DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, T.R.; Bernard, G.R.; Brigham, K.L.
1990-02-01
We conducted indicator dilution studies on the lungs of patients in the early phases of adult respiratory distress syndrome (ARDS) to test the hypothesis that capillary permeability was increased in patients with respiratory failure. Indicator dilution studies were performed using 51Cr-erythrocytes, 125I-albumin, 14C-urea, and 3H-water as tracers. The injectate was infused as a bolus into a central venous line. Peripheral arterial blood was collected and counted for radioactivity. Mathematical analysis of the indicator curves yielded cardiac output, measures of the product of capillary permeability and surface area for urea (PS and D1/2S), the intravascular lung volume (Vv), and the extravascularmore » lung water volume (Ve). Permeability was separated from surface area by normalizing PS and D1/2S to Vv. Patients could be divided into 16 in whom blood gas determinations and radiologic criteria for ARDS were reversed and 23 in whom they were not. We examined indicator dilution and other measures of lung function in the two groups to determine whether significant differences in microvascular function existed. PS and PS/Vv were significantly higher in the nonreversal patients. Ve was above normal, but not different between groups. Linear regression analysis showed significant correlations for all of the following in the nonreversal group: Ve and all measures of permeability, pulmonary vascular resistance (PVR), and the inverse of permeability-surface area measures and AaDO2 and PVR. Only measures of Ve and PS correlated in the reversal group. These results support the hypothesis that capillary permeability is increased in patients with early ARDS and continuing respiratory failure.« less
Myocardial serotonin exchange: negligible uptake by capillary endothelium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moffett, T.C.; Chan, I.S.; Bassingthwaighte, J.B.
1988-03-01
The extraction of serotonin from the blood during transorgan passage through the heart was studied using Langendorff-perfused rabbit hearts. Outflow dilution curves of /sup 131/I- or /sup 125/I-labeled albumin, (/sup 14/C)sucrose, and (3H)serotonin injected simultaneously into the inflow were fitted with an axially distributed blood-tissue exchange model to examine the extraction process. The model fits of the albumin and sucrose outflow dilution curves were used to define flow heterogeneity, intravascular dispersion, capillary permeability, and the volume of the interstitial space, which reduced the degrees of freedom in fitting the model to the serotonin curves. Serotonin extractions, measured against albumin, duringmore » single transcapillary passage, ranged from 24 to 64%. The ratio of the capillary permeability-surface area products for serotonin and sucrose, based on the maximum instantaneous extraction, was 1.37 +/- 0.2 (n = 18), very close to the predicted value of 1.39, the ratio of free diffusion coefficients calculated from the molecular weights. This result shows that the observed uptake of serotonin can be accounted for solely on the basis of diffusion between endothelial cells into the interstitial space. Thus it appears that the permeability of the luminal surface of the endothelial cell is negligible in comparison to diffusion through the clefts between endothelial cells. In 18 sets of dilution curves, with and without receptor and transport blockers or competitors (ketanserin, desipramine, imipramine, serotonin), the extractions and estimates of the capillary permeability-surface area product were not reduced, nor were the volumes of distribution. The apparent absence of transporters and receptors in rabbit myocardial capillary endothelium contrasts with their known abundance in the pulmonary vasculature.« less
A Concurrent Flow Model for Extraction during Transcapillary Passage
Bassingthwaighte, James B.
2010-01-01
A model for capillary-tissue exchange in a uniformly perfused organ with uniform capillary transit times and no diffusional capillary interactions was designed to permit the exploration of the influences of various parameters on the interpretation of indicator-dilution curves obtained at the venous outflow following the simultaneous injection of tracers into the arterial inflow. These parameters include tissue geometric factors, longitudinal diffusion and volumes of distribution of tracers in blood and tissue, hematocrit, volumes of nonexchanging vessels and the sampling system, capillary permeability, P. capillary surface area, S, and flow of blood- or solute-containing fluid, Fs′. An assumption of instantaneous radial diffusion in the extravascular region is appropriate when intercapillary distances are small, as they are in the heart, or permeabilities are low, as they are for lipophobic solutes. Numerical solutions were obtained for dispersed input functions similar to normal intravascular dye-dilution curves. Axial extravascular diffusion showed a negligible influence at low permeabilities. The “instantaneous extraction” of a permeating solute can provide an estimate of PS/Fs′, the ratio of the capillary permeability–surface area product to the flow, when PS/Fs′ lies between approximately 0.05 and 3.0; the limits of the range depend on the extravascular volume of distribution and the influences of intravascular dispersion. The most accurate estimates were obtained when experiments were designed so that PS/Fs′ was between 0.2 and 1.0 or peak extractions were between 0.1 and 0.6. PMID:4608628
NASA Astrophysics Data System (ADS)
Li, Zi; Galindo-Torres, Sergio; Yan, Guanxi; Scheuermann, Alexander; Li, Ling
2018-06-01
Simulations of simultaneous steady-state two-phase flow in the capillary force-dominated regime were conducted using the state-of-the-art Shan-Chen multi-component lattice Boltzmann model (SCMC-LBM) based on two-dimensional porous media. We focused on analyzing the fluid distribution (i.e., WP fluid-solid, NP fluid-solid and fluid-fluid interfacial areas) as well as the capillary pressure versus saturation curve which was affected by fluid and geometrical properties (i.e., wettability, adhesive strength, pore size distribution and specific surface area). How these properties influenced the relative permeability versus saturation relation through apparent effective permeability and threshold pressure gradient was also explored. The SCMC-LBM simulations showed that, a thin WP fluid film formed around the solid surface due to the adhesive fluid-solid interaction, resulting in discrete WP fluid distributions and reduction of the WP fluid mobility. Also, the adhesive interaction provided another source of capillary pressure in addition to capillary force, which, however, did not affect the mobility of the NP fluid. The film fluid effect could be enhanced by large adhesive strength and fine pores in heterogeneous porous media. In the steady-state infiltration, not only the NP fluid but also the WP fluid were subjected to the capillary resistance. The capillary pressure effect could be alleviated by decreased wettability, large average pore radius and improved fluid connectivity in heterogeneous porous media. The present work based on the SCMC-LBM investigations elucidated the role of film fluid as well as capillary pressure in the two-phase flow system. The findings have implications for ways to improve the macroscopic flow equation based on balance of force for the steady-state infiltration.
Predicting capillarity of mudrocks for geological storage of CO2
NASA Astrophysics Data System (ADS)
Busch, Andreas; Amann-Hildenbrand, Alexandra
2013-04-01
Various rock types were investigated, with the main focus on the determination and prediction of the capillary breakthrough and snap-off pressure in mudrocks (e.g. shales, siltstones, mudstones). Knowledge about these two critical pressures is important for the prediction of the capillary sealing capacity of CO2 storage sites. Capillary pressure experiments, when performed on low-permeable core plugs, are difficult and time consuming. Laboratory measurements on core plugs under in-situ conditions are mostly performed using nitrogen, but also with methane and carbon dioxide. Therefore, mercury porosimetry measurements (MIP) are preferably used in the industry to determine an equivalent value for the capillary breakthrough pressure. These measurements have the advantage to be quick and cheap and only require cuttings or trim samples. When evaluating the database in detail we find that (1) MIP data plot well with the drainage breakthrough pressures determined on sample plugs, while the conversion of the system Hg/air to CO2/brine using interfacial and wettability data does not provide a uniform match, potentially caused by non fully water-wet conditions; (2) brine permeability versus capillary breakthrough pressure determined on sample plugs shows a good match and could provide a first estimate of Pc-values since permeability is easier to determine than capillary breakthrough pressures. For imbibition snap-off pressures a good correlation was found for CH4 measured on sample plugs only; (3) porosity shows a fairly good correlation with permeability for sandstone only, and with plug-derived capillary breakthrough pressures for sandstones, carbonates and evaporates. No such correlations exist for mudrocks; (4) air and brine-derived permeabilities show an excellent correlation and (5) from the data used we do not infer any direct correlations between specific surface area (SSA), mineralogy or organic carbon content with permeability or capillary pressure however were able to predict permeabilities using a more sophisticated model that relies on several of these parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, R.L. Jr.; Staton, D.J.; Harris, T.R.
1989-06-01
A technique has been developed which allows for the optical measurement of the concentration-time relationship for a diffusion-limited material in indicator dilution studies. The material, 1-2 propanediol, is used as a probe of the permeability of capillaries in the lung. Comparisons between standard radioisotope measurements and the optical measurements are provided and show excellent agreement. The optical method represents an improvement over the standard radioisotope method in that it provides the same data at lower cost, lower risk, and without the delay required by the radiographic methods.
A new structure of permeable pavement for mitigating urban heat island.
Liu, Yong; Li, Tian; Peng, Hangyu
2018-09-01
The urban heat island (UHI) effect has been a great threat to human habitation, and how to mitigate this problem has been a global concern over decades. This paper addresses the cooling effect of a novel permeable pavement called evaporation-enhancing permeable pavement, which has capillary columns in aggregate and a liner at the bottom. To explore the efficiency of mitigating the UHI, bench-scale permeable pavement units with capillary columns were developed and compared with conventional permeable pavement. Criteria of capillary capacities of the column, evaporation rates, and surface temperature of the pavements were monitored under simulated rainfall and Shanghai local weather conditions. Results show the capillary column was important in increasing evaporation by lifting water from the bottom to the surface, and the evaporation-enhancing permeable pavement was cooler than a conventional permeable pavement by as much as 9.4°C during the experimental period. Moreover, the cooling effect of the former pavement could persist more than seven days under the condition of no further rainfall. Statistical analysis result reveals that evaporation-enhancing permeable pavement can mitigate the UHI effect significantly more than a conventional permeable pavement. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Furman-Haran, Edna; Margalit, Raanan; Grobgeld, Dov; Degani, Hadassa
1996-06-01
The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William
Mineral reactions during CO 2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initialmore » dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO 3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO 2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less
Carreira, Guido Correia; Gemeinhardt, Ole; Gorenflo, Rudolf; Beyersdorff, Dirk; Franiel, Tobias; Plendl, Johanna; Lüdemann, Lutz
2011-06-01
Dynamic contrast-enhanced magnetic resonance imaging commonly uses compartment models to estimate tissue parameters in general and perfusion parameters in particular. Compartment models assume a homogeneous distribution of the injected tracer throughout the compartment volume. Since tracer distribution within a compartment cannot be assessed, the parameters obtained by means of a compartment model might differ from the actual physical values. This work systematically examines the widely used permeability-surface-limited one-compartment model to determine the reliability of the parameters obtained by comparing them with their actual values. A computer simulation was used to model spatial tracer distribution within the interstitial volume using diffusion of contrast agent in tissue. Vascular parameters were varied as well as tissue parameters. The vascular parameters used were capillary radius (4 and 12 μm), capillary permeability (from 0.03 to 3.3 μm/s) and intercapillary distances from 30 to 300 μm. The tissue parameters used were tortuosity (λ), porosity (α) and interstitial volume fraction (v(e)). Our results suggest that the permeability-surface-limited compartment model generally underestimates capillary permeability for capillaries with a radius of 4 μm by factors from ≈0.03 for α=0.04, to ≈ 0.1 for α=0.2, to ≈ 0.5 for α=1.0. An overestimation of actual capillary permeability for capillaries with a radius of 12 μm by a factor of ≥1.3 was found for α=1.0, while α=0.2 yielded an underestimation by a factor of ≈0.3 and α=0.04 by a factor of ≈ 0.03. The interstitial volume fraction, v(e), obtained by the compartment model differed with increasing intercapillary distances and for low vessel permeability, whereas v(e) was found to be estimated approximately accurately for P=0.3 μm/s and P=3.3 μm/s for vessel distances <100 μm. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuroda, Seiichiro; Ishii, Nobuyuki; Morii, Toshihiro
2017-04-01
Recently capillary barriers have been known as a method to protect subsurface regions against infiltration from soil surface. It has essentially non-uniform structure of permeability or soil physical property. To identify the function of the capillary barrier, the site-characterization technique for non-uniform soil moisture distribution and infiltration process is needed. We built a sand box in which a thin high-permeable gravel layer was embedded and conducted a infiltration test, including non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed soundings with multi-frequency antenna and transmission measurements like one using cross-borehole radar. Finally we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. This work has partially supported by JSPS Grant-in-aid Scientific Research program, No.16H02580.
Wellbore Cement Porosity Evolution in Response to Mineral Alteration during CO 2 Flooding
Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William; ...
2016-12-13
Mineral reactions during CO 2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initialmore » dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO 3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO 2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wildenschild, Dorthe
2017-04-06
The proposed research focuses on improved fundamental understanding of the efficiency of physical trapping mechanisms, and as such will provide the basis for subsequent upscaling efforts. The overarching hypothesis of the proposed research is that capillary pressure plays a significant role in capillary trapping of CO 2, especially during the water imbibition stage of the sequestration process. We posit that the relevant physics of the sequestration process is more complex than is currently captured in relative permeability models, which are often based on so-called trapping models to represent relative permeability hysteresis. Our 4 main questions, guiding the 4 main tasksmore » of the proposed research, are as follows: (1) What is the morphology of capillary trapped CO 2 at the pore scale as a function of temperature, pressure, brine concentration, interfacial tension, and pore-space morphology under injection and subsequent imbibition? (2) Is it possible to describe the capillary trapping process using formation-dependent, but otherwise unique continuum-scale functions in permeability-capillary pressure, interfacial area and saturation space, rather than hysteretic functions in permeability-saturation or capillary pressure-saturation space? (3) How do continuum-scale relationships between kr-Pc-S-Anw developed based on pore-scale observations compare with traditional models incorporating relative permeability hysteresis (such as Land’s and other models,) and with observations at the core (5-10cm) scale? (4) How can trapped CO 2 volume be optimized via engineered injection and sweep strategies, and as a function of formation type (incl. heterogeneity)?« less
Regional myocardial flow and capillary permeability-surface area products are nearly proportional.
Caldwell, J H; Martin, G V; Raymond, G M; Bassingthwaighte, J B
1994-08-01
Analyses of data on the transcapillary exchange and cellular uptake in the normal heart have generally been based on the assumption that local membrane conductances and volumes of distribution are everywhere the same. The question is whether such an assumption is justified in view of the marked (sixfold) heterogeneity of local blood flows per gram tissue. The method was to estimate both flow and capillary membrane permeability-surface area products (PS) locally in the heart. For each of five dogs running on a sloped treadmill, the deposition of tracer microspheres and of [131I]iodophenylpentadecanoic acid (IPPA), after left atrial injection, was determined in 256 pieces of left ventricular myocardium by killing the animals at approximately 100 s after radiotracer injection. A hydraulic occluder stopped the flow to a portion of the myocardium supplied by the left circumflex coronary artery 30 s before tracer injection. Regional flows ranged from 0.1 to 7.0 ml.g-1.min-1. IPPA extractions ranged from 20 to 49%. Using the known flows, we assumed the applicability of an axially distributed blood-tissue exchange model to estimate the PS for the capillary (PSc) and the parenchymal cell. It was impossible to explain the data if the PSc values for membrane transport were uniform throughout the organ. Rather, the only reasonable descriptors of the data required that local PSc values increase with local flow, almost in proportion. Current methods of analysis using data based on deposition methods need to be revised to take into account the near proportionality of PS to flow for at least some substrates.
Yuan, Hua; Yu, Bing; Chi, Ming; Cheng, Yuanzhe; Lv, Chunxin
2018-01-01
Porous permeable films materials have very broad prospects in the treatment of sludge-containing waste water due to their large surface area and good microfiltration. In this work, highly ordered porous membranes have been prepared successfully on ice substrates using a poly(phenylene oxide) (BPPO)-SiO2 nanoparticle (NP) mixture by the breath figure method. Based on the theory of Pickering emulsion system and capillary flow, particle assisted membrane formation was analyzed. Another two sorts of new membranes SiO2/C membrane and hierarchical porous polymer (HPP) membrane, which were obtained by modification of the BPPO-SiO2 membrane by calcination and etching, were set up in a further study. Their properties were investigated through the methods of scanning electron microscopy (SEM), fourier transform infrared spectrometry (FTIR), ultraviolet spectrum (UV), capillary electrophoresis (CE), contact angle, and water flux tests. All these results demonstrate that both surface hydrophilicity and fouling resistance of the membrane would be improved by using SiO2 as a filler. The membranes with high permeability and antifouling properties were used for microfiltration applications. PMID:29570622
Gulati, Gaurav; Jones, Jordan T; Lee, Gregory; Altaye, Mekibib; Beebe, Dean W; Meyers-Eaton, Jamie; Wiley, Kasha; Brunner, Hermine I; DiFrancesco, Mark W
2017-02-01
To evaluate a safe, noninvasive magnetic resonance imaging (MRI) method to measure regional blood-brain barrier integrity and investigate its relationship with neurocognitive function and regional gray matter volume in juvenile-onset systemic lupus erythematosus (SLE). In this cross-sectional, case-control study, capillary permeability was measured as a marker of blood-brain barrier integrity in juvenile SLE patients and matched healthy controls, using a combination of arterial spin labeling and diffusion-weighted brain MRI. Regional gray matter volume was measured by voxel-based morphometry. Correlation analysis was done to investigate the relationship between regional capillary permeability and regional gray matter volume. Formal neurocognitive testing was completed (measuring attention, visuoconstructional ability, working memory, and psychomotor speed), and scores were regressed against regional blood-brain barrier integrity among juvenile SLE patients. Formal cognitive testing confirmed normal cognitive ability in all juvenile SLE subjects (n = 11) included in the analysis. Regional capillary permeability was negatively associated (P = 0.026) with neurocognitive performance concerning psychomotor speed in the juvenile SLE cohort. Compared with controls (n = 11), juvenile SLE patients had significantly greater capillary permeability involving Brodmann's areas 19, 28, 36, and 37 and caudate structures (P < 0.05 for all). There is imaging evidence of increased regional capillary permeability in juvenile SLE patients with normal cognitive performance using a novel noninvasive MRI technique. These blood-brain barrier outcomes appear consistent with functional neuronal network alterations and gray matter volume loss previously observed in juvenile SLE patients with overt neurocognitive deficits, supporting the notion that blood-brain barrier integrity loss precedes the loss of cognitive ability in juvenile SLE. Longitudinal studies are needed to confirm the findings of this pilot study. © 2016, American College of Rheumatology.
Estimation of relative permeability and capillary pressure from mass imbibition experiments
NASA Astrophysics Data System (ADS)
Alyafei, Nayef; Blunt, Martin J.
2018-05-01
We perform spontaneous imbibition experiments on three carbonates - Estaillades, Ketton, and Portland - which are three quarry limestones that have very different pore structures and span wide range of permeability. We measure the mass of water imbibed in air saturated cores as a function of time under strongly water-wet conditions. Specifically, we perform co-current spontaneous experiments using a highly sensitive balance to measure the mass imbibed as a function of time for the three rocks. We use cores measuring 37 mm in diameter and three lengths of approximately 76 mm, 204 mm, and 290 mm. We show that the amount imbibed scales as the square root of time and find the parameter C, where the volume imbibed per unit cross-sectional area at time t is Ct1/2. We find higher C values for higher permeability rocks. Employing semi-analytical solutions for one-dimensional flow and using reasonable estimates of relative permeability and capillary pressure, we can match the experimental data. We finally discuss how, in combination with conventional measurements, we can use theoretical solutions and imbibition measurements to find or constrain relative permeability and capillary pressure.
NASA Astrophysics Data System (ADS)
Guédon, Gaël Raymond; Hyman, Jeffrey De'Haven; Inzoli, Fabio; Riva, Monica; Guadagnini, Alberto
2017-12-01
We investigate and characterize the influence of capillary end effects on steady-state relative permeabilities obtained in pore-scale numerical simulations of two-phase flows. Our study is motivated by the observation that capillary end effects documented in two-phase laboratory-scale experiments can significantly influence permeability estimates. While numerical simulations of two-phase flows in reconstructed pore-spaces are increasingly employed to characterize relative permeabilities, a phenomenon which is akin to capillary end effects can also arise in such analyses due to the constraints applied at the boundaries of the computational domain. We profile the relative strength of these capillary end effects on the calculation of steady-state relative permeabilities obtained within randomly generated porous micro-structures using a finite volume-based two-phase flow solver. We suggest a procedure to estimate the extent of the regions influenced by these capillary end effects, which in turn allows for the alleviation of bias in the estimation of relative permeabilities.
Leith, S.D.; Reddy, M.M.; Irez, W.F.; Heymans, M.J.
1996-01-01
The pore structure of Salem limestone is investigated, and conclusions regarding the effect of the pore geometry on modeling moisture and contaminant transport are discussed based on thin section petrography, scanning electron microscopy, mercury intrusion porosimetry, and nitrogen adsorption analyses. These investigations are compared to and shown to compliment permeability and capillary pressure measurements for this common building stone. Salem limestone exhibits a bimodal pore size distribution in which the larger pores provide routes for convective mass transfer of contaminants into the material and the smaller pores lead to high surface area adsorption and reaction sites. Relative permeability and capillary pressure measurements of the air/water system indicate that Salem limestone exhibits high capillarity end low effective permeability to water. Based on stone characterization, aqueous diffusion and convection are believed to be the primary transport mechanisms for pollutants in this stone. The extent of contaminant accumulation in the stone depends on the mechanism of partitioning between the aqueous and solid phases. The described characterization techniques and modeling approach can be applied to many systems of interest such as acidic damage to limestone, mass transfer of contaminants in concrete and other porous building materials, and modeling pollutant transport in subsurface moisture zones.
Kumar, Niyanta N.; Gautam, Mohan; Lochhead, Jeffrey J.; Wolak, Daniel J.; Ithapu, Vamsi; Singh, Vikas; Thorne, Robert G.
2016-01-01
Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13–17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain. PMID:27558973
Interstitial distribution of charged macromolecules in the dog lung: a kinetic model.
Parker, J C; Miniati, M; Pitt, R; Taylor, A E
1987-01-01
A mathematic model was constructed to investigate conflicting physiologic data concerning the charge effect of continuous capillaries to macromolecules in the lung. We simulated the equilibration kinetics of lactate dehydrogenase (MR 4.2 nM) isozymes LDH 1 (pI = 5.0) and LDH 5 (pI = 7.9) between plasma and lymph using previously measured permeability coefficients, lung tissue distribution volumes (VA) and plasma concentrations (CP) in lung tissue. Our hypothesis is that the fixed anionic charges in interstitium, basement membrane, and cell surfaces determine equilibration rather than charged membrane effects at the capillary barrier, so the same capillary permeability coefficients were used for both isozymes. Capillary filtration rates and protein fluxes were calculated using conventional flux equations. Initial conditions at baseline and increased left atrial pressures (PLA) were those measured in animal studies. Simulated equilibration of isozymes over 30 h in the model at baseline capillary pressures accurately predicted the observed differences in lymph/plasma concentration ratios (CL/CP) between isotopes at 4 h and equilibration of these ratios at 24 h. Quantitative prediction of isozyme CL/CP ratios was also obtained at increased PLA. However, an additional cation selective compartment representing the surface glycocalyx was required to accurately simulate the initial higher transcapillary clearances of cationic LDH 5. Thus experimental data supporting the negative barrier, positive barrier, and no charge barrier hypotheses were accurately reproduced by the model using only the observed differences in interstitial partitioning of isozymes without differences in capillary selectivity.
Belcaro, G; D'Aulerio, A; Rulo, A; Candiani, C
1988-01-01
A new system to study capillary permeability, the VSC (vacuum suction chamber) device has been developed to evaluate the variations of capillary permeability in postphlebitic limbs. The VSC device produces by negative pressure [obtained in a plastic chamber applied to the skin at the perimalleolar region] a wheal which disappears in normals in less than one hour. In twelve patients with moderate [superficial] venous hypertension and in twelve patients with postphlebitic limbs the time of disappearance of the wheals was significantly longer in comparison with ten normal limbs. There was also a significantly increased time of disappearance of the wheals in postphlebitic legs in comparison with those with superficial incompetence. The validation of the VSC technique with venous occlusion plethysmography (VOP) showed that the increase of time of disappearance of the wheals is well correlated with the increase of capillary permeability demonstrated by VOP. After 2 weeks treatment with Venoruton (at the dosage of 1000 mg t.i.d.) the time of disappearance of the wheal was significantly reduced in both groups of patients (while it was unchanged in normals). Laser-Doppler parameters used together with the VSC device to evaluate the microcirculatory changes associated with an altered capillary permeability also showed a significant improvement of the laser-Doppler parameters after treatment. In conclusion there is evidence by the VSC device that capillary permeability [which is abnormally increased] in chronic venous hypertension is improved [decreased] after treatment for two weeks with Venoruton. This study demonstrated also the efficacy of the VSC device to study capillary permeability and the effects of drugs active on capillary permeability.
Increased capillary permeability mediated by a dengue virus-induced lymphokine.
Khanna, M; Chaturvedi, U C; Sharma, M C; Pandey, V C; Mathur, A
1990-01-01
The mechanism of increased capillary permeability, seen in cases of dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS), is not known. Dengue type 2 virus (DV) is known to induce production of a lymphokine, the cytotoxic factor (CF), by the T lymphocytes of mouse spleen. The data presented here show that intraperitoneal inoculation of CF in mice results in increased capillary permeability in a dose-dependent manner, as shown by leakage of intravenously injected radiolabelled iodine (125I) or Evans blue dye. Peak leakage occurred 30 min after inoculation of CF and the vascular integrity was restored by 2 hr. The increase in capillary permeability was abrogated by pretreatment of mice with anti-CF antibodies, avil (H1 receptor blocker) or ranitidine (H2 receptor blocker). The findings thus show that a DV-induced lymphokine, the CF, increases the capillary permeability via release of histamine. PMID:2312168
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laura J. Pyrak-Nolte; Nicholas J. Giordano; David D. Nolte
2004-03-01
The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. This project on the experimental investigation of relative permeability upscaling has produced a unique combination of three quite different technical approaches to the upscaling problem of obtaining pore-related microscopic properties and using them to predict macroscopic behavior. Several important ''firsts'' have been achieved during the course of the project. (1) Optical coherence imaging, a laser-based ranging and imaging technique, has produced the first images of grain and pore structure up to 1 mm beneath the surface of the sandstone and in a laboratory borehole. (2) Woods metal injection has connected for the first time microscopic pore-scale geometric measurements with macroscopic saturation in real sandstone cores. (3) The micro-model technique has produced the first invertible relationship between saturation and capillary pressure--showing that interfacial area per volume (IAV) provides the linking parameter. IAV is a key element in upscaling theories, so this experimental finding may represent the most important result of this project, with wide ramifications for predictions of fluid behavior in porous media.« less
A composite smeared finite element for mass transport in capillary systems and biological tissue.
Kojic, M; Milosevic, M; Simic, V; Koay, E J; Fleming, J B; Nizzero, S; Kojic, N; Ziemys, A; Ferrari, M
2017-09-01
One of the key processes in living organisms is mass transport occurring from blood vessels to tissues for supplying tissues with oxygen, nutrients, drugs, immune cells, and - in the reverse direction - transport of waste products of cell metabolism to blood vessels. The mass exchange from blood vessels to tissue and vice versa occurs through blood vessel walls. This vital process has been investigated experimentally over centuries, and also in the last decades by the use of computational methods. Due to geometrical and functional complexity and heterogeneity of capillary systems, it is however not feasible to model in silico individual capillaries (including transport through the walls and coupling to tissue) within whole organ models. Hence, there is a need for simplified and robust computational models that address mass transport in capillary-tissue systems. We here introduce a smeared modeling concept for gradient-driven mass transport and formulate a new composite smeared finite element (CSFE). The transport from capillary system is first smeared to continuous mass sources within tissue, under the assumption of uniform concentration within capillaries. Here, the fundamental relation between capillary surface area and volumetric fraction is derived as the basis for modeling transport through capillary walls. Further, we formulate the CSFE which relies on the transformation of the one-dimensional (1D) constitutive relations (for transport within capillaries) into the continuum form expressed by Darcy's and diffusion tensors. The introduced CSFE is composed of two volumetric parts - capillary and tissue domains, and has four nodal degrees of freedom (DOF): pressure and concentration for each of the two domains. The domains are coupled by connectivity elements at each node. The fictitious connectivity elements take into account the surface area of capillary walls which belongs to each node, as well as the wall material properties (permeability and partitioning). The overall FE model contains geometrical and material characteristics of the entire capillary-tissue system, with physiologically measurable parameters assigned to each FE node within the model. The smeared concept is implemented into our implicit-iterative FE scheme and into FE package PAK. The first three examples illustrate accuracy of the CSFE element, while the liver and pancreas models demonstrate robustness of the introduced methodology and its applicability to real physiological conditions.
PARAMETER ESTIMATION OF TWO-FLUID CAPILLARY PRESSURE-SATURATION AND PERMEABILITY FUNCTIONS
Capillary pressure and permeability functions are crucial to the quantitative description of subsurface flow and transport. Earlier work has demonstrated the feasibility of using the inverse parameter estimation approach in determining these functions if both capillary pressure ...
Lowe, Kevin; Alvarez, Diego; King, Judy; Stevens, Troy
2007-11-01
In acute respiratory distress syndrome, pulmonary vascular permeability increases, causing intravascular fluid and protein to move into the lung's interstitium. The classic model describing the formation of pulmonary edema suggests that fluid crossing the capillary endothelium is drawn by negative interstitial pressure into the potential space surrounding extra-alveolar vessels and, as interstitial pressure builds, is forced into the alveolar air space. However, the validity of this model is challenged by animal models of acute lung injury in which extra-alveolar vessels are more permeable than capillaries under a variety of conditions. In the current study, we sought to determine whether extravascular fluid accumulation can be produced because of increased permeability of either the capillary or extra-alveolar endothelium, and whether different pathophysiology results from such site-specific increases in permeability. We perfused isolated lungs with either the plant alkaloid thapsigargin, which increases extra-alveolar endothelial permeability, or with 4alpha-phorbol 12, 13-didecanoate, which increases capillary endothelial permeability. Both treatments produced equal increases in whole lung vascular permeability, but caused fluid accumulations in separate anatomical compartments. Light microscopy of isolated lungs showed that thapsigargin caused fluid cuffing of large vessels, while 4alpha-phorbol 12, 13-didecanoate caused alveolar flooding. Dynamic compliance was reduced in lungs with cuffing of large vessels, but not in lungs with alveolar flooding. Phenotypic differences between vascular segments resulted in site-specific increases in permeability, which have different pathophysiological outcomes. Our findings suggest that insults leading to acute respiratory distress syndrome may increase permeability in extra-alveolar or capillary vascular segments, resulting in different pathophysiological sequela.
Greiderer, Andreas; Ligon, S Clark; Huck, Christian W; Bonn, Günther K
2009-08-01
Monolithic poly(1,2-bis(p-vinylphenyl)ethane (BVPE)) capillary columns were prepared by thermally initiated free radical polymerisation of 1,2-bis(p-vinylphenyl)ethane in the presence of inert diluents (porogens) and alpha,alpha'-azoisobutyronitrile (AIBN) as initiator. Polymerisations were accomplished in 200 microm ID fused silica capillaries at 65 degrees C and for 60 min. Mercury intrusion porosimetry measurements of the polymeric RP support showed a broad bimodal pore-size-distribution of mesopores and small macropores in the range of 5-400 nm and flow-channels in the mum range. N(2)-adsorption (BET) analysis resulted in a tremendous enhancement of surface area (101 m(2)/g) of BVPE stationary phases compared to typical organic monoliths (approximately 20 m(2)/g), indicating the presence of a considerable amount of mesopores. Consequently, the adequate proportion of both meso- and (small) macropores allowed the rapid and high-resolution separation of low-molecular-weight compounds as well as biomolecules on the same monolithic support. At the same time, the high fraction of flow-channels provided enhanced column permeability. The chromatographic performance of poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for the separation of biomolecules (proteins, oligonucleotides) and small molecules (alkyl benzenes, phenols, phenons) are demonstrated in this article. Additionally, pressure drop versus flow rate measurements of novel poly(1,2-bis(p-vinylphenyl)ethane) capillary columns confirmed high mechanical robustness, low swelling in organic solvents and high permeability. Due to the simplicity of monolith fabrication, comprehensive studies of the retention and separation behaviour of monolithic BVPE columns resulted in high run-to-run and batch-to-batch reproducibilities. All these attributes prove the excellent applicability of monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for micro-HPLC towards a huge range of analytes of different chemistries and molecular sizes.
Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.
Keh, Huan J; Ding, Jau M
2003-07-15
An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.
Hughes, S
1977-07-01
Technetium-labelled ethane hydroxydiphosphonate (99mTc-EHDP) is a commonly used bone-scanning agent. After injection it leaves the circulation to enter bone and to be cleared by the kidney. The transcapillary exchange of 99mTc-EHDP in bone was examined and found to be low. The capillary movement was compared with that of sucrose, a freely diffusible substance, and it was found that the permeability ratio of 99mTc-EHDP to 14C-sucrose was similar to the diffusion coefficient ratio, suggesting that 99mTc-EHDP passes through the capillaries by the process of passive diffusion. The renal clearance of 99mTc-EHDP was 24 ml/min and was unaffected by the action of parathyroid hormone. After a fracture the bone blood flow increases, although the transcapillary extraction of 99mTc-EHDP does not change. This is because there is an increase, from recruitment and dilatation of capillaries, in the surface area available for exchange. Therefore the increased isotopic activity seen on a bone scan after a fracture is primarily related to an increase in bone blood supply from capillary enhancement within the cortex.
Heuristic approach to capillary pressures averaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coca, B.P.
1980-10-01
Several methods are available to average capillary pressure curves. Among these are the J-curve and regression equations of the wetting-fluid saturation in porosity and permeability (capillary pressure held constant). While the regression equation seem completely empiric, the J-curve method seems to be theoretically sound due to its expression based on a relation between the average capillary radius and the permeability-porosity ratio. An analysis is given of each of these methods.
Publications - GMC 385 | Alaska Division of Geological & Geophysical
DGGS GMC 385 Publication Details Title: Porosity, permeability, and capillary pressure core analysis Shimer, G., 2011, Porosity, permeability, and capillary pressure core analysis results (2,124'-2,193 -capilar.xls (108.0 K) gmc385-cores-water.xls (19.0 K) Keywords Oil and Gas; Permeability; Porosity Top of Page
Publications - GMC 394 | Alaska Division of Geological & Geophysical
, permeability to air, porosity, mercury injection capillary pressure, and grain density) from the E. Simpson #1 (total organic carbon, rock-eval, permeability to air, porosity, mercury injection capillary pressure Files gmc394.pdf (89.0 K) gmc394.zip (1.54 M) Keywords Oil and Gas; Permeability; Porosity; Rock-Eval
Changes in Lung Capillary Permeability in Renal Failure
Crosbie, W. A.; Snowden, S.; Parsons, V.
1972-01-01
Excess fluid in the lung can be quantified in chronic dialysis patients by using the double indicator dilution technique. The lung capillaries show an increased permeability to sodium when these patents develop pulmonary oedema. PMID:4564763
Hierarchical and Well-Ordered Porous Copper for Liquid Transport Properties Control.
Pham, Quang N; Shao, Bowen; Kim, Yongsung; Won, Yoonjin
2018-05-09
Liquid delivery through interconnected pore network is essential for various interfacial transport applications ranging from energy storage to evaporative cooling. The liquid transport performance in porous media can be significantly improved through the use of hierarchical morphology that leverages transport phenomena at different length scales. Traditional surface engineering techniques using chemical or thermal reactions often show nonuniform surface nanostructuring within three-dimensional pore network due to uncontrollable diffusion and reactivity in geometrically complex porous structures. Here, we demonstrate hierarchical architectures on the basis of crystalline copper inverse opals using an electrochemistry approach, which offers volumetric controllability of structural and surface properties within the complex porous metal. The electrochemical process sequentially combines subtractive and additive steps-electrochemical polishing and electrochemical oxidation-to improve surface wetting properties without sacrificing structural permeability. We report the transport performance of the hierarchical inverse opals by measuring the capillary-driven liquid rise. The capillary performance parameter of hierarchically engineered inverse opal ( K/ R eff = ∼5 × 10 -3 μm) is shown to be higher than that of a typical crystalline inverse opal ( K/ R eff = ∼1 × 10 -3 μm) owing to the enhancement in fluid permeable and hydrophilic pathways. The new surface engineering method presented in this work provides a rational approach in designing hierarchical porous copper for transport performance enhancements.
Analytical approximations for effective relative permeability in the capillary limit
NASA Astrophysics Data System (ADS)
Rabinovich, Avinoam; Li, Boxiao; Durlofsky, Louis J.
2016-10-01
We present an analytical method for calculating two-phase effective relative permeability, krjeff, where j designates phase (here CO2 and water), under steady state and capillary-limit assumptions. These effective relative permeabilities may be applied in experimental settings and for upscaling in the context of numerical flow simulations, e.g., for CO2 storage. An exact solution for effective absolute permeability, keff, in two-dimensional log-normally distributed isotropic permeability (k) fields is the geometric mean. We show that this does not hold for krjeff since log normality is not maintained in the capillary-limit phase permeability field (Kj=k·krj) when capillary pressure, and thus the saturation field, is varied. Nevertheless, the geometric mean is still shown to be suitable for approximating krjeff when the variance of lnk is low. For high-variance cases, we apply a correction to the geometric average gas effective relative permeability using a Winsorized mean, which neglects large and small Kj values symmetrically. The analytical method is extended to anisotropically correlated log-normal permeability fields using power law averaging. In these cases, the Winsorized mean treatment is applied to the gas curves for cases described by negative power law exponents (flow across incomplete layers). The accuracy of our analytical expressions for krjeff is demonstrated through extensive numerical tests, using low-variance and high-variance permeability realizations with a range of correlation structures. We also present integral expressions for geometric-mean and power law average krjeff for the systems considered, which enable derivation of closed-form series solutions for krjeff without generating permeability realizations.
Role of Complement Activation in a Model of Adult Respiratory Distress Syndrome
Hosea, Stephen; Brown, Eric; Hammer, Carl; Frank, Michael
1980-01-01
The adult respiratory distress syndrome is characterized by arterial hypoxemia as a result of increased alveolar capillary permeability to serum proteins in the setting of normal capillary hydrostatic pressures. Because bacterial sepsis is prominent among the various diverse conditions associated with altered alveolar capillary permeability, we studied the effect of bacteremia with attendant complement activation on the sequestration of microorganisms and the leakage of albumin in the lungs of guinea pigs. Pneumococci were injected intravenously into guinea pigs and their localization was studied. Unlike normal guinea pigs, complement-depleted guinea pigs did not localize injected bacteria to the lungs. Preopsonization of organisms did not correct this defect in pulmonary localization of bacteria in complement-depleted animals, suggesting that a fluid-phase component of complement activation was required. Genetically C5-deficient mice showed no pulmonary localization of bacteria. C5-sufficient mice demonstrated the usual pulmonary localization, thus further suggesting that the activation of C5 might be important in this localization. The infusion of activated C5 increased alveolar capillary permeability to serum proteins as assayed by the amount of radioactive albumin sequestered in the lung. Neutropenic animals did not develop altered capillary permeability after challenge with activated C5. Thus, complement activation through C5, in the presence of neutrophils, induces alterations in pulmonary alveolar capillary permeability and causes localization of bacteria to the pulmonary parenchyma. Complement activation in other disease states could potentially result in similar clinical manifestations. PMID:7400321
Development of an evaporation-optimized and water-permeable pavement
NASA Astrophysics Data System (ADS)
Starke, P.; Göbel, P.; Coldewey, W. G.
2009-04-01
During recent decades, urban areas have been threatened more frequently by flood events. Furthermore, the potential for damage from these events has increased on average. The construction of houses, streets and parking lots has caused this trend by sealing the ground surface, i.e. these water-impermeable areas reduce the natural infiltration and evaporation-rates, and in some cases it is even completely stopped. The consequence is the so called "urban water cycle". Water from precipitation cannot be stored anywhere and so there is an immediate and very high surface run-off effect. Especially after intense rain events, canalisations and sewage-treatment plants are overloaded and this leads to higher costs for water treatment and to environmental damage. A practical solution to this problem is the use of water-permeable pavements. Here higher infiltration rates lead to a groundwater recharge that is greater than that of natural soils. The consequences from using these surfaces are already noticeable in many places through increasing groundwater levels. These increases cause damage to buildings. A second difference from a natural-soil water-balance is a lower evapotranspiration rate. Up to now the evaporation rates for water-permeable pavements has not been established accurately. The aim of the applied research project at the University of Muenster, which is sponsored by the DBU (The German Federal Environmental Foundation), is to gain knowledge of urban evaporation rates and of water-permeable surfaces, especially water-permeable pavements. Water-permeable pavements consist of the paving stone surface and the two sub-base layers below. Pre-investigations show that evaporation can be influenced by the complete sub-base. Therefore, the first step was to investigate which materials are used for sub-base construction. All in all, 27 materials were collected from throughout Germany and these materials were then tested (in terms of physical and hydraulic attributes) in the soil-mechanics laboratory of the University of Muenster. For their street construction useability, and having regard to evaporation, a selection of appropriate materials were built into a test field. The test field consisted of seven hexagonal areas each about 10 m2 large, which are placed in a honeycomb manner. The evaporation measurements are carried out with a WERNER tunnel-evaporation gauge (TUV) which is able to detect the actual evaporation rate. Its functional principle also allows a direct comparison between the middle reference area and one outer area of the test field. Every measuring period lasts one week and after that the TUV is moved to between the next outer area and the reference area. So the TUV rotates over the whole test field and every measuring area is covered by a measurement. In addition, a Hellman rain-gauge near the test field enables the measurement of a direct precipitation-evaporation ratio. Since the start of the measurements in July 2008, the first results collected showed that measureable differences in evaporation rates could be detected after a few measuring periods, i.e. the differences are up to 32% between the reference area and one outer area. In July 2009, the six outer measuring areas of the test field will be replaced and, based on the actual results collected, the sub-base layers will be replaced by an evaporation-optimized sub-base. The new outer measuring areas will only differ in terms of a different paving-stone surface. These paving stones are actually under developement and under laboratory testing (i.e. permeability, porosity, capillary water and evaporationrates), and so they will be evaporation-opimized. The open-air test in the test field is to assure and compare the evaporation rates. As a final result, the evaporation-optimized and water-permeable pavement and the knowledge of its exact drainage ratio will allow city planners or architects to build water-permeable streets with due regard to the respective area-specific conditions. This new developed pavement is an approximation to the water balance of a natural soil. In this way, the danger of flooding can be further reduced in urban areas.
Udegbunam, E.O.
1991-01-01
This paper presents a FORTRAN program for the determination of two-phase relative permeabilities from unsteady-state displacement data with capillary pressure terms included. The interpretative model employed in this program combines the simultaneous solution of a variant of the fractional flow equation which includes a capillary pressure term and an integro-differential equation derived from Darcy's law without assuming the simplified Buckley-Leverett flow. The incorporation of capillary pressure in the governing equations dispenses with the high flowrate experimental requirements normally employed to overcome capillarity effects. An illustrative example is presented herein which implements this program for the determination of oil/water relative permeabilities from a sandstone core sample. Results obtained compares favorably with results previously given in the literature. ?? 1991.
NASA Astrophysics Data System (ADS)
Kuroda, S.; Ishii, N.; Morii, T.
2017-12-01
Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil.
NASA Astrophysics Data System (ADS)
Zhao, Yixin; Xue, Shanbin; Han, Songbai; Chen, Zhongwei; Liu, Shimin; Elsworth, Derek; He, Linfeng; Cai, Jianchao; Liu, Yuntao; Chen, Dongfeng
2017-07-01
Capillary imbibition in variably saturated porous media is important in defining displacement processes and transport in the vadose zone and in low-permeability barriers and reservoirs. Nonintrusive imaging in real time offers the potential to examine critical impacts of heterogeneity and surface properties on imbibition dynamics. Neutron radiography is applied as a powerful imaging tool to observe temporal changes in the spatial distribution of water in porous materials. We analyze water imbibition in both homogeneous and heterogeneous low-permeability sandstones. Dynamic observations of the advance of the imbibition front with time are compared with characterizations of microstructure (via high-resolution X-ray computed tomography (CT)), pore size distribution (Mercury Intrusion Porosimetry), and permeability of the contrasting samples. We use an automated method to detect the progress of wetting front with time and link this to square-root-of-time progress. These data are used to estimate the effect of microstructure on water sorptivity from a modified Lucas-Washburn equation. Moreover, a model is established to calculate the maximum capillary diameter by modifying the Hagen-Poiseuille and Young-Laplace equations based on fractal theory. Comparing the calculated maximum capillary diameter with the maximum pore diameter (from high-resolution CT) shows congruence between the two independent methods for the homogeneous silty sandstone but less effectively for the heterogeneous sandstone. Finally, we use these data to link observed response with the physical characteristics of the contrasting media—homogeneous versus heterogeneous—and to demonstrate the sensitivity of sorptivity expressly to tortuosity rather than porosity in low-permeability sandstones.
Determining tumor blood flow parameters from dynamic image measurements
NASA Astrophysics Data System (ADS)
Libertini, Jessica M.
2008-11-01
Many recent cancer treatments focus on preventing angiogenesis, the process by which a tumor promotes the growth of large and efficient capillary beds for the increased nourishment required to support the tumor's rapid growth[l]. To measure the efficacy of these treatments in a timely fashion, there is an interest in using data from dynamic sequences of contrast-enhanced medical imaging, such as MRI and CT, to measure blood flow parameters such as perfusion, permeability-surface-area product, and the relative volumes of the plasma and extracellular-extravascular space. Starting with a two compartment model presented by the radiology community[2], this work challenges the application of a simplification to this problem, which was originally developed to model capillary reuptake[3]. While the primary result of this work is the demonstration of the inaccuracy of this simplification, the remainder of the paper is dedicated to presenting alternative methods for calculating the perfusion and plasma volume coefficients. These methods are applied to model data sets based on real patient data, and preliminary results are presented.
Nanoporous membrane device for ultra high heat flux thermal management
NASA Astrophysics Data System (ADS)
Hanks, Daniel F.; Lu, Zhengmao; Sircar, Jay; Salamon, Todd R.; Antao, Dion S.; Bagnall, Kevin R.; Barabadi, Banafsheh; Wang, Evelyn N.
2018-02-01
High power density electronics are severely limited by current thermal management solutions which are unable to dissipate the necessary heat flux while maintaining safe junction temperatures for reliable operation. We designed, fabricated, and experimentally characterized a microfluidic device for ultra-high heat flux dissipation using evaporation from a nanoporous silicon membrane. With 100 nm diameter pores, the membrane can generate high capillary pressure even with low surface tension fluids such as pentane and R245fa. The suspended ultra-thin membrane structure facilitates efficient liquid transport with minimal viscous pressure losses. We fabricated the membrane in silicon using interference lithography and reactive ion etching and then bonded it to a high permeability silicon microchannel array to create a biporous wick which achieves high capillary pressure with enhanced permeability. The back side consisted of a thin film platinum heater and resistive temperature sensors to emulate the heat dissipation in transistors and measure the temperature, respectively. We experimentally characterized the devices in pure vapor-ambient conditions in an environmental chamber. Accordingly, we demonstrated heat fluxes of 665 ± 74 W/cm2 using pentane over an area of 0.172 mm × 10 mm with a temperature rise of 28.5 ± 1.8 K from the heated substrate to ambient vapor. This heat flux, which is normalized by the evaporation area, is the highest reported to date in the pure evaporation regime, that is, without nucleate boiling. The experimental results are in good agreement with a high fidelity model which captures heat conduction in the suspended membrane structure as well as non-equilibrium and sub-continuum effects at the liquid-vapor interface. This work suggests that evaporative membrane-based approaches can be promising towards realizing an efficient, high flux thermal management strategy over large areas for high-performance electronics.
Li, Jian-Xing; He, Bing-Hui; Mei, Xue-Mei; Liang, Yan-Ling; Xiong, Jian
2013-03-01
Taking bare land as the control, this paper studied the effects of different planting modes on the soil permeability of sloping farmlands in purple soil area. For the test six planting modes, the soil permeability was in the order of Eriobotrya japonica > Citrus limon > Vetiveria zizanioides hedgerows +corn >Leucaena leucocephala hedgerows + corn> Hemerocallis fulva > corn> bare land, and decreased with increasing depth. The eigenvalues of soil infiltration were in the order of initial infiltration rate> average infiltration rate> stable infiltration rate. The soil permeability had significant positive linear correlations with soil total porosity, non-capillary porosity, initial moisture content, water holding capacity, and organic matter content, and significant negative linear correlation with soil bulk density. The common empirical infiltration model could well fit the soil moisture infiltration processes under the six planting modes, while the Kostiakov equation could not.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laura J. Pyrak-Nolte; Ping Yu; JiangTao Cheng
2002-12-01
The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. During this reporting period, we have shown experimentally that the coherence detection can be performed in a borescope. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures has shown the existence of a unique relationship among these hydraulic parameters for different pore geometry. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, is essentially completed for imbibition conditions.« less
N2 and CO2 capillary breakthrough experiments on Opalinus Clay
NASA Astrophysics Data System (ADS)
Amann, Alexandra; Busch, Andreas; Krooss, Bernhard M.
2013-04-01
The aim of this project was to identify the critical capillary pressures on the drainage and the imbibition path for clay-rich rocks, at a burial depth of 1500 m (30 MPa confining pressure, 45°C). The experiments were performed on fully water-saturated sample plugs of 38 mm diameter and 5 to 20 mm length. The capillary breakthrough pressure was determined by step-wise increase of the differential pressure (drainage), the capillary snap-off pressure was determined from the final pressure difference at the end of a spontaneous imbibition phase. The confining pressure was kept constant throughout the experiment, which resulted in a continuous change of effective stress. The measurements were performed in a closed system and the pressure response was interpreted in terms of different flow mechanisms (diffusion-controlled vs. viscous flow). In total, four breakthrough experiments with N2 and five experiments with CO2 were conducted. Because of very low flow rates and high critical capillary pressures the experiments took rather long. In some cases the experiments were allowed to run for half a year (drainage experiments). Substantial differences were observed between gas breakthrough (drainage) and snap-off (imbibition) pressures. As expected, breakthrough pressures were always higher than the snap-off pressures. For three samples a pbreakthrough/psnap-off ratio of 1.6 to 1.9 was observed, for one sample a ratio of 4. A clear permeability-capillary pressure relationship could not be identified. Based on (omnidirectional) Hg-injection porosimetry results, and assuming perfectly water wet mineral surfaces, gas breakthrough pressures were predicted to occur at approximately 16 MPa for N2 and 5.7 MPa for CO2. The gas breakthrough experiments, however, produced different results. Even though a relatively homogeneous sample set was chosen, with permeability coefficients ranging between 1E-21 and 6E-21 m², the critical capillary breakthrough pressures for nitrogen ranged between 3.4 and 12.3 MPa and snap-off pressures from 0.5 to 6.4 MPa. The CO2 experiments yielded breakthrough pressures of 14.0 to 17.5 MPa and snap-off pressures of 3.5 to 10 MPa. No significant changes in single-phase water permeability coefficients before and after the gas breakthrough experiments were observed. In our contribution we will discuss the following points: 1. Gas fluxes occurring during gas breakthrough experiments may be extremely low. Therefore an unambigous identification of gas breakthrough is not always possible. Besides viscous or diffusive transport, dissolution of CO2 in the pore water may affect the observed pressure changes in the upstream and downstream compartments. All of these processes occur simultaneously and can only be partly discriminated. Gas fluxes detected during the diffusion-controlled flow regimes result in nominal effective gas permeability coefficients as low as 6E-25 m² to 7E-24m². 2. The application of purely capillary-controlled flow models may not be justified. o Gas breakthrough is controlled by effective stress, i.e. the opening of pores or small fissures. o Assumptions about wettability (completely water-wet mineral surfaces) may be incorrect.
Factors which affect cerebral uptake and retention of /sup 13/NH/sub 3/. [Testing in monkeys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, M.E.; Raichle, M.E.; Hoffman, E.J.
1977-01-01
The single pass extraction of ammonia (E) by cerebral capillaries was studied in vivo in Rhesus monkeys with /sup 13/N. The value of E for /sup 13/N-ammonia was found to be less than 100%, inversely related to cerebral blood flow and to be limited by the permeability of the blood brain barrier for ammonia. A vaue of the permeability surface area product was determined to be 0.0040 x 10/sup -4/ cm/sup 3//sec/gm. The single pass extraction fraction, E, for /sup 13/N-ammonia was found to be independent of arterial blood pH (in the range of 7.2 to 7.6) and of arterialmore » blood ammonia concentration (in the range of 80-1400 ..mu..gms/100 cc). An insulin induced hypoglycemic reduction in the cerebral metabolic rate for glucose and oxygen of 54% produced a reduction in E of about 24%. When a condition of elevated arterial blood ammonia was added to hypoglycemia, the value of E and cerebral metabolic rate for oxygen remained low while the cerebral metabolic rate for glucose increased by a factor of 2.5 indicating the presence of a detoxification shunt for ammonia. Positron tomographic images of the equilibrium cross section distribution of /sup 13/N-ammonia appeared to reflect regional differences in capillary density of the cerebral tissue.« less
Pore-scale modeling of wettability effects on CO2-brine displacement during geological storage
NASA Astrophysics Data System (ADS)
Basirat, Farzad; Yang, Zhibing; Niemi, Auli
2017-11-01
Wetting properties of reservoir rocks and caprocks can vary significantly, and they strongly influence geological storage of carbon dioxide in deep saline aquifers, during which CO2 is supposed to displace the resident brine and to become permanently trapped. Fundamental understanding of the effect of wettability on CO2-brine displacement is thus important for improving storage efficiency and security. In this study, we investigate the influence of wetting properties on two-phase flow of CO2 and brine at the pore scale. A numerical model based on the phase field method is implemented to simulate the two-phase flow of CO2-brine in a realistic pore geometry. Our focus is to study the pore-scale fluid-fluid displacement mechanisms under different wetting conditions and to quantify the effect of wettability on macroscopic parameters such as residual brine saturation, capillary pressure, relative permeability, and specific interfacial area. Our simulation results confirm that both the trapped wetting phase saturation and the normalized interfacial area increase with decreasing contact angle. However, the wetting condition does not appear to influence the CO2 breakthrough time and saturation. We also show that the macroscopic capillary pressures based on the pressure difference between inlet and outlet can differ significantly from the phase averaging capillary pressures for all contact angles when the capillary number is high (log Ca > -5). This indicates that the inlet-outlet pressure difference may not be a good measure of the continuum-scale capillary pressure. In addition, the results show that the relative permeability of CO2 can be significantly lower in strongly water-wet conditions than in the intermediate-wet conditions.
NASA Astrophysics Data System (ADS)
Garcia Rios, Maria; Luquot, Linda; Soler, Josep M.; Cama, Jordi
2017-04-01
In this study we compare the hydrogeochemical response of two fractured reservoir rocks (limestone composed of 100 wt.% calcite and sandstone composed of 66 wt.% calcite, 28 wt.% quartz and 6 wt.% microcline) in contact with CO2-rich sulfate solutions. Flow-through percolation experiments were performed using artificially fractured limestone and sandstone cores and injecting a CO2-rich sulfate solution under a constant volumetric flow rate (from 0.2 to 60 mL/h) at P = 150 bar and T = 60 °C. Measurements of the pressure difference between the inlet and the outlet of the samples and of the aqueous chemistry enabled the determination of fracture permeability changes and net reaction rates. Additionally, X-ray computed microtomography (XCMT) was used to characterize and localized changes in fracture volume induced by dissolution and precipitation reactions. In all reacted cores an increase in fracture permeability and in fracture volume was always produced even when gypsum precipitation happened. The presence of inert silicate grains in sandstone samples favored the occurrence of largely distributed dissolution structures in contrast to localized dissolution in limestone samples. This phenomenon promoted greater dissolution and smaller precipitation in sandstone than in limestone experiments. As a result, in sandstone reservoirs, the larger increase in fracture volume as well as the more extended distribution of the created volume would favor the CO2 storage capacity. The different distribution of created volume between limestone and sandstone experiments led to a different variation in fracture permeability. The progressive stepped permeability increase for sandstone would be preferred to the sharp permeability increase for limestone to minimize risks related to CO2 injection, favor capillary trapping and reduce energetic storage costs. 2D reactive transport simulations that reproduce the variation in aqueous chemistry and the fracture geometry (dissolution pattern) were performed using CrunchFlow. The calcite reactive surface area had to be diminished with respect to the geometric surface area in order to account for the transport control of the calcite dissolution reaction at pH < 5. The fitted reactive surface area was higher under faster flow conditions, reflecting a decrease in transport control and a more distributed reaction in sandstone compared to limestone.
Sorptivity of rocks and soils of the van Genuchten-Mualem type
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, R.W.; Bodvarsson, G.S.
1991-06-01
One hydrological process that will have great relevance to the performance of the proposed underground radioactive waste repository at Yucca Mountain, Nevada, is that of the absorption of water from a water-filled fracture into the adjacent unsaturated rock formation. The rate at which water is imbibed by a rock depends on the hydrological properties of the rock and on the initial saturation (or initial capillary suction) of the formation. The hydrological properties that affect imbibition are the relative permeability function and the capillary pressure function. These functions are often collectively referred to as the `characteristic functions` of the porous medium.more » For one-dimensional absorption, it can be shown that, regardless of the details of the characteristic functions, the total amount of water imbibed by the formation, per unit surface area, will be proportional to the square root of the elapsed time. Hence the ability of a rock or soil to imbibe water can be quantified by a parameter known as the sorptivity S, which is defined such that the cumulative volumetric liquid influx per unit area is given by Q = S{radical}t. The paper discusses the simplification of these characteristic functions of porous medium.« less
Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.
Salmon, Andrew H J; Satchell, Simon C
2012-03-01
Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function/dysfunction, such as mechanotransduction, leukocyte-endothelial interactions and the development of atherosclerosis, indicate that alterations in the endothelial glycocalyx may also be playing a role in the dysfunction of other organs observed in these disease states. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Flow regimes during immiscible displacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Ryan T.; Mcclure, James; Berrill, Mark A.
Fractional ow of immiscible phases occurs at the pore scale where grain surfaces and phases interfaces obstruct phase mobility. However, the larger scale behavior is described by a saturation-dependent phenomenological relationship called relative permeability. As a consequence, pore-scale parameters, such as phase topology and/ or geometry, and details of the flow regime cannot be directly related to Darcy-scale flow parameters. It is well understood that relative permeability is not a unique relationship of wetting-phase saturation and rather depends on the experimental conditions at which it is measured. Herein we use fast X-ray microcomputed tomography to image pore-scale phase arrangements duringmore » fractional flow and then forward simulate the flow regimes using the lattice-Boltzmann method to better understand the underlying pore-scale flow regimes and their influence on Darcy-scale parameters. We find that relative permeability is highly dependent on capillary number and that the Corey model fits the observed trends. At the pore scale, while phase topologies are continuously changing on the scale of individual pores, the Euler characteristic of the nonwetting phase (NWP) averaged over a sufficiently large field of view can describe the bulk topological characteristics; the Euler characteristic decreases with increasing capillary number resulting in an increase in relative permeability. Lastly, we quantify the fraction of NWP that flows through disconnected ganglion dynamics and demonstrate that this can be a significant fraction of the NWP flux for intermediate wetting-phase saturation. Furthermore, rate dependencies occur in our homogenous sample (without capillary end effect) and the underlying cause is attributed to ganglion flow that can significantly influence phase topology during the fractional flow of immiscible phases.« less
Flow regimes during immiscible displacement
Armstrong, Ryan T.; Mcclure, James; Berrill, Mark A.; ...
2017-02-01
Fractional ow of immiscible phases occurs at the pore scale where grain surfaces and phases interfaces obstruct phase mobility. However, the larger scale behavior is described by a saturation-dependent phenomenological relationship called relative permeability. As a consequence, pore-scale parameters, such as phase topology and/ or geometry, and details of the flow regime cannot be directly related to Darcy-scale flow parameters. It is well understood that relative permeability is not a unique relationship of wetting-phase saturation and rather depends on the experimental conditions at which it is measured. Herein we use fast X-ray microcomputed tomography to image pore-scale phase arrangements duringmore » fractional flow and then forward simulate the flow regimes using the lattice-Boltzmann method to better understand the underlying pore-scale flow regimes and their influence on Darcy-scale parameters. We find that relative permeability is highly dependent on capillary number and that the Corey model fits the observed trends. At the pore scale, while phase topologies are continuously changing on the scale of individual pores, the Euler characteristic of the nonwetting phase (NWP) averaged over a sufficiently large field of view can describe the bulk topological characteristics; the Euler characteristic decreases with increasing capillary number resulting in an increase in relative permeability. Lastly, we quantify the fraction of NWP that flows through disconnected ganglion dynamics and demonstrate that this can be a significant fraction of the NWP flux for intermediate wetting-phase saturation. Furthermore, rate dependencies occur in our homogenous sample (without capillary end effect) and the underlying cause is attributed to ganglion flow that can significantly influence phase topology during the fractional flow of immiscible phases.« less
NASA Astrophysics Data System (ADS)
Bisdas, Sotirios; Konstantinou, George N.; Sherng Lee, Puor; Thng, Choon Hua; Wagenblast, Jens; Baghi, Mehran; San Koh, Tong
2007-10-01
The objective of this work was to evaluate the feasibility of a two-compartment distributed-parameter (DP) tracer kinetic model to generate functional images of several physiologic parameters from dynamic contrast-enhanced CT data obtained of patients with extracranial head and neck tumors and to compare the DP functional images to those obtained by deconvolution-based DCE-CT data analysis. We performed post-processing of DCE-CT studies, obtained from 15 patients with benign and malignant head and neck cancer. We introduced a DP model of the impulse residue function for a capillary-tissue exchange unit, which accounts for the processes of convective transport and capillary-tissue exchange. The calculated parametric maps represented blood flow (F), intravascular blood volume (v1), extravascular extracellular blood volume (v2), vascular transit time (t1), permeability-surface area product (PS), transfer ratios k12 and k21, and the fraction of extracted tracer (E). Based on the same regions of interest (ROI) analysis, we calculated the tumor blood flow (BF), blood volume (BV) and mean transit time (MTT) by using a modified deconvolution-based analysis taking into account the extravasation of the contrast agent for PS imaging. We compared the corresponding values by using Bland-Altman plot analysis. We outlined 73 ROIs including tumor sites, lymph nodes and normal tissue. The Bland-Altman plot analysis revealed that the two methods showed an accepted degree of agreement for blood flow, and, thus, can be used interchangeably for measuring this parameter. Slightly worse agreement was observed between v1 in the DP model and BV but even here the two tracer kinetic analyses can be used interchangeably. Under consideration of whether both techniques may be used interchangeably was the case of t1 and MTT, as well as for measurements of the PS values. The application of the proposed DP model is feasible in the clinical routine and it can be used interchangeably for measuring blood flow and vascular volume with the commercially available reference standard of the deconvolution-based approach. The lack of substantial agreement between the measurements of vascular transit time and permeability-surface area product may be attributed to the different tracer kinetic principles employed by both models and the detailed capillary tissue exchange physiological modeling of the DP technique.
NASA Technical Reports Server (NTRS)
Mahale, Anant D.; Prudhomme, Robert K.; Rebenfeld, Ludwig
1993-01-01
A technique based on matching the refractive index of an invading liquid to that of a fiber mat was used to study entrapment of air ('voids') that occurs during forced in-plane radial flow into nonwoven multifilament glass networks. The usefulness of this technique is demonstrated in quantifying and mapping the air pockets. Experiments with a series of fluids with surface tensions varying from 28 x 10(exp -3) to 36 x 10(exp -3) N/m, viscosities from 45 x 10(exp -3) to 290 x 10(exp -3) Pa.s, and inlet flow rates from 0.15 x 10(exp -6) to 0.75 x 10(exp -6) m(exp 3)/s, showed that void content is a function of the capillary number characterizing the flow process. A critical value of capillary number, Ca = 2.5 x 10(exp -3), identifies a zone below which void content increases exponentially with decreasing capillary number. Above this critical value, negligible entrapment of voids is observed. Similar experiments carried out on surface treated nonwoven mats spanning a range of equilibrium contact angles from 20 deg to 78 deg showed that there is a critical contact angle above which negligible entrapment is observed. Below this value, there is no apparent effect of contact angle on the void fraction - capillary number relationship described earlier. Studies on the effect of filament wettability, and fluid velocity and viscosity on the size of the entrapment (voids) were also carried out. These indicate that larger sized entrapments which envelop more than one pore are favored by a low capillary number in comparison to smaller, pore level bubbles. Experiments were carried out on deformed mats - imposing high permeability spots at regular intervals on a background of low permeability. The effect of these spatial fluctuations in heterogeneity of the mat on entrapment is currently being studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JiangTao Cheng; Ping Yu; William Headley
2001-12-01
The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. During this reporting period, we have shown experimentally and theoretically that the optical coherence imaging system is optimized for sandstone. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures that are statistically similar to real porous media has shown the existence of a unique relationship among these hydraulic parameters. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, has the same length-scale as the values of IAV determined for the two-dimensional micro-models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngala, V.T.; Page, C.L.; Parrott, L.J.
1995-05-01
Steady-state diffusion of dissolved oxygen and chloride ions in hydrated OPC and OPC/30%PFA pastes, hydrated for 2 weeks at 20 C and 10 weeks at 38 C, was studied at water/binder (w/s) ratios 0.4, 0.5, 0.6 and 0.7. Total porosity and a simple measure of capillary porosity, the volume fractions of the water lost in specimens from a saturated surface dry condition to a near-constant weight at 90.7% relative humidity, were also determined. The diffusion rate of chloride ions diminished markedly, to very low values, as the capillary porosity approached zero. For a given w/s ratio or capillary porosity themore » chloride ion diffusion coefficient for OPC/30%PFA pastes was about one order of magnitude smaller than that to OPC pastes. The rate of diffusion of dissolved oxygen also diminished as the capillary porosity reduced but it was still significant as the capillary porosity approached zero. For a given capillary porosity the oxygen diffusion coefficient for OPC/30%PFA pastes was about 30% smaller than that for OPC pastes. The results support the view that chloride ion diffusion in pastes of low capillary porosity is retarded by the surface charge of the hydrated cement gel. In contrast, the hydrated cement gel is much more permeable to the similarly-sized, neutral oxygen molecule.« less
[Structure of newly formed capillaries of the rabbit cornea (electron microscopic study)].
Gurina, O Iu; Karaganov, Ia L
1984-08-01
Owing to a complex application of topical analysis and tracer technique, it is possible to carry out a light optic and electron microscopic investigation of newly formed capillaries growing in the rabbit cornea after its chemical burn. The ultrastructural analysis demonstrates certain polymorphism of morphological organization of endotheliocyte in the newly formed capillaries. There is a rather elevated amount of free ribosomes, mitochondria, microtubules and microfilaments in cytoplasm. The granular endoplasmic reticulum and Golgi complex are hypertrophied. Weibel--Palade bodies appear. Taking into account certain morpho-functional peculiarities of endothelial cells along the course of the growing capillaries, on the 8th day of growth three zone are distinguished: 1--area of nondifferentiated endothelium (apex of the capillary), 2--transitional zone, 3--zone of relatively differentiated endothelium situating in the place where the capillary gets off the parental vessel. According to the zones distinguished, the ways of trans-endothelial transport of molecules are investigated. In formation of the capillary barrier-transport function an important role belongs to polymorphism of the endothelial cells along the course of the growing capillary which is determined by differentiation degree of these cells depending on their participation in permeability.
Effects of capillary heterogeneity on vapor-liquid counterflow in porous media
NASA Astrophysics Data System (ADS)
Stubos, A. K.; Satik, C.; Yortsos, Y. C.
1992-06-01
Based on a continuum description, the effect of capillary heterogeneity, induced by variation in permeability, on the steady state, countercurrent, vapor-liquid flow in porous media is analyzed. It is shown that the heterogeneity acts as a body force that may enhance or diminish gravity effects on heat pipes. Selection rules that determine the steady states reached in homogeneous, gravity-driven heat pipes are also formulated. It is shown that the 'infinite' two-phase zone may terminate by a substantial change in the permeability somewhere in the medium. The two possible sequences, liquid-liquid dominated-dry, or liquid-vapor dominated-dry find applications in geothermal systems. Finally, it is shown that although weak heterogeneity affects only gravity controlled flows, stronger variations in permeability can give rise to significant capillary effects.
Endothelial glycocalyx: permeability barrier and mechanosensor.
Curry, F E; Adamson, R H
2012-04-01
Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100-150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.
Effect of Foam on Liquid Phase Mobility in Porous Media
NASA Astrophysics Data System (ADS)
Eftekhari, A. A.; Farajzadeh, R.
2017-03-01
We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge.
Effect of Foam on Liquid Phase Mobility in Porous Media
Eftekhari, A. A.; Farajzadeh, R.
2017-01-01
We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge. PMID:28262795
Micromachined evaporators for AMTEC cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izenson, M.G.; Crowley, C.J.
1996-12-31
To achieve high cell efficiency and reliability, the capillary pumping system for Alkali Metal Thermal to Electric Conversion (AMTEC) must have three key characteristics: (1) very small pores to achieve a high capillary pumping head, (2) high permeability for the flow of liquid sodium to minimize internal losses, and (3) be made from a material that is exceptionally stable at high temperatures in a sodium environment. The authors have developed micromachining techniques to manufacture high performance evaporators for AMTEC cells. The evaporators have been fabricated from stainless steel, molybdenum, and a niobium alloy (Nb-1Zr). The regular, micromachined structure leads tomore » very high capillary pumping head with high permeability for liquid flow. Data from tests performed with common fluids at room temperature characterize the capillary pumping head and permeability of these structures. Three micromachined evaporators have been built into AMTEC cells and operated at temperatures up to 1,100 K. Results from these tests confirm the excellent pumping capabilities of the micromachined evaporators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucchesi, K.J.
1986-03-01
The effect of bilateral intracarotid infusion of histamine (HA) on capillary permeability-surface area products (PS) of two metabolically inert tracers was determined and compared to that of L(+)arabinose (ARAB) in rat brain. Ringer's solution alone, or with 1 mg/kg HA diphosphate or 1.6M ARAB added, was infused (0.9 ml over 0.5 min) into each external carotid artery (CA). Five minutes later, a bolus of /sup 14/C-sucrose and /sup 3/H-L-glucose was injected i.v. Estimates of PS for both tracers were computed by the method of Ohno et al after brain concentration was corrected for tracer within cerebral blood vessels. Brain bloodmore » volume, based on the /sup 14/C-dextran space, was the same (.016 ml/g) in discrete cortical and midbrain regions of all rats except those treated with ARAB. The latter yielded .033 ml/g, presumably due to dextran extravasation. Infusion of ARAB, HA and Ringer's increased the PS's of sucrose and L-glucose by 10x, 8x, and 3x in brain regions perfused by the internal CA's. The ratio, PS-sucrose/PS-L-glucose was unchanged by any treatment. Both ARAB and HA caused transient falls in arterial pressure, but only ARAB caused deaths (3 of 9 rats). While as effective as ARAB in opening the blood-brain barrier, HA may be safer than hyperosmotic shock to enhance delivery of chemotherapeutic agents to brain tumors.« less
Sarin, Hemant
2010-08-11
Much of our current understanding of microvascular permeability is based on the findings of classic experimental studies of blood capillary permeability to various-sized lipid-insoluble endogenous and non-endogenous macromolecules. According to the classic small pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the transcapillary flow rates of various-sized systemically or regionally perfused endogenous macromolecules, transcapillary exchange across the capillary wall takes place through a single population of small pores that are approximately 6 nm in diameter; whereas, according to the dual pore theory of microvascular permeability, which was formulated on the basis of the findings of studies on the accumulation of various-sized systemically or regionally perfused non-endogenous macromolecules in the locoregional tissue lymphatic drainages, transcapillary exchange across the capillary wall also takes place through a separate population of large pores, or capillary leaks, that are between 24 and 60 nm in diameter. The classification of blood capillary types on the basis of differences in the physiologic upper limits of pore size to transvascular flow highlights the differences in the transcapillary exchange routes for the transvascular transport of endogenous and non-endogenous macromolecules across the capillary walls of different blood capillary types. The findings and published data of studies on capillary wall ultrastructure and capillary microvascular permeability to lipid-insoluble endogenous and non-endogenous molecules from the 1950s to date were reviewed. In this study, the blood capillary types in different tissues and organs were classified on the basis of the physiologic upper limits of pore size to the transvascular flow of lipid-insoluble molecules. Blood capillaries were classified as non-sinusoidal or sinusoidal on the basis of capillary wall basement membrane layer continuity or lack thereof. Non-sinusoidal blood capillaries were further sub-classified as non-fenestrated or fenestrated based on the absence or presence of endothelial cells with fenestrations. The sinusoidal blood capillaries of the liver, myeloid (red) bone marrow, and spleen were sub-classified as reticuloendothelial or non-reticuloendothelial based on the phago-endocytic capacity of the endothelial cells. The physiologic upper limit of pore size for transvascular flow across capillary walls of non-sinusoidal non-fenestrated blood capillaries is less than 1 nm for those with interendothelial cell clefts lined with zona occludens junctions (i.e. brain and spinal cord), and approximately 5 nm for those with clefts lined with macula occludens junctions (i.e. skeletal muscle). The physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated blood capillaries with diaphragmed fenestrae ranges between 6 and 12 nm (i.e. exocrine and endocrine glands); whereas, the physiologic upper limit of pore size for transvascular flow across the capillary walls of non-sinusoidal fenestrated capillaries with open 'non-diaphragmed' fenestrae is approximately 15 nm (kidney glomerulus). In the case of the sinusoidal reticuloendothelial blood capillaries of myeloid bone marrow, the transvascular transport of non-endogenous macromolecules larger than 5 nm into the bone marrow interstitial space takes place via reticuloendothelial cell-mediated phago-endocytosis and transvascular release, which is the case for systemic bone marrow imaging agents as large as 60 nm in diameter. The physiologic upper limit of pore size in the capillary walls of most non-sinusoidal blood capillaries to the transcapillary passage of lipid-insoluble endogenous and non-endogenous macromolecules ranges between 5 and 12 nm. Therefore, macromolecules larger than the physiologic upper limits of pore size in the non-sinusoidal blood capillary types generally do not accumulate within the respective tissue interstitial spaces and their lymphatic drainages. In the case of reticuloendothelial sinusoidal blood capillaries of myeloid bone marrow, however, non-endogenous macromolecules as large as 60 nm in diameter can distribute into the bone marrow interstitial space via the phago-endocytic route, and then subsequently accumulate in the locoregional lymphatic drainages of tissues following absorption into the lymphatic drainage of periosteal fibrous tissues, which is the lymphatic drainage of myeloid bone marrow. When the ultrastructural basis for transcapillary exchange across the capillary walls of different capillary types is viewed in this light, it becomes evident that the physiologic evidence for the existence of aqueous large pores ranging between 24 and 60 nm in diameter in the capillary walls of blood capillaries, is circumstantial, at best.
Huhndorf, Monika; Moussavi, Amir; Kramann, Nadine; Will, Olga; Hattermann, Kirsten; Stadelmann, Christine; Jansen, Olav; Boretius, Susann
2016-01-01
Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement) were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology. Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.
Sidibé, Adama; Polena, Helena; Pernet-Gallay, Karin; Razanajatovo, Jeremy; Mannic, Tiphaine; Chaumontel, Nicolas; Bama, Soumalamaya; Maréchal, Irène; Huber, Philippe; Gulino-Debrac, Danielle; Bouillet, Laurence; Vilgrain, Isabelle
2014-08-01
Covalent modifications such as tyrosine phosphorylation are associated with the breakdown of endothelial cell junctions and increased vascular permeability. We previously showed that vascular endothelial (VE)-cadherin was tyrosine phosphorylated in vivo in the mouse reproductive tract and that Y685 was a target site for Src in response to vascular endothelial growth factor in vitro. In the present study, we aimed to understand the implication of VE-cadherin phosphorylation at site Y685 in cyclic angiogenic organs. To achieve this aim, we generated a knock-in mouse carrying a tyrosine-to-phenylalanine point mutation of VE-cadherin Y685 (VE-Y685F). Although homozygous VE-Y685F mice were viable and fertile, the nulliparous knock-in female mice exhibited enlarged uteri with edema. This phenotype was observed in 30% of females between 4 to 14 mo old. Histological examination of longitudinal sections of the VE-Y685F uterus showed an extensive disorganization of myometrium and endometrium with highly edematous uterine glands, numerous areas with sparse cells, and increased accumulation of collagen fibers around blood vessels, indicating a fibrotic state. Analysis of cross section of ovaries showed the appearance of spontaneous cysts, which suggested increased vascular hyperpermeability. Electron microscopy analysis of capillaries in the ovary showed a slight but significant increase in the gap size between two adjacent endothelial cell membranes in the junctions of VE-Y685F mice (wild-type, 11.5 ± 0.3, n = 78; and VE-Y685F, 12.48 ± 0.3, n = 65; P = 0.045), as well as collagen fiber accumulation around capillaries. Miles assay revealed that either basal or vascular endothelial growth factor-stimulated permeability in the skin was increased in VE-Y685F mice. Since edema and fibrotic appearance have been identified as hallmarks of initial increased vascular permeability, we conclude that the site Y685 in VE-cadherin is involved in the physiological regulation of capillary permeability. Furthermore, this knock-in mouse model is of potential interest for further studies of diseases that are associated with abnormal vascular permeability. Copyright © 2014 the American Physiological Society.
Behavior of CO2/water flow in porous media for CO2 geological storage.
Jiang, Lanlan; Yu, Minghao; Liu, Yu; Yang, Mingjun; Zhang, Yi; Xue, Ziqiu; Suekane, Tetsuya; Song, Yongchen
2017-04-01
A clear understanding of two-phase fluid flow properties in porous media is of importance to CO 2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO 2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO 2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8mLmin -1 . For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO 2 and water became miscible in the beginning of CO 2 injection. CO 2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO 2 and water to invade into small pore spaces more easily. The study also showed CO 2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO 2 slightly decreases with the increase of capillary number. Copyright © 2016 Elsevier Inc. All rights reserved.
Surface-directed capillary system; theory, experiments and applications.
Bouaidat, Salim; Hansen, Ole; Bruus, Henrik; Berendsen, Christian; Bau-Madsen, Niels Kristian; Thomsen, Peter; Wolff, Anders; Jonsmann, Jacques
2005-08-01
We present a capillary flow system for liquid transport in microsystems. Our simple microfluidic system consists of two planar parallel surfaces, separated by spacers. One of the surfaces is entirely hydrophobic, the other mainly hydrophobic, but with hydrophilic pathways defined on it by photolithographic means. By controlling the wetting properties of the surfaces in this manner, the liquid can be confined to certain areas defined by the hydrophilic pathways. This technique eliminates the need for alignment of the two surfaces. Patterned plasma-polymerized hexafluoropropene constitutes the hydrophobic areas, whereas the untreated glass surface constitutes the hydrophilic pathways. We developed a theoretical model of the capillary flow and obtained analytical solutions which are in good agreement with the experimental results. The capillarity-driven microflow system was also used to pattern and immobilize biological material on planar substrates: well-defined 200 microm wide strips of human cells (HeLa) and fluorescence labelled proteins (fluorescein isothiocyanate-labelled bovine serum albumin, i.e., FITC-BSA) were fabricated using the capillary flow system presented here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norgaard, J.V.; Olsen, D.; Springer, N.
1995-12-31
A new technique for obtaining water-oil capillary pressure curves, based on NMR imaging of the saturation distribution in flooded cores is presented. In this technique, a steady state fluid saturation profile is developed by flooding the core at a constant flow rate. At the steady state situation where the saturation distribution no longer changes, the local pressure difference between the wetting and non-wetting phases represents the capillary pressure. The saturation profile is measured using an NMR technique and for a drainage case, the pressure in the non-wetting phase is calculated numerically. The paper presents the NMR technique and the proceduremore » for calculating the pressure distribution in the sample. Inhomogeneous samples produce irregular saturation profiles, which may be interpreted in terms of variation in permeability, porosity, and capillary pressure. Capillary pressure curves for North Sea chalk obtained by the new technique show good agreement with capillary pressure curves obtained by traditional techniques.« less
NASA Astrophysics Data System (ADS)
Fischer, Ulrich; Celia, Michael A.
1999-04-01
Functional relationships for unsaturated flow in soils, including those between capillary pressure, saturation, and relative permeabilities, are often described using analytical models based on the bundle-of-tubes concept. These models are often limited by, for example, inherent difficulties in prediction of absolute permeabilities, and in incorporation of a discontinuous nonwetting phase. To overcome these difficulties, an alternative approach may be formulated using pore-scale network models. In this approach, the pore space of the network model is adjusted to match retention data, and absolute and relative permeabilities are then calculated. A new approach that allows more general assignments of pore sizes within the network model provides for greater flexibility to match measured data. This additional flexibility is especially important for simultaneous modeling of main imbibition and drainage branches. Through comparisons between the network model results, analytical model results, and measured data for a variety of both undisturbed and repacked soils, the network model is seen to match capillary pressure-saturation data nearly as well as the analytical model, to predict water phase relative permeabilities equally well, and to predict gas phase relative permeabilities significantly better than the analytical model. The network model also provides very good estimates for intrinsic permeability and thus for absolute permeabilities. Both the network model and the analytical model lost accuracy in predicting relative water permeabilities for soils characterized by a van Genuchten exponent n≲3. Overall, the computational results indicate that reliable predictions of both relative and absolute permeabilities are obtained with the network model when the model matches the capillary pressure-saturation data well. The results also indicate that measured imbibition data are crucial to good predictions of the complete hysteresis loop.
Spontaneous Imbibition in Low Permeability Medium, SUPRI TR-114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovscek, Anthony R.; Schembre, Josephina
1999-08-09
A systematic experimental investigation of capillary pressure characteristics and fluid flow in diatomite was begun. Using an X-ray CT scanner and a specially constructed imbibition cell, we study spontaneous water imbibition processes in diatomite and, for reference, Berea sandstone and chalk. The mass of water imbibed as a function of time is also measured. Imbibition is restricted to concurrent flow. Despite a marked difference in rock properties such as permeability and porosity, we find similar trends in saturation profiles and weight gain versus time functions. Imbibition in diatomote is relatively rapid when initial water saturation is low due to largemore » capillary forces. Using a non-linear regression analysis together with the experimental data, the capillary pressure and water relative permeability curves are determined for the diatomite in the water-air system. The results given for displacement profiles by numerical simulation match the experimental results.« less
Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei
2015-01-01
Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005
Micro-Textured Black Silicon Wick for Silicon Heat Pipe Array
NASA Technical Reports Server (NTRS)
Yee, Karl Y.; Sunada, Eric T.; Ganapathi, Gani B.; Manohara, Harish; Homyk, Andrew; Prina, Mauro
2013-01-01
Planar, semiconductor heat arrays have been previously proposed and developed; however, this design makes use of a novel, microscale black silicon wick structure that provides increased capillary pumping pressure of the internal working fluid, resulting in increased effective thermal conductivity of the device, and also enables operation of the device in any orientation with respect to the gravity vector. In a heat pipe, the efficiency of thermal transfer from the case to the working fluid is directly proportional to the surface area of the wick in contact with the fluid. Also, the primary failure mechanism for heat pipes operating within the temperature range of interest is inadequate capillary pressure for the return of fluid from the condenser to the wick. This is also what makes the operation of heat pipes orientation-sensitive. Thus, the two primary requirements for a good wick design are a large surface area and high capillary pressure. Surface area can be maximized through nanomachined surface roughening. Capillary pressure is largely driven by the working fluid and wick structure. The proposed nanostructure wick has characteristic dimensions on the order of tens of microns, which promotes menisci of very small radii. This results in the possibility of enormous pumping potential due to the inverse proportionality with radius. Wetting, which also enhances capillary pumping, can be maximized through growth of an oxide layer or material deposition (e.g. TiO2) to create a superhydrophilic surface.
NASA Astrophysics Data System (ADS)
Zhang, SongPeng; Zhang, XiangJun; Tian, Yu; Meng, YongGang; Lipowsky, Herbert
2015-07-01
The molecular coating on the surface of microvascular endothelium has been identified as a barrier to transvascular exchange of solutes. With a thickness of hundreds of nanometers, this endothelial surface layer (ESL) has been treated as a porous domain within which fluid shear stresses are dissipated and transmitted to the solid matrix to initiate mechanotransduction events. The present study aims to examine the effects of the ESL thickness and permeability on the transmission of shear stress throughout the ESL. Our results indicate that fluid shear stresses rapidly decrease to insignificant levels within a thin transition layer near the outer boundary of the ESL with a thickness on the order of ten nanometers. The thickness of the transition zone between free fluid and the porous layer was found to be proportional to the square root of the Darcy permeability. As the permeability is reduced ten-fold, the interfacial fluid and solid matrix shear stress gradients increase exponentially two-fold. While the interfacial fluid shear stress is positively related to the ESL thickness, the transmitted matrix stress is reduced by about 50% as the ESL thickness is decreased from 500 to 100 nm, which may occur under pathological conditions. Thus, thickness and permeability of the ESL are two main factors that determine flow features and the apportionment of shear stresses between the fluid and solid phases of the ESL. These results may shed light on the mechanisms of force transmission through the ESL and the pathological events caused by alterations in thickness and permeability of the ESL.
Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah
2015-08-07
A composite zeolitic imidazolate framework-8 (ZIF-8) with a butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.) was fabricated to enhance the separation efficiency of methacrylate monoliths toward small molecules using conventional low-pressure gas chromatography in comparison with a neat butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.). The addition of 10mgmL(-1) ZIF-8 micro-particles increased the BET surface area of BuMA-co-EDMA by 3.4-fold. A fast separation of five linear alkanes in 36s with high resolution (Rs≥1.3) was performed using temperature program. Isothermal separation of the same sample also showed a high efficiency (3315platesm(-1) for octane) at 0.89min. Moreover, the column was able to separate skeletal isomers, such as iso-octane/octane and 2-methyl octane/nonane. In addition, an iso-butane/iso-butylene gas mixture was separated at ambient temperature. Comparison with an open tubular TR-5MS column (30m long×250μm i.d.) revealed the superiority of the composite column in separating the five-membered linear alkane mixture with 4-5 times increase in efficiency and a total separation time of 0.89min instead of 4.67min. A paint thinner sample was fully separated using the composite column in 2.43min with a good resolution (Rs≥0.89). The perfect combination between the polymeric monolith, with its high permeability, and ZIF-8, with its high surface area and flexible 0.34nm pore openings, led to the fast separation of small molecules with high efficiency and opened a new horizon in GC applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Gas permeability of ice-templated, unidirectional porous ceramics
NASA Astrophysics Data System (ADS)
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.
2016-01-01
We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.
Investigations of lymphatic drainage from the interstitial space
NASA Astrophysics Data System (ADS)
Jayathungage Don, Tharanga; Richard Clarke Collaboration; John Cater Collaboration; Vinod Suresh Collaboration
2017-11-01
The lymphatic system is a highly complex biological system that facilitates the drainage of excess fluid in body tissues. In addition, it is an integral part of the immunological control system. Understanding the mechanisms of fluid absorption from the interstitial space and flow through the initial lymphatics is important to treat several pathological conditions. The main focus of this study is to computationally model the lymphatic drainage from the interstitial space. The model has been developed to consider a 3D lymphatic network and uses biological data to inform the creation of realistic geometries for the lymphatic capillary networks. We approximate the interstitial space as a porous region and the lymphatic vessel walls as permeable surfaces. The dynamics of the flow is approximated by Darcy's law in the interstitium and the Navier-Stokes equations in the lymphatic capillary lumen. The proposed model examines lymph drainage as a function of pressure gradient. In addition, we have examined the effects of interstitial and lymphatic wall permeabilities on the lymph drainage and the solute transportation in the model. The computational results are in accordance with the available experimental measurements.
Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Haihu; Valocchi, Albert J.; Werth, Charles J.
A lattice Boltzmann color-fluid model, which was recently proposed by Liu et al. [H. Liu, A.J. Valocchi, and Q. Kang. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys. Rev. E, 85:046309, 2012.] based on a concept of continuum surface force, is improved to simulate immiscible two-phase flows in porous media. The new improvements allow the model to account for different kinematic viscosities of both fluids and to model fluid-solid interactions. The capability and accuracy of this model is first validated by two benchmark tests: a layered two-phase flow with a viscosity ratio, and a dynamic capillary intrusion. Thismore » model is then used to simulate liquid CO2 (LCO2) displacing water in a dual-permeability pore network. The extent and behavior of LCO2 preferential flow (i.e., fingering) is found to depend on the capillary number (Ca), and three different displacement patterns observed in previous micromodel experiments are reproduced. The predicted variation of LCO2 saturation with Ca, as well as variation of specific interfacial length with LCO2 saturation, are both in good agreement with the experimental observations. To understand the effect of heterogeneity on pore-scale displacement, we also simulate LCO2 displacing water in a randomly heterogeneous pore network, which has the same size and porosity as the dual-permeability pore network. In comparison to the dual-permeability case, the transition from capillary fingering to viscous fingering occurs at a higher Ca, and LCO2 saturation is higher at low Ca but lower at high Ca. In either pore network, the LCO2-water specific interfacial length is found to obey a power-law dependence on LCO2 saturation.« less
CO2 Capillary-Trapping Processes in Deep Saline Aquifers
NASA Astrophysics Data System (ADS)
Gershenzon, Naum I.; Soltanian, Mohamadreza; Ritzi, Robert W., Jr.; Dominic, David F.
2014-05-01
The idea of reducing the Earth's greenhouse effect by sequestration of CO2 into the Earth's crust has been discussed and evaluated for more than two decades. Deep saline aquifers are the primary candidate formations for realization of this idea. Evaluation of reservoir capacity and the risk of CO2 leakage require a detailed modeling of the migration and distribution of CO2 in the subsurface structure. There is a finite risk that structural (or hydrodynamic) trapping by caprock may be compromised (e.g. by improperly abandoned wells, stratigraphic discontinuities, faults, etc.). Therefore, other trapping mechanisms (capillary trapping, dissolution, and mineralization) must be considered. Capillary trapping may be very important in providing a "secondary-seal", and is the focus of our investigation. The physical mechanism of CO2 trapping in porous media by capillary trapping incorporates three related processes, i.e. residual trapping, trapping due to hysteresis of the relative permeability, and trapping due to hysteresis of the capillary pressure. Additionally CO2 may be trapped in heterogeneous media due to difference in capillary pressure entry points for different materials. The amount of CO2 trapped by these processes is a complicated nonlinear function of the spatial distribution of permeability, permeability anisotropy, capillary pressure, relative permeability of brine and CO2, permeability hysteresis and residual gas saturation (as well as the rate, total amount and placement of injected CO2). Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. We investigated how the dynamics of a CO2 plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such reservoirs. The results strongly suggest that representing these small scales features, and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes. References [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in Facies Models Revisited, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85-170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, Water Resources Research, v. 46, W04515.
Ivanidze, J; Kesavabhotla, K; Kallas, O N; Mir, D; Baradaran, H; Gupta, A; Segal, A Z; Claassen, J; Sanelli, P C
2015-05-01
Patients with SAH are at increased risk of delayed infarction. Early detection and treatment of delayed infarction remain challenging. We assessed blood-brain barrier permeability, measured as permeability surface area product, by using CTP in patients with SAH with delayed infarction. We performed a retrospective study of patients with SAH with delayed infarction on follow-up NCCT. CTP was performed before the development of delayed infarction. CTP data were postprocessed into permeability surface area product, CBF, and MTT maps. Coregistration was performed to align the infarcted region on the follow-up NCCT with the corresponding location on the CTP maps obtained before infarction. Permeability surface area product, CBF, and MTT values were then obtained in the location of the subsequent infarction. The contralateral noninfarcted region was compared with the affected side in each patient. Wilcoxon signed rank tests were performed to determine statistical significance. Clinical data were collected at the time of CTP and at the time of follow-up NCCT. Twenty-one patients with SAH were included in the study. There was a statistically significant increase in permeability surface area product in the regions of subsequent infarction compared with the contralateral control regions (P < .0001). However, CBF and MTT values were not significantly different in these 2 regions. Subsequent follow-up NCCT demonstrated new delayed infarction in all 21 patients, at which time 38% of patients had new focal neurologic deficits. Our study reveals a statistically significant increase in permeability surface area product preceding delayed infarction in patients with SAH. Further investigation of early permeability changes in SAH may provide new insights into the prediction of delayed infarction. © 2015 by American Journal of Neuroradiology.
Capillary leak syndrome: etiologies, pathophysiology, and management.
Siddall, Eric; Khatri, Minesh; Radhakrishnan, Jai
2017-07-01
In various human diseases, an increase in capillary permeability to proteins leads to the loss of protein-rich fluid from the intravascular to the interstitial space. Although sepsis is the disease most commonly associated with this phenomenon, many other diseases can lead to a "sepsis-like" syndrome with manifestations of diffuse pitting edema, exudative serous cavity effusions, noncardiogenic pulmonary edema, hypotension, and, in some cases, hypovolemic shock with multiple-organ failure. The term capillary leak syndrome has been used to describe this constellation of disease manifestations associated with an increased capillary permeability to proteins. Diseases other than sepsis that can result in capillary leak syndrome include the idiopathic systemic capillary leak syndrome or Clarkson's disease, engraftment syndrome, differentiation syndrome, the ovarian hyperstimulation syndrome, hemophagocytic lymphohistiocytosis, viral hemorrhagic fevers, autoimmune diseases, snakebite envenomation, and ricin poisoning. Drugs including some interleukins, some monoclonal antibodies, and gemcitabine can also cause capillary leak syndrome. Acute kidney injury is commonly seen in all of these diseases. In addition to hypotension, cytokines are likely to be important in the pathophysiology of acute kidney injury in capillary leak syndrome. Fluid management is a critical part of the treatment of capillary leak syndrome; hypovolemia and hypotension can cause organ injury, whereas capillary leakage of administered fluid can worsen organ edema leading to progressive organ injury. The purpose of this article is to discuss the diseases other than sepsis that produce capillary leak and review their collective pathophysiology and treatment. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
An Experimental Study of CO2-Brine Relative Permeability in Sandstone
NASA Astrophysics Data System (ADS)
Chen, X.; DiCarlo, D. A.
2013-12-01
Accurate determinations of CO2-brine relative permeability are important for modeling potential CO2 storage scenarios. The most common assumption is that CO2-brine relative permeability is likely to be similar to oil-brine relative permeability for water-wet rocks. But recent measurements of CO2-brine relative permeability have differed greatly from oil-brine relative permeability; particularly, the measurements show a very low CO2 end point relative permeability (kr,CO2=0.1~0.2) and a relatively high residual water saturation (Swr>0.4) ( Lee et al. 2010, Zuo et al. 2012, Akbarabadi et al. 2013 and etc.). It has been hypothesized that the differences are related to CO2-brine having a different contact angle from oil-brine. In this study, we hypothesize that the differences are caused by large capillary end effects resulted from the very low CO2 viscosity. We conduct steady-state CO2-brine flow experiments in 2-foot-long and 2.8-inch-diamter Berea sandstone cores at 20 °C and 1500 psi. Four pressure taps drilled on a core allow both the total pressure drop and that across five individual sections to be measured. Three experiments, two drainage and one imbibition, have been conducted so far. Our results show: (1) The relative permeability to both brine and CO2 of the last section (downstream, 15 cm long) is significantly smaller than that of any of the middle three sections. This testifies that the capillary end effect makes the relative permeability under-measured at the end of a core. (2) The values of the middle three sections are very close to each other, which indicate the middle part of our core is free of capillary end effect. (3) The CO2 end point relative permeability is 0.3~0.5, which is much higher than the recent measurements. (4) The brine end point relative permeability during imbibition is about 0.08, which is close to literature data. Reference: Lee, Y.S, Kim, K. H. and Lee, T.H. et al. Analysis of CO2 Endpoint Relative Permeability and Injectivity by Change in Pressure, Temperature, and Phase in Saline Aquifer, 2010 Energy Sources, Part A, 32: 83-99 Zuo, L., Krevor, S. and Falta, R. W. et al. An experimental study of CO2 exsolution and relative permeability measurements during CO2 saturated water depressurization. Transport in Porous Media, 2012, 91: 459-478 Akbarabadi, M. and Piri, M. Relative permeability hysteresis and capillary trapping characteristics of supercritical CO2/brine systems: an experimental study at reservoir conditions. Advances in Water Resources, 2013 52: 190-206
Influence of reactive fillers on concrete corrosion resistance
NASA Astrophysics Data System (ADS)
Rakhimbayev, Sh M.; Tolypina, N. M.; Khakhaleva, E. N.
2018-03-01
Contact surfaces represent the weakest link in a conglomerate structure of materials. They ensure the diffusion of aggressive agents inside the material. To reduce the conductivity of contact surfaces it is advisable to use reactive fillers, which interact with cement matrix via certain mechanisms, which in turn, reduces the permeability of the contact layer and fosters durability of products. The interaction of reactive fillers with calcium hydroxide of a concrete liquid phase in a contact area leads to the formation of hydrated calcium silicates of a tobermorite group. Such compounds, being settled in pores and capillaries of a product, colmatage and clog them to some extent thus leading to diffusion delay (inhibition) with regard to aggressive components of external media inside porous material, which in turn inhibits the corrosion rate. The authors studied and compared the corrosion of cement concrete with a standard filler (quartz sand) and a reactive filler (perlite and urtit). The experiments confirmed the positive influence of active fillers on concrete corrosion resistance.
Stress failure of pulmonary capillaries: role in lung and heart disease
NASA Technical Reports Server (NTRS)
West, J. B.; Mathieu-Costello, O.
1992-01-01
Pulmonary capillaries have extremely thin walls to allow rapid exchange of respiratory gases across them. Recently it has been shown that the wall stresses become very large when the capillary pressure is raised, and in anaesthetised rabbits, ultrastructural damage to the walls is seen at pressures of 40 mm Hg and above. The changes include breaks in the capillary endothelial layer, alveolar epithelial layer, and sometimes all layers of the wall. The strength of the thin part of the capillary wall can be attributed to the type IV collagen in the extracellular matrix. Stress failure of pulmonary capillaries results in a high-permeability form of oedema, or even frank haemorrhage, and is apparently the mechanism of neurogenic pulmonary oedema and high-altitude pulmonary oedema. It also explains the exercise-induced pulmonary haemorrhage that occurs in all racehorses. Several features of mitral stenosis are consistent with stress failure. Overinflation of the lung also leads to stress failure, a common cause of increased capillary permeability in the intensive care environment. Stress failure also occurs if the type IV collagen of the capillary wall is weakened by autoantibodies as in Goodpasture's syndrome. Neutrophil elastase degrades type IV collagen and this may be the starting point of the breakdown of alveolar walls that is characteristic of emphysema. Stress failure of pulmonary capillaries is a hitherto overlooked and potentially important factor in lung and heart disease.
Aspects of hysteresis in unsaturated porous media flow
NASA Astrophysics Data System (ADS)
van Duijn, Hans
2016-04-01
About 20 years ago, Peter Raats and I wrote a technical note related to the horizontal redistribution in unsaturated porous media with hysteresis in the capillary pressure (P.A.C. Raats & C.J. van Duijn, A note on horizontal redistribution with capillary hysteresis, WWR 31, p. 231-232, 1995). In the first part of my presentation, I will revisit the results of that paper. In particular the cases of unconventional flow, where the water flows from the dry region to the wet region. A comparison will be made with results obtained with the current interface area models as introduced by Gray & Hassanizadeh. I will explain and outline the differences. In the second part, travelling wave solutions of Richards equation with gravity and with hysteresis in both the capillary pressure and relative permeability will be discussed. It will be explained why such solutions oscillate in space-time and how they behave as the hysteresis regularization vanishes.
Publications - GMC 338 | Alaska Division of Geological & Geophysical
capillary pressure data, X-ray diffraction data, sample photographs, petrographic thin-section photographs '-13221.35'); which includes permeability and porosity data, mercury injection capillary pressure data, X-ray
NASA Astrophysics Data System (ADS)
Jackson, S. J.; Reynolds, C.; Krevor, S. C.
2017-12-01
Predictions of the flow behaviour and storage capacity of CO2 in subsurface reservoirs are dependent on accurate modelling of multiphase flow and trapping. A number of studies have shown that small scale rock heterogeneities have a significant impact on CO2flow propagating to larger scales. The need to simulate flow in heterogeneous reservoir systems has led to the development of numerical upscaling techniques which are widely used in industry. Less well understood, however, is the best approach for incorporating laboratory characterisations of small scale heterogeneities into models. At small scales, heterogeneity in the capillary pressure characteristic function becomes significant. We present a digital rock workflow that combines core flood experiments with numerical simulations to characterise sub-core scale capillary pressure heterogeneities within rock cores from several target UK storage reservoirs - the Bunter, Captain and Ormskirk sandstone formations. Measured intrinsic properties (permeability, capillary pressure, relative permeability) and 3D saturations maps from steady-state core flood experiments were the primary inputs to construct a 3D digital rock model in CMG IMEX. We used vertical end-point scaling to iteratively update the voxel by voxel capillary pressure curves from the average MICP curve; with each iteration more closely predicting the experimental saturations and pressure drops. Once characterised, the digital rock cores were used to predict equivalent flow functions, such as relative permeability and residual trapping, across the range of flow conditions estimated to prevail in the CO2 storage reservoirs. In the case of the Captain sandstone, rock cores were characterised across an entire 100m vertical transect of the reservoir. This allowed analysis of the upscaled impact of small scale heterogeneity on flow and trapping. Figure 1 shows the varying degree to which heterogeneity impacted flow depending on the capillary number in the Captain sandstone. At low capillary numbers, typical of regions where flow is dominated by buoyancy, fluid flow is impeded and trapping enhanced. At high capillary numbers, typical of the near wellbore environment, the fluid distributed homogeneously and the equivalent relative permeability was higher leading to improved injectivity.
Lapi, Dominga; Sabatino, Lina; Altobelli, Giovanna Giuseppina; Mondola, Paolo; Cimini, Vincenzo; Colantuoni, Antonio
2010-01-01
Propionyl-l-carnitine (pLc) exerts protective effects in different experimental models of ischemia-reperfusion (I/R). The aim of the present study was to assess the effects of intravenously and topically applied pLc on microvascular permeability increase induced by I/R in the hamster cheek pouch preparation. The hamster cheek pouch microcirculation was visualized by fluorescence microscopy. Microvascular permeability, leukocyte adhesion to venular walls, perfused capillary length, and capillary red blood cell velocity (V(RBC)) were evaluated by computer-assisted methods. E-selectin expression was assessed by in vitro analysis. Lipid peroxidation and reactive oxygen species (ROS) formation were determined by thiobarbituric acid-reactive substances (TBARS) and 2'-7'-dichlorofluorescein (DCF), respectively. In control animals, I/R caused a significant increase in permeability and in the leukocyte adhesion in venules. Capillary perfusion and V(RBC) decreased. TBARS levels and DCF fluorescence significantly increased compared with baseline. Intravenously infused pLc dose-dependently prevented leakage and leukocyte adhesion, preserved capillary perfusion, and induced vasodilation at the end of reperfusion, while ROS concentration decreased. Inhibition of nitric oxide synthase prior to pLc caused vasoconstriction and partially blunted the pLc-induced protective effects; inhibition of the endothelium-derived hyperpolarizing factor (EDHF) abolished pLc effects. Topical application of pLc on cheek pouch membrane produced the same effects as observed with intravenous administration. pLc decreased the E-selectin expression. pLc prevents microvascular changes induced by I/R injury. The reduction of permeability increase could be mainly due to EDHF release induce vasodilatation together with NO. The reduction of E-selectin expression prevents leukocyte adhesion and permeability increase.
Lapi, Dominga; Sabatino, Lina; Altobelli, Giovanna Giuseppina; Mondola, Paolo; Cimini, Vincenzo; Colantuoni, Antonio
2010-01-01
Background and purpose Propionyl-l-carnitine (pLc) exerts protective effects in different experimental models of ischemia–reperfusion (I/R). The aim of the present study was to assess the effects of intravenously and topically applied pLc on microvascular permeability increase induced by I/R in the hamster cheek pouch preparation. Methods The hamster cheek pouch microcirculation was visualized by fluorescence microscopy. Microvascular permeability, leukocyte adhesion to venular walls, perfused capillary length, and capillary red blood cell velocity (VRBC) were evaluated by computer-assisted methods. E-selectin expression was assessed by in vitro analysis. Lipid peroxidation and reactive oxygen species (ROS) formation were determined by thiobarbituric acid-reactive substances (TBARS) and 2′-7′-dichlorofluorescein (DCF), respectively. Results In control animals, I/R caused a significant increase in permeability and in the leukocyte adhesion in venules. Capillary perfusion and VRBC decreased. TBARS levels and DCF fluorescence significantly increased compared with baseline. Intravenously infused pLc dose-dependently prevented leakage and leukocyte adhesion, preserved capillary perfusion, and induced vasodilation at the end of reperfusion, while ROS concentration decreased. Inhibition of nitric oxide synthase prior to pLc caused vasoconstriction and partially blunted the pLc-induced protective effects; inhibition of the endothelium-derived hyperpolarizing factor (EDHF) abolished pLc effects. Topical application of pLc on cheek pouch membrane produced the same effects as observed with intravenous administration. pLc decreased the E-selectin expression. Conclusions pLc prevents microvascular changes induced by I/R injury. The reduction of permeability increase could be mainly due to EDHF release induce vasodilatation together with NO. The reduction of E-selectin expression prevents leukocyte adhesion and permeability increase. PMID:21423374
Investigation of Episodic Flow from Unsaturated Porous Media into a Macropore
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. K. Podgorney; J. P. Fairley
Th e recent literature contains numerous observations of episodic or intermittent fl ow in unsaturated flow systems under both constant fl ux and ponded boundary conditions. Flow systems composed of a heterogeneous porous media, as well as discrete fracture networks, have been cited as examples of systems that can exhibit episodic fl ow. Episodic outfl ow events are significant because relatively large volumes of water can move rapidly through an unsaturated system, carrying water and contaminants to depth greatly ahead of a wetting front predicted by a one-dimensional, gravity-driven diff usive infiltration model. In this study, we model the behaviormore » of water flow through a sand column underlain by an impermeable-walled macropore. Relative permeability and capillary pressure relationships were developed that capture the complex interrelationships between the macropore and the overlying porous media that control fl ow out of the system. The potential for episodic flow is assessed and compared to results of conventional modeling approaches and experimental data from the literature. Model results using coupled matrix–macropore relative permeability and capillary pressure relationships capture the behavior observed in laboratory experiments remarkably well, while simulations using conventional relative permeability and capillary pressure functions fail to capture some of the observed fl ow dynamics. Capturing the rapid downward movement of water suggests that the matrix-macropore capillary pressure and relative permeability functions developed have the potential to improve descriptions of fl ow and transport processes in heterogeneous, variably saturated media.« less
Rough surface adhesion in the presence of capillary condensation
DelRio, Frank W.; Dunn, Martin L.; Phinney, Leslie M.; ...
2007-04-17
Capillary condensation of water can have a significant effect on rough surface adhesion. Here, to explore this phenomenon between micromachined surfaces, the authors perform microcantilever experiments as a function of surface roughness and relative humidity (RH). Below a threshold RH, the adhesion is mainly due to van der Waals forces across extensive noncontacting areas. Above the threshold RH, the adhesion jumps due to capillary condensation and increases towards the upper limit of Γ=144mJ/m 2. Lastly, a detailed model based on the measured surface topography qualitatively agrees with the experimental data only when the topographic correlations between the upper and lowermore » surfaces are considered.« less
Capillary-Condenser-Pumped Heat-Transfer Loop
NASA Technical Reports Server (NTRS)
Silverstein, Calvin C.
1989-01-01
Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasan, D.T.
The relative permeability model for two phase flow in porous media (Wasan 1983; Ramakrishnan and Wasan 1984) provides the necessary fractional flow curves at a given capillary number. These curves can be utilized in modeling both enhanced secondary and tertiary recovery processes. Important parameters in the fractional flow curves of our relative permeability model are the residual wetting and nonwetting phase saturations in a low capillary number flooding process. To understand, what constitutes the residual saturations, this quarter we have studied the displacement of one incompressible fluid by another in a porous medium using the network representation. The Bernoulli percolationmore » model for an infinite lattice graph is utilized in the interpretation of the capillary behavior of the medium, which ultimately determines residual saturations. The calculated capillary pressure-saturation relationship using Bethe lattice results agrees qualitatively with experimental data. 4 references, 2 figures.« less
Gas permeability of ice-templated, unidirectional porous ceramics.
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J
2016-01-01
We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 [Formula: see text]m and 19.1 [Formula: see text]m. The maximum permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) was measured in samples with the highest total pore volume (72%) and pore size (19.1 [Formula: see text]m). However, we demonstrate that it is possible to achieve a similar permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity ([Formula: see text]) is mainly controlled by pore size, unlike in isotropic porous structures where [Formula: see text] is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.
NASA Astrophysics Data System (ADS)
Sharqawy, Mostafa H.
2016-12-01
Pore network models (PNM) of Berea and Fontainebleau sandstones were constructed using nonlinear programming (NLP) and optimization methods. The constructed PNMs are considered as a digital representation of the rock samples which were based on matching the macroscopic properties of the porous media and used to conduct fluid transport simulations including single and two-phase flow. The PNMs consisted of cubic networks of randomly distributed pores and throats sizes and with various connectivity levels. The networks were optimized such that the upper and lower bounds of the pore sizes are determined using the capillary tube bundle model and the Nelder-Mead method instead of guessing them, which reduces the optimization computational time significantly. An open-source PNM framework was employed to conduct transport and percolation simulations such as invasion percolation and Darcian flow. The PNM model was subsequently used to compute the macroscopic properties; porosity, absolute permeability, specific surface area, breakthrough capillary pressure, and primary drainage curve. The pore networks were optimized to allow for the simulation results of the macroscopic properties to be in excellent agreement with the experimental measurements. This study demonstrates that non-linear programming and optimization methods provide a promising method for pore network modeling when computed tomography imaging may not be readily available.
Changes in permeability of the alveolar-capillary barrier in firefighters.
Minty, B D; Royston, D; Jones, J G; Smith, D J; Searing, C S; Beeley, M
1985-01-01
The effect on alveolar-capillary barrier permeability of chronic exposure to a smoke produced by the partial combusion of diesel oil, paraffin, and wood was examined. An index of permeability was determined from the rate of transfer from the lung into the blood of the hydrophilic, labelled chelate 99mTc diethylene triamine penta-acetate (MW 492 dalton). The results of this test were expressed as the half time clearance of the tracer from the lung into the blood (T1/2 LB). The study was carried out at the Royal Naval Firefighting School, HMS Excellent. Permeability index was measured on seven non-smoking naval firefighting instructors who had worked at the school for periods of longer than two and a half months. Tests of airway function and carbon monoxide transfer factor were performed on four of these seven instructors. The results of the permeability index showed a T1/2 LB of 26 min +/- 5 (SEM) which differed significantly from that of normal non-smokers. By contrast all other lung function tests had values within the predicted normal range. PMID:3899161
Changes in permeability of the alveolar-capillary barrier in firefighters.
Minty, B D; Royston, D; Jones, J G; Smith, D J; Searing, C S; Beeley, M
1985-09-01
The effect on alveolar-capillary barrier permeability of chronic exposure to a smoke produced by the partial combusion of diesel oil, paraffin, and wood was examined. An index of permeability was determined from the rate of transfer from the lung into the blood of the hydrophilic, labelled chelate 99mTc diethylene triamine penta-acetate (MW 492 dalton). The results of this test were expressed as the half time clearance of the tracer from the lung into the blood (T1/2 LB). The study was carried out at the Royal Naval Firefighting School, HMS Excellent. Permeability index was measured on seven non-smoking naval firefighting instructors who had worked at the school for periods of longer than two and a half months. Tests of airway function and carbon monoxide transfer factor were performed on four of these seven instructors. The results of the permeability index showed a T1/2 LB of 26 min +/- 5 (SEM) which differed significantly from that of normal non-smokers. By contrast all other lung function tests had values within the predicted normal range.
NASA Astrophysics Data System (ADS)
Reynolds, Catriona A.; Blunt, Martin J.; Krevor, Samuel
2018-02-01
We have studied the impact of heterogeneity on relative permeability and residual trapping for rock samples from the Bunter sandstone of the UK Southern North Sea, the Ormskirk sandstone of the East Irish Sea, and the Captain sandstone of the UK Northern North Sea. Reservoir condition CO2-brine relative permeability measurements were made while systematically varying the ratio of viscous to capillary flow potential, across a range of flow rates, fractional flow, and during drainage and imbibition displacement. This variation resulted in observations obtained across a range of core-scale capillary number 0.2
Hingerl, Ferdinand F.; Yang, Feifei; Pini, Ronny; ...
2016-02-02
In this paper we present the results of an extensive multiscale characterization of the flow properties and structural and capillary heterogeneities of the Heletz sandstone. We performed petrographic, porosity and capillary pressure measurements on several subsamples. We quantified mm-scale heterogeneity in saturation distributions in a rock core during multi-phase flow using conventional X-ray CT scanning. Core-flooding experiments were conducted under reservoirs conditions (9 MPa, 50 °C) to obtain primary drainage and secondary imbibition relative permeabilities and residual trapping was analyzed and quantified. We provide parameters for relative permeability, capillary pressure and trapping models for further modeling studies. A synchrotron-based microtomographymore » study complements our cm- to mm-scale investigation by providing links between the micromorphology and mm-scale saturation heterogeneities.« less
Capillary Imbibition of Hydraulic Fracturing Fluids into Partially Saturated Shale
NASA Astrophysics Data System (ADS)
Birdsell, D.; Rajaram, H.; Lackey, G.
2015-12-01
Understanding the migration of hydraulic fracturing fluids injected into unconventional reservoirs is important to assess the risk of aquifer contamination and to optimize oil and gas production. Capillary imbibition causes fracturing fluids to flow from fractures into the rock matrix where the fluids are sequestered for geologically long periods of time. Imbibition could explain the low amount of flowback water observed in the field (5-50% of the injected volume) and reduce the chance of fracturing fluid migrating out of formation towards overlying aquifers. We present calculations of spontaneous capillary imbibition in the form of an "imbibition rate parameter" (A) based on the only known exact analytical solution for spontaneous capillary imbibition. A depends on the hydraulic and capillary properties of the reservoir rock, the initial water saturation, and the viscosities of the wetting and nonwetting fluids. Imbibed volumes can be large for a high permeability shale gas reservoir (up to 95% of the injected volume) or quite small for a low permeability shale oil reservoir (as low as 3% of the injected volume). We also present a nondimensionalization of the imbibition rate parameter, which facilitates the calculation of A and clarifies the relation of A to initial saturation, porous medium properties, and fluid properties. Over the range of initial water saturations reported for the Marcellus shale (0.05-0.6), A varies by less than factors of ~1.8 and ~3.4 for gas and oil nonwetting phases respectively. However, A decreases significantly for larger initial water saturations. A is most sensitive to the intrinsic permeability of the reservoir rock and the viscosity of the fluids.
Chemical microreactor and method thereof
Morse, Jeffrey D.; Jankowski, Alan
2005-11-01
A chemical microreactor suitable for generation of hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. One such microreactor employs a packed catalyst capillary microchannel and at least one porous membrane. Another employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2 /cm.sup.3. The packed catalyst capillary microchannels, porous membranes and porous membrane support structures may be formed by a variety of methods.
Simulation-based validation and arrival-time correction for Patlak analyses of Perfusion-CT scans
NASA Astrophysics Data System (ADS)
Bredno, Jörg; Hom, Jason; Schneider, Thomas; Wintermark, Max
2009-02-01
Blood-brain-barrier (BBB) breakdown is a hypothesized mechanism for hemorrhagic transformation in acute stroke. The Patlak analysis of a Perfusion Computed Tomography (PCT) scan measures the BBB permeability, but the method yields higher estimates when applied to the first pass of the contrast bolus compared to a delayed phase. We present a numerical phantom that simulates vascular and parenchymal time-attenuation curves to determine the validity of permeability measurements obtained with different acquisition protocols. A network of tubes represents the major cerebral arteries ipsi- and contralateral to an ischemic event. These tubes branch off into smaller segments that represent capillary beds. Blood flow in the phantom is freely defined and simulated as non-Newtonian tubular flow. Diffusion of contrast in the vessels and permeation through vessel walls is part of the simulation. The phantom allows us to compare the results of a permeability measurement to the simulated vessel wall status. A Patlak analysis reliably detects areas with BBB breakdown for acquisitions of 240s duration, whereas results obtained from the first pass are biased in areas of reduced blood flow. Compensating for differences in contrast arrival times reduces this bias and gives good estimates of BBB permeability for PCT acquisitions of 90-150s duration.
Regulation and function of endothelial glycocalyx layer in vascular diseases.
Sieve, Irina; Münster-Kühnel, Anja K; Hilfiker-Kleiner, Denise
2018-01-01
In the vascular system, the endothelial surface layer (ESL) as the inner surface of blood vessels affects mechanotransduction, vascular permeability, rheology, thrombogenesis, and leukocyte adhesion. It creates barriers between endothelial cells and blood and neighbouring cells. The glycocalyx, composed of glycoconjugates and proteoglycans, is an integral component of the ESL and a key element in inter- and intracellular communication and tissue homeostasis. In pathophysiological conditions (atherosclerosis, infection, ischemia/reperfusion injury, diabetes, trauma and acute lung injury) glycocalyx-degrading factors, i.e. reactive oxygen and nitrogen species, matrix metalloproteinases, heparanase and sialidases, damage the ESL, thereby impairing endothelial functions. This leads to increased capillary permeability, leucocyte-endothelium interactions, thrombosis and vascular inflammation, the latter further driving glycocalyx destruction. The present review highlights current knowledge on the vasculoprotective role of the ESL, with specific emphasis on its remodelling in inflammatory vascular diseases and discusses its potential as a novel therapeutic target to treat vascular pathologies. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Riasi, S.; Huang, G.; Montemagno, C.; Yeghiazarian, L.
2013-12-01
Micro-scale modeling of multiphase flow in porous media is critical to characterize porous materials. Several modeling techniques have been implemented to date, but none can be used as a general strategy for all porous media applications due to challenges presented by non-smooth high-curvature solid surfaces, and by a wide range of pore sizes and porosities. Finite approaches like the finite volume method require a high quality, problem-dependent mesh, while particle-based approaches like the lattice Boltzmann require too many particles to achieve a stable meaningful solution. Both come at a large computational cost. Other methods such as pore network modeling (PNM) have been developed to accelerate the solution process by simplifying the solution domain, but so far a unique and straightforward methodology to implement PNM is lacking. We have developed a general, stable and fast methodology to model multi-phase fluid flow in porous materials, irrespective of their porosity and solid phase topology. We have applied this methodology to highly porous fibrous materials in which void spaces are not distinctly separated, and where simplifying the geometry into a network of pore bodies and throats, as in PNM, does not result in a topology-consistent network. To this end, we have reduced the complexity of the 3-D void space geometry by working with its medial surface. We have used a non-iterative fast medial surface finder algorithm to determine a voxel-wide medial surface of the void space, and then solved the quasi-static drainage and imbibition on the resulting domain. The medial surface accurately represents the topology of the porous structure including corners, irregular cross sections, etc. This methodology is capable of capturing corner menisci and the snap-off mechanism numerically. It also allows for calculation of pore size distribution, permeability and capillary pressure-saturation-specific interfacial area surface of the porous structure. To show the capability of this method to numerically estimate the capillary pressure in irregular cross sections, we compared our results with analytical solutions available for capillary tubes with non-circular cross sections. We also validated this approach by implementing it on well-known benchmark problems such as a bundle of cylinders and packed spheres.
A level set method for determining critical curvatures for drainage and imbibition.
Prodanović, Masa; Bryant, Steven L
2006-12-15
An accurate description of the mechanics of pore level displacement of immiscible fluids could significantly improve the predictions from pore network models of capillary pressure-saturation curves, interfacial areas and relative permeability in real porous media. If we assume quasi-static displacement, at constant pressure and surface tension, pore scale interfaces are modeled as constant mean curvature surfaces, which are not easy to calculate. Moreover, the extremely irregular geometry of natural porous media makes it difficult to evaluate surface curvature values and corresponding geometric configurations of two fluids. Finally, accounting for the topological changes of the interface, such as splitting or merging, is nontrivial. We apply the level set method for tracking and propagating interfaces in order to robustly handle topological changes and to obtain geometrically correct interfaces. We describe a simple but robust model for determining critical curvatures for throat drainage and pore imbibition. The model is set up for quasi-static displacements but it nevertheless captures both reversible and irreversible behavior (Haines jump, pore body imbibition). The pore scale grain boundary conditions are extracted from model porous media and from imaged geometries in real rocks. The method gives quantitative agreement with measurements and with other theories and computational approaches.
Critical Velocities in Open Capillary Flow
NASA Technical Reports Server (NTRS)
Dreyer, Michael; Langbein, Dieter; Rath, Hans J.
1996-01-01
This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.
Transient pressure-pulse decay permeability measurements in the Barnett shale
NASA Astrophysics Data System (ADS)
Bhandari, A. R.; Reece, J.; Cronin, M. B.; Flemings, P. B.; Polito, P. J.
2012-12-01
We conducted transient pressure-pulse decay permeability measurements on core plugs of the Barnett shale using a hydrostatic pressure cell. Core plugs, 3.8 cm in diameter and less than 2.5 cm in length, were prepared from a core obtained at a depth of approximately 2330 m from the Mitchel Energy 2 T. P. Sims well in the Mississippian Barnett Formation (Loucks and Ruppel, 2007). We performed permeability measurements of the core plugs using argon at varying confining pressures in two different directions (perpendicular and parallel to bedding planes). We calculate gas permeability from changes in pressure with time using the analytical solution of the pressure diffusion equation with appropriate boundary conditions for our test setup (Dicker and Smits, 1988). Based on our limited results, we interpret 2 × 10-18 m2 for vertical permeability and 156 × 10-18 m2 for horizontal permeability. We demonstrate an extreme stress dependence of the horizontal flow permeability where permeability decreases from 156 × 10-18 m2 to 2.5 × 10-18 m2 as the confining stress is increased from 3.5 to 35 MPa. These permeability measurements are at the high side of other pulsed permeability measurements in the Barnett shale (Bustin et al. 2008; Vermylen, 2011). Permeabilities calculated from mercury injection capillary pressure curves, using theoretically derived permeability-capillary pressure models based on parallel tubes assumption, are orders of magnitude less than our transient pressure-pulse decay permeability measurements (for example, 3.7×10-21 m2 (this study), 10-21 -10-20 m2 (Sigal, 2007), 10-20 -10-17 m2 (Prince et al., 2010)). We interpret that the high measured permeabilities are due to microfractures in the sample. At this point, we do not know if the microfractures are due to sampling disturbance (stress-relief induced) or represent an in-situ fracture network. Our study illustrates the importance of characterization of microfractures at the core scale to understand better the transport behavior in shale matrix and sealing efficiency of cap rocks. References Bustin et al. (2008), Impact of shale properties on pore structure and storage characteristics, SPE 119892. Dicker and Smits (1988), A practical method for determining permeability from laboratory pressure-pulse decay measurements, SPE 17578. Loucks and Ruppel (2007), Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale gas succession in the Fort Worth Basin, Texas, AAPG 2007. Sigal (2007), Mercury capillary pressure measurements on Barnett core. (http://shale.ou.edu/Home/Publication) Prince et al. (2010), Shale diagenesis and permeability: examples from the Barnett shale and the Marcellus formation, AAPG 2010. Vermylen, J.P. (2011), Geomechanical studies of the Barnett Shale, Texas, USA, PhD thesis, Stanford University.
NASA Astrophysics Data System (ADS)
Krivonogov, Nikolay G.; Efimova, Nataliya Y.; Zavadovsky, Konstantin W.; Lishmanov, Yuri B.
2016-08-01
Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on a side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivonogov, Nikolay G., E-mail: kng@cardio-tomsk.ru; Efimova, Nataliya Y., E-mail: efimova@cardio-tomsk.ru; Zavadovsky, Konstantin W.
Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on amore » side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.« less
Long-term stormwater quantity and quality performance of permeable pavement systems.
Brattebo, Benjamin O; Booth, Derek B
2003-11-01
This study examined the long-term effectiveness of permeable pavement as an alternative to traditional impervious asphalt pavement in a parking area. Four commercially available permeable pavement systems were evaluated after 6 years of daily parking usage for structural durability, ability to infiltrate precipitation, and impacts on infiltrate water quality. All four permeable pavement systems showed no major signs of wear. Virtually all rainwater infiltrated through the permeable pavements, with almost no surface runoff. The infiltrated water had significantly lower levels of copper and zinc than the direct surface runoff from the asphalt area. Motor oil was detected in 89% of samples from the asphalt runoff but not in any water sample infiltrated through the permeable pavement. Neither lead nor diesel fuel were detected in any sample. Infiltrate measured 5 years earlier displayed significantly higher concentrations of zinc and significantly lower concentrations of copper and lead.
A comparison of capillary hydraulic conductivities in postural and locomotor muscle.
McDonagh, P F; Gore, R W
1982-09-01
In a comparative skeletal muscle study Folkow and Halicka (Microvasc. Res. 1: 1-14, 1968) reported that the capillary filtration coefficient (CFC) of postural (red) muscle was two times the CFC of locomotor (white) muscle. It was concluded that the twofold difference in CFC was due solely to a difference in the perfused capillary surface areas (Sf) of red vs. white muscle. However, CFC is the product of capillary hydraulic conductivity (LP) and Sf. Hence their conclusion assumed that the average LP of red muscle capillaries is exactly equal to the average LP of white muscle capillaries. The following study was undertaken to test the validity of this assumption. The microocclusion procedures and analytical model described by Lee et al. (Circ. Res. 28: 358-370, 1971) and Gore [Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H268-H287, 1982] were used to determine LP. Independent measurements of LP were recorded from single capillaries in red, anterior latissimus dorsi (ALD) and white, posterior latissimus dorsi (PLD) muscles of chickens anesthetized with L.A. Thesia. We found that the mean capillary hydraulic conductivity in postural muscle [(LP)ALD = 0.20 +/- 0.06 (SE) micrometers . s-1 . cmH2O-1 (n = 11)] was significantly different from the mean capillary hydraulic conductivity in locomotor muscle [(LP)PLD = 0.061 +/- 0.01 micrometers . s-1 . cmH2O-1 (n = 14)] (P less than 0.05). These results provide direct evidence that observed differences in red vs. white muscle CFC's may not be due solely to different perfused capillary surface areas but may also be due to differences in capillary hydraulic conductivity.
Method for forming a chemical microreactor
Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA
2009-05-19
Disclosed is a chemical microreactor that provides a means to generate hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water. The microreactor contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. Two distinct embodiment styles are discussed. One embodiment style employs a packed catalyst capillary microchannel and at least one porous membrane. Another embodiment style employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2/cm.sup.3. Various methods to form packed catalyst capillary microchannels, porous membranes and porous membrane support structures are also disclosed.
Kim, Yongman; Wan, Jiamin; Kneafsey, Timothy J; Tokunaga, Tetsu K
2012-04-03
Wettability of reservoir minerals and rocks is a critical factor controlling CO(2) mobility, residual trapping, and safe-storage in geologic carbon sequestration, and currently is the factor imparting the greatest uncertainty in predicting capillary behavior in porous media. Very little information on wettability in supercritical CO(2) (scCO(2))-mineral-brine systems is available. We studied pore-scale wettability and wettability alteration in scCO(2)-silica-brine systems using engineered micromodels (transparent pore networks), at 8.5 MPa and 45 °C, over a wide range of NaCl concentrations up to 5.0 M. Dewetting of silica surfaces upon reactions with scCO(2) was observed through water film thinning, water droplet formation, and contact angle increases within single pores. The brine contact angles increased from initial values near 0° up to 80° with larger increases under higher ionic strength conditions. Given the abundance of silica surfaces in reservoirs and caprocks, these results indicate that CO(2) induced dewetting may have important consequences on CO(2) sequestration including reducing capillary entry pressure, and altering quantities of CO(2) residual trapping, relative permeability, and caprock integrity.
Permeability enhancement by shock cooling
NASA Astrophysics Data System (ADS)
Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean
2015-04-01
The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of granitic geothermal reservoirs.
NASA Astrophysics Data System (ADS)
Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.
2017-12-01
We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness of the Pc-S- awn relation is step towards complete description of two-phase flow at the Darcy scale.
Ultrastructural organization of the hamster renal pelvis.
Lacy, E R; Schmidt-Nielsen, B
1979-08-01
The renal pelvis of the hamster has been studied by light microscopy (epoxy resin sections), transmission electron microscopy, and morphometric analysis of electron micrographs. Three morphologically distinct epithelia line the pelvis, and each covers a different zone of the kidney. A thin epithelium covering the outer medulla (OM) consists of two cell types: (1) granular cells are most numerous and have apically positioned granules which stain intensely with toluidine blue, are membrane-bound, and contain a fine particulate matter that stains light grey to black in electron micrographs. (2) Basal cells do not have granules, are confined to the basal lamina region, and do not reach the mucosal epithelial surface. The inner medulla (IM) is covered by a pelvic epithelium morphologically similar to collecting duct epithelium of IM. Some cells in this portion of the pelvic epithelium (IM) stain intensely dark with toluidine blue, osmium tetroxide, lead, and uranyl acetate. Transitional epithelium, which separates cortex (C) from pelvic urine, has an asymmetric luminal plasma membrane and discoid vesicles, each of which is similar to those previously observed in mammalian ureter and urinary bladder epithelia. Based on morphological comparisons with other epithelia, the IM and OM pelvic epithelia would appear permeable to solutes and/or water, while the transitional epithelium covering the C appears relatively impermeable. It would also appear that the exchange of solutes and water between pelvic urine and OM would involve capillaries, primarily, since morphometric analysis showed that both fenestrated and continuous capillaries of the OM were extremely abundant (greater than 60% of OM pelvic surface area) just under the thin pelvic epithelium.
Tran, MinhPhuong; Turner, Erica B; Segro, Scott S; Fang, Li; Seyyal, Emre; Malik, Abdul
2017-11-03
A sol-gel organic-inorganic hybrid sorbent, consisting of chemically integrated tantalum (V) ethoxide (TaEO) and polypropylene glycol methacrylate (PPGM), was developed for capillary microextraction (CME). The sol-gel sorbent was synthesized within a fused silica capillary through hydrolytic polycondensation of TaEO and chemical incorporation of PPGM into the evolving sol-gel tantala network. A part of the organic-inorganic hybrid sol-gel network evolving in the vicinity of the capillary walls had favorable conditions to get chemically bonded to the silanol groups on the capillary surface forming a surface-bonded coating. The newly developed sol-gel sorbent was employed to isolate and enrich a variety of analytes from aqueous samples for on-line analysis by high-performance liquid chromatography (HPLC) equipped with a UV detector. CME was performed on aqueous samples containing trace concentrations of analytes representing polycyclic aromatic hydrocarbons, ketones, alcohols, amines, nucleosides, and nucleotides. This sol-gel hybrid coating provided efficient extraction with CME-HPLC detection limits ranging from 4.41pM to 28.19 pM. Due to direct chemical bonding between the sol-gel sorbent coating and the fused silica capillary inner surface, this sol-gel sorbent exhibited enhanced solvent stability. The sol-gel tantala-based sorbent also exhibited excellent pH stability over a wide pH range (pH 0-pH 14). Furthermore, it displayed great performance reproducibility in CME-HPLC providing run-to-run HPLC peak area relative standard deviation (RSD) values between 0.23% and 3.83%. The capillary-to-capillary RSD (n=3), characterizing capillary preparation method reproducibility, ranged from 0.24% to 4.11%. The results show great performance consistency and application potential for the sol-gel tantala-PPGM sorbent in various fields including biomedical, pharmaceutical, and environmental areas. Copyright © 2017 Elsevier B.V. All rights reserved.
Tang, Yuanliang; He, Ying
2018-05-01
Type 2 diabetes mellitus (DM2) is frequently accompanied by microcirculation complications, including structural and functional alterations, which may have serious effects on substance exchanges between blood and interstitial tissue and the health of organs. In this paper, we aim to study the influence of microcirculation alterations in DM2 patients on fluid and oxygen exchanges through a model analysis. A fluid flow and oxygen transport model were developed by considering the interplay between blood in capillary network and interstitial tissue. The two regions were separately represented by 1D network model and 3D volume model, and the immersed boundary method (IBM) was adopted to solve fluid and mass transfer between these two regions. By using the model, the steady flow field and the distributions of oxygen in capillary network and surrounding tissue were firstly simulated. In the interstitial volume, fluid pressure and oxygen tension decreased with the increase of distance from the network; in the network, oxygen tension in blood plasma dropped from 100 mm Hg at the entrance to about 40 mm Hg at the exit. We further tested several structural and functional disorders related to diabetic pathological conditions. Simulated results show that the impaired connectivity of the network could result in poor robustness in maintaining blood flow and perfused surface; under high fluid permeability conditions of capillary walls, the pressure gradient was much larger around the capillary bed, and this alteration led to a saturation level of the interstitial pressure when lymphatic flow drainage can't work effectively; the variations in network connectivity and permeability of capillary wall also had unfavorable influence on oxygen distributions in interstitial tissue. In addition, when the oxygen releasing capacity of hemoglobin was confined by glycosylated hemoglobin (HbA1) in the case of diabetes, the plasma could not be complemented with adequate oxygen and thus the hypoxic tissue range will be extended. This study illustrates that when microcirculation disturbances, including the structure of capillary network, the wall osmosis property and the capacity of blood binding oxygen occur in DM2, some negative impacts are raised on microvascular hemodynamics and metabolism circumstance of interstitial tissue. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, Tiandao; Roer, Robert; Vana, Matthew; Pate, Susan; Check, Jennifer
2006-03-01
Juvenile blue crabs, Callinectes sapidus, extensively utilize oligohaline and freshwater regions of the estuary. With a presumptively larger surface-area-to-body weight ratio, juvenile crabs could experience osmo- and ionoregulatory costs well in excess of that of adults. To test this hypothesis, crabs ranging over three orders of magnitude in body weight were acclimated to either sea water (1,000 mOsm) or dilute sea water (150 mOsm), and gill surface area, water and sodium permeabilities (calculated from the passive efflux of 3H2O and 22Na+), gill Na+, K+ -ATPase activity and expression were measured. Juveniles had a relatively larger gill surface area; weight-specific gill surface area decreased with body weight. Weight-specific water and sodium fluxes also decreased with weight, but not to the same extent as gill surface area; thus juveniles were able to decrease gill permeability slightly more than adults upon acclimation to dilute media. Crabs < 5 g in body weight had markedly higher activities of gill Na+ ,K+ -ATPase than crabs > 5 g in both posterior and anterior gills. Acclimation to dilute medium induced increased expression of Na+, K+ -ATPase and enzyme activity, but the increase was not as great in juveniles as in larger crabs. The increased weight-specific surface area for water gain and salt loss for small crabs in dilute media presents a challenge that is incompletely compensated by reduced permeability and increased affinity of gill Na+, K+ -ATPase for Na+. Juveniles maintain osmotic and ionic homeostasis by the expression and utilization of extremely high levels of gill Na+, K+ -ATPase, in posterior, as well as in anterior, gills. Copyright 2006 Wiley-Liss, Inc.
Permeability-porosity relationships in sedimentary rocks
Nelson, Philip H.
1994-01-01
In many consolidated sandstone and carbonate formations, plots of core data show that the logarithm of permeability (k) is often linearly proportional to porosity (??). The slope, intercept, and degree of scatter of these log(k)-?? trends vary from formation to formation, and these variations are attributed to differences in initial grain size and sorting, diagenetic history, and compaction history. In unconsolidated sands, better sorting systematically increases both permeability and porosity. In sands and sandstones, an increase in gravel and coarse grain size content causes k to increase even while decreasing ??. Diagenetic minerals in the pore space of sandstones, such as cement and some clay types, tend to decrease log(k) proportionately as ?? decreases. Models to predict permeability from porosity and other measurable rock parameters fall into three classes based on either grain, surface area, or pore dimension considerations. (Models that directly incorporate well log measurements but have no particular theoretical underpinnings from a fourth class.) Grain-based models show permeability proportional to the square of grain size times porosity raised to (roughly) the fifth power, with grain sorting as an additional parameter. Surface-area models show permeability proportional to the inverse square of pore surface area times porosity raised to (roughly) the fourth power; measures of surface area include irreducible water saturation and nuclear magnetic resonance. Pore-dimension models show permeability proportional to the square of a pore dimension times porosity raised to a power of (roughly) two and produce curves of constant pore size that transgress the linear data trends on a log(k)-?? plot. The pore dimension is obtained from mercury injection measurements and is interpreted as the pore opening size of some interconnected fraction of the pore system. The linear log(k)-?? data trends cut the curves of constant pore size from the pore-dimension models, which shows that porosity reduction is always accompanied by a reduction in characteristic pore size. The high powers of porosity of the grain-based and surface-area models are required to compensate for the inclusion of the small end of the pore size spectrum.
Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results
NASA Astrophysics Data System (ADS)
Birdsell, Daniel T.; Rajaram, Harihar; Dempsey, David; Viswanathan, Hari S.
2015-09-01
Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated. Topographically driven flow, overpressured shale reservoirs, permeable pathways such as faults or leaky wellbores, the increased formation pressure due to HF fluid injection, and the density contrast of the HF fluid to the surrounding brine can encourage upward HF fluid migration. In contrast, the very low shale permeability and capillary imbibition of water into partially saturated shale may sequester much of the HF fluid, and well production will remove HF fluid from the subsurface. We review the literature on important aspects of HF fluid migration. Single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore with flowback and produced water, how much reaches overlying aquifers, and how much is permanently sequestered by capillary imbibition, which is treated as a sink term based on a semianalytical, one-dimensional solution for two-phase flow. These simulations include all of the important aspects of HF fluid migration identified in the literature review and are performed in five stages to faithfully represent the typical operation of a hydraulically fractured well. No fracturing fluid reaches the aquifer without a permeable pathway. In the presence of a permeable pathway, 10 times more fracturing fluid reaches the aquifer if well production and capillary imbibition are not included in the model.
Effect of perfusate hematocrit on urea permeability-surface area in isolated dog lung
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, R.E.; Roselli, R.J.; Haselton, F.R.
1986-10-01
Seven dog lower left lung lobes were statically inflated and perfused at a constant rate for each lobe with a perfusate in which the hematocrit was altered over a wide range. The permeability-surface area of urea was calculated from multiple indicator dilution curves using two separate injectates for each hematocrit level. One injectate contained only /sup 125/I-albumin as the vascular reference tracer and the other contained both /sup 51/Cr-erythrocytes and /sup 125/I-albumin as the vascular reference tracers; both contained (/sup 14/C)urea as the permeating tracer. The results strongly indicate that the phenomenon of erythrocyte trapping of urea does not affectmore » the calculation of urea permeability-surface area product provided the appropriate albumin-erythrocyte composite reference tracer is utilized in its calculation.« less
Chiba, Y; Ishii, Y; Kitamura, S; Sugiyama, Y
2001-09-01
Acute lung injury is attributed primarily to increased vascular permeability caused by reactive oxygen species derived from neutrophils, such as hydrogen peroxide (H2O2). Increased permeability is accompanied by the contraction and cytoskeleton reorganization of endothelial cells, resulting in intercellular gap formation. The Rho family of Ras-like GTPases is implicated in the regulation of the cytoskeleton and cell contraction. We examined the role of Rho in H2O2-induced pulmonary edema with the use of isolated perfused rabbit lungs. To our knowledge, this is the first study to examine the role of Rho in increased vascular permeability induced by H2O2 in perfused lungs. Vascular permeability was evaluated on the basis of the capillary filtration coefficient (Kfc, ml/min/cm H2O/100 g). We found that H2O2 (300 microM) increased lung weight, Kfc, and pulmonary capillary pressure. These effects of H2O2 were abolished by treatment with Y-27632 (50 microM), an inhibitor of the Rho effector p160 ROCK. In contrast, the muscular relaxant papaverine inhibited the H2O2-induced rise in pulmonary capillary pressure, but did not suppress the increases in lung weight and Kfc. These findings indicate that H2O2 causes pulmonary edema by elevating hydrostatic pressure and increasing vascular permeability. Y-27632 inhibited the formation of pulmonary edema by blocking both of these H2O2-induced effects. Our results suggest that Rho-related pathways have a part in the mechanism of H2O2-induced pulmonary edema. Copyright 2001 Academic Press.
Improvements to water vapor transmission and capillary absorption measurements in porous materials
Samuel L. Zelinka; Samuel V. Glass; Charles R. Boardman
2016-01-01
The vapor permeability (or equivalently the vapor diffusion resistance factor) and the capillary absorption coefficient are frequently used as inputs to hygrothermal or heat, air, and moisture (HAM) models. However, it has been well documented that the methods used to determine these properties are sensitive to the operator, and wide variations in the properties have...
Atrial natriuretic factor increases vascular permeability
NASA Technical Reports Server (NTRS)
Lockette, Warren; Brennaman, Bruce
1990-01-01
An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). In this study, it was determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of (I-125)-albumin and (C-14)-dextran of similar molecular size. Blood pressure was monitored, and serial determinations of hematocrits were made. Animals infused with 1.0 microg/kg per min ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of (I-125)-albumin, but not (C-14)-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness.
Effect of hypothermic pulmonary artery flushing on capillary filtration coefficient.
Andrade, R S; Wangensteen, O D; Jo, J K; Tsai, M Y; Bolman, R M
2000-07-27
We previously demonstrated that surfactant dilution and inhibition occur immediately after pulmonary artery flushing with hypothermic modified Euro-Collins solution. Consequently, we speculated that increased capillary permeability contributed to these surfactant changes. To test this hypothesis, we evaluated the effects of hypothermic pulmonary artery flushing on the pulmonary capillary filtration coefficient (Kfc), and additionally performed a biochemical analysis of surfactant. We used a murine isolated, perfused lung model to measure the pulmonary capillary filtration coefficient and hemodynamic parameters, to determine the wet to dry weight ratio, and to evaluate surfactant by biochemical analysis of lung lavage fluid. We defined three study groups. In group I (controls), we harvested lungs without hypothermic pulmonary artery flushing, and measured Kfc immediately. In group II (in situ flush), we harvested lungs after hypothermic pulmonary artery flushing with modified Euro-Collins solution, and then measured Kfc. Experiments in groups I and II were designed to evaluate persistent changes in Kfc after pulmonary artery flushing. In group III (ex vivo flush), we flushed lungs ex vivo to evaluate transient changes in Kfc during hypothermic pulmonary artery flushing. Groups I and II did not differ significantly in capillary filtration coefficient and hemodynamics. Group II showed significant alterations on biochemical surfactant analysis and a significant increase in wet-to-dry weight ratio, when compared with group I. In group III, we observed a significant transient increase in capillary filtration coefficient during pulmonary artery flushing. Hypothermic pulmonary artery flushing transiently increases the capillary filtration coefficient, leads to an increase in the wet to dry weight ratio, and induces biochemical surfactant changes. These findings could be explained by the effects of hypothermic modified Euro-Collins solution on pulmonary capillary permeability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyrak-Nolte, Laura J.; Cheng, JiangTao; Yu, Ping
2003-01-29
During this reporting period, shown experimentally that the optical coherence imaging system can acquire information on grain interfaces and void shape for a maximum depth of half a millimeter into sandstone. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures has shown the existence of a unique relationship among these hydraulic parameters for different pore geometry. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, has shown the homogeneity of IAV with depth in a sample when the fluids are in equilibrium.
Behavior of water in supercritical CO2: adsorption and capillary condensation in porous media
NASA Astrophysics Data System (ADS)
Heath, J. E.; Bryan, C. R.; Dewers, T. A.; Wang, Y.
2011-12-01
The chemical potential of water in supercritical CO2 (scCO2) may play an important role in water adsorption, capillary condensation, and evaporation under partially saturated conditions at geologic CO2 storage sites, especially if initially anhydrous CO2 is injected. Such processes may affect residual water saturations, relative permeability, shrink/swell of clays, and colloidal transport. We have developed a thermodynamic model of water or brine film thickness as a function of water relative humidity in scCO2. The model is based on investigations of liquid water configuration in the vadose zone and uses the augmented Young-Laplace equation, which incorporates both adsorptive and capillary components. The adsorptive component is based on the concept of disjoining pressure, which reflects force per area normal to the solid and water/brine-scCO2 interfaces. The disjoining pressure includes van der Waals, electrostatic, and structural interactions. The van der Waals term includes the effects of mutual dissolution of CO2 and water in the two fluid phases on partial molar volumes, dielectric coefficients, and refractive indices. Our approach treats the two interfaces as asymmetric surfaces in terms of charge densities and electrostatic potentials. We use the disjoining pressure isotherm to evaluate the type of wetting (e.g., total or partial wetting) for common reservoir and caprock minerals and kerogen. The capillary component incorporates water activity and is applied to simple pore geometries with slits and corners. Finally, we compare results of the model to a companion study by the coauthors on measurement of water adsorption to mineral phases using a quartz-crystal microbalance. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Direct Numerical Simulation of Low Capillary Number Pore Scale Flows
NASA Astrophysics Data System (ADS)
Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.
2017-12-01
The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM
Axisymmetric Liquid Hanging Drops
ERIC Educational Resources Information Center
Meister, Erich C.; Latychevskaia, Tatiana Yu
2006-01-01
The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…
On the Examination of Darcy Permeability a Thin Fibrous Porous Layer
NASA Astrophysics Data System (ADS)
Zhu, Zenghao; Wang, Qiuyun; Wu, Qianhong; Vucbmss Team
2016-11-01
In this paper, we report a novel experimental approach to investigate the Darcy permeability of a soft and thin fibrous porous layer. The project is inspired by recent studies involved compression of very thin porous films and the resultant pore fluid flow inside the confined porous structure. The Darcy permeability plays a critical role during the process, which however, is tricky to measure due to the very thin nature of the porous media. In the current study, a special micro-fluidic device is developed that consists of a rectangular flow channel with adjustable gap height ranging from 20 mm to 0.5 mm. Air is forced through the thin gap filled with testing fibrous materials. By measuring the flow rate and the pressure drop, we have successfully obtained the Darcy permeability of different thin porous sheets at different compression ratios. Furthermore, the surface area of the fibers are evaluated using a Micromeritics® ASAP 2020 (Accelerated Surface Area and Porosimetry) system. We found that, although the functions relating the permeability and porosities are different for different fibrous materials, these functions collapse to a single relationship if one express the permeability as a function of the solid phase surface area per unit volume. This finding provides a useful approach to evaluate the permeability of very thin fibrous porous sheet, which otherwise is difficult to measure directly. This research was supported by the National Science Foundation under Award #1511096.
Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.
Hansson, Jonas; Yasuga, Hiroki; Haraldsson, Tommy; van der Wijngaart, Wouter
2016-01-21
We introduce Synthetic Microfluidic Paper, a novel porous material for microfluidic applications that consists of an OSTE polymer that is photostructured in a well-controlled geometry of slanted and interlocked micropillars. We demonstrate the distinct benefits of Synthetic Microfluidic Paper over other porous microfluidic materials, such as nitrocellulose, traditional paper and straight micropillar arrays: in contrast to straight micropillar arrays, the geometry of Synthetic Microfluidic Paper was miniaturized without suffering capillary collapse during manufacturing and fluidic operation, resulting in a six-fold increased internal surface area and a three-fold increased porous fraction. Compared to commercial nitrocellulose materials for capillary assays, Synthetic Microfluidic Paper shows a wider range of capillary pumping speed and four times lower device-to-device variation. Compared to the surfaces of the other porous microfluidic materials that are modified by adsorption, Synthetic Microfluidic Paper contains free thiol groups and has been shown to be suitable for covalent surface chemistry, demonstrated here for increasing the material hydrophilicity. These results illustrate the potential of Synthetic Microfluidic Paper as a porous microfluidic material with improved performance characteristics, especially for bioassay applications such as diagnostic tests.
Permeability study of cancellous bone and its idealised structures.
Syahrom, Ardiyansyah; Abdul Kadir, Mohammed Rafiq; Harun, Muhamad Nor; Öchsner, Andreas
2015-01-01
Artificial bone is a suitable alternative to autografts and allografts, however their use is still limited. Though there were numerous reports on their structural properties, permeability studies of artificial bones were comparably scarce. This study focused on the development of idealised, structured models of artificial cancellous bone and compared their permeability values with bone surface area and porosity. Cancellous bones from fresh bovine femur were extracted and cleaned following an established protocol. The samples were scanned using micro-computed tomography (μCT) and three-dimensional models of the cancellous bones were reconstructed for morphology study. Seven idealised and structured cancellous bone models were then developed and fabricated via rapid prototyping technique. A test-rig was developed and permeability tests were performed on the artificial and real cancellous bones. The results showed a linear correlation between the permeability and the porosity as well as the bone surface area. The plate-like idealised structure showed a similar value of permeability to the real cancellous bones. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Design and evaluation of radiotracers for determination of regional cerebral blood flow with PET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambrecht, R.M.; Duncan, C.C.; Shiue, C.Y.
The tracer kinetics of 4-Fluoro(/sup 18/F)-, 4-Bromo(/sup 82/Br)- and 4-Iodo(/sup 125/I)-antipyrine and /sup 15/O-water were compared in a cat or baboon animal model. First-pass cerebral extraction and clearance with alterations in PaCO/sub 2/ were measured for whole brain. The Renkin/Crone model was used to evaluate brain capillary permeability-surface area product for 4-/sup 18/FAP in cats. Positron-emission-tomographic measurements required development of an instrument and technique for control of the arterial concentration of the radiotracer as a ramp function, so that tracer concentration changes due to radioactive decay or altered physiological processes could be accurately described with PET. Pharmacokinetic and tissue-distribution studiesmore » in cats were used to determine dosimetry for 4-/sup 18/FAP. 4-Bromoantipyrine labeled with /sup 78/Br (t = 6.5 m) is suggested as a tracer for determination of rCBF with PET.« less
Goldstein, G W; Betz, A L; Bowman, P D; Dorovini-Zis, K
1986-01-01
The endothelial cells in brain capillaries are the anatomic site of the blood-brain barrier. To learn more about the biology of these specialized cells, we developed methods to prepare suspensions of purified brain microvessels as well as primary cultures of endothelial cells in monolayer. These two preparations allow for direct investigation of the metabolism, transport properties, and receptor content of the brain capillary. We used isolated brain microvessels to study distribution of membrane carriers between the luminal and the abluminal plasma membrane of endothelial cells. We found that Na+K+-ATPase and the A-system amino-acid transport system are located predominantly on the abluminal surface of brain capillary endothelial cells. This distribution of transport carriers is consistent with the low permeability of potassium and small neutral amino acids in the blood-to-brain direction. It suggests, however, that both solutes can be actively transported across brain capillaries from the brain interstitial fluid to the blood. In tissue culture, the endothelial cells form continuous tight junctions with their neighbors. This results in a cellular layer impermeable to protein tracers. When exposed to hyperosmolar solutions, in an attempt to mimic the conditions that open the blood-brain barrier in vivo, we found a reversible separation of the tight junctions between contiguous endothelial cells. No indication of activation of pinocytosis was observed. In vitro systems provide a novel approach for studying the function of the blood-brain barrier and allow for observations not possible with intact animals.
NASA Technical Reports Server (NTRS)
Patzek, T. W.; Scriven, L. E.
1982-01-01
The Young-Laplace equation is solved for three-dimensional menisci between crossed cylinders, with either the contact line fixed or the contact angle prescribed, by means of the Galerkin/finite element method. Shapes are computed, and with them the practically important quantities: drop volume, wetted area, capillary pressure force, surface tension force, and the total force exerted by the drop on each cylinder. The results show that total capillary force between cylinders increases with decreasing contact angle, i.e. with better wetting. Capillary force is also increases with decreasing drop volume, approaching an asymptotic limit. However, the wetted area on each cylinder decreases with decreasing drop volume, which raises the question of the optimum drop volume to strive for, when permanent bonding is sought from solidified liquid. For then the strength of the bond is likely to depend upon the area of contact, which is the wetted area when the bonding agent was introduced in liquid form.
Chang, Sheng; Bi, Yunlong; Meng, Xiangwei; Qu, Lin; Cao, Yang
2018-03-21
The blood-spinal cord barrier (BSCB) plays a key role in maintaining the microenvironment and is primarily composed of tight junction proteins and nonfenestrated capillary endothelial cells. After injury, BSCB damage results in increasing capillary permeability and release of inflammatory factors. Recent studies have reported that haem oxygenase-1 (HO-1) fragments lacking 23 amino acids at the C-terminus (HO-1C[INCREMENT]23) exert novel anti-inflammatory and antioxidative effects in vitro. However, no study has identified the role of HO-1C[INCREMENT]23 in vivo. We aimed to investigate the protective effects of HO-1C[INCREMENT]23 on the BSCB after spinal cord injury (SCI) in a rat model. Here, adenoviral HO-1C[INCREMENT]23 (Ad-GFP-HO-1C[INCREMENT]23) was intrathecally injected into the 10th thoracic spinal cord segment (T10) 7 days before SCI. In addition, nuclear and cytoplasmic extraction and immunofluorescence staining of HO-1 were used to examine the effect of Ad-GFP-HO-1C[INCREMENT]23 on HO-1 nuclear translocation. Evan's blue staining served as an index of capillary permeability and was detected by fluorescence microscopy at 633 nm. Western blotting was also performed to detect tight junction protein expression. The Basso, Beattie and Bresnahan score was used to evaluate kinematic functional recovery through the 28th day after SCI. In this study, the Ad-GFP-HO-1C[INCREMENT]23 group showed better kinematic functional recovery after SCI than the Ad-GFP and Vehicle groups, as well as smaller reductions in TJ proteins and capillary permeability compared with those in the Ad-GFP and Vehicle groups. These findings indicated that Ad-GFP-HO-1C[INCREMENT]23 might have a potential therapeutic effect that is mediated by its protection of BSCB integrity.
NASA Astrophysics Data System (ADS)
Quady, Maura Colleen
2013-01-01
To characterize the hydro-stratigraphy of an area, drilling and well logs provide high resolution electrical resistivity data, albeit for limited areas (points). The expense of drilling indirectly leads to sparse data and it is necessary to assume lateral homogeneity between wells when creating stratigraphic maps. Unfortunately, this assumption may not apply to areas in complex depositional and tectonically active settings. The goal of this study is to fill in data gaps between wells in a groundwater basin in order to better characterize the hydro-stratigraphy under existing and potential sites for managed aquifer recharge. Basins in the southern California study area have been used for decades to recharge surface water to an upper aquifer system; this work also addresses whether the local hydro-stratigraphy favors surface infiltration as a means to recharge water to the lower aquifer system. Here, soundings of transient electromagnetism (TEM), a surface geophysical method, are correlated with nearby down-hole resistivity and lithology well logs for grain size interpretations of the subsurface in unsaturated conditions. Grain size is used as a proxy for permeability (hydraulic conductivity), with resistivity contrasts highlighting variations in the media, which would affect groundwater flow in both vertical and horizontal directions. Results suggest a nearly horizontal, extensive, low permeability layer exists in the area and only a few noted locations are favorable for surface -to-lower aquifer system recharge. Furthermore, zones of higher permeability deeper than the upper aquifer system are discontinuous and isolated among lower permeability zones. However, the TEM profiles show areas where lower permeability zones are thin, and where alternatives to surface percolation methods could be explored. In addition, the survey adds information about the transition between the upper and lower aquifer systems, and adds detail to the topography of the base of freshwater. Finally, this work effectively decreases the interpolation distance between data points of wellbores, and when viewed in sequence the TEM profiles present a 3D depiction of basin hydro-stratigraphy.
Examination of Blood-Brain Barrier (BBB) Integrity In A Mouse Brain Tumor Model
On, Ngoc; Mitchell, Ryan; Savant, Sanjot D.; Bachmeier, Corbin. J.; Hatch, Grant M.; Miller, Donald W.
2013-01-01
The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma (3LL) cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood-brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging (MRI) with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a 2-fold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor. PMID:23184143
The blood-cerebrospinal fluid barrier: structure and functional significance.
Johanson, Conrad E; Stopa, Edward G; McMillan, Paul N
2011-01-01
The choroid plexus (CP) of the blood-CSF barrier (BCSFB) displays fundamentally different properties than blood-brain barrier (BBB). With brisk blood flow (10 × brain) and highly permeable capillaries, the human CP provides the CNS with a high turnover rate of fluid (∼400,000 μL/day) containing micronutrients, peptides, and hormones for neuronal networks. Renal-like basement membranes in microvessel walls and underneath the epithelium filter large proteins such as ferritin and immunoglobulins. Type IV collagen (α3, α4, and α5) in the subepithelial basement membrane confers kidney-like permselectivity. As in the glomerulus, so also in CP, the basolateral membrane utrophin A and colocalized dystrophin impart structural stability, transmembrane signaling, and ion/water homeostasis. Extensive infoldings of the plasma-facing basal labyrinth together with lush microvilli at the CSF-facing membrane afford surface area, as great as that at BBB, for epithelial solute and water exchange. CSF formation occurs by basolateral carrier-mediated uptake of Na+, Cl-, and HCO3-, followed by apical release via ion channel conductance and osmotic flow of water through AQP1 channels. Transcellular epithelial active transport and secretion are energized and channeled via a highly dense organelle network of mitochondria, endoplasmic reticulum, and Golgi; bleb formation occurs at the CSF surface. Claudin-2 in tight junctions helps to modulate the lower electrical resistance and greater permeability in CP than at BBB. Still, ratio analyses of influx coefficients (Kin) for radiolabeled solutes indicate that paracellular diffusion of small nonelectrolytes (e.g., urea and mannitol) through tight junctions is restricted; molecular sieving is proportional to solute size. Protein/peptide movement across BCSFB is greatly limited, occurring by paracellular leaks through incomplete tight junctions and low-capacity transcellular pinocytosis/exocytosis. Steady-state concentration ratios, CSF/plasma, ranging from 0.003 for IgG to 0.80 for urea, provide insight on plasma solute penetrability, barrier permeability, and CSF sink action to clear substances from CNS.
Qiu, Fen; Tian, Hui; Zhang, Zhi; Yuan, Xian-Ling; Tan, Yuan-Feng; Ning, Xiao-Qing
2013-10-01
To study the effects of hemostasis, analgesic and anti inflammation of the alcohol extract of Hibiscus tiliaceus and offer pharmacological and experimental basis for its safe and effective use in clinic. The effects of hemostasist were observed with tail breaking method, capillary tube method and slide method; Hot board and body distortion induced by acetic acid methods were applied in mice analgesia experiment, the mice model of acute auricle swelling induced by dmi ethylbenzene and capillary permeability induced by acetic acid were applied to observe the anti inflammatory effects. The alcohol extract of Hibiscus tiliaceus could significantly reduce the bleeding time and the clotting time, delay the plant reaction time and reduce the writhing times of the mice, and it also had effect on inhibiting swelling of mice ear and the permeability of the capillary. These results suggest that the alcohol extract of Hibiscus tiliaceus has the effects of hemostasis, analgesic and anti inflammation.
Heat pipe with embedded wick structure
Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald
1998-01-01
A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.
Heat pipe with embedded wick structure
Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.
1998-06-23
A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.
Heat pipe with embedded wick structure
Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald
1999-01-01
A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.
Chapouly, Candice; Yao, Qinyu; Vandierdonck, Soizic; Larrieu-Lahargue, Frederic; Mariani, John N; Gadeau, Alain-Pierre; Renault, Marie-Ange
2016-02-01
Microangiopathy, i.e. endothelial dysfunction, has long been suggested to contribute to the development of diabetic neuropathy, although this has never been fully verified. In the present paper, we have identified the role of Hedgehog (Hh) signalling in endoneurial microvessel integrity and evaluated the impact of impaired Hh signalling in endothelial cells (ECs) on nerve function. By using Desert Hedgehog (Dhh)-deficient mice, we have revealed, that in the absence of Dhh, endoneurial capillaries are abnormally dense and permeable. Furthermore, Smoothened (Smo) conditional KO mice clarified that this increased vessel permeability is specifically due to impaired Hh signalling in ECs and is associated with a down-regulation of Claudin5 (Cldn5). Moreover, impairment of Hh signalling in ECs was sufficient to induce hypoalgesia and neuropathic pain. Finally in Lepr(db/db) type 2 diabetic mice, the loss of Dhh expression observed in the nerve was shown to be associated with increased endoneurial capillary permeability and decreased Cldn5 expression. Conversely, systemic administration of the Smo agonist SAG increased Cldn5 expression, decreased endoneurial capillary permeability, and restored thermal algesia to diabetic mice, demonstrating that loss of Dhh expression is crucial in the development of diabetic neuropathy. The present work demonstrates the critical role of Dhh in maintaining blood nerve barrier integrity and demonstrates for the first time that endothelial dysfunction is sufficient to induce neuropathy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Spatio-Temporal Self-Organization in Mudstones (Invited)
NASA Astrophysics Data System (ADS)
Dewers, T. A.
2010-12-01
Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000
Roux, R; Abi Jaoudé, M; Demesmay, C
2009-05-01
Several modifications of a previously described protocol are proposed to improve the performances of in-situ synthesized C(8) hybrid silica monoliths. Our attention was focused on reducing the sources of radial heterogeneity that may be responsible for the poor efficiencies observed in the hydrodynamic elution mode. It was demonstrated that a decrease in the temperature of the capillary during the filling step equally to that of the polymerization mixture (0 degrees C), associated with a decrease of the gelation temperature to 20 degrees C along with a new pre-treatment of the capillary's internal walls [with a mixture of tetraethoxysilane (TEOS)/EtOH (1/3, v/v)] allows (i) increasing the radial homogeneity of the monolith, thus further enhancing the performances in the nano-liquid chromatography (nano-LC) mode, (ii) improving the capillary to capillary reproducibility in terms of permeability and efficiencies. In fact, the average minimum plate height H(min) was lowered from 24 to 14 microm and the capillary-to-capillary reproducibility of the synthesis was widely improved by factors two and three of reduction on the calculated standard deviation, respectively for both the efficiency in the nano-LC mode and the permeability. At last, the improved radial homogeneity and anchoring of the synthesized monoliths allowed increasing the inner diameter of the capillary (up to 150 microm) without any significant loss in efficiency. Finally, long term stability of the as-obtained monolithic stationary phases in terms of retention and efficiency was studied. In addition, the evaluation of their chromatographic behaviour was also achieved with the Tanaka test and the results were compared to those already published for commercial monoliths (Chromolith) as well as for particulate stationary phases.
NASA Astrophysics Data System (ADS)
Mann, Griffin
The area that comprises the Northwest Shelf in Lea Co., New Mexico has been heavily drilled over the past half century. The main target being shallow reservoirs within the Permian section (San Andres and Grayburg Formations). With a focus shifting towards deeper horizons, there is a need for more petrophysical data pertaining to these formations, which is the focus of this study through a variety of techniques. This study involves the use of contact angle measurements, fluid imbibition tests, Mercury Injection Capillary Pressure (MICP) and log analysis to evaluate the nano-petrophysical properties of the Yeso, Abo and Cisco Formation within the Northwest Shelf area of southeast New Mexico. From contact angle measurements, all of the samples studied were found to be oil-wetting as n-decane spreads on to the rock surface much quicker than the other fluids (deionized water and API brine) tested. Imbibition tests resulted in a well-connected pore network being observed for all of the samples with the highest values of imbibition slopes being recorded for the Abo samples. MICP provided a variety of pore structure data which include porosity, pore-throat size distributions, permeability and tortuosity. The Abo samples saw the highest porosity percentages, which were above 15%, with all the other samples ranging from 4 - 7%. The majority of the pore-throat sizes for most of the samples fell within the 1 - 10 mum range. The only exceptions to this being the Paddock Member within the Yeso Formation, which saw a higher percentage of larger pores (10 - 1000mum) and one of the Cisco Formation samples, which had the majority of its pore sizes fall in the 0.1 - 1 mum range. The log analysis created log calculations and curves for cross-plot porosity and water saturation that were then used to derive a value for permeability. The porosity and permeability values were comparable with those measured from our MICP and literature values.
Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang; Baumgartner, Werner
2011-01-01
Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive - and for Phrynosoma directed - transport of water.
In 2009, the U.S. Environmental Protection Agency constructed a 0.4-ha (1-ac) parking lot surfaced with three different permeable pavement types (interlocking concrete pavers, porous concrete, and porous asphalt) and six bioinfiltration areas with three different drainage area to...
National assessment of geologic carbon dioxide storage resources: results
,
2013-01-01
In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resources (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins were defined on the basis of geologic and hydrologic characteristics outlined in the assessment methodology of Brennan and others (2010, USGS Open-File Report 2010–1127) and the subsequent methodology modification and implementation documentation of Blondes, Brennan, and others (2013, USGS Open-File Report 2013–1055). The mean national TASR is approximately 3,000 metric gigatons (Gt). The estimate of the TASR includes buoyant trapping storage resources (BSR), where CO2 can be trapped in structural or stratigraphic closures, and residual trapping storage resources, where CO2 can be held in place by capillary pore pressures in areas outside of buoyant traps. The mean total national BSR is 44 Gt. The residual storage resource consists of three injectivity classes based on reservoir permeability: residual trapping class 1 storage resource (R1SR) represents storage in rocks with permeability greater than 1 darcy (D); residual trapping class 2 storage resource (R2SR) represents storage in rocks with moderate permeability, defined as permeability between 1 millidarcy (mD) and 1 D; and residual trapping class 3 storage resource (R3SR) represents storage in rocks with low permeability, defined as permeability less than 1 mD. The mean national storage resources for rocks in residual trapping classes 1, 2, and 3 are 140 Gt, 2,700 Gt, and 130 Gt, respectively. The known recovery replacement storage resource (KRRSR) is a conservative estimate that represents only the amount of CO2 at subsurface conditions that could replace the volume of known hydrocarbon production. The mean national KRRSR, determined from production volumes rather than the geologic model of buoyant and residual traps that make up TASR, is 13 Gt. The estimated storage resources are dominated by residual trapping class 2, which accounts for 89 percent of the total resources. The Coastal Plains Region of the United States contains the largest storage resource of any region. Within the Coastal Plains Region, the resources from the U.S. Gulf Coast area represent 59 percent of the national CO2 storage capacity.
Front gardens to car parks: changes in garden permeability and effects on flood regulation.
Warhurst, Jennifer R; Parks, Katherine E; McCulloch, Lindsay; Hudson, Malcolm D
2014-07-01
This study addresses the consequences of widespread conversion of permeable front gardens to hard standing car parking surfaces, and the potential consequences in high-risk urban flooding hotspots, in the city of Southampton. The last two decades has seen a trend for domestic front gardens in urban areas to be converted for parking, driven by the lack of space and increased car ownership. Despite media and political attention, the effects of this change are unknown, but increased and more intense rainfall, potentially linked to climate change, could generate negative consequences as runoff from impermeable surfaces increases. Information is limited on garden permeability change, despite the consequences for ecosystem services, especially flood regulation. We focused on eight flooding hotspots identified by the local council as part of a wider urban flooding policy response. Aerial photographs from 1991, 2004 and 2011 were used to estimate changes in surface cover and to analyse permeability change within a digital surface model in a GIS environment. The 1, 30 and 100 year required attenuation storage volumes were estimated, which are the temporary storage required to reduce the peak flow rate given surface permeability. Within our study areas, impermeable cover in domestic front gardens increased by 22.47% over the 20-year study period (1991-2011) and required attenuation storage volumes increased by 26.23% on average. These increases suggest that a consequence of the conversion of gardens to parking areas will be a potential increase in flooding frequency and severity - a situation which is likely to occur in urban locations worldwide. Copyright © 2014 Elsevier B.V. All rights reserved.
Liang, Yu; Zhang, Lihua; Zhang, Yukui
2013-03-01
Capillary liquid chromatography (cLC) has great potential for protein and peptide separation, with advantages of high efficiency, high resolution, low sample consumption, and high sensitivity when coupled with mass spectrometry. In recent years, monoliths have been widely used as the stationary phases for capillary columns, owing to easy preparation, high permeability, fast mass transfer, and low backpressure. This review summarizes recent advances (2007-2012) in monolithic columns for protein and peptide separation by cLC. After a brief introduction on the preparation of monolithic capillary columns, the emphasis of this review is focused on the recent application of such columns for protein and peptide separation by cLC. Furthermore, the challenges and potential hot points of monolithic capillary columns in the future are discussed.
NASA Astrophysics Data System (ADS)
Tsakiroglou, C. D.; Aggelopoulos, C. A.; Sygouni, V.
2009-04-01
A hierarchical, network-type, dynamic simulator of the immiscible displacement of water by oil in heterogeneous porous media is developed to simulate the rate-controlled displacement of two fluids at the soil column scale. A cubic network is constructed, where each node is assigned a permeability which is chosen randomly from a distribution function. The intensity of heterogeneities is quantified by the width of the permeability distribution function. The capillary pressure at each node is calculated by combining a generalized Leverett J-function with a Corey type model. Information about the heterogeneity of soils at the pore network scale is obtained by combining mercury intrusion porosimetry (MIP) data with back-scattered scanning electron microscope (BSEM) images [1]. In order to estimate the two-phase flow properties of nodes (relative permeability and capillary pressure functions, permeability distribution function) immiscible and miscible displacement experiments are performed on undisturbed soil columns. The transient responses of measured variables (pressure drop, fluid saturation averaged over five successive segments, solute concentration averaged over three cross-sections) are fitted with models accounting for the preferential flow paths at the micro- (multi-region model) and macro-scale (multi flowpath model) because of multi-scale heterogeneities [2,3]. Simulating the immiscible displacement of water by oil (drainage) in a large netork, at each time step, the fluid saturation and pressure of each node are calculated formulating mass balances at each node, accounting for capillary, viscous and gravity forces, and solving the system of coupled equations. At each iteration of the algorithm, the pressure drop is so selected that the total flow rate of the injected fluid is kept constant. The dynamic large-scale network simulator is used (1) to examine the sensitivity of the transient responses of the axial distribution of fluid saturation and total pressure drop across the network to the permeability distribution function, spatial correlations of permeability, and capillary number, and (2) to estimate the effective (up-scaled) relative permeability functions at the soil column scale. In an attempt to clarify potential effects of the permeability distribution and spatial permeability correlations on the transient responses of the pressure drop across a soil column, signal analysis with wavelets is performed [4] on experimental and simulated results. The transient variation of signal energy and frequency of pressure drop fluctuations at the wavelet domain are correlated with macroscopic properties such as the effective water and oil relative permeabilities of the porous medium, and microscopic properties such as the variation of the permeability distribution of oil-occupied nodes. Toward the solution of the inverse problem, a general procedure is suggested to identify macro-heterogeneities from the fast analysis of pressure drop signals. References 1. Tsakiroglou, C.D. and M.A. Ioannidis, "Dual porosity modeling of the pore structure and transport properties of a contaminated soil", Eur. J. Soil Sci., 59, 744-761 (2008). 2. Aggelopoulos, C.A., and C.D. Tsakiroglou, "Quantifying the Soil Heterogeneity from Solute Dispersion Experiments", Geoderma, 146, 412-424 (2008). 3. Aggelopoulos, C.A., and C.D. Tsakiroglou, "A multi-flow path approach to model immiscible displacement in undisturbed heterogeneous soil columns", J. Contam. Hydrol., in press (2009). 4. Sygouni, V., C.D. Tsakiroglou, and A.C. Payatakes, "Using wavelets to characterize the wettability of porous materials", Phys. Rev. E, 76, 056304 (2007).
Hydrophilic solute transport across the rat blood-brain barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucchesi, K.J.
1987-01-01
Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB)more » was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of {sup 3}H-inulin and {sup 14}C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients.« less
Song, Yuanlin; Ma, Tonghui; Matthay, Michael A.; Verkman, A.S.
2000-01-01
The mammalian peripheral lung contains at least three aquaporin (AQP) water channels: AQP1 in microvascular endothelia, AQP4 in airway epithelia, and AQP5 in alveolar epithelia. In this study, we determined the role of AQP4 in airspace-to-capillary water transport by comparing water permeability in wild-type mice and transgenic null mice lacking AQP1, AQP4, or AQP1/AQP4 together. An apparatus was constructed to measure lung weight continuously during pulmonary artery perfusion of isolated mouse lungs. Osmotically induced water flux (Jv) between the airspace and capillary compartments was measured from the kinetics of lung weight change in saline-filled lungs in response to changes in perfusate osmolality. Jv in wild-type mice varied linearly with osmotic gradient size (4.4 × 10−5 cm3 s−1 mOsm−1) and was symmetric, independent of perfusate osmolyte size, weakly temperature dependent, and decreased 11-fold by AQP1 deletion. Transcapillary osmotic water permeability was greatly reduced by AQP1 deletion, as measured by the same method except that the airspace saline was replaced by an inert perfluorocarbon. Hydrostatically induced lung edema was characterized by lung weight changes in response to changes in pulmonary arterial inflow or pulmonary venous outflow pressure. At 5 cm H2O outflow pressure, the filtration coefficient was 4.7 cm3 s−1 mOsm−1 and reduced 1.4-fold by AQP1 deletion. To study the role of AQP4 in lung water transport, AQP1/AQP4 double knockout mice were generated by crossbreeding of AQP1 and AQP4 null mice. Jv were (cm3 s−1 mOsm−1 × 10−5, SEM, n = 7–12 mice): 3.8 ± 0.4 (wild type), 0.35 ± 0.02 (AQP1 null), 3.7 ± 0.4 (AQP4 null), and 0.25 ± 0.01 (AQP1/AQP4 null). The significant reduction in P f in AQP1 vs. AQP1/AQP4 null mice was confirmed by an independent pleural surface fluorescence method showing a 1.6 ± 0.2-fold (SEM, five mice) reduced P f in the AQP1/AQP4 double knockout mice vs. AQP1 null mice. These results establish a simple gravimetric method to quantify osmosis and filtration in intact mouse lung and provide direct evidence for a contribution of the distal airways to airspace-to-capillary water transport. PMID:10613915
Surface Infiltration Rates of Permeable Surfaces: Six Month ...
At the end of October 2009, EPA opened a parking lot on the Edison Environmental Center that included three parking rows of permeable pavement. The construction was a cooperative effort among EPA’s Office of Administration and Resources Management, National Risk Management Research Laboratory, and the facility owner, Region 2. The lot serves as an active parking area for facility staff and visitors and also as a research platform. Key unknowns in the application of green infrastructure include the long term performance and the maintenance requirements. The perceived uncertainty in these is a barrier to widespread adoption of the installation of permeable surfaces for stormwater management. EPA recognizes the need for credible long-term performance maintenance data and has begun a long-term monitoring effort on this installation. This document outlines the methods and results of the surface infiltration monitoring of the permeable parking surfaces during the first six months of operation. To inform the public.
Water evaporation on highly viscoelastic polymer surfaces.
Pu, Gang; Severtson, Steven J
2012-07-03
Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.
Renal function alterations during skeletal muscle disuse in simulated microgravity
NASA Technical Reports Server (NTRS)
Tucker, Bryan J.
1992-01-01
This project was to examine the alterations in renal functions during skeletal muscle disuse in simulated microgravity. Although this area could cover a wide range of investigative efforts, the limited funding resulted in the selection of two projects. These projects would result in data contributing to an area of research deemed high priority by NASA and would address issues of the alterations in renal response to vasoactive stimuli during conditions of skeletal muscle disuse as well as investigate the contribution of skeletal muscle disuse, conditions normally found in long term human exposure to microgravity, to the balance of fluid and macromolecules within the vasculature versus the interstitium. These two projects selected are as follows: investigate the role of angiotensin 2 on renal function during periods of simulated microgravity and skeletal muscle disuse to determine if the renal response is altered to changes in circulating concentrations of angiotensin 2 compared to appropriate controls; and determine if the shift of fluid balance from vasculature to the interstitium, the two components of extracellular fluid volume, that occur during prolonged exposure to microgravity and skeletal muscle disuse is a result, in part, to alterations in the fluid and macromolecular balance in the peripheral capillary beds, of which the skeletal muscle contains the majority of recruitment capillaries. A recruitment capillary bed would be most sensitive to alterations in Starling forces and fluid and macromolecular permeability.
Zensi, Anja; Begley, David; Pontikis, Charles; Legros, Celine; Mihoreanu, Larisa; Büchel, Claudia; Kreuter, Jörg
2010-12-01
Nanoparticles made of human serum albumin (HSA) and modified with apolipoproteins have previously been shown to transport drugs, which normally do not enter the brain, across the blood-brain barrier (BBB). However the precise mechanism by which nanoparticles with different apolipoproteins on their surface can target to the brain, as yet, has not been totally elucidated. In the present study, HSA nanoparticles with covalently bound apolipoprotein A-I (Apo A-I) as a targetor for brain capillary endothelial cells were injected intravenously into SV 129 mice and Wistar rats. The rodents were sacrificed after 15 or 30 min, and their brains were examined by transmission electron microscopy. Apo A-I nanoparticles could be found inside the endothelial cells of brain capillaries as well as within parenchymal brain tissue of both, mice and rats, whereas control particles without Apo A-I on their surface did not cross the BBB during our experiments. The maintenance of tight junction integrity and barrier function during treatment with nanoparticles was demonstrated by perfusion with a fixative containing lanthanum nitrate as an electron dense marker for the permeability of tight junctions.
Implementation of Biofilm Permeability Models for Mineral Reactions in Saturated Porous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Vicky L.; Saripalli, Kanaka P.; Bacon, Diana H.
2005-02-22
An approach based on continuous biofilm models is proposed for modeling permeability changes due to mineral precipitation and dissolution in saturated porous media. In contrast to the biofilm approach, implementation of the film depositional models within a reactive transport code requires a time-dependent calculation of the mineral films in the pore space. Two different methods for this calculation are investigated. The first method assumes a direct relationship between changes in mineral radii (i.e., surface area) and changes in the pore space. In the second method, an effective change in pore radii is calculated based on the relationship between permeability andmore » grain size. Porous media permeability is determined by coupling the film permeability models (Mualem and Childs and Collis-George) to a volumetric model that incorporates both mineral density and reactive surface area. Results from single mineral dissolution and single mineral precipitation simulations provide reasonable estimates of permeability, though they under predict the magnitude of permeability changes relative to the Kozeny and Carmen model. However, a comparison of experimental and simulated data show that the Mualem film model is the only one that can replicate the oscillations in permeability that occur as a result of simultaneous dissolution and precipitation reactions occurring within the porous media.« less
NASA Astrophysics Data System (ADS)
Xu, R.; Prodanovic, M.
2017-12-01
Due to the low porosity and permeability of tight porous media, hydrocarbon productivity strongly depends on the pore structure. Effective characterization of pore/throat sizes and reconstruction of their connectivity in tight porous media remains challenging. Having a representative pore throat network, however, is valuable for calculation of other petrophysical properties such as permeability, which is time-consuming and costly to obtain by experimental measurements. Due to a wide range of length scales encountered, a combination of experimental methods is usually required to obtain a comprehensive picture of the pore-body and pore-throat size distributions. In this work, we combine mercury intrusion capillary pressure (MICP) and nuclear magnetic resonance (NMR) measurements by percolation theory to derive pore-body size distribution, following the work by Daigle et al. (2015). However, in their work, the actual pore-throat sizes and the distribution of coordination numbers are not well-defined. To compensate for that, we build a 3D unstructured two-scale pore throat network model initialized by the measured porosity and the calculated pore-body size distributions, with a tunable pore-throat size and coordination number distribution, which we further determine by matching the capillary pressure vs. saturation curve from MICP measurement, based on the fact that the mercury intrusion process is controlled by both the pore/throat size distributions and the connectivity of the pore system. We validate our model by characterizing several core samples from tight Middle East carbonate, and use the network model to predict the apparent permeability of the samples under single phase fluid flow condition. Results show that the permeability we get is in reasonable agreement with the Coreval experimental measurements. The pore throat network we get can be used to further calculate relative permeability curves and simulate multiphase flow behavior, which will provide valuable insights into the production optimization and enhanced oil recovery design.
Ultrastructural changes of the capillaries of the cat iris in experimental neuroparalytic keratitis.
Saari, M; Huhtala, A; Johansson, G
1975-01-01
In order to study the morphological basis of the increased permeability of the capillaries of the iris in neuroparalytic keratitis the ophthalmic division of the trigeminal nerve in the cat was denervated using a stereotactic method. The homolateral iris was studied by electron microscopy three days after denervation. Abnormally large pinocytotic vacuoles were observed in the endothelial cells of the iris capillaries and the intercellular junctions of the endothelial cells showed widened inter-cellular space and macula occludens. These ultrastructural changes may explain the protein leakage into the anterior chamber in neuroparalytic keratitis.
Optrode for sensing hydrocarbons
Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.
1987-01-01
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.
Optrode for sensing hydrocarbons
Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.
1987-05-19
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 6 figs.
Optrode for sensing hydrocarbons
Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.
1988-09-13
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.
Optrode for sensing hydrocarbons
Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.
1988-01-01
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.
Jeong, Yoo-Seong; Yim, Chang-Soon; Ryu, Heon-Min; Noh, Chi-Kyoung; Song, Yoo-Kyung; Chung, Suk-Jae
2017-06-01
The objective of the current study was to determine the minimum permeability coefficient, P, needed for perfusion-limited distribution in PBPK. Two expanded kinetic models, containing both permeability and perfusion terms for the rate of tissue distribution, were considered: The resulting equations could be simplified to perfusion-limited distribution depending on tissue permeability. Integration plot analyses were carried out with theophylline in 11 typical tissues to determine their apparent distributional clearances and the model-dependent permeabilities of the tissues. Effective surface areas were calculated for 11 tissues from the tissue permeabilities of theophylline and its PAMPA P. Tissue permeabilities of other drugs were then estimated from their PAMPA P and the effective surface area of the tissues. The differences between the observed and predicted concentrations, as expressed by the sum of squared log differences with the present models were at least comparable to or less than the values obtained using the traditional perfusion-limited distribution model for 24 compounds with diverse PAMPA P values. These observations suggest that the use of a combination of the proposed models, PAMPA P and the effective surface area can be used to reasonably predict the pharmacokinetics of 22 out of 24 model compounds, and is potentially applicable to calculating the kinetics for other drugs. Assuming that the fractional distribution parameter of 80% of the perfusion rate is a reasonable threshold for perfusion-limited distribution in PBPK, our theoretical prediction indicates that the pharmacokinetics of drugs having an apparent PAMPA P of 1×10 -6 cm/s or more will follow the traditional perfusion-limited distribution in PBPK for major tissues in the body. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tennenberg, S.D.; Jacobs, M.P.; Solomkin, J.S.
1987-04-01
Two methods for predicting adult respiratory distress syndrome (ARDS) were evaluated prospectively in a group of 81 multitrauma and sepsis patients considered at clinical high risk. A popular ARDS risk-scoring method, employing discriminant analysis equations (weighted risk criteria and oxygenation characteristics), yielded a predictive accuracy of 59% and a false-negative rate of 22%. Pulmonary alveolar-capillary permeability (PACP) was determined with a radioaerosol lung-scan technique in 23 of these 81 patients, representing a statistically similar subgroup. Lung scanning achieved a predictive accuracy of 71% (after excluding patients with unilateral pulmonary contusion) and gave no false-negatives. We propose a combination of clinicalmore » risk identification and functional determination of PACP to assess a patient's risk of developing ARDS.« less
Qiu, Lian-bo; Ding, Gui-rong; Zhang, Ya-mei; Zhou, Yan; Wang, Xiao-wu; Li, Kang-chu; Xu, Sheng-long; Tan, Juan; Zhou, Jia-xing; Guo, Guo-zhen
2009-09-01
To study the effect of electromagnetic pulse (EMP) on the permeability of blood-brain barrier, tight junction (TJ)-associated protein expression and localization in rats. 66 male SD rats, weighing (200 approximately 250) g, were sham or whole-body exposed to EMP at 200 kV/m for 200 pulses. The repetition rate was 1 Hz. The permeability of the blood-brain barrier in rats was assessed by albumin immunohistochemistry. The expression of typical tight junction protein ZO-1 and occludin in both cerebral cortex homogenate and cerebral cortex microvessel homogenate was analyzed by the Western blotting and the distribution of ZO-1 and occludin was examined by immunofluorescence microscopy. In the sham exposure rats, no brain capillaries showed albumin leakage, at 0.5 h after 200 kV/m EMP exposure for 200 pulses; a few brain capillaries with extravasated serum albumin was found, with the time extended, the number of brain capillaries with extravasated serum albumin increased, and reached the peak at 3 h, then began to recover at 6 h. In addition, no change in the distribution of the occludin was found after EMP exposure. Total occludin expression had no significant change compared with the control. However, the expression level of ZO-1 significantly decreased at 1 h and 3 h after EMP exposure in both cerebral cortex homogenate and cerebral cortex microvessel homogenate. Furthermore, immunofluorescence studies also showed alterations in ZO-1 protein localization in cerebral cortex microvessel. The EMP exposure (200 kV/m, 200 pulses) could increase blood-brain barrier permeability in rat, and this change is associated with specific alterations in tight junction protein ZO-1.
Perazzolo, S; Lewis, R M; Sengers, B G
2017-12-01
A healthy pregnancy depends on placental transfer from mother to fetus. Placental transfer takes place at the micro scale across the placental villi. Solutes from the maternal blood are taken up by placental villi and enter the fetal capillaries. This study investigated the effect of maternal blood flow on solute uptake at the micro scale. A 3D image based modelling approach of the placental microstructures was undertaken. Solute transport in the intervillous space was modelled explicitly and solute uptake with respect to different maternal blood flow rates was estimated. Fetal capillary flow was not modelled and treated as a perfect sink. For a freely diffusing small solute, the flow of maternal blood through the intervillous space was found to be limiting the transfer. Ignoring the effects of maternal flow resulted in a 2.4 ± 0.4 fold over-prediction of transfer by simple diffusion, in absence of binding. Villous morphology affected the efficiency of solute transfer due to concentration depleted zones. Interestingly, less dense microvilli had lower surface area available for uptake which was compensated by increased flow due to their higher permeability. At super-physiological pressures, maternal flow was not limiting, however the efficiency of uptake decreased. This study suggests that the interplay between maternal flow and villous structure affects the efficiency of placental transfer but predicted that flow rate will be the major determinant of transfer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Ming-Luan; Zhang, Jun; Zhang, Zheng; Yuan, Bi-Feng; Yu, Qiong-Wei; Feng, Yu-Qi
2013-04-05
In this work, a one-step approach to facile preparation of organic-inorganic hybrid monoliths was successfully developed. After vinyl-end organic monomers and azobisisobutyronitrile (AIBN) were mixed with hydrolyzed tetramethoxysilane (TMOS) and 3-mercaptopropyltrimethoxysilane (MPTMS), the homogeneous mixture was introduced into a fused-silica capillary for simultaneous polycondensation and "thiol-ene" click reaction to form the organic-silica hybrid monoliths. By employing this strategy, two types of organic-silica hybrid monoliths with positively charged quaternary ammonium and amide groups were prepared, respectively. The functional groups were successfully introduced onto the monoliths during the sol-gel process with "thiol-ene" click reaction, which was demonstrated by ζ-potential assessment, energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) spectroscopy. The porous structure of the prepared monolithic columns was examined by scanning electron microscopy (SEM), nitrogen adsorption-desorption measurement, and mercury intrusion porosimetry. These results indicate the prepared organic-silica hybrid monoliths possess homogeneous column bed, large specific surface area, good mechanical stability, and excellent permeability. The prepared monolithic columns were then applied for anion-exchange/hydrophilic interaction liquid chromatography. Different types of analytes, including benzoic acids, inorganic ions, nucleosides, and nucleotides, were well separated with high column efficiency around 80,000-130,000 plates/m. Taken together, we present a facile and universal strategy to prepare organic-silica hybrid monoliths with a variety of organic monomers using one-step approach. Copyright © 2013 Elsevier B.V. All rights reserved.
Capillary condenser/evaporator
NASA Technical Reports Server (NTRS)
Valenzuela, Javier A. (Inventor)
2010-01-01
A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.
Folser, George R.
1980-01-01
Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.
NASA Astrophysics Data System (ADS)
Golding, Madeleine J.; Huppert, Herbert E.; Neufeld, Jerome A.
2013-03-01
The effects of capillary forces on the propagation of two-phase, constant-flux gravity currents in a porous medium are studied analytically and numerically in an axisymmetric geometry. The fluid within a two-phase current generally only partially saturates the pore space it invades. For long, thin currents, the saturation distribution is set by the vertical balance between gravitational and capillary forces. The capillary pressure and relative permeability of the fluid in the current depend on this saturation. The action of capillary forces reduces the average saturation, thereby decreasing the relative permeability throughout the current. This results in a thicker current, which provides a steeper gradient to drive flow, and a more blunt-nose profile. The relative strength of gravity and capillary forces remains constant within a two-phase gravity current fed by a constant flux and spreading radially, due to mass conservation. For this reason, we use an axisymmetric representation of the framework developed by Golding et al. ["Two-phase gravity currents in porous media," J. Fluid Mech. 678, 248-270 (2011)], 10.1017/jfm.2011.110, to investigate the effect on propagation of varying the magnitude of capillary forces and the pore-size distribution. Scaling analysis indicates that axisymmetric two-phase gravity currents fed by a constant flux propagate like t1/2, similar to their single-phase counterparts [S. Lyle, H. E. Huppert, M. Hallworth, M. Bickle, and A. Chadwick, "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)], 10.1017/S0022112005006713, with the effects of capillary forces encapsulated in the constant of proportionality. As a practical application of our new concepts and quantitative evaluations, we discuss the implications of our results for the process of carbon dioxide (CO2) sequestration, during which gravity currents consisting of supercritical CO2 propagate in rock saturated with aqueous brine. We apply our two-phase model including capillary forces to quantitatively assess seismic images of CO2 spreading at Sleipner underneath the North Sea.
Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems.
Haselbach, Liv M; Valavala, Srinivas; Montes, Felipe
2006-10-01
Pervious concrete is an alternative paving surface that can be used to reduce the nonpoint source pollution effects of stormwater runoff from paved surfaces such as roadways and parking lots by allowing some of the rainfall to permeate into the ground below. This infiltration rate may be adversely affected by clogging of the system, particularly clogging or covering by sand in coastal areas. A theoretical relation was developed between the effective permeability of a sand-clogged pervious concrete block, the permeability of sand, and the porosity of the unclogged block. Permeabilities were then measured for Portland cement pervious concrete systems fully covered with extra fine sand in a flume using simulated rainfalls. The experimental results correlated well with the theoretical calculated permeability of the pervious concrete system for pervious concrete systems fully covered on the surface with sand. Two different slopes (2% and 10%) were used. Rainfall rates were simulated for the combination of direct rainfall (passive runoff) and for additional stormwater runoff from adjacent areas (active runoff). A typical pervious concrete block will allow water to pass through at flow rates greater than 0.2 cm/s and a typical extra fine sand will have a permeability of approximately 0.02 cm/s. The limit of the system with complete sand coverage resulted in an effective system permeability of approximately 0.004 cm/s which is similar to the rainfall intensity of a 30 min duration, 100-year frequency event in the southeastern United States. The results obtained are important in designing and evaluating pervious concrete as a paving surface within watershed management systems for controlling the quantity of runoff.
Two-compartment modeling of tissue microcirculation revisited.
Brix, Gunnar; Salehi Ravesh, Mona; Griebel, Jürgen
2017-05-01
Conventional two-compartment modeling of tissue microcirculation is used for tracer kinetic analysis of dynamic contrast-enhanced (DCE) computed tomography or magnetic resonance imaging studies although it is well-known that the underlying assumption of an instantaneous mixing of the administered contrast agent (CA) in capillaries is far from being realistic. It was thus the aim of the present study to provide theoretical and computational evidence in favor of a conceptually alternative modeling approach that makes it possible to characterize the bias inherent to compartment modeling and, moreover, to approximately correct for it. Starting from a two-region distributed-parameter model that accounts for spatial gradients in CA concentrations within blood-tissue exchange units, a modified lumped two-compartment exchange model was derived. It has the same analytical structure as the conventional two-compartment model, but indicates that the apparent blood flow identifiable from measured DCE data is substantially overestimated, whereas the three other model parameters (i.e., the permeability-surface area product as well as the volume fractions of the plasma and interstitial distribution space) are unbiased. Furthermore, a simple formula was derived to approximately compute a bias-corrected flow from the estimates of the apparent flow and permeability-surface area product obtained by model fitting. To evaluate the accuracy of the proposed modeling and bias correction method, representative noise-free DCE curves were analyzed. They were simulated for 36 microcirculation and four input scenarios by an axially distributed reference model. As analytically proven, the considered two-compartment exchange model is structurally identifiable from tissue residue data. The apparent flow values estimated for the 144 simulated tissue/input scenarios were considerably biased. After bias-correction, the deviations between estimated and actual parameter values were (11.2 ± 6.4) % (vs. (105 ± 21) % without correction) for the flow, (3.6 ± 6.1) % for the permeability-surface area product, (5.8 ± 4.9) % for the vascular volume and (2.5 ± 4.1) % for the interstitial volume; with individual deviations of more than 20% being the exception and just marginal. Increasing the duration of CA administration only had a statistically significant but opposite effect on the accuracy of the estimated flow (declined) and intravascular volume (improved). Physiologically well-defined tissue parameters are structurally identifiable and accurately estimable from DCE data by the conceptually modified two-compartment model in combination with the bias correction. The accuracy of the bias-corrected flow is nearly comparable to that of the three other (theoretically unbiased) model parameters. As compared to conventional two-compartment modeling, this feature constitutes a major advantage for tracer kinetic analysis of both preclinical and clinical DCE imaging studies. © 2017 American Association of Physicists in Medicine.
Transport of Chemotactic Bacteria in Porous Media with Structured Heterogeneity
NASA Astrophysics Data System (ADS)
Ford, R. M.; Wang, M.; Liu, J.; Long, T.
2008-12-01
Chemical contaminants that become trapped in low permeability zones (e.g. clay lenses) are difficult to remediate using conventional pump-and-treat approaches. Chemotactic bacteria that are transported by groundwater through more permeable regions may migrate toward these less permeable zones in response to chemical gradients created by contaminant diffusion from the low permeability source, thereby enhancing the remediation process by directing bacteria to the contaminants they degrade. What effect does the heterogeneity associated with coarse- and fine-grained layers that are characteristic of natural groundwater environments have on the transport of microorganisms and their chemotactic response? To address this question experiments were conducted over a range of scales from a single capillary tube to a laboratory- scale column in both static and flowing systems with and without chemoattractant gradients. In static capillary assays, motile bacteria accumulated at the interface between an aqueous solution and a suspension of agarose particulates. In microfluidic devices with an array of staggered cylinders, chemotactic bacteria migrated transverse to flow in response to a chemoattractant gradient. In sand columns packed with a coarse-grained core and surrounded by a fine-grained annulus, chemotactic bacteria migrated preferentially toward a chemoattractant source along the centerline. Mathematical models and computer simulations were developed to analyze the experimental observations in terms of transport parameters from the advection- disperson-sorption equation.
Atrial natriuretic factor increases vascular permeability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockette, W.; Brennaman, B.
An increase in central blood volume in microgravity may result in increased plasma levels of atrial natriuretic factor (ANF). Since elevations in plasma ANF are found in clinical syndromes associated with edema, and since space motion sickness induced by microgravity is associated with an increase in central blood volume and facial edema, we determined whether ANF increases capillary permeability to plasma protein. Conscious, bilaterally nephrectomized male rats were infused with either saline, ANF + saline, or hexamethonium + saline over 2 h following bolus injections of 125I-albumin and 14C-dextran of similar molecular size. Blood pressure was monitored and serial determinationsmore » of hematocrits were made. Animals infused with 1.0 micrograms.kg-1.min-1 ANF had significantly higher hematocrits than animals infused with saline vehicle. Infusion of ANF increased the extravasation of 125I-albumin, but not 14C-dextran from the intravascular compartment. ANF also induced a depressor response in rats, but the change in blood pressure did not account for changes in capillary permeability to albumin; similar depressor responses induced by hexamethonium were not accompanied by increased extravasation of albumin from the intravascular compartment. ANF may decrease plasma volume by increasing permeability to albumin, and this effect of ANF may account for some of the signs and symptoms of space motion sickness.« less
Barrett, Matthew JP; Suresh, Vinod
2013-01-01
Neural activation triggers a rapid, focal increase in blood flow and thus oxygen delivery. Local oxygen consumption also increases, although not to the same extent as oxygen delivery. This ‘uncoupling' enables a number of widely-used functional neuroimaging techniques; however, the physiologic mechanisms that govern oxygen transport under these conditions remain unclear. Here, we explore this dynamic process using a new mathematical model. Motivated by experimental observations and previous modeling, we hypothesized that functional recruitment of capillaries has an important role during neural activation. Using conventional mechanisms alone, the model predictions were inconsistent with in vivo measurements of oxygen partial pressure. However, dynamically increasing net capillary permeability, a simple description of functional recruitment, led to predictions consistent with the data. Increasing permeability in all vessel types had the same effect, but two alternative mechanisms were unable to produce predictions consistent with the data. These results are further evidence that conventional models of oxygen transport are not sufficient to predict dynamic experimental data. The data and modeling suggest that it is necessary to include a mechanism that dynamically increases net vascular permeability. While the model cannot distinguish between the different possibilities, we speculate that functional recruitment could have this effect in vivo. PMID:23673433
Possible role of substance P in the ischemia-reperfusion injury in the isolated rabbit lung.
Arreola, José L; Vargas, Mario H; Segura, Patricia; Chávez, Jaime; Sommer, Bettina; Carvajal, Verónica; Montaño, Luis M
2004-07-27
The origin of the endothelial damage leading to the ischemia-reperfusion injury after lung transplantation has not been elucidated. We postulated that neurotransmitters released during the preservation of the donor lung might explain this vascular derangement. Thus, in isolated rabbit lungs preserved over 24 hours, we evaluated the release of acetylcholine (ACh) and substance P (SP), the activity of their major degrading enzymes, acetylcholinesterase (AChE) and neutral endopeptidase (NEP), and changes in the capillary permeability. Both neurotransmitters showed the highest release rate in the first 15 minutes, followed by a sharp exponential decrement at 1, 6, 12 and 24 hours. AChE and NEP activities showed no variation at these time intervals. Basal capillary permeability significantly increased (P<0.01) after 24 hours preservation with saline. This increased permeability was avoided (P<0.01) by the SP fragment 4-11 (an SP receptors antagonist), but not by atropine. These results suggest for the first time a pathogenic role of SP in the ischemia-reperfusion injury, and thus the potential usefulness of SP antagonists as additives in the lung preservation solutions should be explored.
Heterogeneous porous media: Fronts and noise
NASA Astrophysics Data System (ADS)
Chaouchel, M.; Rakotomalala, N.; Salin, D.; Xu, B.; Yortsos, Y. C.
Capillary effects can be important in immiscible flows in heterogeneous media, particularly at low capillary numbers (Ca). We present experiments and simulations of slow drainage in 3-D porous media, either homogeneous and in the presence of buoyancy or heterogeneous and in its absence. An acoustic technique allows for an accurate study of the 3-D fronts and the cross-over region. Our results suggest that both cases can be described by invasion percolation in a gradient. Both front tails scale with the corresponding Bond numbers as σft≈B-47 in agreement with the theory. An analogous scaling for viscous effects is also given. The noise of these fronts are found correlated in the form of a fractional Brownian motion (fBm) of a Hurst exponent H≈.5. At higher Ca, experiments performed in 3-D porous media with sharp changes in permeability, exhibit a saturation profile response closely linked to the permeability variations. This viscous response to heterogeneity provides an opportunity to investigate and determine correlated (even at all scales, i.e. fBm), permeability fields.
MEMBRANE POTENTIAL OF THE SQUID GIANT AXON DURING CURRENT FLOW
Cole, Kenneth S.; Curtis, Howard J.
1941-01-01
The squid giant axon was placed in a shallow narrow trough and current was sent in at two electrodes in opposite sides of the trough and out at a third electrode several centimeters away. The potential difference across the membrane was measured between an inside fine capillary electrode with its tip in the axoplasm between the pair of polarizing electrodes, and an outside capillary electrode with its tip flush with the surface of one polarizing electrode. The initial transient was roughly exponential at the anode make and damped oscillatory at the sub-threshold cathode make with the action potential arising from the first maximum when threshold was reached. The constant change of membrane potential, after the initial transient, was measured as a function of the total polarizing current and from these data the membrane potential is obtained as a function of the membrane current density. The absolute value of the resting membrane resistance approached at low polarizing currents is about 23 ohm cm.2. This low value is considered to be a result of the puncture of the axon. The membrane was found to be an excellent rectifier with a ratio of about one hundred between the high resistance at the anode and the low resistance at the cathode for the current range investigated. On the assumption that the membrane conductance is a measure of its ion permeability, these experiments show an increase of ion permeability under a cathode and a decrease under an anode. PMID:19873234
Code of Federal Regulations, 2014 CFR
2014-07-01
..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., rate and frequency of rainfall and runoff, surface roughness, slope and vegetative cover, infiltration... the function of storing water, such as permeability, infiltration, porosity, depth and direction of...
Xiang, T X; Anderson, B D
1997-01-01
Solubility-diffusion theory, which treats the lipid bilayer membrane as a bulk lipid solvent into which permeants must partition and diffuse across, fails to account for the effects of lipid bilayer chain order on the permeability coefficient of any given permeant. This study addresses the scaling factor that must be applied to predictions from solubility-diffusion theory to correct for chain ordering. The effects of bilayer chemical composition, temperature, and phase structure on the permeability coefficient (Pm) of acetic acid were investigated in large unilamellar vesicles by a combined method of NMR line broadening and dynamic light scattering. Permeability values were obtained in distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, and dilauroylphosphatidylcholine bilayers, and their mixtures with cholesterol, at various temperatures both above and below the gel-->liquid-crystalline phase transition temperatures (Tm). A new scaling factor, the permeability decrement f, is introduced to account for the decrease in permeability coefficient from that predicted by solubility-diffusion theory owing to chain ordering in lipid bilayers. Values of f were obtained by division of the observed Pm by the permeability coefficient predicted from a bulk solubility-diffusion model. In liquid-crystalline phases, a strong correlation (r = 0.94) between f and the normalized surface density sigma was obtained: in f = 5.3 - 10.6 sigma. Activation energies (Ea) for the permeability of acetic acid decreased with decreasing phospholipid chain length and correlated with the sensitivity of chain ordering to temperature, [symbol: see text] sigma/[symbol: see text](1/T), as chain length was varied. Pm values decreased abruptly at temperatures below the main phase transition temperatures in pure dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine bilayers (30-60-fold) and below the pretransition in dipalmitoylphosphatidylcholine bilayers (8-fold), and the linear relationship between in f and sigma established for liquid-crystalline bilayers was no longer followed. However, in both gel and liquid-crystalline phases in f was found to exhibit an inverse correlation with free surface area (in f = -0.31 - 29.1/af, where af is the average free area (in square angstroms) per lipid molecule). Thus, the lipid bilayer permeability of acetic acid can be predicted from the relevant chain-packing properties in the bilayer (free surface area), regardless of whether chain ordering is varied by changes in temperature, lipid chain length, cholesterol concentration, or bilayer phase structure, provided that temperature effects on permeant dehydration and diffusion and the chain-length effects on bilayer barrier thickness are properly taken into account. PMID:8994607
Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang
2011-01-01
Summary Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive – and for Phrynosoma directed – transport of water. PMID:21977432
Urban evaporation rates for water-permeable pavements.
Starke, P; Göbel, P; Coldewey, W G
2010-01-01
In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.
[Capillary leak syndrome disclosing Ofuji's papuloerythroderma].
Carsuzaa, F; Pierre, C; Morand, J J; Farnarier, C; Marrot, F; Kaplanski, G
1996-01-01
Capillary leak syndrome is a specific entity among syndromes with capillary hyperpermeability. Endothelial cell activation is related to the higt level of adhesion molecules (sICAM-1, sVCAM-&, sCD62E) possibly due to several cytokines (IL-2, TNF ...). An 84-year-old woman was hospitalized for erythroderma. Ofujui papuloerythroderma was diagnosed and edema was attributed to capillary leak. A kinetic study of several cytokines and adhesion molecules sCD62E, sVCAM-1 and sICAM-1 was done. Outcome was favorable with corticopuvatherapy. The capillary leak syndrome reported here is simlar to that described in other erythrodermas with or without lymphoma. The keratinocyte would be activated by the CD4 T lymphocyte via the gamma-interferon mediator. The T cell secretes cytokines (interleukin-1, tumor necrosis factor ...) which activates the endothelium and increases vascular permeability. The level of adhesion molecules and changes observed during the episode of edema demonstrated the endothelial activation.
Hybrid Upwinding for Two-Phase Flow in Heterogeneous Porous Media with Buoyancy and Capillarity
NASA Astrophysics Data System (ADS)
Hamon, F. P.; Mallison, B.; Tchelepi, H.
2016-12-01
In subsurface flow simulation, efficient discretization schemes for the partial differential equations governing multiphase flow and transport are critical. For highly heterogeneous porous media, the temporal discretization of choice is often the unconditionally stable fully implicit (backward-Euler) method. In this scheme, the simultaneous update of all the degrees of freedom requires solving large algebraic nonlinear systems at each time step using Newton's method. This is computationally expensive, especially in the presence of strong capillary effects driven by abrupt changes in porosity and permeability between different rock types. Therefore, discretization schemes that reduce the simulation cost by improving the nonlinear convergence rate are highly desirable. To speed up nonlinear convergence, we present an efficient fully implicit finite-volume scheme for immiscible two-phase flow in the presence of strong capillary forces. In this scheme, the discrete viscous, buoyancy, and capillary spatial terms are evaluated separately based on physical considerations. We build on previous work on Implicit Hybrid Upwinding (IHU) by using the upstream saturations with respect to the total velocity to compute the relative permeabilities in the viscous term, and by determining the directionality of the buoyancy term based on the phase density differences. The capillary numerical flux is decomposed into a rock- and geometry-dependent transmissibility factor, a nonlinear capillary diffusion coefficient, and an approximation of the saturation gradient. Combining the viscous, buoyancy, and capillary terms, we obtain a numerical flux that is consistent, bounded, differentiable, and monotone for homogeneous one-dimensional flow. The proposed scheme also accounts for spatially discontinuous capillary pressure functions. Specifically, at the interface between two rock types, the numerical scheme accurately honors the entry pressure condition by solving a local nonlinear problem to compute the numerical flux. Heterogeneous numerical tests demonstrate that this extended IHU scheme is non-oscillatory and convergent upon refinement. They also illustrate the superior accuracy and nonlinear convergence rate of the IHU scheme compared with the standard phase-based upstream weighting approach.
NASA Astrophysics Data System (ADS)
Kim, Jungchul; Kim, Ho-Young
2013-11-01
It is well known that a sheet of paper, a hydrophilic porous medium, imbibes water via capillary action. The wicking on two-dimensional sheets has no preferred direction, in general. However, when water is spilled on a book, a number of pieces of paper fastened together on one side, we notice that corners are wet first compared to the rest of the area. This is because the wicking along the sharp corner experiences weaker resistance than that into pores within paper. We study a simple model of this wicking dynamics in the context of the surface-tension-driven vertical rise of a liquid along a corner of folded paper. We find that the liquid height at the corner follows a power law different from that at the corner formed by impermeable walls (A. Ponomarenko, D. Quere, and C. Clanet, J. Fluid Mech. 666, 146-154, 2011). The difference is caused by the fact that the Laplace pressure that drives the vertical rise is independent of the liquid height on permeable walls (paper) while it increases with height at the corner of impermeable walls. The experiments are shown to be consistent with our theory.
Predicting Insulin Absorption and Glucose Uptake during Exercise in Type 1 Diabetes
NASA Astrophysics Data System (ADS)
Frank, Spencer; Hinshaw, Ling; Basu, Rita; Szeri, Andrew; Basu, Ananda
2017-11-01
A dose of insulin infused into subcutaneous tissue has been shown to absorb more quickly during exercise, potentially causing hypoglycemia in persons with type 1 diabetes. We develop a model that relates exercise-induced physiological changes to enhanced insulin-absorption (k) and glucose uptake (GU). Drawing on concepts of the microcirculation we derive a relationship that reveals that k and GU are mainly determined by two physiological parameters that characterize the tissue: the tissue perfusion rate (Q) and the capillary permeability surface area (PS). Independently measured values of Q and PS from the literature are used in the model to make predictions of k and GU. We compare these predictions to experimental observations of healthy and diabetic patients that are given a meal followed by rest or exercise. The experiments show that during exercise insulin concentrations significantly increase and that glucose levels fall rapidly. The model predictions are consistent with the experiments and show that increases in Q and PS directly increase k and GU. This mechanistic understanding provides a basis for handling exercise in control algorithms for an artificial pancreas. Now at University of British Columbia.
How far does the CO2 travel beyond a leaky point?
NASA Astrophysics Data System (ADS)
Kong, X.; Delshad, M.; Wheeler, M.
2012-12-01
Xianhui Kong, Mojdeh Delshad, Mary F. Wheeler The University of Texas at Austin Numerous research studies have been carried out to investigate the long term feasibility of safe storage of large volumes of CO2 in subsurface saline aquifers. The injected CO2 will undergo complex petrophysical and geochemical processes. During these processes, part of CO2 will be trapped while some will remain as a mobile phase, causing a leakage risk. The comprehensive and accurate characterizations of the trapping and leakage mechanisms are critical for accessing the safety of sequestration, and are challenges in this research area. We have studied different leakage scenarios using realistic aquifer properties including heterogeneity and put forward a comprehensive trapping model for CO2 in deep saline aquifer. The reservoir models include several geological layers and caprocks up to the near surface. Leakage scenarios, such as fracture, high permeability pathways, abandoned wells, are studied. In order to accurately model the fractures, very fine grids are needed near the fracture. Considering that the aquifer usually has a large volume and reservoir model needs large number of grid blocks, simulation would be computational expensive. To deal with this challenge, we carried out the simulations using our in-house parallel reservoir simulator. Our study shows the significance of capillary pressure and permeability-porosity variations on CO2 trapping and leakage. The improved understanding on trapping and leakage will provide confidence in future implementation of sequestration projects.
Ramsay, Eva; Ruponen, Marika; Picardat, Théo; Tengvall, Unni; Tuomainen, Marjo; Auriola, Seppo; Toropainen, Elisa; Urtti, Arto; Del Amo, Eva M
2017-09-01
Conjunctiva occupies most of the ocular surface area, and conjunctival permeability affects ocular and systemic drug absorption of topical ocular medications. Therefore, the aim of this study was to obtain a computational in silico model for structure-based prediction of conjunctival drug permeability. This was done by employing cassette dosing and quantitative structure-property relationship (QSPR) approach. Permeability studies were performed ex vivo across fresh porcine conjunctiva and simultaneous dosing of a cassette mixture composed of 32 clinically relevant drug molecules with wide chemical space. The apparent permeability values were obtained using drug concentrations that were quantified with liquid chromatography tandem-mass spectrometry. The experimental data were utilized for building a QSPR model for conjunctival permeability predictions. The conjunctival permeability values presented a 17-fold range (0.63-10.74 × 10 -6 cm/s). The final QSPR had a Q 2 value of 0.62 and predicted the external test set with a mean fold error of 1.34. The polar surface area, hydrogen bond donor, and halogen ratio were the most relevant descriptors for defining conjunctival permeability. This work presents for the first time a predictive QSPR model of conjunctival drug permeability and a comprehensive description on conjunctival isolation from the porcine eye. The model can be used for developing new ocular drugs. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Manga, Michael; Beresnev, Igor; Brodsky, Emily E.; Elkhoury, Jean E.; Elsworth, Derek; Ingebritsen, Steve E.; Mays, David C.; Wang, Chi-Yuen
2012-01-01
Oscillations in stress, such as those created by earthquakes, can increase permeability and fluid mobility in geologic media. In natural systems, strain amplitudes as small as 10–6 can increase discharge in streams and springs, change the water level in wells, and enhance production from petroleum reservoirs. Enhanced permeability typically recovers to prestimulated values over a period of months to years. Mechanisms that can change permeability at such small stresses include unblocking pores, either by breaking up permeability-limiting colloidal deposits or by mobilizing droplets and bubbles trapped in pores by capillary forces. The recovery time over which permeability returns to the prestimulated value is governed by the time to reblock pores, or for geochemical processes to seal pores. Monitoring permeability in geothermal systems where there is abundant seismicity, and the response of flow to local and regional earthquakes, would help test some of the proposed mechanisms and identify controls on permeability and its evolution.
NASA Astrophysics Data System (ADS)
Pons, A.; David, C.; Fortin, J.; Stanchits, S.; MenéNdez, B.; Mengus, J. M.
2011-03-01
To investigate the effect of compaction bands (CB) on fluid flow, capillary imbibition experiments were performed on Bentheim sandstone specimens (initial porosity ˜22.7%) using an industrial X-ray scanner. We used a three-step procedure combining (1) X-ray imaging of capillary rise in intact Bentheim sandstone, (2) formation of compaction band under triaxial tests, at 185 MPa effective pressure, with acoustic emissions (AE) recording for localization of the induced damage, and (3) again X-ray imaging of capillary rise in the damaged specimens after the unloading. The experiments were performed on intact cylindrical specimens, 5 cm in diameter and 10.5 cm in length, cored in different orientations (parallel or perpendicular to the bedding). Analysis of the images obtained at different stages of the capillary imbibition shows that the presence of CB slows down the imbibition and disturbs the geometry of water flow. In addition, we show that the CB geometry derived from X-ray density maps analysis is well correlated with the AE location obtained during triaxial test. The analysis of the water front kinetics was conducted using a simple theoretical model, which allowed us to confirm that compaction bands act as a barrier for fluid flow, not fully impermeable though. We estimate a contrast of permeability of a factor of ˜3 between the host rock and the compaction bands. This estimation of the permeability inside the compaction band is consistent with estimations done in similar sandstones from field studies but differs by 1 order of magnitude from estimations from previous laboratory measurements.
a Fractal Permeability Model Coupling Boundary-Layer Effect for Tight Oil Reservoirs
NASA Astrophysics Data System (ADS)
Wang, Fuyong; Liu, Zhichao; Jiao, Liang; Wang, Congle; Guo, Hu
A fractal permeability model coupling non-flowing boundary-layer effect for tight oil reservoirs was proposed. Firstly, pore structures of tight formations were characterized with fractal theory. Then, with the empirical equation of boundary-layer thickness, Hagen-Poiseuille equation and fractal theory, a fractal torturous capillary tube model coupled with boundary-layer effect was developed, and verified with experimental data. Finally, the parameters influencing effective liquid permeability were quantitatively investigated. The research results show that effective liquid permeability of tight formations is not only decided by pore structures, but also affected by boundary-layer distributions, and effective liquid permeability is the function of fluid type, fluid viscosity, pressure gradient, fractal dimension, tortuosity fractal dimension, minimum pore radius and maximum pore radius. For the tight formations dominated with nanoscale pores, boundary-layer effect can significantly reduce effective liquid permeability, especially under low pressure gradient.
Permeable pavement surfaces are infiltration based stormwater control measures (SCM) commonly applied in parking lots to decrease impervious area and reduce runoff volume. Many are not optimally designed however, as little attention is given to draining a large enough contributin...
Structure-specific magnetic field inhomogeneities and its effect on the correlation time.
Ziener, Christian H; Bauer, Wolfgang R; Melkus, Gerd; Weber, Thomas; Herold, Volker; Jakob, Peter M
2006-12-01
We describe the relationship between the correlation time and microscopic spatial inhomogeneities in the static magnetic field. The theory takes into account diffusion of nuclear spins in the inhomogeneous field created by magnetized objects. A simple general expression for the correlation time is obtained. It is shown that the correlation time is dependent on a characteristic length, the diffusion coefficient of surrounding medium, the permeability of the surface and the volume fraction of the magnetized objects. For specific geometries (spheres and cylinders), exact analytical expressions for the correlation time are given. The theory can be applied to contrast agents (magnetically labeled cells), capillary network, BOLD effect and so forth.
Causin, Paola; Guidoboni, Giovanna; Malgaroli, Francesca; Sacco, Riccardo; Harris, Alon
2016-06-01
The scientific community continues to accrue evidence that blood flow alterations and ischemic conditions in the retina play an important role in the pathogenesis of ocular diseases. Many factors influence retinal hemodynamics and tissue oxygenation, including blood pressure, blood rheology, oxygen arterial permeability and tissue metabolic demand. Since the influence of these factors on the retinal circulation is difficult to isolate in vivo, we propose here a novel mathematical and computational model describing the coupling between blood flow mechanics and oxygen ([Formula: see text]) transport in the retina. Albeit in a simplified manner, the model accounts for the three-dimensional anatomical structure of the retina, consisting in a layered tissue nourished by an arteriolar/venular network laying on the surface proximal to the vitreous. Capillary plexi, originating from terminal arterioles and converging into smaller venules, are embedded in two distinct tissue layers. Arteriolar and venular networks are represented by fractal trees, whereas capillary plexi are represented using a simplified lumped description. In the model, [Formula: see text] is transported along the vasculature and delivered to the tissue at a rate that depends on the metabolic demand of the various tissue layers. First, the model is validated against available experimental results to identify baseline conditions. Then, a sensitivity analysis is performed to quantify the influence of blood pressure, blood rheology, oxygen arterial permeability and tissue oxygen demand on the [Formula: see text] distribution within the blood vessels and in the tissue. This analysis shows that: (1) systemic arterial blood pressure has a strong influence on the [Formula: see text] profiles in both blood and tissue; (2) plasma viscosity and metabolic consumption rates have a strong influence on the [Formula: see text] tension at the level of the retinal ganglion cells; and (3) arterial [Formula: see text] permeability has a strong influence on the [Formula: see text] saturation in the retinal arterioles.
Tidy, H. Letheby
1928-01-01
The primary purpuras form a single clinical entity. Variations in the number of platelets can occur without the production of hæmorrhages. These variations are the result of the condition of the capillaries and are not the cause of hæmorrhages. The platelets may vary in any form of purpura, primary or secondary. The essential cause of the hæmorrhagic state is a defect or increased permeability of the capillary endothelium. Purpura is allied to urticaria, the Henoch-Schönlein type being an intermediate state. PMID:19986460
Evaluation of Chemical Warfare Agent Wipe Sampling ...
Report This investigation tested specific (CWAs), including sarin (GB), soman (GD), cyclosarin (GF), sulfur mustard (HD), and O-ethyl-S-(2-diisopropylaminoethyl) methylphosphonothioate (VX) on the non-ideal (e.g., porous and permeable) surfaces of drywall, vinyl tile, wood, laminate, and coated glass. Pesticides (diazinon and malathion) were used so that a comparison is possible with existing literature data (1). Experiments included testing with coupons having surface areas of 10 cm2 and 100 cm2. The 10-cm2 coupons were of a size that could easily be extracted in a 2 oz jar (to provide comparative data for CWA recoveries generated by direct extraction) and the 100-cm2 coupons better represented the area of a surface that might typically be sampled by wipe extraction. In addition, CWA, at a normalized surface concentration of 0.1 µg per cm2 surface area, were spiked on coupons of the tested surfaces. Wipes were wetted with either dichloromethane (DCM) or isopropanol (IPA) before sampling for CWA. Experimental parameters include multiple wipe types, porous/permeable surfaces, coupon surface area, solvent used to wet the wipe (i.e., wetting solvent), and the utility of VX-d14 as an extracted internal standard.
Aneurysm permeability following coil embolization: packing density and coil distribution
Chueh, Ju-Yu; Vedantham, Srinivasan; Wakhloo, Ajay K; Carniato, Sarena L; Puri, Ajit S; Bzura, Conrad; Coffin, Spencer; Bogdanov, Alexei A; Gounis, Matthew J
2015-01-01
Background Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of packing density and coil uniformity on aneurysm permeability. Methods Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface area fraction and coil uniformity. Results All aneurysms were coiled to a packing density of at least 27%. Packing density, surface area fraction of the dome and neck, and uniformity of the dome were significantly correlated (p<0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for packing and uniformity measures. Coil mass permeability was modeled better with the inclusion of packing and uniformity measures of the dome (r2=0.73) than with packing density alone (r2=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with packing measures. Conclusions A densely packed aneurysm with a high degree of coil mass uniformity will reduce permeability. PMID:25031179
Tichet, Mélanie; Prod'Homme, Virginie; Fenouille, Nina; Ambrosetti, Damien; Mallavialle, Aude; Cerezo, Michael; Ohanna, Mickaël; Audebert, Stéphane; Rocchi, Stéphane; Giacchero, Damien; Boukari, Fériel; Allegra, Maryline; Chambard, Jean-Claude; Lacour, Jean-Philippe; Michiels, Jean-François; Borg, Jean-Paul; Deckert, Marcel; Tartare-Deckert, Sophie
2015-04-30
Disruption of the endothelial barrier by tumour-derived secreted factors is a critical step in cancer cell extravasation and metastasis. Here, by comparative proteomic analysis of melanoma secretomes, we identify the matricellular protein SPARC as a novel tumour-derived vascular permeability factor. SPARC deficiency abrogates tumour-initiated permeability of lung capillaries and prevents extravasation, whereas SPARC overexpression enhances vascular leakiness, extravasation and lung metastasis. SPARC-induced paracellular permeability is dependent on the endothelial VCAM1 receptor and p38 MAPK signalling. Blocking VCAM1 impedes melanoma-induced endothelial permeability and extravasation. The clinical relevance of our findings is highlighted by high levels of SPARC detected in tumour from human pulmonary melanoma lesions. Our study establishes tumour-produced SPARC and VCAM1 as regulators of cancer extravasation, revealing a novel targetable interaction for prevention of metastasis.
NASA Technical Reports Server (NTRS)
Prisk, G. K.; Guy, Harold J. B.; Elliott, Ann R.; Deutschman, Robert A., III; West, John B.
1993-01-01
We measured pulmonary diffusing capacity (DL), diffusing capacity per unit lung volume, pulmonary capillary blood volume (Vc), membrane diffusing capacity (Dm), pulmonary capillary blood flow or cardiac output (Qc), and cardiac stroke volume (SV) in four subjects exposed to nine days of microgravity. DL in microgravity was elevated compared with preflight standing values and was higher than preflight supine because of the elevation of both Vc and Dm. The elevation in Vc was comparable to that measured supine in 1 G, but the increase in Dm was in sharp contrast to the supine value. We postulate that, in 0 G, pulmonary capillary blood is evenly distributed throughout the lung, providing for uniform capillary filling, leading to an increase in the surface area available for diffusion. By contrast, in the supine 1-G state, the capillaries are less evenly filled, and although a similar increase in blood volume is observed, the corresponding increase in surface area does not occur. DL and its subdivisions showed no adaptive changes from the first measurement 24 h after the start of 0 G to eight days later. Similarly, there were no trends in the postflight data, suggesting that the principal mechanism of these changes was gravitational. The increase in Dm suggests that subclinical pulmonary edema did not result from exposure to 0 G. Qc was modestly increased inflight and decreased postflight compared with preflight standing. Compared with preflight standing, SV was increased 46 percent inflight and decreased 14 percent in the 1st week postflight. There were temporal changes in Qc and SV during 0 G, with the highest values recorded at the first measurement, 24 h into the flight. The lowest values of Qc and SV occurred on the day of return.
Farhadi, Ashkan; Keshavarzian, Ali; Fields, Jeremy Z; Sheikh, Maliha; Banan, Ali
2006-05-19
The most widely accepted method for the evaluation of intestinal barrier integrity is the measurement of the permeation of sugar probes following an oral test dose of sugars. The most-widely used sugar probes are sucrose, lactulose, mannitol and sucralose. Measuring these sugars using a sensitive gas chromatographic (GC) method, we noticed interference on the area of the lactulose and mannitol peaks. We tested different sugars to detect the possible makeup of these interferences and finally detected that the lactose interferes with lactulose peak and fructose interferes with mannitol peak. On further developing of our method, we were able to reasonably separate these peaks using different columns and condition for our assay. Sample preparation was rapid and simple and included adding internal standard sugars, derivitization and silylation. We used two chromatographic methods. In the first method we used Megabore column and had a run time of 34 min. This resulted in partial separation of the peaks. In the second method we used thin capillary column and was able to reasonably separate the lactose and lactulose peaks and the mannitol and fructose peaks with run time of 22 min. The sugar probes including mannitol, sucrose, lactulose, sucralose, fructose and lactose were detected precisely, without interference. The assay was linear between lactulose concentrations of 0.5 and 40 g/L (r(2)=1.000, P<0.0001) and mannitol concentrations of 0.01 and 40 g/L (r(2)=1.000). The sensitivity of this method remained high using new column and assay condition. The minimum detectable concentration calculated for both methods was 0.5 mg/L for lactulose and 1 mg/L for mannitol. This is the first report of interference of commonly used sugars with test of intestinal permeability. These sugars are found in most of fruits and dairy products and could easily interfere with the result of permeability tests. Our new GC assay of urine sugar probes permits the simultaneous quantitation of sucralose, sucrose, mannitol and lactulose, without interference with lactose and fructose. This assay is a rapid, simple, sensitive and reproducible method to accurately measure intestinal permeability.
Schneider, Robert
1964-01-01
The Cenomanian-Turonian formations constitute a highly permeable dolomite and limestone aquifer in central Israel. The aquifer is on the west limb of an anticlinorium that trends north-northeast. In places it may be as much as 800 meters thick, but in the report area, largely the foothills of the Judean-Ephraim Mountains where the water development is most intensive, its thickness is generally considerably less. In some places the aquifer occurs at or near the land surface, or it is covered by sandy and gravelly coastal-plain deposits. However, in a large part of the area, it is overlain by as much as 400 meters of relatively impermeable strata, and it is probably underlain by less permeable Lower Cretaceous strata. In general the aquifer water is under artesian pressure. The porosity of the aquifer is characterized mainly by solution channels and cavities produced by jointing and faulting. In addition to the generally high permeability of the aquifer, some regions, which probably coincide with ancient drainage patterns and (or) fault zones, have exceptionally high permeabilities. The source of most of the water in the aquifer is believed to be rain that falls on the foothills area. The westward movement of ground water from the mountainous outcrop areas appears to be impeded by a zone of low permeability which is related to structural and stratigraphic conditions along the western side of the mountains. Gradients of the piezometric surface are small, and the net direction of water movement is westward and northwestward under natural conditions. Locally, however, the flow pattern may be in other directions owing to spatial variations in permeability in the aquifer, the location of natural discharge outlets, and the relation of the aquifer to adjacent geologic formations. There probably is also a large vertical component of flow. Pumping has modified the flow pattern by producing several irregularly shaped shallow depressions in the piezometric surface although, to date, no unwatering of the aquifer has occurred. In the central part of the area, pumping has induced some infiltration from overlying coastal-plain formations. Injecting and storing surplus water seasonally in the aquifer should be feasible at almost any place. However, the movement and recovery of the injected water probably could be controlled most easily if the water were injected where depressions have been formed in the piezometric surface.
Symmetric and asymmetric capillary bridges between a rough surface and a parallel surface.
Wang, Yongxin; Michielsen, Stephen; Lee, Hoon Joo
2013-09-03
Although the formation of a capillary bridge between two parallel surfaces has been extensively studied, the majority of research has described only symmetric capillary bridges between two smooth surfaces. In this work, an instrument was built to form a capillary bridge by squeezing a liquid drop on one surface with another surface. An analytical solution that describes the shape of symmetric capillary bridges joining two smooth surfaces has been extended to bridges that are asymmetric about the midplane and to rough surfaces. The solution, given by elliptical integrals of the first and second kind, is consistent with a constant Laplace pressure over the entire surface and has been verified for water, Kaydol, and dodecane drops forming symmetric and asymmetric bridges between parallel smooth surfaces. This solution has been applied to asymmetric capillary bridges between a smooth surface and a rough fabric surface as well as symmetric bridges between two rough surfaces. These solutions have been experimentally verified, and good agreement has been found between predicted and experimental profiles for small drops where the effect of gravity is negligible. Finally, a protocol for determining the profile from the volume and height of the capillary bridge has been developed and experimentally verified.
Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs.
Parker, J C; Ivey, C L; Tucker, J A
1998-04-01
To determine the initial signaling event in the vascular permeability increase after high airway pressure injury, we compared groups of lungs ventilated at different peak inflation pressures (PIPs) with (gadolinium group) and without (control group) infusion of 20 microM gadolinium chloride, an inhibitor of endothelial stretch-activated cation channels. Microvascular permeability was assessed by using the capillary filtration coefficient (Kfc), a measure of capillary hydraulic conductivity. Kfc was measured after ventilation for 30-min periods with 7, 20, and 30 cmH2O PIP with 3 cmH2O positive end-expiratory pressure and with 35 cmH2O PIP with 8 cmH2O positive end-expiratory pressure. In control lungs, Kfc increased significantly to 1.8 and 3.7 times baseline after 30 and 35 cmH2O PIP, respectively. In the gadolinium group, Kfc was unchanged from baseline (0.060 +/- 0.010 ml . min-1 . cmH2O-1 . 100 g-1) after any PIP ventilation period. Pulmonary vascular resistance increased significantly from baseline in both groups before the last Kfc measurement but was not different between groups. These results suggest that microvascular permeability is actively modulated by a cellular response to mechanical injury and that stretch-activated cation channels may initiate this response through increases in intracellular calcium concentration.
Electrical and fluid transport in consolidated sphere packs
NASA Astrophysics Data System (ADS)
Zhan, Xin; Schwartz, Lawrence M.; Toksöz, M. Nafi
2015-05-01
We calculate geometrical and transport properties (electrical conductivity, permeability, specific surface area, and surface conductivity) of a family of model granular porous media from an image based representation of its microstructure. The models are based on the packing described by Finney and cover a wide range of porosities. Finite difference methods are applied to solve for electrical conductivity and hydraulic permeability. Two image processing methods are used to identify the pore-grain interface and to test correlations linking permeability to electrical conductivity. A three phase conductivity model is developed to compute surface conductivity associated with the grain-pore interface. Our results compare well against empirical models over the entire porosity range studied. We conclude by examining the influence of image resolution on our calculations.
Ramsay, Eva; Del Amo, Eva M; Toropainen, Elisa; Tengvall-Unadike, Unni; Ranta, Veli-Pekka; Urtti, Arto; Ruponen, Marika
2018-07-01
On the surface of the eye, both the cornea and conjunctiva are restricting ocular absorption of topically applied drugs, but barrier contributions of these two membranes have not been systemically compared. Herein, we studied permeability of 32 small molecular drug compounds across an isolated porcine cornea and built a quantitative structure-property relationship (QSPR) model for the permeability. Corneal drug permeability (data obtained for 25 drug molecules) showed a 52-fold range in permeability (0.09-4.70 × 10 -6 cm/s) and the most important molecular descriptors in predicting the permeability were hydrogen bond donor, polar surface area and halogen ratio. Corneal permeability values were compared to their conjunctival drug permeability values. Ocular drug bioavailability and systemic absorption via conjunctiva were predicted for this drug set with pharmacokinetic calculations. Drug bioavailability in the aqueous humour was simulated to be <5% and trans-conjunctival systemic absorption was 34-79% of the dose. Loss of drug across the conjunctiva to the blood circulation restricts significantly ocular drug bioavailability and, therefore, ocular absorption does not increase proportionally with the increasing corneal drug permeability. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Benson, S. M.; Chabora, E.
2009-12-01
The transport properties of seals, namely permeability, relative permeability, and capillary pressure control both migration of carbon dioxide and brine through the seal. Only recently has the the importance of brine migration emerged as key issue in the environmental performance of carbon dioxide sequestration projects. In this study we use numerical simulation to show that brine migration through the seal can be either advantageous or deleterious to the environmental performance of a carbon dioxide sequestration project. Brine migration through the seal can lower the pressure buildup in the storage reservoir, thereby reducing the risk of leakage or geomechanical stresses on the seal. On the other hand, if the seal is penetrated by a permeable fault it can lead to focused flow up a fault, which could lead to brine migration into drinking water aquifers. We also show that as the carbon dioxide plume grows, brine flow undergoes a complex evolution from upward flow to downward flows driven by countercurrent migration of carbon dioxide and brine in the seal and capillary pressure gradients at the base of the seal. Finally, we discuss desirable attributes seals, taking into account both carbon dioxide and brine migration through the seal. In particular, identifying seals that provide an effective capillary barrier to block the flow of carbon dioxide while allowing some brine migration through the seal can help to control pressure buildup and allow more efficient utilization of a sequestration reservoir. This could be particularly important in those settings that may be limited by the maximum allowable pressure buildup.
Reduced ischemia-reperfusion injury with isoproterenol in non-heart-beating donor lungs.
Jones, D R; Hoffmann, S C; Sellars, M; Egan, T M
1997-05-01
Transplantation of lungs retrieved from non-heart-beating donors could expand the donor pool. Recent studies suggest that the ischemia-reperfusion injury (IRI) to the lung can be attenuated by increasing intracellular cAMP concentrations. The purpose of this study was to determine the effect of IRI on capillary permeability, as measured by Kfc, in lungs retrieved from non-heart-beating donors and reperfused with or without isoproterenol (iso). Using an in situ isolated perfused lung model, lungs were retrieved from non-heart-beating donor rats ventilated with O2 or not at varying intervals after death. The lungs were reperfused with or without iso (10 microM). Kfc, lung viability, and pulmonary hemodynamics were measured, and tissue levels of adenine nucleotides and cAMP were measured by HPLC. Iso-reperfusion decreased Kfc significantly (P < 0.05) compared to non-iso-reperfused groups at all postmortem ischemic times, irrespective of preharvest ventilation status. Pulmonary arterial pressures and resistances increased and venous resistances decreased with iso-reperfusion. Total adenine nucleotide (TAN) levels correlated with Kfc in non-iso-reperfused (r = 0.65) and iso-perfused (r = 0.84) lungs. cAMP levels increased significantly with iso-reperfusion. cAMP levels correlated with Kfc (r = 0.87) in iso-reperfused lungs. Iso-reperfusion of lungs retrieved from non-heart-beating donor rats results in decreased capillary permeability and increased lung tissue cAMP levels. Pharmacologic augmentation of tissue TAN and cAMP levels may further ameliorate the increased capillary permeability seen in lungs retrieved from non-heart-beating donors.
NASA Astrophysics Data System (ADS)
Bashtani, Farzad; Maini, Brij; Kantzas, Apostolos
2016-08-01
3D random networks are constructed in order to represent the tight Mesaverde formation which is located in north Wyoming, USA. The porous-space is represented by pore bodies of different shapes and sizes which are connected to each other by pore throats of varying length and diameter. Pore bodies are randomly distributed in space and their connectivity varies based on the connectivity number distribution which is used in order to generate the network. Network representations are then validated using publicly available mercury porosimetry experiments. The network modeling software solves the fundamental equations of two-phase immiscible flow incorporating wettability and contact angle variability. Quasi-static displacement is assumed. Single phase macroscopic properties (porosity, permeability) are calculated and whenever possible are compared to experimental data. Using this information drainage and imbibition capillary pressure, and relative permeability curves are predicted and (whenever possible) compared to experimental data. The calculated information is grouped and compared to available literature information on typical behavior of tight formations. Capillary pressure curve for primary drainage process is predicted and compared to experimental mercury porosimetry in order to validate the virtual porous media by history matching. Relative permeability curves are also calculated and presented.
Zhou, Dan; Guo, Yi; Guo, Yong-Ming; Zhang, Sai; Pan, Ping
2011-12-01
To investigate the distribution and permeability of blood vessels on the Conception Vessel and the Governor Vessel in the physiological state. Evans blue (EB) solution was injected into the marginal ear vein of healthy rabbits. Three hours after injection, the rabbits were sacrificed and the skin on the Conception Vessel and the Governor Vessel and the corresponding bilateral non-channels was collected. EB was extracted with 7:3 acetone: physiological saline, and the absorbance of EB at each skin tissue was measured with a spectrophotometer. The A value of EB absorbance at the Conception Vessel on the abdominal skin was lower than that of the corresponding bilateral non-channels with a statistically significant difference (P< 0.01). The A value of EB absorbance at the Governor Vessel on the back was higher than that of the corresponding bilateral non-channels (P < 0.05). There was no statistical difference in the A value of EB absorbance between the bilateral non-channels of the abdomen and the back (P > 0.05). There were differences in capillary distribution and permeability between the Conception Vessel, the Governor Vessel and the corresponding bilateral non-meridians.
Development of cost-effective surfactant flooding technology. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1996-11-01
Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also availablemore » in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.« less
Nielsen, Simone S E; Siupka, Piotr; Georgian, Ana; Preston, Jane E; Tóth, Andrea E; Yusof, Siti R; Abbott, N Joan; Nielsen, Morten S
2017-09-24
The aim of this protocol presents an optimized procedure for the purification and cultivation of pBECs and to establish in vitro blood-brain barrier (BBB) models based on pBECs in mono-culture (MC), MC with astrocyte-conditioned medium (ACM), and non-contact co-culture (NCC) with astrocytes of porcine or rat origin. pBECs were isolated and cultured from fragments of capillaries from the brain cortices of domestic pigs 5-6 months old. These fragments were purified by careful removal of meninges, isolation and homogenization of grey matter, filtration, enzymatic digestion, and centrifugation. To further eliminate contaminating cells, the capillary fragments were cultured with puromycin-containing medium. When 60-95% confluent, pBECs growing from the capillary fragments were passaged to permeable membrane filter inserts and established in the models. To increase barrier tightness and BBB characteristic phenotype of pBECs, the cells were treated with the following differentiation factors: membrane permeant 8-CPT-cAMP (here abbreviated cAMP), hydrocortisone, and a phosphodiesterase inhibitor, RO-20-1724 (RO). The procedure was carried out over a period of 9-11 days, and when establishing the NCC model, the astrocytes were cultured 2-8 weeks in advance. Adherence to the described procedures in the protocol has allowed the establishment of endothelial layers with highly restricted paracellular permeability, with the NCC model showing an average transendothelial electrical resistance (TEER) of 1249 ± 80 Ω cm 2 , and paracellular permeability (Papp) for Lucifer Yellow of 0.90 10 -6 ± 0.13 10 -6 cm sec -1 (mean ± SEM, n=55). Further evaluation of this pBEC phenotype showed good expression of the tight junctional proteins claudin 5, ZO-1, occludin and adherens junction protein p120 catenin. The model presented can be used for a range of studies of the BBB in health and disease and, with the highly restrictive paracellular permeability, this model is suitable for studies of transport and intracellular trafficking.
Van der waals forces on thin liquid films in capillary tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herdt, G.C.; Swanson, L.W.
1993-10-01
A theory of the van der Waals attraction between a thin liquid films and a capillary tube is presented assuming the presence of a vapor-liquid interface. The model is based on the surface mode analysis method of van Kampen et al. Values for the van der Waals interaction energy per unit area were calculated for liquid films of pentane on a gold substrate assuming a thin liquid film. Results indicate that the effect of capillary curvature on the van der Waals interaction increases as the ratio of the liquid film thickness to the capillary radius is increased. This trend ismore » consistent with predictions based on the Hamaker theory. Deviations from results based on the Hamaker theory are easily explained in terms of retardation of the van der Waals interaction. Because the effect of capillary curvature increases in the regime where retardation effects become important, curvature effects constitute a small correction to the van der Waals forces in a capillary tube.« less
Measurement of Capillary Radius and Contact Angle within Porous Media.
Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed
2015-12-01
The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.
Vicini, P; Bonadonna, R C; Lehtovirta, M; Groop, L C; Cobelli, C
1998-01-01
Distributed models of blood-tissue exchange are widely used to measure kinetic events of various solutes from multiple tracer dilution experiments. Their use requires, however, a careful description of blood flow heterogeneity along the capillary bed. Since they have mostly been applied in animal studies, direct measurement of the heterogeneity distribution was possible, e.g., with the invasive microsphere method. Here we apply distributed modeling to a dual tracer experiment in humans, performed using an intravascular (indocyanine green dye, subject to distribution along the vascular tree and confined to the capillary bed) and an extracellular ([3H]-D-mannitol, tracing passive transcapillary transfer across the capillary membrane in the interstitial fluid) tracer. The goal is to measure relevant parameters of transcapillary exchange in human skeletal muscle. We show that assuming an accurate description of blood flow heterogeneity is crucial for modeling, and in particular that assuming for skeletal muscle the well-studied cardiac muscle blood flow heterogeneity is inappropriate. The same reason prevents the use of the common method of estimating the input function of the distributed model via deconvolution, which assumes a known blood flow heterogeneity, either defined from literature or measured, when possible. We present a novel approach for the estimation of blood flow heterogeneity in each individual from the intravascular tracer data. When this newly estimated blood flow heterogeneity is used, a more satisfactory model fit is obtained and it is possible to reliably measure parameters of capillary membrane permeability-surface product and interstitial fluid volume describing transcapillary transfer in vivo.
Duchesne, Juan C; Kaplan, Lewis J; Balogh, Zsolt J; Malbrain, Manu L N G
2015-01-01
Secondary intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) are closely related to fluid resuscitation. IAH causes major deterioration of the cardiac function by affecting preload, contractility and afterload. The aim of this review is to discuss the different interactions between IAH, ACS and resuscitation, and to explore a new hypothesis with regard to damage control resuscitation, permissive hypotension and global increased permeability syndrome. Review of the relevant literature via PubMed search. The recognition of the association between the development of ACS and resuscitation urged the need for new approach in traumatic shock management. Over a decade after wide spread application of damage control surgery damage control resuscitation was developed. DCR differs from previous resuscitation approaches by attempting an earlier and more aggressive correction of coagulopathy, as well as metabolic derangements like acidosis and hypothermia, often referred to as the 'deadly triad' or the 'bloody vicious cycle'. Permissive hypotension involves keeping the blood pressure low enough to avoid exacerbating uncontrolled haemorrhage while maintaining perfusion to vital end organs. The potential detrimental mechanisms of early, aggressive crystalloid resuscitation have been described. Limitation of fluid intake by using colloids, hypertonic saline (HTS) or hyperoncotic albumin solutions have been associated with favourable effects. HTS allows not only for rapid restoration of circulating intravascular volume with less administered fluid, but also attenuates post-injury oedema at the microcirculatory level and may improve microvascular perfusion. Capillary leak represents the maladaptive, often excessive, and undesirable loss of fluid and electrolytes with or without protein into the interstitium that generates oedema. The global increased permeability syndrome (GIPS) has been articulated in patients with persistent systemic inflammation failing to curtail transcapillary albumin leakage and resulting in increasingly positive net fluid balances. GIPS may represent a third hit after the initial insult and the ischaemia reperfusion injury. Novel markers like the capillary leak index, extravascular lung water and pulmonary permeability index may help the clinician in guiding appropriate fluid management. Capillary leak is an inflammatory condition with diverse triggers that results from a common pathway that includes ischaemia-reperfusion, toxic oxygen metabolite generation, cell wall and enzyme injury leading to a loss of capillary endothelial barrier function. Fluid overload should be avoided in this setting.
NASA Astrophysics Data System (ADS)
Gao, Y.; Lin, Q.; Bijeljic, B.; Blunt, M. J.
2017-12-01
To observe intermittency in consolidated rock, we image a steady state flow of brine and decane in Bentheimer sandstone. We devise an experimental method based on X-ray differential imaging method to examine how changes in flow rate impact the pore-scale distribution of fluids during co-injection flow under dynamic flow conditions at steady state. This helps us elucidate the diverse flow regimes (connected, intermittent break-up, or continual break-up of the non-wetting phase pathways) for two capillary numbers. Also, relative permeability curves under both capillary and viscous limited conditions could be measured. We have performed imbibition sample floods using oil-brine and measured steady state relative permeability on a sandstone rock core in order to fully characterize the flow behaviour at low and high Ca. Two sets of experiments at high and low flow rates are provided to explore the time-evolution of the non-wetting phase clusters distribution under different flow conditions. The high flow rate is 0.5 mL/min, whose corresponding capillary number is 7.7×10-6. The low flow rate is 0.02 mL/min, whose capillary number is 3.1×10-7. A procedure based on using high-salinity brine as the contrast phase and applying differential imaging between the dry scan and that of the sample saturation with a 30 wt% Potassium iodide (KI) doped brine help to make sure there is no non-wetting phase in micro-pores. Then the intermittent phase in multiphase flow image at high Ca can be quantified by obtaining the differential image between the 30 wt% KI brine image and the scans that taken at each fixed fractional flow. By using the grey scale histogram distribution of the raw images at each condition, the oil proportion in the intermittent phase can be calculated. The pressure drops at each fractional flow at low and high Ca can be measured by high-precision pressure differential sensors and utilized to calculate to the relative permeability at pore scale. The relative permeability data and fw-Sw relationship obtained by our experiment at pore scale are compared with the data collected from experiments which were conducted at core scale, and they match well.
Water Displacement in Oil-Wet Tight Reservoirs by Dynamic Network Simulation
NASA Astrophysics Data System (ADS)
Wang, Y.; Li, M.; Chen, M.
2017-12-01
Pore network simulation is an effective tool for studying the multiphase flow in porous media. Based on the topological information and pore-throat size distribution obtained from the analysis of Scanning Electron Microscope (SEM) and constant-rate mercury injection (CRMI) for tight cores (composed by micro-nano scale throats and micro scale pores), a simple cubic (SC) pore-throat network was built with equilateral triangular cross-section throats and cubic bodies. Rules for oil and water movement and redistribution were devised in accordance with the physics process at pore-throat scale. Water flooding from oil-saturated under irreducible water were simulated by considering the changing displacement rate and viscosity ratio at the slightly oil-wet condition (the static contact angle ranges between π/2 to 2π/3). Different from the double pressure field algorithm, a single pressure field which solved by using successive over relaxation method was used with the flow of irreducible water in corners was ignored while its swilling was take into consideration. Dynamic of displacement fronts, relative permeability curves and residual oil saturation were obtained. It showed that there were obviously snap-off at low capillary number (Nc<10-5) and fingering at high capillary number (Nc<10-4) even at a favorable viscosity ratio (M=1). The magnitude of viscosity ratio effect on relative permeability depended largely on the capillary number, which the effect wasn't noticeable for a high capillary number. For residual oil saturation Sor, it showed that Sor decreased with the increase of capillary number at different viscosity ratio. Changing of residual oil saturation from simulation was in good agreement with the experimental results in a certain range, which indicated that this network model could be used to character the water flooding in tight reservoirs.
Xu, Ruina; Li, Rong; Ma, Jin; He, Di; Jiang, Peixue
2017-09-19
Geological carbon sequestration (GCS) in deep saline aquifers is an effective means for storing carbon dioxide to address global climate change. As the time after injection increases, the safety of storage increases as the CO 2 transforms from a separate phase to CO 2 (aq) and HCO 3 - by dissolution and then to carbonates by mineral dissolution. However, subsequent depressurization could lead to dissolved CO 2 (aq) escaping from the formation water and creating a new separate phase which may reduce the GCS system safety. The mineral dissolution and the CO 2 exsolution and mineral precipitation during depressurization change the morphology, porosity, and permeability of the porous rock medium, which then affects the two-phase flow of the CO 2 and formation water. A better understanding of these effects on the CO 2 -water two-phase flow will improve predictions of the long-term CO 2 storage reliability, especially the impact of depressurization on the long-term stability. In this Account, we summarize our recent work on the effect of CO 2 exsolution and mineral dissolution/precipitation on CO 2 transport in GCS reservoirs. We place emphasis on understanding the behavior and transformation of the carbon components in the reservoir, including CO 2 (sc/g), CO 2 (aq), HCO 3 - , and carbonate minerals (calcite and dolomite), highlight their transport and mobility by coupled geochemical and two-phase flow processes, and consider the implications of these transport mechanisms on estimates of the long-term safety of GCS. We describe experimental and numerical pore- and core-scale methods used in our lab in conjunction with industrial and international partners to investigate these effects. Experimental results show how mineral dissolution affects permeability, capillary pressure, and relative permeability, which are important phenomena affecting the input parameters for reservoir flow modeling. The porosity and the absolute permeability increase when CO 2 dissolved water is continuously injected through the core. The MRI results indicate dissolution of the carbonates during the experiments since the porosity has been increased after the core-flooding experiments. The mineral dissolution changes the pore structure by enlarging the throat diameters and decreasing the pore specific surface areas, resulting in lower CO 2 /water capillary pressures and changes in the relative permeability. When the reservoir pressure decreases, the CO 2 exsolution occurs due to the reduction of solubility. The CO 2 bubbles preferentially grow toward the larger pores instead of toward the throats or the finer pores during the depressurization. After exsolution, the exsolved CO 2 phase shows low mobility due to the highly dispersed pore-scale morphology, and the well dispersed small bubbles tend to merge without interface contact driven by the Ostwald ripening mechanism. During depressurization, the dissolved carbonate could also precipitate as a result of increasing pH. There is increasing formation water flow resistance and low mobility of the CO 2 in the presence of CO 2 exsolution and carbonate precipitation. These effects produce a self-sealing mechanism that may reduce unfavorable CO 2 migration even in the presence of sudden reservoir depressurization.
Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities
NASA Astrophysics Data System (ADS)
Doster, F.; Celia, M. A.; Nordbotten, J. M.
2012-12-01
Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piri, Mohammad
2014-03-31
Under this project, a multidisciplinary team of researchers at the University of Wyoming combined state-of-the-art experimental studies, numerical pore- and reservoir-scale modeling, and high performance computing to investigate trapping mechanisms relevant to geologic storage of mixed scCO{sub 2} in deep saline aquifers. The research included investigations in three fundamental areas: (i) the experimental determination of two-phase flow relative permeability functions, relative permeability hysteresis, and residual trapping under reservoir conditions for mixed scCO{sub 2}-brine systems; (ii) improved understanding of permanent trapping mechanisms; (iii) scientifically correct, fine grid numerical simulations of CO{sub 2} storage in deep saline aquifers taking into account themore » underlying rock heterogeneity. The specific activities included: (1) Measurement of reservoir-conditions drainage and imbibition relative permeabilities, irreducible brine and residual mixed scCO{sub 2} saturations, and relative permeability scanning curves (hysteresis) in rock samples from RSU; (2) Characterization of wettability through measurements of contact angles and interfacial tensions under reservoir conditions; (3) Development of physically-based dynamic core-scale pore network model; (4) Development of new, improved high-performance modules for the UW-team simulator to provide new capabilities to the existing model to include hysteresis in the relative permeability functions, geomechanical deformation and an equilibrium calculation (Both pore- and core-scale models were rigorously validated against well-characterized core- flooding experiments); and (5) An analysis of long term permanent trapping of mixed scCO{sub 2} through high-resolution numerical experiments and analytical solutions. The analysis takes into account formation heterogeneity, capillary trapping, and relative permeability hysteresis.« less
Gas Transport through Fractured Rock near the U20az Borehole, Pahute Mesa, Nevada.
NASA Astrophysics Data System (ADS)
Rockhold, M.; Lowrey, J. D.; Kirkham, R.; Olsen, K.; Waichler, S.; White, M. D.; Wurstner White, S.
2017-12-01
Field experiments were performed in 2012-13 and 2016-17 at the U-20az testbed at the Nevada National Security Site to develop and evaluate capabilities for monitoring and modeling noble gas transport associated with underground nuclear explosions (UNE). Experiments were performed by injecting both chemical (CF2BR2, SF6) and radioactive (37Ar, 127Xe) gas species into the deep subsurface at this legacy UNE site and monitoring the breakthrough of the gases at different locations on or near the ground surface. Gas pressures were also monitored in both the chimney and at ground surface. Field experiments were modeled using the parallel, non-isothermal, two-phase flow and transport simulator, STOMP-GT. A site conceptual-numerical model was developed from a geologic framework model, and using a dual-porosity/permeability model for the constitutive relative permeability-saturation-capillary pressure relations of the fractured rock units. Comparisons of observed and simulated gas species concentrations show that diffusion is a highly effective transport mechanism under ambient conditions in the water-unsaturated fractured rock. Over-pressurization of the cavity during one of the field campaigns, and barometric pressure fluctuations are shown to result in enhanced gas transport by advection through fractures.
NASA Astrophysics Data System (ADS)
Montanaro, Cristian; Mayer, Klaus; Isaia, Roberto; Gresse, Marceau; Scheu, Bettina; Yilmaz, Tim I.; Vandemeulebrouck, Jean; Ricci, Tullio; Dingwell, Donald B.
2017-12-01
The Solfatara area and its fumaroles are the main surface expression of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. At depth, a range of volcanic and structural processes dictate the actual state of the hydrothermal system below the crater. The presence of a large variety of volcanic products at shallow depth (including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias, and lavas), and the existence of a maar-related fault system appears to exert major controls on the degassing and alteration behavior. Adding further to the complexity of this environment, variations in permeability and porosity, due to subsoil lithology and alteration effects, may further influence fluid flow towards the surface. Here, we report results from a field campaign conducted in July 2015 that was designed to characterize the in situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties of the Solfatara crater subsoil. The survey also included a mapping of the surficial hydrothermal features and their distributions. Finally, laboratory measurements (porosity, granulometry) of selected samples were performed. Our results enable the discrimination of four main subsoils around the crater: (1) the Fangaia domain located in a topographic low in the southwestern sector, (2) the silica flat domain on the western altered side, (3) the new crust domain in the central area, and (4) the crusted hummocks domain that dominates the north, east, and south parts. These domains are surrounded by encrusted areas, reworked material, and vegetated soil. The distribution of these heterogeneous subsoils suggests that their formation is mostly related to (i) the presence of the Fangaia domain within the crater and (ii) a system of ring faults bordering it. The subsoils show an alternation between very high and very low permeabilities, a fact which seems to affect both the temperature distribution and surficial degassing. A large range of surface temperatures (from 25 up to 95 °C) has been measured across these surfaces, with the hottest spot corresponding to the mud pools, the area of new crust formation, and the crusted hummocks. In the subsoil, the distribution of temperature is more complex and controlled by the presence of coarser, and more permeable, sandy/pebbly levels. These act as preferential pathways for hot hydrothermal fluid circulation. In contrast, low permeability, fine-grained levels act as thermal insulators that remain relatively cold and hinder fluid escape to the surface. Hot gases reach the surface predominantly along (vertical) fractures. When this occurs, mound-like structures can be formed by a cracking and healing process associated with significant degassing. It is anticipated that the results presented here may contribute to an improved understanding of the hazard potential associated with the ongoing hydrothermal activity within the Solfatara crater. At this site the permeability of the near-surface environment and its changes in space and time can affect the spatial and temporal distribution of gas and heat emission. Particularly, in areas where reduction in permeability occurs, it can produce pore pressure augmentation that may result in explosive events.
Ghonaim, Nour W.; Fraser, Graham M.; Ellis, Christopher G.; Yang, Jun; Goldman, Daniel
2013-01-01
Adenosine triphosphate (ATP) is known to be released from the erythrocyte in an oxygen (O2) dependent manner. Since ATP is a potent vasodilator, it is proposed to be a key regulator in the pathway that mediates micro-vascular response to varying tissue O2 demand. We propose that ATP signaling mainly originates in the capillaries due to the relatively long erythrocyte transit times in the capillary and the short ATP diffusion distance to the electrically coupled endothelium. We have developed a computational model to investigate the effect of delivering or removing O2 to limited areas at the surface of a tissue with an idealized parallel capillary array on total ATP concentration. Simulations were conducted when exposing full surface to perturbations in tissue O2 tension (PO2) or locally using a circular micro-outlet (~100 μm in diameter), a square micro-slit (200 × 200 μm), or a rectangular micro-slit (1000 μm wide × 200 μm long). Results indicated the rectangular micro-slit has the optimal dimensions for altering hemoglobin saturations (SO2) in sufficient number capillaries to generate effective changes in total [ATP]. This suggests a threshold for the minimum number of capillaries that need to be stimulated in vivo by imposed tissue hypoxia to induce a conducted micro-vascular response. SO2 and corresponding [ATP] changes were also modeled in a terminal arteriole (9 μm in diameter) that replaces 4 surface capillaries in the idealized network geometry. Based on the results, the contribution of terminal arterioles to the net change in [ATP] in the micro-vascular network is minimal although they would participate as O2 sources thus influencing the O2 distribution. The modeling data presented here provide important insights into designing a novel micro-delivery device for studying micro-vascular O2 regulation in the capillaries in vivo. PMID:24069001
Octopus microvasculature: permeability to ferritin and carbon.
Browning, J
1979-01-01
The permeability of Octopus microvasculature was investigated by intravascular injection of carbon and ferritin. Vessels were tight to carbon while ferritin penetrated the pericyte junction, and was found extravascularly 1-2 min after its introduction. Vesicles occurred rarely in pericytes; fenestrae were absent. The discontinuous endothelial layer did not consitute a permeability barrier. The basement membrane, although retarding the movement of ferritin, was permeable to it; carbon did not penetrate the basement membrane. Evidence indicated that ferritin, and thus similarly sized and smaller water soluble materials, traverse the pericyte junction as a result of bulk fluid flow. Comparisons are made with the convective (or junctional) and slower, diffusive (or vesicular) passage of materials known to occur across the endothelium of continuous capillaries in mammals. Previous macrophysiological determinations concerning the permeability of Octopus vessels are questioned in view of these findings. Possible reasons for some major structural differences in the microcirculatory systems of cephalopods and vertebrates are briefly discussed.
NASA Astrophysics Data System (ADS)
Nigodjuk, V. E.; Sulinov, A. V.
2018-01-01
The article presents the results of experimental studies of hydrodynamics and those of loobman single-phase and two-phase flows in capillary nozzle elements propellant thrusters and the proposed method of their calculation. An experimental study was performed in capillaries with a sharp entrance edge of the internal diameter of 0.16 and 0.33 mm and a relative length 188 and 161, respectively, in pouring distilled water and acetone in the following range of parameters Reynolds number Re = (0,3 ... 10) · 103, Prandtl number Pr = (2 ... 10), pressure p = (0,1 ... 0,3) MPa, the heat flux q = (0...2)×106 W/m2, the difference of temperature under-heating of liquid Δtn = (5 ... 80)K. The dependences for calculation of single phase boundaries, the undeveloped and the developed surface of the bubble and film key singing of subcooled liquid. It is shown theoretically and experimentally confirmed the virtual absence of areas of undeveloped nucleate boiling in laminar flow. The dependence for calculation of hydraulic resistance and heat transfer in the investigated areas of current. It is shown that in the region of nucleate boiling surface in the flow in capillary tubes, influence of the formed vapor phase on the hydrodynamics and heat transfer substantially higher than in larger diameter pipes.
Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.
Adam, Vojtech; Vaculovicova, Marketa
2017-10-01
Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Charles R.; Dewers, Thomas A.; Heath, Jason E.
2013-09-01
In the supercritical CO2-water-mineral systems relevant to subsurface CO2 sequestration, interfacial processes at the supercritical fluid-mineral interface will strongly affect core- and reservoir-scale hydrologic properties. Experimental and theoretical studies have shown that water films will form on mineral surfaces in supercritical CO2, but will be thinner than those that form in vadose zone environments at any given matric potential. The theoretical model presented here allows assessment of water saturation as a function of matric potential, a critical step for evaluating relative permeabilities the CO2 sequestration environment. The experimental water adsorption studies, using Quartz Crystal Microbalance and Fourier Transform Infrared Spectroscopymore » methods, confirm the major conclusions of the adsorption/condensation model. Additional data provided by the FTIR study is that CO2 intercalation into clays, if it occurs, does not involve carbonate or bicarbonate formation, or significant restriction of CO2 mobility. We have shown that the water film that forms in supercritical CO2 is reactive with common rock-forming minerals, including albite, orthoclase, labradorite, and muscovite. The experimental data indicate that reactivity is a function of water film thickness; at an activity of water of 0.9, the greatest extent of reaction in scCO2 occurred in areas (step edges, surface pits) where capillary condensation thickened the water films. This suggests that dissolution/precipitation reactions may occur preferentially in small pores and pore throats, where it may have a disproportionately large effect on rock hydrologic properties. Finally, a theoretical model is presented here that describes the formation and movement of CO2 ganglia in porous media, allowing assessment of the effect of pore size and structural heterogeneity on capillary trapping efficiency. The model results also suggest possible engineering approaches for optimizing trapping capacity and for monitoring ganglion formation in the subsurface.« less
Pericytes of the neurovascular unit: Key functions and signaling pathways
Sweeney, Melanie D.; Ayyadurai, Shiva; Zlokovic, Berislav V.
2017-01-01
Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles, and post-capillary venules. The central nervous system (CNS) pericytes are uniquely positioned within the neurovascular unit between endothelial cells, astrocytes, and neurons. They integrate, coordinate, and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease including regulation of the blood-brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation, and stem cell activity. Here, we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes, and neurons that control neurovascular functions. We also review the role of pericytes in different CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies. PMID:27227366
NASA Astrophysics Data System (ADS)
Fu, An; Palakurthi, Nikhil; Konangi, Santosh; Comer, Ken; Jog, Milind
2017-11-01
The physics of capillary flow is used widely in multiple fields. Lucas-Washburn equation is developed by using a single pore-sized capillary tube with continuous pore connection. Although this equation has been extended to describe the penetration kinetics into porous medium, multiple studies have indicated L-W does not accurately predict flow patterns in real porous media. In this study, the penetration kinetics including the effect of pore size and pore connectivity will be closely examined since they are expected to be the key factors effecting the penetration process. The Liquid wicking process is studied from a converging and diverging capillary tube to the complex virtual 3-D porous structures with Direct Numerical Simulation (DNS) using the Volume-Of-Fluid (VOF) method within the OpenFOAM CFD Solver. Additionally Porous Medium properties such as Permeability (k) , Tortuosity (τ) will be also analyzed.
NASA Astrophysics Data System (ADS)
Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.; Gardner, J. E.
2013-12-01
Salt deposits in sedimentary basins have long been considered to be a seal against fluid penetration. However, experimental, theoretical and field evidence suggests brine (and oil) can wet salt crystal surfaces at higher pressures and temperatures, which can form a percolating network. This network may act as flow conduits even at low porosities. The aim of this work is to investigate the effects of dihedral angle and porosity on the formation of percolating paths in different salt network lattices. However, previous studies considered only simple homogeneous and isotropic geometries. This work extends the analysis to realistic salt textures by presenting a novel numerical method to describe the texturally equilibrated pore shapes in polycrystalline rock salt and brine systems. First, a theoretical interfacial topology was formulated to minimize the interfacial surface between brine and salt. Then, the resulting nonlinear system of ordinary differential equations was solved using the Newton-Raphson method. Results show that the formation of connected fluid channels is more probable in lower dihedral angles and at higher porosities. The connectivity of the pore network is hysteretic, because the connection and disconnection at the pore throats for processes with increasing or decreasing porosities occur at different porosities. In porous media with anisotropic solids, pores initially connect in the direction of the shorter crystal axis and only at much higher porosities in the other directions. Consequently, even an infinitesimal elongation of the crystal shape can give rise to very strong anisotropy in permeability of the pore network. Also, fluid flow was simulated in the resulting pore network to calculate permeability, capillary entry pressure and velocity field. This work enabled us to investigate the opening of pore space and sealing capacity of rock salts. The obtained pore geometries determine a wide range of petrophysical properties such as permeability and capillary entry pressure. This expanded knowledge of the salt textural behavior vs. depth could also improve drilling operations in salt. Second, a series of experiments in different P-T conditions was carried out to investigate the actual shape of equilibrated channels in salt. The synthetic salt samples were scanned at the High Resolution X-ray CT Facility at the Department of Geological Science, the University of Texas at Austin with resolution in 1-6 micron range. The experimental results show both equilibrated (tubular pores) and non-equilibrated (planar features) in salt structure. Image processing was carried out by two open source software programs: ImageJ, which is a public domain Java image processing program, and 3DMA-Rock, which is a software package for quantitative analyzing of the pore space in three-dimensional X-ray computed microtomographic images of rock. We obtain medial axis and medial surface of the pore space, as well as find and characterize the corresponding pore-throat network. We also report permeability of the pore space computed using Palabos software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pardridge, W.M.; Fierer, G.
1985-06-01
The literature regarding the blood--brain barrier (BBB) transport of butanol is conflicting as studies report both incomplete and complete extraction of butanol by the brain. In this work the BBB transport of both (/sup 14/C)butanol and (/sup 3/H)water was studied using the carotid injection technique in conscious and in ketamine- or pentobarbital-anesthetized rats employing N-isopropyl-p-(/sup 125/I)iodoamphetamine ((/sup 125/I)IMP) as the internal reference and as a fluid microsphere. The three isotopes (/sup 3/H, /sup 125/I, /sup 14/C) were conveniently counted simultaneously in a liquid scintillation spectrometer. IMP is essentially completely sequestered by the brain for at least 1 min in consciousmore » rats and for 2 min in anesthetized animals. Butanol extraction by rat forebrain is not flow limited but ranges between 77 +/- 1 and 87 +/- 1% for the three conditions. The permeability-surface area product/cerebral blood flow ratio of butanol and water in rat forebrain remains relatively constant, despite a twofold increase in cerebral blood flow in conscious relative to pentobarbital-anesthetized rats. The absence of an inverse relationship between flow and butanol or water extraction is consistent with capillary recruitment being the principal mechanism underlying changes in cerebral blood flow in anesthesia. The diffusion restriction of BBB transport of butanol in some regions, but not in others, necessitates a careful regional analysis of BBB permeability to butanol prior to usage of this compound as a cerebral blood flow marker.« less
NASA Technical Reports Server (NTRS)
Seidenberg, Benjamin
1988-01-01
A wick for use in a capillary loop pump heat pipe is described. The wick material is an essentially uniformly porous, permeable, open-cell, polyethylene thermoplastic foam having an ultrahigh average molecular weight of from approximately 1 to 5 million, and an average pore size of about 10 to 12 microns. A representative material having these characteristics is POREX UF, which has an average molecular weight of about 3 million. This material is fully compatible with the FREONs and anhydrous ammonia and allows for the use of these very efficient working fluids in capillary loops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailovich, S.M.
Subcutaneous introduction of polonium to dogs brings about development of radiation sickness with appearance of haemorrhagic syndrome, which is characterized by disturbed process of blood coagulation, thrombocytopenia, decreased prothrombin value of the blood, increased permeability of capillaries. The clinical picture of the usually developed affection corresponds to the well known symptomatology, described in literature. Indicators of the haemorrhagic syndrome (blood coagulation, prothrombin value, permeabillty and stability of capillaries) appear in animals earlier than the clinical manifestations of this syndrome. (tr-auth)
Stripe-like Clay Nanotubes Patterns in Glass Capillary Tubes for Capture of Tumor Cells.
Liu, Mingxian; He, Rui; Yang, Jing; Zhao, Wei; Zhou, Changren
2016-03-01
Here, we used capillary tubes to evaporate an aqueous dispersion of halloysite nanotubes (HNTs) in a controlled manner to prepare a patterned surface with ordered alignment of the nanotubes . Sodium polystyrenesulfonate (PSS) was added to improve the surface charges of the tubes. An increased negative charge of HNTs is realized by PSS coating (from -26.1 mV to -52.2 mV). When the HNTs aqueous dispersion concentration is higher than 10%, liquid crystal phenomenon of the dispersion is found. A typical shear flow behavior and decreased viscosity upon shear is found when HNTs dispersions with concentrations higher than 10%. Upon drying the HNTs aqueous dispersion in capillary tubes, a regular pattern is formed in the wall of the tube. The width and spacing of the bands increase with HNTs dispersion concentration and decrease with the drying temperature for a given initial concentration. Morphology results show that an ordered alignment of HNTs is found especially for the sample of 10%. The patterned surface can be used as a model for preparing PDMS molding with regular micro-/nanostructure. Also, the HNTs rough surfaces can provide much higher tumor cell capture efficiency compared to blank glass surfaces. The HNTs ordered surfaces provide promising application for biomedical areas such as biosensors.
Some Experiments on Evaporation of High-TDS Phreatic Water in an Arid Area
NASA Astrophysics Data System (ADS)
Li, X.; Jin, M.; Zhou, J.; Liu, Y.; Zhao, Y.
2012-12-01
Most experiments that had been done on evaporation of phreatic water were limited to waters with fresh or low total dissolved solids (TDS, no more than 10g/L). The TDS of phreatic water is always dozens or even hundreds of grams per liter in extremely arid areas. Thus, experiments on phreatic water evaporation of different TDS (3g/L, 30g/L, 100g/L, 250g/L) were carried out in an arid plain of south Xinjiang, China. The results showed that there was significant linear positive correlation between TDS of phreatic water and cumulative salinity in soil profile. The variation of phreatic water evaporation was lag behind the change of surface water measured by E20 equipment, but both of them were more drastic at nighttime than the daytime. The research shows that the daytime evaporation capacity has significant effect on nighttime evaporation, and the soil water vapor condense at profile also is an important driving factor for the nighttime evaporation. Capillary rise is a significant contributor of soil salinity in extremely arid areas. Experiments about effects of different grains of sand soil and TDS of phreatic water (1, 30, 100, 250 g/L) on capillary rise showed that TDS had significant effects on capillary rise in later stage of experiments. For coarse sand, the higher TDS made the lower height of capillary rise. But for fine sand, the height of capillary rise of 1g/L was obviously larger than others. The sequence of height from larger to lower of capillary rise in silt was 30, 100, 250 and 1g/L. At the beginning of experiments on coarse sand, the higher TDS made the lower velocity of capillary rise, but other soil groups were not. Compared to high-TDS, the grain of sand soil was a more primary controlling factor of capillary rise. The research indicates that high-TDS not only changes the gravity of capillary water but also the pore size of soil during the processes of capillary rise in fine sand.
NASA Astrophysics Data System (ADS)
Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu
2013-10-01
Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.
1985-01-01
To obtain small membrane markers easily accessible to the charged groups of the cell surface, we prepared, from hemeundecapeptide (HUP), three derivatives that maintain the peroxidatic activity: the anionized hemeundecapeptide, Mr 1,963, estimated diameter 1.68 nm, pl 3.5, for the detection of basic groups; and both a cationized hemeundecapeptide containing predominantly tertiary amino groups, Mr 2,215, estimated diameter 1.75 nm, pl 9.0, and a cationized hemeundecapeptide containing only primary amino groups, Mr 2,271, estimated diameter 1.75 nm, pl 10.6, for labeling acidic residues. The markers were perfused in situ in mice to label the luminal surface of fenestrated endothelium of pancreatic capillaries. Specimens were processed through the cytochemical reaction for peroxidatic activity and examined by electron microscopy. The anionized HUP and HUP (pl 4.85) marked the plasmalemma proper, the coated pits, and the membrane and diaphragms of plasmalemmal vesicles and transendothelial channels. The cationized HUP containing predominantly tertiary amino groups (pl 9.0) decorated all cell surface components with the exception of plasmalemmal vesicles and channels; the latter were, however, labeled by the cationized HUP containing only primary groups (pl 10.6), which suggests that these structures contain on their luminal surface very weak acidic residues of high pKa values. The fact that the membrane of plasmalemmal vesicles can discriminate against permeant cationic macromolecules only up to a pl of approximately 9.0 indicates that in the electrostatic restriction there is a charge limit. In the case of fenestrated capillary endothelium, the upper charge limit seems to be a pl of approximately 9.0. In these vessels, the charge discrimination is effective for molecules as small as 2 nm. PMID:3968182
Ghinea, N; Simionescu, N
1985-02-01
To obtain small membrane markers easily accessible to the charged groups of the cell surface, we prepared, from hemeundecapeptide (HUP), three derivatives that maintain the peroxidatic activity: the anionized hemeundecapeptide, Mr 1,963, estimated diameter 1.68 nm, pl 3.5, for the detection of basic groups; and both a cationized hemeundecapeptide containing predominantly tertiary amino groups, Mr 2,215, estimated diameter 1.75 nm, pl 9.0, and a cationized hemeundecapeptide containing only primary amino groups, Mr 2,271, estimated diameter 1.75 nm, pl 10.6, for labeling acidic residues. The markers were perfused in situ in mice to label the luminal surface of fenestrated endothelium of pancreatic capillaries. Specimens were processed through the cytochemical reaction for peroxidatic activity and examined by electron microscopy. The anionized HUP and HUP (pl 4.85) marked the plasmalemma proper, the coated pits, and the membrane and diaphragms of plasmalemmal vesicles and transendothelial channels. The cationized HUP containing predominantly tertiary amino groups (pl 9.0) decorated all cell surface components with the exception of plasmalemmal vesicles and channels; the latter were, however, labeled by the cationized HUP containing only primary groups (pl 10.6), which suggests that these structures contain on their luminal surface very weak acidic residues of high pKa values. The fact that the membrane of plasmalemmal vesicles can discriminate against permeant cationic macromolecules only up to a pl of approximately 9.0 indicates that in the electrostatic restriction there is a charge limit. In the case of fenestrated capillary endothelium, the upper charge limit seems to be a pl of approximately 9.0. In these vessels, the charge discrimination is effective for molecules as small as 2 nm.
GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION
Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...
Characterizing Drainage Multiphase Flow in Heterogeneous Sandstones
NASA Astrophysics Data System (ADS)
Jackson, Samuel J.; Agada, Simeon; Reynolds, Catriona A.; Krevor, Samuel
2018-04-01
In this work, we analyze the characterization of drainage multiphase flow properties on heterogeneous rock cores using a rich experimental data set and mm-m scale numerical simulations. Along with routine multiphase flow properties, 3-D submeter scale capillary pressure heterogeneity is characterized by combining experimental observations and numerical calibration, resulting in a 3-D numerical model of the rock core. The uniqueness and predictive capability of the numerical models are evaluated by accurately predicting the experimentally measured relative permeability of N2—DI water and CO2—brine systems in two distinct sandstone rock cores across multiple fractional flow regimes and total flow rates. The numerical models are used to derive equivalent relative permeabilities, which are upscaled functions incorporating the effects of submeter scale capillary pressure. The functions are obtained across capillary numbers which span four orders of magnitude, representative of the range of flow regimes that occur in subsurface CO2 injection. Removal of experimental boundary artifacts allows the derivation of equivalent functions which are characteristic of the continuous subsurface. We also demonstrate how heterogeneities can be reorientated and restructured to efficiently estimate flow properties in rock orientations differing from the original core sample. This analysis shows how combined experimental and numerical characterization of rock samples can be used to derive equivalent flow properties from heterogeneous rocks.
Generalized network modeling of capillary-dominated two-phase flow
NASA Astrophysics Data System (ADS)
Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.
2018-02-01
We present a generalized network model for simulating capillary-dominated two-phase flow through porous media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network—described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017), 10.1103/PhysRevE.96.013312]—which comprises pores that are divided into smaller elements called half-throats and subsequently into corners. Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the two-phase flow model that is used to compute the averaged flow properties of the generalized network, including relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional pore-network model and experimental measurements of relative permeability in the literature.
NASA Astrophysics Data System (ADS)
Coso, Dusan
The first part of the dissertation presents a study that implements micro and nano scale engineered surfaces for enhancement of evaporation and boiling phase change heat transfer in both capillary wick structures and pool boiling systems. Capillary wicking surfaces are integral components of heat pipes and vapor chamber thermal spreaders often used for thermal management of microelectronic devices. In addition, pool boiling systems can be encountered in immersion cooling systems which are becoming more commonly investigated for thermal management applications of microelectronic devices and even data centers. The latent heat associated with the change of state from liquid to vapor, and the small temperature differences required to drive this process yield great heat transfer characteristics. Additionally, since no external energy is required to drive the phase change process, these systems are great for portable devices and favorable for reduction of cost and energy consumption over alternate thermal management technologies. Most state of the art capillary wicks used in these devices are typically constructed from sintered copper media. These porous structures yield high surface areas of thin liquid film where evaporation occurs, thus promoting phase change heat transfer. However, thermal interfaces at particle point contacts formed during the sintering process and complex liquid/vapor flow within these wick structures yield high thermal and liquid flow resistances and limit the maximum heat flux they can dissipate. In capillary wicks the maximum heat flux is typically governed by the capillary or boiling limits and engineering surfaces that delay these limitations and yield structures with large surface areas of thin liquid film where phase change heat transfer is promoted is highly desired. In this study, biporous media consisting of microscale pin fins separated by microchannels are examined as candidate structures for the evaporator wick of a vapor chamber heat pipe. Smaller pores are used to generate high capillary suction, while larger microchannels are used to alleviate flow resistance. The heat transfer coefficient is found to depend on the area coverage of a liquid film with thickness on the order of a few microns near the meniscus of the triple phase contact line. We manipulate the area coverage and film thickness by varying the surface area-to-volume ratio through the use of microstructuring. In some samples, a transition from evaporative heat transfer to nucleate boiling is observed. While it is difficult to identify when the transition occurs, one can identify regimes where evaporation dominates over nucleate boiling and vice versa. Heat fluxes of 277.0 (+/- 9.7) W/cm2 can be dissipated by wicks with heaters of area 1 cm2, while heat fluxes up to 733.1 (+/- 103.4) W/cm2 can be dissipated by wicks with smaller heaters intended to simulate local hot-spots. In pool boiling systems that are encountered in immersion cooling applications, the heat transfer coefficient (HTC) is governed by the bubble nucleation site density and the agitation in the liquid/vapor flow these bubbles produce when they detach from the surface. The nucleation site density and release rate is usually determined by the surface morphology. Another important parameter in pool boiling systems is the maximum heat flux (CHF) that can safely be dissipated. In practice, this quantity is about two orders of magnitude smaller than limitations suggested by kinetic theory. For essentially infinite, smooth, well wetted surfaces, hydrodynamic instability theories capturing liquid/vapor interactions away from the heated surface have been successful in predicting CHF. On finite micro and nano structured surfaces where applying the hydrodynamic theory formulation is not easily justified, other effects may contribute to phase change heat transfer characteristics. Here, we also present a pool boiling study on biporous microstructured surfaces used in capillary wick experiments. Structures are manipulated by reduction of pore size to determine if increased capillary pressure can enhance rewetting from heater edges and delay CHF. A comparative study between the two experimental systems indicates that while the capillary limitation is significant in capillary wick experiments, for these well wetted microstructured surfaces used in pool boiling systems the hydrodynamic limitation defined based on heater size causes the occurrence of CHF. Other hierarchical nanowire surfaces containing periodic microscale cavities are investigated as well and are seen to yield a ˜2.4 fold increase in heat transfer coefficient characteristics while not compromising CHF compared to surfaces where cavities are not present. These studies indicate pathways for enhancement of heat transfer coefficient via implementing hierarchical structures, while no clear method in increasing CHF is determined for finite size surfaces of various morphologies. In the second part of this dissertation, solar energy storage is sought in 'phase change' of photochromic molecular systems: the storage of solar energy in the chemical bonds of photosensitive molecules (a photochemical reaction) and subsequent recovery of the energy in a back reaction in the form of heat, reversibly. These molecular systems are interesting alternatives to photovoltaic and solar thermal technologies which cannot satisfy the needs of load leveling, or for portable municipal heating applications. Typically made of organic compounds, these molecules have become known for rapid decomposition, short energy storage time scales and poor energy storing efficiencies. Thus, they have been abandoned as practical solar energy storage systems in the past several decades. On the other hand, organometallic molecular systems have not been extensively probed for these applications. Recent research has indicated that organometallic (fulvalene)diruthenium FvRu2 has demonstrated excellent energy storage characteristic and durability. Here, we report on a full cycle molecular solar thermal (MOST) microfluidic system based on a bis(1,1-dimethyltridecyl) substituted derivative of FvRu2 that allows for long term solar energy storage (110 J/g), and "on demand" energy release upon exposure to a catalyst. The microfluidic systems developed here are excellent for photoconversion characterization and scrutinizing potential catalysts and can be extended to studying many other molecular systems. The objective of the work presented here is to demonstrate that "on demand" solar energy storage and release in MOST systems is viable and motivate future research on other photochromic organometallic systems.
Analysis and application of classification methods of complex carbonate reservoirs
NASA Astrophysics Data System (ADS)
Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei
2018-06-01
There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.
On the influence of surfactant on the coarsening of aqueous foams.
Briceño-Ahumada, Zenaida; Langevin, Dominique
2017-06-01
We review the coarsening process of foams made with various surfactants and gases, focusing on physico-chemical aspects. Several parameters strongly affect coarsening: foam liquid fraction and foam film permeability, this permeability depending on the surfactant used. Both parameters may evolve with time: the liquid fraction, due to gravity drainage, and the film permeability, due to the decrease of capillary pressure during bubble growth, and to the subsequent increase in film thickness. Bubble coalescence may enhance the bubble's growth rate, in which case the bubble polydispersity increases. The differences found between the experiments reported in the literature and between experiments and theories are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Soil water retention and maximum capillary drive from saturation to oven dryness
Morel-Seytoux, Hubert J.; Nimmo, John R.
1999-01-01
This paper provides an alternative method to describe the water retention curve over a range of water contents from saturation to oven dryness. It makes two modifications to the standard Brooks and Corey [1964] (B-C) description, one at each end of the suction range. One expression proposed by Rossi and Nimmo [1994] is used in the high-suction range to a zero residual water content. (This Rossi-Nimmo modification to the Brooks-Corey model provides a more realistic description of the retention curve at low water contents.) Near zero suction the second modification eliminates the region where there is a change in suction with no change in water content. Tests on seven soil data sets, using three distinct analytical expressions for the high-, medium-, and low-suction ranges, show that the experimental water retention curves are well fitted by this composite procedure. The high-suction range of saturation contributes little to the maximum capillary drive, defined with a good approximation for a soil water and air system as HcM = ∫0∞ Krwdhc , where krw is relative permeability (or conductivity) to water and hc is capillary suction, a positive quantity in unsaturated soils. As a result, the modification suggested to describe the high-suction range does not significantly affect the equivalence between Brooks-Corey (B-C) and van Genuchten [1980] parameters presented earlier. However, the shape of the retention curve near “natural saturation” has a significant impact on the value of the capillary drive. The estimate using the Brooks-Corey power law, extended to zero suction, will exceed that obtained with the new procedure by 25 to 30%. It is not possible to tell which procedure is appropriate. Tests on another data set, for which relative conductivity data are available, support the view of the authors that measurements of a retention curve coupled with a speculative curve of relative permeability as from a capillary model are not sufficient to accurately determine the (maximum) capillary drive. The capillary drive is a dynamic scalar, whereas the retention curve is of a static character. Only measurements of infiltration rates with time can determine the capillary drive with precision for a given soil.
Pore-scale Modeling of CO2 Local Trapping in Heterogeneous Porous Media with Inter-granular Cements
NASA Astrophysics Data System (ADS)
Wang, D.; Li, Y.
2017-12-01
Based on pore-scale modeling of CO2/brine multiphase flow in heterogeneous porous media with inter-granular cements, we numerically analyze the effects of cement-modified pore structure on CO2 local trapping. Results indicate: 1) small pore throat is the main reason for causing CO2 local trapping in front of low-porosity layers (namely dense layers) formed by inter-granular cements; 2) in the case of the same pore throat size, the smaller particle size can increase the number of flow paths for CO2 plume and equivalently enhances local permeability, which may counteract the impediment of high capillary pressure on CO2 migration to some extent and consequently disables CO2 local capillary trapping; 3) the isolated pores by inter-granular cements can lead to dramatic reduction of CO2 saturation inside the dense layers, whereas the change of connectivity of some pores due to the cements can increase CO2 accumulation in front of the dense layers by lowering the displacement area of CO2 plume.
Nusshag, Christian; Osberghaus, Anja; Baumann, Alexandra; Schnitzler, Paul; Zeier, Martin; Krautkrämer, Ellen
2017-09-01
Hantavirus disease is characterized by endothelial dysfunction. Angiopoietin-1 (Ang-1) and its antagonist angiopoietin-2 (Ang-2) play a key role in the control of capillary permeability. Ang-1 is responsible for maintenance of cell-to-cell contacts whereas Ang-2 destabilizes monolayers. An imbalance of Ang-1 and Ang-2 levels results in enhanced permeability and capillary leakage. To analyze the involvement of angiopoietins in hantavirus-induced disruption of endothelia, we measured the levels of Ang-1 and Ang-2 in hantavirus infection. Levels of angiopoietins of 31 patients with acute Puumala virus (PUUV) infection and a patient infected with Dobrava-Belgrade virus genotype Sochi (DOBV-Sochi) were analyzed. An age-matched group of 16 healthy volunteers served as control. The ratios of Ang-2 to Ang-1 levels were calculated and correlated with laboratory parameters. Patients with PUUV and DOBV-Sochi infection exhibited elevated ratios of Ang-2/Ang-1 compared to the control group. The imbalance of Ang-2 to Ang-1 levels was observed early after onset of symptoms and lasted for the acute phase of infection. The deregulation in DOBV-Sochi infection was more prominent than in PUUV infection. Analysis of Ang-2/Ang-1 ratio and laboratory parameters in the PUUV cohort revealed a positive correlation with serum creatinine and a negative correlation with serum albumin and thrombocyte levels. We observed an imbalance between levels of Ang-1 and Ang-2 in patients infected with PUUV and DOBV-Sochi. Elevated Ang-2/Ang-1 ratios correlate with disease severity. The virus-induced deregulation of angiopoietin levels may enhance capillary permeability and contribute to the pathogenesis of hantavirus disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out
NASA Astrophysics Data System (ADS)
Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen
2014-05-01
The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.
Rathfelder, K M; Abriola, L M; Taylor, T P; Pennell, K D
2001-04-01
A numerical model of surfactant enhanced solubilization was developed and applied to the simulation of nonaqueous phase liquid recovery in two-dimensional heterogeneous laboratory sand tank systems. Model parameters were derived from independent, small-scale, batch and column experiments. These parameters included viscosity, density, solubilization capacity, surfactant sorption, interfacial tension, permeability, capillary retention functions, and interphase mass transfer correlations. Model predictive capability was assessed for the evaluation of the micellar solubilization of tetrachloroethylene (PCE) in the two-dimensional systems. Predicted effluent concentrations and mass recovery agreed reasonably well with measured values. Accurate prediction of enhanced solubilization behavior in the sand tanks was found to require the incorporation of pore-scale, system-dependent, interphase mass transfer limitations, including an explicit representation of specific interfacial contact area. Predicted effluent concentrations and mass recovery were also found to depend strongly upon the initial NAPL entrapment configuration. Numerical results collectively indicate that enhanced solubilization processes in heterogeneous, laboratory sand tank systems can be successfully simulated using independently measured soil parameters and column-measured mass transfer coefficients, provided that permeability and NAPL distributions are accurately known. This implies that the accuracy of model predictions at the field scale will be constrained by our ability to quantify soil heterogeneity and NAPL distribution.
Modeling Košice Green Roofs Maps
NASA Astrophysics Data System (ADS)
Poorova, Zuzana; Vranayova, Zuzana
2017-06-01
The need to house population in urban areas is expected to rise to 66% in 2050, according to United Nations. The replacement of natural permeable green areas with concrete constructions and hard surfaces will be noticed. The densification of existing built-up areas is responsible for the decreasing vegetation, which results in the lack of evapotranspiration cooling the air. Such decreasing vegetation causes urban heat islands. Since roofs and pavements have a very low albedo, they absorb a lot of sunlight. Several studies have shown that natural and permeable surfaces, as in the case of green roofs, can play crucial role in mitigating this negative climate phenomenon and providing higher efficiency for the building, leading to savings. Such as water saving, what is the main idea of this research.
Heterogeneous porous structures for the fastest liquid absorption
NASA Astrophysics Data System (ADS)
Shou, Dahua; Ye, Lin; Fan, Jintu
2013-08-01
Engineered porous materials, which have fast absorption of liquids under global constraints (e.g. volume, surface area, or cost of the materials), are useful in many applications including moisture management fabrics, medical wound dressings, paper-based analytical devices, liquid molding composites, etc.. The absorption in capillary tubes and porous media is driven by the surface tension of liquid, which is inversely proportional to the pore size. On the contrary, the ability of conduction (or permeability) of liquid in porous materials is linear with the square of pore size. Both mechanisms superimpose with each other leading to a possibility of the fastest absorption for a porous structure. In this work, we explore the flow behaviors for the fastest absorption using heterogeneous porous architectures, from two-portion tubes to two-layer porous media. The absorption time for filling up the voids in these porous materials is expressed in terms of pore size, height and porosity. It is shown that under the given height and void volume, these two-component porous structures with a negative gradient of pore size/porosity against the imbibition direction, have a faster absorption rate than controlled samples with uniform pore size/porosity. Particularly, optimal structural parameters including pore size, height and porosity are found for the minimum absorption time. The obtained results will be used as a priori for the design of porous structures with excellent water absorption and moisture management property in various fields.
Inuwa, Ibrahim; Ali, Badreldin H; Al-Lawati, Intisar; Beegam, Sumaya; Ziada, Amal; Blunden, Gerald
2012-05-01
The effects of Hibiscus sabdariffa (HS) in lowering blood pressure in human and animal hypertension have been documented. This study investigated the effect of the water extract of the dried calyx of HS and Hibiscus anthocyanins (HAs) on left ventricular myocardial capillary length and surface area in spontaneously hypertensive rats (SHRs). Twelve-week-old male SHRs were divided into eight groups (six rats in each group). Three groups were given three doses; 10%, 15% and 20% of the water extract of HS in lieu of drinking water for 10 consecutive weeks (HS10, HS15 and HS20) with one group kept as control (C). Another three groups were given three doses of the HAs orally at doses of 50, 100 and 200 mg/kg for five consecutive days with one group kept as a control (C). Systolic (SBP) and diastolic (DBP) blood pressures, as well as heart rate (HR), were measured weekly. After the experimental protocols, the left ventricles (LV) of all rats were obtained. Capillary surface area density and length density were determined by unbiased sterological methods on 3 μm LV tissue samples from perfusion-fixed hearts. HS ingestion significantly reduced SBP, DBP and LV mass in a dose-dependent fashion but did not affect the HR. HS significantly increased surface area and length density of myocardial capillaries by 59%, 65% and 86%, and length density by 57%, 77% and 57%, respectively. Myocyte nuclear volume was significantly decreased in HS-treated rats. There was a decrease (although insignificant) in SBP and DBP with HA ingestion compared with controls. These changes suggest that the observed beneficial effect of HS on high BP in SHRs could be mediated through a reduction in the diffusion distance between capillaries and myocytes, as well as new vessel formation. It is proposed that these effects might be beneficial in restoring myocyte normal nutritional status compromised by the hypertrophic state of hypertension.
NASA Astrophysics Data System (ADS)
Pini, R.; Benson, S. M.
2012-12-01
Capillary pressure and relative permeability functions are characteristic curves that, when coupled to the continuum-scale equations of motion, allow for a description of multiphase displacement processes in porous media. Traditionally, these properties are measured in the laboratory and are implemented into reservoir simulations to predict the behavior at the field-scale. There is an increasing awareness that detailed investigations are required to understand the role of the inherent heterogeneity of the rock samples used in the experiments on the measured multiphase properties. In fact, although a significant amount of simulation work has explored the effect of heterogeneities on Pc-kr-S relationships, very few experimental studies report on displacements with well-characterized, naturally heterogeneous media. To extend the current data set and to support these numerical findings, more laboratory data are therefore required that have been obtained under a variety of conditions and on cores from different geological settings. A direct practical implication of these studies would be the definition of a minimum scale at which heterogeneities have to be resolved, so that mathematical models would adequately capture the observed displacement patterns. Moreover, the coupling of experiments and theory will serve as a firm starting point for testing scale-up methods. In this study, results from core-flooding experiments are presented that have been carried out at representative conditions on a variety of naturally heterogeneous core samples. Results are presented from a newly developed technique that allows measuring drainage capillary pressure curves during core-flooding experiments; data have been collected at different temperature (25 and 50C), at different pressures (2 and 9MPa) and with different fluid pairs (CO2/water, N2/water and CO2/brine), thus showing the applicability of the novel technique in a wide range of interfacial tension levels. Additionally, Pc-S relationships on mm-scale subsets of the rock core have been obtained by combination with saturation measurements from X-ray CT scanning; these are of high relevance as they directly and non-destructively quantify small-scale capillary heterogeneity in these systems. The spatial variation of the capillary pressure curve is then described by means of so-called scaling factors, which are derived from scaling-laws based on the concept of similar media (such as the Leverett J-Function), and which can be related to other relevant petrophysical properties of the rock, such as porosity, permeability and grain size distribution. The role of core-scale capillary heterogeneity is investigated based on observations from a CO2/water core-flooding experiment on a rock core that possesses a heterogeneous feature of relatively simple geometry. An integrated approach is applied where these experimental results are combined with independent measurements of capillary pressure, porosity and permeability. It is shown that 3D saturation profiles obtained by X-ray CT scanning during the core-flooding experiment are essential for defining heterogeneous features and that the latter significantly affect the character of the measured relative permeability curve.
NASA Astrophysics Data System (ADS)
Luhmann, Andrew J.; Tutolo, Benjamin M.; Bagley, Brian C.; Mildner, David F. R.; Seyfried, William E.; Saar, Martin O.
2017-03-01
Four reactive flow-through laboratory experiments (two each at 0.1 mL/min and 0.01 mL/min flow rates) at 150°C and 150 bar (15 MPa) are conducted on intact basalt cores to assess changes in porosity, permeability, and surface area caused by CO2-rich fluid-rock interaction. Permeability decreases slightly during the lower flow rate experiments and increases during the higher flow rate experiments. At the higher flow rate, core permeability increases by more than one order of magnitude in one experiment and less than a factor of two in the other due to differences in preexisting flow path structure. X-ray computed tomography (XRCT) scans of pre- and post-experiment cores identify both mineral dissolution and secondary mineralization, with a net decrease in XRCT porosity of ˜0.7%-0.8% for the larger pores in all four cores. (Ultra) small-angle neutron scattering ((U)SANS) data sets indicate an increase in both (U)SANS porosity and specific surface area (SSA) over the ˜1 nm to 10 µm scale range in post-experiment basalt samples, with differences due to flow rate and reaction time. Net porosity increases from summing porosity changes from XRCT and (U)SANS analyses are consistent with core mass decreases. (U)SANS data suggest an overall preservation of the pore structure with no change in mineral surface roughness from reaction, and the pore structure is unique in comparison to previously published basalt analyses. Together, these data sets illustrate changes in physical parameters that arise due to fluid-basalt interaction in relatively low pH environments with elevated CO2 concentration, with significant implications for flow, transport, and reaction through geologic formations.
NASA Astrophysics Data System (ADS)
Huang, Na; Liu, Richeng; Jiang, Yujing; Li, Bo; Yu, Liyuan
2018-03-01
While shear-flow behavior through fractured media has been so far studied at single fracture scale, a numerical analysis of the shear effect on the hydraulic response of 3D crossed fracture model is presented. The analysis was based on a series of crossed fracture models, in which the effects of fracture surface roughness and shear displacement were considered. The rough fracture surfaces were generated using the modified successive random additions (SRA) algorithm. The shear displacement was applied on one fracture, and at the same time another fracture shifted along with the upper and lower surfaces of the sheared fracture. The simulation results reveal the development and variation of preferential flow paths through the model during the shear, accompanied by the change of the flow rate ratios between two flow planes at the outlet boundary. The average contact area accounts for approximately 5-27% of the fracture planes during shear, but the actual calculated flow area is about 38-55% of the fracture planes, which is much smaller than the noncontact area. The equivalent permeability will either increase or decrease as shear displacement increases from 0 to 4 mm, depending on the aperture distribution of intersection part between two fractures. When the shear displacement continuously increases by up to 20 mm, the equivalent permeability increases sharply first, and then keeps increasing with a lower gradient. The equivalent permeability of rough fractured model is about 26-80% of that calculated from the parallel plate model, and the equivalent permeability in the direction perpendicular to shear direction is approximately 1.31-3.67 times larger than that in the direction parallel to shear direction. These results can provide a fundamental understanding of fluid flow through crossed fracture model under shear.
Epidermal Permeability Barrier Recovery Is Delayed in Vitiligo-Involved Sites
Liu, J.; Man, W.Y.; Lv, C.Z.; Song, S.P.; Shi, Y.J.; Elias, P.M.; Man, M.Q.
2010-01-01
Background/Objectives Prior studies have demonstrated that both the skin surface pH and epidermal permeability barrier function vary with skin pigmentation types. Although melanin deficiency is the main feature of vitiligo, alterations in cutaneous biophysical properties in vitiligo have not yet been well defined. In the present study, stratum corneum (SC) hydration, the skin surface pH and epidermal permeability barrier function in vitiligo were evaluated. Methods A total of 30 volunteers with vitiligo comprising 19 males and 11 females aged 13–51 years (mean age: 27.91 ± 2.06 years) were enrolled in this study. The skin surface pH, SC hydration, melanin/erythema index and transepidermal water loss (TEWL) were measured by respective probes connected to a Courage-Khazaka MPA5. SC integrity was determined by measuring the TEWL following each D-Squame application. The barrier recovery rate was assessed at 5 h following barrier disruption by repeated tape stripping. Results In addition to SC hydration, both melanin and erythema index were significantly lower in vitiligo lesions than in contralateral, nonlesional sites, while no difference in skin surface pH between vitiligo-involved and uninvolved areas was observed. In addition, neither the basal TEWL nor SC integrity in the involved areas differed significantly from that in the uninvolved areas. However, barrier recovery in vitiligo-involved sites was significantly delayed in comparison with uninvolved sites (40.83 ± 5.39% vs. 58.30 ± 4.71%; t = 2.441; p < 0.02). Conclusion Barrier recovery following tape stripping of the SC is delayed in vitiligo. Therefore, improvement in epidermal permeability barrier function may be an important unrecognized factor to be considered in treating patients with vitiligo. PMID:20185976
NASA Astrophysics Data System (ADS)
Kibbey, T. C. G.; Adegbule, A.; Yan, S.
2017-12-01
The movement of nonvolatile solutes in unsaturated porous media at low water contents depends on transport in surface-associated water films. The focus of the work described here was on studying solute movement in water films advancing by capillary forces over initially-dry grain surfaces, to understand how microscopic surface roughness features influence the initial velocity of water film advance. For this work, water containing a non-adsorbing conservative tracer was used to track the movement of advancing water films. A stainless steel capillary tube connected to an external reservoir a fixed distance below the grain surface was used to transmit solution to the grain surface under negative pressure (positive capillary pressure), consistent with conditions that might be expected in the unsaturated zone. The small internal diameter of the capillary prevents solution from draining out of the capillary back into the reservoir. When the capillary is contacted with a grain surface, capillary forces that result from contact between the fluid and the rough grain surface cause water films to wick across the grain surface. Multiple experiments were conducted on the same grain, rotating the grain and varying the capillary contact point around the circumference of the grain. Imaging was conducted at fixed intervals using an automated Extended Depth of Field (EDF) imaging system, and images were analyzed to determine initial velocity. Grain surfaces were then characterized through scanning electron microscope (SEM) imaging, using a hybrid stereoscopic reconstruction method designed to extract maximum detail in creating elevation maps of geologic surfaces from tilted pairs of SEM images. The resulting elevation maps were used to relate surface roughness profiles around the grain with initial velocities. Results suggest that velocity varies significant with contact point around an individual grain, and correlates quantitatively with the local grain surface structure. Preliminary simulation results will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
UTCHEM IMPLICIT is a three-dimensional chemical flooding simulator. The solution scheme is fully implicit. The pressure equation and the mass conservation equations are solved simultaneously for the aqueous phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used to reduce numerical dispersion effects. Saturations and phase concentrations are solved in a flash routine. The major physical phenomena modeled in the simulator are: dispersion, adsorption, aqueous-oleic-microemulsion phase behavior, interfacial tension, relative permeability, capillary trapping, compositional phase viscosity, capillary pressure, phase density, polymer properties: shear thinning viscosity, inaccessiblemore » pore volume, permeability reduction, and adsorption. The following options are available in the simulator: constant or variable time-step sizes, uniform or nonuniform grid, pressure or rate constrained wells, horizontal and vertical wells.« less
Nanoscale Pore Imaging and Pore Scale Fluid Flow Modeling in Chalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomutsa, Liviu; Silin, Dmitriy
2004-08-19
For many rocks of high economic interest such as chalk, diatomite, tight gas sands or coal, nanometer scale resolution is needed to resolve the 3D-pore structure, which controls the flow and trapping of fluids in the rocks. Such resolutions cannot be achieved with existing tomographic technologies. A new 3D imaging method, based on serial sectioning and using the Focused Ion Beam (FIB) technology has been developed. FIB allows for the milling of layers as thin as 10 nanometers by using accelerated Ga+ ions to sputter atoms from the sample surface. After each milling step, as a new surface is exposed,more » a 2D image of this surface is generated. Next, the 2D images are stacked to reconstruct the 3D pore or grain structure. Resolutions as high as 10 nm are achievable using such a technique. A new robust method of pore-scale fluid flow modeling has been developed and applied to sandstone and chalk samples. The method uses direct morphological analysis of the pore space to characterize the petrophysical properties of diverse formations. Not only petrophysical properties (porosity, permeability, relative permeability and capillary pressures) can be computed but also flow processes, such as those encountered in various IOR approaches, can be simulated. Petrophysical properties computed with the new method using the new FIB data will be presented. Present study is a part of the development of an Electronic Core Laboratory at LBNL/UCB.« less
Yang, Ji; Cao, Limei; Guo, Rui; Jia, Jinping
2010-12-15
Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m(2)g(-1), the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly. Copyright © 2010 Elsevier B.V. All rights reserved.
A Physical Interpretation of the Phenomenological Coefficients of Membrane Permeability
Kedem, O.; Katchalsky, A.
1961-01-01
A "translation" of the phenomenological permeability coefficients into friction and distribution coefficients amenable to physical interpretation is presented. Expressions are obtained for the solute permeability coefficient ω and the reflection coefficient σ for both non-electrolytic and electrolytic permeants. An analysis of the coefficients is given for loose membranes as well as for dense natural membranes where transport may go through capillaries or by solution in the lipoid parts of the membrane. Water diffusion and filtration and the relation between these and capillary pore radius of the membrane are discussed. For the permeation of ions through the charged membranes equations are developed for the case of zero electrical current in the membrane. The correlation of σ with ω and Lp for electrolytes resembles that for non-electrolytes. In this case ω and σ depend markedly on ion concentration and on the charge density of the membrane. The reflection coefficient may assume negative values indicating anomalous osmosis. An analysis of the phenomena of anomalous osmosis was carried out for the model of Teorell and Meyer and Sievers and the results agree with the experimental data of Loeb and of Grim and Sollner. A set of equations and reference curves are presented for the evaluation of ω and σ in the transport of polyvalent ions through charged membranes. PMID:13752127
Paclitaxel-induced lung injury and its amelioration by parecoxib sodium.
Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian
2015-08-10
To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage.
Paclitaxel-induced lung injury and its amelioration by parecoxib sodium
Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian
2015-01-01
To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage. PMID:26256764
Motion of deformable drops through granular media and other confined geometries.
Davis, Robert H; Zinchenko, Alexander Z
2009-06-15
This article features recent simulation studies of the flow of emulsions containing deformable drops through pores, constrictions, and granular media. The flow is assumed to be at low Reynolds number, so that viscous forces dominate, and boundary-integral methods are used to determine interfacial velocities and, hence, track the drop motion and shapes. A single drop in a flat channel migrates to the channel centerplane due to deformation-induced drift, which increases its steady-state velocity along the channel. A drop moving towards a smaller interparticle constriction squeezes through the constriction if the capillary number (ratio of viscous deforming forces and interfacial tension forces) is large enough, but it becomes trapped when the capillary number is below a critical value. These concepts then influence the flow of an emulsion through a granular medium, for which the drop phase moves faster than the suspending liquid at large capillary numbers but slower than the suspending liquid at smaller capillary numbers. The permeabilities of the granular medium to both phases increase with increasing capillary number, due to the reduced resistance to squeezing of easily deformed drops, though drop breakup must also be considered at large capillary numbers.
Testoni, Guilherme Apolinario; Kim, Sihwan; Pisupati, Anurag; Park, Chung Hae
2018-09-01
We propose a new model for the capillary rise of liquid in flax fibers whose diameter is changed by liquid absorption. Liquid absorption into the flax fibers is taken into account in a new modified Washburn equation by considering the mass of the liquid absorbed inside the fibers as well as that imbibed between the fibers. The change of permeability and hydraulic radius of pores in a fibrous medium due to the fiber swelling is modeled by a statistical approach considering a non-uniform distribution of flax fiber diameter. By comparisons between capillary rise test results and modeling results, we prove the validity of the proposed modified Washburn model to take into account the effects from fiber swelling and liquid absorption on the decrease of capillary rise velocity. The experimental observation of long-term capillary rise tests show that the swelling behavior of the fibers highly packed in a closed volume and its influence on the capillary wicking are different from those of an individual single fiber in a free space. The current approach was useful to characterize the swelling of fibers highly packed in a closed volume and its influence of the long-term behavior of capillary wicking. Copyright © 2018 Elsevier Inc. All rights reserved.
Using SEM Analysis on Ion-Milled Shale Surface to Determine Shale-Fracturing Fluid Interaction
NASA Astrophysics Data System (ADS)
Lu, J.; Mickler, P. J.; Nicot, J. P.
2014-12-01
It is important to document and assess shale-fluid interaction during hydraulic fracturing (HF) in order to understand its impact on flowback water chemistry and rock property. A series of autoclave experiments were conducted to react shale samples from major oil and gas shales with synthetic HF containing various additives. To better determine mineral dissolution and precipitation at the rock-fluid interface, ion-milling technique was applied to create extremely flat rock surfaces that were examined before and after the autoclave experiments using a scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS) detectors. This method is able to reveal a level of detail not observable on broken surface or mechanically polished surface. It allows direct comparison of the same mineral and organic matter particles before and after the reaction experiments. Minerals undergone dissolution and newly precipitated materials are readily determined by comparing to the exact locations before reaction. The dissolution porosity and the thickness of precipitates can be quantified by tracing and measuring the geometry of the pores and precipitates. Changes in porosity and permeability were confirmed by mercury intrusion capillary tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas
When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix.more » These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However, coupled THC seepage models that include both permeability and capillary changes to fractures may not show this additional seepage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.
When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix.more » These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO{sub 2} volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However, coupled THC seepage models that include both permeability and capillary changes to fractures may not show this additional seepage.« less
Drop Tower Experiments concerning Fluid Management under Microgravity
NASA Astrophysics Data System (ADS)
Gaulke, Diana; Dreyer, Michael
2012-07-01
Transport and positioning of liquid under microgravity is done utilizing capillary forces. Therefore, capillary transport processes have to be understood for a wide variety of space applications, ranging from propellant management in tanks of space transportation systems to eating and drinking devices for astronauts. There are two types of liquid transportation in microgravity using capillary forces. First, the driven liquid flow in open channels where the capillary forces at free surfaces ensure a gas and vapor free flow. Here it is important to know the limiting flow rate through such an open channel before the free surface collapses and gas is sucked into the channel. A number of different experiments at the drop tower Bremen, on sounding rockets and at the ISS have been conducted to analyse this phenomenon within different geometries. As result a geometry dependent theory for calculating the maximum flow rate has been found. On the other hand liquid positioning and transportation requires the capillary pressure of curved surfaces to achieve a liquid flow to a desired area. Especially for space applications the weight of structure has to be taken into account for development. For example liquid positioning in tanks can be achieved via a complicated set of structure filling the whole tank resulting in heavy devices not reasonable in space applications. Astrium developed in cooperation with ZARM a propellant management device much smaller than the tank volume and ensuring a gas and vapour free supply of propellant to the propulsion system. In the drop tower Bremen a model of this device was tested concerning different microgravity scenarios. To further decrease weight and ensure functionality within different scenarios structure elements are designed as perforated geometries. Capillary transport between perforated plates has been analyzed concerning the influence of geometrical pattern of perforations. The conducted experiments at the drop tower Bremen show the remarkable influence of perforations on the capillary transport capability.
Jirkovská, Marie; Kučera, Tomáš; Dvořáková, Veronika; Jadrníček, Martin; Moravcová, Milena; Žižka, Zdeněk; Krejčí, Vratislav
2016-04-01
Maternal diabetes mellitus changes morphology and impairs function of placental capillaries. Here, quantitative parameters characterizing cell proliferation using detection of Ki67, differentiation reflected by nestin expression and apoptosis in placental capillary bed with active caspase 3 as a marker were compared in normal term placentas and placentas from pregnancies complicated by Type 1 maternal diabetes mellitus. Specimens of sixteen diabetic placentas and eight control placentas were collected by systematic uniform random sampling. Immunohistochemical detections of Ki67, nestin, and active caspase 3 were performed in histological sections of five haphazardly chosen blocks per placenta. Twenty fields of view per section, i.e. one hundred fields of view per placenta, were used for analysis of proliferation as well as of apoptosis, and in approximately 70 capillary cross-sections per placenta the nestin-positive segments of their circumference were measured. The percentage of Ki67-positive cells counted in the capillary wall was significantly lower in diabetic group. The counts of Ki67-labelled nuclei per villous area unit were significantly lower in cytotrophoblast and capillary wall of terminal villi in diabetic placenta. The proportion of nestin-labeled segments of capillary circumference was significantly higher in placentas of diabetic group. No differences in the numbers of apoptotic cells were found between studied groups. The results show that the term placenta in Type 1 diabetes has lower potential to enlarge the surface area of structures involved in maternofetal transport, and that the villous capillary bed displays delayed differentiation. Those factors may participate in decreased ability of diabetic placenta to comply with fetal requirements in the final stage of pregnancy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman
2017-01-01
Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.
Estimating natural recharge in San Gorgonio Pass watersheds, California, 1913–2012
Hevesi, Joseph A.; Christensen, Allen H.
2015-12-21
The SGPWM was used to simulate a 100-year water budget, including recharge and runoff, for water years 1913 through 2012. Results indicated that most recharge came from episodic infiltration of surface-water runoff in the larger stream channels. Results also indicated periods of great variability in recharge and runoff in response to variability in precipitation. More recharge was simulated for the area of the groundwater basin underlying the more permeable alluvial fill of the valley floor compared to recharge in the neighboring upland areas of the less permeable mountain blocks. The greater recharge was in response to the episodic streamflow that discharged from the mountain block areas and quickly infiltrated the permeable alluvial fill of the groundwater basin. Although precipitation at the higher altitudes of the mountain block was more than double precipitation at the lower altitudes of the valley floor, recharge for inter-channel areas of the mountain block was limited by the lower permeability bedrock underlying the thin soil cover, and most of the recharge in the mountain block was limited to the main stream channels underlain by alluvial fill.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleischer, N.M.
The skin is a heterogeneous, bi-directional impediment to chemical flux, in which the stratum corneum is a major, though not the sole, rate-limiting barrier layer to permeation. Systemic toxicity following dermal exposure to environmental chemicals and use of skin as a portal for systemic administration of drugs have led to extensive investigations of the inward flux of xenobiotics applied to the outer surface of skin. Those investigations mainly utilized in vitro experimental systems that were limited by the absence of normal physiologic functions. The objective of the present research was to investigate an in vivo skin permeation model system thatmore » was sensitive to perturbations of skin capillary physiology and stratum corneum. A [open quotes]fuzzy[close quotes] rat model system was devised that employed outward cutaneous migration of a systemically administered permeation probe, isoflurane. Specially devised, transdermal vapor collection devices were used to capture the outward flux of isoflurane through the skin. Isoflurane flux measurements, coupled with blood isoflurane concentrations, were used to calculate cutaneous permeability coefficients (K[sub p]) of isolflurane, as an index of permeation, under various conditions of normal or perturbed cutaneous physiologic states. Physiologic perturbations were performed to test the sensitivity of the model system to detect effects of minoxidil-mediated vasodilation, phenylephrine-mediated vasoconstriction, and leukotriene D[sub 4]-mediated increased capillary permeability on the outward flux of isoflurane. Tape stripping and topical ether-ethanol application produced either physical removal or chemical disruption of the stratum corneum, respectively. Minoxidil, leukotriene D[sub 4], tape stripping of stratum corneum, and topical ether-ethanol experiments produced statistically significant increases (52 to 193%) in the K[sub p's], while phenylephrine had no significant effect on isoflurane permeation.« less
Aneurysm permeability following coil embolization: packing density and coil distribution.
Chueh, Ju-Yu; Vedantham, Srinivasan; Wakhloo, Ajay K; Carniato, Sarena L; Puri, Ajit S; Bzura, Conrad; Coffin, Spencer; Bogdanov, Alexei A; Gounis, Matthew J
2015-09-01
Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of packing density and coil uniformity on aneurysm permeability. Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface area fraction and coil uniformity. All aneurysms were coiled to a packing density of at least 27%. Packing density, surface area fraction of the dome and neck, and uniformity of the dome were significantly correlated (p<0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for packing and uniformity measures. Coil mass permeability was modeled better with the inclusion of packing and uniformity measures of the dome (r(2)=0.73) than with packing density alone (r(2)=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with packing measures. A densely packed aneurysm with a high degree of coil mass uniformity will reduce permeability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude.
Hsia, Connie C W; Carbayo, Juan J Polo; Yan, Xiao; Bellotto, Dennis J
2005-05-12
To examine the effects of chronic high altitude (HA) exposure on lung structure during somatic maturation, we raised male weanling guinea pigs at HA (3800m) for 1, 3, or 6 months, while their respective male littermates were simultaneously raised at low altitude (LA, 1200m). Under anaesthesia, airway pressure was measured at different lung volumes. The right lung was fixed at a constant airway pressure for morphometric analysis under light and electron microscopy. In animals raised at HA for 1 month, lung volume, alveolar surface area and alveolar-capillary blood volume (V(c)) were elevated above LA control values. Following 3-6 months of HA exposure, increases in lung volume and alveolar surface area persisted while the initial increase in V(c) normalized. Additional adaptation occurred, including a higher epithelial cell volume, septal tissue volume and capillary surface area, a lower alveolar duct volume and lower harmonic mean diffusion barrier resulting in higher membrane and lung diffusing capacities. These data demonstrate enhanced alveolar septal growth and progressive acinar remodeling during chronic HA exposure with long-term augmentation of alveolar dimensions as well as functional compensation in lung compliance and diffusive gas transport.
Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method
Wang, Junjian; Kang, Qinjun; Wang, Yuzhu; ...
2017-06-01
One primary challenge for prediction of gas flow in the unconventional gas reservoir at the pore-scale such as shale and tight gas reservoirs is the geometric complexity of the micro-porous media. In this paper, a regularized multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is applied to analyze gas flow in 2-dimensional micro-porous medium reconstructed by quartet structure generation set (QSGS) on pore-scale. In this paper, the velocity distribution inside the porous structure is presented and analyzed, and the effects of the porosity and specific surface area on the rarefied gas flow and apparent permeability are examined and investigated. The simulation resultsmore » indicate that the gas exhibits different flow behaviours at various pressure conditions and the gas permeability is strongly related to the pressure. Finally, the increased porosity or the decreased specific surface area leads to the increase of the gas apparent permeability, and the gas flow is more sensitive to the pore morphological properties at low-pressure conditions.« less
Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Junjian; Kang, Qinjun; Wang, Yuzhu
One primary challenge for prediction of gas flow in the unconventional gas reservoir at the pore-scale such as shale and tight gas reservoirs is the geometric complexity of the micro-porous media. In this paper, a regularized multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is applied to analyze gas flow in 2-dimensional micro-porous medium reconstructed by quartet structure generation set (QSGS) on pore-scale. In this paper, the velocity distribution inside the porous structure is presented and analyzed, and the effects of the porosity and specific surface area on the rarefied gas flow and apparent permeability are examined and investigated. The simulation resultsmore » indicate that the gas exhibits different flow behaviours at various pressure conditions and the gas permeability is strongly related to the pressure. Finally, the increased porosity or the decreased specific surface area leads to the increase of the gas apparent permeability, and the gas flow is more sensitive to the pore morphological properties at low-pressure conditions.« less
NASA Technical Reports Server (NTRS)
Seidenberg, Benjamin (Inventor); Swanson, Theodore (Inventor)
1989-01-01
A wick for use in a capillary loop pump heat pipe is disclosed. The wick material is an essentially uniformly porous, permeable, open-cell, silicon dioxide/aluminum oxide inorganic ceramic foam having a silica fiber ratio, by weight, of about 78 to 22, respectively, a density of 6 lbs/cu ft, and an average pore size of less than 5 microns. A representative material having these characteristics is Lockheed Missile and Space Company, Inc.'s HTP 6-22. This material is fully compatible with the freons and anhydrous ammonia and allows for the use of these very efficient working fluids, and others, in capillary loops.
Spectacularly robust! Tensegrity principle explains the mechanical strength of the avian lung.
Maina, J N
2007-01-15
Among the air-breathing vertebrates, the respiratory system of birds, the lung-air sac system, is remarkably complex and singularly efficient. The most perplexing structural property of the avian lung pertains to its exceptional mechanical strength, especially that of the minuscule terminal respiratory units, the air- and the blood capillaries. In different species of birds, the air capillaries range in diameter from 3 to 20 micro m: the blood capillaries are in all cases relatively smaller. Over and above their capacity to withstand enormous surface tension forces at the air-tissue interface, the air capillaries resist mechanical compression (parabronchial distending pressure) as high as 20 cm H(2)O (2 kPa). The blood capillaries tolerate a pulmonary arterial vascular pressure of 24.1 mmHg (3.2 kPa) and vascular resistance of 22.5 mmHg (3 kPa) without distending. The design of the avian respiratory system fundamentally stems from the rigidity (strength) of the lung. The gas exchanger (the lung) is uncoupled from the ventilator (the air sacs), allowing the lung (the paleopulmonic parabronchi) to be ventilated continuously and unidirectionally by synchronized bellows like action of the air sacs. Since during the ventilation of the lung the air capillaries do not have to be distended (dilated), i.e., surface tension force does not have to be overcome (as would be the case if the lung was compliant), extremely intense subdivision of the exchange tissue was possible. Minuscule terminal respiratory units developed, producing a vast respiratory surface area in a limited lung volume. I make a case that a firm (rigid) rib cage, a lung tightly held by the ribs and the horizontal septum, a lung directly attached to the trunk, specially formed and compactly arranged parabronchi, intertwined atrial muscles, and tightly set air capillaries and blood capillaries form an integrated hierarchy of discrete network system of tension and compression, a tensegrity (tensional integrity) array, which absorbs, transmits, and dissipates stress, stabilizing (strengthening) the lung and its various structural components.
Self-assembly of triangular particles via capillary interactions
NASA Astrophysics Data System (ADS)
Bedi, Deshpreet; Zhou, Shangnan; Ferrar, Joseph; Solomon, Michael; Mao, Xiaoming
Colloidal particles adsorbed to a fluid interface deform the interface around them, resulting in either attractive or repulsive forces mediated by the interface. In particular, particle shape and surface roughness can produce an undulating contact line, such that the particles will assume energetically-favorable relative orientations and inter-particle distances to minimize the excess interfacial surface area. By expediently selecting specific particle shapes and associated design parameters, capillary interactions can be utilized to promote self-assembly of these particles into extended regular open structures, such as the kagome lattice, which have novel mechanical properties. We present the results of numerical simulations of equilateral triangle microprisms at an interface, including individually and in pairs. We show how particle bowing can yield two distinct binding events and connect it to theory in terms of a capillary multipole expansion and also to experiment, as presented in an accompanying talk. We also discuss and suggest design principles that can be used to create desirable open structures.
NASA Astrophysics Data System (ADS)
Wu, Jixuan; Liu, Bo; Zhang, Hao; Song, Binbin
2017-11-01
A silica-capillary-based whispering gallery mode (WGM) microresonator has been proposed and experimentally demonstrated for the real-time monitoring of the polylysine adsorption process. The spectral characteristics of the WGM resonance dips with high quality factor and good wavelength selectivity have been investigated to evaluate the dynamic process for the binding of polylysine with a capillary surface. The WGM transmission spectrum shows a regular shift with increments of observation time, which could be exploited for the analysis of the polylysine adsorption process. The proposed WGM microresonator system possesses desirable qualities such as high sensitivity, fast response, label-free method, high detection resolution and compactness, which could find promising applications in histology and related bioengineering areas.
Note: Design and fabrication of a simple versatile microelectrochemical cell and its accessories
NASA Astrophysics Data System (ADS)
Rajan, Viswanathan; Neelakantan, Lakshman
2015-09-01
A microelectrochemical cell housed in an optical microscope and custom-made accessories have been designed and fabricated, which allows performing spatially resolved corrosion measurements. The cell assembly was designed to directly integrate the reference electrode close to the capillary tip to avoid air bubbles. A hard disk along with an old optical microscope was re-engineered into a microgrinder, which made the vertical grinding of glass capillary tips very easy. A stepper motor was customized into a microsyringe pump to dispense a controlled volume of electrolyte through the capillary. A force sensitive resistor was used to achieve constant wetting area. The functionality of the developed instrument is demonstrated by studying μ-electrochemical behavior of worn surface on AA2014-T6 alloy.
A stress sensitivity model for the permeability of porous media based on bi-dispersed fractal theory
NASA Astrophysics Data System (ADS)
Tan, X.-H.; Liu, C.-Y.; Li, X.-P.; Wang, H.-Q.; Deng, H.
A stress sensitivity model for the permeability of porous media based on bidispersed fractal theory is established, considering the change of the flow path, the fractal geometry approach and the mechanics of porous media. It is noted that the two fractal parameters of the porous media construction perform differently when the stress changes. The tortuosity fractal dimension of solid cluster DcTσ become bigger with an increase of stress. However, the pore fractal dimension of solid cluster Dcfσ and capillary bundle Dpfσ remains the same with an increase of stress. The definition of normalized permeability is introduced for the analyzation of the impacts of stress sensitivity on permeability. The normalized permeability is related to solid cluster tortuosity dimension, pore fractal dimension, solid cluster maximum diameter, Young’s modulus and Poisson’s ratio. Every parameter has clear physical meaning without the use of empirical constants. Predictions of permeability of the model is accordant with the obtained experimental data. Thus, the proposed model can precisely depict the flow of fluid in porous media under stress.
NASA Astrophysics Data System (ADS)
Gershenzon, Naum; Soltanian, Mohamadreza; Ritzi, Robert, Jr.; Dominic, David
2015-04-01
Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. Previously we showed how the dynamics of a CO2 plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such reservoirs [3]. The results strongly suggest that representing these small scales (few cm in vertical direction and few meters in horizontal direction) features and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes. The results also demonstrated the importance of using separate capillary pressure and relative permeability relationships for different textural facies types. Here we present the result of simulation of CO2 trapping in deep saline aquifers using two different conventional approaches, i.e. Brooks-Corey and van Genuchten, to capillary pressure. We showed that capillary trapping as well as dissolution rates are very different for the Brooks-Corey and van Genuchten approaches if reservoir consists from various species with different capillary pressure and relative permeability curves. We also found a dramatic difference in simulation time; using the van Genuchten approach improves convergence and thus reduces calculation time by one-two orders of magnitude. [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in Facies Models Revisited, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85-170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, Water Resources Research, v. 46, W04515. [3] Gershenzon N.I., M. Soltanian, R.W. Ritzi Jr., and D.F. Dominic (2014) Influence of small scale heterogeneity on CO2 trapping processes in deep saline aquifers, Energy Procedia, 59, 166 - 173.
NASA Astrophysics Data System (ADS)
Jackson, S. J.; Krevor, S. C.; Agada, S.
2017-12-01
A number of studies have demonstrated the prevalent impact that small-scale rock heterogeneity can have on larger scale flow in multiphase flow systems including petroleum production and CO2sequestration. Larger scale modeling has shown that this has a significant impact on fluid flow and is possibly a significant source of inaccuracy in reservoir simulation. Yet no core analysis protocol has been developed that faithfully represents the impact of these heterogeneities on flow functions used in modeling. Relative permeability is derived from core floods performed at conditions with high flow potential in which the impact of capillary heterogeneity is voided. A more accurate representation would be obtained if measurements were made at flow conditions where the impact of capillary heterogeneity on flow is scaled to be representative of the reservoir system. This, however, is generally impractical due to laboratory constraints and the role of the orientation of the rock heterogeneity. We demonstrate a workflow of combined observations and simulations, in which the impact of capillary heterogeneity may be faithfully represented in the derivation of upscaled flow properties. Laboratory measurements that are a variation of conventional protocols are used for the parameterization of an accurate digital rock model for simulation. The relative permeability at the range of capillary numbers relevant to flow in the reservoir is derived primarily from numerical simulations of core floods that include capillary pressure heterogeneity. This allows flexibility in the orientation of the heterogeneity and in the range of flow rates considered. We demonstrate the approach in which digital rock models have been developed alongside core flood observations for three applications: (1) A Bentheimer sandstone with a simple axial heterogeneity to demonstrate the validity and limitations of the approach, (2) a set of reservoir rocks from the Captain sandstone in the UK North Sea targeted for CO2 storage, and for which the use of capillary pressure hysteresis is necessary, and (3) a secondary CO2-EOR production of residual oil from a Berea sandstone with layered heterogeneities. In all cases the incorporation of heterogeneity is shown to be key to the ultimate derivation of flow properties representative of the reservoir system.
Method for the preparation of high surface area high permeability carbons
Lagasse, Robert R.; Schroeder, John L.
1999-05-11
A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.
Water permeability in hydrate-bearing sediments: A pore-scale study
NASA Astrophysics Data System (ADS)
Dai, Sheng; Seol, Yongkoo
2014-06-01
Permeability is a critical parameter governing methane flux and fluid flow in hydrate-bearing sediments; however, limited valid data are available due to experimental challenges. Here we investigate the relationship between apparent water permeability (k') and hydrate saturation (Sh), accounting for hydrate pore-scale growth habit and meso-scale heterogeneity. Results from capillary tube models rely on cross-sectional tube shapes and hydrate pore habits, thus are appropriate only for sediments with uniform hydrate distribution and known hydrate pore character. Given our pore network modeling results showing that accumulating hydrate in sediments decreases sediment porosity and increases hydraulic tortuosity, we propose a modified Kozeny-Carman model to characterize water permeability in hydrate-bearing sediments. This model agrees well with experimental results and can be easily implemented in reservoir simulators with no empirical variables other than Sh. Results are also relevant to flow through other natural sediments that undergo diagenesis, salt precipitation, or bio-clogging.
Direct Numerical Simulation of Liquid Transport Through Fibrous Porous Media
NASA Astrophysics Data System (ADS)
Palakurthi, Nikhil Kumar
Fluid flow through fibrous media occurs in many industrial processes, including, but not limited, to fuel cell technology, drug delivery patches, sanitary products, textile reinforcement, filtration, heat exchangers, and performance fabrics. Understanding the physical processes involved in fluid flow through fibrous media is essential for their characterization as well as for the optimization and development of new products. Macroscopic porous-media equations require constitutive relations, which account for the physical processes occurring at the micro-scale, to predict liquid transport at the macro-scale. In this study, micro-scale simulations were conducted using conventional computational fluid dynamics (CFD) technique (finite-volume method) to determine the macroscopic constitutive relations. The first part of this thesis deals with the single-phase flow in fibrous media, following which multi-phase flow through fibrous media was studied. Darcy permeability is an important parameter that characterizes creeping flow through a fibrous porous medium. It has a complex dependence on the medium's properties such as fibers' in-plane and through-plane orientation, diameter, aspect ratio, curvature, and porosity. A suite of 3D virtual fibrous structures with a wide range of geometric properties were constructed, and the permeability values of the structures were calculated by solving the 3D incompressible Navier-Stokes equations. The through-plane permeability was found to be a function of only the fiber diameter, the fibers' through-plane orientation, and the porosity of the medium. The numerical results were used to extend a permeability-porosity relation, developed in literature for 3D isotropic fibrous media, to a wide range of fibers' through-plane orientations. In applications where rate of capillary penetration is important, characterization of porous media usually involves determination of either the effective pore radius from capillary penetration experiments or a representative pore radius (R50) from pore-size distribution data. The relationship between effective and representative pore radii was studied by performing direct simulations of capillary penetration of a wetting liquid using a finite-volume-based volume-of-fluid (VOF) method. The simulated unidirectional liquid penetration through fibrous media followed Lucas-Washburn kinetics (L ˜ t1/2), except during the initial stages, which are dominated by inertial forces. Even though fluid properties and contact angle were kept constant in the simulations, the effective pore radii were found to be quite different from the representative radii. It can be concluded that the differences between effective and representative pore radii did not arise from contact angle variations. The unsaturated flow through fibrous media at the macro-scale is typically described using Richard's equation which requires constitutive relations: capillary pressure and permeability as a function of liquid saturation. In the present study, the quasi-static capillary pressure-saturation (P c-S) relationship for the primary drainage in a 3D isotropic fibrous medium was determined by performing micro-scale simulations using a VOF method. The Pc-S relationship obtained from the VOF method was compared with the results from the full-morphology (FM) method. Good agreement was observed between the results from the VOF and FM methods, thus suggesting that the FM method, a computationally less intensive method as compared to VOF method, may be sufficient for estimating the Pc-S relationship for primary drainage.
Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan
2017-09-29
The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.
Water movement in glass bead porous media: 1. Experiments of capillary rise and hysteresis
NASA Astrophysics Data System (ADS)
Lu, T. X.; Biggar, J. W.; Nielsen, D. R.
1994-12-01
Experimental observations of capillary rise and hysteresis of water or ethanol in glass beads are presented to improve our understanding of those physical processes in porous media. The results provide evidence that capillary rise into porous media cannot be fully explained by a model of cylinders. They further demonstrate that the "Ink bottle" model does not provide an adequate explanation of hysteresis. Glass beads serving as a model for ideal soil are enclosed in a rectangular glass chamber model. A TV camera associated with a microscope was used to record the processes of capillary rise and drainage. It is clearly shown during capillary rise that the fluid exhibits a "jump" behavior at the neck of the pores in an initially dry profile or at the bottom of the water film in an initially wet profile. Under an initially dry condition, the jump initiates at the particle with smallest diameter. The jump process continues to higher elevations until at equilibrium the surface tensile force is balanced by the hydrostatic force. The wetting front at that time is readily observed as flat and saturated. Under an initially wet condition, capillary rise occurs as a water film thickening process associated with the jump process. Trapped air behind the wetting front renders the wetting front irregular and unsaturated. The capillary rise into an initially wet porous medium can be higher than that into an initially dry profile. During the drying process, large surface areas associated with the gas-liquid interface develop, allowing the porous medium to retain more water than during the wetting process at the same pressure. That mechanism explains better the hysteresis phenomenon in porous media in contrast to other mechanisms that now prevail.
Resolution dependence of petrophysical parameters derived from X-ray tomography of chalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müter, D.; Sørensen, H. O.; Jha, D.
2014-07-28
X-ray computed tomography data from chalk drill cuttings were taken over a series of voxel dimensions, ranging from 320 to 25 nm. From these data sets, standard petrophysical parameters (porosity, surface area, and permeability) were derived and we examined the effect of the voxel dimension (i.e., image resolution) on these properties. We found that for the higher voxel dimensions, they are severely over or underestimated, whereas for 50 and 25 nm voxel dimension, the resulting values (5%–30% porosity, 0.2–2 m{sup 2}/g specific surface area, and 0.06–0.34 mD permeability) are within the expected range for this type of rock. We compared our resultsmore » to macroscopic measurements and in the case of surface area, also to measurements using the Brunauer-Emmett-Teller (BET) method and found that independent of the degree of compaction, the results from tomography amount to about 30% of the BET method. Finally, we concluded that at 25 nm voxel dimension, the essential features of the nanoscopic pore network in chalk are captured but better resolution is still needed to derive surface area.« less
Schütte, H; Rosseau, S; Czymek, R; Ermert, L; Walmrath, D; Krämer, H J; Seeger, W; Grimminger, F
1997-09-01
Lipopolysaccharides (LPS) of gram-negative bacteria prime rabbit lungs for enhanced thromboxane-mediated vasoconstriction upon subsequent challenge with the exotoxin Escherichia coli hemolysin (HlyA) (Walmrath et al. J. Exp. Med. 1994;180:1437-1443). We investigated the impact of endotoxin priming and subsequent HlyA challenge on lung vascular permeability while maintaining constancy of capillary pressure. Rabbit lungs were perfused in a pressure-controlled mode in the presence of the thromboxane receptor antagonist BM 13.505, with continuous monitoring of flow. Perfusion for 180 min with 10 ng/ml LPS did not provoke vasoconstriction or alteration of capillary filtration coefficient (Kfc) values. HlyA (0.021 hemolytic units/ml) induced thromboxane release and a transient decrease in perfusion flow in the absence of significant changes in Kfc. Similar results were obtained when LPS and HlyA were coapplied simultaneously. However, when the HlyA challenge was undertaken after 180 min of LPS priming, a manifold increase in Kfc values was noted, with concomitant severe lung edema formation, although capillary pressure remained unchanged. Thus, endotoxin primes the lung vasculature to respond with a severe increase in vascular permeability to a subsequent low-dose application of HlyA. Such synergism between endotoxin priming and exotoxin challenge in provoking lung vascular leakage may contribute to the pathogenesis of respiratory failure in sepsis and severe lung infection.
Maintenance of cAMP in non-heart-beating donor lungs reduces ischemia-reperfusion injury.
Hoffmann, S C; Bleiweis, M S; Jones, D R; Paik, H C; Ciriaco, P; Egan, T M
2001-06-01
Studies suggest that pulmonary vascular ischemia-reperfusion injury (IRI) can be attenuated by increasing intracellular cAMP concentrations. The purpose of this study was to determine the effect of IRI on capillary permeability, assessed by capillary filtration coeficient (Kfc), in lungs retrieved from non-heart-beating donors (NHBDs) and reperfused with the addition of the beta(2)-adrenergic receptor agonist isoproterenol (iso), and rolipram (roli), a phosphodiesterase (type IV) inhibitor. Using an in situ isolated perfused lung model, lungs were retrieved from NHBD rats at varying intervals after death and either ventilated with O(2) or not ventilated. The lungs were reperfused with Earle's solution with or without a combination of iso (10 microM) and roli (2 microM). Kfc, lung viability, and pulmonary hemodynamics were measured. Lung tissue levels of adenine nucleotides and cAMP were measured by HPLC. Combined iso and roli (iso/roli) reperfusion decreased Kfc significantly (p < 0.05) compared with non-iso/roli-reperfused groups after 2 h of postmortem ischemia. Total adenine nucleotide (TAN) levels correlated with Kfc in non-iso/roli-reperfused (r = 0.89) and iso/roli-reperfused (r = 0.97) lungs. cAMP levels correlated with Kfc (r = 0.93) in iso/roli-reperfused lungs. Pharmacologic augmentation of tissue TAN and cAMP levels might ameliorate the increased capillary permeability observed in lungs retrieved from NHBDs.
Method of making tapered capillary tips with constant inner diameters
Kelly, Ryan T [West Richland, WA; Page, Jason S [Kennewick, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA
2009-02-17
Methods of forming electrospray ionization emitter tips are disclosed herein. In one embodiment, an end portion of a capillary tube can be immersed into an etchant, wherein the etchant forms a concave meniscus on the outer surface of the capillary. Variable etching rates in the meniscus can cause an external taper to form. While etching the outer surface of the capillary wall, a fluid can be flowed through the interior of the capillary tube. Etching continues until the immersed portion of the capillary tube is completely etched away.
Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing
2014-03-21
Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H(+) through the polymersome membrane was 5.659 × 10(-26) cm(2) s(-1), while that of liposomes was 1.017 × 10(-24) cm(2) s(-1). The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.
NASA Astrophysics Data System (ADS)
Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing
2014-02-01
Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H+ through the polymersome membrane was 5.659 × 10-26 cm2 s-1, while that of liposomes was 1.017 × 10-24 cm2 s-1. The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.
Koutny, Tomas
2013-11-01
This study suggests an approach for the comparison and evaluation of particular compartments with modest experimental setup costs. A glucose level prediction model was used to evaluate the compartment's glucose transport rate across the blood capillary membrane and the glucose utilization rate by the cells. The glucose levels of the blood, subcutaneous tissue, skeletal muscle tissue, and visceral fat were obtained in experiments conducted on hereditary hypertriglyceridemic rats. After the blood glucose level had undergone a rapid change, the experimenter attempted to reach a steady blood glucose level by manually correcting the glucose infusion rate and maintaining a constant insulin infusion rate. The interstitial fluid glucose levels of subcutaneous tissue, skeletal muscle tissue, and visceral fat were evaluated to determine the reaction delay compared with the change in the blood glucose level, the interstitial fluid glucose level predictability, the blood capillary permeability, the effect of the concentration gradient, and the glucose utilization rate. Based on these data, the glucose transport rate across the capillary membrane and the utilization rate in a particular tissue were determined. The rates obtained were successfully verified against positron emission tomography experiments. The subcutaneous tissue exhibits the lowest and the most predictable glucose utilization rate, whereas the skeletal muscle tissue has the greatest glucose utilization rate. In contrast, the visceral fat is the least predictable and has the shortest reaction delay compared with the change in the blood glucose level. The reaction delays obtained for the subcutaneous tissue and skeletal muscle tissue were found to be approximately equal using a metric based on the time required to reach half of the increase in the interstitial fluid glucose level. © 2013 Published by Elsevier Ltd.
Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori
2007-09-30
The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that hasmore » already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.« less
Liquid spreading on ceramic-coated carbon nanotube films and patterned microstructures
NASA Astrophysics Data System (ADS)
Zhao, Hangbo; Hart, A. John
2015-11-01
We study the capillary-driven liquid spreading behavior on films and microstructures of ceramic-coated vertically aligned carbon nanotubes (CNTs) fabricated on quartz substrates. The nanoscale porosity and micro-scale dimensions of the CNT structures, which can be precisely varied by the fabrication process, enable quantitative measurements that can be related to analytical models of the spreading behavior. Moreover, the conformal alumina coating by atomic layer deposition (ALD) prevents capillary-induced deformation of the CNTs upon meniscus recession, which has complicated previous studies of this topic. Washburn-like liquid spreading behavior is observed on non-patterned CNT surfaces, and is explained using a scaling model based on the balance of capillary driving force and the viscous drag force. Using these insights, we design patterned surfaces with controllable spreading rates and study the contact line pinning-depinning behavior. The nanoscale porosity, controllable surface chemistry, and mechanical stability of coated CNTs provide significantly enhanced liquid-solid interfacial area compared to solid microstructures. As a result, these surface designs may be useful for applications such as phase-change heat transfer and electrochemical energy storage. Funding for this project is provided by the National Institutes of Health and the MIT Center for Clean Water and Clean Energy supported by the King Fahd University of Petroleum and Minerals.
Thermal Performance of Surface Wick Structures.
NASA Astrophysics Data System (ADS)
Chen, Yongkang; Tavan, Noel; Baker, John; Melvin, Lawrence; Weislogel, Mark
2010-03-01
Microscale surface wick structures that exploit capillary driven flow in interior corners have been designed. In this study we examine the interplay between capillary flow and evaporative heat transfer that effectively reduces the surface temperature. The tests are performed by raising the surface temperature to various levels before the flow is introduced to the surfaces. Certainly heat transfer weakens the capillary driven flow. It is observed, however, the surface temperature can be reduced significantly. The effects of geometric parameters and interconnectivity are to be characterized to identify optimal configurations.
Continuous-Flow Electrophoresis of DNA and Proteins in a Two-Dimensional Capillary-Well Sieve.
Duan, Lian; Cao, Zhen; Yobas, Levent
2017-09-19
Continuous-flow electrophoresis of macromolecules is demonstrated using an integrated capillary-well sieve arranged into a two-dimensional anisotropic array on silicon. The periodic array features thousands of entropic barriers, each resulting from an abrupt interface between a 2 μm deep well (channel) and a 70 nm capillary. These entropic barriers owing to two-dimensional confinement within the capillaries are vastly steep in relation to those arising from slits featuring one-dimensional confinement. Thus, the sieving mechanisms can sustain relatively large electric field strengths over a relatively small array area. The sieve rapidly sorts anionic macromolecules, including DNA chains and proteins in native or denatured states, into distinct trajectories according to size or charge under electric field vectors orthogonally applied. The baseline separation is achieved in less than 1 min within a horizontal migration length of ∼1.5 mm. The capillaries are self-enclosed conduits in cylindrical profile featuring a uniform diameter and realized through an approach that avoids advanced patterning techniques. The approach exploits a thermal reflow of a layer of doped glass for shape transformation into cylindrical capillaries and for controllably shrinking the capillary diameter. Lastly, atomic layer deposition of alumina is introduced for the first time to fine-tune the capillary diameter as well as to neutralize the surface charge, thereby suppressing undesired electroosmotic flows.
Nanoscale mechanochemical wear of phosphate laser glass against a CeO2 particle in humid air
NASA Astrophysics Data System (ADS)
Yu, Jiaxin; He, Hongtu; Zhang, Yafeng; Hu, Hailong
2017-01-01
Using an atomic force microscope, the friction and wear of phosphate laser glass against a CeO2 particle were quantitatively studied both in humid air and in vacuum, to reveal the water molecules induced mechanochemical wear mechanism of phosphate laser glass. The friction coefficient of the glass/CeO2 pair in air was found to be 5-7 times higher than that in vacuum due to the formation of a capillary water bridge at the friction interface, with a contribution of the capillary-related friction to the total friction coefficient as high as 65-79%. The capillary water bridge further induced a serious material removal of glass and CeO2 particle surfaces, while supplying both a local liquid water environment to corrode the glass surface and a high shearing force to assist the stretching of the Cesbnd Osbnd P bond, accelerating the reaction between water and the glass/CeO2 pair. In vacuum, however, no discernable wear phenomena were observed, but the phase images captured by AFM tapping mode suggested the occurrence of potential strain hardening in the friction area of the glass surface.
Chen, K H; Chao, D; Liu, C F; Chen, C F; Wang, D
2010-04-01
This study sought to determine whether oxygen radical scavengers of dimethylthiourea (DMTU), superoxide dismutase (SOD), or catalase (CAT) pretreatment attenuated ischemia-reperfusion (I/R)-induced lung injury. After isolation from a Sprague-Dawley rat, the lungs were perfused through the pulmonary artery cannula with rat whole blood diluted 1:1 with a physiological salt solution. An acute lung injury was induced by 10 minutes of hypoxia with 5% CO2-95% N2 followed by 65 minutes of ischemia and then 65 minutes of reperfusion. I/R significantly increased microvascular permeability as measured by the capillary filtration coefficient (Kfc), lung weight-to-body weight ratio (LW/BW), and protein concentration in bronchoalveolar lavage fluid (PCBAL). DMTU pretreatment significantly attenuated the acute lung injury. The capillary filtration coefficient (P<.01), LW/BW (P<.01) and PCBAL (P<.05) were significantly lower among the DMTU-treated rats than hosts pretreated with SOD or CAT. The possible mechanisms of the protective effect of DMTU in I/R-induced lung injury may relate to the permeability of the agent allowing it to scavenge intracellular hydroxyl radicals. However, whether superoxide dismutase or catalase antioxidants showed protective effects possibly due to their impermeability of the cell membrane not allowing scavenging of intracellular oxygen radicals. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Buchwalter, David B; Jenkins, Jeffrey J; Curtis, Lawrence R
2003-11-01
Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5 degrees C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.
Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.
2003-01-01
Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5??C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.
NASA Technical Reports Server (NTRS)
Baranski, S.; Edelwejn, Z.; Wojtkowiak, M.
1980-01-01
The permeability of capillary vessels was investigated in order to determine if acceleration alone or following prolonged hypokinesia would induce changes in the vascular wall leading to the penetration by l-albumins and/or proteins with larger molecules. In rats undergoing action of +5 Gz accelerations, no increase in vascular permeability, as tested with the use of (Cr-5k)-globulin, was demostrated. In rats immobilized for 4 weeks before centrifugation, rather weak migration of (Cr-51)-globulin from the vessels was observed. Immobilization resulted also in lowering of conduction velocity in the sciatic nerve.
Verification of capillary pressure functions and relative permeability equations for gas production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Jaewon
The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO 2 sequestration, contaminants cleanup and natural gas production from hydrate bearing sediments. However, there are many unanswered questions about the key parameters that characterize gas and water flows in porous media. The characteristics of multiphase fluid flow in porous media such as water retention curve, relative permeability, preferential fluid flow patterns and fluid-particle interaction should be taken into consideration for a fundamental understanding of the behavior of pore scale systems.
[The blood-brain barrier in ageing persons].
Haaning, Nina; Damsgaard, Else Marie; Moos, Torben
2018-03-26
Brain capillary endothelial cells (BECs) form the ultra-tight blood-brain barrier (BBB). The permeability of the BBB increases with increasing age and neurovascular and neurodegenerative diseases. Major defects of the BBB can be initiated by increased permeability to plasma proteins in small arteriosclerotic arteries and release of proteins from degenerating neurons into the brain extracellular space. These proteins deposit in perivascular spaces, and subsequently negatively influence the BECs leading to decreased expression of barrier proteins. Detection of BBB defects by the use of non-invasive techniques is relevant for clinical use in settings with advanced age and severe brain disorders.
Oil recovery by imbibition in low-permeability chalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuiec, L.; Bourbiaux, B.; Kalaydjian, F.
1994-09-01
This paper describes experimental studies of spontaneous imbibition of oil by water in a low-permeability outcrop chalk. At constant and high interfacial tension (IFT), the importance of capillary forces and the existence of a predominantly countercurrent mechanism were established. Additional experiments were performed to investigate the influence of length and of various boundary conditions. In another investigation the authors modified the IFT at the sample boundary by using pairs of conjugate phases of the n-hexane/ethanol/brine ternary system. Final recovery increased when IFT was lowered. They give a numerical interpretation for this last result.
Nikcevic, Irena; Lee, Se Hwan; Piruska, Aigars; Ahn, Chong H.; Ridgway, Thomas H.; Limbach, Patrick A.; Wehmeyer, K. R.; Heineman, William R.; Seliskar, Carl J.
2009-01-01
Injection molded poly(methylmethacrylate) (IM-PMMA), chips were evaluated as potential candidates for capillary electrophoresis disposable chip applications. Mass production and usage of plastic microchips depends on chip-to-chip reproducibility and on analysis accuracy. Several important properties of IM-PMMA chips were considered: fabrication quality evaluated by environmental scanning electron microscope imaging, surface quality measurements, selected thermal/electrical properties as indicated by measurement of the current versus applied voltage (I–V) characteristic, and the influence of channel surface treatments. Electroosmotic flow was also evaluated for untreated and O2 reactive ion etching (RIE) treated surface microchips. The performance characteristics of single lane plastic microchip capillary electrophoresis (MCE) separations were evaluated using a mixture of two dyes - fluorescein (FL) and fluorescein isothiocyanate (FITC). To overcome non-wettability of the native IM-PMMA surface, a modifier, polyethylene oxide was added to the buffer as a dynamic coating. Chip performance reproducibility was studied for chips with and without surface modification via the process of RIE with O2 and by varying the hole position for the reservoir in the cover plate or on the pattern side of the chip. Additionally, the importance of reconditioning steps to achieve optimal performance reproducibility was also examined. It was found that more reproducible quantitative results were obtained when normalized values of migration time, peak area and peak height of FL and FITC were used instead of actual measured parameters PMID:17477932
Gabriele, Sylvain; Benoliel, Anne-Marie; Bongrand, Pierre; Théodoly, Olivier
2009-01-01
Circulating leukocyte sequestration in pulmonary capillaries is arguably the initiating event of lung injury in acute respiratory distress syndrome. We present a microfluidic investigation of the roles of actin organization and myosin II activity during the different stages of leukocyte trafficking through narrow capillaries (entry, transit and shape relaxation) using specific drugs (latrunculin A, jasplakinolide, and blebbistatin). The deformation rate during entry reveals that cell stiffness depends strongly on F-actin organization and hardly on myosin II activity, supporting a microfilament role in leukocyte sequestration. In the transit stage, cell friction is influenced by stiffness, demonstrating that the actin network is not completely broken after a forced entry into a capillary. Conversely, membrane unfolding was independent of leukocyte stiffness. The surface area of sequestered leukocytes increased by up to 160% in the absence of myosin II activity, showing the major role of molecular motors in microvilli wrinkling and zipping. Finally, cell shape relaxation was largely independent of both actin organization and myosin II activity, whereas a deformed state was required for normal trafficking through capillary segments. PMID:19450501
Zheng, Juan; Lu, Cuiming; Huang, Junlong; Chen, Luyi; Ni, Chuyi; Xie, Xintong; Zhu, Fang; Wu, Dingcai; Ouyang, Gangfeng
2018-08-15
Novel powdery polymer aerogel (PPA) prepared via the (micro)emulsion polymerization and the following hyper crosslinking reaction was fabricated as stationary phase of capillary column for the first time. Due to its powdery morphology, unique 3D nano-network structure, high surface area and good thermostability, the PPA-coated capillary column demonstrated high-resolution chromatographic separation towards nonpolar and weakly polar organic compounds, including benzene series, n-alkanes, ketone mixtures and trichlorobenzenes. Moreover, the reproducibility, quantitative analysis ability and thermostability of PPA-coated capillary column were also evaluated. The relative standard deviations for three replicate determinations of selected analytes were 0.02-0.11%, 0.12-0.26% and 1.2-3.6% for run-to-run, day-to-day and column-to-column analyses, respectively. The PPA demonstrated good thermostability, and the PPA-coated capillary column was proved to be heat-resistant (270 °C). The results of this study show PPA is an excellent candidate to be employed as stationary phase for gas chromatography capillary. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Purohit, Ghanshyam Purshottamdas
Experimental investigations of static liquid fillets formed between small gaps of a cylindrical surface and a flat surface are carried out. The minimum volume of liquid required to form a stable fillet and the maximum liquid content the fillet can hold before becoming unstable are studied. Fillet shapes are captured in photographs obtained by a high speed image system. Experiments were conducted using water, UPA and PF 5060 on two surfaces-stand-blasted titanium and polished copper for different surface inclinations. Experimental data are generalized using appropriate non-dimensional groups. Analytical model are developed to describe the fillet curvature. Fillet curvature data are compared against model predictions and are found to be in close agreement. Bubble point experiments were carried out to measure the capillary pressure difference across the liquid-gas interface in the channels of photo-chemically etched disk stacks. Experiments were conducted using titanium stacks of five different geometrical configurations. Both well wetting liquids (IPA and PF5060) and partially wetting liquid (water) were used during experiments. Test results are found to be in close agreement with analytical predictions. Experiments were carried out to measure the frictional pressure drop across the stack as a function of liquid flow rate using two different liquids (water and IPA) and five stacks of different geometrical configurations. A channel pressure drop model is developed by treating the flow within stack channels as fully developed laminar flow between parallel plates and solving the one-dimensional Navier Stokes equation. An alternate model is developed by treating the flow in channels as flow within porous media. Expressions are developed for effective porosity and permeability for the stacks and the pressure drop is related to these parameters. Pressure drop test results are found to be in close agreement with model predictions. As a specific application of this work, a surface tension propellant management device (PMD) that uses photo-chemically etched disk stacks as capillary elements is examined. These PMDs are used in gas pressurized liquid propellant tanks to supply gas-free propellant to rocket engines in near zero-gravity environment. The experimentally validated models are integrated to perform key analyses for predicting PMD performance in zero gravity.
Diffusion of macromolecules through sclera.
Miao, Heng; Wu, Bi-Dong; Tao, Yong; Li, Xiao-Xin
2013-02-01
To quantify the in vitro permeability coefficient over different topographical locations of porcine sclera to macromolecules with different molecular weight. Fresh equatorial and posterior superotemporal porcine sclera was mounted in a two-chamber diffusion apparatus, and its permeability to fluorescein isothiocyanate (FITC)-conjugated dextrans ranging in molecular weight from 40 kDa to 150 kDa was determined by fluorescence spectrophotometry. The sclera was processed as frozen sections and viewed with a fluorescence microscope. The thickness of the area and the thickness that macromolecules enriched in the surface of sclera were measured. The permeability coefficient (Pc) of porcine sclera to macromolecules was significantly higher (40 kDa, p = 0.028; 70 kDa, p = 0.033; 150 kDa, p = 0.007) in equatorial region than posterior, which could be attributed to the significant difference of thickness (p < 0.001, Kruskal-Wallis) between them. Moreover, linear regression indicated a significant negative relationship (40 kDa, p < 0.001; 70 kDa, p = 0.015; 150 kDa, p < 0.001) between scleral permeability coefficient and thickness. Also, Pc declined significantly with increasing molecular weight (MW, p < 0.001, Kruskal-Wallis). The area that the macromolecules enriched in the scleral surface was thicker for those with larger MW (p < 0.001, Kruskal-Wallis). The maximum MW and size for equatorial and posterior superotemporal scleral tissue were 185.01 KDa and 180.42 KDa, 9.92 nm and 9.67 nm, respectively. The permeability coefficient of porcine sclera has a significant negative relationship with scleral thickness and MW of macromolecules. Larger macromolecules are more likely to accumulate in scleral surface. The difference between topographical locations may have pharmacokinetic implications when considering transscleral diffusion of macromolecules. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch; Lodz University of Technology, Department of Building Physics and Building Materials, Lodz; Trtik, Pavel
2015-07-15
Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested.more » The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.« less
Porous textile antenna designs for improved wearability
NASA Astrophysics Data System (ADS)
Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.
2018-04-01
Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, B.; Rossabi, J.; Shinn, J.D. II
1997-05-01
This report documents the results of a combined field and laboratory investigation program to: (1) delineate the geologic layering and (2) determine the location of a dense non-aqueous liquid-phase (DNAPL) contaminated plume beneath the M Area Hazardous Waste Management Facility at the Savannah River Plant. During April of 1991, DNAPLs were detected in monitoring well (MSB-3D), located adjacent to the capped M-Area Settling Basin. Solvents in the well consisted mainly of tetrachloroethylene and trichloroethylene, which are also the main solvents found in groundwater in the M Area. In permeable soils, DNAPLs move downward rapidly due to their high density andmore » low viscosity as compared to water. Within the vadose zone, DNAPLs tend to be held by the less permeable clay and silts by capillary force. In the saturated zone, the downward movement is slowed by clays and silts and the DNAPL tends to pool on this layer, then spread laterally. The lateral movement continues until a permeable layer is encountered, which can be a sand lens, fracture or other high conductivity seam. The DNAPL then moves downward, until another low permeability layer is encountered. Applied Research Associates was contracted to conduct a program to: (1) field demonstrate the utility of Cone Penetration Technology to investigate DOE contaminant sites and, (2) conduct a laboratory and field program to evaluate the use of electric resistivity surveys to locate DNAPL contaminated soils. The field program was conducted in the M-Basin and laboratory tests were conducted on samples from the major stratigraphy units as identified in Eddy et. al. Cone Penetration Technology was selected to investigate the M-Basin as it: (1) is minimally invasive, (2) generates minimal waste, (3) is faster and less costly than drilling, (4) provides continuous, detailed in situ characterization data, (5) permits real-time data processing, and (6) can obtain soil, soil gas, and water samples without the need for a boring.« less
NASA Astrophysics Data System (ADS)
Webster, Elizabeth T.
Sol-gel methods for fabricating ceramic membranes on porous supports include dip coating, evaporative drying, and sintering. The ceramic membranes of interest in the present research were prepared from aqueous sols of silica, titania, or iron oxide nano-particles which were deposited on porous alumina supports. Physisorption measurements indicate that the diameters of the pores in the resulting membranes are 20 A or smaller. Defect formation during fabrication is particularly problematic for ceramic membranes with pore diameters in the nanometer range. Solutions to these problems would greatly enhance the commercial potential of nano-filtration membranes for gas-phase separations. Cracks are debilitating defects which originate during the drying and firing phases of fabrication. As water evaporates during drying, the sol-gel film is subjected to large capillary forces. Unchecked, these tensile forces result in catastrophic cracking across the membrane. A novel technique called internal deposition can be employed to deposit the sol particles within the pores of the support rather than on its surface. Internal deposition obstructs the propagation of cracks, thereby reducing the impact of crack-type defects. A patent for demonstration of proof of concept of the internal deposition technique has been received. Experimental difficulties associated with the nonuniform morphology of the tubular alumina support hindered further development of the internal deposition protocol. The final phase of the research incorporated a support containing uniform capillaries (Anotec(TM) disks). Two-level factorial experiments were conducted to determine the effects of various deposition and drying conditions (viz., speed and method of deposition, surface charge, humidity, and drying rate) on membrane performance. Membrane performance was characterized in terms of the permeabilities of nitrogen and helium in the resulting membranes. The permeability and pressure data were incorporated in a transport model to characterize the mechanisms of fluid flow and the morphologies of the membranes. Electron microscopy was employed to evaluate membrane coverage and to identify defects in the membranes. The results of the factorial experiments indicate that membrane performance is strongly affected by humidity during deposition and drying. These results underscore the importance of controlling process humidity during fabrication of ceramic membranes.
MRI of perfluorocarbon emulsion kinetics in rodent mammary tumours
NASA Astrophysics Data System (ADS)
Fan, Xiaobing; River, Jonathan N.; Muresan, Adrian S.; Popescu, Carmen; Zamora, Marta; Culp, Rita M.; Karczmar, Gregory S.
2006-01-01
Perfluorocarbon (PFC) emulsions can be imaged directly by fluorine-19 MRI. We developed an optimized protocol for preparing PFC droplets of uniform size, evaluated use of the resulting droplets as blood pool contrast agents, studied their uptake by tumours and determined the spatial resolution with which they can be imaged at 4.7 T. Perfluorocarbon droplets of three different average sizes (324, 293 and 225 nm) were prepared using a microemulsifier. Images of PFC droplets with good signal-to-noise ratio were acquired with 625 µm in-plane resolution, 3 mm slice thickness and acquisition time of ~4.5 min per image. Kinetics of washout were determined using a simple mathematical model. The maximum uptake of the PFC droplets was three times greater at the tumour rim than in muscle, but the washout rate was two to three times slower in the tumour. The results are consistent with leakage of the droplets into the tumour extravascular space due to the hyper-permeability of tumour capillaries. PFC droplets may allow practical and quantitative measurements of blood volume and capillary permeability in tumours with reasonable spatial resolution.
Jones, D R; Becker, R M; Hoffmann, S C; Lemasters, J J; Egan, T M
1997-07-01
Lungs harvested from cadaveric circulation-arrested donors may increase the donor pool for lung transplantation. To determine the degree and time course of ischemia-reperfusion injury, we evaluated the effect of O2 ventilation on capillary permeability [capillary filtration coefficient (Kfc)], cell viability, and total adenine nucleotide (TAN) levels in in situ circulation-arrested rat lungs. Kfc increased with increasing postmortem ischemic time (r = 0.88). Lungs ventilated with O2 1 h postmortem had similar Kfc and wet-to-dry ratios as controls. Nonventilated lungs had threefold (P < 0.05) and sevenfold (P < 0.0001) increases in Kfc at 30 and 60 min postmortem compared with controls. Cell viability decreased in all groups except for 30-min postmortem O2-ventilated lungs. TAN levels decreased with increasing ischemic time, particularly in nonventilated lungs. Loss of adenine nucleotides correlated with increasing Kfc values (r = 0.76). This study indicates that lungs retrieved 1 h postmortem may have normal Kfc with preharvest O2 ventilation. The relationship between Kfc and TAN suggests that vascular permeability may be related to lung TAN levels.
Analysis of flow dynamics through small diameter gas sampling systems
NASA Technical Reports Server (NTRS)
Brown, K. G.
1984-01-01
The removal of gas material through a capillary opening in a surface is analyzed. The gas, from which the sample is removed, is moving past the surface at supersonic velocities. A variety of possible conditions of temperature, pressure and composition are discussed in an effort to emulate conditions that might be found at the surface of a vehicle traversing the altitude range 100-50 km, or might exist at the surface of a model in the stream of a high enthalpy wind tunnel. Aspects discussed include: (1) the throughput of the capillary for conditions of different lengths and different L/a (length/radius) ratios; (2) the total throughput when the surface in question contains many hundreds of these capillaries; (3) the effect of the capillaries upon the composition of the analyzed gas; (4) the effect of the capillary or capillaries upon the gas stream itself; and (5) the implications of the calculations upon the possible implementation of this type of device as an inlet for a mass spectrometer to be developed for analyzing the upper atmosphere.
Brand, M D; Couture, P; Else, P L; Withers, K W; Hulbert, A J
1991-01-01
Standard metabolic rate is 7-fold greater in the rat (a typical mammal) than in the bearded dragon, Amphibolurus vitticeps (a reptile with the same body mass and temperature). Rat hepatocytes respire 4-fold faster than do hepatocytes from the lizard. The inner membrane of isolated rat liver mitochondrial has a proton permeability that is 4-5-fold greater than the proton permeability of the lizard liver mitochondrial membrane per mg of mitochondrial protein. The greater permeability of rat mitochondria is not caused by differences in the surface area of the mitochondrial inner membrane, but differences in the fatty acid composition of the mitochondrial phospholipids may be involved in the permeability differences. Greater proton permeability of the mitochondrial inner membrane may contribute to the greater standard metabolic rate of mammals. PMID:1850242
Method for the preparation of high surface area high permeability carbons
Lagasse, R.R.; Schroeder, J.L.
1999-05-11
A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO{sub 2} at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere. 3 figs.
Design of an experimental apparatus for measurement of the surface tension of metastable fluids
NASA Astrophysics Data System (ADS)
Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.
2013-04-01
A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.
"Facilitated" amino acid transport is upregulated in brain tumors.
Miyagawa, T; Oku, T; Uehara, H; Desai, R; Beattie, B; Tjuvajev, J; Blasberg, R
1998-05-01
The goal of this study was to determine the magnitude of "facilitated" amino acid transport across tumor and brain capillaries and to evaluate whether amino acid transporter expression is "upregulated" in tumor vessels compared to capillaries in contralateral brain tissue. Aminocyclopentane carboxylic acid (ACPC), a non-metabolized [14C]-labeled amino acid, and a reference molecule for passive vascular permeability, [67Ga]-gallium-diethylenetriaminepentaacetic acid (Ga-DTPA), were used in these studies. Two experimental rat gliomas were studied (C6 and RG2). Brain tissue was rapidly processed for double label quantitative autoradiography 10 minutes after intravenous injection of ACPC and Ga-DTPA. Parametric images of blood-to-brain transport (K1ACPC and K1Ga-DTPA, microL/min/g) produced from the autoradiograms and the histology were obtained from the same tissue section. These three images were registered in an image array processor; regions of interest in tumor and contralateral brain were defined on morphologic criteria (histology) and were transferred to the autoradiographic images to obtain mean values. The facilitated component of ACPC transport (deltaK1ACPC) was calculated from the K1ACPC and K1Ga-DTPA data, and paired comparisons between tumor and contralateral brain were performed. ACPC flux, K1ACPC, across normal brain capillaries (22.6 +/- 8.1 microL/g/min) was >200-fold greater than that of Ga-DTPA (0.09 +/- 0.04 microL/g/min), and this difference was largely (approximately 90%) due to facilitated ACPC transport. Substantially higher K1ACPC values compared to corresponding K1DTPA values were also measured in C6 and RG2 gliomas. The deltaK1ACPC values for C6 glioma were more than twice that of contralateral brain cortex. K1ACPC and deltaK1ACPC values for RG2 gliomas was not significantly higher than that of contralateral cortex, although a approximately 2-fold difference in facilitated transport is obtained after normalization for differences in capillary surface area between RG2 tumors and contralateral cortex. K1ACPC, deltaK1ACPC, and K DTPA were directly related to tumor cell density, were higher in regions of "impending" necrosis, and the tumor/contralateral brain ACPC radio-activity ratios (0 to 10 minutes) were very similar to that obtained with 0 to 60 minutes experiments. These results indicate that facilitated transport of ACPC is upregulated across C6 and RG2 glioma capillaries, and that tumors can induce upregulation of amino acid transporter expression in their supporting vasculature. They also suggest that early imaging (e.g., 0 to 20 minutes) with radiolabeled amino acids in a clinical setting may be optimal for defining brain tumors.
Field aided characterization of a sandstone reservoir: Arroyo Grande Oil Field, California, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonellini, M.; Aydin, A.
1995-08-01
The Arroyo Grande Oil Field in Central California has been productive since 1905 from the miopliocene Edna member of the Pismo formation. The Edna member is a massive poorly consolidated sandstone unit with an average porosity of 0.2 and a permeability of 1000-5000 md; the producing levels are shallow, 100 to 500 m from the ground surface. Excellent surface exposures of the same formation along road cuts across the field and above the reservoir provide an opportunity to study reservoir rocks at the surface and to relate fracture and permeability distribution obtained from cores to folds and faults observed inmore » outcrops. We mapped in outcrops the major structures of the oil field and determine the statistical distribution and orientation of small faults (deformation bands) that have been observed both in cores and outcrop. The relation between deformation bands and major structures has also been characterized with detailed mapping. By using synthetic logs it is possible to determine the log signature of structural heterogeneities such as deformation bands in sandstone; these faults cause a neutron porosity drop respect to the host rock in the order of 1-4%. Image analysis has been used to determine the petrophysical properties of the sandstone in outcrop and in cores; permeability is three orders of magnitude lower in faults than in the host rock and capillary pressure is 1-2 orders of magnitude larger in faults than in the host rock. Faults with tens of meters offsets are associated with an high density of deformation bands (10 to 250 m{sup -1}) and with zones of cement precipitation up to 30 m from the fault. By combining well and field data, we propose a structural model for the oil field in which high angle reverse faults with localized deformation bands control the distribution of the hydrocarbons on the limb of a syncline, thereby explaining the seemingly unexpected direction of slope of the top surface of the reservoir which was inferred by well data only.« less
Breakup Behavior of a Capillary Bridge on a Hydrophobic Stripe Separating Two Hydrophilic Stripes
NASA Astrophysics Data System (ADS)
Hartmann, Maximilian; Hardt, Steffen
2017-11-01
The breakup dynamics of a capillary bridge on a hydrophobic area between two liquid filaments occupying two parallel hydrophilic stripes is studied experimentally. In addition calculations with the finite-element software Surface Evolver are performed to obtain the corresponding stable minimal surfaces. Droplets of de-ionized water are placed on substrates with alternating hydrophilic and hydrophobic stripes of different width. Their volume decreases by evaporation. This results in a droplet shaped as the letter ``H'' covering two hydrophilic stripes separated by one hydrophobic stripe. The width of the capillary bridge d(t) on the hydrophobic stripe during the breakup process is observed using a high-speed camera mounted on a bright-field microscope. The results of the experiments and the numerical studies show that the critical width dcrit, indicating the point where the capillary bridge becomes unstable, mainly depends on the width ratio of the hydrophilic and hydrophobic stripes. It is found that the time derivative of d(t) first decreases after dcrit has been reached. The final breakup dynamics then follows a t 2 / 3 scaling. We kindly acknowledge the financial support by the German Research Foundation (DFG) within the Collaborative Research Centre 1194 ``Interaction of Transport and Wetting Processes'', Project A02a.
Williams, Christie E.; Nemacheck, Jill A.; Shukle, John T.; Subramanyam, Subhashree; Saltzmann, Kurt D.; Shukle, Richard H.
2011-01-01
Salivary secretions of neonate Hessian fly larvae initiate a two-way exchange of molecules with their wheat host. Changes in properties of the leaf surface allow larval effectors to enter the plant where they trigger plant processes leading to resistance and delivery of defence molecules, or susceptibility and delivery of nutrients. To increase understanding of the host plant's response, the timing and characteristics of the induced epidermal permeability were investigated. Resistant plant permeability was transient and limited in area, persisting just long enough to deliver defence molecules before gene expression and permeability reverted to pre-infestation levels. The abundance of transcripts for GDSL-motif lipase/hydrolase, thought to contribute to cuticle reorganization and increased permeability, followed the same temporal profile as permeability in resistant plants. In contrast, susceptible plants continued to increase in permeability over time until the entire crown of the plant became a nutrient sink. Permeability increased with higher infestation levels in susceptible but not in resistant plants. The ramifications of induced plant permeability on Hessian fly populations are discussed. PMID:21659664
Surface roughness effects on contact line motion with small capillary number
NASA Astrophysics Data System (ADS)
Yang, Feng-Chao; Chen, Xiao-Peng; Yue, Pengtao
2018-01-01
In this work, we investigate how surface roughness influences contact line dynamics by simulating forced wetting in a capillary tube. The tube wall is decorated with microgrooves and is intrinsically hydrophilic. A phase-field method is used to capture the fluid interface and the moving contact line. According to the numerical results, a criterion is proposed to judge whether the grooves are entirely wetted or not at vanishing capillary numbers. When the contact line moves over a train of grooves, the apparent contact angle exhibits a periodic nature, no matter whether the Cassie-Baxter or the Wenzel state is achieved. The oscillation amplitude of apparent contact angle is analyzed and found to be inversely proportional to the interface area. The contact line motion can be characterized as stick-jump-slip in the Cassie-Baxter state and stick-slip in the Wenzel state. By comparing to the contact line dynamics on smooth surfaces, equivalent microscopic contact angles and slip lengths are obtained. The equivalent slip length in the Cassie-Baxter state agrees well with the theoretical model in the literature. The equivalent contact angles are, however, much greater than the predictions of the Cassie-Baxter model and the Wenzel model for equilibrium stable states. Our results reveal that the pinning of the contact line at surface defects effectively enhances the hydrophobicity of rough surfaces, even when the surface material is intrinsically hydrophilic and the flow is under the Wenzel state.
Urban land use: Remote sensing of ground-basin permeability
NASA Technical Reports Server (NTRS)
Tinney, L. R.; Jensen, J. R.; Estes, J. E.
1975-01-01
A remote sensing analysis of the amount and type of permeable and impermeable surfaces overlying an urban recharge basin is discussed. An effective methodology for accurately generating this data as input to a safe yield study is detailed and compared to more conventional alternative approaches. The amount of area inventoried, approximately 10 sq. miles, should provide a reliable base against which automatic pattern recognition algorithms, currently under investigation for this task, can be evaluated. If successful, such approaches can significantly reduce the time and effort involved in obtaining permeability data, an important aspect of urban hydrology dynamics.
The growth and differentiation of transitional epithelium in vitro.
Chlapowski, F J; Haynes, L
1979-12-01
The development of rat transitional epithelial cells grown on conventional non-permeable surfaces was compared with development on permeable collagen supports. On glass or plastic surfaces, cells grew as expanding nomolayer sheets. Once confluent, growth continued with a bilayer being formed in most areas and apical cells being continuously sloughed off. Although most cells were interconnected by desmosomes, and junctional complexes were formed, no other indications of differentiation were observed. After 2-3 wk of growth, division stopped and cel death ensued. In contrast, single-cell suspensions plated on collagen-coated nylon disks reassociated into multicellular islands and commenced growth. Mitoses were confined to the basal cells in contact with the permeable substrate. The islands developed into epithelial trilayers, tapering to monolayers along spreading edges. Once the islands were confluent, stratification was completed and appeared similar to that observed in vivo. Germinal cells formed a basal lamina, and the upper layer was composed of large, flattened cells with an unusually thick asymmetrical plasma membrane on the apical surface. Electron microscopic and radioactive tracers demonstrated "leaky" zonulae occludentes with a restricted permeability to small molecules. The movement of urea was retarded in comparison to water. Unlike the slow turnover of adult epithelium in vivo, maturation and sloughing of apical cells were measurable. Transfer of cells could be effected and growth maintained for up to 4 mo. These results may indicate the necessity of a nutrient-permeable growth surface for the polarized differentiation of adult transitional epithelium.
The growth and differentiation of transitional epithelium in vitro
1979-01-01
The development of rat transitional epithelial cells grown on conventional non-permeable surfaces was compared with development on permeable collagen supports. On glass or plastic surfaces, cells grew as expanding nomolayer sheets. Once confluent, growth continued with a bilayer being formed in most areas and apical cells being continuously sloughed off. Although most cells were interconnected by desmosomes, and junctional complexes were formed, no other indications of differentiation were observed. After 2-3 wk of growth, division stopped and cel death ensued. In contrast, single-cell suspensions plated on collagen-coated nylon disks reassociated into multicellular islands and commenced growth. Mitoses were confined to the basal cells in contact with the permeable substrate. The islands developed into epithelial trilayers, tapering to monolayers along spreading edges. Once the islands were confluent, stratification was completed and appeared similar to that observed in vivo. Germinal cells formed a basal lamina, and the upper layer was composed of large, flattened cells with an unusually thick asymmetrical plasma membrane on the apical surface. Electron microscopic and radioactive tracers demonstrated "leaky" zonulae occludentes with a restricted permeability to small molecules. The movement of urea was retarded in comparison to water. Unlike the slow turnover of adult epithelium in vivo, maturation and sloughing of apical cells were measurable. Transfer of cells could be effected and growth maintained for up to 4 mo. These results may indicate the necessity of a nutrient-permeable growth surface for the polarized differentiation of adult transitional epithelium. PMID:574872
THE PERMEABILITY OF RAT TRANSITIONAL EPITHELIUM
Hicks, R. M.
1966-01-01
Permeability barriers must exist in transitional epithelium to prevent the free flow of water from underlying blood capillaries through the epithelium into the hypertonic urine, and such a barrier has now been demonstrated in isolated bladders. This barrier is passive in function and can be destroyed by damaging the luminal surface of the transitional epithelium with sodium hydroxide and 8 M urea solutions, by digesting it with trypsin, lecithinase C, and lecithinase D, or by treating it with lipid solvents such as Triton x 100 and saponin. From this it is concluded that the barrier depends on the integrity of lipoprotein cell membranes. The barrier function is also destroyed by sodium thioglycollate solutions, and electron microscope investigations show that sodium thioglycollate damages the thick asymmetric membrane which limits the luminal face of the superficial squamous cell. Cytochemical staining shows the epithelium to contain disulfide and thiol groups and to have a concentration of these groups at the luminal margin of the superficial cells. It thus appears that the permeability barrier also depends on the presence of disulfide bridges in the epithelium, and it is presumed that these links are located in keratin. Because of the effect of thioglycollates, both on the barrier function and on the morphology of the membrane, it is suggested that keratin may be incorporated in the thick barrier membrane. It is proposed that the cells lining the urinary bladder and ureters should be regarded as a keratinizing epitheluim. PMID:5901498
Kim, Dong-Hyun; Park, Yong-Soo; Jeon, Eun-Ju; Yeo, Sang-Won; Chang, Ki-Hong; Lee, Seung Kyun
2006-08-01
We studied the inflammatory responses in otitis media with effusion induced by lipopolysaccharide (LPS) in rats, and compared the preventive effects of tumor necrosis factor (TNF) soluble receptor type I (sTNFRI, a TNF-alpha antagonist), platelet activating factor antagonist, and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). We used 2 control groups of Sprague Dawley rats (untreated and saline-treated) and 4 experimental groups, which all received an intratympanic injection of LPS, followed in 3 groups by experimental treatment of the same ear. The LPS group had no additional treatment. The L-NAME group received intraperitoneal injection of L-NAME and was reinjected after 12 hours. The A-85783 group was first given an intraperitoneal injection of A-85783. The sTNFRI group was first given an intratympanic injection of sTNFRI. Twenty-four hours after the initial intratympanic injection of LPS, temporal bones from each group were examined histopathologically and the vascular permeability of the middle ear mucosa was measured by Evans blue vital dye staining. The L-NAME, A-85783, and sTNFRI groups showed significantly reduced capillary permeability, subepithelial edema, and infiltration of inflammatory cells in comparison with the LPS group. There were no differences in capillary permeability, subepithelial edema, or infiltration of inflammatory cells between the A-85783 and sTNFRI groups. The L-NAME group showed no difference in vascular permeability or subepithelial edema in comparison with the A-85783 and sTNFRI groups, but showed more infiltration of inflammatory cells. We conclude that sTNFRI, A-85783, and L-NAME can be proposed as alternative future treatments for otitis media with effusion. However, L-NAME may be the least effective of these agents.
Liu, Li-Bo; Xue, Yi-Xue; Liu, Yun-Hui; Wang, Yi-Bao
2008-04-01
Bradykinin (BK) has been shown to open blood-tumor barrier (BTB) selectively and to increase permeability of the BTB transiently, but the mechanism is unclear. This study was performed to determine whether BK opens the BTB by affecting the tight junction (TJ)-associated proteins zonula occluden-1 (ZO-1), occludin, and caludin-5 and cytoskeleton protein filamentous actin (F-actin). In rat brain glioma model and BTB model in vitro, we find that the protein expression levels of ZO-1, occludin, and claudin-5 are attenuated by BK induction. Immunohistochemistry and immunofluorescence assays show that the attenuated expression of ZO-1, occludin, and claudin-5 and F-actin is most obvious in the smaller tumor capillaries (<20 microm) after BK infusion, and there is no change in the larger tumor capillaries (>20 microm). The redistribution of ZO-1, occludin, and claudin-5 and rearrangement of F-actin in brain microvascular endothelial cells are observed at the same time. Meanwhile, Evans blue assay shows that the permeability of BTB increases after BK infusion. Transmission electron microscopy indicates that TJ is opened and that pinocytotic vesicular density is increased. Transendothelial electrical resistance (TEER) and horseradish peroxidase flux assays also reveal that TJ is opened by BK induction. In addition, radioimmunity and Western blot assay reveal a significant decrease in expression levels of cAMP and catalytic subunit of protien kinase A (PKAcs) of tumor tissue. This study demonstrates that the increase of BK-mediated BTB permeability is associated with the down-regulation of ZO-1, occludin, and claudin-5 and the rearrangement of F-actin and that cAMP/PKA signal transduction system might be involved in the modulating process.
Vlaar, Alexander P J; Cornet, Alexander D; Hofstra, Jorrit J; Porcelijn, Leendert; Beishuizen, Albertus; Kulik, Willem; Vroom, Margreeth B; Schultz, Marcus J; Groeneveld, A B Johan; Juffermans, Nicole P
2012-01-01
There is an association between blood transfusion and pulmonary complications in cardiac surgery. Mediators of increased pulmonary vascular leakage after transfusion are unknown. We hypothesized that factors may include antibodies or bioactive lipids, which have been implicated in transfusion-related acute lung injury. We performed a prospective cohort study in two university hospital intensive care units in the Netherlands. Pulmonary vascular permeability was measured in cardiac surgery patients after receiving no, restrictive (one or two transfusions), or multiple (five or more transfusions) transfusions (n=20 per group). The pulmonary leak index (PLI), using (67) Ga-labeled transferrin, was determined within 3 hours postoperatively. Blood products were screened for bioactive lipid accumulation and the presence of antibodies. The PLI was elevated in all groups after cardiac surgery. Transfused patients had a higher PLI compared to nontransfused patients (33×10(-3) ± 20×10(-3) vs. 23×10(-3) ± 11×10(-3)/min, p<0.01). The amount of red blood cell (RBC) products, but not of fresh-frozen plasma or platelets, was associated with an increase in PLI (β, 1.6 [0.2-3.0]). Concerning causative factors in the blood product, neither the level of bioactive lipids nor the presence of antibodies was associated with an increase in PLI. Patient factors such as surgery risk and time on cardiopulmonary bypass did not influence the risk of pulmonary leakage after blood transfusion. Transfusion in cardiothoracic surgery patients is associated with an increase in pulmonary capillary permeability, an effect that was dose dependent for RBC products. The level of bioactive lipids or the presence of HLA or HNA antibodies in the transfused products were not associated with increased pulmonary capillary permeability. © 2011 American Association of Blood Banks.
Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong
2017-01-01
Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time. PMID:28429740
NASA Astrophysics Data System (ADS)
Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong
2017-04-01
Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.
Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong
2017-04-21
Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.
Time-lapse 3D imaging of calcite precipitation in a microporous column
NASA Astrophysics Data System (ADS)
Godinho, Jose R. A.; Withers, Philip J.
2018-02-01
Time-lapse X-ray computed tomography is used to image the evolution of calcite precipitation during flow through microporous quartz over the course of 400 h. The growth rate decreases by more than seven times, which is linked to the clogging of flow paths that restricts flow to some regions of the column. Fewer precipitates are observed as a function of column depth, which is found to be related to a differential nucleation density along the sample. A higher nucleation density closer to the inlet implies more crystal volume increase per unit of time without affecting the rate if normalized to the surface area of crystals. Our overall growth rates measured in porous media are orders of magnitude slower than growth rates derived from traditional precipitation experiments on free surfaces. Based on our time-lapse results we hypothesize a scenario where the evolving distribution of precipitates within a pore structure during precipitation progressively modifies the local transport through the pores. Within less permeable regions the saturation index may be lower than along the main flow paths. Therefore, the reactive crystal surfaces within those regions grow at a slower rate than that expected from the bulk fluid composition. Since the amount of reactive surface area within these less permeable regions increases over time, the overall growth rate decreases without a necessary significant change of the bulk fluid composition along more permeable flow paths. In conclusion, the overall growth rates in an evolving porous media expected from bulk fluid compositions alone can be overestimated due to the development of stagnant sub-regions where the reactive surface area is bath by a solution with lower saturation index. In this context we highlight the value of time-lapse 3D studies for understanding the dynamics of mineral precipitation in porous media.
Urban permeable pavement system design based on “sponge city” concept
NASA Astrophysics Data System (ADS)
Yu, M. M.; Zhu, J. W.; Gao, W. F.; Xu, D. P.; Zhao, M.
2017-08-01
Based on the “sponge city” concept, to implement the goal of building a city within the city to solve the sponge waterlogging, rational utilization of water resources, reduce water pollution this paper, combined with the city planning level in China, establishes the design system of city road flooding from the macro, medium and micro level, explore the design method of city water permeable pavement system, and has a practical significance the lower flood risk water ecological problems. On the macro level, we established an urban pavement sponge system under the regional ecological pattern by “spot permeable open space - low impact developing rain water road system - catchment area and catchment wetland”. On a medium level, this paper proposed the permeable suitability of pavement and the planning control indicators when combined with urban functional districts to conduct permeable pavement roads plans and controls. On micro level, the paper studied sponge technology design of permeable pavement from road structure, surface material, and other aspects aimed at the pavement permeability requirements.
Fully packed capillary electrochromatographic microchip with self-assembly colloidal silica beads.
Park, Jongman; Lee, Dami; Kim, Won; Horiike, Shigeyoshi; Nishimoto, Takahiro; Lee, Se Hwan; Ahn, Chong H
2007-04-15
A fully packed capillary electrochromatographic (CEC) microchip showing improved solution and chip handling was developed. Microchannels for the CEC microchip were patterned on a cyclic olefin copolymer substrate by injection molding and packed fully with 0.8-microm monodisperse colloidal silica beads utilizing a self-assembly packing technique. The silica packed chip substrate was covered and thermally press-bonded. After fabrication, the chip was filled with buffer solution by self-priming capillary action. The self-assembly packing at each channel served as a built-in nanofilter allowing quick loading of samples and running buffer solution without filtration. Because of a large surface area-to-volume ratio of the silica packing, reproducible control of electroosmotic flow was possible without leveling of the solutions in the reservoirs resulting 1.3% rsd in migration rate. The capillary electrophoretic separation characteristics of the chip were studied using fluorescein isothiocyanate (FITC)-derivatized amino acids as probe molecules. A mixture of FITC and four FITC-derivatized amino acids was successfully separated with 2-mm separation channel length.
Microcirculation of the pancreas. A quantitative study of physiology and changes in pancreatitis.
Klar, E; Endrich, B; Messmer, K
1990-02-01
A rabbit model was designed to study the microcirculation of the pancreas with special reference to changes occurring during acute pancreatitis. Intravital microscopy was used in conjunction with video techniques allowing for continuous observation and off-line evaluation of microvessel diameters and blood cell velocities. Based on the microvessel geometry a functional microvascular unit could be defined at the level of the pancreatic lobule consisting of intralobular arteries and veins and an arcade-like preferential pathway framing the capillary network. Experimental acute pancreatitis resulted in immediate leakage of the macromolecular plasma marker (FITC-Dextran 70) from the microvasculature suggesting increased permeability. In contrast to control conditions, pancreatic capillaries were excluded from the circulation during acute pancreatitis starting 30 min after induction with only single capillaries remaining perfused after 3 hours. At the same time, there was constant blood flow through the preferential pathways representing shunt perfusion.
Device to improve detection in electro-chromatography
Garguilo, Michael G.; Paul, Phillip H.; Rakestraw, David J.
2000-01-01
Apparatus and method for improving the resolution of non-pressure driven capillary chromatographic systems, and particularly for capillary electrochromatography (CEC) systems. By reducing the cross-sectional area of a packed capillary column by means of a second open capillary contiguous with the outlet end of a packed capillary column, where the packed capillary column has a cross sectional area of between about 2 and 5 times that of the open capillary column, the phenomenon of band broadening in the transition region between the open capillary and the packed capillary column, where the individual components of the mixture are analyzed, can be eliminated, thereby providing for a significant improvement in resolution and more accurate detection and analysis.
Device to improve detection in electro-chromatography
Garguilo, Michael G.; Paul, Phillip H.; Rakestraw, David J.
2002-01-01
Apparatus and method for improving the resolution of non-pressure driven capillary chromatographic systems, and particularly for capillary electrochromatography (CEC) systems. By reducing the cross-sectional area of a packed capillary column by means of a second open capillary contiguous with the outlet end of a packed capillary column, where the packed capillary column has a cross sectional area of between about 2 and 5 times that of the open capillary column, the phenomenon of band broadening in the transition region between the open capillary and the packed capillary column, where the individual components of the mixture are analyzed, can be eliminated, thereby providing for a significant improvement in resolution and more accurate detection and analysis.
Shawahna, R.; Rahman, NU.
2011-01-01
Background and the purpose of the study Partition coefficients (log D and log P) and molecular surface area (PSA) are potential predictors of the intestinal permeability of drugs. The aim of this investigation was to evaluate and compare these intestinal permeability indicators. Methods Aqueous solubility data were obtained from literature or calculated using ACD/Labs and ALOGPS. Permeability data were predicted based on log P, log D at pH 6.0 (log D6.0), and PSA. Results Metoprolol's log P, log D6.0, and a PSA of <65 Å correctly predicted 55.9%, 50.8% and 54.2% of permeability classes, respectively. Labetalol's log P, log D6.0 and PSA correctly predicted 54.2%, 64.4% and 61% of permeability classes, respectively. Log D6.0 correlated well (81%) with Caco-2 permeability (Papp). Of the list of national essential medicines, 135 orally administered drugs were classified into biopharmaceutical classification system (BCS). Of these, 57 (42.2%), 28 (20.7%), 44 (32.6%), and 6 (4.4%) were class I, II, III and IV respectively. Conclusion Log D6.0 showed better prediction capability than log P. Metoprolol as permeability internal standard was more conservative than labetalol. PMID:22615645
Developmental changes in metabolism and transport properties of capillaries isolated from rat brain.
Betz, A L; Goldstein, G W
1981-03-01
1. Capillaries were isolated from the brains of 1- to 45-day-old rats in order to study the development of metabolic and transport aspects of the blood-brain barrier. 2. The hydroxyproline content of capillary hydrolysates increased nearly threefold between 5 and 45 days of age. This finding is consistent with histological studies showing thickening of capillary basement membrane during development. 3. The activities of L-DOPA decarboxylase and monoamine oxidase were greatest in capillaries from 10-day-old rat brain. Thus, the metabolic blood-brain barrier for amine precursors is present during early development. 4. Capillaries from all ages were able to metabolize glucose, beta-hydroxybutyrate and palmitate. The rate of glucose oxidation more than doubled between 21 and 30 days of age but subsequently decreased. In contrast, beta-hydroxybutyrate and palmitate oxidation increased throughout development. These data suggest a sparing effect by alternate fuels on glucose metabolism. 5. Capillary glucose uptake was similar at 10 and 30 days of age and activity of the ouabain-sensitive K+ pump (measured using 86Rb+) was relatively constant at all ages. In contrast, Na+-dependent neutral amino acid transport was not present until after 21 days of age. Since this transport system may be responsible for the active efflux of neutral amino acids from brain to blood, it is likely that this process does not occur at the immature blood-brain barrier. 6. We conclude that various aspects of brain capillary functions show distinct developmental patterns which may be related to changes in blood-brain barrier permeability during development.
Plasminogen Activator of the Blood Vessels in Tumours and in Carrageenin-induced Granulomas
Pick, C. R.; Cater, D. B.
1971-01-01
Fibrinolytic activity in tumours was studied by the fibrin slide technique. The tumour cells were inactive and fibrinolysis was seen only in areas with young blood vessels. In carrageenin-induced granulomas at 6 days the fibrinolytic activity was small and confined to mature veins, but from 7-14 days activity was high in zones containing young vessels supplying the terminal capillary buds; these latter showed no activity. In old fibrosed granulomas there was no fibrinolytic activity. The vascular permeability changes of inflammation (detected by the colloidal carbon technique) showed no correlation with fibrinolytic activity, and systemic injection of inflammatory agents had no effect on the fibrinolytic activity of the vessels. These findings are discussed in relationship to tumour vascularization. ImagesFigs. 5-8Figs. 1-4 PMID:5547651
Ground-water resources of the Alma area, Michigan
Vanlier, Kenneth E.
1963-01-01
The Alma area consists of 30 square miles in the northwestern part of Gratiot County, Mich. It is an area of slight relief gently rolling hills and level plains and is an important agricultural center in the State.The Saginaw formation, which forms the bedrock surface in part of the area, is of relatively low permeability and yields water containing objectionable amounts of chloride. Formations below the Saginaw are tapped for brine in and near the Alma area.The consolidated rocks of the Alma area are mantled by Pleistocene glacial deposits, which are as much as 550 feet thick where preglacial valleys were eroded into the bedrock. The glacial deposits consist of till, glacial-lake deposits, and outwash. Till deposits are at the surface along the south-trending moraines that cross the area, and they underlie other types of glacial deposits at depth throughout the area. The till deposits are of low permeability and are not a source of water to wells, though locally they include small lenses of permeable sand and gravel.In the western part of the area, including much of the city of Alma, the glacial-lake deposits consist primarily of sand and are a source of small supplies of water. In the northeastern part of the area the lake deposits are predominantly clayey and of low permeability.Sand and gravel outwash yields moderate and large supplies of water within the area. Outwash is present at the surface along the West Branch of the Pine River. A more extensive deposit of outwash buried by the lake deposits is the source of most of the ground water pumped at Alma. The presence of an additional deposit of buried outwash west and southwest of the city is inferred from the glacial history of the area. Additional water supplies that may be developed from these deposits are probably adequate for anticipated population and industrial growth.Water levels have declined generally in the vicinity of the city of Alma since 1920 in response to pumping for municipal and industrial supplies. The declines are not excessive, and during the late 1950's water levels in parts of Alma have risen slightly, because of dispersion of the pumping stations.The ground water in the Alma area generally is very hard and high in iron. Locally, the buried outwash that underlies the city of Alma is contaminated by phenolic substances. This limits the amount of ground water available for municipal supply within the city, although reclamation of the contaminated part of the aquifer is considered feasible.
Zhang, Li-Shun; Zhao, Qing-Li; Li, Xin-Xin; Li, Xi-Xi; Huang, Yan-Ping; Liu, Zhao-Sheng
2016-12-01
A hybrid monolith incorporated with mesoporous molecular sieve MCM-41 of uniform pore structure and high surface area was prepared with binary green porogens in the first time. With a mixture of room temperature ionic liquids and deep eutectic solvents as porogens, MCM-41 was modified with 3-(trimethoxysilyl) propyl methacrylate (γ-MPS) and the resulting MCM-41-MPS was incorporated into poly (BMA-co-EDMA) monoliths covalently. Because of good dispersibility of MCM-41-MPS in the green solvent-based polymerization system, high permeability and homogeneity for the resultant hybrid monolithic columns was achieved. The MCM-41-MPS grafted monolith was characterized by scanning electron microscopy, energy dispersive spectrometer area scanning, transmission electron microscopy, FT-IR spectra and nitrogen adsorption tests. Chromatographic performance of MCM-41-MPS grafted monolith was characterized by separating small molecules in capillary electrochromatography, including phenol series, naphthyl substitutes, aniline series and alkyl benzenes. The maximum column efficiency of MCM-41-MPS grafted monolith reached 209,000 plates/m, which was twice higher than the corresponding MCM-41-MPS free monolith. Moreover, successful separation of non-steroidal anti-inflammatory drugs and polycyclic aromatic hydrocarbons demonstrated the capacity in broad-spectrum application of the MCM-41-MPS incorporated monolith. The results indicated that green synthesis using room temperature ionic liquid and deep eutectic solvents is an effective method to prepare molecular sieve-incorporated monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.
Toward direct pore-scale modeling of three-phase displacements
NASA Astrophysics Data System (ADS)
Mohammadmoradi, Peyman; Kantzas, Apostolos
2017-12-01
A stable spreading film between water and gas can extract a significant amount of bypassed non-aqueous phase liquid (NAPL) through immiscible three-phase gas/water injection cycles. In this study, the pore-scale displacement mechanisms by which NAPL is mobilized are incorporated into a three-dimensional pore morphology-based model under water-wet and capillary equilibrium conditions. The approach is pixel-based and the sequence of invasions is determined by the fluids' connectivity and the threshold capillary pressure of the advancing interfaces. In addition to the determination of three-phase spatial saturation profiles, residuals, and capillary pressure curves, dynamic finite element simulations are utilized to predict the effective permeabilities of the rock microtomographic images as reasonable representations of the geological formations under study. All the influential features during immiscible fluid flow in pore-level domains including wetting and spreading films, saturation hysteresis, capillary trapping, connectivity, and interface development strategies are taken into account. The capabilities of the model are demonstrated by the successful prediction of saturation functions for Berea sandstone and the accurate reconstruction of three-phase fluid occupancies through a micromodel.
Terziotti, Silvia; Eimers, J.L.
1999-01-01
In 1998, the relative susceptibility of ground water in Orange County, North Carolina,to contamination from surface and shallow sources was evaluated. A geographic information system was used to build three county-wide layers--soil permeability, land use/land cover, and land-surface slope. The harmonic mean permeability of soil layers was used to estimate a location's capacity to transmit water through the soil. Values for each of these three factors were categorized and ranked from 1 to 10 according to relative potential for contamination. Each factor was weighted to reflect its relative potential contribution to ground-water contamination, then the factors were combined to create a relative susceptibility index. The relative susceptibility index was categorized to reflect lowest, low, moderate, high, and highest potential for ground-water contamination. The relative susceptibility index for about 12 percent of the area in Orange County was categorized as high or highest. The high and highest range areas have highly permeable soils, land cover or land-use activities that have a high contamination potential, and low to moderate slopes. Most of the county is within the moderate category of relative susceptibility to ground-water contamination. About 21 percent of the county is ranked as low or lowest relative susceptibility to ground-water contamination.
Microexplosions initiated by a microwave capillary torch on a metal surface at atmospheric pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A., E-mail: kossyi@fpl.gpi.ru
2015-07-15
The interaction of the plasma of a microwave capillary argon torch with a metal surface was studied experimentally. It is shown that the interaction of the plasma jet generated by the capillary plasma torch with the metal in atmospheric-pressure air leads to the initiation of microexplosions (sparks) on the metal surface. As a result, the initially smooth surface acquires a relief in the form of microtips and microcraters. The possibility of practical application of the observed phenomenon is discussed.
Physical structure changes of solid medium by steam explosion sterilization.
Zhao, Zhi-Min; Wang, Lan; Chen, Hong-Zhang
2016-03-01
Physical structure changes of solid medium were investigated to reveal effects of steam explosion sterilization on solid-state fermentation (SSF). Results indicated that steam explosion changed the structure of solid medium at both molecular and three-dimensional structural levels, which exposed hydrophilic groups and enlarged pores and cavities. It was interesting to find that pores where capillary water located were the active sites for SSF, due to the close relationship among capillary water relaxation time, specific surface area and fermentation performance. Therefore, steam explosion sterilization increased the effective contact area for microbial cells on solid medium, which contributed to improving SSF performance. Combined with the previous research, mechanisms of SSF improvement by steam explosion sterilization contained both chemical and physical effects. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Xin Zhang; Shouxin Liu; Booxin Li; Na An; Fan Zhang
2004-01-01
A multipurpose apparatus that can be used to measure the viscosity of solution by the Ostwald method and the surface tension of solution by the drop-weight method or by the capillary-rise method is developed. The apparatus is convenient for in-situ preparation of solutions of different concentrations and avoids the error that frothing of the…
Investigating the time-dependent zeta potential of wood surfaces.
Muff, Livius F; Luxbacher, Thomas; Burgert, Ingo; Michen, Benjamin
2018-05-15
This work reports on streaming potential measurements through natural capillaries in wood and investigates the cause of a time-dependent zeta potential measured during the equilibration of wood cell-walls with an electrolyte solution. For the biomaterial, this equilibration phase takes several hours, which is much longer than for many other materials that have been characterized by electrokinetic measurements. During this equilibration phase the zeta potential magnitude is decaying due to two parallel mechanisms: (i) the swelling of the cell-wall which causes a dimensional change reducing the charge density at the capillary interface; (ii) the transport of ions from the electrolyte solution into the permeable cell-wall which alters the electrical potential at the interface by internal charge compensation. The obtained results demonstrate the importance of equilibration kinetics for an accurate determination of the zeta potential, especially for materials that interact strongly with the measurement electrolyte. Moreover, the change in zeta potential with time can be correlated with the bulk swelling of wood if the effect of electrolyte ion diffusion is excluded. This study shows the potential of streaming potential measurements of wood, and possibly of other hygroscopic and nanoporous materials, to reveal kinetic information about their interaction with liquids, such as swelling and ion uptake. Copyright © 2018 Elsevier Inc. All rights reserved.
Horie, Kanta; Ikegami, Tohru; Hosoya, Ken; Saad, Nabil; Fiehn, Oliver; Tanaka, Nobuo
2007-09-14
Monolithic silica capillary columns for hydrophilic interaction liquid chromatography (HILIC) were prepared by on-column polymerization of acrylic acid on monolithic silica in a fused silica capillary modified with anchor groups. The products maintained the high permeability (K=5 x 10(-14)m(2)) and provided a plate height (H) of less than 10 microm at optimum linear velocity (u) and H below 20 microm at u=6mm/s for polar solutes including nucleosides and carbohydrates. The HILIC mode monolithic silica capillary column was able to produce 10000 theoretical plates (N) with column dead time (t(0)) of 20s at a pressure drop of 20 MPa or lower. The total performance was much higher than conventional particle-packed HILIC columns currently available. The gradient separations of peptides by a capillary LC-electrospray mass spectrometry system resulted in very different retention selectivity between reversed-phase mode separations and the HILIC mode separations with a peak capacity of ca. 100 in a 10 min gradient time in either mode. The high performance observed with the monolithic silica capillary column modified with poly(acrylic acid) suggests that the HILIC mode can be an alternative to the reversed-phase mode for a wide range of compounds, especially for those of high polarity in isocratic as well as gradient elution.
Contact-angle hysteresis on periodic microtextured surfaces: Strongly corrugated liquid interfaces.
Iliev, Stanimir; Pesheva, Nina
2016-06-01
We study numerically the shapes of a liquid meniscus in contact with ultrahydrophobic pillar surfaces in Cassie's wetting regime, when the surface is covered with identical and periodically distributed micropillars. Using the full capillary model we obtain the advancing and the receding equilibrium meniscus shapes when the cross-sections of the pillars are both of square and circular shapes, for a broad interval of pillar concentrations. The bending of the liquid interface in the area between the pillars is studied in the framework of the full capillary model and compared to the results of the heterogeneous approximation model. The contact angle hysteresis is obtained when the three-phase contact line is located on one row (block case) or several rows (kink case) of pillars. It is found that the contact angle hysteresis is proportional to the line fraction of the contact line on pillars tops in the block case and to the surface fraction for pillar concentrations 0.1-0.5 in the kink case. The contact angle hysteresis does not depend on the shape (circular or square) of the pillars cross-section. The expression for the proportionality of the receding contact angle to the line fraction [Raj et al., Langmuir 28, 15777 (2012)LANGD50743-746310.1021/la303070s] in the case of block depinning is theoretically substantiated through the capillary force, acting on the solid plate at the meniscus contact line.
GEOLOGIC ASPECTS OF TIGHT GAS RESERVOIRS IN THE ROCKY MOUNTAIN REGION.
Spencer, Charles W.
1985-01-01
The authors describe some geologic characteristics of tight gas reservoirs in the Rocky Mountain region. These reservoirs usually have an in-situ permeability to gas of 0. 1 md or less and can be classified into four general geologic and engineering categories: (1) marginal marine blanket, (2) lenticular, (3) chalk, and (4) marine blanket shallow. Microscopic study of pore/permeability relationships indicates the existence of two varieties of tight reservoirs. One variety is tight because of the fine grain size of the rock. The second variety is tight because the rock is relatively tightly cemented and the pores are poorly connected by small pore throats and capillaries.
NASA Astrophysics Data System (ADS)
Zemenkova, M. Y.; Shabarov, A.; Shatalov, A.; Puldas, L.
2018-05-01
The problem of the pore space description and the calculation of relative phase permeabilities (RPP) for two-phase filtration is considered. A technique for constructing a pore-network structure for constant and variable channel diameters is proposed. A description of the design model of RPP based on the capillary pressure curves is presented taking into account the variability of diameters along the length of pore channels. By the example of the calculation analysis for the core samples of the Urnenskoye and Verkhnechonskoye deposits, the possibilities of calculating RPP are shown when using the stochastic distribution of pores by diameters and medium-flow diameters.
Persson, Johan; Morsing, Peter; Grände, Per-Olof
2004-03-01
Vasopeptidase inhibition is a new antihypertensive approach combining inhibition of angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), but severe oedema, mainly angio-oedema, has been reported. As ACE and NEP catalyse degradation of the permeability-increasing peptide bradykinin, and NEP also catalyses degradation of permeability-increasing peptides such as atrial natriuretic peptide, substance P, endothelin-1 and angiotensin II, vasopeptidase inhibition may increase microvascular permeability. To analyse the effects of vasopeptidase inhibition on permeability. The study was performed on the autoperfused cat calf skeletal muscle, evaluating the effects on fluid and protein permeability of a clinically relevant dose of the vasopeptidase inhibitor, omapatrilat. The effects were compared with those of the vehicle, of selective ACE and NEP inhibition, and of omapatrilat during bradykinin receptor blockade. Effects on fluid permeability were determined with a capillary filtration coefficient (CFC) technique, and effects on protein permeability were assessed from changes in the osmotic reflection coefficient for albumin. After 1.5 h of intravenous infusion of omapatrilat (0.35 mg/kg per hour), mean arterial pressure was reduced from 114 mmHg to 86 mmHg (P < 0.01) and skeletal muscle vascular resistance was reduced from 14.5 peripheral resistance units (PRU) to 11.5 PRU (P < 0.05). CFC was increased by 22% (P < 0.01) and the reflection coefficient was decreased by 17% (P < 0.01). Infusion of vehicle had no effects. Inhibition of NEP increased permeability without affecting blood pressure, whereas ACE inhibition decreased blood pressure without affecting permeability. The increase in permeability associated with omapatrilat was reduced by bradykinin blockade. A clinically relevant antihypertensive dose of omapatrilat reduces vascular resistance and increases fluid and protein permeability, the permeability effect more by inhibition of NEP than by inhibition of ACE, by a mechanism involving bradykinin.
NASA Astrophysics Data System (ADS)
Zakirov, T.; Galeev, A.; Khramchenkov, M.
2018-05-01
The study deals with the features of the technique for simulating the capillary pressure curves of porous media on their X-ray microtomographic images. The results of a computational experiment on the immiscible displacement of an incompressible fluid by another in the pore space represented by a digital image of the Berea sandstone are presented. For the mathematical description of two-phase fluid flow we use Lattice Boltzmann Equation (LBM), and phenomena at the fluids interface are described by the color-gradient model. Compared with laboratory studies, the evaluation of capillary pressure based on the results of a computational filtration experiment is a non-destructive method and has a number of advantages: the absence of labor for preparation of fluids and core; the possibility of modeling on the scale of very small core fragments (several mm), which is difficult to realize under experimental conditions; three-dimensional visualization of the dynamics of filling the pore space with a displacing fluid during drainage and impregnation; the possibility of carrying out multivariate calculations for specified parameters of multiphase flow (density and viscosity of fluids, surface tension, wetting contact angle). A satisfactory agreement of the capillary pressure curves during drainage with experimental results was obtained. It is revealed that with the increase in the volume of the digital image, the relative deviation of the calculated and laboratory data decreases and for cubic digital cores larger than 1 mm it does not exceed 5%. The behavior of the non-wetting fluid flow during drainage is illustrated. It is shown that flow regimes under which computational and laboratory experiments are performed the distribution of the injected phase in directions different from the gradient of the hydrodynamic drop, including the opposite ones, is characteristic. Experimentally confirmed regularities are obtained when carrying out calculations for drainage and imbibition at different values of interfacial tension. There is a close coincidence in the average diameters of permeable channels, estimated by capillary curves for different interfacial tension and pore network model. The differences do not exceed 15%.
Mathematical and computational studies of equilibrium capillary free surfaces
NASA Technical Reports Server (NTRS)
Albright, N.; Chen, N. F.; Concus, P.; Finn, R.
1977-01-01
The results of several independent studies are presented. The general question is considered of whether a wetting liquid always rises higher in a small capillary tube than in a larger one, when both are dipped vertically into an infinite reservoir. An analytical investigation is initiated to determine the qualitative behavior of the family of solutions of the equilibrium capillary free-surface equation that correspond to rotationally symmetric pendent liquid drops and the relationship of these solutions to the singular solution, which corresponds to an infinite spike of liquid extending downward to infinity. The block successive overrelaxation-Newton method and the generalized conjugate gradient method are investigated for solving the capillary equation on a uniform square mesh in a square domain, including the case for which the solution is unbounded at the corners. Capillary surfaces are calculated on the ellipse, on a circle with reentrant notches, and on other irregularly shaped domains using JASON, a general purpose program for solving nonlinear elliptic equations on a nonuniform quadrilaterial mesh. Analytical estimates for the nonexistence of solutions of the equilibrium capillary free-surface equation on the ellipse in zero gravity are evaluated.
Effect of particle size distribution on permeability in the randomly packed porous media
NASA Astrophysics Data System (ADS)
Markicevic, Bojan
2017-11-01
An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.
A novel model for simulating the racing effect in capillary-driven underfill process in flip chip
NASA Astrophysics Data System (ADS)
Zhu, Wenhui; Wang, Kanglun; Wang, Yan
2018-04-01
Underfill is typically applied in flip chips to increase the reliability of the electronic packagings. In this paper, the evolution of the melt-front shape of the capillary-driven underfill flow is studied through 3D numerical analysis. Two different models, the prevailing surface force model and the capillary model based on the wetted wall boundary condition, are introduced to test their applicability, where level set method is used to track the interface of the two phase flow. The comparison between the simulation results and experimental data indicates that, the surface force model produces better prediction on the melt-front shape, especially in the central area of the flip chip. Nevertheless, the two above models cannot simulate properly the racing effect phenomenon that appears during underfill encapsulation. A novel ‘dynamic pressure boundary condition’ method is proposed based on the validated surface force model. Utilizing this approach, the racing effect phenomenon is simulated with high precision. In addition, a linear relationship is derived from this model between the flow front location at the edge of the flip chip and the filling time. Using the proposed approach, the impact of the underfill-dispensing length on the melt-front shape is also studied.
McCobb, Timothy D; Briggs, Martin A; LeBlanc, Denis R; Day-Lewis, Frederick D; Johnson, Carole D
2018-05-18
Identifying and quantifying groundwater exchange is critical when considering contaminant fate and transport at the groundwater/surface-water interface. In this paper, areally distributed temperature and point seepage measurements are used to efficiently assess spatial and temporal groundwater discharge patterns through a glacial-kettle lakebed area containing a zero-valent iron permeable reactive barrier (PRB). Concern was that the PRB was becoming less permeable with time owing to biogeochemical processes within the PRB. Patterns of groundwater discharge over an 8-year period were examined using fiber-optic distributed temperature sensing (FO-DTS) and snapshot-in-time point measurements of temperature. The resulting thermal maps show complex and uneven distributions of temperatures across the lakebed and highlight zones of rapid seepage near the shoreline and along the outer boundaries of the PRB. Repeated thermal mapping indicates an increase in lakebed temperatures over time at periods of similar stage and surface-water temperature. Flux rates in six seepage meters permanently installed on the lakebed in the PRB area decreased on average by 0.021 md -1 (or about 4.5 percent) annually between 2004 and 2015. Modeling of diurnal temperature signals from shallow vertical profiles yielded mean flux values ranging from 0.39 to 1.15 md -1 , with stronger fluxes generally related to colder lakebed temperatures. The combination of an increase in lakebed temperatures, declines in direct seepage, and observations of increased cementation of the lakebed surface provide in situ evidence that the permeability of the PRB is declining. The presence of temporally persistent rapid seepage zones is also discussed. Published by Elsevier Ltd.
Gallagher, Elyssia S.; Adem, Seid M.; Bright, Leonard K.; Calderon, Isen A. C.; Mansfield, Elisabeth; Aspinwall, Craig A.
2014-01-01
Protein separations in capillary zone electrophoresis (CZE) suffer from non-specific adsorption of analytes to the capillary surface. Semi-permanent phospholipid bilayers (PLBs) have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self-assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3-cyanopropyldimethylchlorosilane (CPDCS) or n-octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m−2, respectively, compared to 17 ± 1 mJ m−2 for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine to CPDCS- or ODCS-modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3 – 1.9 × 10−4 cm2 V−1s−1) compared to CPDCS- and ODCS-modified or bare capillaries (3.6 ± 0.2 × 10−4 cm2 V−1s−1, 4.8 ± 0.4 × 10−4 cm2 V−1s−1, and 6.0 ± 0.2 × 10−4 cm2 V−1s−1, respectively), with increased stability compared to PLB coatings. HPB-coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6 %, n ≥ 6) with separation efficiencies as high as 200,000 plates m−1. PMID:24459085
NASA Astrophysics Data System (ADS)
Pini, Ronny; Benson, Sally M.
2017-10-01
We report results from an experimental investigation on the hysteretic behaviour of the capillary pressure curve for the supercritical CO2-water system in a Berea Sandstone core. Previous observations have highlighted the importance of subcore-scale capillary heterogeneity in developing local saturations during drainage; we show in this study that the same is true for the imbibition process. Spatially distributed drainage and imbibition scanning curves were obtained for mm-scale subsets of the rock sample non-invasively using X-ray CT imagery. Core- and subcore-scale measurements are well described using the Brooks-Corey formalism, which uses a linear trapping model to compute mobile saturations during imbibition. Capillary scaling yields two separate universal drainage and imbibition curves that are representative of the full subcore-scale data set. This enables accurate parameterisation of rock properties at the subcore-scale in terms of capillary scaling factors and permeability, which in turn serve as effective indicators of heterogeneity at the same scale even when hysteresis is a factor. As such, the proposed core-analysis workflow is quite general and provides the required information to populate numerical models that can be used to extend core-flooding experiments to conditions prevalent in the subsurface, which would be otherwise not attainable in the laboratory.
Silicon ribbon growth by a capillary action shaping technique
NASA Technical Reports Server (NTRS)
Schwuttke, G. H.; Ciszek, T. F.; Kran, A.
1976-01-01
The crystal growth method described is a capillary action shaping technique. Meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable die. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. A capillary die is so designed that the bounding edges of the die top are not parallel or concentric with the growing ribbon. The new dies allow a higher melt meniscus with concomitant improvements in surface smoothness and freedom from SiC surface particles, which can degrade perfection.
Monitoring probe for groundwater flow
Looney, Brian B.; Ballard, Sanford
1994-01-01
A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.
Monitoring probe for groundwater flow
Looney, B.B.; Ballard, S.
1994-08-23
A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.
Sheathless interface for coupling capillary electrophoresis with mass spectrometry
Wang, Chenchen; Tang, Keqi; Smith, Richard D.
2014-06-17
A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.
Surface sampling concentration and reaction probe
Van Berkel, Gary J; Elnaggar, Mariam S
2013-07-16
A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.
Surface sampling concentration and reaction probe with controller to adjust sampling position
Van Berkel, Gary J.; ElNaggar, Mariam S.
2016-07-19
A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.
Onishi, Alex C; Ashraf, Mohammed; Soetikno, Brian T; Fawzi, Amani A
2018-04-10
To examine the relationship between ischemia and disorganization of the retinal inner layers (DRIL). Cross-sectional retrospective study of 20 patients (22 eyes) with diabetic retinopathy presenting to a tertiary academic referral center, who had DRIL on structural optical coherence tomography (OCT) using Spectralis HRA + OCT (Heidelberg Engineering, Heidelberg, Germany) and OCT angiography with XR Avanti (Optovue Inc, Fremont, CA) on the same day. Optical coherence tomography angiography images were further processed to remove flow signal projection artifacts using a software algorithm adapted from recent studies. Retinal capillary perfusion in the superficial capillary plexuses, middle capillary plexuses, and deep capillary plexuses, as well as integrity of the photoreceptor lines on OCT was compared in areas with DRIL to control areas without DRIL in the same eye. Qualitative assessment of projection-resolved OCT angiography of eyes with DRIL on structural OCT demonstrated significant perfusion deficits compared with adjacent control areas (P < 0.001). Most lesions (85.7%) showed superimposed superficial capillary plexus and/or middle capillary plexus nonperfusion in addition to deep capillary plexus nonflow. Areas of DRIL were significantly associated with photoreceptor disruption (P = 0.035) compared with adjacent DRIL-free areas. We found that DRIL is associated with multilevel retinal capillary nonperfusion, suggesting an important role for ischemia in this OCT phenotype.
In Situ Measurement of Permeability in the Vicinity of Faulted Nonwelded Bishop Tuff, Bishop, CA
NASA Astrophysics Data System (ADS)
Dinwiddie, C. L.; Fedors, R. W.; Ferrill, D. A.; Bradbury, K. K.
2002-12-01
The nonwelded Bishop Tuff includes matrix-supported massive ignimbrites and clast-supported bedded deposits. Fluid flow through such faulted nonwelded tuff is likely to be influenced by a combination of host rock properties and the presence of deformation features, such as open fractures, mineralized fractures, and fault zones that exhibit comminuted fault rock and clays. Lithologic contacts between fine- and coarse-grained sub-units of nonwelded tuff may induce formation of capillary and/or permeability barriers within the unsaturated zone, potentially leading to down-dip lateral diversion of otherwise vertically flowing fluid. However, discontinuities (e.g., fractures and faults) may lead to preferential sub-vertical fast flow paths in the event of episodic infiltration rates, thus disrupting the potential for both (1) large-scale capillary and/or permeability barriers to form and for (2) redirection of water flow over great lateral distances. This study focuses on an innovative technique for measuring changes in matrix permeability near faults in situ--changes that may lead to enhancement of vertical fluid flow and disruption of lateral fluid flow. A small-drillhole minipermeameter probe provides a means to eliminate extraction of fragile nonwelded tuffs as a necessity for permeability measurement. Advantages of this approach include (1) a reduction of weathering-effects on measured permeability, and (2) provision of a superior sealing mechanism around the gas injection zone. In order to evaluate the effect of faults and fault zone deformation on nonwelded tuff matrix permeability, as well as to address the potential for disruption of lithologic barrier-induced lateral diversion of flow, data were collected from two fault systems and from unfaulted host rock. Two hundred and sixty-seven gas-permeability measurements were made at 89 locations; i.e. permeability measurements were made in triplicate at each location with three flow rates. Data were collected at the first fault and perpendicularly away from it within the hanging wall to a distance of 6 m [20 ft] along one transect, and perpendicular to the fault from the foot wall to the hanging wall for a distance of 6 m [20 ft] along a second transect. Additionally, eight water-permeameter tests were conducted in order to augment the gas-permeability data. Gas-permeability measurements were collected along two transects at the main fault of the second fault system and perpendicularly away from it within the foot wall to a distance of 10.5 m [34 ft], crossing several secondary faults in the process. Data were also collected within the fault gouge of the main fault, and were found to vary therein by an order of magnitude. This Bishop Tuff study supports the U.S. Nuclear Regulatory Commission (NRC) review of hydrologic property studies at Yucca Mountain, Nevada, which are conducted by the U.S. Department of Energy. This abstract is an independent product of the CNWRA and does not necessarily reflect the views or regulatory position of the NRC.
Studying the Variation in Gas Permeability of Porous Building Substrates
NASA Astrophysics Data System (ADS)
Townsend, L.; Savidge, C. R.; Hu, L.; Rizzo, D. M.; Hayden, N. J.; Dewoolkar, M.
2009-12-01
Understanding permeability of building materials is important for problems involving studies of contaminant transport. Examples include contamination from fire, acid rain, and chemical and biological weapons. Our research investigates the gas permeability of porous building substrates such as concretes, limestones, sandstones, and bricks. Each sample was cored to produce 70 mm (2.75”) diameter cores approximately 75-130 mm (3-5”) tall. The surface gas permeability was measured on the top surface of these specimens using the AutoScan II device manufactured by New England Research, Inc. The measurements were taken along a 3 mm grid producing a map of surface gas permeability. An example map is shown in Figure 1. The macroscopic measurements were performed along the entire cored specimen. A second set of measurements were made on a 5 mm thick slice cut from the top of each specimen to examine whether these measurements compare better with the surface measurements. The macroscopic gas permeability was measured for all specimens using ASTM D 4525. The results are summarized in Table 1. In general, the surface and macroscopic gas permeability measurements (Table 1) compare reasonably well (within one order of magnitude). The permeability of the 5 mm slices is not significantly different from the entire core for the specimens tested. Figure 1. Results of surface permeability mappingof Ohio Sandstone using the AutoScan II device. a) Map of gas permeability b) Range of gas permeability c) Density function of permeability. Table 1. Gas permeability values (mD)
Qin, Haifang; Jiang, Xiyuan; Fan, Jie; Wang, Jianpeng; Liu, Li; Qiu, Lin; Wang, Jianhao; Jiang, Pengju
2017-01-01
Capillary electrophoresis with fluorescence detection was utilized to probe the self-assembly between cyanine group dye labeled tetrahistidine containing peptide and CdSe/ZnS quantum dots, inside the capillary. Quantum dots and cyanine group dye labeled tetrahistidine containing peptide were injected into the capillary one after the other and allowed to self-assemble. Their self-assembly resulted into a measurable Förster resonance energy transfer signal between quantum dots and cyanine group dye labeled tetrahistidine containing peptide. The Förster resonance energy transfer signal increased upon increasing the cyanine group dye labeled tetrahistidine containing peptide/quantum dot molar ratio and reached a plateau at the 32/1 molar ratio. Additionally, the Förster resonance energy transfer signal was also affected by the increment of the interval time of injection and the sampling time. Online ligand exchange experiments were used to assess, the potential of a monovalent ligand of imidazole and a hexavalent ligand peptide, to displace surface bound cyanine group dye labeled peptide ligands from the quantum dots surface. Under optimal conditions, a linear relationship between the integrated peak areas and hexavalent ligand peptide was obtained at a hexavalent ligand concentration range of 0-0.5 mM. Therefore, the present assay has the potential to be applied in the online ligands detection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Water transfer properties and shrinkage in lime-based rendering mortars
NASA Astrophysics Data System (ADS)
Arizzi, A.; Cultrone, G.
2012-04-01
Rendering is the practice of covering a wall or a building façade with one or more layers of mortar, with the main aim to protect the masonry structure against weathering. The render applied must show high flexibility, good adhesion and compatibility with the support (i.e. stone, brick) and, overall, it should be characterised by low water absorption and high water vapour permeability. Water (in the solid, liquid and vapour state) is one of the main factors that drive construction materials to deterioration. Therefore, to evaluate the quality and durability of a rendering mortar, thus ensuring its protective function in the masonry structure, it is fundamental to assess the behaviour of this mortar towards water. Mortars were elaborated with a calcitic dry hydrated lime, a calcareous aggregate, a pozzolan, a lightweight aggregate, a water-retaining agent and a plasticiser. Four types of lime mortars were prepared, in which the binder-to-aggregate ratios were 1:3, 1:4, 1:6 and 1:9 by weight, whilst the pozzolan was kept at 10% of the lime (by mass) and the total admixtures proportion was less than 2% of the total mass. The influence of the characteristics of mortars pore system on the amount of water absorbed and the kinetics of absorption was investigated by means of: free water absorption and drying; capillary uptake; water permeability; water vapour permeability. Interesting deductions can be made from the values of water and water vapour permeability found for mortars: the former increases exponentially with the sand volume of the mortar, whilst the latter increases almost exponentially with the initial water content added to the mortar mixes during their elaboration. However, the relationship obtained between porosity of mortars and permeability values is not really clear. This finding suggests that the permeability of a material cannot be estimated on the basis of its porosity as it can be made for the capillary uptake and free water absorption. Another aspect to be considered in the evaluation of the decay caused by water is the high shrinkage suffered by renders when they are applied on an extended surface (i.e. a wall), especially when they are aerial lime-based mortars. The shrinkage causes the formation of fissures that become an easy way for water to entry and diffuse through the mortar pore system. This factor is rarely taken into consideration during the hydric assays performed in the laboratory, since mortar samples of 4x4x16 or 4x4x4 cm in size do not undergo to such degree of shrinkage. For this reason, we have also studied the shrinkage of these mortars and considered it in the final assessment of mortars hydric properties. The shrinkage was evaluated according to a non-standardized method, by means of a shrinkage-measuring device that measures the mortar dimensional variations over time. This measurement has shown that the highest the lime content the biggest the mortar shrinkage and, consequently, the strongest the decay due to water.
Pulmonary diffusional screening and the scaling laws of mammalian metabolic rates
NASA Astrophysics Data System (ADS)
Hou, Chen; Mayo, Michael
2011-12-01
Theoretical considerations suggest that the mammalian metabolic rate is linearly proportional to the surface areas of mitochondria, capillary, and alveolar membranes. However, the scaling exponents of these surface areas to the mammals' body mass (approximately 0.9-1) are higher than exponents of the resting metabolic rate (RMR) to body mass (approximately 0.75), although similar to the one of exercise metabolic rate (EMR); the underlying physiological cause of this mismatch remains unclear. The analysis presented here shows that discrepancies between the scaling exponents of RMR and the relevant surface areas may originate from, at least for the system of alveolar membranes in mammalian lungs, the facts that (i) not all of the surface area is involved in the gas exchange and (ii) that larger mammals host a smaller effective surface area that participates in the material exchange rate. A result of these facts is that lung surface areas unused at rest are activated under heavy breathing conditions (e.g., exercise), wherein larger mammals support larger activated surface areas that provide a higher capability to increase the gas-exchange rate, allowing for mammals to meet, for example, the high energetic demands of foraging and predation.
Vortex Flows in the Liquid Layer and Droplets on a Vibrating Flexible Plate
NASA Astrophysics Data System (ADS)
Aleksandrov, Vladimir; Kopysov, Sergey; Tonkov, Leonid
2018-02-01
In certain conditions, in the layers and droplets of a liquid on a vibrating rectangular flexible plate, vortex flows are formed simultaneously with the excitation of capillary oscillations on the free surface of the liquid layers and droplets. Capillary oscillations in the form of two-dimensional standing waves form Faraday ripples on the free surface of the liquid layer. On the surface of the vibrating droplets, at the excitation of capillary oscillations a light spot reflected from a spotlight source moves along a trajectory in the form of a Lissajous figure observed with a microscope. When vortex flows visualized with graphite microparticles appear in the layer and droplets of a transparent liquid, the trajectory of the light spot on the layer and droplet surface is a two-dimensional trajectory in the form of an ellipse or a saddle. This indicates that the generation of the vortex flows in a liquid at vibrations is due to capillary oscillations in the orthogonally related directions. In the liquid layer and droplets on the surface of the flexible plate, the vibrations of which are generated by bending vibrations, the vortex flows appear due to the plate vibrations and the capillary oscillations of the surface of a layer or a droplet of the liquid. On the free surface of the liquid, the capillary waves, which are parametrically excited by the plate bending vibrations, are additionally modulated by the same bending vibrations in the transverse direction.
NASA Astrophysics Data System (ADS)
Chen, Yi-Feng; Fang, Shu; Wu, Dong-Sheng; Hu, Ran
2017-09-01
Immiscible fluid-fluid displacement in permeable media is important in many subsurface processes, including enhanced oil recovery and geological CO2 sequestration. Controlled by capillary and viscous forces, displacement patterns of one fluid displacing another more viscous one exhibit capillary and viscous fingering, and crossover between the two. Although extensive studies investigated viscous and capillary fingering in porous media, a few studies focused on the crossover in rough fractures, and how viscous and capillary forces affect the crossover remains unclear. Using a transparent fracture-visualization system, we studied how the two forces impact the crossover in a horizontal rough fracture. Drainage experiments of water displacing oil were conducted at seven flow rates (capillary number log10Ca ranging from -7.07 to -3.07) and four viscosity ratios (M=1/1000,1/500,1/100 and 1/50). We consistently observed lower invading fluid saturations in the crossover zone. We also proposed a phase diagram for the displacement patterns in a rough fracture that is consistent with similar studies in porous media. Based on real-time imaging and statistical analysis of the invasion morphology, we showed that the competition between capillary and viscous forces is responsible for the saturation reduction in the crossover zone. In this zone, finger propagation toward the outlet (characteristic of viscous fingering) as well as void-filling in the transverse/backward directions (characteristic of capillary fingering), are both suppressed. Therefore, the invading fluid tends to occupy larger apertures with higher characteristic front velocity, promoting void-filling toward the outlet with thinner finger growth and resulting in a larger volume of defending fluid left behind.
Measurements and modelling of beach groundwater flow in the swash-zone: a review
NASA Astrophysics Data System (ADS)
Horn, Diane P.
2006-04-01
This paper reviews research on beach groundwater dynamics and identifies research questions which will need to be answered before swash zone sediment transport and beach profile evolution can be successfully modelled. Beach groundwater hydrodynamics are a result of combined forcing from the tide and waves at a range of frequencies, and a large number of observations exist which describe the shape and elevation of the beach watertable in response to tidal forcing at diurnal, semi-diurnal and spring-neap tidal frequencies. Models of beach watertable response to tidal forcing have been successfully validated; however, models of watertable response to wave forcing are less well developed and require verification. Improved predictions of swash zone sediment transport and beach profile evolution cannot be achieved unless the complex fluid and sediment interactions between the surface flow and the beach groundwater are better understood, particularly the sensitivity of sediment transport processes to flow perpendicular to the permeable bed. The presence of a capillary fringe, particularly when it lies just below the sand surface, has influences on beach groundwater dynamics. The presence of a capillary fringe can have a significant effect on the exchange of water between the ocean and the coastal aquifer, particularly in terms of the storage capacity of the aquifer. Field and laboratory observations have also shown that natural groundwater waves usually propagate faster and decay more slowly in aquifers with a capillary fringe, and observations which suggest that horizontal flows may also occur in the capillary zone have been reported. The effects of infiltration and exfiltration are generally invoked to explain why beaches with a low watertable tend to accrete and beaches with a high watertable tend to erode. However, the relative importance of processes such as infiltration losses in the swash, changes in the effective weight of the sediment, and modified shear stress due to boundary layer thinning, are not yet clear. Experimental work on the influence of seepage flows within sediment beds provides conflicting results concerning the effect on bed stability. Both modelling and experimental work indicates that the hydraulic conductivity of the beach is a critical parameter. However, hydraulic conductivity varies both spatially and temporally on beaches, particularly on gravel and mixed sand and gravel beaches. Another important, but poorly understood, consideration in beach groundwater studies is the role of air encapsulation during the wetting of beach sand.
Khairallah, Moncef; Kahloun, Rim; Gargouri, Salma; Jelliti, Bechir; Sellami, Dorra; Ben Yahia, Salim; Feki, Jamel
2017-08-01
A 65-year-old man with diabetes and a history of fever of unknown origin 2 weeks earlier complained of sudden decreased vision in the left eye. The patient was diagnosed with bilateral West Nile virus (WNV) chorioretinitis associated with occlusive retinal vasculitis in the left eye. Swept-source optical coherence tomography angiography (SS-OCTA) of the left eye showed extensive, well-delineated, hypointense non-perfusion areas and perifoveal capillary arcade disruption in the superficial capillary plexus, as well as larger non-perfusion areas, capillary rarefaction, and diffuse capillary network attenuation and disorganization in the deep capillary plexus. OCTA may be a valuable tool for noninvasively assessing occlusive retinal vasculitis associated with WNV infection. It allows an accurate detection and precise delineation of areas of retinal capillary nonperfusion in both the superficial and deep capillary plexuses. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:672-675.]. Copyright 2017, SLACK Incorporated.
[Analgesic and anti-inflammatory effects of the flower of Althaea rosea (L.) Cav].
Wang, D F; Shang, J Y; Yu, Q H
1989-01-01
The ethanolic extract of the flower of Althaea rosea inhibits significantly the acetic acid-induced twisting of mice and the heat induced (tail) flicking of rats, the acetic acid-induced increase in permeability of abdominal bloud capillaries, the edema of the rat paw induced by carrageenin or dextran, and the release of PGE from inflammatory tissue.
Evaluation of lung clearance of inhaled pertechnegas.
Fanti, S; Compagnone, G; Pancaldi, D; Franchi, R; Corbelli, C; Marengo, M; Onofri, C; Galassi, R; Levorato, M; Monetti, N
1996-02-01
Pertechnegas is a new ventilation agent produced by modifying the atmosphere of combustion of Technegas. Due to its rapid disappearance from the lungs, Pertechnegas has been suggested as useful in measuring pulmonary epithelial permeability. This study aimed to assess the reliability of ventilation scans with Pertechnegas to evaluate alveolar-capillary permeability. Six non-smokers with no evidence of pulmonary disease were investigated. Scintigraphic data were used to evaluate the site of Pertechnegas deposition (by assessing the Penetration Index [PI] of the gas), its clearance rate (by calculating the time to half-clearance [T1/2]) and its lung distribution (by means of a pixel-by-pixel analysis. PI measurements produced a mean value of 88.8 +/- 13.3% (range 69-117%). Time activity curves showed a fast clearance in all cases (mean T1/2 = 10.7 +/- 2.1 min, range 8.1-14.3 min). Comparison of statistical indices of uniform deposition (skewness and kurtosis) indicated satisfactory homogeneity of Pertechnegas distribution throughout the lungs. These data show that after inhalation Pertechnegas has a peripheral deposition and a homogeneous distribution in the lungs and is rapidly cleared through the alveolar-capillary barrier. In conclusion Pertechnegas can be recommended as a potential radiopharmaceutical for studying the pulmonary epithelial barrier.
STUDIES ON THE MECHANISM OF EXPERIMENTAL PROTEINURIA INDUCED BY RENIN
Deodhar, Sharad D.; Cuppage, Francis E.; Gableman, E.
1964-01-01
Renin-induced proteinuria in the rat was investigated, with special emphasis on the relationship between the enzymatic activity and the proteinuric effect of renin. The dependence of the proteinuric effect on the enzymatic activity was shown by using (a) renin preparations of widely varying purity and (b) chemically modified "active" and "inactive" renin derivatives. Angiotensin II, the pressor product of the enzymatic action of renin, also produced significant proteinuria. Adrenalectomy abolished the proteinuria induced by renin. Proteinuria, however, occurred as a result of pretreatment with DOCA, or aldosterone, or without treatment, 7 to 8 weeks after adrenalectomy. Electron microscopic studies of the kidney at the time of maximal proteinuria showed focal flattening and fusion of epithelial foot processes, as well as swelling and vesicle formation in endothelial and epithelial cells of the glomeruli. Studies with intravenously injected saccharated iron oxide showed increased permeability of the glomerular capillary basement membrane to these particles. These changes were transient and were not seen 24 hours after renin injection. Adrenalectomy prevented these changes. It is concluded that renin, acting through angiotensin, causes glomerular capillary damage with increased permeability of these structures to protein and resultant proteinuria. The adrenal glands participate in a permissive role in this phenomenon. PMID:14212126
NASA Astrophysics Data System (ADS)
Ishitsuka, Kazuya; Matsuoka, Toshifumi; Nishimura, Takuya; Tsuji, Takeshi; ElGharbawi, Tamer
2017-06-01
We investigated the post-seismic surface displacement of the 2011 Tohoku earthquake around the Kanto Plain (including the capital area of Japan), which is located approximately 400 km from the epicenter, using a global positioning system network during 2005-2015 and persistent scatterer interferometry of TerraSAR-X data from March 2011 to November 2012. Uniform uplift owing to viscoelastic relaxation and afterslip on the plain has been reported previously. In addition to the general trend, we identified areas where the surface displacement velocity was faster than the surrounding areas, as much as 7 mm/year for 3 years after the earthquake and with a velocity decay over time. Local uplift areas were 30 × 50 km2 and showed a complex spatial distribution with an irregular shape. Based on an observed groundwater level increase, we deduce that the local ground uplift was induced by a permeability enhancement and a pore pressure increase in the aquifer system, which is attributable to mainshock vibration.[Figure not available: see fulltext.
Flow control for a paper-based microfluidic device by adjusting permeability of paper
NASA Astrophysics Data System (ADS)
Jang, Ilhoon; Kim, Gangjune; Song, Simon
2014-11-01
The paper-based microfluidics has attracted intensive attention as a prospective substitute for conventional microfluidic substrates used for a point-of-care diagnostics due to its superior advantages such as the cost effectiveness and production simplicity. Generally, a paper-based microfluidic device utilizes capillary force to drive a flow. Recent studies on flow control in such a device aimed at obtaining accurate and quantitative results by varying a channel geometry like width and length. According to the Darcy's law describing a flow in a porous media like paper, a flow rate can be adjusted the permeability of paper. In this study, we investigate a flow control method by adjusting the permeability of paper. We utilize the wax printing for the adjustment and the fabrication of paper channels. A rectangular wax pattern was printed on one inlet channel of a Y-channel geometry. By varying the brightness of the wax pattern, a relationship between the flow rate and permeability changes due to the wax was investigated. As a result, we obtained an effective permeability contour with respect to the wax pattern length and brightness. In addition, we developed a paper-based micromixer of which the mixing ratio was controlled precisely by adjusting the permeability.
Shimojima, Naoki; Eckman, Christopher B; McKinney, Michael; Sevlever, Daniel; Yamamoto, Satoshi; Lin, Wenlang; Dickson, Dennis W; Nguyen, Justin H
2008-01-01
Brain edema secondary to increased blood-brain barrier (BBB) permeability is a lethal complication in fulminant hepatic failure (FHF). Intact tight junctions (TJ) between brain capillary endothelial cells are critical for normal BBB function. However, the role of TJ in FHF has not been explored. We hypothesized that alterations in the composition of TJ proteins would result in increased BBB permeability in FHF. In this study, FHF was induced in C57BL/6J mice by using azoxymethane. BBB permeability was assessed with sodium fluorescein. Expression of TJ proteins was determined by Western blot, and their cellular distribution was examined using immunofluorescent microscopy. Comatose FHF mice had significant cerebral sodium fluorescein extravasation compared with control and precoma FHF mice, indicating increased BBB permeability. Western blot analysis showed a significant decrease in zonula occludens (ZO)-2 expression starting in the precoma stage. Immunofluorescent microscopy showed a significantly altered distribution pattern of ZO-2 in isolated microvessels from precoma FHF mice. These changes were more prominent in comatose FHF animals. Significant alterations in ZO-2 expression and distribution in the tight junctions preceded the increased BBB permeability in FHF mice. These results suggest that ZO-2 may play an important role in the pathogenesis of brain edema in FHF.
Gama, Mariana R; Aggarwal, Pankaj; Lee, Milton L; Bottoli, Carla B G
2017-11-01
Organic monolithic columns based on single crosslinking of trimethylolpropane trimethacrylate (TRIM) monomer were prepared in a single step by living/controlled free-radical polymerization. Full optimization of the preparation, such as using different percentages of TRIM and different amounts of radical promoter as well as various porogen solvents were explored. The resulting monolithic columns were characterized by scanning electronic microscopy and nitrogen sorption for structure morphology studies and surface area measurements, respectively. Using capillary liquid chromatography, 150 μm i.d. columns were applied to separate a mixture of small hydrophobic molecules. The results indicated that column performance is highly sensitive to the type and the amount of porogen solvents used in the polymerization mixture composition. Good resolution factors and methylene selectivity were obtained, indicating the promising potential of this material for capillary liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Variation and correlation of hydrologic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.S.Y.
1991-06-01
Hydrological properties vary within a given geological formation and even more so among different soil and rock media. The variance of the saturated permeability is shown to be related to the variance of the pore-size distribution index of a given medium by a simple equation. This relationship is deduced by comparison of the data from Yucca Mountain, Nevada (Peters et al., 1984), Las Cruces, New Mexico (Wierenga et al., 1989), and Apache Leap, Arizona (Rasmussen et al., 1990). These and other studies in different soils and rocks also support the Poiseuille-Carmen relationship between the mean value of saturated permeability andmore » the mean value of capillary radius. Correlations of the mean values and variances between permeability and pore-geometry parameters can lead us to better quantification of heterogeneous flow fields and better understanding of the scaling laws of hydrological properties.« less
Natarajan, Reka; Northrop, Nicole
2017-01-01
The blood-brain barrier (BBB) is formed in part by vascular endothelial cells that constitute the capillaries and microvessels of the brain. The function of this barrier is to maintain homeostasis within the brain microenvironment and buffer the brain from changes in the periphery. A dysfunction of the BBB would permit circulating molecules and pathogens typically restricted to the periphery to enter the brain and interfere with normal brain function. As increased permeability of the BBB is associated with several neuropathologies, it is important to have a reliable and sensitive method that determines BBB permeability and the degree of BBB disruption. A detailed protocol is presented for assessing the integrity of the BBB by transcardial perfusion of a 10,000 Da FITC labeled dextran molecule and its visualization to determine the degree of extravasation from brain microvessels. PMID:28398646
Study of the fluid flow characteristics in a porous medium for CO2 geological storage using MRI.
Song, Yongchen; Jiang, Lanlan; Liu, Yu; Yang, Mingjun; Zhou, Xinhuan; Zhao, Yuechao; Dou, Binlin; Abudula, Abuliti; Xue, Ziqiu
2014-06-01
The objective of this study was to understand fluid flow in porous media. Understanding of fluid flow process in porous media is important for the geological storage of CO2. The high-resolution magnetic resonance imaging (MRI) technique was used to measure fluid flow in a porous medium (glass beads BZ-02). First, the permeability was obtained from velocity images. Next, CO2-water immiscible displacement experiments using different flow rates were investigated. Three stages were obtained from the MR intensity plot. With increasing CO2 flow rate, a relatively uniform CO2 distribution and a uniform CO2 front were observed. Subsequently, the final water saturation decreased. Using core analysis methods, the CO2 velocities were obtained during the CO2-water immiscible displacement process, which were applied to evaluate the capillary dispersion rate, viscous dominated fractional flow, and gravity flow function. The capillary dispersion rate dominated the effects of capillary, which was largest at water saturations of 0.5 and 0.6. The viscous-dominant fractional flow function varied with the saturation of water. The gravity fractional flow reached peak values at the saturation of 0.6. The gravity forces played a positive role in the downward displacements because they thus tended to stabilize the displacement process, thereby producing increased breakthrough times and correspondingly high recoveries. Finally, the relative permeability was also reconstructed. The study provides useful data regarding the transport processes in the geological storage of CO2. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Eldridge, Marlowe W; Braun, Ruedi K; Yoneda, Ken Y; Walby, William F
2006-03-01
Strenuous exercise may be a significant contributing factor for development of high-altitude pulmonary edema, particularly at low or moderate altitudes. Thus we investigated the effects of heavy cycle ergometer exercise (90% maximal effort) under hypoxic conditions in which the combined effects of a marked increase in pulmonary blood flow and nonuniform hypoxic pulmonary vasoconstriction could add significantly to augment the mechanical stress on the pulmonary microcirculation. We postulated that intense exercise at altitude would result in an augmented permeability edema. We recruited eight endurance athletes and examined their bronchoalveolar lavage fluid (BALF) for red blood cells (RBCs), protein, inflammatory cells, and soluble mediators at 2 and 26 h after intense exercise under normoxic and hypoxic conditions. After heavy exercise, under all conditions, the athletes developed a permeability edema with high BALF RBC and protein concentrations in the absence of inflammation. We found that exercise at altitude (3,810 m) caused significantly greater leakage of RBCs [9.2 (SD 3.1)x10(4) cells/ml] into the alveolar space than that seen with normoxic exercise [5.4 (SD 1.2)x10(4) cells/ml]. At altitude, the 26-h postexercise BALF revealed significantly higher RBC and protein concentrations, suggesting an ongoing capillary leak. Interestingly, the BALF profiles following exercise at altitude are similar to that of early high-altitude pulmonary edema. These findings suggest that pulmonary capillary disruption occurs with intense exercise in healthy humans and that hypoxia augments the mechanical stresses on the pulmonary microcirculation.
Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
Hammel, H T; Schlegel, Whitney M
2005-01-01
In 1903, George Hulett explained how solute alters water in an aqueous solution to lower the vapor pressure of its water. Hulett also explained how the same altered water causes osmosis and osmotic pressure when the solution is separated from liquid water by a membrane permeable to the water only. Hulett recognized that the solute molecules diffuse toward all boundaries of the solution containing the solute. Solute diffusion is stopped at all boundaries, at an open-unopposed surface of the solution, at a semipermeable membrane, at a container wall, or at the boundary of a solid or gaseous inclusion surrounded by solution but not dissolved in it. At each boundary of the solution, the solute molecules are reflected, they change momentum, and the change of momentum of all reflected molecules is a pressure, a solute pressure (i.e., a force on a unit area of reflecting boundary). When a boundary of the solution is open and unopposed, the solute pressure alters the internal tension in the force bonding the water in its liquid phase, namely, the hydrogen bond. All altered properties of the water in the solution are explained by the altered internal tension of the water in the solution. We acclaim Hulett's explanation of osmosis, osmotic pressure, and lowering of the vapor pressure of water in an aqueous solution. His explanation is self-evident. It is the necessary, sufficient, and inescapable explanation of all altered properties of the water in the solution relative to the same property of pure liquid water at the same externally applied pressure and the same temperature. We extend Hulett's explanation of osmosis to include the osmotic effects of solute diffusing through solvent and dragging on the solvent through which it diffuses. Therein lies the explanations of (1) the extravasation from and return of interstitial fluid to capillaries, (2) the return of luminal fluid in the proximal and distal convoluted tubules of a kidney nephron to their peritubular capillaries, (3) the return of interstitial fluid to the vasa recta, (4) return of aqueous humor to the episcleral veins, and (5) flow of phloem from source to sink in higher plants and many more examples of fluid transport and fluid exchange in animal and plant physiology. When a membrane is permeable to water only and when it separates differing aqueous solutions, the flow of water is from the solution with the lower osmotic pressure to the solution with the higher osmotic pressure.
Chen, Linmu; Zhou, Chunni; Tan, Chuanxue; Wang, Feifei; Gao, Yuan; Huang, Chunxia; Zhang, Yi; Jiang, Lin; Tang, Yong
2017-01-01
Running exercise is an effective method to improve depressive symptoms when combined with drugs. However, the underlying mechanisms are not fully clear. Cerebral blood flow perfusion in depressed patients is significantly lower in the hippocampus. Physical activity can achieve cerebrovascular benefits. The purpose of this study was to evaluate the impacts of running exercise on capillaries in the hippocampal CA1 and dentate gyrus (DG) regions. The chronic unpredictable stress (CUS) depression model was used in this study. CUS rats were given 4 weeks of running exercise from the fifth week to the eighth week (20 min every day from Monday to Friday each week). The sucrose consumption test was used to measure anhedonia. Furthermore, stereological methods were used to investigate the capillary changes among the control group, CUS/Standard group and CUS/Running group. Sucrose consumption significantly increased in the CUS/Running group. Running exercise has positive effects on the capillaries parameters in the hippocampal CA1 and DG regions, such as the total volume, total length and total surface area. These results demonstrated that capillaries are protected by running exercise in the hippocampal CA1 and DG might be one of the structural bases for the exercise-induced treatment of depression-like behavior. These results suggest that drugs and behavior influence capillaries and may be considered as a new means for depression treatment in the future.
Running exercise protects the capillaries in white matter in a rat model of depression.
Chen, Lin-Mu; Zhang, Ai-Pin; Wang, Fei-Fei; Tan, Chuan-Xue; Gao, Yuan; Huang, Chun-Xia; Zhang, Yi; Jiang, Lin; Zhou, Chun-Ni; Chao, Feng-Lei; Zhang, Lei; Tang, Yong
2016-12-01
Running has been shown to improve depressive symptoms when used as an adjunct to medication. However, the mechanisms underlying the antidepressant effects of running are not fully understood. Changes of capillaries in white matter have been discovered in clinical patients and depression model rats. Considering the important part of white matter in depression, running may cause capillary structural changes in white matter. Chronic unpredictable stress (CUS) rats were provided with a 4-week running exercise (from the fifth week to the eighth week) for 20 minutes each day for 5 consecutive days each week. Anhedonia was measured by a behavior test. Furthermore, capillary changes were investigated in the control group, the CUS/Standard group, and the CUS/Running group using stereological methods. The 4-week running increased sucrose consumption significantly in the CUS/Running group and had significant effects on the total volume, total length, and total surface area of the capillaries in the white matter of depression rats. These results demonstrated that exercise-induced protection of the capillaries in white matter might be one of the structural bases for the exercise-induced treatment of depression. It might provide important parameters for further study of the vascular mechanisms of depression and a new research direction for the development of clinical antidepressant means. J. Comp. Neurol. 524:3577-3586, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Akbarabadi, Morteza
We present the results of an extensive experimental study on the effects of hysteresis on permanent capillary trapping and relative permeability of CO2/brine and supercritical (sc)CO2+SO2/brine systems. We performed numerous unsteady- and steady-state drainage and imbibition full-recirculation flow experiments in three different sandstone rock samples, i.e., low and high-permeability Berea, Nugget sandstones, and Madison limestone carbonate rock sample. A state-of-the-art reservoir conditions core-flooding system was used to perform the tests. The core-flooding apparatus included a medical CT scanner to measure in-situ saturations. The scanner was rotated to the horizontal orientation allowing flow tests through vertically-placed core samples with about 3.8 cm diameter and 15 cm length. Both scCO2 /brine and gaseous CO2 (gCO2)/brine fluid systems were studied. The gaseous and supercritical CO2/brine experiments were carried out at 3.46 and 11 MPa back pressures and 20 and 55°C temperatures, respectively. Under the above-mentioned conditions, the gCO2 and scCO2 have 0.081 and 0.393 gr/cm3 densities, respectively. During unsteady-state tests, the samples were first saturated with brine and then flooded with CO2 (drainage) at different maximum flow rates. The drainage process was then followed by a low flow rate (0.375 cm 3/min) imbibition until residual CO2 saturation was achieved. Wide flow rate ranges of 0.25 to 20 cm3/min for scCO2 and 0.125 to 120 cm3min for gCO2 were used to investigate the variation of initial brine saturation (Swi) with maximum CO2 flow rate and variation of trapped CO2 saturation (SCO2r) with Swi. For a given Swi, the trapped scCO2 saturation was less than that of gCO2 in the same sample. This was attributed to brine being less wetting in the presence of scCO2 than in the presence of gCO 2. During the steady-state experiments, after providing of fully-brine saturated core, scCO2 was injected along with brine to find the drainage curve and as a consequence the Swi, then it was followed by the imbibition process to measure SCO2r. We performed different cycles of relative permeability experiments to investigate the effect of hysteresis. The Swi and SCO2r varied from 0.525 to 0.90 and 0.34 to 0.081, respectively. Maximum CO2 and brine relative permeabilities at the end of drainage and imbibition and also variation of brine relative permeability due to post-imbibition CO2 dissolution during unsteady-state experiment were also studied. We co-injected SO2 with CO2 and brine into the Madison limestone core sample. The sample was acquired from the Rock Springs Uplift in southwest Wyoming. The temperature and pressure of the experiments were 60°C and 19.16 MPa, respectively. Each drainage-imbibition cycle was followed by a dissolution process to establish Sw=1. The results showed that about 76% of the initial CO2 was trapped by capillary trapping mechanism at the end of imbibition test. We also investigated the scCO2+SO2/brine capillary pressure versus saturation relationship through performing primary drainage, imbibition, and secondary drainage experiments. The results indicated that the wettability of the core sample might have been altered owing to being in contact with the scCO 2+SO2/brine system. During primary drainage CO2 displaced 52.5% of brine, i.e., Swi = 0.475. The subsequent imbibition led to 0.329 CO2 saturation. For all series of experiments, the ratio of SCO2r to initial CO2 saturation (1- S wi) was found to be much higher for low initial CO2 saturations. This means that greater fractions of injected CO2 can be permanently trapped at higher initial brine saturations. The results illustrated that very promising fractions (about 49 to 83 %) of the initial CO2 saturation can be trapped permanently. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Witte, B.; Ferlin, C.; Gallo, E. L.; Lohse, K. A.; Meixner, T.; Brooks, P. D.; Ferre, T. A.
2010-12-01
Storm water infiltration and recharge is a key component of sustainable water resource management in rapidly expanding urban areas of arid and semi-arid regions. Near surface streambed permeability affects the partitioning of stream flows to infiltration and subsequent groundwater recharge, or increasing runoff to be conveyed downstream. Therefore, in this study, we assessed how air permeability varied among distinct stream beds of ephemeral urban washes in the semi-arid southwest. A Soil Core Air Permeameter (SCAP) was used to quantify in situ air permeability at sixteen sites in the Tucson, Arizona metropolitan area. Significant air permeability differences between gravel and grass lined ephemeral stream beds were found, where the average air permeability at the gravel sites was 3.58 x10-2 ± 1.11 x 10-2 mm2 (mean ± std error) and the air permeability at the grass sites was 7.13 x 10-3 ± 2.02 x 10-3 mm2. A previously published linear correlation between air permeability and saturated hydraulic conductivity was used to predict saturated hydraulic conductivity at the ephemeral stream beds of this study. Preliminary results suggest that the predicted saturated hydraulic conductivity values are comparable to ring infiltration measurements taken in the field. Findings from this study indicate that the higher porosity and decreased vegetation at the gravel lined urban washes enhanced infiltration rates, which may lead to decreased storm water runoff. However, higher infiltration rates at gravel lined sites may result in less time for processing of potential pollutants with negative implications for water quality.
Rostron, Anthony J; Avlonitis, Vassilios S; Cork, David M W; Grenade, Danielle S; Kirby, John A; Dark, John H
2008-02-27
The autonomic storm accompanying brain death leads to neurogenic pulmonary edema and triggers development of systemic and pulmonary inflammatory responses. Neurogenic vasoplegia exacerbates the pulmonary injury caused by brain death and primes the lung for ischemia reperfusion injury and primary graft dysfunction in the recipient. Donor resuscitation with norepinephrine ameliorates the inflammatory response to brain death, however norepinephrine has deleterious effects, particularly on the heart. We tested the hypothesis that arginine vasopressin is a suitable alternative to norepinephrine in managing the hypotensive brain dead donor. Brain death was induced in Wistar rats by intracranial balloon inflation. Pulmonary capillary leak was estimated using radioiodinated albumin. Development of pulmonary edema was assessed by measurement of wet and dry lung weights. Cell surface expression of CD11b/CD18 by neutrophils was determined using flow cytometry. Enzyme-linked immunosorbent assays were used to measure the levels of TNFalpha, IL-1beta, CINC-1, and CINC-3 in serum and bronchoalveolar lavage. Quantitative reverse-transcription polymerase chain reaction was used to determine the expression of cytokine mRNA (IL-1beta, CINC-1 and CINC-3) in lung tissue. There was a significant increase in pulmonary capillary permeability, wet/dry lung weight ratios, neutrophil integrin expression and pro-inflammatory cytokines in serum (TNFalpha, IL-1beta, CINC-1 and CINC-3), bronchoalveolar lavage (TNFalpha and IL-1beta) and lung tissue (IL-1beta and CINC-1) in braindead animals compared to controls. Correction of neurogenic hypotension with either arginine vasopressin or norepinephrine limits edema, reduces pulmonary capillary leak, and modulates systemic and pulmonary inflammatory responses to brain death. Arginine vasopressin and norepinephrine are equally effective in treating the hypotensive pulmonary donor in this rodent model.
Capillary-induced crack healing between surfaces of nanoscale roughness.
Soylemez, Emrecan; de Boer, Maarten P
2014-10-07
Capillary forces are important in nature (granular materials, insect locomotion) and in technology (disk drives, adhesion). Although well studied in equilibrium state, the dynamics of capillary formation merit further investigation. Here, we show that microcantilever crack healing experiments are a viable experimental technique for investigating the influence of capillary nucleation on crack healing between rough surfaces. The average crack healing velocity, v̅, between clean hydrophilic polycrystalline silicon surfaces of nanoscale roughness is measured. A plot of v̅ versus energy release rate, G, reveals log-linear behavior, while the slope |d[log(v̅)]/dG| decreases with increasing relative humidity. A simplified interface model that accounts for the nucleation time of water bridges by an activated process is developed to gain insight into the crack healing trends. This methodology enables us to gain insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.
High-speed video capillaroscopy method for imaging and evaluation of moving red blood cells
NASA Astrophysics Data System (ADS)
Gurov, Igor; Volkov, Mikhail; Margaryants, Nikita; Pimenov, Aleksei; Potemkin, Andrey
2018-05-01
The video capillaroscopy system with high image recording rate to resolve moving red blood cells with velocity up to 5 mm/s into a capillary is considered. Proposed procedures of the recorded video sequence processing allow evaluating spatial capillary area, capillary diameter and central line with high accuracy and reliability independently on properties of individual capillary. Two-dimensional inter frame procedure is applied to find lateral shift of neighbor images in the blood flow area with moving red blood cells and to measure directly the blood flow velocity along a capillary central line. The developed method opens new opportunities for biomedical diagnostics, particularly, due to long-time continuous monitoring of red blood cells velocity into capillary. Spatio-temporal representation of capillary blood flow is considered. Experimental results of direct measurement of blood flow velocity into separate capillary as well as capillary net are presented and discussed.
Jarden, J O; Barry, D I; Juhler, M; Graham, D I; Strandgaard, S; Paulson, O B
1984-12-01
The blood-brain barrier permeability to captopril, and the cerebrovascular effects of intracerebroventricular administration of captopril, were studied in normotensive Wistar rats. The blood-brain barrier permeability-surface area product (PS), determined by an integral-uptake method, was about 1 X 10(-5) cm3/g/s in all brain regions studied. This was three to four times lower than the simultaneously determined PS of Na+ and Cl-, both of which are known to have very low blood-brain barrier permeability. Cerebral blood flow, determined by the intra-arterial 133xenon injection method, was unaffected by intracerebroventricular administration of 100 micrograms captopril. Furthermore the lower limit of cerebral blood flow autoregulation during haemorrhagic hypotension was also unaffected, being in the mean arterial pressure range (50-69 mmHg) in both controls and captopril-treated rats. It was concluded that the blood-brain barrier permeability of captopril was negligible and that inhibition of the brain renin-angiotensin system has no effect on global cerebral blood flow. The cerebrovascular effects of intravenously administered captopril (a resetting to lower pressure of the limits and range of cerebral blood flow autoregulation) are probably exerted via converting enzyme on the luminal surface of cerebral vessels.
Quantifying Evaporation in a Permeable Pavement System ...
Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. The U.S. Environmental Protection Agency (USEPA) constructed a 0.4-ha parking lot in Edison, NJ, that incorporated three different permeable pavement types in the parking lanes – permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). An impermeable liner installed 0.4 m below the driving surface in four 11.6-m by 4.74-m sections per each pavement type captures all infiltrating water and routes it to collection tanks that can contain events up to 38 mm. Each section has a design impervious area to permeable pavement area ratio of 0.66:1. Pressure transducers installed in the underdrain collection tanks measured water level for 24 months. Level was converted to volume using depth-to-volume ratios for individual collection tanks. Using a water balance approach, the measured infiltrate volume was compared to rainfall volume on an event-basis to determine the rainfall retained in the pavement strata and underlying aggregate. Evaporation since the previous event created additional storage in the pavement and aggregate layers. Events were divided into three groups based on antecedent dry period (ADP) and three, four-month categories of potential e
Laun, Frederik Bernd; Kuder, Tristan Anselm; Zong, Fangrong; Hertel, Stefan; Galvosas, Petrik
2015-10-01
The time-dependent apparent diffusion coefficient as measured by pulsed gradient NMR can be used to estimate parameters of porous structures including the surface-to-volume ratio and the mean curvature of pores. In this work, the short-time diffusion limit and in particular the influence of the temporal profile of diffusion gradients on the expansion as proposed by Mitra et al. (1993) is investigated. It is shown that flow-compensated waveforms, i.e. those whose first moment is zero, are blind to the term linear in observation time, which is the term that is proportional to mean curvature and surface permeability. A gradient waveform that smoothly interpolates between flow-compensated and bipolar waveform is proposed and the degree of flow-compensation is used as a second experimental dimension. This two-dimensional ansatz is shown to yield an improved precision when characterizing the confining domain. This technique is demonstrated with simulations and in experiments performed with cylindrical capillaries of 100 μm radius. Copyright © 2015 Elsevier Inc. All rights reserved.
Pore-scale modeling of moving contact line problems in immiscible two-phase flow
NASA Astrophysics Data System (ADS)
Kucala, Alec; Noble, David; Martinez, Mario
2016-11-01
Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Modelling of intermittent microwave convective drying: parameter sensitivity
NASA Astrophysics Data System (ADS)
Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei
2017-06-01
The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.
EPA Permeable Surface Research - Poster
EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...
EPA Permeable Surface Research
EPA recognizes permeable surfaces as an effective post-construction infiltration-based Best Management Practice to mitigate the adverse effects of stormwater runoff. The professional user community conceptually embraces permeable surfaces as a tool for making runoff more closely...
Severe capillary leak syndrome after inner ear decompression sickness in a recreational scuba diver.
Gempp, Emmanuel; Lacroix, Guillaume; Cournac, Jean-Marie; Louge, Pierre
2013-07-01
Post-decompression shock with plasma volume deficit is a very rare event that has been observed under extreme conditions of hypobaric and hyperbaric exposure in aviators and professional divers. We report a case of severe hypovolemic shock due to extravasation of plasma in a recreational scuba diver presenting with inner ear decompression sickness. Impaired endothelial function can lead to capillary leak with hemoconcentration and hypotension in severe cases. This report suggests that decompression-induced circulating bubbles may have triggered the endothelial damage, activating the classic inflammatory pathway of increased vascular permeability. This observation highlights the need for an accurate diagnosis of this potentially life-threatening condition at the initial presentation in the Emergency Department after a diving-related injury. An elevated hematocrit in a diver should raise the suspicion for the potential development of capillary leak syndrome requiring specific treatment using albumin infusion as primary fluid replacement. Copyright © 2013 Elsevier Inc. All rights reserved.
Anders, H; Sigl, T; Schattenkirchner, M
2001-01-01
BACKGROUND—Nailfold capillary microscopy is a routine procedure in the investigation of patients with Raynaud's phenomenon (RP). As a standard method, nailfold capillary morphology is inspected with a stereomicroscope to look for capillary abnormalities such as giant loops, avascular areas, and bushy capillaries, which have all been found to be associated with certain connective tissue diseases. AIM—To investigate prospectively whether nailfold capillary inspection using an ophthalmoscope is of equivalent diagnostic value to standard nailfold capillary microscopy. METHOD—All the fingers of 26 patients with RP were examined in a blinded fashion and compared with the final diagnosis one month later. RESULTS—All giant loops, large avascular areas, and bushy capillaries were identified by both methods. The correlation for moderate avascular areas and crossed capillaries was 0.93 and 0.955 respectively. The correlation for minor abnormalities that do not contribute to the differentiation between primary and secondary RP was 0.837 and 0.861 respectively. All patients were classified identically by the two methods. CONCLUSION—For the evaluation of patients with RP, nailfold capillary morphology can reliably be assessed with an ophthalmoscope. PMID:11247874
Thin sheets achieve optimal wrapping of liquids
NASA Astrophysics Data System (ADS)
Paulsen, Joseph; Démery, Vincent; Davidovitch, Benny; Santangelo, Christian; Russell, Thomas; Menon, Narayanan
2015-03-01
A liquid drop can wrap itself in a sheet using capillary forces [Py et al., PRL 98, 2007]. However, the efficiency of ``capillary origami'' at covering the surface of a drop is hampered by the mechanical cost of bending the sheet. Thinner sheets deform more readily by forming small-scale wrinkles and stress-focussing patterns, but it is unclear how coverage efficiency competes with mechanical cost as thickness is decreased, and what wrapping shapes will emerge. We place a thin (~ 100 nm) polymer film on a drop whose volume is gradually decreased so that the sheet covers an increasing fraction of its surface. The sheet exhibits a complex sequence of axisymmetric and polygonal partially- and fully- wrapped shapes. Remarkably, the progression appears independent of mechanical properties. The gross shape, which neglects small-scale features, is correctly predicted by a simple geometric approach wherein the exposed area is minimized. Thus, simply using a thin enough sheet results in maximal coverage.
Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid
2018-03-30
Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.
Fractal Analysis of Permeability of Unsaturated Fractured Rocks
Jiang, Guoping; Shi, Wei; Huang, Lili
2013-01-01
A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model. PMID:23690746
Fractal analysis of permeability of unsaturated fractured rocks.
Jiang, Guoping; Shi, Wei; Huang, Lili
2013-01-01
A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model.
Dynamics and Stability of Capillary Surfaces: Liquid Switches at Small Scales
NASA Technical Reports Server (NTRS)
Steen, Paul H.; Bhandar, Anand; Vogel, Michael J.; Hirsa, Amir H.
2004-01-01
The dynamics and stability of systems of interfaces is central to a range of technologies related to the Human Exploration and Development of Space (HEDS). Our premise is that dramatic shape changes can be manipulated to advantage with minimal input, if the system is near instability. The primary objective is to develop the science base to allow novel approaches to liquid management in low-gravity based on this premise. HEDS requires efficient, reliable and lightweight technologies. Our poster will highlight our progress toward this goal using the capillary switch as an example. A capillary surface is a liquid/liquid or liquid/gas interface whose shape is determined by surface tension. For typical liquids (e.g., water) against gas on earth, capillary surfaces occur on the millimeterscale and smaller where shape deformation due to gravity is unimportant. In low gravity, they can occur on the centimeter scale. Capillary surfaces can be combined to make a switch a system with multiple stable states. A capillary switch can generate motion or effect force. To be practical, the energy barriers of such a switch must be tunable, its switching time (kinetics) short and its triggering mechanism reliable. We illustrate these features with a capillary switch that consists of two droplets, coupled by common pressure. As long as contact lines remained pinned, motions are inviscid, even at sub-millimeter scales, with consequent promise of low-power consumption at the device level. Predictions of theory are compared to experiment on i) a soap-film prototype at centimeter scale and ii) a liquid droplet switch at millimeter-scale.
Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter; Devesse, Wim; De Graeve, Iris; Terryn, Herman; Guillaume, Patrick
2017-01-01
Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the reference specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored. PMID:28841186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter
Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the referencemore » specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.« less
Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter; ...
2017-08-25
Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the referencemore » specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.« less
Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter; Devesse, Wim; De Graeve, Iris; Terryn, Herman; Guillaume, Patrick
2017-08-25
Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the reference specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.
Lattice Boltzmann Simulation of Shale Gas Transport in Organic Nano-Pores
Zhang, Xiaoling; Xiao, Lizhi; Shan, Xiaowen; Guo, Long
2014-01-01
Permeability is a key parameter for investigating the flow ability of sedimentary rocks. The conventional model for calculating permeability is derived from Darcy's law, which is valid only for continuum flow in porous rocks. We discussed the feasibility of simulating methane transport characteristics in the organic nano-pores of shale through the Lattice Boltzmann method (LBM). As a first attempt, the effects of high Knudsen number and the associated slip flow are considered, whereas the effect of adsorption in the capillary tube is left for future work. Simulation results show that at small Knudsen number, LBM results agree well with Poiseuille's law, and flow rate (flow capacity) is proportional to the square of the pore scale. At higher Knudsen numbers, the relaxation time needs to be corrected. In addition, velocity increases as the slip effect causes non negligible velocities on the pore wall, thereby enhancing the flow rate inside the pore, i.e., the permeability. Therefore, the LBM simulation of gas flow characteristics in organic nano-pores provides an effective way of evaluating the permeability of gas-bearing shale. PMID:24784022
NASA Astrophysics Data System (ADS)
Feldman, J.; Dewers, T. A.; Heath, J. E.; Cather, M.; Mozley, P.
2016-12-01
Multiphase flow in clay-bearing sandstones of the Morrow Sandstone governs the efficiency of CO2 storage and enhanced oil recovery at the Farnsworth Unit, Texas. This formation is the target for enhanced oil recovery and injection of one million metric ton of anthropogenically-sourced CO2. The sandstone hosts eight major flow units that exhibit distinct microstructural characteristics due to diagenesis, including: "clean" macro-porosity; quartz overgrowths constricting some pores; ghost grains; intergranular porosity filled by microporous authigenic clay; and feldspar dissolution. We examine the microstructural controls on macroscale (core scale) relative permeability and capillary pressure behavior through: X-ray computed tomography, Robomet.3d, and focused ion beam-scanning electron microscopy imaging of the pore structure of the major flow units of the Morrow Sandstone; relative permeability and capillary pressure in the laboratory using CO2, brine, and oil at reservoir pressure and effective stress conditions. The combined data sets inform links between patterns of diagenesis and multiphase flow. These data support multiphase reservoir simulation and performance assessment by the Southwest Regional Partnership on Carbon Sequestration (SWP). Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Results and Lessons Learned Interim Report: Altus AFB Site
2005-07-07
from the Altus AFB RFI Report Attachment B: Geologic Logs and Static Water Levels Attachment C: Results of Groundwater Analyses Attachment D: Results...including: soil lithology, depth to groundwater , height of capillary fringe, soil hydraulic conductivity and air permeability, soil water retention...were gauged to determine whether groundwater had infiltrated the well and to measure the static water level. Monitoring wells installed for the
Scintigraphy for Pulmonary Capillary Protein Leak
1983-09-01
In previous canine oleic acid studies, we have found that the SI was proportional to the severity of injury and was more sensitive than either...compared favorably to wet to dry lung weight ratios, alveolar epithelial membrane permeability, canine lymph flow, standard radiography and light...following lymph duct cannulation to determine if the pulmonary injury will resolve with time. 2. Canine Studies Dogs weighing approximately 20 kg, were
Investigation of the capillary flow through open surface microfluidic structures
NASA Astrophysics Data System (ADS)
Taher, Ahmed; Jones, Benjamin; Fiorini, Paolo; Lagae, Liesbet
2017-02-01
The passive nature of capillary microfluidics for pumping and actuation of fluids is attractive for many applications including point of care medical diagnostics. For such applications, there is often the need to spot dried chemical reagents in the bottom of microfluidic channels after device fabrication; it is often more practical to have open surface devices (i.e., without a cover or lid). However, the dynamics of capillary driven flow in open surface devices have not been well studied for many geometries of interest. In this paper, we investigate capillary flow in an open surface microchannel with a backward facing step. An analytical model is developed to calculate the capillary pressure as the liquid-vapor interface traverses a backward facing step in an open microchannel. The developed model is validated against results from Surface Evolver liquid-vapor surface simulations and ANSYS Fluent two-phase flow simulations using the volume of fluid approach. Three different aspect ratios (inlet channel height by channel width) were studied. The analytical model shows good agreement with the simulation results from both modeling methods for all geometries. The analytical model is used to derive an expression for the critical aspect ratio (the minimum channel aspect ratio for flow to proceed across the backward facing step) as a function of contact angle.
Fractal Theory for Permeability Prediction, Venezuelan and USA Wells
NASA Astrophysics Data System (ADS)
Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana
2014-05-01
Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.
NASA Astrophysics Data System (ADS)
Cho, Heajin; Lee, Robert C.; Chan, Kenneth H.; Fried, Daniel
2017-02-01
Previous studies have demonstrated that the permeability changes due to the surface modification of dentin can be quantified via thermal imaging during dehydration. The CO2 laser has been shown to remove the smear layer and disinfect root canals. Moreover, thermal modification via CO2 laser irradiation can be used to convert dentin into a highly mineralized enamel-like mineral. The purpose of this study is to evaluate the radicular dentin surface modification after CO2 laser irradiation by measuring the permeability with thermal imaging. Human molar specimens (n=12) were sectioned into 4 axial walls of the pulp chamber and treated with either 10% NaClO for 1 minute, 5% EDTA for 1 minute, CO2 laser or none. The CO2 laser was operated at 9.4 μm with a pulse duration of 26 μs, pulse repetition rate of 300 Hz and a fluence of 13 J/cm2. The samples were dehydrated using an air spray for 60 seconds and imaged using a thermal camera. The resulting surface morphological changes were assessed using 3D digital microscopy. The images from digital microscopy confirmed melting of the mineral phase of dentin. The area enclosed by the time-temperature curve during dehydration, ▵Q, measured with thermal imaging increased significantly with treatments with EDTA and the CO2 laser (P<0.05). These results indicate that the surface modification due to CO2 laser treatment increases permeability of radicular dentin.
An approach to modeling coupled thermal-hydraulic-chemical processes in geothermal systems
Palguta, Jennifer; Williams, Colin F.; Ingebritsen, Steven E.; Hickman, Stephen H.; Sonnenthal, Eric
2011-01-01
Interactions between hydrothermal fluids and rock alter mineralogy, leading to the formation of secondary minerals and potentially significant physical and chemical property changes. Reactive transport simulations are essential for evaluating the coupled processes controlling the geochemical, thermal and hydrological evolution of geothermal systems. The objective of this preliminary investigation is to successfully replicate observations from a series of hydrothermal laboratory experiments [Morrow et al., 2001] using the code TOUGHREACT. The laboratory experiments carried out by Morrow et al. [2001] measure permeability reduction in fractured and intact Westerly granite due to high-temperature fluid flow through core samples. Initial permeability and temperature values used in our simulations reflect these experimental conditions and range from 6.13 × 10−20 to 1.5 × 10−17 m2 and 150 to 300 °C, respectively. The primary mineralogy of the model rock is plagioclase (40 vol.%), K-feldspar (20 vol.%), quartz (30 vol.%), and biotite (10 vol.%). The simulations are constrained by the requirement that permeability, relative mineral abundances, and fluid chemistry agree with experimental observations. In the models, the granite core samples are represented as one-dimensional reaction domains. We find that the mineral abundances, solute concentrations, and permeability evolutions predicted by the models are consistent with those observed in the experiments carried out by Morrow et al. [2001] only if the mineral reactive surface areas decrease with increasing clay mineral abundance. This modeling approach suggests the importance of explicitly incorporating changing mineral surface areas into reactive transport models.
Maximal liquid bridges between horizontal cylinders
NASA Astrophysics Data System (ADS)
Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.
2016-08-01
We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.
NASA Astrophysics Data System (ADS)
García-Salaberri, Pablo A.; Vera, Marcos; Iglesias, Immaculada
2014-01-01
An isothermal two-phase 2D/1D across-the-channel model for the anode of a liquid-feed Direct Methanol Fuel Cell (DMFC) is presented. The model takes into account the effects of the inhomogeneous assembly compression of the Gas Diffusion Layer (GDL), including the spatial variations of porosity, diffusivity, permeability, capillary pressure, and electrical conductivity. The effective anisotropic properties of the GDL are evaluated from empirical data reported in the literature corresponding to Toray carbon paper TGP-H series. Multiphase transport is modeled according to the classical theory of porous media (two-fluid model), considering the effect of non-equilibrium evaporation and condensation of methanol and water. The numerical results evidence that the hydrophobic Leverett J-function approach is physically inconsistent to describe capillary transport in the anode of a DMFC when assembly compression effects are considered. In contrast, more realistic results are obtained when GDL-specific capillary pressure curves reflecting the mixed-wettability characteristics of GDLs are taken into account. The gas coverage factor at the GDL/channel interface also exhibits a strong influence on the gas-void fraction distribution in the GDL, which in turn depends on the relative importance between the capillary resistance induced by the inhomogeneous compression, Rc(∝ ∂pc / ∂ ε) , and the capillary diffusivity, Dbarc(∝ ∂pc / ∂ s) .
Li, Mao; Li, Yan; Wen, Peng Paul
2014-01-01
The biological microenvironment is interrupted when tumour masses are introduced because of the strong competition for oxygen. During the period of avascular growth of tumours, capillaries that existed play a crucial role in supplying oxygen to both tumourous and healthy cells. Due to limitations of oxygen supply from capillaries, healthy cells have to compete for oxygen with tumourous cells. In this study, an improved Krogh's cylinder model which is more realistic than the previously reported assumption that oxygen is homogeneously distributed in a microenvironment, is proposed to describe the process of the oxygen diffusion from a capillary to its surrounding environment. The capillary wall permeability is also taken into account. The simulation study is conducted and the results show that when tumour masses are implanted at the upstream part of a capillary and followed by normal tissues, the whole normal tissues suffer from hypoxia. In contrast, when normal tissues are ahead of tumour masses, their pO2 is sufficient. In both situations, the pO2 in the whole normal tissues drops significantly due to the axial diffusion at the interface of normal tissues and tumourous cells. As the existence of the axial oxygen diffusion cannot supply the whole tumour masses, only these tumourous cells that are near the interface can be partially supplied, and have a small chance to survive.
Mapping permeability over the surface of the Earth
Gleeson, T.; Smith, L.; Moosdorf, N.; Hartmann, J.; Durr, H.H.; Manning, A.H.; Van Beek, L. P. H.; Jellinek, A. Mark
2011-01-01
Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of ???5 ?? 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change. Copyright ?? 2011 by the American Geophysical Union.
Mapping permeability over the surface of the Earth
Gleeson, Tom; Smith, Leslie; Moosdorf, Nils; Hartmann, Jens; Durr, Hans H.; Manning, Andrew H.; van Beek, Ludovicus P. H.; Jellinek, A. Mark
2011-01-01
Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of -5 x 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change.
Jin, E; Ghazizadeh, M; Fujiwara, M; Nagashima, M; Shimizu, H; Ohaki, Y; Arai, S; Gomibuchi, M; Takemura, T; Kawanami, O
2001-09-01
Normal alveolar capillary endothelium is quiescent in nature and displays anticoagulant thrombomodulin (TM) on its surface. The cytoplasms of these endothelial cells are ultrastructurally non-fenestrated type, and they barely express von Willebrand factor (vWf). Alveolar fibrosis is accompanied by a capillary endothelium reactive for vWf, and a loss of TM expression. In primary lung adenocarcinoma, neovascularization occurs in association with alveolar fibrosis. In order to study basic factors related to angiogenesis and phenotypic changes of the capillaries located in tumor-bearing alveolar walls, we examined 37 primary lung adenocarcinomas with electron microscopy and confocal laser scanning microscopy with antibodies for TM, vWf, vascular endothelial growth factor (VEGF), and its receptors (KDR and Flt-1), and proliferating markers (Ki-67/proliferating cell nuclear antigen). Tissues microdissected specifically from alveolar walls were used for reverse transcription-polymerase chain reaction (RT-PCR) to assess expressions of mRNA isoforms of VEGF and its receptors. New capillary branching was found by ultrastructural study in the alveolar walls in 12% of the patients. Nuclei of the capillary endothelial cells were reactive for proliferating cell markers. Endothelial fenestrae were developed in 65% of the patients, TM reactivity was lost in the alveolar capillaries, and their cell cytoplasms obtained a reactivity for vWf through a transitional mosaic-like distribution pattern of both antigens. Besides cytoplasmic VEGF expression in neoplastic cells, tumor-bearing alveolar walls showed significant expression of mRNA of VEGF165 and KDR. These findings imply that angiogenesis and phenotypic changes of the alveolar capillaries are closely related to a higher expression of tumor-associated VEGF165 and of KDR in the alveolar walls in primary lung adenocarcinoma.
Determinants of pulmonary blood flow distribution.
Glenny, Robb W; Robertson, H Thomas
2011-01-01
The primary function of the pulmonary circulation is to deliver blood to the alveolar capillaries to exchange gases. Distributing blood over a vast surface area facilitates gas exchange, yet the pulmonary vascular tree must be constrained to fit within the thoracic cavity. In addition, pressures must remain low within the circulatory system to protect the thin alveolar capillary membranes that allow efficient gas exchange. The pulmonary circulation is engineered for these unique requirements and in turn these special attributes affect the spatial distribution of blood flow. As the largest organ in the body, the physical characteristics of the lung vary regionally, influencing the spatial distribution on large-, moderate-, and small-scale levels. © 2011 American Physiological Society.
Capillary Assembly of Colloids: Interactions on Planar and Curved Interfaces
NASA Astrophysics Data System (ADS)
Liu, Iris B.; Sharifi-Mood, Nima; Stebe, Kathleen J.
2018-03-01
In directed assembly, small building blocks are assembled into an organized structure under the influence of guiding fields. Capillary interactions provide a versatile route for structure formation. Colloids adsorbed on fluid interfaces distort the interface, which creates an associated energy field. When neighboring distortions overlap, colloids interact to minimize interfacial area. Contact line pinning, particle shape, and surface chemistry play important roles in structure formation. Interface curvature acts like an external field; particles migrate and assemble in patterns dictated by curvature gradients. We review basic analysis and recent findings in this rapidly evolving literature. Understanding the roles of assembly is essential for tuning the mechanical, physical, and optical properties of the structure.
RFI and SCRIMP Model Development and Verification
NASA Technical Reports Server (NTRS)
Loos, Alfred C.; Sayre, Jay
2000-01-01
Vacuum-Assisted Resin Transfer Molding (VARTM) processes are becoming promising technologies in the manufacturing of primary composite structures in the aircraft industry as well as infrastructure. A great deal of work still needs to be done on efforts to reduce the costly trial-and-error methods of VARTM processing that are currently in practice today. A computer simulation model of the VARTM process would provide a cost-effective tool in the manufacturing of composites utilizing this technique. Therefore, the objective of this research was to modify an existing three-dimensional, Resin Film Infusion (RFI)/Resin Transfer Molding (RTM) model to include VARTM simulation capabilities and to verify this model with the fabrication of aircraft structural composites. An additional objective was to use the VARTM model as a process analysis tool, where this tool would enable the user to configure the best process for manufacturing quality composites. Experimental verification of the model was performed by processing several flat composite panels. The parameters verified included flow front patterns and infiltration times. The flow front patterns were determined to be qualitatively accurate, while the simulated infiltration times over predicted experimental times by 8 to 10%. Capillary and gravitational forces were incorporated into the existing RFI/RTM model in order to simulate VARTM processing physics more accurately. The theoretical capillary pressure showed the capability to reduce the simulated infiltration times by as great as 6%. The gravity, on the other hand, was found to be negligible for all cases. Finally, the VARTM model was used as a process analysis tool. This enabled the user to determine such important process constraints as the location and type of injection ports and the permeability and location of the high-permeable media. A process for a three-stiffener composite panel was proposed. This configuration evolved from the variation of the process constraints in the modeling of several different composite panels. The configuration was proposed by considering such factors as: infiltration time, the number of vacuum ports, and possible areas of void entrapment.
Wound healing and anti-inflammatory activity of some Ononis taxons.
Ergene Öz, Burçin; Saltan İşcan, Gülçin; Küpeli Akkol, Esra; Süntar, İpek; Keleş, Hikmet; Bahadır Acıkara, Özlem
2017-07-01
Ononis species are used for their laxative, diuretic, analgesic, anti-inflammatory, antiviral, cytotoxic and antifungal effects as well as against skin diseases for wound healing activity. In the light of this information n-hexane, ethylacetate and methanol extracts prepared from Ononis spinosa L. subsp. leiosperma (Boiss.) Sirj., Ononis variegata L., Ononis viscosa L. subsp. brevifolia (DC) Nym. and Ononis natrix L. subsp. natrix L. were tested for their wound healing, anti-inflammatory and antioxidant activities. Linear incision and circular excision wound models and hydroxypyroline estimation assay were used for the wound healing activity. For the assessment of chronic inflammation FCA-induced arthritis and for acute inflammation carrageenan-induced hind paw edema, TPA-induced ear edema and acetic acid-induced increase in capillary permeability tests were conducted. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) scavenging activity assay, reducing power assay and hydroxyl radical (OH - ) scavenging assay were used for determining antioxidant activities of the extracts. Results showed that O. spinosa subsp. leiosperma roots ethyl acetate extract exhibited remarkable wound healing activity with the 42.6% tensile strength value on the linear incision wound model and 60.1% reduction of the wound area at the day 12 on the circular excision wound model. Hydroxyproline content of the tissue treated by O. spinosa subsp. leiosperma roots ethyl acetate extract was found to be 41.3μg/mg. Acetic acid induced increase in capillary permeability test results revealed that O. spinosa subsp. leiosperma roots ethyl acetate extract and O. spinosa subsp. leiosperma roots methanol extract inhibited inflammation by 40.4% and 35.4% values respectively. O. spinosa subsp. leiosperma roots ethyl acetate extract showed 21.2-27.2% inhibition in carrageenan-induced hind paw edema test while did not posses activity on TPA-induced ear edema and FCA-induced arthritis models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Investigation of pavement permeability : Old Bridge Road.
DOT National Transportation Integrated Search
2001-01-01
Several instances of wet pavement and pavement icing on Old Bridge Road were reported to VDOT's Lake Ridge Area Headquarters when no new precipitation had fallen. The pavement structure appears to hold water. This water seeps to the surface at a numb...
Zhang, Y.; Xu, Y.; Xia, J.
2011-01-01
We analyse dispersion and attenuation of surface waves at free surfaces of possible vacuum/poroelastic media: permeable-'open pore', impermeable-'closed pore' and partially permeable boundaries, which have not been previously reported in detail by researchers, under different surface-permeable, viscous-damping, elastic and fluid-flowing conditions. Our discussion is focused on their characteristics in the exploration-seismic frequency band (a few through 200 Hz) for near-surface applications. We find two surface-wave modes exist, R1 waves for all conditions, and R2 waves for closed-pore and partially permeable conditions. For R1 waves, velocities disperse most under partially permeable conditions and least under the open-pore condition. High-coupling damping coefficients move the main dispersion frequency range to high frequencies. There is an f1 frequency dependence as a constant-Q model for attenuation at high frequencies. R1 waves for the open pore are most sensitive to elastic modulus variation, but least sensitive to tortuosities variation. R1 waves for partially permeable surface radiate as non-physical waves (Im(k) < 0) at low frequencies. For R2 waves, velocities are slightly lower than the bulk slow P2 waves. At low frequencies, both velocity and attenuation are diffusive of f1/2 frequency dependence, as P2 waves. It is found that for partially permeable surfaces, the attenuation displays -f1 frequency dependence as frequency increasing. High surface permeability, low-coupling damping coefficients, low Poisson's ratios, and low tortuosities increase the slope of the -f1 dependence. When the attenuation coefficients reach 0, R2 waves for partially permeable surface begin to radiate as non-physical waves. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canbazoglu, F. M.; Fan, B.; Kargar, A.
2016-08-15
The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewers, Thomas; Heath, Jason E.; Leigh, Christi D.
The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two - phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in oth er realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Mo dels for waste release scenarios in salt back - fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree ofmore » consolidation, and require experimental measurement to parameterize and vali date. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potent ial usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mech anics, using sieved run - of - mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (%7E900 psi) and temperatures to 90 o C. This corresponds to UFD Work Package 15SN08180211 milestone "FY:15 Transport Properties of Run - of - Mine Salt Backfill - Unconsolidated to Consolidated". Samples exposed to uniaxial compression undergo time - dependent consolidation, or creep, to various deg rees. Creep volume strain - time relations obey simple log - time behavior through the range of porosities (%7E50 to 2% as measured); creep strain rate increases with temperature and applied stress as expected. Mercury porosimetry is used to determine characteri stic capillary pressure curves from a series of consolidation tests and show characteristic saturation - capillary pressure curves that follow the common van Genuchten (1978, 1980) formulation at low stresses. Higher capillary pressure data are suspect due t o the large potential for sample damage, including fluid inclusion decrepitation and pore collapse. Data are supportive of use of the Leverett "J" function (Leverett, 1941) to use for scaling characteristic curves at different degrees of consolidation, but better permeability determinations are needed to support this hypothesis. Recommendations for further and refined testing are made with the goal of developing a self - consistent set of constitutive laws for granular salt consolidation and multiphase (brin e - air) flow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewers, Thomas; Heath, Jason E.; Leigh, Christi D.
The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two-phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in other realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Models for waste release scenarios in salt back-fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree of consolidation, and require experimental measurement tomore » parameterize and validate. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potential usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mechanics, using sieved run-of-mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (~900 psi) and temperatures to 90°C. This corresponds to UFD Work Package 15SN08180211 milestone “FY:15 Transport Properties of Run-of-Mine Salt Backfill – Unconsolidated to Consolidated”. Samples exposed to uniaxial compression undergo time-dependent consolidation, or creep, to various degrees. Creep volume strain-time relations obey simple log-time behavior through the range of porosities (~50 to 2% as measured); creep strain rate increases with temperature and applied stress as expected. Mercury porosimetry is used to determine characteristic capillary pressure curves from a series of consolidation tests and show characteristic saturation-capillary pressure curves that follow the common van Genuchten (1978, 1980) formulation at low stresses. Higher capillary pressure data are suspect due to the large potential for sample damage, including fluid inclusion decrepitation and pore collapse. Data are supportive of use of the Leverett “J” function (Leverett, 1941) to use for scaling characteristic curves at different degrees of consolidation, but better permeability determinations are needed to support this hypothesis. Recommendations for further and refined testing are made with the goal of developing a self- consistent set of constitutive laws for granular salt consolidation and multiphase (brine-air) flow.« less
Molar volume and adsorption isotherm dependence of capillary forces in nanoasperity contacts.
Asay, David B; Kim, Seong H
2007-11-20
The magnitude of the capillary force at any given temperature and adsorbate partial pressure depends primarily on four factors: the surface tension of the adsorbate, its liquid molar volume, its isothermal behavior, and the contact geometry. At large contacting radii, the adsorbate surface tension and the contact geometry are dominating. This is the case of surface force apparatus measurements and atomic force microscopy (AFM) experiments with micrometer-size spheres. However, as the size of contacting asperities decreases to the nanoscale as in AFM experiments with sharp tips, the molar volume and isotherm of the adsorbate become very important to capillary formation as well as capillary adhesion. This effect is experimentally and theoretically explored with simple alcohol molecules (ethanol, 1-butanol, and 1-pentanol) which have comparable surface tensions but differing liquid molar volumes. Adsorption isotherms for these alcohols on silicon oxide are also reported.
Modeling capillary bridge dynamics and crack healing between surfaces of nanoscale roughness
NASA Astrophysics Data System (ADS)
Soylemez, Emrecan; de Boer, Maarten P.
2017-12-01
Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. It strongly influences tribological performance with respect to adhesion, friction and wear. Only a few studies, however, assess effects due to capillary dynamics. Here we focus on how capillary bridge evolution influences crack healing rates. Experimental results indicated a logarithmic decrease in average crack healing velocity as the energy release rate increases. Our objective is to model that trend. We assume that capillary dynamics involve two mechanisms: capillary bridge growth and subsequently nucleation followed by growth. We show that by incorporating interface roughness details and the presence of an adsorbed water layer, the behavior of capillary force dynamics can be understood quantitatively. We identify three important regimes that control the healing process, namely bridge growth, combined bridge growth and nucleation, and finally bridge nucleation. To fully capture the results, however, the theoretical model for nucleation time required an empirical modification. Our model enables significant insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.
Brain microvascular function during cardiopulmonary bypass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorensen, H.R.; Husum, B.; Waaben, J.
1987-11-01
Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracersmore » being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.« less
CO2/ brine substitution experiments at simulated reservoir conditions
NASA Astrophysics Data System (ADS)
Kummerow, Juliane; Spangenberg, Erik
2015-04-01
Capillary properties of rocks affect the mobility of fluids in a reservoir. Therefore, the understanding of the capillary pressure behaviour is essential to assess the long-term behaviour of CO2 reservoirs. Beyond this, a calibration of the petrophysical properties on water saturation of reservoir rocks at simulated in situ conditions is crucial for a proper interpretation of field monitoring data. We present a set-up, which allows for the combined measurements of capillary pressure, electric resistivity, and elastic wave velocities under controlled reservoir conditions (pconf = 400 bar, ppore = 180 bar, T = 65 ° C) at different brine-CO2 saturations. The capillary properties of the samples are measured using the micropore membrane technique. The sample is jacketed with a Viton tube (thickness = 4 mm) and placed between two current electrode endcaps, which as well contain pore fluid ports and ultrasonic P and S wave transducers. Between the sample and the lower endcap the hydrophilic semi-permeable micro-pore membrane (pore size = 100 nm) is integrated. It is embedded into filter papers to establish a good capillary contact and to protect the highly sensitive membrane against mechanical damage under load. Two high-precision syringe pumps are used to displace a quantified volume of brine by CO2 and determine the corresponding sample saturation. The fluid displacement induces a pressure gradient along the sample, which corresponds to the capillary pressure at a particular sample saturation. It is measured with a differential pressure sensor in the range between 0 - 0.2 MPa. Drainage and imbibition cycles are performed to provide information on the efficiency of capillary trapping and to get a calibration of the petrophysical parameters of the sample.
Cytokine–Ion Channel Interactions in Pulmonary Inflammation
Hamacher, Jürg; Hadizamani, Yalda; Borgmann, Michèle; Mohaupt, Markus; Männel, Daniela Narcissa; Moehrlen, Ueli; Lucas, Rudolf; Stammberger, Uz
2018-01-01
The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research. PMID:29354115
Investigating Created Properties of Nanoparticles Based Drilling Mud
NASA Astrophysics Data System (ADS)
Ghasemi, Nahid; Mirzaee, Mojtaba; Aghayari, Reza; Maddah, Heydar
2018-05-01
The success of drilling operations is heavily dependent on the drilling fluid. Drilling fluids cool down and lubricate the drill bit, remove cuttings, prevent formation damage, suspend cuttings and also cake off the permeable formation, thus retarding the passage of fluid into the formation. Typical micro or macro sized loss circulation materials (LCM) show limited success, especially in formations dominated by micropores, due to their relatively large sizes. Due to unique characteristics of nanoparticles such as their size and high surface area to volume ratio, they play an effective role in solving problems associated with the drilling fluid. In this study, we investigate the effect of adding Al2O3 and TiO2 nanoparticles into the drilling mud. Al2O3 and TiO2 nanoparticles were used in 20 and 60 nm of size and 0.05 wt% in concentration. Investigating the effects of temperature and pressure has shown that an increase in temperature can reduce the drilling mud rheological properties such as plastic viscosity, while an increase in pressure can enhance these properties. Also, the effects of pressure in high temperatures were less than those in low temperatures. Studying the effects of adding nanoparticles has shown that they can reduce the drilling mud rheological properties. Moreover, they can increase gel strength, reduce capillary suction time and decrease formation damage.
Hall, Aaron C.; Hosking, F. Michael ,; Reece, Mark
2003-06-24
A capillary test specimen, method, and system for visualizing and quantifying capillary flow of liquids under realistic conditions, including polymer underfilling, injection molding, soldering, brazing, and casting. The capillary test specimen simulates complex joint geometries and has an open cross-section to permit easy visual access from the side. A high-speed, high-magnification camera system records the location and shape of the moving liquid front in real-time, in-situ as it flows out of a source cavity, through an open capillary channel between two surfaces having a controlled capillary gap, and into an open fillet cavity, where it subsequently forms a fillet on free surfaces that have been configured to simulate realistic joint geometries. Electric resistance heating rapidly heats the test specimen, without using a furnace. Image-processing software analyzes the recorded images and calculates the velocity of the moving liquid front, fillet contact angles, and shape of the fillet's meniscus, among other parameters.
Xu, Liang; Cui, Pengfei; Wang, Dongmei; Tang, Cheng; Dong, Linyi; Zhang, Can; Duan, Hongquan; Yang, Victor C
2014-01-03
In this study, poly(glycidyl methacrylate) (PGMA) nanoparticles (NPs) were prepared and chemically immobilized for the first time onto a capillary inner wall for open tubular capillary electrochromatography (OTCEC). The immobilization of PGMA NPs onto the capillary was attained by a ring-opening reaction between the NPs and an amino-silylated fused capillary inner surface. Scanning electron micrographs clearly demonstrated that the NPs were bound to the capillary inner surface in a dense monolayer. The PGMA NP-coated column was then functionalized by lysine (Lys). After fuctionalization, the capillary can afford strong anodic electroosmotic flow, especially in acidic running buffers. Separations of three amino acids (including tryptophan, tyrosine and phenylalanine) were performed in NP-modified, monolayer Lys-functionalized and bare uncoated capillaries. Results indicated that the NP-coated column can provide more retention and higher resolution for analytes due to the hydrophobic interaction between analytes and the NP-coating. Run-to-run and column-to-column reproducibilities in the separation of the amino acids using the NP-modified column were also demonstrated. Copyright © 2013 Elsevier B.V. All rights reserved.
Schwochert, Joshua; Lao, Yongtong; Pye, Cameron R; Naylor, Matthew R; Desai, Prashant V; Gonzalez Valcarcel, Isabel C; Barrett, Jaclyn A; Sawada, Geri; Blanco, Maria-Jesus; Lokey, R Scott
2016-08-11
Cyclic peptide (CP) natural products provide useful model systems for mapping "beyond-Rule-of-5" (bRo5) space. We identified the phepropeptins as natural product CPs with potential cell permeability. Synthesis of the phepropeptins and epimeric analogues revealed much more rapid cellular permeability for the natural stereochemical pattern. Despite being more cell permeable, the natural compounds exhibited similar aqueous solubility as the corresponding epimers, a phenomenon explained by solvent-dependent conformational flexibility among the natural compounds. When analyzing the polarity of the solution structures we found that neither the number of hydrogen bonds nor the total polar surface area accurately represents the solvation energies of the high and low dielectric conformations. This work adds to a growing number of natural CPs whose solvent-dependent conformational behavior allows for a balance between aqueous solubility and cell permeability, highlighting structural flexibility as an important consideration in the design of molecules in bRo5 chemical space.
Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.
2017-05-02
We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.
We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less
NASA Astrophysics Data System (ADS)
Jiang, J.; Shen, Z.; Jia, Y.
2017-12-01
Methane hydrates are superior energy resources and potential predisposing factors of geohazard. With the success in China's persistent exploitation of methane hydrates in the Shenhu area of South China Sea for 60 days, there is an increasing demand for detailed knowledge of sediment properties and hazard assessment in this area. In this paper, the physical and mechanical properties of both the surface sediments and methane hydrate-bearing sediments (MHBS) in the exploitation area, the Shenhu area of South China Sea, were investigated using laboratory geotechnical experiments, and triaxial tests were carried out on remolded sediment samples using a modified triaxial apparatus. The results show that sediments in this area are mainly silt with high moisture content, high plasticity, low permeability and low shear strength. The moisture content and permeability decrease while the shear strength increases with the increasing depth. The elastic modulus and peak strength of MHBS increase with the increasing effective confining pressure and higher hydrate saturation. The cohesion increases with higher hydrate saturation while the internal friction angle is barely affected by hydrate saturation. The obtained results demonstrate clearly that methane hydrates have significant impacts on the physical and mechanical properties of sediments and there is still a wide gap in knowledge about MHBS.
Hu, Bin; Kieweg, Sarah L
2012-07-15
Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.
Capillary Pressure of a Liquid Between Uniform Spheres Arranged in a Square-Packed Layer
NASA Technical Reports Server (NTRS)
Alexader, J. Iwan D.; Slobozhanin, Lev A.; Collicott, Steven H.
2004-01-01
The capillary pressure in the pores defined by equidimensional close-packed spheres is analyzed numerically. In the absence of gravity the menisci shapes are constructed using Surface Evolver code. This permits calculation the free surface mean curvature and hence the capillary pressure. The dependences of capillary pressure on the liquid volume constructed here for a set of contact angles allow one to determine the evolution of basic capillary characteristics under quasi-static infiltration and drainage. The maximum pressure difference between liquid and gas required for a meniscus passing through a pore is calculated and compared with that for hexagonal packing and with approximate solution given by Mason and Morrow [l]. The lower and upper critical liquid volumes that determine the stability limits for the equilibrium capillary liquid in contact with square packed array of spheres are tabulated for a set of contact angles.
NASA Astrophysics Data System (ADS)
Ivanov, Roman A.; Melkikh, Alexey V.
2017-09-01
It has been experimentally proved that it is possible to produce a metal capillary structure with significant capillary action and free shape configuration using selective laser melting. Capillaries are created by dividing the solid detail volume into micro-sized parallel walls with roughness as a result of SLM 3D printing. Experiments are conducted on aluminum powder with particle size in the range of 10-40 µm (,) and distances in 3D model between surfaces incapillary generation zone in the range of 50-200 µm. It is showed that products produced from model with 100 µm gaps have the greatest efficiency of fluid lifting as a result of obtaining stable arrays of capillaries of 20-40 µm in size. Change in the direction of (growing) printingthe product doesn't significantly influence on capillary geometry, but it affects on safety of the structure.
Study of effective transport properties of fresh and aged gas diffusion layers
NASA Astrophysics Data System (ADS)
Bosomoiu, Magdalena; Tsotridis, Georgios; Bednarek, Tomasz
2015-07-01
Gas diffusion layers (GDLs) play an important role in proton exchange membrane fuel cells (PEMFCs) for the diffusion of reactant and the removal of product water. In the current study fresh and aged GDLs (Sigracet® GDL34BC) were investigated by X-ray computed tomography to obtain a representative 3D image of the real GDL structure. The examined GDL samples are taken from areas located under the flow channel and under the land. Additionally, a brand new Sigracet® GDL34BC was taken as a reference sample in order to find out the impact of fuel cell assembly on GDL. The produced 3D image data were used to calculate effective transport properties such as thermal and electrical conductivity, diffusivity, permeability and capillary pressure curves of the dry and partially saturated GDL. The simulation indicates flooding by product water occurs at contact angles lower than 125° depending on sample porosity. In addition, GDL anisotropy significantly affects the permeability as well as thermal and electrical conductivities. The calculated material bulk properties could be next used as input for CFD modelling of PEM fuel cells where GDL is usually assumed layer-like and homogeneous. Tensor material parameters allow to consider GDL anisotropy and lead to more realistic results.
Zhao, Jianlin; Kang, Qinjun; Yao, Jun; ...
2018-02-27
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Kang, Qinjun; Yao, Jun; Viswanathan, Hari; Pawar, Rajesh; Zhang, Lei; Sun, Hai
2018-02-01
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. To investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as the water saturation decreases to an intermediate value (about 0.4-0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. The relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianlin; Kang, Qinjun; Yao, Jun
Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less
Taylor, Shannon L.; Wahl-Jensen, Victoria; Copeland, Anna Maria; Jahrling, Peter B.; Schmaljohn, Connie S.
2013-01-01
Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during hantavirus infection and could have profound implications for treatment of hantavirus infections. PMID:23874198
Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno
2016-01-01
Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize AMD, while controlling gas flow and oxygen supply. Copyright © 2015 Elsevier B.V. All rights reserved.
Role of vascular endothelial cell growth factor in Ovarian Hyperstimulation Syndrome.
Levin, E R; Rosen, G F; Cassidenti, D L; Yee, B; Meldrum, D; Wisot, A; Pedram, A
1998-01-01
Controlled ovarian hyperstimulation with gonadotropins is followed by Ovarian Hyperstimulation Syndrome (OHSS) in some women. An unidentified capillary permeability factor from the ovary has been implicated, and vascular endothelial cell growth/permeability factor (VEGF) is a candidate protein. Follicular fluids (FF) from 80 women who received hormonal induction for infertility were studied. FFs were grouped according to oocyte production, from group I (0-7 oocytes) through group IV (23-31 oocytes). Group IV was comprised of four women with the most severe symptoms of OHSS. Endothelial cell (EC) permeability induced by the individual FF was highly correlated to oocytes produced (r2 = 0.73, P < 0.001). Group IV FF stimulated a 63+/-4% greater permeability than FF from group I patients (P < 0. 01), reversed 98% by anti-VEGF antibody. Group IV fluids contained the VEGF165 isoform and significantly greater concentrations of VEGF as compared with group I (1,105+/-87 pg/ml vs. 353+/-28 pg/ml, P < 0. 05). Significant cytoskeletal rearrangement of F-actin into stress fibers and a destruction of ZO-1 tight junction protein alignment was caused by group IV FF, mediated in part by nitric oxide. These mechanisms, which lead to increased EC permeability, were reversed by the VEGF antibody. Our results indicate that VEGF is the FF factor responsible for increased vascular permeability, thereby contributing to the pathogenesis of OHSS. PMID:9835623
NASA Astrophysics Data System (ADS)
Goderniaux, P.; Davy, P.; Le Borgne, T.; Bresciani, E.; Jimenez-Martinez, J.
2011-12-01
In crystalline rock regions, such as Brittany (France), important reserves of groundwater into deep fractured aquifers are increasingly used and provide high quality water compared to shallow aquifers which can be subject to agricultural contamination. However, recharge processes of these deep aquifers and interactions with surface water are not yet fully understood. In some areas, intensive pumping is carried out without guarantee of the resource quantity and quality. Understanding these processes is crucial for sustainable management of the resource. In this study, we study how deep groundwater fluxes, pathways, ages, and river-aquifer interactions vary according to recharge. We assume that water flowing from the ground surface is distributed between shallow more permeable layers and deep layers. This repartition mostly depends on recharge rates. With high recharge, groundwater levels are high and subsurface streamlines are relatively short between recharge areas and existing draining rivers, which constitutes a very dense network. Therefore, most of the groundwater fluxes occur through the more permeable shallow layers. With low recharge, groundwater levels are lower, and river and shallow permeable levels are partly disconnected from each other. This induces a general increase of the groundwater streamlines length from the recharge areas to more sporadic discharge areas, and more fluxes occur through the deep layers. Recharge conditions and river-aquifer interactions have changed over the last thousands of years, due to change in precipitation, temperatures, existence of permafrost, etc. They have strongly influenced deep groundwater fluxes and can explain current groundwater age and flux distribution. To study these interactions, a regional-scale finite difference flow model was implemented. The model covers an area of 1400 km 2 , a depth of 1 km, and the topography is characteristic of Brittany. As rivers are mainly fed by groundwater drainage, seepages faces are used on the whole modelled area, so that the river network is not prescribed but dependent on simulated groundwater conditions. Different recharge conditions were tested (from 20 to 500 mm/yr). Results show that streamline lengths and groundwater ages have exponential distributions with characteristic lengths increasing with decreasing recharge. The total area of discharge zones decreases with recharge. Groundwater age is quite variable and increases with depth, but the variability is much more important in discharge areas than recharge areas. The proportion of groundwater discharge into the sea (compared to total recharge) increases when total recharge decreases. The model was also used to test the influence of heterogeneity or hydraulic conductivity contrast between shallow and deep layers on deep groundwater fluxes. In a completely homogeneous model, deep fluxes are correlated with recharge fluxes. Correlation decreases while contrast increases. If the permeability of the shallow weather zone is now 3 orders of magnitude larger than of deep aquifer, we observed that simulated deep groundwater fluxes increase locally, despite total recharge at the level of the ground surface decreases.
NASA Astrophysics Data System (ADS)
Song, Wenhui; Yao, Jun; Ma, Jingsheng; Sun, Hai; Li, Yang; Yang, Yongfei; Zhang, Lei
2018-02-01
Fluid flow in nanoscale organic pores is known to be affected by fluid transport mechanisms and properties within confined pore space. The flow of gas and water shows notably different characteristics compared with conventional continuum modeling approach. A pore network flow model is developed and implemented in this work. A 3-D organic pore network model is constructed from 3-D image that is reconstructed from 2-D shale SEM image of organic-rich sample. The 3-D pore network model is assumed to be gas-wet and to contain initially gas-filled pores only, and the flow model is concerned with drainage process. Gas flow considers a full range of gas transport mechanisms, including viscous flow, Knudsen diffusion, surface diffusion, ad/desorption, and gas PVT and viscosity using a modified van der Waals' EoS and a correlation for natural gas, respectively. The influences of slip length, contact angle, and gas adsorption layer on water flow are considered. Surface tension considers the pore size and temperature effects. Invasion percolation is applied to calculate gas-water relative permeability. The results indicate that the influences of pore pressure and temperature on water phase relative permeabilities are negligible while gas phase relative permeabilities are relatively larger in higher temperatures and lower pore pressures. Gas phase relative permeability increases while water phase relative permeability decreases with the shrinkage of pore size. This can be attributed to the fact that gas adsorption layer decreases the effective flow area of the water phase and surface diffusion capacity for adsorbed gas is enhanced in small pore size.
Capillary pumping independent of the liquid surface energy and viscosity
NASA Astrophysics Data System (ADS)
Guo, Weijin; Hansson, Jonas; van der Wijngaart, Wouter
2018-03-01
Capillary pumping is an attractive means of liquid actuation because it is a passive mechanism, i.e., it does not rely on an external energy supply during operation. The capillary flow rate generally depends on the liquid sample viscosity and surface energy. This poses a problem for capillary-driven systems that rely on a predictable flow rate and for which the sample viscosity or surface energy are not precisely known. Here, we introduce the capillary pumping of sample liquids with a flow rate that is constant in time and independent of the sample viscosity and sample surface energy. These features are enabled by a design in which a well-characterized pump liquid is capillarily imbibed into the downstream section of the pump and thereby pulls the unknown sample liquid into the upstream pump section. The downstream pump geometry is designed to exert a Laplace pressure and fluidic resistance that are substantially larger than those exerted by the upstream pump geometry on the sample liquid. Hence, the influence of the unknown sample liquid on the flow rate is negligible. We experimentally tested pumps of the new design with a variety of sample liquids, including water, different samples of whole blood, different samples of urine, isopropanol, mineral oil, and glycerol. The capillary filling speeds of these liquids vary by more than a factor 1000 when imbibed to a standard constant cross-section glass capillary. In our new pump design, 20 filling tests involving these liquid samples with vastly different properties resulted in a constant volumetric flow rate in the range of 20.96-24.76 μL/min. We expect this novel capillary design to have immediate applications in lab-on-a-chip systems and diagnostic devices.
Scarinci, Fabio; Nesper, Peter L; Fawzi, Amani A
2016-08-01
To report outer retinal structural changes associated with macular capillary nonperfusion at the level of deep capillary plexus (DCP) in diabetic patients. Prospective observational cross-sectional study. The study included 14 eyes of 10 patients who were diagnosed as having diabetic retinopathy. To study the outer retina and localize areas of capillary nonperfusion at the superficial (SCP) or DCP, we used the spectral-domain optical coherence tomography (SDOCT) device (RTVue-XR Avanti; Optovue Inc, Fremont, California, USA) with split-spectrum amplitude-decorrelation angiography (SSADA) software for optical coherence tomography angiography (OCTA). Two independent masked graders (F.S. and A.A.F.) qualitatively evaluated SDOCT scans as either normal or having outer retina disruption. The angiographic images were examined to define the presence and location of capillary nonperfusion. Eight eyes showed outer retinal disruption on SDOCT that co-localized to areas of enlarged foveal avascular zone, areas of no flow between capillaries, and capillary nonperfusion of the DCP. Six eyes without outer retinal changes on SDOCT showed robust perfusion of the DCP. Using OCTA, this study shows that macular photoreceptor disruption on SDOCT in patients with diabetic retinopathy corresponds to areas of capillary nonperfusion at the level of the DCP. This is important in highlighting the contribution of the DCP to the oxygen requirements of the photoreceptors as well as the outer retina in diabetic macular ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Welch, N.; Crawshaw, J.; Boek, E.
2014-12-01
The successful storage of carbon dioxide in geologic formations requires an in-depth understanding of all reservoir characteristics and morphologies. An intact and substantial seal formation above a storage reservoir is required for a significant portion of the initial sealing mechanisms believed to occur during carbon dioxide storage operations. Shales are a common seal formation rock types found above numerous hydrocarbon reservoirs, as well as potential saline aquifer storage locations. Shales commonly have very low permeability, however they also have the tendency to be quite fissile, and the formation of fractures within these seals can have a significant detrimental effect on the sealing potential of a reservoir and amount to large areas of high permeability and low capillary pressures compared to the surrounding intact rock. Fractured shales also have an increased current interest due to the increasing development of shale gas reservoirs using hydraulic fracturing techniques. This work shows the observed changes that occur within fractured pieces of reservoir seal shale samples, along with quarry analogues, using an in-situ micro-CT fluid flow imaging apparatus with a Hassler type core holder. Changes within the preferential flow path under different stress regimes as well as physical changes to the fracture geometry are reported. Lattice Boltzmann flow simulations were then performed on the extracted flow paths and compared to experiment permeability measurements. The preferential flow path of carbon dioxide through the fracture network is also observed and compared to the results two-phase Lattice Boltzmann fluid flow simulations.
Ground-water hydrology of the Willamette basin, Oregon
Conlon, Terrence D.; Wozniak, Karl C.; Woodcock, Douglas; Herrera, Nora B.; Fisher, Bruce J.; Morgan, David S.; Lee, Karl K.; Hinkle, Stephen R.
2005-01-01
The Willamette Basin encompasses a drainage of 12,000 square miles and is home to approximately 70 percent of Oregon's population. Agriculture and population are concentrated in the lowland, a broad, relatively flat area between the Coast and Cascade Ranges. Annual rainfall is high, with about 80 percent of precipitation falling from October through March and less than 5 percent falling in July and August, the peak growing season. Population growth and an increase in cultivation of crops needing irrigation have produced a growing seasonal demand for water. Because many streams are administratively closed to new appropriations in summer, ground water is the most likely source for meeting future water demand. This report describes the current understanding of the regional ground-water flow system, and addresses the effects of ground-water development. This study defines seven regional hydrogeologic units in the Willamette Basin. The highly permeable High Cascade unit consists of young volcanic material found at the surface along the crest of the Cascade Range. Four sedimentary hydrogeologic units fill the lowland between the Cascade and Coast Ranges. Young, highly permeable coarse-grained sediments of the upper sedimentary unit have a limited extent in the floodplains of the major streams and in part of the Portland Basin. Extending over much of the lowland where the upper sedimentary unit does not occur, silts and clays of the Willamette silt unit act as a confining unit. The middle sedimentary unit, consisting of permeable coarse-grained material, occurs beneath the Willamette silt and upper sedimentary units and at the surface as terraces in the lowland. Beneath these units is the lower sedimentary unit, which consists of predominantly fine-grained sediments. In the northern part of the basin, lavas of the Columbia River basalt unit occur at the surface in uplands and beneath the basin-fill sedimentary units. The Columbia River basalt unit contains multiple productive water-bearing zones. A basement confining unit of older marine and volcanic rocks of low permeability underlies the basin and occurs at land surface in the Coast Range and western part of the Cascade Range. Most recharge in the basin is from infiltration of precipitation, and the spatial distribution of recharge mimics the distribution of precipitation, which increases with elevation. Basinwide annual mean recharge is estimated to be 22 inches. Rain and snowmelt easily recharge into the permeable High Cascade unit and discharge within the High Cascade area. Most recharge in the Coast Range and western part of the Cascade Range follows short flowpaths through the upper part of the low permeability material and discharges to streams within the mountains. Consequently, recharge in the Coast and Ranges is not available as lateral ground-water flow into the lowland, where most ground-water use occurs. Within the lowland, annual mean recharge is 16 inches and most recharge occurs from November to April, when rainfall is large and evapotranspiration is small. From May to October recharge is negligible because precipitation is small and evapotranspiration is large. Discharge of ground water is mainly to streams. Ground-water discharge is a relatively large component of flow in streams that drain the High Cascade unit and parts of the Portland Basin where permeable units are at the surface. In streams that do not head in the High Cascade area, streamflow is generally dominated by runoff of precipitation. Ground-water in the permeable units in the lowland discharges to the major streams where there is a good hydraulic connection between aquifers and streams. Ground-water discharge to smaller streams, which flow on the less permeable Willamette silt unit, is small and mostly from the Willamette silt unit. Most ground-water withdrawals occur within the lowland. Irrigation is the largest use of ground water, accounting for 240,000 acre feet of withdrawals, or 81 p
Capillary waves with surface viscosity
NASA Astrophysics Data System (ADS)
Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele
2017-11-01
Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.
NASA Astrophysics Data System (ADS)
Rod, K. A.; Smith, A. P.; Renslow, R.
2016-12-01
Recent evidence highlights the importance of organo-mineral interactions in regulating the source or sink capacity of soil. High surface area soils, such as allophane-rich or clay-rich soils, retain organic matter (OM) via sorption to mineral surfaces which can also contribute physical isolation in interlayer spaces. Despite the direct correlation between mineral surfaces and OM accumulation, the pedogenic processes controlling the abundance of reactive surface areas and their distribution in the mineral matrix remains unclear. As global soil temperatures rise, the dissolution of primary minerals and formation of new secondary minerals may be thermodynamically favored as part of soil weathering process. Newly formed minerals can supply surfaces for organo-metallic bonding and may, therefore, stabilize OM by surface bonding and physical exclusion. This is especially relevant in environments that intersect terrestrial and aquatic systems, such as the capillary fringe zone in riparian ecosystems. To test the mechanisms of mineral surface area protection of OM, we facilitated secondary precipitation of alumino-silicates in the presence of OM held at two different temperatures in natural Nisqually River sediments (Mt Rainier, WA). This was a three month reaction intended to simulate early pedogenesis. To tease out the influence of mineral surface area increase during pedogenesis, we incubated the sediments at two different soil moisture contents to induce biodegradation. We measured OM desorption, biodegradation, and the molecular composition of mineral-associated OM both prior to and following the temperature manipulation. To simulate the saturation of capillary fringe sediment and associated transport and reaction of OM, column experiments were conducted using the reacted sediments. More co-precipitation was observed in the 20°C solution compared to the 4°C reacted solution suggesting that warming trends alter mineral development and may remove more OM from solution. The results from the static experiments will be used to model and predict the impacts of mineral sorption and biological activity on OM persistence in the context of dynamic saturation conditions and heterogeneous material properties.
Cunningham, K.J.; Renken, R.A.; Wacker, M.A.; Zygnerski, M.R.; Robinson, E.; Shapiro, A.M.; Wingard, G.L.
2006-01-01
Combined analyses of cores, borehole geophysical logs, and cyclostratigraphy produced a new conceptual hydrogeologic framework for the triple-porosity (matrix, touching-vug, and conduit porosity) karst limestone of the Biscayne aquifer in a 0.65 km2 study area, SE Florida. Vertical lithofacies successions, which have recurrent stacking patterns, fit within high-frequency cycles. We define three ideal high-frequency cycles as: (1) upward-shallowing subtidal cycles, (2) upward-shallowing paralic cycles, and (3) aggradational subtidal cycles. Digital optical borehole images, tracers, and flow meters indicate that there is a predictable vertical pattern of porosity and permeability within the three ideal cycles, because the distribution of porosity and permeability is related to lithofacies. Stratiform zones of high permeability commonly occur just above flooding surfaces in the lower part of upward-shallowing subtidal and paralic cycles, forming preferential groundwater flow zones. Aggradational subtidal cycles are either mostly high-permeability zones or leaky, low-permeability units. In the study area, groundwater flow within stratiform high-permeability zones is through a secondary pore system of touching-vug porosity principally related to molds of burrows and pelecypods and to interburrow vugs. Movement of a dye-tracer pulse observed using a borehole fluid-temperature tool during a conservative tracer test indicates heterogeneous permeability. Advective movement of the tracer appears to be most concentrated within a thin stratiform flow zone contained within the lower part of a high-frequency cycle, indicating a distinctly high relative permeability for this zone. Borehole flow-meter measurements corroborate the relatively high permeability of the flow zone. Identification and mapping of such high-permeability flow zones is crucial to conceptualization of karst groundwater flow within a cyclostratigraphic framework. Many karst aquifers are included in cyclic platform carbonates. Clearly, a cyclostratigraphic approach that translates carbonate aquifer heterogeneity into a consistent framework of correlative units will improve simulation of karst groundwater flow. ?? 2006 Geological Society of America.
Schick, Martin Alexander; Wunder, Christian; Wollborn, Jakob; Roewer, Norbert; Waschke, Jens; Germer, Christoph-Thomas; Schlegel, Nicolas
2012-06-01
In sepsis and systemic inflammation, increased microvascular permeability and consecutive breakdown of microcirculatory flow significantly contribute to organ failure and death. Evidence points to a critical role of cAMP levels in endothelial cells to maintain capillary endothelial barrier properties in acute inflammation. However, approaches to verify this observation in systemic models are rare. Therefore we tested here whether systemic application of the phosphodiesterase-4-inhibitors (PD-4-Is) rolipram or roflumilast to increase endothelial cAMP was effective to attenuate capillary leakage and breakdown of microcirculatory flow in severe lipopolysaccharide (LPS)-induced systemic inflammation in rats. Measurements of cAMP in mesenteric microvessels demonstrated significant LPS-induced loss of cAMP levels which was blocked by application of rolipram. Increased endothelial cAMP by application of either PD-4-I rolipram or roflumilast led to stabilization of endothelial barrier properties as revealed by measurements of extravasated FITC-albumin in postcapillary mesenteric venules. Accordingly, microcirculatory flow in mesenteric venules was significantly increased following PD-4-I treatment and blood gas analyses indicated improved metabolism. Furthermore application of PD-4-I after manifestation of LPS-induced systemic inflammation and capillary leakage therapeutically stabilized endothelial barrier properties as revealed by significantly reduced volume resuscitation for haemodynamic stabilization. Accordingly microcirculation was significantly improved following treatment with PD-4-Is. Our results demonstrate that inflammation-derived loss of endothelial cAMP contributes to capillary leakage which was blocked by systemic PD-4-I treatment. Therefore these data suggest a highly clinically relevant and applicable approach to stabilize capillary leakage in sepsis and systemic inflammation.
NASA Astrophysics Data System (ADS)
Raeesi, Behrooz; Piri, Mohammad
2009-10-01
SummaryWe use a three-dimensional mixed-wet random pore-scale network model to investigate the impact of wettability and trapping on the relationship between interfacial area, capillary pressure and saturation in two-phase drainage and imbibition processes. The model is a three-dimensional network of interconnected pores and throats of various geometrical shapes. It allows multiple phases to be present in each capillary element in wetting and spreading layers, as well as occupying the center of the pore space. Two different random networks that represent the pore space in Berea and a Saudi Arabia reservoir sandstone are used in this study. We allow the wettability of the rock surfaces contacted by oil to alter after primary drainage. The model takes into account both contact angle and trapping hystereses. We model primary oil drainage and water flooding for mixed-wet conditions, and secondary oil injection for a water-wet system. The total interfacial area for pores and throats are calculated when the system is at capillary equilibrium. They include contributions from the arc menisci (AMs) between the bulk and corner fluids, and from the main terminal menisci (MTMs) between different bulk fluids. We investigate hysteresis in these relationships by performing water injection into systems of varying wettability and initial water saturation. We show that trapping and contact angle hystereses significantly affect the interfacial area. In a strongly water-wet system, a sharp increase is observed at the beginning of water flood, which shifts the area to a higher level than primary drainage. As we change the wettability of the system from strongly water-wet to strongly oil-wet, the trapped oil saturation decreases significantly. Starting water flood from intermediate water saturations, greater than the irreducible water saturation, can also affect the non-wetting phase entrapment, resulting in different interfacial area behaviors. This can increase the interfacial area significantly in oil-wet systems. A qualitative comparison of our results with the experimental data available in literature for glass beads shows, with some expected differences, an encouraging agreement. Also, our results agree well with those generated by the previously developed models.
Ground-Water Hydrology of the Upper Deschutes Basin, Oregon
Gannett, Marshall W.; Lite, Kenneth E.; Morgan, David S.; Collins, Charles A.
2001-01-01
The upper Deschutes Basin is among the fastest growing regions in Oregon. The rapid population growth has been accompanied by increased demand for water. Surface streams, however, have been administratively closed to additional appropriation for many years, and surface water is not generally available to support new development. Consequently, ground water is being relied upon to satisfy the growth in water demand. Oregon water law requires that the potential effects of ground-water development on streamflow be evaluated when considering applications for new ground-water rights. Prior to this study, hydrologic understanding has been insufficient to quantitatively evaluate the connection between ground water and streamflow, and the behavior of the regional ground-water flow system in general. This report describes the results of a hydrologic investigation undertaken to provide that understanding. The investigation encompasses about 4,500 square miles of the upper Deschutes River drainage basin.A large proportion of the precipitation in the upper Deschutes Basin falls in the Cascade Range, making it the principal ground-water recharge area for the basin. Water-balance calculations indicate that the average annual rate of ground- water recharge from precipitation is about 3,500 ft3/s (cubic feet per second). Water-budget calculations indicate that in addition to recharge from precipitation, water enters the ground-water system through interbasin flow. Approximately 800 ft3/s flows into the Metolius River drainage from the west and about 50 ft3/s flows into the southeastern part of the study area from the Fort Rock Basin. East of the Cascade Range, there is little or no ground-water recharge from precipitation, but leaking irrigation canals are a significant source of artificial recharge north of Bend. The average annual rate of canal leakage during 1994 was estimated to be about 490 ft3/s. Ground water flows from the Cascade Range through permeable volcanic rocks eastward out into the basin and then generally northward. About one-half the ground water flowing from the Cascade Range discharges to spring-fed streams along the margins of the range, including the upper Metolius River and its tributaries. The remaining ground water flows through the subsurface, primarily through rocks of the Deschutes Formation, and eventually discharges to streams near the confluence of the Deschutes, Crooked, and Metolius Rivers. Substantial ground-water discharge occurs along the lower 2 miles of Squaw Creek, the Deschutes River between Lower Bridge and Pelton Dam, the lower Crooked River between Osborne Canyon and the mouth, and in Lake Billy Chinook (a reservoir that inundates the confluence of the Deschutes, Crooked, and Metolius Rivers).The large amount of ground-water discharge in the confluence area is primarily caused by geologic factors. North (downstream) of the confluence area, the upper Deschutes Basin is transected by a broad region of low-permeability rock of the John Day Formation. The Deschutes River flows north across the low-permeability region, but the permeable Deschutes Formation, through which most of the regional ground water flows, ends against this rampart of low-permeability rock. The northward-flowing ground water discharges to the streams in this area because the permeable strata through which it flows terminate, forcing the water to discharge to the surface. Virtually all of the regional ground water in the upper Deschutes Basin discharges to surface streams south of the area where the Deschutes River enters this low-permeability terrane, at roughly the location of Pelton Dam.The effects of ground-water withdrawal on streamflow cannot presently be measured because of measurement error and the large amount of natural variability in ground-water discharge. The summer streamflow near Madras, which is made up largely of ground-water discharge, is approximately 4,000 ft3/s. Estimated consumptive ground-water use in the basin i
NASA Astrophysics Data System (ADS)
Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.
2016-10-01
In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.
Grothausmann, Roman; Knudsen, Lars; Ochs, Matthias; Mühlfeld, Christian
2017-02-01
Grothausmann R, Knudsen L, Ochs M, Mühlfeld C. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. Am J Physiol Lung Cell Mol Physiol 312: L243-L257, 2017. First published December 2, 2016; doi:10.1152/ajplung.00326.2016-The alveolar capillary network (ACN) provides an enormously large surface area that is necessary for pulmonary gas exchange. Changes of the ACN during normal or pathological development or in pulmonary diseases are of great functional impact and warrant further analysis. Due to the complexity of the three-dimensional (3D) architecture of the ACN, 2D approaches are limited in providing a comprehensive impression of the characteristics of the normal ACN or the nature of its alterations. Stereological methods offer a quantitative way to assess the ACN in 3D in terms of capillary volume, surface area, or number but lack a 3D visualization to interpret the data. Hence, the necessity to visualize the ACN in 3D and to correlate this with data from the same set of data arises. Such an approach requires a large sample volume combined with a high resolution. Here, we present a technically simple and cost-efficient approach to create 3D representations of lung tissue ranging from bronchioles over alveolar ducts and alveoli up to the ACN from more than 1 mm sample extent to a resolution of less than 1 μm. The method is based on automated image acquisition of serially sectioned epoxy resin-embedded lung tissue fixed by vascular perfusion and subsequent automated digital reconstruction and analysis of the 3D data. This efficient method may help to better understand mechanisms of vascular development and pathology of the lung. Copyright © 2017 the American Physiological Society.
Hayslett, John P.
1973-01-01
The effect of increased hydrostatic pressure in the peritubular vessels on net sodium reabsorption from the proximal tubule was examined in the Necturus. An increase in the pressure gradient of 2.0 cm H2O across the wall of the proximal tubule, produced by ligation of the postcaval vein was associated with a marked reduction in net reabsorption and an increased back flux of water and electrolytes. This change was accompanied by a slight, but significant drop in the transepithelial electrical potential but not by an alteration in the steady-state chemical gradient. These studies highlight the importance of changes in the permeability characteristics of the proximal tubule on net sodium transport. Images PMID:4703221
Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry.
Cassar, Nicolas; Barnett, Bruce A; Bender, Michael L; Kaiser, Jan; Hamme, Roberta C; Tilbrook, Bronte
2009-03-01
The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.
Duval, Jérôme F L; Slaveykova, Vera I; Hosse, Monika; Buffle, Jacques; Wilkinson, Kevin J
2006-10-01
The electrostatic, hydrodynamic and conformational properties of aqueous solutions of succinoglycan have been analyzed by fluorescence correlation spectroscopy (FCS), proton titration, and capillary electrophoresis (CE) over a large range of pH values and electrolyte (NaCl) concentrations. Using the theoretical formalism developed previously for the electrokinetic properties of soft, permeable particles, a quantitative analysis for the electro-hydrodynamics of succinoglycan is performed by taking into account, in a self-consistent manner, the measured values of the diffusion coefficients, electric charge densities, and electrophoretic mobilities. For that purpose, two limiting conformations for the polysaccharide in solution are tested, i.e. succinoglycan behaves as (i) a spherical, random coil polymer or (ii) a rodlike particle with charged lateral chains. The results show that satisfactory modeling of the titration data for ionic strengths larger than 50 mM can be accomplished using both geometries over the entire range of pH values. Electrophoretic mobilities measured for sufficiently large pH values (pH > 5-6) are in line with predictions based on either model. The best manner to discriminate between these two conceptual models is briefly discussed. For low pH values (pH < 5), both models indicate aggregation, resulting in an increase of the hydrodynamic permeability and a decrease of the diffusion coefficient.
Parker, J C; Ivey, C L
1997-12-01
To separate the contributions of cellular and basement membrane components of the alveolar capillary barrier to the increased microvascular permeability induced by high pulmonary venous pressures (Ppv), we subjected isolated rat lungs to increases in Ppv, which increased capillary filtration coefficient (Kfc) without significant hemorrhage (31 cmH2O) and with obvious extravasation of red blood cells (43 cmH2O). Isoproterenol (20 microM) was infused in one group (Iso) to identify a reversible cellular component of injury, and residual blood volumes were measured to assess extravasation of red blood cells through ruptured basement membranes. In untreated lungs (High Ppv group), Kfc increased 6.2 +/- 1.3 and 38.3 +/- 15.2 times baseline during the 31 and 43 cmH2O Ppv states. In Iso lungs, Kfc was 36.2% (P < 0.05) and 64.3% of that in the High Ppv group at these Ppv states. Residual blood volumes calculated from tissue hemoglobin contents were significantly increased by 53-66% in the high Ppv groups, compared with low vascular pressure controls, but there was no significant difference between High Ppv and Iso groups. Thus isoproterenol significantly attenuated vascular pressure-induced Kfc increases at moderate Ppv, possibly because of an endothelial effect, but it did not affect red cell extravasation at higher vascular pressures.
Field-Scale Modeling of Local Capillary Trapping During CO2 Injection into a Saline Aquifer
NASA Astrophysics Data System (ADS)
Ren, B.; Lake, L. W.; Bryant, S. L.
2015-12-01
Local capillary trapping is the small-scale (10-2 to 10+1 m) CO2 trapping that is caused by the capillary pressure heterogeneity. The benefit of LCT, applied specially to CO2 sequestration, is that saturation of stored CO2 is larger than the residual gas, yet these CO2 are not susceptible to leakage through failed seals. Thus quantifying the extent of local capillary trapping is valuable in design and risk assessment of geologic storage projects. Modeling local capillary trapping is computationally expensive and may even be intractable using a conventional reservoir simulator. In this paper, we propose a novel method to model local capillary trapping by combining geologic criteria and connectivity analysis. The connectivity analysis originally developed for characterizing well-to-reservoir connectivity is adapted to this problem by means of a newly defined edge weight property between neighboring grid blocks, which accounts for the multiphase flow properties, injection rate, and gravity effect. Then the connectivity is estimated from shortest path algorithm to predict the CO2 migration behavior and plume shape during injection. A geologic criteria algorithm is developed to estimate the potential local capillary traps based only on the entry capillary pressure field. The latter is correlated to a geostatistical realization of permeability field. The extended connectivity analysis shows a good match of CO2 plume computed by the full-physics simulation. We then incorporate it into the geologic algorithm to quantify the amount of LCT structures identified within the entry capillary pressure field that can be filled during CO2 injection. Several simulations are conducted in the reservoirs with different level of heterogeneity (measured by the Dykstra-Parsons coefficient) under various injection scenarios. We find that there exists a threshold Dykstra-Parsons coefficient, below which low injection rate gives rise to more LCT; whereas higher injection rate increases LCT in heterogeneous reservoirs. Both the geologic algorithm and connectivity analysis are very fast; therefore, the integrated methodology can be used as a quick tool to estimate local capillary trapping. It can also be used as a potential complement to the full-physics simulation to evaluate safe storage capacity.
NASA Astrophysics Data System (ADS)
Chen, Li; Wang, Wenke; Zhang, Zaiyong; Wang, Zhoufeng; Wang, Qiangmin; Zhao, Ming; Gong, Chengcheng
2018-04-01
Soil surface evaporation is a significant component of the hydrological cycle, occurring at the interface between the atmosphere and vadose zone, but it is affected by factors such as groundwater level, soil properties, solar radiation and others. In order to understand the soil evaporation characteristics in arid regions, a field experiment was conducted in the Ordos Basin, central China, and high accuracy sensors of soil moisture, moisture potential and temperature were installed in three field soil profiles with water-table depths (WTDs) of about 0.4, 1.4 and 2.2 m. Soil-surface-evaporation values were estimated by observed data combined with Darcy's law. Results showed that: (1) soil-surface-evaporation rate is linked to moisture content and it is also affected by air temperature. When there is sufficient moisture in the soil profile, soil evaporation increases with rising air temperature. For a WTD larger than the height of capillary rise, the soil evaporation is related to soil moisture content, and when air temperature is above 25 °C, the soil moisture content reduces quickly and the evaporation rate lowers; (2) phreatic water contributes to soil surface evaporation under conditions in which the WTD is within the capillary fringe. This indicates that phreatic water would not participate in soil evaporation for a WTD larger than the height of capillary rise. This finding developed further the understanding of phreatic evaporation, and this study provides valuable information on recognized soil evaporation processes in the arid environment.
Meléndez-Martínez, David; Macias-Rodríguez, Eduardo; Vargas-Caraveo, Alejandra; Martínez-Martínez, Alejandro; Gatica-Colima, Ana; Plenge-Tellechea, Luis Fernando
2014-01-01
The Northern black-tailed rattlesnake (Crotalus molossus molossus) venom is mainly hemotoxic, hemorrhagic, and neurotoxic. Its effects in the central nervous system are unknown and only poorly described for all Viperidae species in general. This is why we are interested in describe the damage induced by C. m. molossus venom in rat brain, particularly in the area postrema capillaries. Four C. m. molossus venom doses were tested (0.02, 0.05, 0.10 and 0.20mg/kg) injected intramuscularly at the lower limb, incubated by 24 hours and the brains were harvested. Area postrema coronal sections were stained with Haematoxylin and Eosin, and examined to observe the venom effect in quantity of capillaries and porphology. Starting from the 0.10mg/kg treatment we observed lysed extravasated erythrocytes and also capillary breakdown, as a consequence of hemorrhages appearance. The number of capillaries decreased significantly in response to the venom dose increment. Hemorrhages could be caused by the metalloproteinase activity on the basal membrane and the apoptosis generated by L-amino acid oxidases. Hemolysis could be caused by phospholipase A2 hemotoxic effect. We conclude that C. m. molossus crude venom produces hemolysis, capillary breakdown, hemorrhages, and the reduction in number of capillaries in the area postrema. PMID:25035793
Use of Capillaries for Macromolecular Crystallization in a Cryogenic Dewar
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Hammons, Aaron S.; Hong, Young Soo
2002-01-01
The enhanced gaseous nitrogen (EGN) dewar is a cryogenic dry shipper with a sealed cylinder inserted inside along with a temperature monitoring device, and is intended for macromolecular crystallization experiments on the International Space Station. Within the dewar, each crystallization experiment is contained as a solution within a plastic capillary tube. The standard procedure for loading samples in these tubes has involved rapid freezing of the precipitant and biomolecular solution, e.g., protein, directly in liquid nitrogen; this method, however, often resulted in uncontrolled formation of air voids, These air pockets, or bubbles, can lead to irreproducible crystallization results. A novel protocol has been developed to prevent formation of bubbles, and this has been tested in the laboratory as well as aboard the International Space Station during a 42-day long mission of July/August 2001. The gain or loss of mass from solutions within the plastic capillaries revealed that mass transport occurred among separated tubes, and that this mass transport was dependent upon the hygroscopic character of the solution contained in any given tube. The surface area of the plastic capillary tube also related to the observed mass transport. Furthermore, the decreased mass of solutions of-protein correlated to observed formation of protein crystals.
Method for removing organic liquids from aqueous solutions and mixtures
Hrubesh, Lawrence W.; Coronado, Paul R.; Dow, Jerome P.
2004-03-23
A method for removing organic liquids from aqueous solutions and mixtures. The method employs any porous material preferably in granular form and having small pores and a large specific surface area, that is hydrophobic so that liquid water does not readily wet its surface. In this method, organics, especially organic solvents that mix with and are more volatile than water, are separated from aqueous solution by preferentially evaporating across the liquid/solid boundary formed at the surfaces of the hydrophobic porous materials. Also, organic solvents that are immiscible with water, preferentially wet the surfaces of the hydrophobic material and are drawn within the porous materials by capillary action.
Chen, Fong-Yi; Chang, Wei-Cheng; Jian, Rih-Sheng; Lu, Chia-Jung
2014-06-03
This paper presents the design, assembly, and evaluation of a novel gas chromatographic detector intended to measure the absorbance of the localized surface plasmon resonance (LSPR) of a gold nanoparticle monolayer in response to eluted samples from a capillary column. Gold nanoparticles were chemically immobilized on the inner wall of a glass capillary (i.d. 0.8 mm, length = 5-15 cm). The eluted samples flowed through the glass capillary and were adsorbed onto a gold nanoparticle surface, which resulted in changes in the LSPR absorbance. The LSPR probing light source used a green light-emitting diode (LED; λ(center) = 520 nm), and the light traveled through the glass wall of the capillary with multiple total reflections. The changes in the light intensity were measured by a photodiode at the rear of the glass capillary. The sensitivity of this detector can be improved by using a longer spiral glass capillary. The detector is more sensitive when operated at a lower temperature and at a slower carrier velocity. The calibration lines of 8 preliminary test compounds were all linear (R(2) > 0.99). The detection limits (3σ) ranged from 22 ng (n-butanol) to 174 ng (2-pentanone) depending on the volatility of the chemicals and the affinity to the citrate lignads attached to the gold nanoparticle surface. This detector consumed a very low amount of energy and could be operated with an air carrier gas, which makes this detector a promising option for portable GC or μGC.