa HF membrane) and displayed methemoglobin levels less than 1%, yielding final concentrations of 318 and 300 mg/mL for bHb and hHb, respectively. Purified Hb exhibited much lower endotoxin levels than their respective RBCs. The purity of Hb was initially assessed via SDS-PAGE, and showed tiny impurity bands for the stage III retentate. The oxygen affinity (P50), and cooperativity coefficient (n) were regressed from the measured oxygen-RBC/Hb equilibrium curves of RBCs and purified Hb. These results suggest that TFF yielded oxygen affinities of bHb and hHb that are comparable to values in the literature. LC-MS was used to measure the molecular weight of the alpha (α) and beta (β) globin chains of purified Hb. No impurity peaks were present in the HPLC chromatograms of purified Hb. The mass of the molecular ions corresponding to the α and β globin chains agreed well with the calculated theoretical mass of the α-and β-globin chains. Taken together, our results demonstrate that HPLC grade Hb can be generated via TFF. In general, this method can be more broadly applied to purify Hb from any source of RBCs. This work is significant, since it outlines a simple method for generating Hb for synthesis and/or formulation of Hb-based oxygen carriers (HBOCs). PMID:19224583

  10. Laser illumination of multiple capillaries that form a waveguide

    DOEpatents

    Dhadwal, Harbans S.; Quesada, Mark A.; Studier, F. William

    1998-08-04

    A system and method are disclosed for efficient laser illumination of the interiors of multiple capillaries simultaneously, and collection of light emitted from them. Capillaries in a parallel array can form an optical waveguide wherein refraction at the cylindrical surfaces confines side-on illuminating light to the core of each successive capillary in the array. Methods are provided for determining conditions where capillaries will form a waveguide and for assessing and minimizing losses due to reflection. Light can be delivered to the arrayed capillaries through an integrated fiber optic transmitter or through a pair of such transmitters aligned coaxially at opposite sides of the array. Light emitted from materials within the capillaries can be carried to a detection system through optical fibers, each of which collects light from a single capillary, with little cross talk between the capillaries. The collection ends of the optical fibers can be in a parallel array with the same spacing as the capillary array, so that the collection fibers can all be aligned to the capillaries simultaneously. Applicability includes improving the efficiency of many analytical methods that use capillaries, including particularly high-throughput DNA sequencing and diagnostic methods based on capillary electrophoresis.

  11. Laser illumination of multiple capillaries that form a waveguide

    DOEpatents

    Dhadwal, H.S.; Quesada, M.A.; Studier, F.W.

    1998-08-04

    A system and method are disclosed for efficient laser illumination of the interiors of multiple capillaries simultaneously, and collection of light emitted from them. Capillaries in a parallel array can form an optical waveguide wherein refraction at the cylindrical surfaces confines side-on illuminating light to the core of each successive capillary in the array. Methods are provided for determining conditions where capillaries will form a waveguide and for assessing and minimizing losses due to reflection. Light can be delivered to the arrayed capillaries through an integrated fiber optic transmitter or through a pair of such transmitters aligned coaxially at opposite sides of the array. Light emitted from materials within the capillaries can be carried to a detection system through optical fibers, each of which collects light from a single capillary, with little cross talk between the capillaries. The collection ends of the optical fibers can be in a parallel array with the same spacing as the capillary array, so that the collection fibers can all be aligned to the capillaries simultaneously. Applicability includes improving the efficiency of many analytical methods that use capillaries, including particularly high-throughput DNA sequencing and diagnostic methods based on capillary electrophoresis. 35 figs.

  12. Device to improve detection in electro-chromatography

    DOEpatents

    Garguilo, Michael G.; Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    Apparatus and method for improving the resolution of non-pressure driven capillary chromatographic systems, and particularly for capillary electrochromatography (CEC) systems. By reducing the cross-sectional area of a packed capillary column by means of a second open capillary contiguous with the outlet end of a packed capillary column, where the packed capillary column has a cross sectional area of between about 2 and 5 times that of the open capillary column, the phenomenon of band broadening in the transition region between the open capillary and the packed capillary column, where the individual components of the mixture are analyzed, can be eliminated, thereby providing for a significant improvement in resolution and more accurate detection and analysis.

  13. Device to improve detection in electro-chromatography

    DOEpatents

    Garguilo, Michael G.; Paul, Phillip H.; Rakestraw, David J.

    2002-01-01

    Apparatus and method for improving the resolution of non-pressure driven capillary chromatographic systems, and particularly for capillary electrochromatography (CEC) systems. By reducing the cross-sectional area of a packed capillary column by means of a second open capillary contiguous with the outlet end of a packed capillary column, where the packed capillary column has a cross sectional area of between about 2 and 5 times that of the open capillary column, the phenomenon of band broadening in the transition region between the open capillary and the packed capillary column, where the individual components of the mixture are analyzed, can be eliminated, thereby providing for a significant improvement in resolution and more accurate detection and analysis.

  14. Results of the performance verification of the CoaguChek XS system.

    PubMed

    Plesch, W; Wolf, T; Breitenbeck, N; Dikkeschei, L D; Cervero, A; Perez, P L; van den Besselaar, A M H P

    2008-01-01

    This is the first paper reporting a performance verification study of a point-of-care (POC) monitor for prothrombin time (PT) testing according to the requirements given in chapter 8 of the International Organization for Standardization (ISO) 17593:2007 standard "Clinical laboratory testing and in vitro medical devices - Requirements for in vitro monitoring systems for self-testing of oral anticoagulant therapy". The monitor under investigation was the new CoaguChek XS system which is designed for use in patient self testing. Its detection principle is based on the amperometric measurement of the thrombin activity generated by starting the coagulation cascade using a recombinant human thromboplastin. The system performance verification study was performed at four study centers using venous and capillary blood samples on two test strip lots. Laboratory testing was performed from corresponding frozen plasma samples with six commercial thromboplastins. Samples from 73 normal donors and 297 patients on oral anticoagulation therapy were collected. Results were assessed using a refined data set of 260 subjects according to the ISO 17593:2007 standard. Each of the two test strip lots met the acceptance criteria of ISO 17593:2007 versus all thromboplastins (bias -0.19 to 0.18 INR; >97% of data within accuracy limits). The coefficient of variation for imprecision of the PT determinations in INR ranged from 2.0% to 3.2% in venous, and from 2.9% to 4.0% in capillary blood testing. Capillary versus venous INR data showed agreement of results with regression lines equal to the line of identity. The new system demonstrated a high level of trueness and accuracy, and low imprecision in INR testing. It can be concluded that the CoaguChek XS system complies with the requirements in chapter 8 of the ISO standard 17593:2007.

  15. Identification and quantification of human microcirculatory leukocytes using handheld video microscopes at the bedside.

    PubMed

    Uz, Zühre; van Gulik, Thomas M; Aydemirli, Mehtap Derya; Guerci, Philippe; Ince, Yasin; Cuppen, Diede V; Ergin, Bulent; Aksu, Ugur; de Mol, Bas A; Ince, Can

    2018-03-08

    Leukocyte recruitment and adhesion to the endothelium are hallmarks of systemic inflammation that manifest in a wide range of diseases. At present, no method is available to directly measure leukocyte kinetics at the bedside. In this study, we validate a new method to identify and quantify microcirculatory leukocytes observed by handheld vital microscopy (HVM) using space-time diagram (STD) analysis. Video clips (N=59) containing one capillary-post capillary venule (C-PCV) unit where leukocytes could be observed emanating from a capillary into a venule in cardiac surgery patients (N=20) were included. STD analysis and manual counting were used to quantify the number of leukocytes (total, rolling and non-rolling). Pearson's correlation and Bland-Altman analysis were used to determine agreement between the STDs and manual counting. For reproducibility, intra- and inter-observer coefficients of variation (CVs) were assessed. Leukocyte (rolling and non-rolling) and red blood cell velocities were assessed. The STDs and manual counting procedures for the quantification of rolling leukocytes showed good agreement (r=0.8197, P<0.0001), with a Bland-Altman analysis mean difference of -0.0 (-6.56; 6.56). The overall intra-observer CV for the STD method was 1.5%. The overall inter-observer CVs for the STD and the manual method were 5.6% and 9.4%, respectively. The non-rolling velocity was significantly higher than the rolling velocity (812{plus minus}519 µm/s vs 201{plus minus}149 µm/s, P=0.001). The STD results agreed with the manual counting procedure results, had a better reproducibility and could assess the leukocyte velocity. STD analysis using bedside HVM imaging presented a new methodology for quantifying leukocyte kinetics and functions in the microcirculation.

  16. Determination of cyanide in whole blood by capillary gas chromatography with cryogenic oven trapping.

    PubMed

    Ishii, A; Seno, H; Watanabe-Suzuki, K; Suzuki, O; Kumazawa, T

    1998-11-15

    Cyanide, one of the most important toxic substances, has been found measurable with high sensitivity by capillary gas chromatography (GC) with cryogenic oven trapping upon injection of headspace (HS) vapor samples. The entire amount of cyanide in the HS sample could be cryogenically trapped prior to on-line GC analysis. A 0.5-mL volume of blood in the presence or absence of cyanide and propionitrile (internal standard, IS) was added to a vial containing 0.25 mL of distilled water, 0.3 g of Na2-SO4, 0.2 mL of 50% H3PO4, and 0.1 g of ascorbic acid (when needed), and the mixture was heated at 70 degrees C for 15 min. A 5-mL volume of the HS vapor was introduced into a GC capillary column in the splitless mode at -30 degrees C oven temperature that was programmed up to 160 degrees C for GC analysis with nitrogen-phosphorus detection. A sharp peak was obtained for cyanide under the present conditions, and backgrounds were very clean. The extraction efficiencies of cyanide and IS were 2.89-3.22 (100 or 500 ng/mL) and 2.42%, respectively. The calibration curve showed good linearity in the range of 25-1000 ng/mL and the detection limit was approximately 2 ng/mL. The coefficients of intraday and interday variations were 2.9 and 11.8%, respectively. The mean blood cyanide level measured for actual fire victims was 687 +/- 597 ng/mL (mean +/- SD, n = 9). Endogenous blood cyanide concentration for healthy subjects was 8.41 +/- 3.09 ng/mL (mean +/- SD, n = 6).

  17. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    DOEpatents

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  18. Design of Capillary Flows with Spatially Graded Porous Films

    NASA Astrophysics Data System (ADS)

    Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen

    2013-11-01

    We have developed a new capillary tube model, consisting of multi-layered capillary tubes oriented in the direction of flow, to predict capillary speeds on spatially graded porous films. Capillary flows through thin porous media have been widely utilized for small size liquid transport systems. However, for most media it is challenging to realize arbitrary shapes and spatially functionalized micro-structures with variable flow properties. Therefore, conventional media can only be used for capillary flows obeying Washburn's equation and the modifications thereof. Given this background, we recently developed a method called breakdown anodization (BDA) to produce highly wetting porous films. The resulting surfaces show nearly zero contact angles and fast water spreading speed. Furthermore, capillary pressure and spreading diffusivity can be expressed as functions of capillary height when customized electric fields are used in BDA. From the capillary tube model, we derived a general capillary flow equation of motion in terms of capillary pressure and spreading diffusivity. The theoretical model shows good agreement with experimental capillary flows. The study will provide novel design methodologies for paper-based microfluidic devices.

  19. Global Well-Posedness and Decay Rates of Strong Solutions to a Non-Conservative Compressible Two-Fluid Model

    NASA Astrophysics Data System (ADS)

    Evje, Steinar; Wang, Wenjun; Wen, Huanyao

    2016-09-01

    In this paper, we consider a compressible two-fluid model with constant viscosity coefficients and unequal pressure functions {P^+neq P^-}. As mentioned in the seminal work by Bresch, Desjardins, et al. (Arch Rational Mech Anal 196:599-629, 2010) for the compressible two-fluid model, where {P^+=P^-} (common pressure) is used and capillarity effects are accounted for in terms of a third-order derivative of density, the case of constant viscosity coefficients cannot be handled in their settings. Besides, their analysis relies on a special choice for the density-dependent viscosity [refer also to another reference (Commun Math Phys 309:737-755, 2012) by Bresch, Huang and Li for a study of the same model in one dimension but without capillarity effects]. In this work, we obtain the global solution and its optimal decay rate (in time) with constant viscosity coefficients and some smallness assumptions. In particular, capillary pressure is taken into account in the sense that {Δ P=P^+ - P^-=fneq 0} where the difference function {f} is assumed to be a strictly decreasing function near the equilibrium relative to the fluid corresponding to {P^-}. This assumption plays an key role in the analysis and appears to have an essential stabilization effect on the model in question.

  20. Noise contribution to the correlation between temperature-induced localized reflectance of diabetic skin and blood glucose.

    PubMed

    Lowery, Michael G; Calfin, Brenda; Yeh, Shu-Jen; Doan, Tao; Shain, Eric; Hanna, Charles; Hohs, Ronald; Kantor, Stan; Lindberg, John; Khalil, Omar S

    2006-01-01

    We used the effect of temperature on the localized reflectance of human skin to assess the role of noise sources on the correlation between temperature-induced fractional change in optical density of human skin (DeltaOD(T)) and blood glucose concentration [BG]. Two temperature-controlled optical probes at 30 degrees C contacted the skin, one was then cooled by -10 degrees C; the other was heated by +10 degrees C. DeltaOD(T) upon cooling or heating was correlated with capillary [BG] of diabetic volunteers over a period of three days. Calibration models in the first two days were used to predict [BG] in the third day. We examined the conditions where the correlation coefficient (R2) for predicting [BG] in a third day ranked higher than R2 values resulting from fitting permutations of randomized [BG] to the same DeltaOD(T) values. It was possible to establish a four-term linear regression correlation between DeltaOD(T) upon cooling and [BG] with a correlation coefficient higher than that of an established noise threshold in diabetic patients that were mostly females with less than 20 years of diabetes duration. The ability to predict [BG] values with a correlation coefficient above biological and body-interface noise varied between the cases of cooling and heating.

  1. In situ study of mass transfer in aqueous solutions under high pressures via Raman spectroscopy: A new method for the determination of diffusion coefficients of methane in water near hydrate formation conditions

    USGS Publications Warehouse

    Lu, W.J.; Chou, I.-Ming; Burruss, R.C.; Yang, M.Z.

    2006-01-01

    A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition. ?? 2006 Society for Applied Spectroscopy.

  2. In Vivo Microscopy Reveals Extensive Embedding of Capillaries within the Sarcolemma of Skeletal Muscle Fibers

    PubMed Central

    Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.

    2013-01-01

    Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425

  3. Dispersion in 2D network: Effects of mixing rule at nodes and molecular diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tao, Q.; Li, M.

    2017-12-01

    We simulate solute transport in 2D network backbone characterized by pore connectivity and pore heterogeneity by particle-tracking method. In order to ensure the dispersion coefficient reaching an asymptotic value, we upscale dispersion from pore-scale to meter-scale by using periodic boundary condition. As comparison, two different flow mechanisms without or with dispersion in a capillary tube, namely mean flow and Taylor-Aris dispersion, are introduced to investigate the evolution of solute spreading. The longitudinal dispersion coefficient DLM without dispersion in a pipe can roughly be regarded as a parameter to quantify the impact of microscopic structure of porous media on solute spreading, which is smaller than that value DL of Taylor-Aris dispersion. The difference between them decreases with the enhancement of the disorder. The mixing rule at nodes has a minor effect on longitudinal spreading, but has a significant effect on transverse spreading, especially for the nearly homogeneous media. An increase of the disorder in network achieved by increasing pore size heterogeneity or/and decreasing pore connectivity diminishes the difference between two mixing rules. Besides, the evolution of longitudinal dispersion coefficient over diffusion presents three different patterns at different velocities for homogenous media, such as monotonically increasing trend, decreasing first and then increasing trend and monotonically decreasing trend. But all are replaced by power law for a high disorder. The simulation results also accurately predict the experimental dependence of the longitudinal coefficient on Peclet number Pe.

  4. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    PubMed

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  5. CSE-MECC two-dimensional capillary electrophoresis analysis of proteins in the mouse tumor cell (AtT-20) homogenate

    PubMed Central

    Chen, Xingguo; Fazal, Md. Abul; Dovichi, Norman J.

    2007-01-01

    Two-dimensional capillary electrophoresis was used for the separation of proteins and biogenic amines from the mouse AtT-20 cell line. The first-dimension capillary contained a TRIS-CHES-SDS-dextran buffer to perform capillary sieving electrophoresis, which is based on molecular weight of proteins. The second-dimension capillary contained a TRIS-CHES-SDS buffer for micel1ar electrokinetic capillary chromatography. After a 61 seconds preliminary separation, fractions from the first-dimension capillary were successively transferred to the second-dimension capillary, where they further separated by MECC. The two-dimensional separation required 60 minutes. PMID:17637850

  6. 8. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING SOUTHWEST, SHOWING MEZZANINE WITH FILTER TANKS AT REAR - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  7. 7. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHEAST, SHOWING PUMP NO. 1 AND METERING EQUIPMENT - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  8. Remarks on non-maximal integral elements of the Cartan plane in jet spaces

    NASA Astrophysics Data System (ADS)

    Bächtold, M.; Moreno, G.

    2014-11-01

    There is a natural filtration on the space of degree-k homogeneous polynomials in n independent variables with coefficients in the algebra of smooth functions on the Grassmannian Gr (n,s), determined by the tautological bundle. In this paper we show that the space of s-dimensional integral elements of a Cartan plane on J(E,n), with dimE=n+m, has an affine bundle structure modeled by the so-obtained bundles over Gr (n,s), and we study a natural distribution associated with it. As an example, we show that a third-order nonlinear PDE of Monge-Ampère type is not contact-equivalent to a quasi-linear one.

  9. Structure-specific magnetic field inhomogeneities and its effect on the correlation time.

    PubMed

    Ziener, Christian H; Bauer, Wolfgang R; Melkus, Gerd; Weber, Thomas; Herold, Volker; Jakob, Peter M

    2006-12-01

    We describe the relationship between the correlation time and microscopic spatial inhomogeneities in the static magnetic field. The theory takes into account diffusion of nuclear spins in the inhomogeneous field created by magnetized objects. A simple general expression for the correlation time is obtained. It is shown that the correlation time is dependent on a characteristic length, the diffusion coefficient of surrounding medium, the permeability of the surface and the volume fraction of the magnetized objects. For specific geometries (spheres and cylinders), exact analytical expressions for the correlation time are given. The theory can be applied to contrast agents (magnetically labeled cells), capillary network, BOLD effect and so forth.

  10. Insulin-induced changes in microvascular vasomotion and capillary recruitment are associated in humans.

    PubMed

    de Boer, Michiel P; Meijer, Rick I; Newman, John; Stehouwer, Coen D A; Eringa, Etto C; Smulders, Yvo M; Serné, Erik H

    2014-07-01

    Insulin-induced capillary recruitment is considered a significant regulator of overall insulin-stimulated glucose uptake. Insulin's action to recruit capillaries has been hypothesized to involve insulin-induced changes in vasomotion. Data directly linking vasomotion to capillary perfusion, however, are presently lacking. We, therefore, investigated whether insulin's actions on capillary recruitment and vasomotion were interrelated in a group of healthy individuals. We further assessed the role of capillary recruitment in the association between vasomotion and insulin-mediated glucose uptake. Changes in vasomotion and capillary density were determined by LDF and capillary videomicroscopy in skin, respectively, before and during a hyperinsulinemic euglycemic clamp in 19 healthy volunteers. Insulin-induced increase in the neurogenic vasomotion domain was positively related to insulin-augmented capillary recruitment (r = 0.51, p = 0.04), and both parameters were related to insulin-mediated glucose uptake (r = 0.47, p = 0.06 and r = 0.73, p = 0.001, respectively). The change in insulin-augmented capillary recruitment could, at least statistically, largely explain the association between the neurogenic domain and insulin-mediated glucose uptake. Insulin-induced changes in vasomotion and capillary recruitment are associated in healthy volunteers. These data suggest that insulin's action to recruit capillaries may in part involve action on the neurogenic vasomotion domain, thereby enhancing capillary perfusion and glucose uptake. © 2014 John Wiley & Sons Ltd.

  11. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production.

    PubMed

    Kartal, S N; Imamura, Y; Tsuchiya, F; Ohsato, K

    2004-10-01

    Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Fomitopsis palustris. However the filtrates from sugi wood processed at 270 degrees C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot.

  12. Direct Numerical Simulation of Liquid Transport Through Fibrous Porous Media

    NASA Astrophysics Data System (ADS)

    Palakurthi, Nikhil Kumar

    Fluid flow through fibrous media occurs in many industrial processes, including, but not limited, to fuel cell technology, drug delivery patches, sanitary products, textile reinforcement, filtration, heat exchangers, and performance fabrics. Understanding the physical processes involved in fluid flow through fibrous media is essential for their characterization as well as for the optimization and development of new products. Macroscopic porous-media equations require constitutive relations, which account for the physical processes occurring at the micro-scale, to predict liquid transport at the macro-scale. In this study, micro-scale simulations were conducted using conventional computational fluid dynamics (CFD) technique (finite-volume method) to determine the macroscopic constitutive relations. The first part of this thesis deals with the single-phase flow in fibrous media, following which multi-phase flow through fibrous media was studied. Darcy permeability is an important parameter that characterizes creeping flow through a fibrous porous medium. It has a complex dependence on the medium's properties such as fibers' in-plane and through-plane orientation, diameter, aspect ratio, curvature, and porosity. A suite of 3D virtual fibrous structures with a wide range of geometric properties were constructed, and the permeability values of the structures were calculated by solving the 3D incompressible Navier-Stokes equations. The through-plane permeability was found to be a function of only the fiber diameter, the fibers' through-plane orientation, and the porosity of the medium. The numerical results were used to extend a permeability-porosity relation, developed in literature for 3D isotropic fibrous media, to a wide range of fibers' through-plane orientations. In applications where rate of capillary penetration is important, characterization of porous media usually involves determination of either the effective pore radius from capillary penetration experiments or a representative pore radius (R50) from pore-size distribution data. The relationship between effective and representative pore radii was studied by performing direct simulations of capillary penetration of a wetting liquid using a finite-volume-based volume-of-fluid (VOF) method. The simulated unidirectional liquid penetration through fibrous media followed Lucas-Washburn kinetics (L ˜ t1/2), except during the initial stages, which are dominated by inertial forces. Even though fluid properties and contact angle were kept constant in the simulations, the effective pore radii were found to be quite different from the representative radii. It can be concluded that the differences between effective and representative pore radii did not arise from contact angle variations. The unsaturated flow through fibrous media at the macro-scale is typically described using Richard's equation which requires constitutive relations: capillary pressure and permeability as a function of liquid saturation. In the present study, the quasi-static capillary pressure-saturation (P c-S) relationship for the primary drainage in a 3D isotropic fibrous medium was determined by performing micro-scale simulations using a VOF method. The Pc-S relationship obtained from the VOF method was compared with the results from the full-morphology (FM) method. Good agreement was observed between the results from the VOF and FM methods, thus suggesting that the FM method, a computationally less intensive method as compared to VOF method, may be sufficient for estimating the Pc-S relationship for primary drainage.

  13. Effect of Capillary Tube’s Shape on Capillary Rising Regime for Viscos Fluids

    NASA Astrophysics Data System (ADS)

    Soroush, F.; Moosavi, A.

    2018-05-01

    When properties of the displacing fluid are considered, the rising profile of the penetrating fluid in a capillary tube deviates from its classical Lucas-Washburn profile. Also, shape of capillary tube can affect the rising profile in different aspects. In this article, effect of capillary tube’s shape on the vertical capillary motion in presence of gravity is investigated by considering the properties of the displacing fluid. According to the fact that the differential equation of the capillary rising for a non-simple wall type is very difficult to solve analytically, a finite element simulation model is used for this study. After validation of the simulation model with an experiment that has been done with a simple capillary tube, shape of the capillary tube’s wall is changed in order to understand its effects on the capillary rising and different motion regimes that may appear according to different geometries. The main focus of this article is on the sinusoidal wall shapes and comparing them with a simple wall.

  14. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edward S.; Kuhr, Werner G.

    1996-02-20

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  15. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edwards; Kuhr, Werner G.

    1991-04-09

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  16. Enhancing separation in short-capillary electrophoresis via pressure-driven backflow.

    PubMed

    Tian, Miaomiao; Wang, Yujia; Mohamed, Amara Camara; Guo, Liping; Yang, Li

    2015-07-01

    We present a novel easy-to-operate and efficient method to improve the separation efficiency in short-capillary electrophoresis by introducing steady backflow to counterbalance electro-osmotic flow without the use of any external pressure. The backflow was easily generated by tapering the capillary end, which was achieved by heating a straight capillary and stretching it with a constant force. We investigated the net fluidic transport rate under different tip lengths and separation voltages. Good run-to-run repeatability and capillary-to-capillary reproducibility of the present method were obtained with RSD less than 1.5%, indicating the stability of the fluid transport rate in the tapered capillary, which ensures the quantification and repeatability of capillary zone electrophoresis (CZE) analysis. Enhanced separation of the tapered short capillary electrophoresis was demonstrated by CZE analyzing amino acids and positional isomers. Baseline separations were achieved in less than 60 s using a tapered capillary with the effective length of 5 cm, while no separation was achieved using a normal capillary without a tapered tip. The present study provides a promising method to use pressure-driven backflow to enhance separation efficiency in short-capillary electrophoresis, which would be of potential value in a wide application for fast analysis of complex samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantitative fine structure of capillaries in subregions of the rat subfornical organ.

    PubMed

    Shaver, S W; Sposito, N M; Gross, P M

    1990-04-01

    The differentiated cytology across subregions of the rat subfornical organ (SFO) prompted our hypothesis that ultrastructural features of capillary endothelial cells would vary topographically and quantitatively within this small nucleus. We used electron microscopic and computer-based morphometric methods to assess fine structural dimensions of the capillary endothelium in four distinct subregions of the SFO from Long-Evans and homozygous Brattleboro rats. Three types of capillary were present. Type III capillaries (resembling those of endocrine glands) had an average wall thickness of 0.17 microns, 54% thinner than those of Type I and II capillaries. Pericapillary spaces around Type III capillaries measured 56 microns2, 100% larger than for Type I vessels (resembling those of skeletal muscle). Only Type III capillaries contained fenestrations (9 per microns2 of endothelial cell) and were the predominant type of capillary in central and caudal subregions of the SFO. Type I capillaries, prevalent in the transitional subregion between the central and rostral parts of the SFO, had 10 cytoplasmic vesicles per micron2 of endothelial cell area, a number not different from that of Type III capillaries but 3x the frequency found in Type II vessels. Type II capillaries (those typical of "blood-brain barrier" endothelium) had low vesicular density (3 per microns2), no fenestrations, and no pericapillary spaces. Luminal diameters and the densities of mitochondria and intercellular junctions were not different among capillary types or subregions in the SFO. Furthermore, there were no morphometric differences for any capillary dimensions between Long-Evans and Brattleboro rats.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Measurement of Capillary Radius and Contact Angle within Porous Media.

    PubMed

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed

    2015-12-01

    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.

  19. Environmental fate and behavior of acesulfame in laboratory experiments.

    PubMed

    Storck, Florian R; Skark, Christian; Remmler, Frank; Brauch, Heinz-Jürgen

    2016-12-01

    Acesulfame is a widely used artificial sweetener. It can be discharged into surface water by domestic wastewater due to its incomplete retention during wastewater treatment. Concentrations may reach up to 10 μg/L for smaller rivers. State-of-the-art analysis allows the determination of acesulfame traces (0.01 μg/L) and thus a potential tracking of the presence of wastewater in riverbank filtrate. To evaluate the behavior of acesulfame in the aquatic environment, biodegradation and sorption of acesulfame were tested. Batch experiments yielded low sorption for several soils (estimated solid-water distribution coefficient of acesulfame <0.1 L/kg). Biodegradation in a fixed-bed reactor was not observed at environmental concentrations of 9 μg/L in aqueous compost and soil extract (observation period 56 days). Only in diluted effluent of a wastewater treatment plant did biodegradation start, after 17 days of operation, and acesulfame completely fade, within 28 days. Flow-through column experiments indicated conservative behavior of acesulfame (recovery >83%) and long-term observations at different concentration levels yielded no biodegradation. Overall, laboratory experiments demonstrated a conservative behavior of acesulfame under conditions typical for riverbank filtration. However, there are hints for certain settings which favor an adaptation of the microbial community and facilitate a rapid biodegradation of acesulfame.

  20. Analysis of sulfonamides, tilmicosin and avermectins residues in typical animal matrices with multi-plug filtration cleanup by liquid chromatography-tandem mass spectrometry detection.

    PubMed

    Qin, Yuhong; Jatamunua, Freedom; Zhang, Jingru; Li, Yanjie; Han, Yongtao; Zou, Nan; Shan, Jihao; Jiang, Yanbin; Pan, Canping

    2017-05-15

    The frequent use of various veterinary drugs could lead to residue bioaccumulation in animal tissues, which could cause dietary risks to human health. In order to quickly analyze the residues, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for detecting Sulfonamides, Tilmicosin and Avermectins (AVMs) residues in animal samples. For sample preparation, modified QuEChERS (quick, easy, cheap, effective, rugged and safe) and ultrasound-assisted extraction (UAE) methods were used. For sample cleanup, n-Hexane delipidation and multi-plug filtration cleanup (m-PFC) method based on primary-secondary amine (PSA) and octadecyl-silica (C18) were used, followed by LC-MS/MS analysis. It was validated on 7 animal matrices (bovine, caprine, swine meat and their kidneys, milk) at two fortified concentration levels of 5 and 100μg/kg. The recoveries ranged from 82 to 107% for all analytes with relative standard deviations (RSDs) less than 15%. Matrix-matched calibrations were performed with coefficients of determination above 0.998 for all analytes within concentration levels of 5-500μg/kg. The developed method was successfully used to analysis veterinary drugs of real animal samples from local markets. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Removal of nickel from aqueous solution using supported zeolite-Y hollow fiber membranes.

    PubMed

    Muhamad, Norfazilah; Abdullah, Norfazliana; Rahman, Mukhlis A; Abas, Khairul Hamimah; Aziz, Azian Abd; Othman, Mohd Hafiz Dzarfan; Jaafar, Juhana; Ismail, Ahmad Fauzi

    2018-05-02

    This work describes the development of supported zeolite-Y membranes, prepared using the hydrothermal method, for the removal of nickel from an aqueous solution. Alumina hollow fibers prepared using the phase inversion and sintering technique were used as an inert support. The supported zeolite-Y membranes were characterized using the field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and the water permeation and rejection test. The performance of the supported zeolite-Y membranes for heavy metal removal using batch adsorption and filtration test was studied using the atomic absorption spectroscopy (AAS). The adsorption study shows that the removal of nickel was pH-dependent but affected by the presence of α-alumina. The seeded zeolite-Y membrane gave the highest adsorption capacity which was 126.2 mg g -1 . This enabled the membrane to remove 63% of nickel ions from the aqueous solution within 180 min of contact time. The adsorption mechanism of nickel onto the zeolite-Y membrane was best fitted to the Freundlich isotherm. The kinetic study concluded that the adsorption was best fitted to pseudo-second-order model with higher correlation coefficient (R 2  = 0.9996). The filtration study proved that the zeolite-Y membrane enabled to reduce the concentration of heavy metal at parts per billion level.

  2. Effect of picric acid and enzymatic creatinine on the efficiency of the glomerular filtration rate predicator formula.

    PubMed

    Qiu, Ling; Guo, Xiuzhi; Zhu, Yan; Shou, Weilin; Gong, Mengchun; Zhang, Lin; Han, Huijuan; Quan, Guoqiang; Xu, Tao; Li, Hang; Li, Xuewang

    2013-01-01

    To investigate the impact of serum creatinine measurement on the applicability of glomerular filtration rate (GFR) evaluation equations. 99mTc-DTPA plasma clearance rate was used as GFR reference (rGFR) in patients with chronic kidney disease (CKD). Serum creatinine was measureded using enzymatic or picric acid creatinine reagent. The GFR of the patients were estimated using the Cockcroft-Gault equation corrected for body surface area, simplified Modification of Diet in Renal Disease (MDRD) equation, simplified MDRD equation corrected to isotopes dilution mass spectrometry, the CKD epidemiology collaborative research equation, and two Chinese simplified MDRD equations. Significant differences in the eGFR results estimated through enzymatic and picric acid methods were observed for the same evaluation equation. The intraclass correlation coefficient (ICC) of eGFR when the creatinine was measured by the picric acid method was significantly lower than that of the enzymatic method. The assessment accuracy of every equation using the enzymatic method to measure creatinine was significantly higher than that measured by the picric acid method when rGFR was > or = 60 mL/min/1.73m2. A significant difference was demonstrated in the same GFR evaluation equation using the picric acid and enzymatic methods. The enzymatic creatinine method was better than the picric acid method.

  3. PROCESS OF EXTRACTING URANIUM AND RADIUM FROM ORES

    DOEpatents

    Sawyer, C.W.; Handley, R.W.

    1959-07-14

    A process is presented for extracting uranium and radium values from a uranium ore which comprises leaching the ore with a ferric chloride solution at an elevated temperature of above 50 deg C and at a pH less than 4; separating the ore residue from the leaching solution by filtration; precipitating the excess ferric iron present at a pH of less than 5 by adding CaCO/sub 3/ to the filtrate; separating the precipitate by filtration; precipitating the uranium present in the filtrate at a Ph less than 6 by adding BaCO/sub 3/ to the filtrate; separating the precipitate by filtration; and precipitating the radium present in the filtrate by adding H/sub 2/SO/sub 4/ to the filtrate.

  4. Simultaneous determination of eleven preservatives in cosmetics by micellar electrokinetic chromatography.

    PubMed

    Wang, Ping; Ding, Xiaojing; Li, Yun; Yang, Yuanyuan

    2012-01-01

    A new method for the simultaneous quantitation of 11 preservatives-imidazolidinyl urea, benzyl alcohol, dehydroacetic acid, sorbic acid, phenoxyethanol, benzoic acid, salicylic acid, and four parabens (methyl, ethyl, propyl, and butyl)-in cosmetics by micellar electrokinetic capillary chromatography was established and validated. The separation was performed using an uncoated fused-silica capillary (50 pm id x 60.2 cm, effective length 50 cm) with a running buffer consisting of 15 mmol/L sodium tetraborate, 60 mmol/L boric acid, and 100 mmol/L sodium dodecyl sulfate. A 1:10 dilution of the running buffer was used as the sample buffer to extract the cosmetic samples. The key factors, such as the concentration and pH of the running and sample buffers, which influence quantitative analysis of the above 11 preservatives in cosmetic samples, were investigated in detail. The linear ranges of the calibration curves for imidazolidinyl urea and the other 10 preservatives were 50-1000 and 10-200 mg/L, respectively. The correlation coefficients of the standard curves were all higher than 0.999. The recoveries at the concentrations studied ranged from 93.0 to 102.7%. RSDs were all less than 5%. The new method with simple sample pretreatment met the needs for routine analysis of the 11 preservatives in cosmetics.

  5. Modeling meniscus rise in capillary tubes using fluid in rigid-body motion approach

    NASA Astrophysics Data System (ADS)

    Hamdan, Mohammad O.; Abu-Nabah, Bassam A.

    2018-04-01

    In this study, a new term representing net flux rate of linear momentum is introduced to Lucas-Washburn equation. Following a fluid in rigid-body motion in modeling the meniscus rise in vertical capillary tubes transforms the nonlinear Lucas-Washburn equation to a linear mass-spring-damper system. The linear nature of mass-spring-damper system with constant coefficients offers a nondimensional analytical solution where meniscus dynamics are dictated by two parameters, namely the system damping ratio and its natural frequency. This connects the numerous fluid-surface interaction physical and geometrical properties to rather two nondimensional parameters, which capture the underlying physics of meniscus dynamics in three distinct cases, namely overdamped, critically damped, and underdamped systems. Based on experimental data available in the literature and the understanding meniscus dynamics, the proposed model brings a new approach of understanding the system initial conditions. Accordingly, a closed form relation is produced for the imbibition velocity, which equals half of the Bosanquet velocity divided by the damping ratio. The proposed general analytical model is ideal for overdamped and critically damped systems. While for underdamped systems, the solution shows fair agreement with experimental measurements once the effective viscosity is determined. Moreover, the presented model shows meniscus oscillations around equilibrium height occur if the damping ratio is less than one.

  6. Sensitive determination of four general anaesthetics in human whole blood by capillary gas chromatography with cryogenic oven trapping.

    PubMed

    Kojima, T; Ishii, A; Watanabe-Suzuki, K; Kurihara, R; Seno, H; Kumazawa, T; Suzuki, O; Katsumata, Y

    2001-10-05

    Four general anaesthetics, sevoflurane, isoflurane, enflurane and halothane, in human whole blood, have been found measurable with very high sensitivity by capillary gas chromatography-flame ionization detection (GC-FID) with cryogenic oven trapping upon injection of headspace (HS) vapor sample. To a 7-ml vial, containing 0.48 ml of distilled water and 20 microl of internal standard solution (5 microg), a 0.5-ml of whole blood sample spiked with or without anaesthetics, was added, and the mixture was heated at 55 degrees C for 15 min. A measure of 10 ml HS vapor was injected into the GC in the splitless mode at -40 degrees C oven temperature, which was programmed up to 250 degrees C. All four peaks were clearly separated; no impurity peaks were found among their peaks. Their extraction efficiencies were about 10%. The calibration curves showed good linearity in the range of 0.5-20 microg/ml; their detection limits were 10-100 ng/ml, which are almost comparable to those by previous reports. The coefficients of intra-day and day-to-day variations were 6.5-9.8 and 7.3-17.2%, respectively. Isoflurane or enflurane was also measured from whole blood samples in which three volunteers inhaled each compound.

  7. Combining bar adsorptive microextraction with capillary electrophoresis--application for the determination of phenolic acids in food matrices.

    PubMed

    da Rosa Neng, Nuno; Sequeiros, Rute C P; Florêncio Nogueira, José Manuel

    2014-09-01

    In this contribution, bar adsorptive microextraction coated with a mixed-mode anion exchange/RP followed by liquid desorption was combined for the first time with a capillary electrophoresis-diode array detection system (BAμE(MAX)-LD/CE-DAD), for the determination of phenolic acids in food matrices, using chlorogenic, ferulic, cumaric, and caffeic acids as model compounds. Assays performed in aqueous media spiked at the 0.8 mg/L level yielded average recoveries up to 40% for all four phenolic acids, under optimized experimental conditions. The analytical performance showed also good precision (RSD < 15%), convenient LODs (18.0-85.0 μg/L) and linear dynamic ranges (0.8-8.0 mg/L) with convenient determination coefficients (r(2) > 0.9900). By using the standard addition method, the application to food matrices such as green tea, red fruit juice, and honey allowed very good performances for the determination of minor amounts of phenolic acids. The proposed methodology proved to be a suitable alternative for the analysis of polar to ionic compounds, showing to be easy to implement, reliable, sensitive, and requiring a low sample volume to determine phenolic acids in food samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. In-house-made capillary electrophoresis instruments coupled with contactless conductivity detection as a simple and inexpensive solution for water analysis: a case study in Vietnam.

    PubMed

    Duong, Hong Anh; Le, Minh Duc; Nguyen, Kim Diem Mai; Hauser, Peter C; Pham, Hung Viet; Mai, Thanh Duc

    2015-11-01

    A simple and inexpensive method for the determination of various ionic species in different water matrices is discussed in this study. The approach is based on the employment of in-house-made capillary electrophoresis (CE) instruments with capacitively coupled contactless conductivity detection (C(4)D), which can be realized even when only a modest financial budget and limited expertise are available. Advantageous features and considerations of these instruments are detailed following their pilot deployment in Vietnam. Different categories of ionic species, namely major inorganic cations (K(+), Na(+), Ca(2+), Mg(2+), and NH4(+)) and major inorganic anions (Cl(-), NO3(-), NO2(-), SO4(2-), and phosphate), in different water matrices in Vietnam were determined using these in-house fabricated instruments. Inorganic trivalent arsenic (As(iii)), which is the most abundant form of arsenic in reducing groundwater, was determined by CE-C(4)D. The effect of some interfering ions in groundwater on the analytical performance was investigated and is highlighted. The results from in-house-made CE-C(4)D-instruments were cross-checked with those obtained using the standard methods (AAS, AES, UV and IC), with correlation coefficients r(2) ≥ 0.9 and deviations from the referenced results less than 15%.

  9. Ion guiding in macro-size insulating capillaries: straight, tapered, and curved shapes

    NASA Astrophysics Data System (ADS)

    Kojima, Takao M.

    2018-02-01

    When keV energy ions are injected into a tilted insulating capillary, a certain fraction of the injected ions are transported through the tilt angle of the capillary. This ion guiding phenomenon is considered to be caused by a self-organizing charge distribution, where the inner wall of the capillary becomes charged by initial incoming ions. The charge distribution, which is formed, can guide following ions toward the exit of the capillary. Since the initial discovery of this effect, studies of ion guiding by insulating capillaries have been extended to various materials, and different sizes and shapes of capillaries. In recent years, some investigations of the guiding effect of macro-size curved capillaries have also been reported. In this review, relevant studies in a history of ion guiding in curved capillaries are discussed and future directions in this field are considered.

  10. High-speed video capillaroscopy method for imaging and evaluation of moving red blood cells

    NASA Astrophysics Data System (ADS)

    Gurov, Igor; Volkov, Mikhail; Margaryants, Nikita; Pimenov, Aleksei; Potemkin, Andrey

    2018-05-01

    The video capillaroscopy system with high image recording rate to resolve moving red blood cells with velocity up to 5 mm/s into a capillary is considered. Proposed procedures of the recorded video sequence processing allow evaluating spatial capillary area, capillary diameter and central line with high accuracy and reliability independently on properties of individual capillary. Two-dimensional inter frame procedure is applied to find lateral shift of neighbor images in the blood flow area with moving red blood cells and to measure directly the blood flow velocity along a capillary central line. The developed method opens new opportunities for biomedical diagnostics, particularly, due to long-time continuous monitoring of red blood cells velocity into capillary. Spatio-temporal representation of capillary blood flow is considered. Experimental results of direct measurement of blood flow velocity into separate capillary as well as capillary net are presented and discussed.

  11. Automated Parallel Capillary Electrophoretic System

    DOEpatents

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  12. Fluid Delivery System For Capillary Electrophoretic Applications.

    DOEpatents

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  13. Early changes in fiber profile and capillary density in long-term stimulated muscles.

    PubMed

    Hudlická, O; Dodd, L; Renkin, E M; Gray, S D

    1982-10-01

    Predominantly fast skeletal muscles of rabbits [tibialis anterior (TA), extensor digitorum longus (EDL)] were stimulated at a frequency naturally occurring in nerves to slow muscles (10 Hz continuously) for 8 h/day for 2--4 days. Such stimulation is known to convert all glycolytic fibers to oxidative and to increase capillary density. Our aim was to study early stages of conversion to investigate the factors responsible for the changes. Staining of quick-frozen sections for myosin ATPase, succinic dehydrogenase, and alkaline phosphatase was used to study the distribution of different fiber types and to measure fiber cross-sectional areas, capillaries per square millimeter, and capillary-to-fiber ratios in each fiber category. TA but not EDL showed conversion of fast glycolytic to fast oxidative fibers after 2 days, more after 4 days of stimulation. In both muscles, the largest fast glycolytic fibers were diminished in number after stimulation. There was significant increase in total capillaries per square millimeter after 4 days and some increase after 2 days of stimulation. The increase in capillaries per square millimeter exceeded the increase in the number of fibers per square millimeter, and since there was no change in mean fiber area, the increase is attributed to capillary growth. In EDL, there was an increase in the number of capillaries supplying both fast glycolytic and fast oxidative fibers, suggesting that capillary growth precedes fiber type conversion. In TA, the number of capillaries supplying fast oxidative fibers was increased but that to fast glycolytic fibers, was not. This is consistent with capillary growth simultaneous with or following fiber conversion. In both TA and EDL the number of capillaries perfused after contraction was higher in stimulated muscles, suggesting that increased capillary flow contributed to capillary growth.

  14. Quantitative analysis of nailfold capillary morphology in patients with fibromyalgia

    PubMed Central

    Choi, Dug-Hyun

    2015-01-01

    Background/Aims Nailfold capillaroscopy (NFC) has been used to examine morphological and functional microcirculation changes in connective tissue diseases. It has been demonstrated that NFC patterns reflect abnormal microvascular dynamics, which may play a role in fibromyalgia (FM) syndrome. The aim of this study was to determine NFC patterns in FM, and their association with clinical features of FM. Methods A total of 67 patients with FM, and 30 age- and sex-matched healthy controls, were included. Nailfold capillary patterns were quantitatively analyzed using computerized NFC. The parameters of interest were as follows: number of capillaries within the central 3 mm, deletion score, apical limb width, capillary width, and capillary dimension. Capillary dimension was determined by calculating the number of capillaries using the Adobe Photoshop version 7.0. Results FM patients had a lower number of capillaries and higher deletion scores on NFC compared to healthy controls (17.3 ± 1.7 vs. 21.8 ± 2.9, p < 0.05; 2.2 ± 0.9 vs. 0.7 ± 0.6, p < 0.05, respectively). Both apical limb width (µm) and capillary width (µm) were significantly decreased in FM patients (1.1 ± 0.2 vs. 3.7 ± 0.6; 5.4 ± 0.5 vs. 7.5 ± 1.4, respectively), indicating that FM patients have abnormally decreased digital capillary diameter and density. Interestingly, there was no difference in capillary dimension between the two groups, suggesting that the length or tortuosity of capillaries in FM patients is increased to compensate for diminished microcirculation. Conclusions FM patients had altered capillary density and diameter in the digits. Diminished microcirculation on NFC may alter capillary density and increase tortuosity. PMID:26161020

  15. How many taxa can be recognized within the complex Tillandsia capillaris (Bromeliaceae, Tillandsioideae)? Analysis of the available classifications using a multivariate approach.

    PubMed

    Castello, Lucía V; Galetto, Leonardo

    2013-01-01

    Tillandsia capillaris Ruiz & Pav., which belongs to the subgenus Diaphoranthema is distributed in Ecuador, Peru, Bolivia, northern and central Argentina, and Chile, and includes forms that are difficult to circumscribe, thus considered to form a complex. The entities of this complex are predominantly small-sized epiphytes, adapted to xeric environments. The most widely used classification defines 5 forms for this complex based on few morphological reproductive traits: Tillandsia capillaris Ruiz & Pav. f. capillaris, Tillandsia capillaris f. incana (Mez) L.B. Sm., Tillandsia capillaris f. cordobensis (Hieron.) L.B. Sm., Tillandsia capillaris f. hieronymi (Mez) L.B. Sm. and Tillandsia capillaris f. virescens (Ruiz & Pav.) L.B. Sm. In this study, 35 floral and vegetative characters were analyzed with a multivariate approach in order to assess and discuss different proposals for classification of the Tillandsia capillaris complex, which presents morphotypes that co-occur in central and northern Argentina. To accomplish this, data of quantitative and categorical morphological characters of flowers and leaves were collected from herbarium specimens and field collections and were analyzed with statistical multivariate techniques. The results suggest that the last classification for the complex seems more comprehensive and three taxa were delimited: Tillandsia capillaris (=Tillandsia capillaris f. incana-hieronymi), Tillandsia virescens s. str. (=Tillandsia capillaris f. cordobensis) and Tillandsia virescens s. l. (=Tillandsia capillaris f. virescens). While Tillandsia capillaris and Tillandsia virescens s. str. co-occur, Tillandsia virescens s. l. is restricted to altitudes above 2000 m in Argentina. Characters previously used for taxa delimitation showed continuous variation and therefore were not useful. New diagnostic characters are proposed and a key is provided for delimiting these three taxa within the complex.

  16. How many taxa can be recognized within the complex Tillandsia capillaris (Bromeliaceae, Tillandsioideae)? Analysis of the available classifications using a multivariate approach

    PubMed Central

    Castello, Lucía V.; Galetto, Leonardo

    2013-01-01

    Abstract Tillandsia capillaris Ruiz & Pav., which belongs to the subgenus Diaphoranthema is distributed in Ecuador, Peru, Bolivia, northern and central Argentina, and Chile, and includes forms that are difficult to circumscribe, thus considered to form a complex. The entities of this complex are predominantly small-sized epiphytes, adapted to xeric environments. The most widely used classification defines 5 forms for this complex based on few morphological reproductive traits: Tillandsia capillaris Ruiz & Pav. f. capillaris, Tillandsia capillaris f. incana (Mez) L.B. Sm., Tillandsia capillaris f. cordobensis (Hieron.) L.B. Sm., Tillandsia capillaris f. hieronymi (Mez) L.B. Sm. and Tillandsia capillaris f. virescens (Ruiz & Pav.) L.B. Sm. In this study, 35 floral and vegetative characters were analyzed with a multivariate approach in order to assess and discuss different proposals for classification of the Tillandsia capillaris complex, which presents morphotypes that co-occur in central and northern Argentina. To accomplish this, data of quantitative and categorical morphological characters of flowers and leaves were collected from herbarium specimens and field collections and were analyzed with statistical multivariate techniques. The results suggest that the last classification for the complex seems more comprehensive and three taxa were delimited: Tillandsia capillaris (=Tillandsia capillaris f. incana-hieronymi), Tillandsia virescens s. str. (=Tillandsia capillaris f. cordobensis) and Tillandsia virescens s. l. (=Tillandsia capillaris f. virescens). While Tillandsia capillaris and Tillandsia virescens s. str. co-occur, Tillandsia virescens s. l. is restricted to altitudes above 2000 m in Argentina. Characters previously used for taxa delimitation showed continuous variation and therefore were not useful. New diagnostic characters are proposed and a key is provided for delimiting these three taxa within the complex. PMID:23805053

  17. Capillary Structures for Exploration Life Support (Capillary Structures)

    NASA Image and Video Library

    2017-07-10

    iss052e013146 (July 10, 2017) --- Astronaut Jack Fischer is photographed during setup of hardware for the Capillary Structures for Exploration Life Support (Capillary Structures) two sorbent demonstrations. The Capillary Structures for Exploration Life Support (Capillary Structures) investigation studies a new method using structures of specific shapes to manage fluid and gas mixtures. The investigation studies water recycling and carbon dioxide removal, benefiting future efforts to design lightweight, more reliable life support systems for future space missions.

  18. Cystatin C-Based Equation Does Not Accurately Estimate the Glomerular Filtration in Japanese Living Kidney Donors.

    PubMed

    Tsujimura, Kazuma; Ota, Morihito; Chinen, Kiyoshi; Adachi, Takayuki; Nagayama, Kiyomitsu; Oroku, Masato; Nishihira, Morikuni; Shiohira, Yoshiki; Iseki, Kunitoshi; Ishida, Hideki; Tanabe, Kazunari

    2017-06-23

    BACKGROUND Precise evaluation of a living donor's renal function is necessary to ensure adequate residual kidney function after donor nephrectomy. Our aim was to evaluate the feasibility of estimating glomerular filtration rate (GFR) using serum cystatin-C prior to kidney transplantation. MATERIAL AND METHODS Using the equations of the Japanese Society of Nephrology, we calculated the GFR using serum creatinine (eGFRcre) and cystatin C levels (eGFRcys) for 83 living kidney donors evaluated between March 2010 and March 2016. We compared eGFRcys and eGFRcre values against the creatinine clearance rate (CCr). RESULTS The study population included 27 males and 56 females. The mean eGFRcys, eGFRcre, and CCr were, 91.4±16.3 mL/min/1.73 m² (range, 59.9-128.9 mL/min/1.73 m²), 81.5±14.2 mL/min/1.73 m² (range, 55.4-117.5 mL/min/1.73 m²) and 108.4±21.6 mL/min/1.73 m² (range, 63.7-168.7 mL/min/1.73 m²), respectively. eGFRcys was significantly lower than CCr (p<0.001). The correlation coefficient between eGFRcys and CCr values was 0.466, and the mean difference between the two values was -17.0 (15.7%), with a root mean square error of 19.2. Thus, eGFRcre was significantly lower than CCr (p<0.001). The correlation coefficient between eGFRcre and CCr values was 0.445, and the mean difference between the two values was -26.9 (24.8%), with a root mean square error of 19.5. CONCLUSIONS Although eGFRcys provided a better estimation of GFR than eGFRcre, eGFRcys still did not provide an accurate measure of kidney function in Japanese living kidney donors.

  19. Experimental and Modeling Study on Detachment of Silver Nanoparticles in Saturated Granular Media

    NASA Astrophysics Data System (ADS)

    Kim, I.; Jeon, C. H.; Lawler, D. F.

    2017-12-01

    The detachment of citrate-capped silver nanoparticles (AgNPs) previously captured in a column packed with 350-μm glass beads was investigated either by increasing the hydrodynamic force (filtration velocity) or by reducing electrosteric attraction. Overall, the physical enforcement showed negligible (0.4 0.7%) release of attached AgNPs while the chemically-driven force resulted in the noticeable release up to 25.5% of attached AgNPs. Among the chemical parameters tested in this study, Na ionic strength reduction clearly demonstrated the reversible deposition in the secondary energy minimum of classical DLVO theory, yielding the most significant release of the attached AgNPs. The immediate and transient AgNP release after the ionic strength reduction further corroborated the weak deposition. However, an insignificant release was observed with Ca ionic strength reduction due to the strong Ca-citrate complexation and the subsequent deposition in the primary energy minimum; calculations indicated that the depth of the secondary energy minimum was only 1/10 that of the Na ion case. The natural organic matter (NOM) coating on both AgNPs and granular media resulted in approximately 6.1% greater AgNP release compared to the case without NOM coating, indicating additional weak deposition due to the reduced steric attraction between AgNPs and granular media. A modified filtration model in agreement with the experimental data provided the estimated detachment coefficient as a transient AgNP releasing capacity independent of the amount of attached AgNPs. The marginal difference between the detachment coefficients from Na ionic strength reduction and NOM coating indicates the release potential by NOM coating was possibly underestimated in the experimental study due to a lesser amount of the initially attached AgNPs. The findings provide insights into chemical factors on possible reentrainment behavior of the engineered nanoparticles in soil and groundwater contamination.

  20. Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid

    NASA Astrophysics Data System (ADS)

    yang, P.

    2013-12-01

    Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid Ping Yang 1,2, Min-hui Wu2, Xue-wen Zhu2, Tao Deng2, Xue-qing Sun2 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092,China 2. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China Abstract The process of filtrate loss of low-solids drilling fluid was tested by changing the polyanionic cellulose content in low-solids drilling fluid. The effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid was analyzed. The test results showed that when time of filtration is same, the volume of filtrate loss decreases linearly with increasing polyanionic cellulose content. When polyanionic cellulose content is same, the rate of filtrate loss decreases nonlinearly with increasing time and the rate of filtrate loss will reach a stable value.The volume of filtrate loss in 7 to 8 minutes can reaches half of the total volume of filtrate loss. At the same time, the rate of filtrate loss of drilling fluid decreases nonlinearly with increasing viscosity.When the apparent viscosity is between 3.5~4.15 MPa.s, decrease speed of rate of filtrate loss of drilling fluid is quick. The results are helpful for characteristics evaluation of filtrate loss of drilling fluid and control of filtrate loss. Keyword Polyanionic Cellulose,Drilling Fluid,Process of Filtrate Loss Acknowledgments This investigation was supported by the National Natural Science Foundation of China (projects No. 41002093 and 41072205); the Fundamental Research Funds for the Central Universities; the Shanghai Leading Academic Discipline Project (project No. B308), Tongji University; and the Program for Young Excellent Talents, Tongji University. The authors are extremely grateful for the financial support from these five organizations.

Top