Sound Waves Levitate Substrates
NASA Technical Reports Server (NTRS)
Lee, M. C.; Wang, T. G.
1982-01-01
System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.
Davoust, Laurent; Fouillet, Yves; Malk, Rachid; Theisen, Johannes
2013-01-01
Oscillating electrowetting on dielectrics (EWOD) with coplanar electrodes is investigated in this paper as a way to provide efficient stirring within a drop with biological content. A supporting model inspired from Ko et al. [Appl. Phys. Lett. 94, 194102 (2009)] is proposed allowing to interpret oscillating EWOD-induced drop internal flow as the result of a current streaming along the drop surface deformed by capillary waves. Current streaming behaves essentially as a surface flow generator and the momentum it sustains within the (viscous) drop is even more significant as the surface to volume ratio is small. With the circular electrode pair considered in this paper, oscillating EWOD sustains toroidal vortical flows when the experiments are conducted with aqueous drops in air as ambient phase. But when oil is used as ambient phase, it is demonstrated that the presence of an electrode gap is responsible for a change in drop shape: a pinch-off at the electrode gap yields a peanut-shaped drop and a symmetry break-up of the EWOD-induced flow pattern. Viscosity of oil is also responsible for promoting an efficient damping of the capillary waves which populate the surface of the actuated drop. As a result, the capillary network switches from one standing wave to two superimposed traveling waves of different mechanical energy, provided that actuation frequency is large enough, for instance, as large as the one commonly used in electrowetting applications (f ∼ 500 Hz and beyond). Special emphasis is put on stirring of biological samples. As a typical application, it is demonstrated how beads or cell clusters can be focused under flow either at mid-height of the drop or near the wetting plane, depending on how the nature of the capillary waves is (standing or traveling), and therefore, depending on the actuation frequency (150 Hz–1 KHz). PMID:24404038
Vortex Flows in the Liquid Layer and Droplets on a Vibrating Flexible Plate
NASA Astrophysics Data System (ADS)
Aleksandrov, Vladimir; Kopysov, Sergey; Tonkov, Leonid
2018-02-01
In certain conditions, in the layers and droplets of a liquid on a vibrating rectangular flexible plate, vortex flows are formed simultaneously with the excitation of capillary oscillations on the free surface of the liquid layers and droplets. Capillary oscillations in the form of two-dimensional standing waves form Faraday ripples on the free surface of the liquid layer. On the surface of the vibrating droplets, at the excitation of capillary oscillations a light spot reflected from a spotlight source moves along a trajectory in the form of a Lissajous figure observed with a microscope. When vortex flows visualized with graphite microparticles appear in the layer and droplets of a transparent liquid, the trajectory of the light spot on the layer and droplet surface is a two-dimensional trajectory in the form of an ellipse or a saddle. This indicates that the generation of the vortex flows in a liquid at vibrations is due to capillary oscillations in the orthogonally related directions. In the liquid layer and droplets on the surface of the flexible plate, the vibrations of which are generated by bending vibrations, the vortex flows appear due to the plate vibrations and the capillary oscillations of the surface of a layer or a droplet of the liquid. On the free surface of the liquid, the capillary waves, which are parametrically excited by the plate bending vibrations, are additionally modulated by the same bending vibrations in the transverse direction.
Dispersion and viscous attenuation of capillary waves with finite amplitude
NASA Astrophysics Data System (ADS)
Denner, Fabian; Paré, Gounséti; Zaleski, Stéphane
2017-04-01
We present a comprehensive study of the dispersion of capillary waves with finite amplitude, based on direct numerical simulations. The presented results show an increase of viscous attenuation and, consequently, a smaller frequency of capillary waves with increasing initial wave amplitude. Interestingly, however, the critical wavenumber as well as the wavenumber at which the maximum frequency is observed remain the same for a given two-phase system, irrespective of the wave amplitude. By devising an empirical correlation that describes the effect of the wave amplitude on the viscous attenuation, the dispersion of capillary waves with finite initial amplitude is shown to be, in very good approximation, self-similar throughout the entire underdamped regime and independent of the fluid properties. The results also shown that analytical solutions for capillary waves with infinitesimal amplitude are applicable with reasonable accuracy for capillary waves with moderate amplitude.
NASA Astrophysics Data System (ADS)
Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong
2016-06-01
According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.
One-dimensional acoustic standing waves in rectangular channels for flow cytometry.
Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W
2012-07-01
Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.
Wang, Hongcheng; Wu, Liqun; Zhang, Ting; Chen, Rangrang; Zhang, Linan
2018-07-10
Stable continuous micro-feeding of fine cohesive powders has recently gained importance in many fields. However, it remains a great challenge in practice because of the powder aggregate caused by interparticle cohesive forces in small capillaries. This paper describes a novel method of feeding fine cohesive powder actuated by a pulse inertia force and acoustic radiation force simultaneously in an ultrasonic standing wave field using a tapered glass nozzle. Nozzles with different outlet diameters are fabricated using glass via a heating process. A pulse inertia force is excited to drive powder movement to the outlet section of the nozzle in a consolidated columnar rod mode. An acoustic radiation force is generated to suspend the particles and make the rod break into large quantities of small agglomerates which impact each other randomly. So the aggregation phenomenon in the fluidization of cohesive powders can be eliminated. The suspended powder is discharged continuously from the nozzle orifice owing to the self-gravities and collisions between the inner particles. The micro-feeding rates can be controlled accurately and the minimum values for RespitoseSV003 and Granulac230 are 0.4 mg/s and 0.5 mg/s respectively. The relative standard deviations of all data points are below 0.12, which is considerably smaller than those of existing vibration feeders with small capillaries. Copyright © 2018 Elsevier B.V. All rights reserved.
The Effect of Faraday Waves on Gas Transport
NASA Astrophysics Data System (ADS)
Saylor, J. R.; Handler, R. A.
1996-11-01
The increase in the rate of gas transport at the onset of capillary wave formation is a frequently observed phenomenon. However, a causal relationship between the presence of capillary waves and enhanced gas transport has not been experimentally demonstrated. Here we present experimental results of CO2 transport rates across Faraday waves. The piston velocity versus wave slope data explicitly demonstrates an enhancement in gas transport due to these waves. The functional relationship between gas flux and wave slope is also obtained. The Faraday wave system permits investigation of capillary waves in the absence of the obfuscating effects of air turbulence, water turbulence, droplets and bubbles, all of which are present in wind/wave tank studies. Hence, our results are solely due to the effects of capillary wave action. Data for wave frequencies varying from 20Hz to 200Hz are presented.
Wave turbulence in a two-layer fluid: Coupling between free surface and interface waves
NASA Astrophysics Data System (ADS)
Falcon, Eric; Issenmann, Bruno; Laroche, Claude
2017-11-01
We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths. The cut-off evolution is due to the disappearance of parasitic capillaries responsible for the main wave dissipation for a single fluid. B. Issenmann, C. Laroche & E. Falcon, EPL 116, 64005 (2016) published online 16 feb. 2017. This work has been partially supported by CNRS (1-year postdoctoral funding), ANR Turbulon 12-BS04-0005, and ANR Dysturb 2017.
Altimeter Observations of Baroclinic Oceanic Inertia-Gravity Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, R. E.; Cheng, B.
1996-01-01
For a wide range of nonlinear wave processes - from capillary to planetary waves - theory predicts the existence of Kolmogorov-type spectral cascades of energy and other conserved quantities occuring via nonlinear resonant wave-wave interactions. So far, observations of wave turbulence (WT) have been limited to small-scale processes such as surface gravity and capillary-gravity waves.
Experimental investigation of three-wave interactions of capillary surface-waves
NASA Astrophysics Data System (ADS)
Berhanu, Michael; Cazaubiel, Annette; Deike, Luc; Jamin, Timothee; Falcon, Eric
2014-11-01
We report experiments studying the non-linear interaction between two crossing wave-trains of gravity-capillary surface waves generated in a closed laboratory tank. Using a capacitive wave gauge and Diffusive Light Photography method, we detect a third wave of smaller amplitude whose frequency and wavenumber are in agreement with the weakly non-linear triadic resonance interaction mechanism. By performing experiments in stationary and transient regimes and taking into account the viscous dissipation, we estimate directly the growth rate of the resonant mode in comparison with theory. These results confirm at least qualitatively and extend earlier experimental results obtained only for unidirectional wave train. Finally we discuss relevance of three-wave interaction mechanisms in recent experiment studying capillary wave turbulence.
Two classes of capillary optical fibers: refractive and photonic
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2008-11-01
This paper is a digest tutorial on some properties of capillary optical fibers (COF). Two basic types of capillary optical fibers are clearly distinguished. The classification is based on propagation mechanism of optical wave. The refractive, singlemode COF guides a dark hollow beam of light (DHB) with zero intensity on fiber axis. The photonic, singlemode COF carries nearly a perfect axial Gaussian beam with maximum intensity on fiber axis. A subject of the paper are these two basic kinds of capillary optical fibers of pure refractive and pure photonic mechanism of guided wave transmission. In a real capillary the wave may be transmitted by a mixed mechanism, refractive and photonic, with strong interaction of photonic and refractive guided wave modes. Refractive capillary optical fibers are used widely for photonic instrumentation applications, while photonic capillary optical fibers are considered for trunk optical communications. Replacement of classical, single mode, dispersion shifted, 1550nm optimized optical fibers for communications with photonic capillaries would potentially cause a next serious revolution in optical communications. The predictions say that such a revolution may happen within this decade. This dream is however not fulfilled yet. The paper compares guided modes in both kinds of optical fiber capillaries: refractive and photonic. The differences are emphasized indicating prospective application areas of these fibers.
Ripplon laser through stimulated emission mediated by water waves
NASA Astrophysics Data System (ADS)
Kaminski, Samuel; Martin, Leopoldo L.; Maayani, Shai; Carmon, Tal
2016-12-01
Lasers rely on stimulated electronic transition, a quantum phenomenon in the form of population inversion. In contrast, phonon masers depend on stimulated Raman scattering and are entirely classical. Here we extend Raman lasers to rely on capillary waves, which are unique to the liquid phase of matter and relate to the attraction between intimate fluid particles. We fabricate resonators that co-host capillary and optical modes, control them to operate at their non-resolved sideband and observe stimulated capillary scattering and the coherent excitation of capillary resonances at kilohertz rates (which can be heard in audio files recorded by us). By exchanging energy between electromagnetic and capillary waves, we bridge the interfacial tension phenomena at the liquid phase boundary to optics. This approach may impact optofluidics by allowing optical control, interrogation and cooling of water waves.
Development of a Specific Impulse Balance for a Pulsed Capillary Discharge (Preprint)
2008-06-13
thrust stand [rad/s] I. Introduction A capillary discharge based coaxial , electrothermal pulsed plasma thruster (PPT) is currently under...20-23 July 2008. 14. ABSTRACT A capillary discharge based pulsed plasma thruster is currently under development at the Air Force Research...Edwards AFB, CA 93524 A capillary discharge based pulsed plasma thruster is currently under development at the Air Force Research Laboratory. A
Transversally periodic solitary gravity–capillary waves
Milewski, Paul A.; Wang, Zhan
2014-01-01
When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922
Mapping of the Marangoni effect in soap films using Young's double-slit experiment
NASA Astrophysics Data System (ADS)
Emile, Janine; Emile, Olivier
2013-10-01
We report on the thickness variation measurement of a soap film due to a local perturbation, using Young's double-slit experiment configuration. We map a laser-heated deformation of a vertical free-standing draining thin soap film using the differential change of optical path in the interferometer. The experiment has a resolution of about 0.1 nm and enables to follow the liquid flow dynamics. We evidence a bottleneck formation in the heated region of the film that perturbs the usual flow. Such an experimental set-up could then be adapted to measure other tiny variations in fluctuating hydrodynamics such as capillary waves for example.
Influence of Thermocapillary Flow on Capillary Stability: Long Float-Zones in Low Gravity
NASA Technical Reports Server (NTRS)
Chen, Yi-Ju; Steen, Paul H.
1996-01-01
A model problem is posed to study the influence of flow on the interfacial stability of a nearly cylindrical liquid bridge for lengths near its circumference (the Plateau-Rayleigh limit). The flow is generated by a shear stress imposed on the deformable interface. The symmetry of the imposed shear stress mimics the thermocapillary stress induced on a float-zone by a ring heater (i.e. a full zone). Principal assumptions are (1) zero gravity, (2) creeping flow, and (3) that the imposed coupling at the free surface between flow and temperature fields is the only such coupling. A numerical solution, complemented by a bifurcation analysis, shows that bridges substantially longer than the Plateau-Rayleigh limit are possible. An interaction of the first two capillary instabilities through the stress-induced flow is responsible. Time-periodic standing waves are also predicted in certain parameter ranges. Motivation comes from extra-long float-zones observed in MEPHISTO space lab experiments (June 1994).
Experimental study of three-wave interactions among capillary-gravity surface waves
NASA Astrophysics Data System (ADS)
Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael
2016-04-01
In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.
Experimental study of three-wave interactions among capillary-gravity surface waves.
Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael
2016-04-01
In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.
A Simple Theory of Capillary-Gravity Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, Roman E.
1995-01-01
Employing a recently proposed 'multi-wave interaction' theory, inertial spectra of capillary gravity waves are derived. This case is characterized by a rather high degree of nonlinearity and a complicated dispersion law. The absence of scale invariance makes this and some other problems of wave turbulence (e.g., nonlinear inertia gravity waves) intractable by small-perturbation techniques, even in the weak-turbulence limit. The analytical solution obtained in the present work for an arbitrary degree of nonlinearity is shown to be in reasonable agreement with experimental data. The theory explains the dependence of the wave spectrum on wind input and describes the accelerated roll-off of the spectral density function in the narrow sub-range separating scale-invariant regimes of purely gravity and capillary waves, while the appropriate (long- and short-wave) limits yield power laws corresponding to the Zakharov-Filonenko and Phillips spectra.
NASA Astrophysics Data System (ADS)
Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu
1988-12-01
An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.
Zhu, Xueyan; Yuan, Quanzi; Zhao, Ya-Pu
2012-01-01
Molecular dynamics simulations were carried out to explore the capillary wave propagation induced by the competition between one upper precursor film (PF) on the graphene and one lower PF on the substrate in electro-elasto-capillarity (EEC). During the wave propagation, the graphene was gradually delaminated from the substrate by the lower PF. The physics of the capillary wave was explored by the molecular kinetic theory. Besides, the dispersion relation of the wave was obtained theoretically. The theory showed that the wave was controlled by the driving work difference of the two PFs. Simulating the EEC process under different electric field intensities (E), the wave velocity was found insensitive to E. We hope this research could expand our knowledge on the wetting, electrowetting and EEC. As a potential application, the electrowetting of the PF between the graphene and the substrate is a promising candidate for delaminating graphene from substrate. PMID:23226593
The elevation, slope, and curvature spectra of a wind roughened sea surface
NASA Technical Reports Server (NTRS)
Pierson, W. J., Jr.; Stacy, R. A.
1973-01-01
The elevation, slope and curvature spectra are defined as a function of wave number and depend on the friction velocity. There are five wave number ranges of definition called the gravity wave-gravity equilibrium range, the isotropic turbulence range, the connecting range due to Leykin Rosenberg, the capillary range, and the viscous cutoff range. The higher wave number ranges are strongly wind speed dependent, and there is no equilibrium (or saturated) capillary range, at least for winds up to 30 meters/sec. Some properties of the angular variation of the spectra are also found. For high wave numbers, especially in the capillary range, the results are shown to be consistent with the Rayleigh-Rice backscattering theory (Bragg scattering), and certain properties of the angular variation are deduced from backscatter measurements.
Numerical Investigation of Three-dimensional Instability of Standing Waves
NASA Astrophysics Data System (ADS)
Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.
2002-11-01
We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.
Effect of dispersion forces on the capillary-wave fluctuations of liquid surfaces.
Chacón, Enrique; Fernández, Eva M; Tarazona, Pedro
2014-04-01
We present molecular dynamics evidence for the nonanalytic effects of the long-range dispersion forces on the capillary waves fluctuations of a Lennard-Jones liquid surface. The results of the intrinsic sampling method, for the analysis of the instantaneous interfacial shape, are obtained in large systems for several cut-off distances of the potential tail, and they show good agreement with the theoretical prediction by Napiórkowski and Dietrich, based on a density functional analysis. The enhancement of the capillary waves is quantified to be within 1% for a simple liquid near its triple point.
Carugo, Dario; Ankrett, Dyan N.; Glynne-Jones, Peter; Capretto, Lorenzo; Boltryk, Rosemary J.; Zhang, Xunli; Townsend, Paul A.; Hill, Martyn
2011-01-01
Sonoporation is a useful biophysical mechanism for facilitating the transmembrane delivery of therapeutic agents from the extracellular to the intracellular milieu. Conventionally, sonoporation is carried out in the presence of ultrasound contrast agents, which are known to greatly enhance transient poration of biological cell membranes. However, in vivo contrast agents have been observed to induce capillary rupture and haemorrhage due to endothelial cell damage and to greatly increase the potential for cell lysis in vitro. Here, we demonstrate sonoporation of cardiac myoblasts in the absence of contrast agent (CA-free sonoporation) using a low-cost ultrasound-microfluidic device. Within this device an ultrasonic standing wave was generated, allowing control over the position of the cells and the strength of the acoustic radiation forces. Real-time single-cell analysis and retrospective post-sonication analysis of insonated cardiac myoblasts showed that CA-free sonoporation induced transmembrane transfer of fluorescent probes (CMFDA and FITC-dextran) and that different mechanisms potentially contribute to membrane poration in the presence of an ultrasonic wave. Additionally, to the best of our knowledge, we have shown for the first time that sonoporation induces increased cell cytotoxicity as a consequence of CA-free ultrasound-facilitated uptake of pharmaceutical agents (doxorubicin, luteolin, and apigenin). The US-microfluidic device designed here provides an in vitro alternative to expensive and controversial in vivo models used for early stage drug discovery, and drug delivery programs and toxicity measurements. PMID:22662060
A physics link between venous stenosis and multiple sclerosis.
Tucker, Trevor W
2011-12-01
This paper hypothesizes that a stenosis or obstruction at a lower extremity of an internal jugular vein (IJV) would, in accordance with the physics of fluid dynamics, cause a standing pressure wave within the vein. This pressure wave would possess regions of large pressure fluctuations and other regions of relatively little fluctuation which also have substantially lower peak pressure values. If the wavelength of the hypothesized pressure wave is comparable to the distance from the obstruction to the venule end of the capillary bed, then a region of high pressure fluctuation would exist at the venules. Depending on the degree of obstruction, the pressure fluctuations at the venules of the capillary bed would be substantially greater than those that would exist in a healthy unobstructed vein. This increase in blood pressure fluctuation located at the venule end of the capillary bed, which would be equivalent to local hypertension, is predicted to reduce the pressure drop across the bed which, in turn, would reduce blood flow through the bed in accordance with Darcy's Law. Such a reduction in blood flow through the bed would be accompanied by a reduction in the transfer of oxygen, glucose and other nutrients into the brain tissue in accordance with Fick's Principle. The reduction in oxygen levels in the brain tissue (i.e. hypoxia), would, in turn, be associated with increased fatigue and decreased mental acuity in the subject patient. Also the deprivation of oxygen in the brain tissue may result in the death of oligodendrocyte cells, which, in turn would result in the deterioration of the myelin surrounding the brain's neural axons. In addition, the paper also predicts that, in cases of extreme obstruction, the predicted localized hypertension at the venule end of the capillary bed may be sufficiently high to cause a localized disruption in the blood-brain barrier. Such a disruption of the blood-brain barrier could then allow the migration of leukocytes (auto-immune attack cells), from the blood into the brain tissue, enabling them to attack myelin, which has degenerated or deteriorated from the reduction in repair function normally provided by oligodendrocyte cells. Such leukocyte attack on myelin has long been associated with multiple sclerosis. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Prisk, G. K.; Guy, Harold J. B.; Elliott, Ann R.; Deutschman, Robert A., III; West, John B.
1993-01-01
We measured pulmonary diffusing capacity (DL), diffusing capacity per unit lung volume, pulmonary capillary blood volume (Vc), membrane diffusing capacity (Dm), pulmonary capillary blood flow or cardiac output (Qc), and cardiac stroke volume (SV) in four subjects exposed to nine days of microgravity. DL in microgravity was elevated compared with preflight standing values and was higher than preflight supine because of the elevation of both Vc and Dm. The elevation in Vc was comparable to that measured supine in 1 G, but the increase in Dm was in sharp contrast to the supine value. We postulate that, in 0 G, pulmonary capillary blood is evenly distributed throughout the lung, providing for uniform capillary filling, leading to an increase in the surface area available for diffusion. By contrast, in the supine 1-G state, the capillaries are less evenly filled, and although a similar increase in blood volume is observed, the corresponding increase in surface area does not occur. DL and its subdivisions showed no adaptive changes from the first measurement 24 h after the start of 0 G to eight days later. Similarly, there were no trends in the postflight data, suggesting that the principal mechanism of these changes was gravitational. The increase in Dm suggests that subclinical pulmonary edema did not result from exposure to 0 G. Qc was modestly increased inflight and decreased postflight compared with preflight standing. Compared with preflight standing, SV was increased 46 percent inflight and decreased 14 percent in the 1st week postflight. There were temporal changes in Qc and SV during 0 G, with the highest values recorded at the first measurement, 24 h into the flight. The lowest values of Qc and SV occurred on the day of return.
NASA Technical Reports Server (NTRS)
Huang, N. E.; Flood, W. A.; Brown, G. S.
1975-01-01
The feasibility of remote sensing of current flows in the ocean and the remote sensing of ocean currents by backscattering cross section techniques was studied. It was established that for capillary waves, small scale currents could be accurately measured through observation of wave kinematics. Drastic modifications of waves by changing currents were noted. The development of new methods for the measurement of capillary waves are discussed. Improvement methods to resolve data processing problems are suggested.
Ocean dynamics studies. [of current-wave interactions
NASA Technical Reports Server (NTRS)
1974-01-01
Both the theoretical and experimental investigations into current-wave interactions are discussed. The following three problems were studied: (1) the dispersive relation of a random gravity-capillary wave field; (2) the changes of the statistical properties of surface waves under the influence of currents; and (3) the interaction of capillary-gravity with the nonuniform currents. Wave current interaction was measured and the feasibility of using such measurements for remote sensing of surface currents was considered. A laser probe was developed to measure the surface statistics, and the possibility of using current-wave interaction as a means of current measurement was demonstrated.
Damping of surface waves due to oil emulsions in application to ocean remote sensing
NASA Astrophysics Data System (ADS)
Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Lavrova, O.
2017-10-01
Applications of different radar and optical methods for detection of oil pollutions based on the effect of damping of short wind waves by surface films have been extensively studied last decades. The main problem here is poor knowledge of physical characteristics of oil films, in particular, emulsified oil layers (EOL). The latter are ranged up to 70% of all pollutants. Physical characteristics of EOL which are responsible for wave damping and respectively for possibilities of their remote sensing depend on conditions of emulsification processes, e.g., mixing due to wave breaking, on percentage of water in the oil, etc. and are not well studied by now. In this paper results of laboratory studies of damping of gravity-capillary waves due to EOL on water are presented and compared to oil layers (OL). A laboratory method used previously for monomolecular films and OL, and based on measuring the damping coefficient and wavelength of parametrically generated standing waves has been applied for determination of EOL characteristics. Investigations of characteristics of crude oil, oil emulsions and crude OL and EOL have been carried out in a wide range of surface wave frequencies (from 10 to 25 Hz) and OL and EOL film thickness (from hundredths of millimeter to a few millimeters. The selected frequency range corresponds to Bragg waves for microwave, X- to Ka-band radars typically used for ocean remote sensing. An effect of enhanced wave damping due to EOL compared to non emulsified crude OL is revealed.
Capillary waves with surface viscosity
NASA Astrophysics Data System (ADS)
Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele
2017-11-01
Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.
Mach-like capillary-gravity wakes.
Moisy, Frédéric; Rabaud, Marc
2014-08-01
We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.
Capillary waves in the subcritical nonlinear Schroedinger equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozyreff, G.
2010-01-15
We expand recent results on the nonlinear Schroedinger equation with cubic-quintic nonlinearity to show that some solutions are described by the Bernoulli equation in the presence of surface tension. As a consequence, capillary waves are predicted and found numerically at the interface between regions of large and low amplitude.
Laser absorption waves in metallic capillaries
NASA Astrophysics Data System (ADS)
Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Kanevskii, M. F.; Kondrashov, V. V.
1987-07-01
The propagation of laser absorption waves in metallic capillaries was studied experimentally and numerically during pulsed exposure to CO2 laser radiation. The dependence of the plasma front propagation rate on the initial air pressure in the capillary is determined. In a broad range of parameters, the formation time of the optically opaque plasma layer is governed by the total laser pulse energy from the beginning of the exposure to the instant screening appears, and is weakly dependent on the pulse shape and gas pressure.
Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves.
Shera, Christopher A
2003-07-01
Mammalian spontaneous otoacoustic emissions (SOAEs) have been suggested to arise by three different mechanisms. The local-oscillator model, dating back to the work of Thomas Gold, supposes that SOAEs arise through the local, autonomous oscillation of some cellular constituent of the organ of Corti (e.g., the "active process" underlying the cochlear amplifier). Two other models, by contrast, both suppose that SOAEs are a global collective phenomenon--cochlear standing waves created by multiple internal reflection--but differ on the nature of the proposed power source: Whereas the "passive" standing-wave model supposes that SOAEs are biological noise, passively amplified by cochlear standing-wave resonances acting as narrow-band nonlinear filters, the "active" standing-wave model supposes that standing-wave amplitudes are actively maintained by coherent wave amplification within the cochlea. Quantitative tests of key predictions that distinguish the local-oscillator and global standing-wave models are presented and shown to support the global standing-wave model. In addition to predicting the existence of multiple emissions with a characteristic minimum frequency spacing, the global standing-wave model accurately predicts the mean value of this spacing, its standard deviation, and its power-law dependence on SOAE frequency. Furthermore, the global standing-wave model accounts for the magnitude, sign, and frequency dependence of changes in SOAE frequency that result from modulations in middle-ear stiffness. Although some of these SOAE characteristics may be replicable through artful ad hoc adjustment of local-oscillator models, they all arise quite naturally in the standing-wave framework. Finally, the statistics of SOAE time waveforms demonstrate that SOAEs are coherent, amplitude-stabilized signals, as predicted by the active standing-wave model. Taken together, the results imply that SOAEs are amplitude-stabilized standing waves produced by the cochlea acting as a biological, hydromechanical analog of a laser oscillator. Contrary to recent claims, spontaneous emission of sound from the ear does not require the autonomous mechanical oscillation of its cellular constituents.
A Fresh Look at Longitudinal Standing Waves on a Spring
NASA Astrophysics Data System (ADS)
Rutherford, Casey
2013-01-01
Transverse standing waves produced on a string, as shown in Fig. 1, are a common demonstration of standing wave patterns that have nodes at both ends. Longitudinal standing waves can be produced on a helical spring that is mounted vertically and attached to a speaker, as shown in Fig. 2, and used to produce both node-node (NN) and node-antinode (NA) standing waves. The resonant frequencies of the two standing wave patterns are related with theory that is accessible to students in algebra-based introductory physics courses, and actual measurements show good agreement with theoretical predictions.
Three-dimensional instability of standing waves
NASA Astrophysics Data System (ADS)
Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.
2003-12-01
We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial/azimuthal mode number of the base standing wave. Finally, we show that the instability we find for both two- and three-dimensional standing waves is a result of third-order (quartet) resonance.
Frequencies of gravity-capillary waves on highly curved interfaces with edge constraints
NASA Astrophysics Data System (ADS)
Shankar, P. N.
2007-06-01
A recently developed technique to calculate the natural frequencies of gravity-capillary waves in a confined liquid mass with a possibly highly curved free surface is extended to the case where the contact line is pinned. The general technique is worked out in detail for the cases of rectangular and cylindrical containers of circular section, the cases for which experimental data are available. The results of the present method are in excellent agreement with all earlier experimental and theoretical data for the flat static interface case [Benjamin and Scott, 1979. Gravity-capillary waves with edge constraints. J. Fluid Mech. 92, 241-267; Graham-Eagle, 1983. A new method for calculating eigenvalues with applications to gravity-capillary waves with edge constraints. Math. Proc. Camb. Phil. Soc. 94, 553-564; Henderson and Miles, 1994. Surface-wave damping in a circular cylinder with a fixed contact line. J. Fluid Mech. 275, 285-299]. However, the present method is applicable even when the contact angle is not π/2 and the static interface is curved. As a consequence we are able to work out the effects of a curved meniscus on the results of Cocciaro et al. [1993. Experimental investigation of capillary effects on surface gravity waves: non-wetting boundary conditions. J. Fluid Mech. 246, 43-66] where the measured contact angle was 62∘. We find that the meniscus does indeed account, as suggested by Cocciaro et al., for the earlier discrepancy between theory and experiment of about 20 mHz and there is now excellent agreement between the two.
Refrigeration system having standing wave compressor
Lucas, Timothy S.
1992-01-01
A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.
NASA Astrophysics Data System (ADS)
Gubitosi, Giulia; Magueijo, João
2018-03-01
We consider the possibility that the primordial fluctuations (scalar and tensor) might have been standing waves at their moment of creation, whether or not they had a quantum origin. We lay down the general conditions for spatial translational invariance, and isolate the pieces of the most general such theory that comply with, or break translational symmetry. We find that, in order to characterize statistically translationally invariant standing waves, it is essential to consider the correlator ⟨c0(k )c0(k')⟩ in addition to the better known ⟨c0(k )c0†(k')⟩ [where c0(k ) are the complex amplitudes of traveling waves]. We then examine how the standard process of "squeezing" (responsible for converting traveling waves into standing waves while the fluctuations are outside the horizon) reacts to being fed primordial standing waves. For translationally invariant systems only one type of standing wave, with the correct temporal phase (the "sine wave"), survives squeezing. Primordial standing waves might therefore be invisible at late times—or not—depending on their phase. Theories with modified dispersion relations behave differently in this respect, since only standing waves with the opposite temporal phase survive at late times.
NASA Astrophysics Data System (ADS)
Yasui, Kyuichi; Kozuka, Teruyuki; Yasuoka, Masaki; Kato, Kazumi
2015-11-01
There are two major categories in a thermoacoustic prime-mover. One is the traveling-wave type and the other is the standing-wave type. A simple analytical model of a standing-wave thermoacoustic prime-mover is proposed at relatively low heat-flux for a stack much shorter than the acoustic wavelength, which approximately describes the Brayton cycle. Numerical simulations of Rott's equations have revealed that the work flow (acoustic power) increases by increasing of the amplitude of the particle velocity (| U|) for the traveling-wave type and by increasing cosΦ for the standing-wave type, where Φ is the phase difference between the particle velocity and the acoustic pressure. In other words, the standing-wave type is a phase-dominant type while the traveling-wave type is an amplitude-dominant one. The ratio of the absolute value of the traveling-wave component (| U|cosΦ) to that of the standing-wave component (| U|sinΦ) of any thermoacoustic engine roughly equals the ratio of the absolute value of the increasing rate of | U| to that of cosΦ. The different mechanism between the traveling-wave and the standing-wave type is discussed regarding the dependence of the energy efficiency on the acoustic impedance of a stack as well as that on ωτα, where ω is the angular frequency of an acoustic wave and τα is the thermal relaxation time. While the energy efficiency of the traveling-wave type at the optimal ωτα is much higher than that of the standing-wave type, the energy efficiency of the standing-wave type is higher than that of the traveling-wave type at much higher ωτα under a fixed temperature difference between the cold and the hot ends of the stack.
A further study of spectral energetics in the winter atmosphere
NASA Technical Reports Server (NTRS)
Chen, T.-C.
1982-01-01
The contributions of standing (time-mean) and transient (time-departure) waves to the atmospheric spectral energetics are analyzed using the NMC (National Meteorological Center) data of winter 1976-1977. It is found that the standing long waves are responsible for the major horizontal sensible heat transport and also for the significant horizontal momentum transport. Furthermore, the major contents of eddy available energy and eddy kinetic energy of standing waves are in the long-wave regime. However, the spectral energetics analysis indicates that the standing long waves are energetically less efficient than the transient long and short waves. It is suggested that the lower efficiency of the standing long waves in the atmospheric energetics may be one of the physical factors causing the underforecast of the standing long waves in the numerical weather prediction models.
NASA Astrophysics Data System (ADS)
Zhang, Hong; Zegeling, Paul Andries
2017-09-01
Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow in porous media incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a traveling wave ansatz and efficient numerical methods. The traveling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behavior. Special attention is paid to the non-monotonic profiles. The traveling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.
Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface
NASA Astrophysics Data System (ADS)
MacDowell, Luis G.
2017-08-01
In this paper we try to work out in detail the implications of a microscopic theory for capillary waves under the assumption that the density is given along lines normal to the interface. Within this approximation, which may be justified in terms of symmetry arguments, the Fisk-Widom scaling of the density profile holds for frozen realizations of the interface profile. Upon thermal averaging of capillary wave fluctuations, the resulting density profile yields results consistent with renormalization group calculations in the one-loop approximation. The thermal average over capillary waves may be expressed in terms of a modified convolution approximation where normals to the interface are Gaussian distributed. In the absence of an external field we show that the phenomenological density profile applied to the square-gradient free energy functional recovers the capillary wave Hamiltonian exactly. We extend the theory to the case of liquid films adsorbed on a substrate. For systems with short-range forces, we recover an effective interface Hamiltonian with a film height dependent surface tension that stems from the distortion of the liquid-vapor interface by the substrate, in agreement with the Fisher-Jin theory of short-range wetting. In the presence of long-range interactions, the surface tension picks up an explicit dependence on the external field and recovers the wave vector dependent logarithmic contribution observed by Napiorkowski and Dietrich. Using an error function for the intrinsic density profile, we obtain closed expressions for the surface tension and the interface width. We show the external field contribution to the surface tension may be given in terms of the film's disjoining pressure. From literature values of the Hamaker constant, it is found that the fluid-substrate forces may be able to double the surface tension for films in the nanometer range. The film height dependence of the surface tension described here is in full agreement with results of the capillary wave spectrum obtained recently in computer simulations, and the predicted translation mode of surface fluctuations reproduces to linear order in field strength an exact solution of the density correlation function for the Landau-Ginzburg-Wilson Hamiltonian in an external field.
Standing Sound Waves in Air with DataStudio
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2010-01-01
Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…
Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu
2015-12-02
As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave.
Cutaneous water collection by a moisture-harvesting lizard, the thorny devil (Moloch horridus).
Comanns, Philipp; Withers, Philip C; Esser, Falk J; Baumgartner, Werner
2016-11-01
Moisture-harvesting lizards, such as the Australian thorny devil, Moloch horridus, have the remarkable ability to inhabit arid regions. Special skin structures, comprising a micro-structured surface with capillary channels in between imbricate overlapping scales, enable the lizard to collect water by capillarity and transport it to the mouth for ingestion. The ecological role of this mechanism is the acquisition of water from various possible sources such as rainfall, puddles, dew, condensation on the skin, or absorption from moist sand, and we evaluate here the potential of these various sources for water uptake by M. horridus The water volume required to fill the skin capillary system is 3.19% of body mass. Thorny devils standing in water can fill their capillary system and then drink from this water, at approximately 0.7 µl per jaw movement. Thorny devils standing on nearly saturated moist sand could only fill the capillary channels to 59% of their capacity, and did not drink. However, placing moist sand on skin replicas showed that the capillary channels could be filled from moist sand when assisted by gravity, suggesting that their field behaviour of shovelling moist sand onto the dorsal skin might fill the capillary channels and enable drinking. Condensation facilitated by thermal disequilibrium between a cool thorny devil and warm moist air provided skin capillary filling to approximately 0.22% of body weight, which was insufficient for drinking. Our results suggest that rain and moist sand seem to be ecologically likely water sources for M. horridus on a regular basis. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Marr-Lyon, Mark J.; Thiessen, David B.; Marston, Philip L.
1997-11-01
A liquid bridge between two solid surfaces is known as a capillary bridge. For a cylindrical bridge in low gravity of radius R and length L, the slenderness S=L/2R has a natural (Rayleigh--Plateau) limit of π beyond which the bridge breaks. Using the radiation pressure of an ultrasonic standing wave to control the shape of the bridge and an optical sensor to detect the shape of the bridge, an active feedback system was constructed that stabilized bridges significantly beyond the Rayleigh limit in simulated low gravity(Marr--Lyon, M. J., phet al., J. Fluid Mech.), accepted for publication.. The Plateau tank which contained the bridge was a dual frequency ultrasonic resonator and the spatial distribution of the radiation pressure was controlled by adjusting the ultrasonic frequency. Bridges have been extended with S as large as 4.3. To be useful in low gravity, modifications for liquid bridges in air are needed. Acoustic resonators in air having the required property that the sound amplitude can be spatially redistributed rapidly are being investigated using gas-filled soap-film bridges. Work supported by NASA.
NASA Technical Reports Server (NTRS)
Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.
1996-01-01
In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.
Surfing with capillary waves: a survival strategy for trapped bees
NASA Astrophysics Data System (ADS)
Roh, Chris; Gharib, Morteza
2017-11-01
Honeybees are able to propel themselves at the water surface. A rapid vibration (30-220 Hz) of wings at the air-water interface results in a locomotion speed of 3-4 cm/s. A mechanism for generating thrust required for achieving and maintaining such speed must be different from their mechanism of flight inasmuch as they are in a different fluid environment. In this study, we present the thrust generating mechanism of the honeybee at the air-water interface. A close observation of the wing's interaction with the water surface showed that the wing does not penetrate nor detach from the water surface. Moreover, the stroke speed of the wing exceeds the minimum capillary wave speed, which signifies that the wing constantly generates the capillary wave by pulling on the surface with its wetted underside. Observation of such interaction suggests that honeybee's locomotion at the water surface resembles surfing on the self-generated capillary wave. A further evidence of described mechanism is explored by constructing a similarly sized mechanical model. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.
A Fresh Look at Longitudinal Standing Waves on a Spring
ERIC Educational Resources Information Center
Rutherford, Casey
2013-01-01
Transverse standing waves produced on a string, as shown in Fig. 1, are a common demonstration of standing wave patterns that have nodes at both ends. Longitudinal standing waves can be produced on a helical spring that is mounted vertically and attached to a speaker, as shown in Fig. 2, and used to produce both node-node (NN) and node-antinode…
NASA Technical Reports Server (NTRS)
Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.
1984-01-01
On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.
NASA Astrophysics Data System (ADS)
MacKenzie Laxague, Nathan Jean
Short ocean waves play a crucial role in the physical coupling between the ocean and the atmosphere. This is particularly true for gravity-capillary waves, waves of a scale (O(0.01-0.1) m) such that they are similarly restored to equilibrium by gravitational and interfacial tension (capillary) effects. These waves are inextricably linked to the turbulent boundary layer processes which characterize near-interfacial flows, acting as mediators of the momentum, gas, and heat fluxes which bear greatly on surface material transport, tropical storms, and climatic processes. The observation of these waves and the fluid mechanical phenomena which govern their behavior has long posed challenges to the would-be observer. This is due in no small part to the delicacy of centimeter-scale waves and the sensitivity of their properties to disruption via tactile measurement. With the ever-growing interest in satellite remote sensing, direct observations of short wave characteristics are needed along coastal margins. These zones are characterized by a diversity of physical processes which can affect the short-scale sea surface topography that is directly sensed via radar backscatter. In a related vein, these observations are needed to more fully understand the specific hydrodynamic relationship between young, wind-generated gravity-capillary waves and longer gravity waves. Furthermore, understanding of the full oceanic current profile is hampered by a lack of observations in the near-surface domain (z = O(0.01-0.1) m), where flows can differ greatly from those at depth. Here I present the development of analytical techniques for describing gravity-capillary ocean surface waves in order to better understand their role in the mechanical coupling between the atmosphere and ocean. This is divided amongst a number of research topics, each connecting short ocean surface waves to a physical forcing process via the transfer of momentum. One involves the examination of the sensitivity of short ocean surface waves to atmospheric forcing. Another is the exploration of long wave-short wave interactions and their effects on air-sea interaction vis-a-vis hydrodynamic modulation. The third and final topic is the characterization of the gravity-capillary regime of the wavenumber-frequency spectrum for the purpose of retrieving near-surface, wind-driven current. All of these fit as part of the desire to more fully describe the mechanism by which momentum is transferred across the air-sea interface and to discuss the consequences of this flux in the very near-surface layer of the ocean. Gravity-capillary waves are found to have an outsize share of ocean surface roughness, with short wave spectral peaks showing a connection to turbulent atmospheric stress. Short wave modulation is found to occur strongest at high wavenumbers at the lowest wind speeds, with peak modulation occurring immediately downwind of the long wave crest. Furthermore, short scale roughness enhancement is found to occur upwind of the long wave crest for increasing wind forcing magnitude. Observations of the near-surface current profile show that flows retrieved via this method agree well with the results of camera-tracked dye. Application of this method to data collected in the mouth of the Columbia River (MCR) indicates the presence of a near-surface current component that departs considerably from the tidal flow and orients into the wind stress direction. These observations demonstrate that wind speed-based parameterizations may not be sufficient to estimate wind drift and hold implications for the way in which surface material (e.g., debris or spilled oil) transport is estimated when atmospheric stress is of relatively high magnitude or is steered off the mean wind direction.
The Effects of Wind and Surfactants on Mechanically Generated Spilling Breakers
NASA Astrophysics Data System (ADS)
Liu, X.; Diorio, J. D.; Duncan, J. H.
2007-11-01
The effects of both wind and surfactants on mechanically generated weakly spilling breakers are explored in a wind wave tank that is 11.8 m long, 1.15 m wide and 1.8 m high (1.0 m of water). A wave maker, which resides at the upwind end of the tank, is used to generate the breakers via a dispersive focusing method with a central wave packet frequency of 1.15 Hz. Low wind speeds (less than 3.0 m/s) are used to minimize the effect of short-wavelength wind-generated waves on the breakers. The profiles of the spilling breakers along the center plane of the tank are measured with an LIF technique that utilizes a high-speed digital movie camera. Measurements are performed with clean water and water mixed with various concentrations of Triton X-100, a soluble surfactant. It is found that the capillary waves/bulge patterns found in the initial stages of spilling breakers are dramatically affected by wind and surfactants. The size of bulge increases with the wind speed while the capillary waves are kept nearly the same. In the presence of surfactants and wind, both the amplitude and number of capillary waves are reduced and the slope of the front face of the wave increases.
Guitar Strings as Standing Waves: A Demonstration
NASA Astrophysics Data System (ADS)
Davis, Michael
2007-08-01
An undergraduate student's first exposure to modern atomic theory tends to start with Bohr's model of the atom. This familiar introduction to atomic structure also marks a general chemistry student's first foray into waves. Many popular chemistry textbooks illustrate the concept of a standing wave in the development of the modern quantum model by using the phrase “as seen on a guitar string”. In these illustrations, the wave itself is often small and difficult to discern. The same phenomenon, however, can be easily and audibly observed. This demonstration uses an acoustic guitar to produce three unique harmonic vibrations, each of which is representative of a standing wave and illustrates the concept of quantization. Manipulation of the guitar string to produce a standing wave is pervasive in popular music and is audibly recognizable. Lightly placing a finger on the 12th, 7th, or 5th fret and strumming any one or all six strings can produce an audible example of a standing wave on a guitar. This corresponds to a standing wave with 1, 2, or 3 nodes, respectively. Attempting to induce a node at other points on a guitar string does not generate a standing wave, due to destructive interference, thus no audible tone is produced.
Standing wave contributions to the linear interference effect in stratosphere-troposphere coupling
NASA Astrophysics Data System (ADS)
Watt-Meyer, Oliver; Kushner, Paul
2014-05-01
A body of literature by Hayashi and others [Hayashi 1973, 1977, 1979; Pratt, 1976] developed a decomposition of the wavenumber-frequency spectrum into standing and travelling waves. These techniques directly decompose the power spectrum—that is, the amplitudes squared—into standing and travelling parts. This, incorrectly, does not allow for a term representing the covariance between these waves. We propose a simple decomposition based on the 2D Fourier transform which allows one to directly compute the variance of the standing and travelling waves, as well as the covariance between them. Applying this decomposition to geopotential height anomalies in the Northern Hemisphere winter, we show the dominance of standing waves for planetary wavenumbers 1 through 3, especially in the stratosphere, and that wave-1 anomalies have a significant westward travelling component in the high-latitude (60N to 80N) troposphere. Variations in the relative zonal phasing between a wave anomaly and the background climatological wave pattern—the "linear interference" effect—are known to explain a large part of the planetary wave driving of the polar stratosphere in both hemispheres. While the linear interference effect is robust across observations, models of varying degrees of complexity, and in response to various types of perturbations, it is not well understood dynamically. We use the above-described decomposition into standing and travelling waves to investigate the drivers of linear interference. We find that the linear part of the wave activity flux is primarily driven by the standing waves, at all vertical levels. This can be understood by noting that the longitudinal positions of the antinodes of the standing waves are typically close to being aligned with the maximum and minimum of the background climatology. We discuss implications for predictability of wave activity flux, and hence polar vortex strength variability.
NASA Astrophysics Data System (ADS)
Gan, Zaihui; Zhang, Jian
2005-07-01
This paper is concerned with the standing wave for Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions. The existence of standing wave with the ground state is established by applying an intricate variational argument and the instability of the standing wave is shown by applying Pagne and Sattinger's potential well argument and Levine's concavity method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandel, Ilya
The most promising way to compute the gravitational waves emitted by binary black holes (BBHs) in their last dozen orbits, where post-Newtonian techniques fail, is a quasistationary approximation introduced by Detweiler and being pursued by Price and others. In this approximation the outgoing gravitational waves at infinity and downgoing gravitational waves at the holes' horizons are replaced by standing waves so as to guarantee that the spacetime has a helical Killing vector field. Because the horizon generators will not, in general, be tidally locked to the holes' orbital motion, the standing waves will destroy the horizons, converting the black holesmore » into naked singularities that resemble black holes down to near the horizon radius. This paper uses a spherically symmetric, scalar-field model problem to explore in detail the following BBH issues: (i) The destruction of a horizon by the standing waves. (ii) The accuracy with which the resulting naked singularity resembles a black hole. (iii) The conversion of the standing-wave spacetime (with a destroyed horizon) into a spacetime with downgoing waves by the addition of a 'radiation-reaction field'. (iv) The accuracy with which the resulting downgoing waves agree with the downgoing waves of a true black-hole spacetime (with horizon). The model problem used to study these issues consists of a Schwarzschild black hole endowed with spherical standing waves of a scalar field, whose wave frequency and near-horizon energy density are chosen to match those of the standing gravitational waves of the BBH quasistationary approximation. It is found that the spacetime metric of the singular, standing-wave spacetime, and its radiation-reaction-field-constructed downgoing waves are quite close to those for a Schwarzschild black hole with downgoing waves--sufficiently close to make the BBH quasistationary approximation look promising for non-tidally-locked black holes.« less
Method of immobilizing water-soluble bioorganic compounds on a capillary-porous carrier
Ershov, Gennady Moiseevich; Timofeev, Eduard Nikolaevich; Ivanov, Igor Borisovich; Florentiev, Vladimir Leonidovich; Mirzabekov, Andrei Darievich
1998-01-01
The method for immobilizing water-soluble bioorganic compounds to capillary-porous carrier comprises application of solutions of water-soluble bioorganic compounds onto a capillary-porous carrier, setting the carrier temperature equal to or below the dew point of the ambient air, keeping the carrier till appearance of water condensate and complete swelling of the carrier, whereupon the carrier surface is coated with a layer of water-immiscible nonluminescent inert oil and is allowed to stand till completion of the chemical reaction of bonding the bioorganic compounds with the carrier.
Maxwell, Eric J; Tong, William G
2016-05-01
An ultrasensitive label-free antibody-free detection method for malachite green and crystal violet is presented using nonlinear laser wave-mixing spectroscopy and capillary zone electrophoresis. Wave-mixing spectroscopy provides a sensitive absorption-based detection method for trace analytes. This is accomplished by forming dynamic gratings within a sample cell, which diffracts light to create a coherent laser-like signal beam with high optical efficiency and high signal-to-noise ratio. A cubic dependence on laser power and square dependence on analyte concentration make wave mixing sensitive enough to detect molecules in their native form without the use of fluorescent labels for signal enhancement. A 532 nm laser and a 635 nm laser were used for malachite green and crystal violet sample excitation. The use of two lasers of different wavelengths allows the method to simultaneously detect both analytes. Selectivity is obtained through the capillary zone electrophoresis separation, which results in characteristic migration times. Measurement in capillary zone electrophoresis resulted in a limit of detection of 6.9 × 10(-10)M (2.5 × 10(-19) mol) for crystal violet and 8.3 × 10(-11)M (3.0 × 10(-20) mol) for malachite green at S/N of 2. Copyright © 2016. Published by Elsevier B.V.
Broyd, Christopher J; Hernández-Pérez, Francisco; Segovia, Javier; Echavarría-Pinto, Mauro; Quirós-Carretero, Alicia; Salas, Clara; Gonzalo, Nieves; Jiménez-Quevedo, Pilar; Nombela-Franco, Luis; Salinas, Pablo; Núñez-Gil, Ivan; Del Trigo, Maria; Goicolea, Javier; Alonso-Pulpón, Luis; Fernández-Ortiz, Antonio; Parker, Kim; Hughes, Alun; Mayet, Jamil; Davies, Justin; Escaned, Javier
2018-05-21
Techniques for identifying specific microcirculatory structural changes are desirable. As such, capillary rarefaction constitutes one of the earliest changes of cardiac allograft vasculopathy (CAV) in cardiac allograft recipients, but its identification with coronary flow reserve (CFR) or intracoronary resistance measurements is hampered because of non-selective interrogation of the capillary bed. We therefore investigated the potential of wave intensity analysis (WIA) to assess capillary rarefaction and thereby predict CAV. Fifty-two allograft patients with unobstructed coronary arteries and normal left ventricular (LV) function were assessed. Adequate aortic pressure and left anterior descending artery flow measurements at rest and with intracoronary adenosine were obtained in 46 of which 2 were lost to follow-up. In a subgroup of 15 patients, simultaneous RV biopsies were obtained and analysed for capillary density. Patients were followed up with 1-3 yearly screening angiography. A significant relationship with capillary density was noted with CFR (r = 0.52, P = 0.048) and the backward decompression wave (BDW) (r = -0.65, P < 0.01). Over a mean follow-up of 9.3 ± 5.2 years patients with a smaller BDW had an increased risk of developing angiographic CAV (hazard ratio 2.89, 95% CI 1.12-7.39; P = 0.03). Additionally, the index BDW was lower in those who went on to have a clinical CAV-events (P = 0.04) as well as more severe disease (P = 0.01). Within cardiac transplant patients, WIA is able to quantify the earliest histological changes of CAV and can predict clinical and angiographic outcomes. This proof-of-concept for WIA also lends weight to its use in the assessment of other disease processes in which capillary rarefaction is involved.
Laser probe for measuring 2-D wave slope spectra of ocean capillary waves
NASA Technical Reports Server (NTRS)
Palm, C. S.; Anderson, R. C.; Reece, A. M.
1977-01-01
A laser-optical instrument for use in determining the two-dimensional wave-slope spectrum of ocean capillary waves is described. The instrument measures up to a 35-deg tip angle of the surface normal by measuring the position of a refracted laser beam directed vertically upward through a water surface. A telescope, a continuous two-dimensional Schottky barrier photodiode, and a pair of analog dividers render the signals independent of water height and insensitive to laser-beam intensity fluctuations. Calibration is performed entirely in the laboratory before field use. Sample records and wave-slope spectra are shown for one-dimensional wave-tank tests and for two-dimensional ocean tests. These are presented along with comparison spectra for calm and choppy water conditions. A mechanical wave follower was used to adjust the instrument position in the presence of large ocean swell and tides.
A model and numerical method for compressible flows with capillary effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidmayer, Kevin, E-mail: kevin.schmidmayer@univ-amu.fr; Petitpas, Fabien, E-mail: fabien.petitpas@univ-amu.fr; Daniel, Eric, E-mail: eric.daniel@univ-amu.fr
2017-04-01
A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results onmore » droplet breakup induced by a shock wave.« less
NASA Astrophysics Data System (ADS)
Hudgins, W. R.; Meulenberg, A.; Penland, R. F.
2015-09-01
Two adjacent coherent light beams, 180° out of phase and traveling on adjacent, parallel paths, remain visibly separated by the null (dark) zone from their mutual interference pattern as they merge. Each half of the pattern can be traced to one of the beams. Does such an experiment provide both "which way" and momentum knowledge? To answer this question, we demonstrate, by examining behavior of wave momentum and energy in a medium, that interfering waves interact. Central to the mechanism of interference is a standing wave component resulting from the combination of coherent waves. We show the mathematics for the formation of the standing wave component and for wave momentum involved in the waves' interaction. In water and in open coaxial cable, we observe that standing waves form cells bounded "reflection zones" where wave momentum from adjacent cells is reversed, confining oscillating energy to each cell. Applying principles observed in standing waves in media to the standing wave component of interfering light beams, we identify dark (null) regions to be the reflection zones. Each part of the interference pattern is affected by interactions between other parts, obscuring "which-way" information. We demonstrated physical interaction experimentally using two beams interfering slightly with one dark zone between them. Blocking one beam "downstream" from the interference region removed the null zone and allowed the remaining beam to evolve to a footprint of a single beam.
Standing wave acoustic levitation on an annular plate
NASA Astrophysics Data System (ADS)
Kandemir, Mehmet Hakan; Çalışkan, Mehmet
2016-11-01
In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.
2000-12-06
Fluorescent Milligram (10ŗ) Milliliter (10ŗ) vm ^g Microgram (10") 1*1 Microliter (10" 6) MMA Master Mix A MMB Master Mix B NSCLC Non-Small-Cell...little effect on heat dissipation, the mixing helped to smooth out the convection gradients (see Weinberger 1993). The use of smaller i.d...clogging may occur (Heller 1998a). The gels must be covalently bound to the capillary wall to avoid extrusion from the capillary by electroosmotic flow
Electron density measurement in gas discharge plasmas by optical and acoustic methods
NASA Astrophysics Data System (ADS)
Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2016-08-01
Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.
Interfacial free energy of the NaCl crystal-melt interface from capillary wave fluctuations.
Benet, Jorge; MacDowell, Luis G; Sanz, Eduardo
2015-04-07
In this work we study, by means of molecular dynamics simulations, the solid-liquid interface of NaCl under coexistence conditions. By analysing capillary waves, we obtain the stiffness for different orientations of the solid and calculate the interfacial free energy by expanding the dependency of the interfacial free energy with the solid orientation in terms of cubic harmonics. We obtain an average value for the solid-fluid interfacial free energy of 89 ± 6 mN m(-1) that is consistent with previous results based on the measure of nucleation free energy barriers [Valeriani et al., J. Chem. Phys. 122, 194501 (2005)]. We analyse the influence of the simulation setup on interfacial properties and find that facets prepared as an elongated rectangular stripe give the same results as those prepared as squares for all cases but the 111 face. For some crystal orientations, we observe at small wave-vectors a behaviour not consistent with capillary wave theory and show that this behavior does not depend on the simulation setup.
Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.
Erpelding, Todd N; Hollman, Kyle W; O'Donnell, Matthew
2007-02-01
Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young's modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200 and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size.
Bubble-Based Acoustic Radiation Force Using Chirp Insonation to Reduce Standing Wave Effects
Erpelding, Todd N.; Hollman, Kyle W.; O’Donnell, Matthew
2007-01-01
Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young’s modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200, and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size. PMID:17306697
Flutter and forced response of mistuned rotors using standing wave analysis
NASA Technical Reports Server (NTRS)
Dugundji, J.; Bundas, D. J.
1983-01-01
A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motions, and mistuning effects in rotors.
Flutter and forced response of mistuned rotors using standing wave analysis
NASA Technical Reports Server (NTRS)
Bundas, D. J.; Dungundji, J.
1983-01-01
A standing wave approach is applied to the analysis of the flutter and forced response of tuned and mistuned rotors. The traditional traveling wave cascade airforces are recast into standing wave arbitrary motion form using Pade approximants, and the resulting equations of motion are written in the matrix form. Applications for vibration modes, flutter, and forced response are discussed. It is noted that the standing wave methods may prove to be more versatile for dealing with certain applications, such as coupling flutter with forced response and dynamic shaft problems, transient impulses on the rotor, low-order engine excitation, bearing motion, and mistuning effects in rotors.
Relativistic charged particle ejection from optical lattice
NASA Astrophysics Data System (ADS)
Frolov, E. N.; Dik, A. V.; Dabagov, S. B.
2018-03-01
We have analyzed relativistic (~ MeV) electron ejection from potential channels of standing laser wave taking into account both rapid and averaged oscillations within the region of declining field of standing wave. We show that only a few last rapid oscillations can define transverse speed and, therefore, angle at which a particle leaves standing wave. This conclusion might drastically simplify numerical simulations of charged particles channeling and accompanying radiation in crossed lasers field. Moreover, it might provide a valuable information for estimation of charged particle beams parameters after their interaction with finite standing wave.
Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray
1990-01-01
An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.
Mitri, F G
2017-02-01
The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto-fluidics would benefit from the results of the present investigation. Copyright © 2016 Elsevier B.V. All rights reserved.
Does the scatterometer see wind speed or friction velocity?
NASA Technical Reports Server (NTRS)
Donelan, M. A.; Pierson, W. J., Jr.
1984-01-01
Studies of radar backscatter from the sea surface are referred either to the wind speed, U, or friction velocity, u(sub *). Bragg scattering theory suggests that these variations in backscatter are directly related to the height of the capillary-gravity waves modulated by the larger waves in tilt and by straining of the short wave field. The question then arises as to what characteristic of the wind field is most probably correlated with the wave number spectrum of the capillary-gravity waves. The justification for selecting U as the appropriate meteorological parameter to be associated with backscatter from L-band to Ku-band are reviewed. Both theoretical reasons and experimental evidence are used to demonstrate that the dominant parameter is U/C(lambda) where U is the wind speed at a height of about lambda/2 for waves having a phase speed of C(lambda).
NASA Astrophysics Data System (ADS)
Noja, Diego; Pelinovsky, Dmitry; Shaikhova, Gaukhar
2015-07-01
We develop a detailed analysis of edge bifurcations of standing waves in the nonlinear Schrödinger (NLS) equation on a tadpole graph (a ring attached to a semi-infinite line subject to the Kirchhoff boundary conditions at the junction). It is shown in the recent work [7] by using explicit Jacobi elliptic functions that the cubic NLS equation on a tadpole graph admits a rich structure of standing waves. Among these, there are different branches of localized waves bifurcating from the edge of the essential spectrum of an associated Schrödinger operator. We show by using a modified Lyapunov-Schmidt reduction method that the bifurcation of localized standing waves occurs for every positive power nonlinearity. We distinguish a primary branch of never vanishing standing waves bifurcating from the trivial solution and an infinite sequence of higher branches with oscillating behavior in the ring. The higher branches bifurcate from the branches of degenerate standing waves with vanishing tail outside the ring. Moreover, we analyze stability of bifurcating standing waves. Namely, we show that the primary branch is composed by orbitally stable standing waves for subcritical power nonlinearities, while all nontrivial higher branches are linearly unstable near the bifurcation point. The stability character of the degenerate branches remains inconclusive at the analytical level, whereas heuristic arguments based on analysis of embedded eigenvalues of negative Krein signatures support the conjecture of their linear instability at least near the bifurcation point. Numerical results for the cubic NLS equation show that this conjecture is valid and that the degenerate branches become spectrally stable far away from the bifurcation point.
Scale-dependent Ocean Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, R. E.
1995-01-01
Wave turbulence is a common feature of nonlinear wave motions observed when external forcing acts during a long period of time, resulting in developed spectral cascades of energy, momentum, and other conserved integrals. In the ocean, wave turbulence occurs on various scales from capillary ripples, and those of baroclinic inertia-gravity, to Rossby waves. Oceanic wave motions are discussed.
Gaber, Noha; Malak, Maurine; Marty, Frédéric; Angelescu, Dan E; Richalot, Elodie; Bourouina, Tarik
2014-07-07
In this article, microparticles are manipulated inside an optofluidic Fabry-Pérot cylindrical cavity embedding a fluidic capillary tube, taking advantage of field enhancement and multiple reflections within the optically-resonant cavity. This enables trapping of suspended particles with single-side injection of light and with low optical power. A Hermite-Gaussian standing wave is developed inside the cavity, forming trapping spots at the locations of the electromagnetic field maxima with a strong intensity gradient. The particles get arranged in a pattern related to the mechanism affecting them: either optical trapping or optical binding. This is proven to eventually translate into either an axial one dimensional (1D) particle array or a cluster of particles. Numerical simulations are performed to model the field distributions inside the cavity allowing a behavioral understanding of the phenomena involved in each case.
Quantitative aspects of vibratory mobilization and break-up of non-wetting fluids in porous media
NASA Astrophysics Data System (ADS)
Deng, Wen
Seismic stimulation is a promising technology aimed to mobilize the entrapped non-wetting fluids in the subsurface. The applications include enhanced oil recovery or, alternatively, facilitation of movement of immiscible/partly-miscible gases far into porous media, for example, for CO2 sequestration. This work is devoted to detailed quantitative studies of the two basic pore-scale mechanisms standing behind seismic stimulation: the mobilization of bubbles or drops entrapped in pore constrictions by capillary forces and the break-up of continuous long bubbles or drops. In typical oil-production operations, oil is produced by the natural reservoir-pressure drive during the primary stage and by artificial water flooding at the secondary stage. Capillary forces act to retain a substantial residual fraction of reservoir oil even after water flooding. The seismic stimulation is an unconventional technology that serves to overcome capillary barriers in individual pores and liberate the entrapped oil by adding an oscillatory inertial forcing to the external pressure gradient. According to our study, the effect of seismic stimulation on oil mobilization is highly dependent on the frequencies and amplitudes of the seismic waves. Generally, the lower the frequency and the larger the amplitude, more effective is the mobilization. To describe the mobilization process, we developed two theoretical hydrodynamics-based models and justified both using computational fluid dynamics (CFD). Our theoretical models have a significant advantage over CFD in that they reduce the computational time significantly, while providing correct practical guidance regarding the required field parameters of vibroseismic stimulation, such as the amplitude and frequency of the seismic field. The models also provide important insights into the basic mechanisms governing the vibration-driven two-phase flow in constricted capillaries. In a waterflooded reservoir, oil can be recovered most efficiently by forming continuous streams from isolated droplets. The longer the continuous oil phase under a certain pressure gradient, the more easily it overcomes its capillary barrier. However, surface tension between water and oil causes the typically non-wetting oil, constituting the core phase in the channels, to break up at the pore constriction into isolated beads, which inhibits further motion. The break-up thus counteracts the mobilization. We developed a theoretical model that provides an exact quantitative description of the dynamics of the oil-snap-off process. It also formulates a purely geometric criterion that controls, based on pore geometry only, whether the oil core phase stays continuous or disintegrates into droplets. Both the theoretical model and the break-criterion have been validated against CFD simulations. The work completed elucidates the basic physical mechanisms behind the enhanced oil recovery by seismic waves and vibrations. This creates a theoretical foundation for the further development of corresponding field technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong-Xin; Gao, Fei; Liu, Jia
2014-07-28
Radial uniformity measurements of plasma density were carried out by using a floating double probe in a cylindrical (21 cm in electrode diameter) capacitive discharge reactor driven over a wide range of frequencies (27–220 MHz). At low rf power, a multiple-node structure of standing wave effect was observed at 130 MHz. The secondary density peak caused by the standing wave effect became pronounced and shifts toward the axis as the driving frequency further to increase, indicative of a much more shortened standing-wave wavelength. With increasing rf power, the secondary density peak shift toward the radial edge, namely, the standing-wave wavelength was increased,more » in good qualitative agreement with the previous theory and simulation results. At higher pressures and high frequencies, the rf power was primarily deposited at the periphery of the electrode, due to the fact that the waves were strongly damped as they propagated from the discharge edge into the center.« less
Reduced clot debris size using standing waves formed via high intensity focused ultrasound
NASA Astrophysics Data System (ADS)
Guo, Shifang; Du, Xuan; Wang, Xin; Lu, Shukuan; Shi, Aiwei; Xu, Shanshan; Bouakaz, Ayache; Wan, Mingxi
2017-09-01
The feasibility of utilizing high intensity focused ultrasound (HIFU) to induce thrombolysis has been demonstrated previously. However, clinical concerns still remain related to the clot debris produced via fragmentation of the original clot potentially being too large and hence occluding downstream vessels, causing hazardous emboli. This study investigates the use of standing wave fields formed via HIFU to disintegrate the thrombus while achieving a reduced clot debris size in vitro. The results showed that the average diameter of the clot debris calculated by volume percentage was smaller in the standing wave mode than in the travelling wave mode at identical ultrasound thrombolysis settings. Furthermore, the inertial cavitation dose was shown to be lower in the standing wave mode, while the estimated cavitation bubble size distribution was similar in both modes. These results show that a reduction of the clot debris size with standing waves may be attributed to the particle trapping of the acoustic potential well which contributed to particle fragmentation.
The Standing Wave on a String as an Oscillator
ERIC Educational Resources Information Center
Sobel, Michael
2007-01-01
In the usual treatment of waves in introductory courses, one begins with traveling waves and the frequency/wavelength relationship f[lambda] = v, where "v" is the wave velocity. One then makes the point about superposition and shows that two waves traveling in opposite directions can add up to a standing wave; Eq. (1) still applies. This approach…
Gas-filled capillaries for plasma-based accelerators
NASA Astrophysics Data System (ADS)
Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.
2017-07-01
Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F.G., E-mail: mitri@chevron.com
The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to anmore » equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.« less
ERIC Educational Resources Information Center
Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George
2014-01-01
In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on…
Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo
2014-01-01
Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360
NASA Technical Reports Server (NTRS)
Hersh, A. S.
1979-01-01
The influence of a mean vortical flow on the connection between the standing wave pattern in a rectangular three dimensional waveguide and the corresponding duct axial impedance was determined analytically. The solution was derived using a perturbation scheme valid for low mean flow Mach numbers and plane wave sound frequencies. The results show that deviations of the standing wave pattern due to refraction by the mean flow gradients are small.
Stability of standing wave for the fractional nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Peng, Congming; Shi, Qihong
2018-01-01
In this paper, we study the stability and instability of standing waves for the fractional nonlinear Schrödinger equation i∂tu = (-Δ)su - |u|2σu, where (t ,x ) ∈R × RN, 1/2
Suppression of thermally excited capillary waves by shear flow.
Derks, Didi; Aarts, Dirk G A L; Bonn, Daniel; Lekkerkerker, Henk N W; Imhof, Arnout
2006-07-21
We investigate the thermal fluctuations of the colloidal gas-liquid interface subjected to a shear flow parallel to the interface. Strikingly, we find that the shear strongly suppresses capillary waves, making the interface smoother. This phenomenon can be described by introducing an effective interfacial tension that increases with the shear rate. The increase of sigma(eff) is a direct consequence of the loss of interfacial entropy caused by the flow, which affects especially the slow fluctuations. This demonstrates that the interfacial tension of fluids results from an intrinsic as well as a fluctuation contribution.
Student experimenter stands near middeck lockers in JSC Bldg 9A mockup
NASA Technical Reports Server (NTRS)
1991-01-01
Student experimenter Constantine Costes, STS-42 Commander Ronald J. Grabe, STS-42 Mission Specialist (MS) William F. Readdy, and Integration Engineer Neal Christie discuss Coates' student experiment 83-02 (SE 83-02) entitled 'Zero-G Capillary Rise of Liquid through Granular Porous Media' in JSC Mockup and Integration Laboratory Bldg 9A Full Fuselage Trainer (FFT). On FFT middeck, Costes stands behind Readdy (kneeling) as Christie demonstrates experiment setup and Grabe looks on (47326). The team also examines experiment components at middeck stowage locker (47323) and at FFT open side hatch (47324, 47325). The experiment is designed to investigate the capillary and forced flow characteristics of blue-tinted water in three glass tubes with three sizes of glass beads. SE 83-02 is scheduled to be flown on STS-42 aboard Discovery, Orbiter Vehicle (OV) 103.
Simple Excitation of Standing Waves in Rubber Bands and Membranes
NASA Astrophysics Data System (ADS)
Cortel, Adolf
2004-04-01
Many methods to excite standing waves in strings, plates, membranes, rods, tubes, and soap bubbles have been described. Usually a loudspeaker or a vibrating reed is driven by the amplified output of an audio oscillator. A novel and simple method consists of using a tuning fork or a singing rod to excite transversal standing waves in stretched rubber membranes sprinkled with fine sand.
Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Mikaelian, Karnig O.
2016-07-01
In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio Rcritical, in terms of the adiabatic indices of the two fluids, and a critical Mach number Mscritical of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than Rcritical then a standing shock wave is possible at Ms=Mscritical . Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. We point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.
Capillary waves and the decay of density correlations at liquid surfaces
NASA Astrophysics Data System (ADS)
Hernández-Muñoz, Jose; Chacón, Enrique; Tarazona, Pedro
2016-12-01
Wertheim predicted strong density-density correlations at free liquid surfaces, produced by capillary wave fluctuations of the interface [M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976), 10.1063/1.433352]. That prediction has been used to search for a link between capillary wave (CW) theory and density functional (DF) formalism for classical fluids. In particular, Parry et al. have recently analyzed the decaying tails of these CW effects moving away from the interface as a clue for the extended CW theory [A. O. Parry et al., J. Phys.: Condens. Matter 28, 244013 (2016), 10.1088/0953-8984/28/24/244013], beyond the strict long-wavelength limit studied by Wertheim. Some apparently fundamental inconsistencies between the CW and the DF theoretical views of the fluid interfaces arose from the asymptotic analysis of the CW signal. In this paper we revisit the problem of the CW asymptotic decay with a separation of local non-CW surface correlation effects from those that are a truly nonlocal propagation of the CW fluctuations from the surface towards the liquid bulk.
Microjet formation in a capillary by laser-induced cavitation
NASA Astrophysics Data System (ADS)
Peters, Ivo R.; Tagawa, Yoshiyuki; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef
2010-11-01
A vapor bubble is created by focusing a laser pulse inside a capillary that is partially filled with water. Upon creation of the bubble, a shock wave travels through the capillary. When this shock wave meets the meniscus of the air-water interface, a thin jet is created that travels at very high speeds. A crucial ingredient for the creation of the jet is the shape of the meniscus, which is responsible for focusing the energy provided by the shock wave. We examine the formation of this jet numerically using a boundary integral method, where we prepare an initial interface at rest inside a tube with a diameter ranging from 50 to 500 μm. To simulate the effect of the bubble we then apply a short, strong pressure pulse, after which the jet forms. We investigate the influence of the shape of the meniscus, and pressure amplitude and duration on the jet formation. The jet shape and velocity obtained by the simulation compare well with experimental data, and provides good insight in the origin of the jet.
Capillary fluctuations of surface steps: An atomistic simulation study for the model Cu(111) system
NASA Astrophysics Data System (ADS)
Freitas, Rodrigo; Frolov, Timofey; Asta, Mark
2017-10-01
Molecular dynamics (MD) simulations are employed to investigate the capillary fluctuations of steps on the surface of a model metal system. The fluctuation spectrum, characterized by the wave number (k ) dependence of the mean squared capillary-wave amplitudes and associated relaxation times, is calculated for 〈110 〉 and 〈112 〉 steps on the {111 } surface of elemental copper near the melting temperature of the classical potential model considered. Step stiffnesses are derived from the MD results, yielding values from the largest system sizes of (37 ±1 ) meV/A ˚ for the different line orientations, implying that the stiffness is isotropic within the statistical precision of the calculations. The fluctuation lifetimes are found to vary by approximately four orders of magnitude over the range of wave numbers investigated, displaying a k dependence consistent with kinetics governed by step-edge mediated diffusion. The values for step stiffness derived from these simulations are compared to step free energies for the same system and temperature obtained in a recent MD-based thermodynamic-integration (TI) study [Freitas, Frolov, and Asta, Phys. Rev. B 95, 155444 (2017), 10.1103/PhysRevB.95.155444]. Results from the capillary-fluctuation analysis and TI calculations yield statistically significant differences that are discussed within the framework of statistical-mechanical theories for configurational contributions to step free energies.
NASA Astrophysics Data System (ADS)
Dumlao, Morphy C.; Xiao, Dan; Zhang, Daming; Fletcher, John; Donald, William A.
2017-04-01
Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, 2.5 kVp-p high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power. In contrast, the power consumed using a sine and triangle alternating current waveform is more than two orders of magnitude higher than that for the square waveform to obtain a similar voltage for plasma generation. Moreover, the plasma obtained using a square waveform can be significantly more homogenous than that obtained using sine and triangle waveforms. Protonated dimethyl methylphosphonate (DMMP) and deprotonated perfluorooctanoic acid (PFOA) can be detected at about the same or higher abundances using square-wave DBDI mass spectrometry compared with the use of sine and triangle waveforms. By use of benzylammonium thermometer ions, the extent of internal energy deposition using square, sine, or triangle waveform excited plasmas are essentially the same at the optimum voltages for ion detection. Using an H-bridge circuit driving a transformer optimized to reduce losses, square-wave active capillary DBDI can be continuously powered for 50 h by common 9 V-battery (PP3).
X-Ray Standing Waves on Surfaces
1993-01-01
dependent distributional changes of iodine on Pt 6.3 X-ray standing wave study of a Langmuir - Blodgett multilayer film 7. Conclusions 8. Acknowledgments...4B. 6.3 X-ray standing wave study of a Langmuir - Blodgett multilayer film As mentioned previously the total external reflection condition occurs...for a Zn atom layer embedded in the top arachidate bilayer of a Langmuir - Blodgett (LB) multilayer film which was deposited on the surface of a gold
Role of entrapped vapor bubbles during microdroplet evaporation
NASA Astrophysics Data System (ADS)
Putnam, Shawn A.; Byrd, Larry W.; Briones, Alejandro M.; Hanchak, Michael S.; Ervin, Jamie S.; Jones, John G.
2012-08-01
On superheated surfaces, the air bubble trapped during impingement grows into a larger vapor bubble and oscillates at the frequency predicted for thermally induced capillary waves. In some cases, the entrapped vapor bubble penetrates the droplet interface, leaving a micron-sized coffee-ring pattern of pure fluid. Vapor bubble entrapment, however, does not influence the evaporation rate. This is also true on laser heated surfaces, where a laser can thermally excite capillary waves and induce bubble oscillations over a broad range of frequencies, suggesting that exciting perturbations in a pinned droplets interface is not an effective avenue for enhancing evaporative heat transfer.
Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings
ERIC Educational Resources Information Center
Fang, Tian-Shen
2007-01-01
This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…
Transition from Propagating Polariton Solitons to a Standing Wave Condensate Induced by Interactions
NASA Astrophysics Data System (ADS)
Sich, M.; Chana, J. K.; Egorov, O. A.; Sigurdsson, H.; Shelykh, I. A.; Skryabin, D. V.; Walker, P. M.; Clarke, E.; Royall, B.; Skolnick, M. S.; Krizhanovskii, D. N.
2018-04-01
We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.
Sich, M; Chana, J K; Egorov, O A; Sigurdsson, H; Shelykh, I A; Skryabin, D V; Walker, P M; Clarke, E; Royall, B; Skolnick, M S; Krizhanovskii, D N
2018-04-20
We explore phase transitions of polariton wave packets, first, to a soliton and then to a standing wave polariton condensate in a multimode microwire system, mediated by nonlinear polariton interactions. At low excitation density, we observe ballistic propagation of the multimode polariton wave packets arising from the interference between different transverse modes. With increasing excitation density, the wave packets transform into single-mode bright solitons due to effects of both intermodal and intramodal polariton-polariton scattering. Further increase of the excitation density increases thermalization speed, leading to relaxation of the polariton density from a solitonic spectrum distribution in momentum space down to low momenta, with the resultant formation of a nonequilibrium condensate manifested by a standing wave pattern across the whole sample.
Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.
Doinikov, Alexander A; Thibault, Pierre; Marmottant, Philippe
2018-07-01
A mathematical model is derived for acoustic streaming in a microfluidic channel confined between a solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal ultrasound standing waves of the same frequency that are created by two pairs of counter-propagating leaky surface waves induced in the solid wall. The magnitudes and phases of the standing waves are assumed to be different. Full analytical solutions are found for the equations of acoustic streaming. The obtained solutions are used in numerical simulations to reveal the structure of the acoustic streaming. It is shown that the interaction of two standing waves leads to the appearance of a cross term in the equations of acoustic streaming. If the phase lag between the standing waves is nonzero, the cross term brings about circular vortices with rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles rotate and move alternately up and down between the solid wall and the reflector. The obtained results are of immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of fluids and the manipulation of microparticles. Copyright © 2018 Elsevier B.V. All rights reserved.
Mitri, F G
2009-04-01
The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.
NASA Astrophysics Data System (ADS)
Akylas, Triantaphyllos R.; Kim, Boguk
2004-11-01
In dispersive wave systems, it is known that 1-D plane solitary waves can bifurcate from linear sinusoidal wavetrains at particular wave numbers k = k0 where the phase speed c(k) happens to be an extremum (dc/dk| _0=0) and equals the group speed c_g(k_0). Two distinct possibilities thus arise: either the extremum occurs in the long-wave limit (k_0=0) and, as in shallow water, the bifurcating solitary waves are of the KdV type; or k0 ne 0 and the solitary waves are in the form of packets, described by the NLS equation to leading order, as for gravity-capillary waves in deep water. Here it is pointed out that an entirely analogous scenario is valid for the genesis of 2-D solitary waves or `lumps'. Lumps also may bifurcate at extrema of the phase speed and do so when 1-D solitary waves happen to be unstable to transverse perturbations; moreover, they have algebraically decaying tails and are either of the KPI type (e.g. in shallow water in the presence of strong surface tension) or of the wave packet type (e.g. in deep water) and are described by an elliptic-elliptic Davey-Stewartson equation system to leading order. Examples of steady lump profiles are presented and their dynamics is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hsin-Liang, E-mail: hlchen@iner.gov.tw; Tu, Yen-Cheng; Hsieh, Cheng-Chang
2014-09-14
With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in timemore » and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to <±10% once two specific standing waves are launched at the same time. Moreover, in terms of the reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.« less
Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability
Mikaelian, Karnig O.
2016-07-13
In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio R critical, in terms of the adiabatic indices of the two fluids, andmore » a critical Mach number M critical s of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than R critical then a standing shock wave is possible at M s=M critical s. Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. Furthermore, we point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.« less
Xie, Yi; Mun, Sungyong; Kim, Jinhyun; Wang, Nien-Hwa Linda
2002-01-01
A tandem simulated moving bed (SMB) process for insulin purification has been proposed and validated experimentally. The mixture to be separated consists of insulin, high molecular weight proteins, and zinc chloride. A systematic approach based on the standing wave design, rate model simulations, and experiments was used to develop this multicomponent separation process. The standing wave design was applied to specify the SMB operating conditions of a lab-scale unit with 10 columns. The design was validated with rate model simulations prior to experiments. The experimental results show 99.9% purity and 99% yield, which closely agree with the model predictions and the standing wave design targets. The agreement proves that the standing wave design can ensure high purity and high yield for the tandem SMB process. Compared to a conventional batch SEC process, the tandem SMB has 10% higher yield, 400% higher throughput, and 72% lower eluant consumption. In contrast, a design that ignores the effects of mass transfer and nonideal flow cannot meet the purity requirement and gives less than 96% yield.
NASA Astrophysics Data System (ADS)
Klochko, Andrei V.; Starikovskaia, Svetlana M.; Xiong, Zhongmin; Kushner, Mark J.
2014-09-01
Nanosecond electrical discharges in the form of ionization waves are of interest for rapidly ionizing and exciting complex gas mixtures to initiate chemical reactions. Operating with a small discharge tube diameter can significantly increase the specific energy deposition and so enable optimization of the initiation process. Analysis of the uniformity of energy release in small diameter capillary tubes will aid in this optimization. In this paper, results for the experimentally derived characteristics of nanosecond capillary discharges in air at moderate pressure are presented and compared with results from a two-dimensional model. The quartz capillary tube, having inner and outer diameters of 1.5 and 3.4 mm, is about 80 mm long and filled with synthetic dry air at 27 mbar. The capillary tube with two electrodes at the ends is inserted into a break of the central wire of a long coaxial cable. A metal screen around the tube is connected to the cable ground shield. The discharge is driven by a 19 kV 35 ns voltage pulse applied to the powered electrode. The experimental measurements are conducted primarily by using a calibrated capacitive probe and back current shunts. The numerical modelling focuses on the fast ionization wave (FIW) and the plasma properties in the immediate afterglow after the conductive plasma channel has been established between the two electrodes. The FIW produces a highly focused region of electric field on the tube axis that sustains the ionization wave that eventually bridges the electrode gap. Results from the model predict FIW propagation speed and current rise time that agree with the experiment.
NASA Technical Reports Server (NTRS)
Leib, S. J.
1985-01-01
The receptivity problem in a circular liquid jet is considered. A time harmonic axial pressure gradient is imposed on the steady, parallel flow of a jet of liquid emerging from a circular duct. Using a technique developed in plasma physics a casual solution to the forced problem is obtained over certain ranges of Weber number for a number of mean velocity profiles. This solution contains a term which grows exponentially in the downstream direction and can be identified with a capillary instability wave. Hence, it is found that the externally imposed disturbances can indeed trigger instability waves in a liquid jet. The amplitude of the instability wave generated relative to the amplitude of the forcing is computed numerically for a number of cases.
A Standing-Wave Experiment with a Guitar
NASA Astrophysics Data System (ADS)
Inman, Fred W.
2006-10-01
When teaching standing waves, one often uses as examples musical instruments with strings, e.g., pianos, violins, and guitars. In today's popular music culture, young people may be more familiar with guitars than any other string instrument. I was helping my 15-year-old granddaughter make some repairs and adjustments to her electric guitar, and the subject of the spacing between the frets on the fingerboard was raised. I told her that the physics of standing waves and the equal tempered musical scale dictate the location of the frets. The purpose of this paper is to suggest that students might be introduced to the physics of standing waves using a guitar and to the formula for the fret locations. By measuring the positions of the frets, this formula can be tested.
NASA Astrophysics Data System (ADS)
Biancofiore, L.; Heifetz, E.; Hoepffner, J.; Gallaire, F.
2017-10-01
Both surface tension and buoyancy force in stable stratification act to restore perturbed interfaces back to their initial positions. Hence, both are intuitively considered as stabilizing agents. Nevertheless, the Taylor-Caulfield instability is a counterexample in which the presence of buoyancy forces in stable stratification destabilize shear flows. An explanation for this instability lies in the fact that stable stratification supports the existence of gravity waves. When two vertically separated gravity waves propagate horizontally against the shear, they may become phase locked and amplify each other to form a resonance instability. Surface tension is similar to buoyancy but its restoring mechanism is more efficient at small wavelengths. Here, we show how a modification of the Taylor-Caulfield configuration, including two interfaces between three stably stratified immiscible fluids, supports interfacial capillary gravity whose interaction yields resonance instability. Furthermore, when the three fluids have the same density, an instability arises solely due to a pure counterpropagating capillary wave resonance. The linear stability analysis predicts a maximum growth rate of the pure capillary wave instability for an intermediate value of surface tension corresponding to We-1=5 , where We denotes the Weber number. We perform direct numerical nonlinear simulation of this flow and find nonlinear destabilization when 2 ≤We-1≤10 , in good agreement with the linear stability analysis. The instability is present also when viscosity is introduced, although it is gradually damped and eventually quenched.
Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications
NASA Astrophysics Data System (ADS)
Bagdasarov, G. A.; Sasorov, P. V.; Gasilov, V. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Benedetti, C.; Bulanov, S. S.; Gonsalves, A.; Mao, H.-S.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.
2017-08-01
One of the most robust methods, demonstrated to date, of accelerating electron beams by laser-plasma sources is the utilization of plasma channels generated by the capillary discharges. Although the spatial structure of the installation is simple in principle, there may be some important effects caused by the open ends of the capillary, by the supplying channels etc., which require a detailed 3D modeling of the processes. In the present work, such simulations are performed using the code MARPLE. First, the process of capillary filling with cold hydrogen before the discharge is fired, through the side supply channels is simulated. Second, the simulation of the capillary discharge is performed with the goal to obtain a time-dependent spatial distribution of the electron density near the open ends of the capillary as well as inside the capillary. Finally, to evaluate the effectiveness of the beam coupling with the channeling plasma wave guide and of the electron acceleration, modeling of the laser-plasma interaction was performed with the code INF&RNO.
CO2/ brine substitution experiments at simulated reservoir conditions
NASA Astrophysics Data System (ADS)
Kummerow, Juliane; Spangenberg, Erik
2015-04-01
Capillary properties of rocks affect the mobility of fluids in a reservoir. Therefore, the understanding of the capillary pressure behaviour is essential to assess the long-term behaviour of CO2 reservoirs. Beyond this, a calibration of the petrophysical properties on water saturation of reservoir rocks at simulated in situ conditions is crucial for a proper interpretation of field monitoring data. We present a set-up, which allows for the combined measurements of capillary pressure, electric resistivity, and elastic wave velocities under controlled reservoir conditions (pconf = 400 bar, ppore = 180 bar, T = 65 ° C) at different brine-CO2 saturations. The capillary properties of the samples are measured using the micropore membrane technique. The sample is jacketed with a Viton tube (thickness = 4 mm) and placed between two current electrode endcaps, which as well contain pore fluid ports and ultrasonic P and S wave transducers. Between the sample and the lower endcap the hydrophilic semi-permeable micro-pore membrane (pore size = 100 nm) is integrated. It is embedded into filter papers to establish a good capillary contact and to protect the highly sensitive membrane against mechanical damage under load. Two high-precision syringe pumps are used to displace a quantified volume of brine by CO2 and determine the corresponding sample saturation. The fluid displacement induces a pressure gradient along the sample, which corresponds to the capillary pressure at a particular sample saturation. It is measured with a differential pressure sensor in the range between 0 - 0.2 MPa. Drainage and imbibition cycles are performed to provide information on the efficiency of capillary trapping and to get a calibration of the petrophysical parameters of the sample.
Xiping Wang; Ferenc Divos; Crystal Pilon; Brian K. Brashaw; Robert J. Ross; Roy F. Pellerin
2004-01-01
This guide was prepared to assist field foresters in the use of stress wave timing instruments to locate and define areas of decay in standing timber. The first three sections provide background information, the principles of stress wave nondestructive testing, and measurement techniques for stress wave nondestructive testing. The last section is a detailed description...
NASA Astrophysics Data System (ADS)
Wang, Tongjiang; Ofman, Leon; Sun, Xudong; Solanki, Sami K.; Davila, Joseph M.
2018-06-01
Standing slow-mode waves have been recently observed in flaring loops by the Atmospheric Imaging Assembly of the Solar Dynamics Observatory. By means of the coronal seismology technique, transport coefficients in hot (∼10 MK) plasma were determined by Wang et al., revealing that thermal conductivity is nearly suppressed and compressive viscosity is enhanced by more than an order of magnitude. In this study, we use 1D nonlinear MHD simulations to validate the predicted results from the linear theory and investigate the standing slow-mode wave excitation mechanism. We first explore the wave trigger based on the magnetic field extrapolation and flare emission features. Using a flow pulse driven at one footpoint, we simulate the wave excitation in two types of loop models: Model 1 with the classical transport coefficients and Model 2 with the seismology-determined transport coefficients. We find that Model 2 can form the standing wave pattern (within about one period) from initial propagating disturbances much faster than Model 1, in better agreement with the observations. Simulations of the harmonic waves and the Fourier decomposition analysis show that the scaling law between damping time (τ) and wave period (P) follows τ ∝ P 2 in Model 2, while τ ∝ P in Model 1. This indicates that the largely enhanced viscosity efficiently increases the dissipation of higher harmonic components, favoring the quick formation of the fundamental standing mode. Our study suggests that observational constraints on the transport coefficients are important in understanding both the wave excitation and damping mechanisms.
Distribution of standing-wave errors in real-ear sound-level measurements.
Richmond, Susan A; Kopun, Judy G; Neely, Stephen T; Tan, Hongyang; Gorga, Michael P
2011-05-01
Standing waves can cause measurement errors when sound-pressure level (SPL) measurements are performed in a closed ear canal, e.g., during probe-microphone system calibration for distortion-product otoacoustic emission (DPOAE) testing. Alternative calibration methods, such as forward-pressure level (FPL), minimize the influence of standing waves by calculating the forward-going sound waves separate from the reflections that cause errors. Previous research compared test performance (Burke et al., 2010) and threshold prediction (Rogers et al., 2010) using SPL and multiple FPL calibration conditions, and surprisingly found no significant improvements when using FPL relative to SPL, except at 8 kHz. The present study examined the calibration data collected by Burke et al. and Rogers et al. from 155 human subjects in order to describe the frequency location and magnitude of standing-wave pressure minima to see if these errors might explain trends in test performance. Results indicate that while individual results varied widely, pressure variability was larger around 4 kHz and smaller at 8 kHz, consistent with the dimensions of the adult ear canal. The present data suggest that standing-wave errors are not responsible for the historically poor (8 kHz) or good (4 kHz) performance of DPOAE measures at specific test frequencies.
NASA Astrophysics Data System (ADS)
Wei, Wei
2005-11-01
In low gravity, the stability of liquid bridges and other systems having free surfaces is affected by the ambient vibration of the spacecraft. Such vibrations are expected to excite capillary modes. The lowest unstable mode of cylindrical liquid bridges, the (2,0) mode, is particularly sensitive to the vibration when the ratio of the bridge length to the diameter approaches pi. In this work, a Plateau tank has been used to simulate the weightless condition. An optical system has been used to detect the (2,0) mode oscillation amplitude and generate an error signal which is determined by the oscillation amplitude. This error signal is used by the feedback system to produce proper voltages on the electrodes which are concentric with the electrically conducting, grounded bridge. A mode-coupled electrostatic stress is thus generated on the surface of the bridge. The feedback system is designed such that the modal force applied by the Maxwell stress can be proportional to the modal amplitude or modal velocity, which is the derivative of the modal amplitude. Experiments done in the Plateau tank demonstrate that the damping of the capillary oscillation can be enhanced by using the electrostatic stress in proportion to the modal velocity. On the other hand, using the electrostatic stress in proportion to the modal amplitude can raise the natural frequency of the bridge oscillation. If a spacecraft vibration frequency is close to a capillary mode frequency, the amplitude gain can be used to shift the mode frequency away from that of the spacecraft and simultaneously add some artificial damping to further reduce the effect of g-jitter. It is found that the decay of a bridge (2,0) mode oscillation is well modeled by a Duffing equation with a small cubic soft-spring term. The nonlinearity of the bridge (3,0) mode is also studied. The experiments reveal the hysteresis of (3,0) mode bridge oscillations, and this behavior is a property of the soft nonlinearity of the bridge. Relevant to acoustical bridge stabilization, the theoretical radiation force on a compressible cylinder in an acoustic standing wave is also investigated.
Effect of Forcing Function on Nonlinear Acoustic Standing Waves
NASA Technical Reports Server (NTRS)
Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce
2003-01-01
Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.
Active mode locking of lasers by piezoelectrically induced diffraction modulation
NASA Astrophysics Data System (ADS)
Krausz, F.; Turi, L.; Kuti, Cs.; Schmidt, A. J.
1990-04-01
A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 μm and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate of 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.
Standing Helicon Wave Induced by a Rapidly Bent Magnetic Field in Plasmas.
Takahashi, Kazunori; Takayama, Sho; Komuro, Atsushi; Ando, Akira
2016-04-01
An electron energy probability function and a rf magnetic field are measured in a rf hydrogen helicon source, where axial and transverse static magnetic fields are applied to the source by solenoids and to the diffusion chamber by filter magnets, respectively. It is demonstrated that the helicon wave is reflected by the rapidly bent magnetic field and the resultant standing wave heats the electrons between the source and the magnetic filter, while the electron cooling effect by the magnetic filter is maintained. It is interpreted that the standing wave is generated by the presence of a spatially localized change of a refractive index.
Standing Helicon Wave Induced by a Rapidly Bent Magnetic Field in Plasmas
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Takayama, Sho; Komuro, Atsushi; Ando, Akira
2016-04-01
An electron energy probability function and a rf magnetic field are measured in a rf hydrogen helicon source, where axial and transverse static magnetic fields are applied to the source by solenoids and to the diffusion chamber by filter magnets, respectively. It is demonstrated that the helicon wave is reflected by the rapidly bent magnetic field and the resultant standing wave heats the electrons between the source and the magnetic filter, while the electron cooling effect by the magnetic filter is maintained. It is interpreted that the standing wave is generated by the presence of a spatially localized change of a refractive index.
Marangoni effect on small-amplitude capillary waves in viscous fluids
NASA Astrophysics Data System (ADS)
Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele
2017-11-01
We derive a general integro-differential equation for the transient behavior of small-amplitude capillary waves on the planar surface of a viscous fluid in the presence of the Marangoni effect. The equation is solved for an insoluble surfactant solution in concentration below the critical micelle concentration undergoing convective-diffusive surface transport. The special case of a diffusion-driven surfactant is considered near the the critical damping wavelength. The Marangoni effect is shown to contribute to the overall damping mechanism, and a first-order term correction to the critical wavelength with respect to the surfactant concentration difference and the Schmidt number is proposed.
Wu, Si Yu; Han, Geng Fen; Kang, Jian Yi; Zhang, Liang Chao; Wang, Ai Min; Wang, Jian Min
2016-09-01
Vascular leakage has been proven to play a critical role in the incidence and development of explosive pulmonary barotrauma. Quantitatively investigated in the present study was the severity of vascular leakage in a gradient blast injury series, as well as ultrastructural evidence relating to pulmonary vascular leakage. One hundred adult male New Zealand white rabbits were randomly divided into 5 groups according to distance from the detonator (10 cm, 15 cm, 20 cm, 30 cm, and sham control). Value of pulmonary vascular leakage was monitored by a radioactive 125I-albumin labeling method. Pathological changes caused by the blast wave were examined under light and electron microscopes. Transcapillary escape rate of 125I-albumin and residual radioactivity in both lungs increased significantly at the distances of 10 cm, 15 cm, and 20 cm, suggesting increased severity of vascular leakage in these groups. Ultrastructural observation showed swelling of pulmonary capillary endothelial cells and widened gap between endothelial cells in the 10-cm and 15-cm groups. Primary blast wave can result in pulmonary capillary blood leakage. Blast wave can cause swelling of pulmonary capillary endothelial cells and widened gap between endothelial cells, which may be responsible for pulmonary vascular leakage.
Lucas, Timothy S.
1991-01-01
A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.
NASA Astrophysics Data System (ADS)
Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George
2014-12-01
In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on the construct of meaningful learning from cognitive psychology and semiotics, a quasiexperimental study was conducted to investigate the comparative effectiveness of two alternative approaches to student understanding: a traditional textbook illustration approach versus a newly designed air molecule motion illustration approach. Thirty volunteer students from introductory physics classes were randomly assigned to two groups of 15 each. Both groups were administered a presurvey. Then, group A read the air molecule motion illustration handout, and group B read a traditional textbook illustration handout; both groups were administered postsurveys. Subsequently, the procedure was reversed: group B read the air molecule motion illustration handout and group A read the traditional textbook illustration handout. This was followed by a second postsurvey along with an exit research questionnaire. The study found that the majority of students experienced meaningful learning and stated that they understood sound standing wave phenomena significantly better using the air molecule motion illustration approach. This finding provides a method for physics education researchers to design illustrations for abstract sound standing wave concepts, for publishers to improve their illustrations with supporting text, and for instructors to facilitate deeper learning in their students on sound standing waves.
Ab initio study of intrinsic profiles of liquid metals and their reflectivity
NASA Astrophysics Data System (ADS)
del Rio, B. G.; Souto, J.; Alemany, M. M. G.; González, L. E.
2017-08-01
The free surfaces of liquid metals are known to exhibit a stratified profile that, in favourable cases, shows up in experiments as a peak in the ratio between the reflectivity function and that of an ideal step-like profile. This peak is located at a wave-vector related to the distance between the layers of the profile. In fact the surface roughness produced by thermally induced capillary waves causes a depletion of the previous so called intrinsic reflectivity by a damping factor that may hinder the observation of the peak. The behaviour of the intrinsic reflectivity below the layering peak is however far from being universal, with systems as Ga or In where the reflectiviy falls uniformly towards the q → 0 value, others like Sn or Bi where a shoulder appears at intermediate wavevectors, and others like Hg which show a minimum. We have performed extensive ab initio simulations of the free liquid surfaces of Bi, Pb and Hg, that yield direct information on the structure of the profiles and found that the macroscopic capillary wave theory usually employed in order to remove the capillary wave components fails badly in some cases for the typical sample sizes affordable in ab initio simulations. However, a microscopic method for the determination of the intrinsic profile is shown to be succesful in obtaining meaningful intrinsic profiles and corresponding reflectivities which reproduce correctly the qualitative behaviour observed experimentally.
ERIC Educational Resources Information Center
Tucker, Vance A.
1971-01-01
Capillary and gravity water waves are related to the position, wavelength, and velocity of an object in flowing water. Water patterns are presented for ships and the whirling beetle with an explanation of how the design affects the objects velocity and the observed water wavelengths. (DS)
NASA Astrophysics Data System (ADS)
Otosu, Takuhiro; Yamaguchi, Shoichi
2017-07-01
We present standing evanescent-wave fluorescence correlation spectroscopy (SEW-FCS). This technique utilizes the interference of two evanescent waves which generates a standing evanescent-wave. Fringe-pattern illumination created by a standing evanescent-wave enables us to measure the diffusion coefficients of molecules with a super-resolution corresponding to one fringe width. Because the fringe width can be reliably estimated by a simple procedure, utilization of fringes is beneficial to quantitatively analyze the slow diffusion of molecules in a supported lipid bilayer (SLB), a model biomembrane formed on a solid substrate, with the timescale relevant for reliable FCS analysis. Furthermore, comparison of the data between SEW-FCS and conventional total-internal reflection FCS, which can also be performed by the SEW-FCS instrument, effectively eliminates the artifact due to afterpulsing of the photodiode detector. The versatility of SEW-FCS is demonstrated by its application to various SLBs.
Method for non-contact particle manipulation and control of particle spacing along an axis
Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde
2013-09-10
One or more of the embodiments of the present invention provide for a method of non-contact particle manipulation and control of particle spacing along an axis which includes axial and radial acoustic standing wave fields. Particles are suspended in an aqueous solution, and this solution then flows into the cylindrical flow channel. While the solution flows through the flow channel, the outer structure of the flow channel is vibrated at a resonant frequency, causing a radial acoustic standing wave field to form inside the flow channel in the solution. These radial acoustic standing waves focus the particles suspended in the solution to the center axis of the cylindrical flow channel. At the same time, a transducer is used to create an axial acoustic standing wave field in the flow channel parallel to the axis of the flow channel. This drives the particles, which are already being focused to the center axis of the flow channel, to nodes or anti-nodes of the axial standing wave at half-wavelength intervals, depending on whether the particles are more or less dense and more or less compressible than the surrounding fluid.
NASA Astrophysics Data System (ADS)
Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.
2015-09-01
Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.
Stress wave propagation on standing trees. Part 2, Formation of 3D stress wave contour maps.
Juan Su; Houjiang Zhang; Xiping Wang
2009-01-01
Nondestructive evaluation (NDE) of wood quality in standing trees is an important procedure in the forest operational value chain worldwide. The goal of this paper is to investigate how a stress wave travel in a tree stem as it is introduced into the tree through a mechanical impact. Experimental stress wave data was obtained on freshly cut red pine logs in the...
Experimental investigation of stress wave propagation in standing trees
Houjiang Zhang; Xiping Wang; Juan Su
2011-01-01
The objective of this study was to investigate how a stress wave travels in a standing tree as it is introduced into the tree trunk through a mechanical impact. A series of stress wave time-of-flight (TOF) data were obtained from three freshly-cut red pine (Pinus resinosa Ait.) logs by means of a two-probe stress wave timer. Two-dimensional (2D) and three-dimensional (...
Critical Velocities in Open Capillary Flow
NASA Technical Reports Server (NTRS)
Dreyer, Michael; Langbein, Dieter; Rath, Hans J.
1996-01-01
This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.
Resonance fluorescence based two- and three-dimensional atom localization
NASA Astrophysics Data System (ADS)
Wahab, Abdul; Rahmatullah; Qamar, Sajid
2016-06-01
Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.
Investigations of High Pressure Acoustic Waves in Resonators with Seal-Like Features
NASA Technical Reports Server (NTRS)
Daniels, Christopher C.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh
2004-01-01
1) Standing waves with maximum pressures of 188 kPa have been produced in resonators containing ambient pressure air; 2) Addition of structures inside the resonator shifts the fundamental frequency and decreases the amplitude of the generated pressure waves; 3) Addition of holes to the resonator does reduce the magnitude of the acoustic waves produced, but their addition does not prohibit the generation of large magnitude non-linear standing waves; 4) The feasibility of reducing leakage using non-linear acoustics has been confirmed.
Transport equations for linear surface waves with random underlying flows
NASA Astrophysics Data System (ADS)
Bal, Guillaume; Chou, Tom
1999-11-01
We define the Wigner distribution and use it to develop equations for linear surface capillary-gravity wave propagation in the transport regime. The energy density a(r, k) contained in waves propagating with wavevector k at field point r is given by dota(r,k) + nabla_k[U_⊥(r,z=0) \\cdotk + Ω(k)]\\cdotnabla_ra [13pt] \\: hspace1in - (nabla_r\\cdotU_⊥)a - nabla_r(k\\cdotU_⊥)\\cdotnabla_ka = Σ(δU^2) where U_⊥(r, z=0) is a slowly varying surface current, and Ω(k) = √(k^3+k)tanh kh is the free capillary-gravity dispersion relation. Note that nabla_r\\cdotU_⊥(r,z=0) neq 0, and that the surface currents exchange energy density with the propagating waves. When an additional weak random current √\\varepsilon δU(r/\\varepsilon) varying on the scale of k-1 is included, we find an additional scattering term Σ(δU^2) as a function of correlations in δU. Our results can be applied to the study of surface wave energy transport over a turbulent ocean.
Nondestructive evaluation of standing trees with a stress wave method.
Xiping Wang; Robert J. Ross; Michael McClellan; R. James Barbour; John R. Erickson; John W. Forsman; Gary D. McGinnis
2001-01-01
The primary objective of this study was to investigate the usefulness of a stress wave technique for evaluating wood strength and stiffness of young-growth western hemlock and Sitka spruce in standing trees. A secondary objective was to determine if the effects of silvicultural practices on wood quality can be identified using this technique. Stress wave measurements...
Excitation of Standing Waves by an Electric Toothbrush
ERIC Educational Resources Information Center
Cros, Ana; Ferrer-Roca, Chantal
2006-01-01
There are a number of ways of exciting standing waves in ropes and springs using non-commercial vibrators such as loudspeakers, jigsaws, motors, or a simple tuning fork, including the rhythmical shaking of a handheld Slinky. We have come up with a very simple and cheap way of exciting stationary waves in a string, which anyone, particularly…
ERIC Educational Resources Information Center
Binder, Philippe; Cunnyngham, Ian
2012-01-01
In a recent note in this journal, Gluck presents a beautiful demonstration of the standing wave generated by a strip of material with linearly varying width (a trapezoid). As expected, the resulting wave envelope (and its shadow) showed a varying wavelength--smaller as the strip width gets larger.
Active mode locking of lasers by piezoelectrically induced diffraction modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krausz, F.; Turi, L.; Kuti, C.
A new amplitude-modulation mode-locking technique is presented. Acoustic waves are generated directly on the faces of a resonant photoelastic medium. The created standing waves cause a highly efficient diffraction modulation of light. The modulation depth of standing-wave mode lockers is related to material and drive parameters and a figure of merit is introduced. With a lithium niobate crystal modulation depths over 10 are achieved at 1.054 {mu}m and 1 W of radio frequency power. Using this device for the active mode locking of a continuous-wave Nd:glass laser pulses as short as 3.8 ps are produced at a repetition rate ofmore » 66 MHz. Limitations of amplitude-modulation mode locking by standing acoustic waves are discussed.« less
November, G.S.; Schute, F.
1962-02-20
A fluid flowmeter is designed in which a standing pressure wave is established. The amplitude of this standing wave is a function of the fluid flow rate so that pressure sensing devices may be used to indicate fluid flow and variations thereof. (AEC)
Gravity–capillary waves in finite depth on flows of constant vorticity
Hsu, Hung-Chu; Francius, Marc; Kharif, Christian
2016-01-01
This paper considers two-dimensional periodic gravity–capillary waves propagating steadily in finite depth on a linear shear current (constant vorticity). A perturbation series solution for steady periodic waves, accurate up to the third order, is derived using a classical Stokes expansion procedure, which allows us to include surface tension effects in the analysis of wave–current interactions in the presence of constant vorticity. The analytical results are then compared with numerical computations with the full equations. The main results are (i) the phase velocity is strongly dependent on the value of the vorticity; (ii) the singularities (Wilton singularities) in the Stokes expansion in powers of wave amplitude that correspond to a Bond number of 1/2 and 1/3, which are the consequences of the non-uniformity in the ordering of the Fourier coefficients, are found to be influenced by vorticity; (iii) different surface profiles of capillary–gravity waves are computed and the effect of vorticity on those profiles is shown to be important, in particular that the solutions exhibit type-2-like wave features, characterized by a secondary maximum on the surface profile with a trough between the two maxima. PMID:27956873
Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.
Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu
2006-12-01
A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.
Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.
Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M
2014-01-01
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.
Standing Waves in an Elastic Spring: A Systematic Study by Video Analysis
NASA Astrophysics Data System (ADS)
Ventura, Daniel Rodrigues; de Carvalho, Paulo Simeão; Dias, Marco Adriano
2017-04-01
The word "wave" is part of the daily language of every student. However, the physical understanding of the concept demands a high level of abstract thought. In physics, waves are oscillating variations of a physical quantity that involve the transfer of energy from one point to another, without displacement of matter. A wave can be formed by an elastic deformation, a variation of pressure, changes in the intensity of electric or magnetic fields, a propagation of a temperature variation, or other disturbances. Moreover, a wave can be categorized as pulsed or periodic. Most importantly, conditions can be set such that waves interfere with one another, resulting in standing waves. These have many applications in technology, although they are not always readily identified and/or understood by all students. In this work, we use a simple setup including a low-cost constant spring, such as a Slinky, and the free software Tracker for video analysis. We show they can be very useful for the teaching of mechanical wave propagation and the analysis of harmonics in standing waves.
Guitar Strings as Standing Waves: A Demonstration
ERIC Educational Resources Information Center
Davis, Michael
2007-01-01
The study demonstrates the induction of one-dimensional standing waves, called "natural-harmonics" on a guitar to provide a unique tone. The analysis shows that a normally complex vibration is composed of a number of simple and discrete vibrations.
Marston, Philip L; Zhang, Likun
2017-05-01
When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.
Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji
2016-03-21
Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.
Cooling rate dependence of the glass transition at free surfaces
NASA Astrophysics Data System (ADS)
Streit-Nierobisch, S.; Gutt, C.; Paulus, M.; Tolan, M.
2008-01-01
In situ x-ray reflectivity measurements are used to determine the cooling rate dependent freezing of capillary waves on the oligomer poly(propylene glycol). Only above the glass transition temperature TG can the surface roughness σ be described by the capillary wave model for simple liquids, whereas the surface fluctuations are frozen-in at temperatures below TG . As the state of a glass forming liquid strongly depends on its thermal history, this effect occurs for fast cooling rates already at a higher temperature than for slow cooling. For the fastest cooling rates a very large shift of TG up to 240K compared to the bulk value of 196K was observed.
NASA Astrophysics Data System (ADS)
Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji
2016-03-01
Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.
NASA Astrophysics Data System (ADS)
Mueller, A.
2018-04-01
A new transparent artificial boundary condition for the two-dimensional (vertical) (2DV) free surface water wave propagation modelled using the meshless Radial-Basis-Function Collocation Method (RBFCM) as boundary-only solution is derived. The two-way artificial boundary condition (2wABC) works as pure incidence, pure radiation and as combined incidence/radiation BC. In this work the 2wABC is applied to harmonic linear water waves; its performance is tested against the analytical solution for wave propagation over horizontal sea bottom, standing and partially standing wave as well as wave interference of waves with different periods.
Scanning dimensional measurement using laser-trapped microsphere with optical standing-wave scale
NASA Astrophysics Data System (ADS)
Michihata, Masaki; Ueda, Shin-ichi; Takahashi, Satoru; Takamasu, Kiyoshi; Takaya, Yasuhiro
2017-06-01
We propose a laser trapping-based scanning dimensional measurement method for free-form surfaces. We previously developed a laser trapping-based microprobe for three-dimensional coordinate metrology. This probe performs two types of measurements: a tactile coordinate and a scanning measurement in the same coordinate system. The proposed scanning measurement exploits optical interference. A standing-wave field is generated between the laser-trapped microsphere and the measured surface because of the interference from the retroreflected light. The standing-wave field produces an effective length scale, and the trapped microsphere acts as a sensor to read this scale. A horizontal scan of the trapped microsphere produces a phase shift of the standing wave according to the surface topography. This shift can be measured from the change in the microsphere position. The dynamics of the trapped microsphere within the standing-wave field was estimated using a harmonic model, from which the measured surface can be reconstructed. A spherical lens was measured experimentally, yielding a radius of curvature of 2.59 mm, in agreement with the nominal specification (2.60 mm). The difference between the measured points and a spherical fitted curve was 96 nm, which demonstrates the scanning function of the laser trapping-based microprobe for free-form surfaces.
Laboratory Study of Water Surface Roughness Generation by Wave-Current Interaction
NASA Technical Reports Server (NTRS)
Klinke, Jochen
2000-01-01
Within the framework of this project, the blocking of waves by inhomogeneous currents was studied. A laboratory experiment was conducted in collaboration with Steven R. Long at the linear wave tank of the NASA Air-Sea Interaction Facility, Wallops Island, VA during May 1999. Mechanically-generated waves were blocked approximately 3m upstream from the wave paddle by an opposing current. A false bottom was used to obtain a spatially varying flow field in the measurement section of the wave tank. We used an imaging slope gauge, which was mounted directly underneath the sloping section of the false tank bottom to observe the wave field. For a given current speed, the amplitude and the frequency of the waves was adjusted so that the blocking occurred within the observed footprint. Image sequences of up to 600 images at up 100 Hz sampling rate were recorded for an area of approximately 25cm x 25cm. Unlike previous measurements with wave wire gauges, the captured image sequences show the generation of the capillary waves at the blocking point and give detailed insight into the spatial and temporal evolution of the blocking process. The image data were used to study the wave-current interaction for currents from 5 to 25 cm/s and waves with frequencies between 1 and 3 Hz. First the images were calibrated with regard to size and slope. Then standard Fourier techniques as well the empirical mode decomposition method developed by Dr. Norden Huang and Dr. Steven R. Long were employed to quantify the wave number downshift from the gravity to the capillary regime.
Evaluation of a multi-point method for determining acoustic impedance
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Parrott, Tony L.
1988-01-01
An investigation was conducted to explore potential improvements provided by a Multi-Point Method (MPM) over the Standing Wave Method (SWM) and Two-Microphone Method (TMM) for determining acoustic impedance. A wave propagation model was developed to model the standing wave pattern in an impedance tube. The acoustic impedance of a test specimen was calculated from a best fit of this standing wave pattern to pressure measurements obtained along the impedance tube centerline. Three measurement spacing distributions were examined: uniform, random, and selective. Calculated standing wave patterns match the point pressure measurement distributions with good agreement for a reflection factor magnitude range of 0.004 to 0.999. Comparisons of results using 2, 3, 6, and 18 measurement points showed that the most consistent results are obtained when using at least 6 evenly spaced pressure measurements per half-wavelength. Also, data were acquired with broadband noise added to the discrete frequency noise and impedances were calculated using the MPM and TMM algorithms. The results indicate that the MPM will be superior to the TMM in the presence of significant broadband noise levels associated with mean flow.
NASA Astrophysics Data System (ADS)
Chen, Huayue; Gao, Xinliang; Lu, Quanming; Sun, Jicheng; Wang, Shui
2018-02-01
Nonlinear physical processes related to whistler mode waves are attracting more and more attention for their significant role in reshaping whistler mode spectra in the Earth's magnetosphere. Using a 1-D particle-in-cell simulation model, we have investigated the nonlinear evolution of parallel counter-propagating whistler mode waves excited by anisotropic electrons within the equatorial source region. In our simulations, after the linear phase of whistler mode instability, the strong electrostatic standing structures along the background magnetic field will be formed, resulting from the coupling between excited counter-propagating whistler mode waves. The wave numbers of electrostatic standing structures are about twice those of whistler mode waves generated by anisotropic hot electrons. Moreover, these electrostatic standing structures can further be coupled with either parallel or antiparallel propagating whistler mode waves to excite high-k modes in this plasma system. Compared with excited whistler mode waves, these high-k modes typically have 3 times wave number, same frequency, and about 2 orders of magnitude smaller amplitude. Our study may provide a fresh view on the evolution of whistler mode waves within their equatorial source regions in the Earth's magnetosphere.
Miles, J
1980-04-01
Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.
Copepod Behavior Response in an Internal Wave Apparatus
NASA Astrophysics Data System (ADS)
Webster, D. R.; Jung, S.; Haas, K. A.
2017-11-01
This study is motivated to understand the bio-physical forcing in zooplankton transport in and near internal waves, where high levels of zooplankton densities have been observed in situ. A laboratory-scale internal wave apparatus was designed to create a standing internal wave for various physical arrangements that mimic conditions observed in the field. A theoretical analysis of a standing internal wave inside a two-layer stratification system including non-linear wave effects was conducted to derive the expressions for the independent variables controlling the wave motion. Focusing on a case with a density jump of 1.0 σt, a standing internal wave was generated with a clean interface and minimal mixing across the pycnocline. Spatial and frequency domain measurements of the internal wave were evaluated in the context of the theoretical analysis. Behavioral assays with a mixed population of three marine copepods were conducted in control (stagnant homogeneous fluid), stagnant density jump interface, and internal wave flow configurations. In the internal wave treatment, the copepods showed an acrobatic, orbital-like motion in and around the internal wave region (bounded by the crests and the troughs of the waves). Trajectories of passive, neutrally-buoyant particles in the internal wave flow reveal that they generally oscillate back-and-forth along fixed paths. Thus, we conclude that the looping, orbital trajectories of copepods in the region near the internal wave interface are due to animal behavior rather than passive transport.
On the pressure field of nonlinear standing water waves
NASA Technical Reports Server (NTRS)
Schwartz, L. W.
1980-01-01
The pressure field produced by two dimensional nonlinear time and space periodic standing waves was calculated as a series expansion in the wave height. The high order series was summed by the use of Pade approximants. Calculations included the pressure variation at great depth, which was considered to be a likely cause of microseismic activity, and the pressure distribution on a vertical barrier or breakwater.
Paramecium swimming in capillary tube
NASA Astrophysics Data System (ADS)
Jana, Saikat; Um, Soong Ho; Jung, Sunghwan
2012-04-01
Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.
Students dance longitudinal standing waves
NASA Astrophysics Data System (ADS)
Ruiz, Michael J.
2017-05-01
A demonstration is presented that involves students dancing longitudinal standing waves. The resulting kinaesthetic experience and visualization both contribute towards an understanding of the natural modes of vibrations in open and closed pipes. A video of this fun classroom activity is provided (http://mjtruiz.com/ped/dance/).
Dolcetti, Giulio; Krynkin, Anton; Horoshenkov, Kirill V
2017-12-01
Measurements of the Doppler spectra of airborne ultrasound backscattered by the rough dynamic surface of a shallow turbulent flow are presented in this paper. The interpretation of the observed acoustic signal behavior is provided by means of a Monte Carlo simulation based on the Kirchhoff approximation and on a linear random-phase model of the water surface elevation. Results suggest that the main scattering mechanism is from capillary waves with small amplitude. Waves that travel at the same velocity of the flow, as well as dispersive waves that travel at a range of velocities, are detected, studied, and used in the acoustic Doppler analysis. The dispersive surface waves are not observed when the flow velocity is slow compared to their characteristic velocity. Relatively wide peaks in the experimental spectra also suggest the existence of nonlinear modulations of the short capillary waves, or their propagation in a wide range of directions. The variability of the Doppler spectra with the conditions of the flow can affect the accuracy of the flow velocity estimations based on backscattering Doppler. A set of different methods to estimate this velocity accurately and remotely at different ranges of flow conditions is suggested.
Water Surface Currents, Short Gravity-Capillary Waves and Radar Backscatter
NASA Technical Reports Server (NTRS)
Atakturk, Serhad S.; Katsaros, Kristina B.
1993-01-01
Despite their importance for air-sea interaction and microwave remote sensing of the ocean surface, intrinsic properties of short gravity-capillary waves are not well established. This is largely due to water surface currents and their effects on the direct measurements of wave parameters conducted at a fixed point. Frequencies of small scale waves propagating on a surface which itself is in motion, are subject to Doppler shifts. Hence, the high frequency tail of the wave spectra obtained from such temporal observations is smeared. Conversion of this smeared measured-frequency spectra to intrinsic-frequency (or wavenumber) spectra requires corrections for the Doppler shifts. Such attempts in the past have not been very successful in particular when field data were used. This becomes evident if the amplitude modulation of short waves by underlying long waves is considered. Microwave radar studies show that the amplitude of a short wave component attains its maximum value near the crests and its minimum in the troughs of the long waves. Doppler-shifted wave data yield similar results but much larger in modulation magnitude, as expected. In general, Doppler shift corrections reduce the modulation magnitude. Overcorrection may result in a negligible modulation or even in a strong modulation with the maximum amplitude in the wave troughs. The latter situation is clearly contradictory to our visual observations as well as the radar results and imply that the advection by currents is overestimated. In this study, a differential-advection approach is used in which small scale waves are advected by the currents evaluated not at the free surface, but at a depth proportional to their wavelengths. Applicability of this approach is verified by the excellent agreement in phase and magnitude of short-wave modulation between results based on radar and on wave-gauge measurements conducted on a lake.
Correlation of wave propagation modes in helicon plasma with source tube lengths
NASA Astrophysics Data System (ADS)
Niu, Chen; Zhao, Gao; Wang, Yu; Liu, Zhongwei; Chen, Qiang
2017-01-01
Helicon wave plasma demonstrates lots of advantages in high coupling efficiency, high density, and low magnetic field. However, the helicon wave plasma still meets challenges in applications of material deposition, surface treatment, and electromagnetic thrusters owing to the changeable coupled efficiency and the remarkable non-uniformity. In this paper, we explore the wave propagation characterization by the B-dot probe in various lengths of source tubes. We find that in a long source tube the standing wave appears under the antenna zone, while the traveling wave is formed out of the antenna region. The apparent modulation of wave amplitude is formed in upstream rather than in downstream of the antenna. In a short source tube, however, there is only standing wave propagation.
Long waves in parallel flow in Hele-Shaw cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeybek, M.; Yortsos, Y.C.
1991-09-09
The evolution of fluid interfaces in parallel flow in Hele-Shaw cells is studied theoretically and experimentally in the limit of large capillary number. It is shown that such interfaces support wave motion, the amplitude of which for long waves is governed by a set of Korteweg--de Vries and Airy equations. Experiments conducted in a long Hele-Shaw cell validate the theory in the symmetric case.
Method for coating ultrafine particles, system for coating ultrafine particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie; Liu, Yung
The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particlesmore » with a coating moiety.« less
Li, Jie; Liu, Yung Y
2015-01-20
The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanoi, K.; Yokotani, Y.; Cui, X.
2015-12-21
We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of themore » standing spin wave is an important advantage for the high power operation of the spin-wave device.« less
Heterogeneous Nucleation Induced by Capillary Wave During Acoustic Levitation
NASA Astrophysics Data System (ADS)
Lü, Yong-Jun; Xie, Wen-Jun; Wei, Bing-Bo
2003-08-01
The rapid solidification of acoustically levitated drops of Pb-61.9 wt.%Sn eutectic alloy is accomplished. A surface morphology of spreading ripples is observed on a sample undercooled by 15 K. The ripples originate from the centre of sample surface, which is also the heterogeneous nucleation site for eutectic growth. The Faraday instability excited by forced surface vibration has brought about these ripples. They are retained in the solidified sample if the sound pressure level exceeds the threshold pressure required for the appearance of capillary waves. Theoretical calculations indicate that both the pressure and displacement maxima exist in the central part of a levitated drop. The pressure near the sample centre can promote heterogeneous nucleation, which is in agreement qualitatively with the experimental results.
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
NASA Astrophysics Data System (ADS)
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 < 2 (1 + αγ) θ < αβγ; the existence and stability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and γ2 ε > 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 <γ2 ε < 1; the existence and instability of an upside down standing pulse solution if 0 < (1 + αγ) θ < αβγ < 2 (1 + αγ) θ. To establish the bifurcation for the scalar equation, we will study the existence and stability of a traveling wave front as well as the existence and instability of a standing pulse solution if 0 < 2 θ < β; the existence and stability of two standing wave fronts if 2 θ = β; the existence and stability of a traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 < θ < β < 2 θ. By the way, we will also study the existence and stability of a traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 < 2 θ < β. To achieve the main goals, we will make complete use of the special structures of the model equations and we will construct Evans functions and apply them to study the eigenvalues and eigenfunctions of several eigenvalue problems associated with several linear differential operators. It turns out that a complex number λ0 is an eigenvalue of the linear differential operator, if and only if λ0 is a zero of the Evans function. The stability, instability and bifurcations of the nonlinear waves follow from the zeros of the Evans functions. A very important motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
Sukmana, Irza
2012-01-01
The guidance of endothelial cell organization into a capillary network has been a long-standing challenge in tissue engineering. Some research efforts have been made to develop methods to promote capillary networks inside engineered tissue constructs. Capillary and vascular networks that would mimic blood microvessel function can be used to subsequently facilitate oxygen and nutrient transfer as well as waste removal. Vascularization of engineering tissue construct is one of the most favorable strategies to overpass nutrient and oxygen supply limitation, which is often the major hurdle in developing thick and complex tissue and artificial organ. This paper addresses recent advances and future challenges in developing three-dimensional culture systems to promote tissue construct vascularization allowing mimicking blood microvessel development and function encountered in vivo. Bioreactors systems that have been used to create fully vascularized functional tissue constructs will also be outlined. PMID:22623881
ERIC Educational Resources Information Center
Tsutsumanova, Gichka; Russev, Stoyan
2013-01-01
A simple experiment demonstrating the excitation of a standing wave in a metal string is presented here. Several tasks using the set-up are considered, which help the students to better understand the standing waves, the interaction between electric current and magnetic field and the resonance phenomena. This can serve also as a good lecture…
Intense laser pulse propagation in ionizing gases
NASA Astrophysics Data System (ADS)
Bian, Zhigang
2003-10-01
There have been considerable technological advances in the development of high intensity, short pulse lasers. However, high intensity laser pulses are subject to various laser-plasma instabilities. In this thesis, a theory is developed to study the scattering instability that occurs when a laser pulse propagates through and ionizes a gas. The instability is due to the intensity dependence of the ionization rate, which leads to a transversely structured free electron density. The instability is convective in the frame of laser pulse, but can have a relatively short growth length scaling as Lg˜k0/k2p where k0 is the laser wave number, k2p=w2p/c 2 and op is the plasma frequency. The most unstable perturbations correspond to a scattering angle for which the transverse wave number is around the plasma wave number, k p. The scattered light is frequency upshifted. The comparison between simple analytic theory and numerical simulation shows good agreement. Instabilities can drastically change the shape of the laser pulse and reduce the propagation distance of the laser pulse. Therefore, we change the propagation conditions and reduce the laser-plasma interaction possibilities in applications which require an interaction length well in excess of the Rayleigh length of the laser beam. One of the methods is to use a capillary to propagate the laser pulse. We studied the propagation of short pulses in a glass capillary. The propagation is simulated using the code WAKE, which has been modified to treat the case in which the simulation boundary is the wall of a capillary. Parameters that were examined include transmission efficiency of the waveguides as a function of gas pressure, laser intensity, and waveguide length, which is up to 40 Rayleigh lengths. The transmission efficiency decreases with waveguide length due to energy loss through the side-walls of the capillary. The loss increases with gas pressure due to ionization of the gas and scattering of the radiation. The intensity on the inner wall of the capillary is monitored to assure realistic simulations, consistent with optical breakdown of the waveguide material. Generally speaking the intensity on the wall increases with gas pressure due to the scattering of the lowest order capillary mode. Finally, the high order harmonic generation (HHG) in a capillary is investigated. The phase matching condition is studied to increase the conversion efficiency for high order harmonics generation. The phase matching occurs as a balance of the dispersion of the neutral gas, plasma and the waveguide.
Enhancing Variable Friction Tactile Display Using an Ultrasonic Travelling Wave.
Ghenna, Sofiane; Vezzoli, Eric; Giraud-Audine, Christophe; Giraud, Frederic; Amberg, Michel; Lemaire-Semail, Betty
2017-01-01
In Variable Friction Tactile Displays, an ultrasonic standing wave can be used to reduce the friction coefficient between a user's finger sliding and a vibrating surface. However, by principle, the effect is limited by a saturation due to the contact mechanics, and very low friction levels require very high vibration amplitudes. Besides, to be effective, the user's finger has to move. We present a device which uses a travelling wave rather than a standing wave. We present a control that allows to realize such a travelling wave in a robust way, and thus can be implemented on various plane surfaces. We show experimentally that the force produced by the travelling wave has two superimposed contributions. The first one is equal to the friction reduction produced by a standing of the same vibration amplitude. The second produces a driving force in the opposite direction of the travelling wave. As a result, the modulation range of the tangential force on the finger can be extended to zero and even negative values. Moreover, the effect is dependant on the relative direction of exploration with regards to the travelling wave, which is perceivable and confirmed by a psycho-physical study.
NASA Astrophysics Data System (ADS)
Vianna, S. D. B.; Lin, F. Y.; Plum, M. A.; Duran, H.; Steffen, W.
2017-05-01
Using non-invasive, marker-free resonance enhanced dynamic light scattering, the dynamics of capillary waves on ultrathin polystyrene films' coupling to the viscoelastic and mechanical properties have been studied. The dynamics of ultrathin polymer films is still debated. In particular the question of what influence either the solid substrate and/or the fluid-gas interface has on the dynamics and the mechanical properties of films of glass forming liquids as polymers is in the focus of the present research. As a consequence, e.g., viscosity close to interfaces and thus the average viscosity of very thin films are prone to change. This study is focused on atactic, non-entangled polystyrene thin films on the gold surface. A slow dynamic mode was observed with Vogel-Fulcher-Tammann temperature dependence, slowing down with decreasing film thickness. We tentatively attribute this relaxation mode to overdamped capillary waves because of its temperature dependence and the dispersion with a wave vector which was found. No signs of a more mobile layer at the air/polymer interface or of a "dead layer" at the solid/polymer interface were found. Therefore we investigated the influence of an artificially created dead layer on the capillary wave dynamics by introducing covalently bound polystyrene polymer brushes as anchors. The dynamics was slowed down to a degree more than expected from theoretical work on the increase of density close to the solid liquid interface—instead of a "dead layer" of 2 nm, the interaction seems to extend more than 10 nm into the polymer.
NASA Astrophysics Data System (ADS)
Indekeu, Joseph O.; Van Thu, Nguyen; Lin, Chang-You; Phat, Tran Huu
2018-04-01
The localized low-energy interfacial excitations, or interfacial Nambu-Goldstone modes, of phase-segregated binary mixtures of Bose-Einstein condensates are investigated analytically. To this end a double-parabola approximation (DPA) is performed on the Lagrangian density in Gross-Pitaevskii theory for a system in a uniform potential. This DPA entails a model in which analytic expressions are obtained for the excitations underlying capillary waves or ripplons for arbitrary strength K (>1 ) of the phase segregation. The dispersion relation ω (k ) ∝k3 /2 is derived directly from the Bogoliubov-de Gennes equations in the limit that the wavelength 2 π /k is much larger than the interface width. The proportionality constant in the dispersion relation provides the static interfacial tension. A correction term in ω (k ) of order k5 /2 is calculated analytically within the DPA model. The combined result is tested against numerical diagonalization of the exact Bogoliubov-de Gennes equations. Satisfactory agreement is obtained in the range of physically relevant wavelengths. The ripplon dispersion relation is relevant to state-of-the-art experiments using (quasi)uniform optical-box traps. Furthermore, within the DPA model explicit expressions are obtained for the structural deformation of the interface due to the passing of the capillary wave. It is found that the amplitude of the wave is enhanced by an amount that is quadratic in the ratio of the phase velocity ω /k to the sound velocity c . For generic mixtures consisting of condensates with unequal healing lengths, an additional modulation is predicted of the common value of the condensate densities at the interface.
Numerical Calculation of Gravity-Capillary Interfacial Waves of Finite Amplitude,
1980-02-26
corresponding to n=2. The erical scheme appears to be more efficient than the numerical work of Schwartz and Vanden-Broeck shows Padd table method since the...waves are studied. A generalization of Wilton’s ripples for interfacial waves is presented. I. INTRODUCTION that all variables become dimensionless. We...then recast these series irrotational. Thus, we define stream functions # and as Padd apDroxlmants. High accuracy solutions were 02 and potential
Faraday Wave Turbulence on a Spherical Liquid Shell
NASA Technical Reports Server (NTRS)
Holt, R. Glynn; Trinh, Eugene H.
1996-01-01
Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.
Damping of short gravity-capillary waves due to oil derivatives film on the water surface
NASA Astrophysics Data System (ADS)
Sergievskaya, Irina; Ermakov, Stanislav; Lazareva, Tatyana
2016-10-01
In this paper new results of laboratory studies of damping of gravity-capillary waves on the water surface covered by kerosene are presented and compared with our previous analysis of characteristics of crude oil and diesel fuel films. Investigations of kerosene films were carried out in a wide range values of film thicknesses (from some hundreds millimetres to a few millimetres) and in a wide range of surface wave frequencies (from 10 to 27 Hz). The selected frequency range corresponds to the operating wavelengths of microwave, X- to Ka-band radars typically used for the ocean remote sensing. The studied range of film thickness covers typical thicknesses of routine spills in the ocean. It is obtained that characteristics of waves, measured in the presence of oil derivatives films differ from those for crude oil films, in particular, because the volume viscosity of oil derivatives and crude oil is strongly different. To retrieve parameters of kerosene films from the experimental data the surface wave damping was analyzed theoretically in the frame of a model of two-layer fluid. The films are assumed to be soluble, so the elasticity on the upper and lower boundaries is considered as a function of wave frequency. Physical parameters of oil derivative films were estimated when tuning the film parameters to fit theory and experiment. Comparison between wave damping due to crude oil, kerosene and diesel fuel films have shown some capabilities of distinguishing of oil films from remote sensing of short surface waves.
Global ERS 1 and 2 and NSCAT observations: Upwind/crosswind and upwind/downwind measurements
NASA Astrophysics Data System (ADS)
Quilfen, Y.; Chapron, B.; Bentamy, A.; Gourrion, J.; El Fouhaily, T.; Vandemark, D.
1999-05-01
This paper presents an analysis of the wind speed dependence of upwind/downwind asymmetry (UDA) and upwind-crosswind anisotropy (UCA) as derived from global C band VV-polarized ERS 1 and 2 and Ku band VV- and HH-polarized NASA scatterometer (NSCAT) data. Interpretation of the results relies on identifying relationships between the differing frequencies and incidence angles that are consistent with Bragg scattering theory from gravity-capillary waves. It is shown that globally derived parameters characterizing UDA and UCA hold information on the wind dependence of short gravity and gravity-capillary wave growth and dissipation. In particular, the UCA behavior is found quadratic for both the C and Ku band, peaking at moderate wind speeds. In addition, the dual-frequency results appear to map out the expected, more rapid adjustment of centimeter-scale (Ku band) waves to the wind direction at light winds. However, as wind increases, the directionality associated with these shorter waves saturates at a lower speed than for the slightly longer waves inferred at C band. It is suggested that this observed phenomenon may be related to increasing wave-drift interactions that can potentially inhibit short-scale surface wave growth along the wind direction. Concerning UDA properties, our present analysis reveals that the NSCAT and ERS 1 and 2 scatterometers give quite different results. Our preliminary interpretation is that C band measurements may be easier to interpret using composite Bragg scattering theory and that upwind/downwind contrasts are mainly supported by short gravity waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, N., E-mail: rossn2282@gmail.com; Kostylev, M., E-mail: mikhail.kostylev@uwa.edu.au; Stamps, R. L.
2014-09-21
Standing spin wave mode frequencies and linewidths in partially disordered perpendicular magnetized arrays of sub-micron Permalloy discs are measured using broadband ferromagnetic resonance and compared to analytical results from a single, isolated disc. The measured mode structure qualitatively reproduces the structure expected from the theory. Fitted demagnetizing parameters decrease with increasing array disorder. The frequency difference between the first and second radial modes is found to be higher in the measured array systems than predicted by theory for an isolated disc. The relative frequencies between successive spin wave modes are unaffected by reduction of the long-range ordering of discs inmore » the array. An increase in standing spin wave resonance linewidth at low applied magnetic fields is observed and grows more severe with increased array disorder.« less
Overdetermined shooting methods for computing standing water waves with spectral accuracy
NASA Astrophysics Data System (ADS)
Wilkening, Jon; Yu, Jia
2012-01-01
A high-performance shooting algorithm is developed to compute time-periodic solutions of the free-surface Euler equations with spectral accuracy in double and quadruple precision. The method is used to study resonance and its effect on standing water waves. We identify new nucleation mechanisms in which isolated large-amplitude solutions, and closed loops of such solutions, suddenly exist for depths below a critical threshold. We also study degenerate and secondary bifurcations related to Wilton's ripples in the traveling case, and explore the breakdown of self-similarity at the crests of extreme standing waves. In shallow water, we find that standing waves take the form of counter-propagating solitary waves that repeatedly collide quasi-elastically. In deep water with surface tension, we find that standing waves resemble counter-propagating depression waves. We also discuss the existence and non-uniqueness of solutions, and smooth versus erratic dependence of Fourier modes on wave amplitude and fluid depth. In the numerical method, robustness is achieved by posing the problem as an overdetermined nonlinear system and using either adjoint-based minimization techniques or a quadratically convergent trust-region method to minimize the objective function. Efficiency is achieved in the trust-region approach by parallelizing the Jacobian computation, so the setup cost of computing the Dirichlet-to-Neumann operator in the variational equation is not repeated for each column. Updates of the Jacobian are also delayed until the previous Jacobian ceases to be useful. Accuracy is maintained using spectral collocation with optional mesh refinement in space, a high-order Runge-Kutta or spectral deferred correction method in time and quadruple precision for improved navigation of delicate regions of parameter space as well as validation of double-precision results. Implementation issues for transferring much of the computation to a graphic processing units are briefly discussed, and the performance of the algorithm is tested for a number of hardware configurations.
NASA Technical Reports Server (NTRS)
Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.
1977-01-01
The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.
Standing Waves in a Nonuniform Medium
ERIC Educational Resources Information Center
Gluck, Paul
2011-01-01
A recent note in this journal presented a demonstration of standing waves along a cord consisting of two parts having different material densities, showing different sized wavelengths in each part. A generalization of that experiment to a continuously varying linear mass density is to vibrate a strip of material with gradually varying width (mass…
Parallelization of elliptic solver for solving 1D Boussinesq model
NASA Astrophysics Data System (ADS)
Tarwidi, D.; Adytia, D.
2018-03-01
In this paper, a parallel implementation of an elliptic solver in solving 1D Boussinesq model is presented. Numerical solution of Boussinesq model is obtained by implementing a staggered grid scheme to continuity, momentum, and elliptic equation of Boussinesq model. Tridiagonal system emerging from numerical scheme of elliptic equation is solved by cyclic reduction algorithm. The parallel implementation of cyclic reduction is executed on multicore processors with shared memory architectures using OpenMP. To measure the performance of parallel program, large number of grids is varied from 28 to 214. Two test cases of numerical experiment, i.e. propagation of solitary and standing wave, are proposed to evaluate the parallel program. The numerical results are verified with analytical solution of solitary and standing wave. The best speedup of solitary and standing wave test cases is about 2.07 with 214 of grids and 1.86 with 213 of grids, respectively, which are executed by using 8 threads. Moreover, the best efficiency of parallel program is 76.2% and 73.5% for solitary and standing wave test cases, respectively.
Principles of Nonlinear Optics
1989-11-01
modelled by a ring cavity. The nonlinear meterial is between mirrors I and 2. E., E and I r E denote the incident, reflected and transmitted electric...Pasta and S. Ulam, "Studies of Nonlinear Problems I," Los Alamos Rep. LA 1940, 1955. 10. L. F. McGoldrick, "Resonant Interactions among Capillary- gravity ...34 Proc. IEEE, vol. 67, pp. 1442-1443, 1979. 23. P. P. Banerjee, A. Korpel and K. E. Lonngren," Self-refraction of Nonlinear Capillary- gravity Waves
NASA Astrophysics Data System (ADS)
Geng, Xiaolong; Heiss, James W.; Michael, Holly A.; Boufadel, Michel C.
2017-12-01
A combined field and numerical study was conducted to investigate dynamics of subsurface flow and moisture response to waves in the swash zone of a sandy beach located on Cape Henlopen, DE. A density-dependent variably saturated flow model MARUN was used to simulate subsurface flow beneath the swash zone. Values of hydraulic conductivity (K) and characteristic pore size (α, a capillary fringe property) were varied to evaluate their effects on subsurface flow and moisture dynamics in response to swash motions in beach aquifers. The site-specific modeling results were validated against spatiotemporal measurements of moisture and pore pressure in the beach. Sensitivity analyses indicated that the hydraulic conductivity and capillary fringe thickness of the beach greatly influenced groundwater flow pathways and associated transit times in the swash zone. A higher value of K enhanced swash-induced seawater infiltration into the beach, thereby resulting in a faster expansion of a wedge of high moisture content induced by swash cycles, and a flatter water table mound beneath the swash zone. In contrast, a thicker capillary fringe retained higher moisture content near the beach surface, and thus, significantly reduced the available pore space for infiltration of seawater. This attenuated wave effects on pore water flow in the unsaturated zone of the beach. Also, a thicker capillary fringe enhanced horizontal flow driven by the larger-scale hydraulic gradient caused by tides.
1994-09-30
STS068-236-044 (30 September-11 October 1994) --- These internal waves in the Andaman Sea, west of Burma, were photographed from 115 nautical miles above Earth by the crew of the Space Shuttle Endeavour during the Space Radar Laboratory 2 (SRL-2) mission. The internal waves smooth out some of the capillary waves at the surface in bands and travel along the density discontinuity at the bottom of the mixed layer depth. There is little evidence of the internal waves at the surface. They are visible in the Space Shuttle photography because of sunglint, which reflects off the water.
Capillary-tube-based extension of thermoacoustic theory for a random medium
NASA Astrophysics Data System (ADS)
Roh, Heui-Seol; Raspet, Richard; Bass, Henry E.
2005-09-01
Thermoacoustic theory for a single capillary tube is extended to random bulk medium on the basis of capillary tubes. The characteristics of the porous stack inside the resonator such as the tortuosity, dynamic shape factor, and porosity are introduced for the extension of wave equation by following Attenborough's approach. Separation of the dynamic shape factor for the viscous and thermal effect is adopted and scaling using the dynamic shape factor and tortuosity factor is demonstrated. The theoretical and experimental comparison of thermoviscous functions in reticulated vitreous carbon (RVC) and aluminum foam shows reasonable agreement. The extension is useful for investigations of the properties of a stack with arbitrary shapes of non-parallel pores.
On the Physics of Fizziness: How Bubble Bursting Controls Droplets Ejection
NASA Astrophysics Data System (ADS)
Seon, Thomas; Ghabache, Elisabeth; Antkowiak, Arnaud; Josserand, Christophe
2014-11-01
Either in a champagne glass or at the oceanic scales, the tiny bubbles rising at the surface burst in ejecting myriads of droplets. Focusing on the bubble bursting jet, prelude for these aerosols, we propose a simple scaling for the jet velocity, we unravel experimentally the intricate roles of bubble shape, capillary waves and liquid properties, and we demonstrate that droplets ejection can be tuned by changing the liquid properties. In particular, as capillary waves are shown to always evolve into a self-similar collapsing cavity, faster and smaller droplets can be produced by sheltering this collapse from remnant ripples using damping action of viscosity. These results pave the road to the characterization and control of the bursting bubble aerosols. Applications to champagne aroma diffusion will be discussed.
Star-shaped oscillations of Leidenfrost drops
NASA Astrophysics Data System (ADS)
Ma, Xiaolei; Liétor-Santos, Juan-José; Burton, Justin C.
2017-03-01
We experimentally investigate the self-sustained, star-shaped oscillations of Leidenfrost drops. The drops levitate on a cushion of evaporated vapor over a heated, curved surface. We observe modes with n =2 -13 lobes around the drop periphery. We find that the wavelength of the oscillations depends only on the capillary length of the liquid and is independent of the drop radius and substrate temperature. However, the number of observed modes depends sensitively on the liquid viscosity. The dominant frequency of pressure variations in the vapor layer is approximately twice the drop oscillation frequency, consistent with a parametric forcing mechanism. Our results show that the star-shaped oscillations are driven by capillary waves of a characteristic wavelength beneath the drop and that the waves are generated by a large shear stress at the liquid-vapor interface.
Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.
Koyama, Daisuke; Kotera, Hironori; Kitazawa, Natsuko; Yoshida, Kenji; Nakamura, Kentaro; Watanabe, Yoshiaki
2011-04-01
Observation techniques for measuring the small vibration of a single microcapsule of tens of nanometers in an acoustic standing wave field are discussed. First, simultaneous optical observation of a microbubble vibration by two methods is investigated, using a high-speed video camera, which permits two-dimensional observation of the bubble vibration, and a laser Doppler vibrometer (LDV), which can observe small bubble vibration amplitudes at high frequency. Bubbles of tens of micrometers size were trapped at the antinode of an acoustic standing wave generated in an observational cell. Bubble vibration at 27 kHz could be observed and the experimental results for the two methods showed good agreement. The radial vibration of microcapsules with a hard plastic shell was observed using the LDV and the measurement of the capsule vibration with radial oscillation amplitude of tens of nanometers was successful. The acoustic radiation force acting on microcapsules in the acoustic standing wave was measured from the trapped position of the standing wave and the radial oscillation amplitude of the capsules was estimated from the theoretical equation of the acoustic radiation force, giving results in good agreement with the LDV measurements. The radial oscillation amplitude of a capsule was found to be proportional to the amplitude of the driving sound pressure. A larger expansion ratio was observed for capsules closer to the resonance condition under the same driving sound pressure and frequency. © 2011 IEEE
Simulation studies on the standing and traveling wave thermoacoustic prime movers
NASA Astrophysics Data System (ADS)
Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.; Kasthurirengan, S.; Behera, Upendra
2014-01-01
Thermoacoustic systems have been a focus of recent research due to its structural simplicity, high reliability due to absence of moving parts, and can be driven by low grade energy such as fuel, gas, solar energy, waste heat etc. There has been extensive research on both standing wave and traveling wave systems. Towards the development of such systems, simulations can be carried out by several methods such as (a) solving the energy equation, (b) enthalpy flow model, (c) DeltaEC, a free software available from LANL, USA (d) Computational Fluid Dynamics (CFD) etc. We present here the simulation studies of standing wave and traveling wave thermoacoustic prime movers using CFD and DeltaEC. The CFD analysis is carried out using Fluent 6.3.26, incorporating the necessary boundary conditions with different working fluids at different operating pressures. The results obtained by CFD are compared with those obtained using DeltaEC. Also, the CFD simulation of the thermoacoustically driven refrigerator is presented.
Modeling of Wave Spectrum and Wave Breaking Statistics Based on Balance Equation
NASA Astrophysics Data System (ADS)
Irisov, V.
2012-12-01
Surface roughness and foam coverage are the parameters determining microwave emissivity of sea surface in a wide range of wind. Existing empirical wave spectra are not associated with wave breaking statistics although physically they are closely related. We propose a model of sea surface based on the balance of three terms: wind input, dissipation, and nonlinear wave-wave interaction. It provides an insight on wave generation, interaction, and dissipation - very important parameters for understanding of wave development under changing oceanic and atmospheric conditions. The wind input term is the best known among all three. For our analysis we assume a wind input term as it was proposed by Plant [1982] and consider modification necessary to do to account for proper interaction of long fast waves with wind. For long gravity waves (longer than 15-30 cm) the dissipation term can be related to the wave breaking with whitecaps, as it was shown by Kudryavtsev et al. [2003], so we assume the cubic dependence of dissipation term on wind. It implies certain limitations on the spectrum shape. The most difficult is to estimate the term describing nonlinear wave-wave interaction. Hasselmann [1962] and Zakharov [1999] developed theory of 4-wave interaction, but the resulting equation requires at least 3-fold integration over wavenumbers at each time step of integration of balance equation, which makes it difficult for direct numerical modeling. It is desirable to use an approximation of wave-wave interaction term, which preserves wave action, energy, and momentum, and can be easily estimated during time integration of balance equation. Zakharov and Pushkarev [1999] proposed the diffusion approximation of the wave interaction term and showed that it can be used for estimate of wave spectrum. We believe their assumption that wave-wave interaction is the dominant factor in forming the wave spectrum does not agree with the observations made by Hwang and Sletten [2008]. Finally we consider modifications of the model equation, which can be done to describe gravity-capillary and capillary waves. An obvious correction is to add viscous dissipation. A little less obvious is a transition from 4-wave to 3-wave interaction. The model allows one to include easily generation of parasitic capillary waves as it was proposed by Kudryavtsev et al. [2003]. A modification of dissipation term can explain an "overshoot" phenomenon observed in JONSWAP spectrum. These examples demonstrate that the proposed model is quite flexible and can be used to account for various physical phenomena. The resulting balance equation is easy to integrate using a personal computer and necessity of its numerical solution is paid by the model flexibility and better physical background compared with empirical spectra. References Hasselmann, K., J. Fluid Mech., 12, pp.481-500, 1962. Hwang, P., and M. Sletten, J. Geophys. Res., 113, doi:10.1029/2007JC004277, 2008. Kudryavtsev, V., et al., J. Geophys. Res., 108 (C3), doi:10.1029/2001JC001003, 2003. Plant, W. J., J. Geophys. Res., vol. 87, pp. 1961-1967, 1982. Zakharov, V., and A. Pushkarev, Nonlinear Processes in Geophysics, 6, pp.1-10, 1999. Zakharov, V., Eur. J. Mech. B/Fluids, 18, pp.327-344, 1999.
NASA Astrophysics Data System (ADS)
Ibach, Harald
2014-12-01
The paper reports on recent considerable improvements in electron energy loss spectroscopy (EELS) of spin waves in ultra-thin films. Spin wave spectra with 4 meV resolution are shown. The high energy resolution enables the observation of standing modes in ultra-thin films in the wave vector range of 0.15 Å- 1 < q|| < 0.3 Å- 1. In this range, Landau damping is comparatively small and standing spin wave modes are well-defined Lorentzians for which the adiabatic approximation is well suited, an approximation which was rightly dismissed by Mills and collaborators for spin waves near the Brillouin zone boundary. With the help of published exchange coupling constants, the Heisenberg model, and a simple model for the spectral response function, experimental spectra for Co-films on Cu(100) as well as for Co films capped with further copper layers are successfully simulated. It is shown that, depending on the wave vector and film thickness, the most prominent contribution to the spin wave spectrum may come from the first standing mode, not from the so-called surface mode. In general, the peak position of a low-resolution spin wave spectrum does not correspond to a single mode. A discussion of spin waves based on the "dispersion" of the peak positions in low resolution spectra is therefore subject to errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, B.; Urazuka, Y.; Chen, H.
2014-05-07
We report on numerical analysis on self-oscillation of standing spin wave excited in a nanostructured active ring resonator, consists of a ferromagnetic nanowire with perpendicular anisotropy. The confined resonant modes are along the nanowire length. A positive feedback with proportional-integral-derivative gain control was adopted in the active ring. Stable excitation of the 1st order standing spin wave has been demonstrated with micromagnetic simulations, taking into account the thermal effect with a random field model. The stationary standing spin wave with a pre-determined set variable of precession amplitude was attained within 20 ns by optimizing the proportional-integral-derivative gain control parameters. The resultmore » indicates that a monochromatic oscillation frequency f{sub osc} is extracted from the initial thermal fluctuation state and selectively amplified with the positive feedback loop. The obtained f{sub osc} value of 5.22 GHz practically agrees with the theoretical prediction from dispersion relation of the magneto static forward volume wave. It was also confirmed that the f{sub osc} change due to the temperature rise can be compensated with an external perpendicular bias field H{sub b}. The observed quick compensation time with an order of nano second suggests the fast operation speed in the practical device application.« less
Yan, Na; Zhou, Lei; Zhu, Zaifang; Zhang, Huige; Zhou, Ximin; Chen, Xingguo
2009-05-15
In this work, a novel method combining constant pressure-assisted head-column field-amplified sample injection (PA-HC-FASI) with in-capillary derivatization was developed for enhancing the sensitivity of capillary electrophoresis. PA-HC-FASI uses an appropriate positive pressure to counterbalance the electroosmotic flow in the capillary column during electrokinetic injection, while taking advantage of the field amplification in the sample matrix and the water of the "head column". Accordingly, the analytes were stacked at the stationary boundary between water and background electrolyte. After 600s PA-HC-FASI, 4-fluoro-7-nitro-2,1,3-benzoxadiazole as derivatization reagent was injected, followed by an electrokinetic step (5kV, 45s) to enhance the mixing efficiency of analytes and reagent plugs. Standing a specified time of 10min for derivatization reaction under 35 degrees C, then the capillary temperature was cooled to 25 degrees C and the derivatives were immediately separated and determined under 25 degrees C. By investigating the variables of the presented approach in detail, on-line preconcentration, derivatization and separation could be automatically operated in one run and required no modification of current CE commercial instrument. Moreover, the sensitivity enhancement factor of 520 and 800 together with the detection limits of 16.32 and 6.34pg/mL was achieved for model compounds: glufosinate and aminomethylphosphonic acid, demonstrating the high detection sensitivity of the presented method.
Observation of organ-pipe acoustic excitations in supported thin films
NASA Astrophysics Data System (ADS)
Zhang, X.; Sooryakumar, R.; Every, A. G.; Manghnani, M. H.
2001-08-01
Brillouin light scattering from supported silicon oxynitride films reveal an extended series of acoustic excitations occurring at regular frequency intervals when the mode wave vector is perpendicular to the film surface. These periodic peaks are identified as distinct standing wave excitations that, similar to harmonics of an open-ended organ pipe, occur due to the boundary conditions imposed by the free surface and substrate-film interface. The surface ripple and volume elasto-optic scattering mechanisms contribute to the scattering cross sections and lead to dramatic interference effects at low frequencies where the surface corrugations play a dominant role. The transformation of these standing wave excitations to modes with finite in-plane wave vectors is also investigated. The results are discussed in the framework of a Green's-function formalism that reproduces the experimental features and illustrate the importance of the standing modes in evaluating the longitudinal elastic properties of the films.
Secondary Bifurcation and Change of Type for Three Dimensional Standing Waves in Shallow Water.
1986-02-01
field of standing K-P waves. A set of two non-interacting (to first order) solutions of the K-P equation ( Kadomtsev - Petviashvili 1970). The K-P equation ...P equation was first derived by Kadomtsev & Petviashvili (1970) in their study of the stability of solitary waves to transverse perturbations. A...Scientists, Springer-Verlag 6. B.A. Dubrovin (1981), "Theta Functions and Non-linear Equations ", Russian Mat. Surveys, 36, 11-92 7 B.B. Kadomtsev
The Wave Principle Of The Distribution Of Substance In Solar System
NASA Astrophysics Data System (ADS)
Smirnov, V.
The opinion about the wave nature of substanceS distribution in Solar system comes out of fundamental book of J.Kepler "Welt Harmonik" . In this book by J.Kepler the musical proportions are united with geometrical means of building Plato's in- scribed and described figures. The definition of the planetsS orbits according to the constructed SPlatoS figuresT is geometrically possible in case of existence of com- & cedil;mon measure for these geometrical constructions. Proportions, received by J.Kepler, are possible in the case of formations of standing waves in the space of Solar system, when the place of the formation of planets conforms the main surfaces of standing waves having as the source the central luminary of Solar system. Similarly in experiments of Chladni, during the formation of standing wave on the planes of fluctuating plate scattered along its particles are collecting together, getting from points which fluctuate with maximal amplitude, to the points, the amplitude of fluctuations of which is equal to zero, filling in the main lines. (On space this will be the "main surfaces"). If we will consider the Central luminary of the planetS system or their satellites as a source of "gravitational waves" which are reflected from the environment with less density on the borders of system in the period of its initial evolution then the standing wave with crests and nodes in definite points along the direction of its distribution. According to the principle of the unity of the laws of nature, evidently that not only the equation of Schrodinger E., but also pattern of superstring with corresponding modes can describe the history of formation and the existence of macrobodies of Solar System. So, if we will consider the central luminary the source of gravitational waves which, reflecting from less densible environment, surrounding scattering substance of Solar system in the period of its initial evolution, then standing gravitational wave with certain points of maximum displacement and main points will form. The error in several cases in mentioned calculations does not exceed 10
Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior
Xiping Wang; Robert J. Ross; Peter Carter
2007-01-01
Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...
ERIC Educational Resources Information Center
Bhathal, Ragbir; Sharma, Manjula D.; Mendez, Alberto
2010-01-01
This paper describes an educational analysis of a first year physics experiment on standing waves for engineering students. The educational analysis is based on the ACELL (Advancing Chemistry by Enhancing Learning in the Laboratory) approach which includes a statement of educational objectives and an analysis of student learning experiences. The…
Melde's experiment with an aquarium aerator. Rich dynamics with inexpensive apparatus
NASA Astrophysics Data System (ADS)
Graham, Mark
1998-05-01
As the basis for understanding music, quantum mechanics, and optical phenomena, standing waves are tremendously important, but instructors with a shoestring budget may not be able to do laboratories for them. However with simple modification of an inexpensive aquarium aerator costing a few dollars, instructors can take that shoestring and make standing waves.
NASA Astrophysics Data System (ADS)
Lonzaga, Joel Barci
Both modulated ultrasonic radiation pressure and oscillating Maxwell stress from a voltage-modulated ring electrode are employed to excite low-frequency capillary modes of a weakly tapered liquid jet issuing from a nozzle. The capillary modes are waves formed at the surface of the liquid jet. The ultrasound is internally applied to the liquid jet waveguide and is cut off at a location resulting in a significantly enhanced oscillating radiation stress near the cutoff location. Alternatively, the thin electrode can generate a highly localized oscillating Maxwell stress on the jet surface. Experimental evidence shows that a spatially unstable mode with positive group velocity (propagating downstream from the excitation source) and a neutral mode with negative group velocity are both excited. Reflection at the nozzle boundary converts the neutral mode into an unstable one that interferes with the original unstable mode. The interference effect is observed downstream from the source using a laser-based optical extinction technique that detects the surface waves while the modulation frequency is scanned. This technique is very sensitive to small-amplitude disturbances. Existing linear, convective stability analyses on liquid jets accounting for the gravitational effect (i.e. varying radius and velocity) appear to be not applicable to non-slender, slow liquid jets considered here where the gravitational effect is found substantial at low flow rates. The multiple-scales method, asymptotic expansion and WKB approximation are used to derive a dispersion relation for the capillary wave similar to one obtained by Rayleigh but accounting for the gravitational effect. These mathematical tools aided by Langer's transformation are also used to derive a uniformly valid approximation for the acoustic wave propagation in a tapered cylindrical waveguide. The acoustic analytical approximation is validated by finite-element calculations. The jet response is modeled using a hybrid of Fourier analysis and the WKB-type analysis as proposed by Lighthill. The former derives the mode response to a highly localized source while the latter governs the mode propagation in a weakly inhomogeneous jet away from the source.
Using Kinect to Measure Wave Spectrum
NASA Astrophysics Data System (ADS)
Fong, J.; Loose, B.; Lovely, A.
2012-12-01
Gas exchange at the air-sea interface is enhanced by aqueous turbulence generated by capillary-gravity waves, affecting the absorption of atmospheric carbon dioxide by the ocean. The mean squared wave slope
Surfactants non-monotonically modify the onset of Faraday waves
NASA Astrophysics Data System (ADS)
Strickland, Stephen; Shearer, Michael; Daniels, Karen
2017-11-01
When a water-filled container is vertically vibrated, subharmonic Faraday waves emerge once the driving from the vibrations exceeds viscous dissipation. In the presence of an insoluble surfactant, a viscous boundary layer forms at the contaminated surface to balance the Marangoni and Boussinesq stresses. For linear gravity-capillary waves in an undriven fluid, the surfactant-induced boundary layer increases the amount of viscous dissipation. In our analysis and experiments, we consider whether similar effects occur for nonlinear Faraday (gravity-capillary) waves. Assuming a finite-depth, infinite-breadth, low-viscosity fluid, we derive an analytic expression for the onset acceleration up to second order in ɛ =√{ 1 / Re } . This expression allows us to include fluid depth and driving frequency as parameters, in addition to the Marangoni and Boussinesq numbers. For millimetric fluid depths and driving frequencies of 30 to 120 Hz, our analysis recovers prior numerical results and agrees with our measurements of NBD-PC surfactant on DI water. In both case, the onset acceleration increases non-monotonically as a function of Marangoni and Boussinesq numbers. For shallower systems, our model predicts that surfactants could decrease the onset acceleration. DMS-0968258.
Underexpanded Screeching Jets From Circular, Rectangular, and Elliptic Nozzles
NASA Technical Reports Server (NTRS)
Panda, J.; Raman, G.; Zaman, K. B. M. Q.
2004-01-01
The screech frequency and amplitude, the shock spacing, the hydrodynamic-acoustic standing wave spacing, and the convective velocity of large organized structures are measured in the nominal Mach number range of 1.1 less than or = Mj less that or = l0.9 for supersonic, underexpanded jets exhausting from a circular, a rectangular and an elliptic nozzle. This provides a carefully measured data set useful in comparing the importance of various physical parameters in the screech generation process. The hydrodynamic-acoustic standing wave is formed between the potential pressure field of large turbulent structures and the acoustic pressure field of the screech sound. It has been demonstrated earlier that in the currently available screech frequency prediction models replacement of the shock spacing by the standing wave spacing provides an exact expression. In view of this newly found evidence, a comparison is made between the average standing wavelength and the average shock spacing. It is found that there exists a small, yet important, difference, which is dependent on the azimuthal screech mode. For example, in the flapping modes of circular, rectangular, and elliptic jets, the standing wavelength is slightly longer than the shock spacing, while for the helical screech mode in a circular jet the opposite is true. This difference accounts for the departure of the existing models from predicting the exact screech frequency. Another important parameter, necessary in screech prediction, is the convective velocity of the large organized structures. It is demonstrated that the presence of the hydrodynamic-acoustic standing wave, even inside the jet shear layer, becomes a significant source of error in the convective velocity data obtained using the conventional methods. However, a new relationship, using the standing wavelength and screech frequency is shown to provide more accurate results.
ERIC Educational Resources Information Center
Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.
2007-01-01
Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…
10 GHz Standing-Wave Coplanar Stripline on LiNbO3 Crystal for Radio to Optical-Wave Conversion
NASA Astrophysics Data System (ADS)
Darwis, F.; Wijayanto, Y. N.; Setiawan, A.; Mahmudin, D.; Rahman, A. N.; Daud, P.
2018-04-01
Recently, X-band radar systems are used widely for surveillance and navigation applications. Especially in archipelago or maritime country, the surveillance/navigation radar systems are required to monitoring critical areas and managing marine traffic. Accurate detection and fast analysis should be improved furthermore to provide security and safety condition. Therefore, several radar systems should be installed in many places to coverage the critical areas within radar networks. The radar network can be connected using optical fibers since it has extremely low propagation loss with optical-wave to carry-out the radar-wave. One important component in the scenario is a radio to optical-wave conversion component. In this paper, we report a 10 GHz radio to optical-wave conversion component using standing-wave coplanar stripline (CPS) on LiNbO3 optical crystal as the substrate. The standing-wave CPS electrodes with narrow slot are arranged in an array structure. An optical waveguide is located close to the narrow slot. The CPS electrodes were analysed using electromagnetic analysis software for 10 GHz operational frequency. Responses for slot width and electrode length variation are reported. As results, return loss of -14.580 dB and -19.517 dB are obtained for single and array CPS electrodes respectively. Optimization of the designed radio to optical-wave conversion devices was also done.
NASA Astrophysics Data System (ADS)
David, Christian; Sarout, Joël.; Dautriat, Jérémie; Pimienta, Lucas; Michée, Marie; Desrues, Mathilde; Barnes, Christophe
2017-07-01
Fluid substitution processes have been investigated in the laboratory on 14 carbonate and siliciclastic reservoir rock analogues through spontaneous imbibition experiments on vertical cylindrical specimens with simultaneous ultrasonic monitoring and imaging. The motivation of our study was to identify the seismic attributes of fluid substitution in reservoir rocks and to link them to physical processes. It is shown that (i) the P wave velocity either decreases or increases when the capillary front reaches the Fresnel clearance zone, (ii) the P wave amplitude is systematically impacted earlier than the velocity is, (iii) this precursory amplitude decrease occurs when the imbibition front is located outside of the Fresnel zone, and (iv) the relative variation of the P wave amplitude is always much larger than that of the P wave velocity. These results suggest that moisture diffuses into the pore space ahead of the water front. This postulate is further supported by a quantitative analysis of the time evolution of the observed P wave amplitudes. In a sense, P wave amplitude acts as a precursor of the arrival of the capillary front. This phenomenon is used to estimate the effective diffusivity of moisture in the tested rocks. The effective moisture diffusivity estimated from the ultrasonic data is strongly correlated with permeability: a power law with exponent 0.96 predicts permeability from ultrasonic monitoring within a factor 3 without noticeable bias. When the effective diffusivity is high, moisture diffusion affects ultrasonic P wave attributes even before the imbibition starts and impacts the P wave reflectivity as evidenced by the variations recorded in the waveform coda.
Lagrangian particle drift and surface deformation in a rotating wave on a free liquid surface
NASA Astrophysics Data System (ADS)
Fontana, Paul W.; Francois, Nicolas; Xia, Hua; Punzmann, Horst; Shats, Michael
2017-11-01
A nonlinear model of a rotating wave on the free surface of a liquid is presented. The flow is assumed to be inviscid and irrotational. The wave is constructed as a superposition of two perpendicular, monochromatic standing Stokes waves and is standing-wave-like, but with ``antinodes'' or cells consisting of rotating surface gradients of alternating polarity. Lagrangian fluid particle trajectories show a rotational drift about each cell in the direction of wave rotation, corresponding to a rotating Stokes drift. Each cell therefore has a circulating flow and localized angular momentum even though the Eulerian flow is irrotational. Meanwhile, the wave sets up a static displacement of the free surface, making a trough in each cell. This static surface gradient provides a centripetal force that may account for additional rotation seen in experiments.
Popenko, Oleksandr
2014-01-01
Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects. PMID:25435859
Kuzkova, Nataliia; Popenko, Oleksandr; Yakunov, Andrey
2014-01-01
Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects.
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2015-12-01
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.
Equations for description of nonlinear standing waves in constant-cross-sectioned resonators.
Bednarik, Michal; Cervenka, Milan
2014-03-01
This work is focused on investigation of applicability of two widely used model equations for description of nonlinear standing waves in constant-cross-sectioned resonators. The investigation is based on the comparison of numerical solutions of these model equations with solutions of more accurate model equations whose validity has been verified experimentally in a number of published papers.
Frequency characteristics of standing-wave acoustooptic modulators
NASA Astrophysics Data System (ADS)
Apolonskii, A. A.; Shchebetov, S. D.
1991-10-01
Experimental data are presented on the performance of wide-aperture standing-wave acoustooptic modulators used as laser mode lockers. In particular, attention is given to the acoustooptic and electrical frequency characteristics of the modulators. The existence of a large effective diffraction frequency region below the fundamental frequency is demonstrated. Individual frequency regions of effective diffraction do not correspond to the even and odd harmonics.
Sound absorption characteristics of tree bark and forest floor
G. Reethof; O. H. McDaniel; G. M. Heisler
1977-01-01
Results of basic research on absorption of sound by tree bark and forest floors are presented. Amount of sound absorption by tree bark was determined by laboratory experiments with bark samples in a standing-wave tube. A modified portable standing-wave tube was used to measure absorption of sound by forest floors with different moisture contents, with and without leaf...
A Simple, Inexpensive Acoustic Levitation Apparatus
NASA Astrophysics Data System (ADS)
Schappe, R. Scott; Barbosa, Cinthya
2017-01-01
Acoustic levitation uses a resonant ultrasonic standing wave to suspend small objects; it is used in a variety of research disciplines, particularly in the study of phase transitions and materials susceptible to contamination, or as a stabilization mechanism in microgravity environments. The levitation equipment used for such research is quite costly; we wanted to develop a simple, inexpensive system to demonstrate this visually striking example of standing waves. A search of the literature produced only one article relevant to creating such an apparatus, but the authors' approach uses a test tube, which limits the access to the standing wave. Our apparatus, shown in Fig. 1, can levitate multiple small (1-2 mm) pieces of expanded polystyrene (Styrofoam) using components readily available to most instructors of introductory physics. Acoustic levitation occurs in small, stable equilibrium locations where the weight of the object is balanced by the acoustic radiation force created by an ultrasonic standing wave; these locations are slightly below the pressure nodes. The levitation process also creates a horizontal restoring force. Since the pressure nodes are also velocity antinodes, this transverse stability may be analogous to the effect of an upward air stream supporting a ball.
Sound pressure distribution within natural and artificial human ear canals: forward stimulation.
Ravicz, Michael E; Tao Cheng, Jeffrey; Rosowski, John J
2014-12-01
This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5-2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11-16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC.
Wide forbidden band induced by the interference of different transverse acoustic standing-wave modes
NASA Astrophysics Data System (ADS)
Tao, Zhiyong; He, Weiyu; Xiao, Yumeng; Wang, Xinlong
2008-03-01
A non-Bragg nature forbidden band is experimentally observed in an axially symmetric hard-walled duct with a periodically varying cross section. Unlike the familiar Bragg ones, the observed bandgap is found to result from the interference of sound wave modes having different transverse standing-wave profiles, the so-called non-Bragg resonance. The experiments also show that the non-Bragg band can be comparably wider than the Bragg one; furthermore, the sound transmission loss within the band can be much more effective, exhibiting the great significance of the non-Bragg resonance in wave propagation in periodic waveguides.
On the stability of lumps and wave collapse in water waves.
Akylas, T R; Cho, Yeunwoo
2008-08-13
In the classical water-wave problem, fully localized nonlinear waves of permanent form, commonly referred to as lumps, are possible only if both gravity and surface tension are present. While much attention has been paid to shallow-water lumps, which are generalizations of Korteweg-de Vries solitary waves, the present study is concerned with a distinct class of gravity-capillary lumps recently found on water of finite or infinite depth. In the near linear limit, these lumps resemble locally confined wave packets with envelope and wave crests moving at the same speed, and they can be approximated in terms of a particular steady solution (ground state) of an elliptic equation system of the Benney-Roskes-Davey-Stewartson (BRDS) type, which governs the coupled evolution of the envelope along with the induced mean flow. According to the BRDS equations, however, initial conditions above a certain threshold develop a singularity in finite time, known as wave collapse, due to nonlinear focusing; the ground state, in fact, being exactly at the threshold for collapse suggests that the newly discovered lumps are unstable. In an effort to understand the role of this singularity in the dynamics of lumps, here we consider the fifth-order Kadomtsev-Petviashvili equation, a model for weakly nonlinear gravity-capillary waves on water of finite depth when the Bond number is close to one-third, which also admits lumps of the wave packet type. It is found that an exchange of stability occurs at a certain finite wave steepness, lumps being unstable below but stable above this critical value. As a result, a small-amplitude lump, which is linearly unstable and according to the BRDS equations would be prone to wave collapse, depending on the perturbation, either decays into dispersive waves or evolves into an oscillatory state near a finite-amplitude stable lump.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansonnens, L.; Schmidt, H.; Howling, A.A.
The electromagnetic standing wave effect can become the main source of nonuniformity limiting the use of very high frequency in large area reactors exceeding 1 m{sup 2} required for industrial applications. Recently, it has been proposed and shown experimentally in a cylindrical reactor that a shaped electrode in place of the conventional flat electrode can be used in order to suppress the electromagnetic standing wave nonuniformity. In this study, we show experimental measurements demonstrating that the shaped electrode technique can also be applied in large area rectangular reactors. We also present results of electromagnetic screening by a conducting substrate whichmore » has important consequences for industrial application of the shaped electrode technique.« less
Bennett, G.A.
1992-11-24
A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.
Jet dynamics post drop impact on a deep pool
NASA Astrophysics Data System (ADS)
Michon, Guy-Jean; Josserand, Christophe; Séon, Thomas
2017-02-01
We investigate experimentally the jet formed by the collapse of a cavity created by the impact of a drop on a pool of the same aqueous liquid. We show that jets can emerge with very different shapes and velocities, depending on the impact parameters, thus generating droplets with various initial sizes and velocities. After presenting the jet velocity and top drop radius variation as a function of the impact parameters, we discuss the influence of the liquid parameters on the jet velocity. This allows us to define two different regimes: the singular jet and the cavity jet regimes, where the mechanisms leading to the cavity retraction and subsequent jet dynamics are drastically different. In particular, we demonstrate that in the first regime, a singular capillary wave collapse sparks the whole jet dynamics, making the jet's fast, thin, liquid parameters dependent and barely reproducible. On the contrary, in the cavity jet regime, defined for higher impact Froude numbers, the jets are fat and slow. We show that jet velocity is simply proportional to the capillary velocity √{γ /ρlDd }, where γ is the liquid surface tension, ρl the liquid density, and Dd the impacting drop diameter, and it is in particular independent of viscosity, impact velocity, and gravity, even though the cavity is larger than the capillary length. Finally, we demonstrate that capillary wave collapse and cavity retraction are correlated in the singular regime and decorrelated in the cavity jet regime.
Influence of Waveform on Cell Viability during Ultrasound Exposure
NASA Astrophysics Data System (ADS)
Saliev, Timur; Feril, Loreto B.; McLean, Donald A.; Tachibana, Katsuro; Campbell, Paul A.
2011-09-01
We examined the role of ultrasound standing waves, and their travelling wave counterparts, on cell viability in an in-vitro insonation apparatus. Furthermore, the effect of distinct waveforms (sine and top-hat) was also explored, together with the role of microbubble presence. Measurements of cell viability in standing wave scenarios demonstrated a relatively higher rate of lysis (63.13±10.89% remaining viable) compared with the travelling wave data, where 96.22±4.0% remained viable. Significant differences were also seen as a function of waveform, where insonations employing top-hat wave shapes resulted in an average end stage viability of 30.31±5.71% compared with 61.94±14.28% in the sinusoidal counterparts.
Experimental observation of standing interfacial waves induced by surface waves in muddy water
NASA Astrophysics Data System (ADS)
Maxeiner, Eric; Dalrymple, Robert A.
2011-09-01
A striking feature has been observed in a laboratory wave tank with a thin layer of clear water overlying a layer of mud. A piston-type wave maker is used to generate long monochromatic surface waves in a tank with a layer of kaolinite clay at the bottom. The wave action on the mud causes the clay particles to rise from the bottom into the water column, forming a lutocline. As the lutocline approaches the water surface, a set of standing interfacial waves form on the lutocline. The interfacial wave directions are oriented nearly orthogonal to the surface wave direction. The interfacial waves, which sometimes cover the entire length and width of the tank, are also temporally subharmonic as the phase of the interfacial wave alternates with each passing surface wave crest. These interfacial waves are the result of a resonant three-wave interaction involving the surface wave train and the two interfacial wave trains. The interfacial waves are only present when the lutocline is about 3 cm of the water surface and they can be sufficiently nonlinear as to exhibit superharmonics and a breaking-type of instability.
Improved ultrasonic TV images achieved by use of Lamb-wave orientation technique
NASA Technical Reports Server (NTRS)
Berger, H.
1967-01-01
Lamb-wave sample orientation technique minimizes the interference from standing waves in continuous wave ultrasonic television imaging techniques used with thin metallic samples. The sample under investigation is oriented such that the wave incident upon it is not normal, but slightly angled.
Running interfacial waves in a two-layer fluid system subject to longitudinal vibrations.
Goldobin, D S; Pimenova, A V; Kovalevskaya, K V; Lyubimov, D V; Lyubimova, T P
2015-05-01
We study the waves at the interface between two thin horizontal layers of immiscible fluids subject to high-frequency horizontal vibrations. Previously, the variational principle for energy functional, which can be adopted for treatment of quasistationary states of free interface in fluid dynamical systems subject to vibrations, revealed the existence of standing periodic waves and solitons in this system. However, this approach does not provide regular means for dealing with evolutionary problems: neither stability problems nor ones associated with propagating waves. In this work, we rigorously derive the evolution equations for long waves in the system, which turn out to be identical to the plus (or good) Boussinesq equation. With these equations one can find all the time-independent-profile solitary waves (standing solitons are a specific case of these propagating waves), which exist below the linear instability threshold; the standing and slow solitons are always unstable while fast solitons are stable. Depending on initial perturbations, unstable solitons either grow in an explosive manner, which means layer rupture in a finite time, or falls apart into stable solitons. The results are derived within the long-wave approximation as the linear stability analysis for the flat-interface state [D.V. Lyubimov and A.A. Cherepanov, Fluid Dynamics 21, 849 (1986)] reveals the instabilities of thin layers to be long wavelength.
Resonant Acoustic Measurement of Vapor Phase Transport Phenomenon
NASA Astrophysics Data System (ADS)
Schuhmann, R. J.; Garrett, S. L.; Matson, J. V.
2002-12-01
A major impediment to accurate non steady-state diffusion measurements is the ability to accurately measure and track a rapidly changing gas concentration without disturbing the system. Non-destructive methods that do not interfere with system dynamics have been developed in the past. These methods, however, have tended to be cumbersome or inaccurate at low concentrations. A new experimental approach has been developed to measure gaseous diffusion in free air and through porous materials. The method combines the traditional non steady-state laboratory methodology with resonant acoustic gas analysis. A phase-locked-loop (PLL) resonance frequency tracker is combined with a thermally insulated copper resonator. A piston sealed with a metal bellows excites the fundamental standing wave resonance of the resonator. The PLL maintains a constant phase difference (typically 90§) between the accelerometer mounted on the piston and a microphone near the piston to track the resonance frequency in real time. A capillary or glass bead filled core is fitted into an o-ring sealed opening at the end of the resonator opposite the bellows. The rate at which the tracer gas is replaced by air within the resonator is controlled by the diffusion coefficient of the gas in free air through the capillary (DA) or by the effective diffusion coefficient of the gas through the core (De). The mean molecular weight of the gas mixture in the resonator is directly determined six times each minute from the ratio of the absolute temperature to the square of the fundamental acoustic resonance frequency. Average system stability (temperature divided by frequency squared) is better than 350 ppm. DA values for a 0.3-inch diameter capillary were in excellent agreement with published values. De values for porous media samples (0.5 mm glass beads) of four different lengths (1 through 4 inches) using three different tracer gases (He, CH4, Kr) will be reported. Comments will be offered regarding tracer gas selection and device orientation and their effect on experimental results. [Work supported by the Office of Naval Research.
Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional
NASA Astrophysics Data System (ADS)
Chacón, Enrique; Tarazona, Pedro
2016-06-01
We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.
Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional.
Chacón, Enrique; Tarazona, Pedro
2016-06-22
We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.
Rosowski, John J.; Cheng, Jeffrey Tao; Ravicz, Michael E.; Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme
2009-01-01
Time-averaged holograms describing the sound-induced motion of the tympanic membrane (TM) in cadaveric preparations from three mammalian species and one live ear were measured using opto-electronic holography. This technique allows rapid measurements of the magnitude of motion of the tympanic membrane surface at frequencies as high as 25 kHz. The holograms measured in response to low and middle-frequency sound stimuli are similar to previously reported time-averaged holograms. However, at higher frequencies (f > 4 kHz), our holograms reveal unique TM surface displacement patterns that consist of highly-ordered arrangements of multiple local displacement magnitude maxima, each of which is surrounded by nodal areas of low displacement magnitude. These patterns are similar to modal patterns (two-dimensional standing waves) produced by either the interaction of surface waves traveling in multiple directions or the uniform stimulation of modes of motion that are determined by the structural properties and boundary conditions of the TM. From the ratio of the displacement magnitude peaks to nodal valleys in these apparent surface waves, we estimate a Standing Wave Ratio of at least 4 that is consistent with energy reflection coefficients at the TM boundaries of at least 0.35. It is also consistent with small losses within the uniformly stimulated modal surface waves. We also estimate possible TM surface wave speeds that vary with frequency and species from 20 to 65 m/s, consistent with other estimates in the literature. The presence of standing wave or modal phenomena has previously been intuited from measurements of TM function, but is ignored in some models of tympanic membrane function. Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined. PMID:19328841
Rosowski, John J; Cheng, Jeffrey Tao; Ravicz, Michael E; Hulli, Nesim; Hernandez-Montes, Maria; Harrington, Ellery; Furlong, Cosme
2009-07-01
Time-averaged holograms describing the sound-induced motion of the tympanic membrane (TM) in cadaveric preparations from three mammalian species and one live ear were measured using opto-electronic holography. This technique allows rapid measurements of the magnitude of motion of the tympanic membrane surface at frequencies as high as 25 kHz. The holograms measured in response to low and middle-frequency sound stimuli are similar to previously reported time-averaged holograms. However, at higher frequencies (f>4 kHz), our holograms reveal unique TM surface displacement patterns that consist of highly-ordered arrangements of multiple local displacement magnitude maxima, each of which is surrounded by nodal areas of low displacement magnitude. These patterns are similar to modal patterns (two-dimensional standing waves) produced by either the interaction of surface waves traveling in multiple directions or the uniform stimulation of modes of motion that are determined by the structural properties and boundary conditions of the TM. From the ratio of the displacement magnitude peaks to nodal valleys in these apparent surface waves, we estimate a Standing Wave Ratio of at least 4 that is consistent with energy reflection coefficients at the TM boundaries of at least 0.35. It is also consistent with small losses within the uniformly stimulated modal surface waves. We also estimate possible TM surface wave speeds that vary with frequency and species from 20 to 65 m/s, consistent with other estimates in the literature. The presence of standing wave or modal phenomena has previously been intuited from measurements of TM function, but is ignored in some models of tympanic membrane function. Whether these standing waves result either from the interactions of multiple surface waves that travel along the membrane, or by uniformly excited modal displacement patterns of the entire TM surface is still to be determined.
Versatile resonance-tracking circuit for acoustic levitation experiments.
Baxter, K; Apfel, R E; Marston, P L
1978-02-01
Objects can be levitated by radiation pressure forces in an acoustic standing wave. In many circumstances it is important that the standing wave frequency remain locked on an acoustic resonance despite small changes in the resonance frequency. A self-locking oscillator circuit is described which tracks the resonance frequency by sensing the magnitude of the transducer current. The tracking principle could be applied to other resonant systems.
Pavanello, Fabio; Zeng, Xiaoge; Wade, Mark T; Popović, Miloš A
2016-11-28
We propose ring modulators based on interdigitated p-n junctions that exploit standing rather than traveling-wave resonant modes to improve modulation efficiency, insertion loss and speed. Matching the longitudinal nodes and antinodes of a standing-wave mode with high (contacts) and low (depletion regions) carrier density regions, respectively, simultaneously lowers loss and increases sensitivity significantly. This approach permits further to relax optical constraints on contacts placement and can lead to lower device capacitance. Such structures are well-matched to fabrication in advanced microelectronics CMOS processes. Device architectures that exploit this concept are presented along with their benefits and drawbacks. A temporal coupled mode theory model is used to investigate the static and dynamic response. We show that modulation efficiencies or loss Q factors up to 2 times higher than in previous traveling-wave geometries can be achieved leading to much larger extinction ratios. Finally, we discuss more complex doping geometries that can improve carrier dynamics for higher modulation speeds in this context.
NASA Astrophysics Data System (ADS)
Lipkens, Bart; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.
2015-10-01
Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of one particle then consists of two components, the incident sound wave and the scattered field generated by the neighboring particle. The radiation force calculation then includes the contributions of these two fields and incorporates the mutual particle influence. In this investigation the droplet/particle influence on each other has been analyzed theoretically by using the method developed by Gorkov and modified by Ilinskii et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipkens, Bart, E-mail: blipkens@wne.edu; Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com
Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. Anmore » often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of one particle then consists of two components, the incident sound wave and the scattered field generated by the neighboring particle. The radiation force calculation then includes the contributions of these two fields and incorporates the mutual particle influence. In this investigation the droplet/particle influence on each other has been analyzed theoretically by using the method developed by Gorkov and modified by Ilinskii et al.« less
The Third Planet: Surfers, Bedsprings and Harmonicas.
ERIC Educational Resources Information Center
Helms, Harry
1991-01-01
Examines the everywhere-observable phenomena of waveforms, and how waves transport energy across a distance within some given medium. Discusses how waves are described, what happens when waves meet, the specifics of standing waves and echoes, and an introduction to Fourier analysis. (JJK)
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org
2015-12-07
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numericalmore » simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.« less
Converging shock wave focusing and interaction with a target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nitishinskiy, M.; Efimov, S.; Antonov, O.
2016-04-15
Converging shock waves in liquids can be used efficiently in the research of the extreme state of matter and in various applications. In this paper, the recent results related to the interaction of a shock wave with plasma preliminarily formed in the vicinity of the shock wave convergence are presented. The shock wave is produced by the underwater electrical explosion of a spherical wire array. The plasma is generated prior to the shock wave's arrival by a low-pressure gas discharge inside a quartz capillary placed at the equatorial plane of the array. Analysis of the Stark broadening of H{sub α}more » and H{sub β} spectral lines and line-to-continuum ratio, combined with the ratio of the relative intensities of carbon C III/C II and silicon Si III/Si II lines, were used to determine the plasma density and temperature evolution. It was found that during the first ∼200 ns with respect to the beginning of the plasma compression by the shock wave and when the spectral lines are resolved, the plasma density increases from 2 × 10{sup 17 }cm{sup −3} to 5 × 10{sup 17 }cm{sup −3}, while the temperature remains at the same value of 3–4 eV. Further, following the model of an adiabatically imploding capillary, the plasma density increases >10{sup 19 }cm{sup −3}, leading to the continuum spectra obtained experimentally, and the plasma temperature >30 eV at radii of compression of ≤20 μm. The data obtained indicate that the shock wave generated by the underwater electrical explosion of a spherical wire array retains its uniformity during the main part of its convergence.« less
Shock wave-enhanced neovascularization at the tendon-bone junction: an experiment in dogs.
Wang, Ching-Jen; Huang, Hsuan-Ying; Pai, Chun-Hwan
2002-01-01
The purpose of the research was to study the phenomenon of neovascularization at the Achilles tendon-bone junction after low-energy shock wave application. The study was performed on eight mongrel dogs. The control specimens were obtained from the medial one-third of the right Achilles tendon-bone unit before shock wave application. Low-energy shock waves of 1000 impulses at 14 kV (equivalent to 0.18 mJ/mm2 energy flux density) were applied to the right Achilles bone-tendon junction. Biopsies were taken from the middle one-third of the Achilles tendon-bone junction at 4 weeks and from the lateral one-third at 8 weeks, respectively, after shock wave application. The features of microscopic examination included the number of new capillaries and muscularized vessels, the presence and arrangements of myofibroblasts, and the changes in bone. New capillary and muscularized vessels were seen in the study specimens which were obtained in 4 weeks and in 8 weeks after shock wave application, but none were seen in the control specimens before shock wave application. There was a considerable geographic variation in the number of new vessels within the same specimen. Myofibroblasts were not seen in the control specimens. Myofibroblasts with haphazard appearance and intermediate orientation fibers were seen in all study specimens obtained at 4 weeks and predominantly intermediate orientation myofibroblast fibers at 8 weeks. There were no changes in bone matrix, osteocyte activity, and vascularization within the bone. Two pathologists reviewed each specimen and concurrence was achieved in all cases. The results of the study suggested that low-energy shock wave enhanced the phenomenon of neovascularization at the bone-tendon junction in dogs.
NASA Technical Reports Server (NTRS)
Meredith, R. W.; Zuckerwar, A. J.
1984-01-01
A low-cost digital system based on an 8-bit Apple II microcomputer has been designed to provide on-line control, data acquisition, and evaluation of sound absorption measurements in gases. The measurements are conducted in a resonant tube, in which an acoustical standing wave is excited, the excitation removed, and the sound absorption evaluated from the free decay envelope. The free decay is initiated from the computer keyboard after the standing wave is established, and the microphone response signal is the source of the analog signal for the A/D converter. The acquisition software is written in ASSEMBLY language and the evaluation software in BASIC. This paper describes the acoustical measurement, hardware, software, and system performance and presents measurements of sound absorption in air as an example.
Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.
Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli
2017-05-01
A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.
Analysis of standing sound waves using holographic interferometry
NASA Astrophysics Data System (ADS)
Russell, Daniel A.; Parker, David E.; Hughes, Russell S.
2009-08-01
Optical holographic interferometry was used to study standing sound waves in air inside a resonance tube driven by a small loudspeaker at one end. The front face of the resonance tube was constructed with plexiglass, allowing optical interrogation of the tube interior. The object beam of the holographic setup was directed through the plexiglass and reflected off the back wall of the resonator. When driven at resonance, the fluctuations in the air density at the antinodes altered the refractive index of the air in the tube, causing interference patterns in the resulting holographic images. Real-time holography was used to determine resonance frequencies and to measure the wavelengths of the standing waves. Time-average holography was used to observe the effect of increasing the sound pressure level on the resulting fringe pattern. A simple theory was developed to successfully predict the fringe pattern.
The Dynamics of Glomerular Ultrafiltration in the Rat
Brenner, Barry M.; Troy, Julia L.; Daugharty, Terrance M.
1971-01-01
Using a unique strain of Wistar rats endowed with glomeruli situated directly on the renal cortical surface, we measured glomerular capillary pressures using servo-nulling micropipette transducer techniques. Pressures in 12 glomerular capillaries from 7 rats averaged 60 cm H2O, or approximately 50% of mean systemic arterial values. Wave form characteristics for these glomerular capillaries were found to be remarkably similar to those of the central aorta. From similarly direct estimates of hydrostatic pressures in proximal tubules, and colloid osmotic pressures in systemic and efferent arteriolar plasmas, the net driving force for ultrafiltration was calculated. The average value of 14 cm H2O is lower by some two-thirds than the majority of estimates reported previously based on indirect techniques. Single nephron GFR (glomerular filtration rate) was also measured in these rats, thereby permitting calculation of the glomerular capillary ultrafiltration coefficient. The average value of 0.044 nl sec−1 cm H2O−1 glomerulus−1 is at least fourfold greater than previous estimates derived from indirect observations. PMID:5097578
Trivelpiece-Gould modes in a uniform unbounded plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L.; Urrutia, J. M.
Trivelpiece-Gould (TG) modes originally described electrostatic surface waves on an axially magnetized cylindrical plasma column. Subsequent studies of electromagnetic waves in such plasma columns revealed two modes, a predominantly magnetic helicon mode (H) and the mixed magnetic and electrostatic Trivelpiece-Gould modes (TG). The latter are similar to whistler modes near the oblique cyclotron resonance in unbounded plasmas. The wave propagation in cylindrical geometry is assumed to be paraxial while the modes exhibit radial standing waves. The present work shows that TG modes also arise in a uniform plasma without radial standing waves. It is shown experimentally that oblique cyclotron resonancemore » arises in large mode number helicons. Their azimuthal wave number far exceeds the axial wave number which creates whistlers near the oblique cyclotron resonance. Cyclotron damping absorbs the TG mode and can energize electrons in the center of a plasma column rather than the edge of conventional TG modes. The angular orbital field momentum can produce new perpendicular wave-particle interactions.« less
Observation and simulation of flow on soap film induced by concentration gradient
NASA Astrophysics Data System (ADS)
Ohnishi, Mitsuru; Yoshihara, Shoichi; Azuma, Hisao
The behavior of the flow and capillary wave induced on the film surface by the surfactant concentration difference is studied. Flat soap film is used as a model of thin film. The result is applicable to the case of flow by thermal gradient. The Schlieren method is used to observe the flow and the wave on the soap film. It is found that the wave velocities, in the case of a high surface tension difference, are linearly related to the square root of the surface tension difference.
Hassan, Mariame A; Buldakov, Mikhail A; Ogawa, Ryohei; Zhao, Qing-Li; Furusawa, Yukihiro; Kudo, Nobuki; Kondo, Takashi; Riesz, Peter
2010-01-04
Low modulation frequencies from 0.5 to 100Hz were shown to alter the characteristics of the ultrasound field producing solution agitation (<5Hz; region of "ultrasound streaming" prevalence) or stagnancy (>5Hz; region of standing waves establishment) (Buldakov et al., Ultrason. Sonochem., 2009). In this study, the same conditions were used to depict the changes in exogenous DNA delivery in these regions. The luciferase expression data revealed that lower modulations were more capable of enhancing delivery at the expense of viability. On the contrary, the viability was conserved at higher modulations whereas delivery was found to be null. Cavitational activity and acoustic streaming were the effecters beyond the observed pattern and delivery enhancement was shown to be mediated mainly through sonopermeation. To promote transfection, the addition of calcium ions or an echo contrast agent (Levovist((R))) was proposed. Depending on the mechanism involved in each approach, differential enhancement was observed in both regions and at the interim zone (5Hz). In both cases, enhancement in standing waves field was significant reaching 16.0 and 3.3 folds increase, respectively. Therefore, it is concluded that although the establishment of standing waves is not the only prerequisite for high transfection rates, yet, it is a key element in optimization when other factors such as proximity and cavitation are considered.
Particle scavenging in a cylindrical ultrasonic standing wave field using levitated drops
NASA Astrophysics Data System (ADS)
Merrell, Tyler; Saylor, J. R.
2015-11-01
A cylindrical ultrasonic standing wave field was generated in a tube containing a flow of particles and fog. Both the particles and fog drops were concentrated in the nodes of the standing wave field where they combined and then grew large enough to fall out of the system. In this way particles were scavenged from the system, cleaning the air. While this approach has been attempted using a standing wave field established between disc-shaped transducers, a cylindrical resonator has not been used for this purpose heretofore. The resonator was constructed by bolting three Langevin transducers to an aluminum tube. The benefit of the cylindrical geometry is that the acoustic energy is focused. Furthermore, the residence time of the particle in the field can be increased by increasing the length of the resonator. An additional benefit of this approach is that tubes located downstream of the resonator were acoustically excited, acting as passive resonators that enhanced the scavenging process. The performance of this system on scavenging particles is presented as a function of particle diameter and volumetric flow rate. It is noted that, when operated without particles, the setup can be used to remove drops and shows promise for liquid aerosol retention from systems where these losses can be financially disadvantageous and/or hazardous.
Sound pressure distribution within natural and artificial human ear canals: Forward stimulation
Ravicz, Michael E.; Tao Cheng, Jeffrey; Rosowski, John J.
2014-01-01
This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5–2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11–16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC. PMID:25480061
Deformation of red blood cells using acoustic radiation forces
Mishra, Puja; Hill, Martyn; Glynne-Jones, Peter
2014-01-01
Acoustic radiation forces have been used to manipulate cells and bacteria in a number of recent microfluidic applications. The net force on a cell has been subject to careful investigation over a number of decades. We demonstrate that the radiation forces also act to deform cells. An ultrasonic standing wave field is created in a 0.1 mm glass capillary at a frequency of 7.9 MHz. Using osmotically swollen red-blood cells, we show observable deformations up to an aspect ratio of 1.35, comparable to deformations created by optical tweezing. In contrast to optical technologies, ultrasonic devices are potentially capable of deforming thousands of cells simultaneously. We create a finite element model that includes both the acoustic environment of the cell, and a model of the cell membrane subject to forces resulting from the non-linear aspects of the acoustic field. The model is found to give reasonable agreement with the experimental results, and shows that the deformation is the result of variation in an acoustic force that is directed outwards at all points on the cell membrane. We foresee applications in diagnostic devices, and in the possibility of mechanically stimulating cells to promote differentiation and physiological effects. PMID:25379070
A performance comparison of ultrasonically aided electric propulsion extractor configurations
NASA Astrophysics Data System (ADS)
Dong, L.; Song, W.; Kang, X. M.; Zhao, W. S.
2012-08-01
As a novel propulsion technology, ultrasonically aided electric propulsion (UAEP) offers a high specific impulse and a high thrust density. In this paper, the effects of extractor grid configuration on performance of a UAEP thruster have been investigated by both experimental studies and numerical simulation. Relationships between spray current and operation parameters, including applied voltage, propellant flow rate, and vibration power and frequency, are explored for different extractor mesh sizes and shapes. Numerical simulation is also carried out for a better understanding of the formation of capillary standing waves as well as the electric field distribution in the acceleration zone. Experimental results show that compared with a circular shaped extractor, a reticular shaped extractor is able to produce a higher spray current. The current density increases with a denser mesh, which agrees well with the numerical simulation results. This phenomenon indicates that optimizing extractors with appropriate shapes and sizes can be an effective way to improve the performance of a UAEP system. A performance evaluation based on hydrodynamic and electrostatic calculations indicates that the present UAEP system can produce a thrust competitive to that of the colloid thruster with an emitter array.
Experimental studies on the stability and transition of 3-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Nitschke-Kowsky, P.
1987-01-01
Three-dimensional unstable boundary layers were investigated as to their characteristic instabilities, leading to turbulence. Standing cross-flow instabilities and traveling waves preceding the transition were visualized with the hydrogen bubble technique in the boundary layer above the wall of a swept cylinder. With the sublimation method and hot film technique, a model consisting of a swept flat plate with a pressure-inducing displacement body in the 1 m wind tunnel was studied. Standing waves and traveling waves in a broad frequency are observed. The boundary layer of this model is close to the assumptions of the theory.
Radiation force on a single atom in a cavity
NASA Technical Reports Server (NTRS)
Kim, M. S.
1992-01-01
We consider the radiation pressure microscopically. Two perfectly conducting plates are parallelly placed in a vacuum. As the vacuum field hits the plates they get pressure from the vacuum. The excessive outside modes of the vacuum field push the plates together, which is known as the Casimer force. We investigate the quantization of the standing wave between the plates to study the interaction between this wave and the atoms on the plates or between the plates. We show that even the vacuum field pushes the atom to place it at nodes of the standing wave.
Resonance fluorescence microscopy via three-dimensional atom localization
NASA Astrophysics Data System (ADS)
Panchadhyayee, Pradipta; Dutta, Bibhas Kumar; Das, Nityananda; Mahapatra, Prasanta Kumar
2018-02-01
A scheme is proposed to realize three-dimensional (3D) atom localization in a driven two-level atomic system via resonance fluorescence. The field arrangement for the atom localization involves the application of three mutually orthogonal standing-wave fields and an additional traveling-wave coupling field. We have shown the efficacy of such field arrangement in tuning the spatially modulated resonance in all directions. Under different parametric conditions, the 3D localization patterns originate with various shapes such as sphere, sheets, disk, bowling pin, snake flute, flower vase. High-precision localization is achieved when the radiation field detuning equals twice the combined Rabi frequencies of the standing-wave fields. Application of a traveling-wave field of suitable amplitude at optimum radiation field detuning under symmetric standing-wave configuration leads to 100% detection probability even in sub-wavelength domain. Asymmetric field configuration is also taken into consideration to exhibit atom localization with appreciable precision compared to that of the symmetric case. The momentum distribution of the localized atoms is found to follow the Heisenberg uncertainty principle under the validity of Raman-Nath approximation. The proposed field configuration is suitable for application in the study of atom localization in an optical lattice arrangement.
Mason, Bernard J; Walker, Jim S; Reid, Jonathan P; Orr-Ewing, Andrew J
2014-03-20
The extinction cross-sections of individual, optically confined aerosol particles with radii of a micrometer or less can, in principle, be measured using cavity ring-down spectroscopy (CRDS). However, when the particle radius is comparable in magnitude to the wavelength of light stored in a high-finesse cavity, the phenomenological cross-section retrieved from a CRDS experiment depends on the location of the particle in the intracavity standing wave and differs from the Mie scattering cross-section for plane-wave irradiation. Using an evaporating 1,2,6-hexanetriol particle of initial radius ∼1.75 μm confined within the 4.5 μm diameter core of a Bessel beam, we demonstrate that the scatter in the retrieved extinction efficiency of a single particle is determined by its lateral motion, which spans a few wavelengths of the intracavity standing wave used for CRDS measurements. Fits of experimental measurements to Mie calculations, modified to account for the intracavity standing wave, allow precise retrieval of the refractive index of 1,2,6-hexanetriol particles (with relative humidity, RH < 10%) of 1.47824 ± 0.00072.
Vibration-type particle separation device with piezoceramic vibrator
NASA Astrophysics Data System (ADS)
Ooe, Katsutoshi; Doi, Akihiro
2008-12-01
During hemanalysis, it is necessary to separate blood cells from whole blood. Many blood separation methods, for example, centrifugation and filtering, are in practical use. However, the use of these methods involves problems from the perspectives of processing speed and processing volume. We develop new types of blood separation devices that use piezo-ceramic vibrators. The first device uses a capillary. One end of the capillary is fixed to the device frame, and the other is fixed to a piezo-ceramic vibrator. The vibrator transmits bending waves to the capillary. This device can process only a small amount of solution; therefore, it is not suitable for hemanalysis. In order to solve this problem, we developed a second device; this device has a pair of thin glass plates with a small gap as a substitute for the capillary used in the first device. These devices are based on the fact that particles heavier than water move toward transverse velocity antinodes while those lighter than water move toward velocity nodes. In this report, we demonstrate the highspeed separation of silica microbeads and 50-vol% glycerol water by using these devices. The first device can separate the abovementioned solution within 3 min while the second can separate it within 1 min. Both devices are driven by a rectangular wave of 15 to 20 Vpp. Furthermore, it has been confirmed that red blood cells are separated from diluted whole blood using the first device within approximately 1 min. These devices have transparency, so they can compose as the analysis system with the chemical analyzer easily.
NASA Astrophysics Data System (ADS)
Masnadi, N.; Duncan, J. H.
2013-11-01
The non-linear response of a water surface to a slow-moving pressure distribution is studied experimentally using a vertically oriented carriage-mounted air-jet tube that is set to translate over the water surface in a long tank. The free surface deformation pattern is measured with a full-field refraction-based method that utilizes a vertically oriented digital movie camera (under the tank) and a random dot pattern (above the water surface). At towing speeds just below the minimum phase speed of gravity-capillary waves (cmin ~ 23 cm/s), an unsteady V-shaped pattern is formed behind the pressure source. Localized depressions are generated near the source and propagate in pairs along the two arms of the V-shaped pattern. These depressions are eventually shed from the tips of the pattern at a frequency of about 1 Hz. It is found that the shape and phase speeds of the first depressions shed in each run are quantitatively similar to the freely-propagating gravity-capillary lumps from potential flow calculations. In the experiments, the amplitudes of the depressions decrease by approximately 60 percent while travelling 12 wavelengths. The depressions shed later in each run behave in a less consistent manner, probably due to their interaction with neighboring depressions.
Narasimha, Karnati; Jayakannan, Manickam
2014-11-12
The present work demonstrates one of the first examples of π-conjugated photonic switches (or photonic wave plates) based on the tailor-made π-conjugated polymer anisotropic organogel. New semicrystalline segmented π-conjugated polymers are designed with rigid aromatic oligophenylenevinylene π-core and flexible alkyl chain along the polymer backbone. These polymers are found to be self-assembled as semicrystalline or amorphous with respect to the number of carbon atoms in the alkyl units. These semicrystalline polymers produce organogels having nanofibrous morphology of 20 nm thickness with length up to 5 μm. The polymer organogel is aligned in a narrow glass capillary, and this anisotropic gel device is further demonstrated as photonic switches. The glass capillary device behaves as typical λ/4 photonic wave plates upon the illumination of the plane polarized light. The λ/4 photonic switching ability is found to be maximum at θ = 45° angle under the cross polarizers. The orthogonal arrangements of the gel capillaries produce dark and bright spots as on-and-off optical switches. Thermoreversibility of the polymer organogel (also its xerogel) was exploited to construct thermoresponsive photonic switches for the temperature window starting from 25 to 160 °C. The organic photonic switch concept can be adapted to large number of other π-conjugated materials for optical communication and storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altshuler, Gennady; Manor, Ofer, E-mail: manoro@technion.ac.il
A MHz vibration, or an acoustic wave, propagating in a solid substrate may support the convective spreading of a liquid film. Previous studies uncovered this ability for fully wetting silicon oil films under the excitation of a MHz Rayleigh surface acoustic wave (SAW), propagating in a lithium niobate substrate. Partially wetting de-ionized water films, however, appeared immune to this spreading mechanism. Here, we use both theory and experiment to reconsider this situation and show partially wetting water films may spread under the influence of a propagating MHz vibration. We demonstrate distinct capillary and convective (vibrational/acoustic) spreading regimes that are governedmore » by a balance between convective and capillary mechanisms, manifested in the non-dimensional number θ{sup 3}/We, where θ is the three phase contact angle of the liquid with the solid substrate and We ≡ ρU{sup 2}H/γ; ρ, γ, H, and U are the liquid density, liquid/vapour surface tension, characteristic film thickness, and the characteristic velocity amplitude of the propagating vibration on the solid surface, respectively. Our main finding is that the vibration will support a continuous spreading motion of the liquid film out of a large reservoir if the convective mechanism prevails (θ{sup 3}/We < 1); otherwise (θ{sup 3}/We > 1), the dynamics of the film is governed by the capillary mechanism.« less
Traveling and Standing Waves in Coupled Pendula and Newton's Cradle
NASA Astrophysics Data System (ADS)
García-Azpeitia, Carlos
2016-12-01
The existence of traveling and standing waves is investigated for chains of coupled pendula with periodic boundary conditions. The results are proven by applying topological methods to subspaces of symmetric solutions. The main advantage of this approach comes from the fact that only properties of the linearized forces are required. This allows to cover a wide range of models such as Newton's cradle, the Fermi-Pasta-Ulam lattice, and the Toda lattice.
Dynamic behavior of microscale particles controlled by standing bulk acoustic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu; Guevara Vasquez, F.
2014-10-06
We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependentmore » on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.« less
NASA Astrophysics Data System (ADS)
Magnusson, J.; Mackenroth, F.; Marklund, M.; Gonoskov, A.
2018-05-01
During the interaction of intense femtosecond laser pulses with various targets, the natural mechanisms of laser energy transformation inherently lack temporal control and thus commonly do not provide opportunities for a controlled generation of a well-collimated, high-charge beam of ions with a given energy of particular interest. In an effort to alleviate this problem, it was recently proposed that the ions can be dragged by an electron bunch trapped in a controllably moving potential well formed by laser radiation. Such standing-wave acceleration (SWA) can be achieved through reflection of a chirped laser pulse from a mirror, which has been formulated as the concept of chirped-standing-wave acceleration (CSWA). Here, we analyse general feasibility aspects of the SWA approach and demonstrate its reasonable robustness against field structure imperfections, such as those caused by misalignment, ellipticity, and limited contrast. Using this, we also identify prospects and limitations of the CSWA concept.
Luo, Xiaoming; Cao, Juhang; He, Limin; Wang, Hongping; Yan, Haipeng; Qin, Yahua
2017-01-01
The coalescence process of binary droplets in oil under ultrasonic standing waves was investigated with high-speed photography. Three motion models of binary droplets in coalescence process were illustrated: (1) slight translational oscillation; (2) sinusoidal translational oscillation; (3) migration along with acoustic streaming. To reveal the droplets coalescence mechanisms, the influence of main factors (such as acoustic intensity, droplet size, viscosity and interfacial tension, etc) on the motion and coalescence of binary droplets was studied under ultrasonic standing waves. Results indicate that the shortest coalescence time is achieved when binary droplets show sinusoidal translational oscillation. The corresponding acoustic intensity in this case is the optimum acoustic intensity. Under the optimum acoustic intensity, drop size decrease will bring about coalescence time decrease by enhancing the binary droplets oscillation. Moreover, there is an optimum interfacial tension to achieve the shortest coalescence time. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Miles, J. A.; Das, Diptaranjan; Simmons, Z. J.; Yavuz, D. D.
2015-09-01
We experimentally demonstrate the localization of excitation between hyperfine ground states of 87Rb atoms to as small as λ /13 -wide spatial regions. We use ultracold atoms trapped in a dipole trap and utilize electromagnetically induced transparency (EIT) for the atomic excitation. The localization is achieved by combining a spatially varying coupling laser (standing wave) with the intensity dependence of EIT. The excitation is fast (150 ns laser pulses) and the dark-state fidelity can be made higher than 94% throughout the standing wave. Because the width of the localized regions is much smaller than the wavelength of the driving light, traditional optical imaging techniques cannot resolve the localized features. Therefore, to measure the excitation profile, we use an autocorrelation-like method where we perform two EIT sequences separated by a time delay, during which we move the standing wave.
Bennett, Gloria A.
1992-01-01
A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.
Standing helicon induced by a rapidly bent magnetic field in plasmas
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Takayama, Sho; Komuro, Atsushi; Ando, Akira; Plasma physics Team
2016-09-01
An electron energy probability function and an rf magnetic field are measured in an rf hydrogen helicon source, where axial and transverse static magnetic fields are applied to the source by solenoids and to the diffusion chamber by filter magnets, respectively. It is demonstrated that the helicon wave is reflected by the rapidly bent magnetic field and the resultant standing wave heats the electrons between the source and the magnetic filter, while the electron cooling effect by the magnetic filter is maintained. It is interpreted that the standing wave is generated by the presence of spatially localized change of a refractive index. The application to the hydrogen negative ion source used for the neutral beam injection system for fusion plasma heating is discussed. This work is partially supported by grant-in-aid for scientific research (16H04084 and 26247096) from the Japan Society for the Promotion of Science.
A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.
Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang
2015-03-01
A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.
NASA Astrophysics Data System (ADS)
Zhou, Hai-Tao; Che, Shao-Na; Han, Yu-Hong; Wang, Dan
2018-05-01
In a Λ-type three-level atomic system coupled by an off-resonant standing-wave, the reflected four-wave mixing (FWM) spectrum is studied. It shows that the maximum reflection efficiency occurs when both of the coupling and probe fields are tuned off resonances from the atomic transitions. The essence of enhanced reflection is that the nonlinear efficiency of the FWM based on coherent atoms is improved due to the significant reduction of phase mismatch. The theoretical analysis shows good agreement with the experimental results. Furthermore, the influence of the atomic number density on the coupling frequency detuning of the optimum reflection efficiency and the linewidth are also investigated.
Model of formation of droplets during electric arc surfacing of functional coatings
NASA Astrophysics Data System (ADS)
Sarychev, Vladimir D.; Granovskii, Alexei Yu; Nevskii, Sergey A.; Gromov, Victor E.
2016-01-01
The mathematical model was developed for the initial stage of formation of an electrode metal droplet in the process of arc welding. Its essence lies in the fact that the presence of a temperature gradient in the boundary layer of the molten metal causes thermo-capillary instability, which leads to the formation of electrode metal droplets. A system of equations including Navier-Stokes equations, heat conduction and Maxwell's equations was solved as well as the boundary conditions for the system electrodes-plasma. Dispersion equation for thermo-capillary waves in the linear approximation for the plane layer was received and analyzed. The values of critical wavelengths, at which thermo-capillary instability appears in the nanometer wavelength range, were found. The parameters at which the mode of a fine-droplet transfer of the material takes place were theoretically defined.
Monroy, Francisco
2017-09-01
From the recent advent of the new soft-micro technologies, the hydrodynamic theory of surface modes propagating on viscoelastic bodies has reinvigorated this field of technology with interesting predictions and new possible applications, so recovering its scientific interest very limited at birth to the academic scope. Today, a myriad of soft small objects, deformable meso- and micro-structures, and macroscopically viscoelastic bodies fabricated from colloids and polymers are already available in the materials catalogue. Thus, one can envisage a constellation of new soft objects fabricated by-design with a functional dynamics based on the mechanical interplay of the viscoelastic material with the medium through their interfaces. In this review, we recapitulate the field from its birth and theoretical foundation in the latest 1980s up today, through its flourishing in the 90s from the prediction of extraordinary Rayleigh modes in coexistence with ordinary capillary waves on the surface of viscoelastic fluids, a fact first confirmed in experiments by Dominique Langevin and me with soft gels [Monroy and Langevin, Phys. Rev. Lett. 81, 3167 (1998)]. With this observational discovery at sight, we not only settled the theory previously formulated a few years before, but mainly opened a new field of applications with soft materials where the mechanical interplay between surface and bulk motions matters. Also, new unpublished results from surface wave experiments performed with soft colloids are reported in this contribution, in which the analytic methods of wave surfing synthetized together with the concept of coexisting capillary-shear modes are claimed as an integrated tool to insightfully scrutinize the bulk rheology of soft solids and viscoelastic fluids. This dedicatory to the figure of Dominique Langevin includes an appraisal of the relevant theoretical aspects of the surface hydrodynamics of viscoelastic fluids, and the coverage of the most important experimental results obtained during the three decades of research on this field. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Kai; Liu, Yong-Xin; Kawamura, E.; Wen, De-Qi; Lieberman, M. A.; Wang, You-Nian
2018-05-01
It is well known that the plasma non-uniformity caused by the standing wave effect has brought about great challenges for plasma material processing. To improve the plasma uniformity, a low-frequency (LF) power source is introduced into a 100 MHz very-high-frequency (VHF) capacitively coupled argon plasma reactor. The effect of the LF parameters (LF voltage amplitude ϕ L and LF source f L) on the radial profile of plasma density has been investigated by utilizing a hairpin probe. The result at a low pressure (1 Pa) is compared to the one obtained by a 2D fluid-analytical capacitively coupled plasma model, showing good agreement in the plasma density radial profile. The experimental results show that the plasma density profile exhibits different dependences on ϕ L and f L at different gas pressures/electrode driven types (i.e., the two rf sources are applied on one electrode (case I) and separate electrodes (case II)). At low pressures (e.g., 8 Pa), the pronounced standing wave effect revealed in a VHF discharge can be suppressed at a relatively high ϕ L or a low f L in case I, because the HF sheath heating is largely weakened due to strong modulation by the LF source. By contrast, ϕ L and f L play insignificant roles in suppressing the standing wave effect in case II. At high pressures (e.g., 20 Pa), the opposite is true. The plasma density radial profile is more sensitive to ϕ L and f L in case II than in case I. In case II, the standing wave effect is surprisingly enhanced with increasing ϕ L at higher pressures; however, the center-high density profile caused by the standing wave effect can be compensated by increasing f L due to the enhanced electrostatic edge effect dominated by the LF source. In contrast, the density radial profile shows a much weaker dependence on ϕ L and f L in case I at higher pressures. To understand the different roles of ϕ L and f L, the electron excitation dynamics in each case are analyzed based on the measured spatio-temporal distributions of the electron-impact excitation rate by phase resolved optical emission spectroscopy.
Characteristics of fluid flow in the combustion synthesis of TiC from the elements
NASA Technical Reports Server (NTRS)
Valone, S. M.; Behrens, R. G.
1987-01-01
The results of a numerical investigation of finite reservoir effects on capillary spreading at small reservoir dimensions are presently related to wave propagation phenomena in the combustion synthesis of TiC from its two elemental constituents. It is noted that gravitational forces can affect bubble coalescence by nonbuoyant means under the suitable conditions, although these conditions are expected to be rare in combustion synthesis. Finite-curved reservoirs can drive capillary flow due to surface tension and wall contact forces; these cause the wall and the metal to be completely reconfigured during combustion synthesis.
A poroelastic medium saturated by a two-phase capillary fluid
NASA Astrophysics Data System (ADS)
Shelukhin, V. V.
2014-09-01
By Landau's approach developed for description of superfluidity of 2He, we derive a mathematical model for a poroelastic medium saturated with a two-phase capillary fluid. The model describes a three-velocity continuum with conservation laws which obey the basic principles of thermodynamics and which are consistent with the Galilean transformations. In contrast to Biot' linear theory, the equations derived allow for finite deformations. As the acoustic analysis reveals, there is one more longitudinal wave in comparison with the poroelastic medium saturated with a one-phase fluid. We prove that such a result is due to surface tension.
Acoustophoretic particle motion in a square glass capillary
NASA Astrophysics Data System (ADS)
Barnkob, Rune; Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J.
2014-11-01
Acoustofluidics applications often use complex resonator geometries and complex acoustic actuation, which complicates the prediction of the acoustic resonances and the induced forces from the acoustic radiation and the acoustic streaming. Recently, it was shown that simultaneous actuation of two perpendicular half-wave resonances in a square channel can lead to acoustic streaming that will spiral small particles towards the pressure nodal center (Antfolk, Anal. Chem. 84, 2012). This we investigate in details experimentally by examining a square glass capillary with a 400- μm microchannel acoustically actuated around its 2-MHz half-wave transverse resonance. The acoustic actuation leads to the formation of a half-wave resonance in both the vertical and horizontal direction of the microchannel. Due to viscous and dissipative losses both resonances have finite widths, but are shifted in frequency due to asymmetric actuation and fabrication tolerances making the channel not perfectly square. We determine the resonance widths and shift by measuring the 3D3C trajectories of large particles whose motion is fully dominated by acoustic radiation forces, while the induced acoustic streaming is determined by measuring smaller particles weakly influenced by the acoustic radiation force. DFG KA 1808/16-1.
Sanlı, Ceyda; Lohse, Detlef; van der Meer, Devaraj
2014-05-01
A hydrophilic floating sphere that is denser than water drifts to an amplitude maximum (antinode) of a surface standing wave. A few identical floaters therefore organize into antinode clusters. However, beyond a transitional value of the floater concentration ϕ, we observe that the same spheres spontaneously accumulate at the nodal lines, completely inverting the self-organized particle pattern on the wave. From a potential energy estimate we show (i) that at low ϕ antinode clusters are energetically favorable over nodal ones and (ii) how this situation reverses at high ϕ, in agreement with the experiment.
Some special solutions to the Hyperbolic NLS equation
NASA Astrophysics Data System (ADS)
Vuillon, Laurent; Dutykh, Denys; Fedele, Francesco
2018-04-01
The Hyperbolic Nonlinear SCHRöDINGER equation (HypNLS) arises as a model for the dynamics of three-dimensional narrow-band deep water gravity waves. In this study, the symmetries and conservation laws of this equation are computed. The PETVIASHVILI method is then exploited to numerically compute bi-periodic time-harmonic solutions of the HypNLS equation. In physical space they represent non-localized standing waves. Non-trivial spatial patterns are revealed and an attempt is made to describe them using symbolic dynamics and the language of substitutions. Finally, the dynamics of a slightly perturbed standing wave is numerically investigated by means a highly accurate FOURIER solver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trubilko, A. I., E-mail: trubilko.andrey@gmail.com
Coherent scattering of a two-level atom in the field of a quantized standing wave of a micromaser is considered under conditions of initial quantum correlation between the atom and the field. Such a correlation can be produced by a broadband parametric source. The interaction leading to scattering of the atom from the nonuniform field occurs in the dispersion limit or in the wing of the absorption line of the atom. Apart from the quantized field, the atom simultaneously interacts with two classical counterpropagating waves with different frequencies, which are acting in the plane perpendicular to the atom’s propagation velocity andmore » to the wavevector of the standing wave. Joint action of the quantized field and two classical waves induces effective two-photon and Raman resonance interaction on the working transition. The effective Hamiltonian of the interaction is derived using the unitary transformation method developed for a moving atom. A strong effect is detected, which makes it possible to distinguish the correlated initial state of the atom and the field in the scattering of atom from the state of independent systems. For all three waves, scattering is not observed when systems with quantum correlation are prepared using a high-intensity parametric source. Conversely, when the atom interacts only with the nonuniform field of the standing wave, scattering is not observed in the case of the initial factorized state.« less
Glenn, E.P.; Morino, K.; Nagler, P.L.; Murray, R.S.; Pearlstein, S.; Hultine, K.R.
2012-01-01
Tamarix spp. (saltcedar) secretes salts and has been considered to be a major factor contributing to the salinization of river terraces in western US riparian zones. However, salinization can also occur from the capillary rise of salts from the aquifer into the vadose zone. We investigated the roles of saltcedar and physical factors in salinizing the soil profile of a non-flooding terrace at sites on the Cibola National Wildlife Refuge on the Lower Colorado River, USA. We placed salt traps under and between saltcedar shrubs and estimated the annual deposition rate of salts from saltcedar. These were then compared to the quantities and distribution on of salts in the soil profile. Dense stands of saltcedar deposited 0.159kgm -2yr -1 of salts to the soil surface. If this rate was constant since seasonal flooding ceased in 1938 and all of the salts were retained in the soil profile, they could account for 11.4kgm -2 of salt, about 30% of total salts in the profile today. Eliminating saltcedar would not necessarily reduce salts, because vegetation reduces the upward migration of salts in bulk flow from the aquifer. The densest saltcedar stand had the lowest salt levels in the vadose zone in this study. ?? 2011 Elsevier Ltd.
ERIC Educational Resources Information Center
Barniol, Pablo; Zavala, Genaro
2016-01-01
In this article we present several modifications of the mechanical waves conceptual survey, the most important test to date that has been designed to evaluate university students' understanding of four main topics in mechanical waves: propagation, superposition, reflection, and standing waves. The most significant changes are (i) modification of…
Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide
NASA Astrophysics Data System (ADS)
Balinskiy, Michael; Kargar, Fariborz; Chiang, Howard; Balandin, Alexander A.; Khitun, Alexander G.
2018-05-01
This article reports results of experimental investigation of the spin wave interference over large distances in the Y3Fe2(FeO4)3 waveguide using Brillouin-Mandelstam spectroscopy. Two coherent spin waves are excited by the micro-antennas fabricated at the edges of the waveguide. The amplitudes of the input spin waves are adjusted to provide approximately the same intensity in the central region of the waveguide. The relative phase between the excited spin waves is controlled by the phase shifter. The change of the local intensity distribution in the standing spin wave is monitored using Brillouin-Mandelstam light scattering spectroscopy. Experimental data demonstrate the oscillation of the scattered light intensity depending on the relative phase of the interfering spin waves. The oscillations of the intensity, tunable via the relative phase shift, are observed as far as 7.5 mm away from the spin-wave generating antennas at room temperature. The obtained results are important for developing techniques for remote control of spin currents, with potential applications in spin-based memory and logic devices.
Torjesen, Alyssa; Cooper, Leroy L.; Rong, Jian; Larson, Martin G.; Hamburg, Naomi M.; Levy, Daniel; Benjamin, Emelia J.; Vasan, Ramachandran S.; Mitchell, Gary F.
2017-01-01
Impaired regulation of blood pressure upon standing can lead to adverse outcomes, including falls, syncope, and disorientation. Mean arterial pressure typically increases upon standing; however, an insufficient increase or a decline in mean arterial pressure upon standing may result in decreased cerebral perfusion. Orthostatic hypotension has been reported in older people with increased arterial stiffness, whereas the association between orthostatic change in mean arterial pressure and arterial stiffness in young-to-middle aged individuals has not been examined. We analyzed orthostatic blood pressure response and comprehensive hemodynamic data in 3205 participants (1693 [53%] women) in the Framingham Heart Study Third Generation cohort. Participants were predominantly middle-aged (mean age: 46±9 years). Arterial stiffness was assessed using carotid-femoral pulse wave velocity, forward pressure wave amplitude, and characteristic impedance of the aorta. Adjusting for standard cardiovascular disease risk factors, orthostatic change in mean arterial pressure (6.9±7.7 mm Hg) was inversely associated with carotid-femoral pulse wave velocity (partial correlation, rp = −0.084, P<0.0001), forward wave amplitude (rp = −0.129, P<0.0001), and characteristic impedance (rp = −0.094, P<0.0001). The negative relation between forward wave amplitude and change in mean arterial pressure on standing was accentuated in women (P=0.002 for sex interaction). Thus, higher aortic stiffness was associated with a blunted orthostatic increase in mean arterial pressure, even in middle age. The clinical implications of these findings warrant further study. PMID:28264924
Wave propagation and noncollisional heating in neutral loop and helicon discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celik, Y.; Crintea, D. L.; Luggenhoelscher, D.
2011-02-15
Heating mechanisms in two types of magnetized low pressure rf (13.56 MHz) discharges are investigated: a helicon discharge and a neutral loop discharge. Radial B-dot probe measurements demonstrate that the neutral loop discharge is sustained by helicon waves as well. Axial B-dot probe measurements reveal standing wave and beat patterns depending on the dc magnetic field strength and plasma density. In modes showing a strong wave damping, the plasma refractive index attains values around 100, leading to electron-wave interactions. In strongly damped modes, the radial plasma density profiles are mainly determined by power absorption of the propagating helicon wave, whereasmore » in weakly damped modes, inductive coupling dominates. Furthermore, an azimuthal diamagnetic drift is identified. Measurements of the helicon wave phase demonstrate that initial plane wave fronts are bent during their axial propagation due to the inhomogeneous density profile. A developed analytical standing wave model including Landau damping reproduces very well the damping of the axial helicon wave field. This comparison underlines the theory whereupon Landau damping of electrons traveling along the field lines at speeds close to the helicon phase velocity is the main damping mechanism in both discharges.« less
Baffling or Baffled: Improve Your Acoustics.
ERIC Educational Resources Information Center
Abdoo, Frank B.
1981-01-01
Presents techniques for evaluating the acoustics (reverberation time, and standing waves and resonance phenomena) of a band performance room. Gives instructions for building and placing inexpensive baffles (free-standing, portable sound barriers) to correct room defects. (SJL)
NASA Astrophysics Data System (ADS)
Girolamo, D.; Girolamo, L.; Yuan, F. G.
2015-03-01
Nondestructive evaluation (NDE) for detection and quantification of damage in composite materials is fundamental in the assessment of the overall structural integrity of modern aerospace systems. Conventional NDE systems have been extensively used to detect the location and size of damages by propagating ultrasonic waves normal to the surface. However they usually require physical contact with the structure and are time consuming and labor intensive. An automated, contactless laser ultrasonic imaging system for barely visible impact damage (BVID) detection in advanced composite structures has been developed to overcome these limitations. Lamb waves are generated by a Q-switched Nd:YAG laser, raster scanned by a set of galvano-mirrors over the damaged area. The out-of-plane vibrations are measured through a laser Doppler Vibrometer (LDV) that is stationary at a point on the corner of the grid. The ultrasonic wave field of the scanned area is reconstructed in polar coordinates and analyzed for high resolution characterization of impact damage in the composite honeycomb panel. Two methodologies are used for ultrasonic wave-field analysis: scattered wave field analysis (SWA) and standing wave energy analysis (SWEA) in the frequency domain. The SWA is employed for processing the wave field and estimate spatially dependent wavenumber values, related to discontinuities in the structural domain. The SWEA algorithm extracts standing waves trapped within damaged areas and, by studying the spectrum of the standing wave field, returns high fidelity damage imaging. While the SWA can be used to locate the impact damage in the honeycomb panel, the SWEA produces damage images in good agreement with X-ray computed tomographic (X-ray CT) scans. The results obtained prove that the laser-based nondestructive system is an effective alternative to overcome limitations of conventional NDI technologies.
Anomalous dispersion due to hydrocarbons: The secret of reservoir geophysics?
Brown, R.L.
2009-01-01
When P- and S-waves travel through porous sandstone saturated with hydrocarbons, a bit of magic happens to make the velocities of these waves more frequency-dependent (dispersive) than when the formation is saturated with brine. This article explores the utility of the anomalous dispersion in finding more oil and gas, as well as giving a possible explanation about the effect of hydrocarbons upon the capillary forces in the formation. ?? 2009 Society of Exploration Geophysicists.
Ultrasonic atomization of liquids in drop-chain acoustic fountains
Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.
2015-01-01
When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain. PMID:25977591
NASA Astrophysics Data System (ADS)
Farkas, I.; Helbing, D.; Vicsek, T.
2003-12-01
Mexican wave first widely broadcasted during the 1986 World Cup held in Mexico, is a human wave moving along the stands of stadiums as one section of spectators stands up, arms lifting, then sits down as the next section does the same. Here we use variants of models originally developed for the description of excitable media to demonstrate that this collective human behaviour can be quantitatively interpreted by methods of statistical physics. Adequate modelling of reactions to triggering attempts provides a deeper insight into the mechanisms by which a crowd can be stimulated to execute a particular pattern of behaviour and represents a possible tool of control during events involving excited groups of people. Interactive simulations, video recordings and further images are available at the webpage dedicated to this work: http://angel.elte.hu/wave.
Standing wave performance test of IDT-SAW transducer prepared by silk-screen printing
NASA Astrophysics Data System (ADS)
Wang, Ziping; Jiang, Zhengxuan; Chen, Liangbin; Li, Yefei; Li, Meixia; Wang, Shaohan
2018-05-01
With the advantages of high performance and low loss, interdigital surface acoustic wave (IDT-SAW) transducers are widely used in the fields of nondestructive testing, communication and broadcasting. The production, performance and application of surface acoustic wave (SAW) actuators has become a research hotspot. Based on the basic principle of SAW, an IDT-SAW transducer is designed and fabricated using silk-screen printing in this work. The experiment results show that in terms of SAW performance, the fabricated IDT-SAW transducer can generate standing wave fields comparable to those generated using traditional fabrication methods. The resonant frequency response of the IDT-SAW transducer and SAW attenuation coefficient were obtained by experiments. It has provided a method to test the transducer sensing performance by using fabricated IDT-SAW transducer.
Meng, Long; Cai, Feiyan; Zhang, Zidong; Niu, Lili; Jin, Qiaofeng; Yan, Fei; Wu, Junru; Wang, Zhanhui; Zheng, Hairong
2011-01-01
A microfluidic device was developed to precisely transport a single cell or multiple microbubbles by introducing phase-shifts to a standing leaky surface acoustic wave (SLSAW). The device consists of a polydimethyl-siloxane (PDMS) microchannel and two phase-tunable interdigital transducers (IDTs) for the generation of the relative phase for the pair of surface acoustic waves (SAW) propagating along the opposite directions forming a standing wave. When the SAW contacts the fluid medium inside the microchannel, some of SAW energy is coupled to the fluid and the SAW becomes the leaky surface wave. By modulating the relative phase between two IDTs, the positions of pressure nodes of the SLSAW in the microchannel change linearly resulting in the transportation of a single cell or microbubbles. The results also reveal that there is a good linear relationship between the relative phase and the displacement of a single cell or microbubbles. Furthermore, the single cell and the microbubbles can be transported over a predetermined distance continuously until they reach the targeted locations. This technique has its distinct advantages, such as precise position-manipulation, simple to implement, miniature size, and noninvasive character, which may provide an effective method for the position-manipulation of a single cell and microbubbles in many biological and biomedical applications. PMID:22662056
First Imaging Observation of Standing Slow Wave in Coronal Fan Loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pant, V.; Tiwari, A.; Banerjee, D.
2017-09-20
We observe intensity oscillations along coronal fan loops associated with the active region AR 11428. The intensity oscillations were triggered by blast waves that were generated due to X-class flares in the distant active region AR 11429. To characterize the nature of oscillations, we created time–distance maps along the fan loops and noted that the intensity oscillations at two ends of the loops were out of phase. As we move along the fan loop, the amplitude of the oscillations first decreased and then increased. The out-of-phase nature together with the amplitude variation along the loop implies that these oscillations aremore » very likely to be standing waves. The period of the oscillations is estimated to be ∼27 minutes, damping time to be ∼45 minutes, and phase velocity projected in the plane of sky to be ∼65–83 km s{sup −1}. The projected phase speeds were in the range of the acoustic speed of coronal plasma at about 0.6 MK, which further indicates that these are slow waves. To the best of our knowledge, this is the first report on the existence of the standing slow waves in non-flaring fan loops.« less
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-11-01
The acoustic radiation forces arising on a pair of sound impenetrable cylindrical particles of arbitrary cross-sections are derived. Plane progressive, standing or quasi-standing waves with an arbitrary incidence angle are considered. Multiple scattering effects are described using the multipole expansion formalism and the addition theorem of cylindrical wave functions. An effective incident acoustic field on a particular object is determined, and used with the scattered field to derive closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the radiation force components are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the reflection coefficient forming the progressive or the (quasi)standing wave field, the addition theorem, and the expansion coefficients. Numerical examples illustrate the analysis for two rigid circular cross-sections immersed in a non-viscous fluid. Computations for the dimensionless radiation force functions are performed with emphasis on varying the angle of incidence, the interparticle distance, the sizes of the particles as well as the characteristics of the incident field. Depending on the interparticle distance and angle of incidence, one of the particles yields neutrality; it experiences no force and becomes unresponsive (i.e., ;invisible;) to the linear momentum transfer of the effective incident field due to multiple scattering cancellation effects. Moreover, attractive or repulsive forces between the two particles may arise depending on the interparticle distance, the angle of incidence and size parameters of the particles. This study provides a complete analytical method and computations for the axial and transverse radiation force components in multiple acoustic scattering encompassing the cases of plane progressive, standing or quasi-standing waves of arbitrary incidence by a pair of scatterers. Potential applications concern the prediction of the forces used in acoustically-engineered metamaterials with reconfigurable periodicities, cloaking devices, and liquid crystals to name a few examples.
Sivakumar, Siddharth S; Namath, Amalia G; Galán, Roberto F
2016-01-01
Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10-20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10-16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of "thermodynamic" equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium.
Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.
2016-01-01
Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10–20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10–16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of the principal components follow a Boltzmann distribution, or equivalently, that standing waves are in a sort of “thermodynamic” equilibrium during non-REM sleep. By extension, we speculate that consciousness emerges as the brain dynamics deviate from such equilibrium. PMID:27445777
Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface
NASA Astrophysics Data System (ADS)
Liu, Xinan; Wang, An; Wang, Shuang; Dai, Dejun
2018-05-01
The cavity and central jet generated by the impact of a single water drop on a deep-water surface in a wind field are experimentally studied. Different experiments are performed by varying the impacting drop diameter and wind speed. The contour profile histories of the cavity (also called crater) and central jet (also called stalk) are measured in detail with a backlit cinematic shadowgraph technique. The results show that shortly after the drop hits the water surface an asymmetrical cavity appears along the wind direction, with a train of capillary waves on the cavity wall. This is followed by the formation of an inclined central jet at the location of the drop impact. It is found that the wind has little effect on the penetration depth of the cavity at the early stage of the cavity expansion, but markedly changes the capillary waves during the retraction of the cavity. The capillary waves in turn shift the position of the central jet formation leeward. The dynamics of the central jet are dominated by two mechanisms: (i) the oblique drop impact produced by the wind and (ii) the wind drag force directly acting on the jet. The maximum height of the central jet, called the stalk height, is drastically affected by the wind, and the nondimensional stalk height H /D decreases with increasing θ Re-1 , where D is the drop diameter, θ is the impingement angle of drop impact, and Re=ρaUwD /μa is the Reynolds number with air density ρa, wind speed Uw, and air viscosity μa.
Single-frequency oscillation of thin-disk lasers due to phase-matched pumping.
Vorholt, Christian; Wittrock, Ulrich
2017-09-04
We present a novel pump concept that should lead to single-frequency operation of thin-disk lasers without the need for etalons or other spectral filters. The single-frequency operation is due to matching the standing wave pattern of partially coherent pump light to the standing wave pattern of the laser light inside the disk. The output power and the optical efficiency of our novel pump concept are compared with conventional pumping. The feasibility of our pump concept was shown in previous experiments.
Gyro-elastic beams for the vibration reduction of long flexural systems.
Carta, G; Jones, I S; Movchan, N V; Movchan, A B; Nieves, M J
2017-07-01
The paper presents a model of a chiral multi-structure incorporating gyro-elastic beams. Floquet-Bloch waves in periodic chiral systems are investigated in detail, with the emphasis on localization and the formation of standing waves. It is found that gyricity leads to low-frequency standing modes and generation of stop-bands. A design of an earthquake protection system is offered here, as an interesting application of vibration isolation. Theoretical results are accompanied by numerical simulations in the time-harmonic regime.
Realization of all-optical switch and diode via Raman gain process using a Kerr field
NASA Astrophysics Data System (ADS)
Abbas, Muqaddar; Qamar, Sajid; Qamar, Shahid
2016-08-01
The idea of optical photonic crystal, which is generated using two counter-propagating fields, is revisited to study gain-assisted all-optical switch and diode using Kerr field. Two counter-propagating fields with relative detuning Δ ν generate standing-wave field pattern which interacts with a four-level atomic system. The standing-wave field pattern acts like a static photonic crystal for Δ ν =0 , however, it behaves as a moving photonic crystal for Δ ν \
NASA Astrophysics Data System (ADS)
Balmashnov, A. A.; Kalashnikov, A. V.; Kalashnikov, V. V.; Stepina, S. P.; Umnov, A. M.
2018-01-01
The formation of a spatially localized plasma with a high brightness has been experimentally observed in a dielectric plasma guide under the electron cyclotron resonance discharge at the excitation of a standing ion-acoustic wave. The results obtained show the possibility of designing compact high-intensity radiation sources with a spectrum determined by the working gas or gas mixture type, high-intensity chemically active particle flow sources, and plasma thrusters for correcting orbits of light spacecraft.
Dynamic Cluster Size Effects on the Glass Transition of Thin Films
NASA Astrophysics Data System (ADS)
Wool, Richard
2013-03-01
During cooling from the melt of amorphous materials, it has been shown experimentally that dynamic rigid clusters form in equilibrium with the liquid and their relaxation behavior determines the kinetic nature of Tg [Stanzione et al, J. Non Cryst Solids 357(2): 311-319 2011]. The fractal clusters of size R ~ 5-60 nm (polystyrene) have relaxation times τ ~ R1.8 (solid-to-liquid). They are analogous to sub critical size embryos during crystallization as the amorphous material tries to crystallize due to the strong intermolecular forces at T < Tm ; they are not related to density fluctuations or surface capillary waves. In free-standing thin films of thickness h, several important events occur: (a) The large clusters with R > h are excluded and the thin films have an average faster relaxation time compared to the bulk; consequently Tg decreases as h decreases. (b) The segmental dynamics at the 1 nm scale are largely not affected by nanoconfinement since Tg is determined only by the cluster dynamics with R >> 1 nm. (c) The mobile layer on the surface of free standing films is due to the presence of smaller clusters on the surface which will disappear with increasing rate of testing. (d) With adhesion to a solid substrate, the surface mobile layer disappears as the surface clusters size grow and the change in Tg is suppressed. (e) Physical aging is controlled by the relaxation of the rigid fractal clusters and in thin films, physical aging will occur more rapidly compared to the bulk. (f) The large effect of molecular weight M on Tg appears to be related to the effect on the cluster size distribution giving smaller clusters and faster relation times with increasing M. These results are in accord with the Twinkling Fractal theory of the glass transition.
NASA Technical Reports Server (NTRS)
Huehnerfuss, H.; Alpers, W.; Jones, W. L.; Lange, P. A.; Richter, K.
1981-01-01
Open ocean and wave tank experiments were carried out with the aim of studying the damping of capillary and gravity waves by a monomolecular film. These films of biogenic origin influence air-sea interaction processes and thereby affect the use of remote sensing techniques in oceanography. Measurement was carried out by wave staffs, by a coherent X band microwave scatterometer mounted on a sea-based platform, and by an incoherent K band microwave scatterometer carried by an aircraft under moderate wind conditions. A wave attenuation of about 40-60% is observed in the frequency range between 3.2 and 16 Hz. Tank experiments show that a direct influence of oleyl alcohol surface films on wave damping is confined to frequencies equal to or greater than 2 Hz; a further indirect effect of films on the damping of ocean waves in the frequency range between 0.12 and 0.7 Hz (by modifying the wind input and wave-wave interaction mechanisms) is also indicated
WAVE2 is required for directed cell migration and cardiovascular development.
Yamazaki, Daisuke; Suetsugu, Shiro; Miki, Hiroaki; Kataoka, Yuki; Nishikawa, Shin-Ichi; Fujiwara, Takashi; Yoshida, Nobuaki; Takenawa, Tadaomi
2003-07-24
WAVE2, a protein related to Wiskott-Aldrich syndrome protein, is crucial for Rac-induced membrane ruffling, which is important in cell motility. Cell movement is essential for morphogenesis, but it is unclear how cell movement is regulated or related to morphogenesis. Here we show the physiological functions of WAVE2 by disruption of the WAVE2 gene in mice. WAVE2 was expressed predominantly in vascular endothelial cells during embryogenesis. WAVE2-/- embryos showed haemorrhages and died at about embryonic day 10. Deficiency in WAVE2 had no significant effect on vasculogenesis, but it decreased sprouting and branching of endothelial cells from existing vessels during angiogenesis. In WAVE2-/- endothelial cells, cell polarity formed in response to vascular endothelial growth factor, but the formation of lamellipodia at leading edges and capillaries was severely impaired. These findings indicate that WAVE2-regulated actin reorganization might be required for proper cell movement and that a lack of functional WAVE2 impairs angiogenesis in vivo.
Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics
Abraham, Bernard M.; Ketterson, John B.; Bohanon, Thomas M.; Mikrut, John M.
1994-01-01
A non-contact method and apparatus for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement mechanical characteristics' fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use.
Capillary waves' dynamics at the nanoscale
NASA Astrophysics Data System (ADS)
Delgado-Buscalioni, Rafael; Chacón, Enrique; Tarazona, Pedro
2008-12-01
We study the dynamics of thermally excited capillary waves (CW) at molecular scales, using molecular dynamics simulations of simple liquid slabs. The analysis is based on the Fourier modes of the liquid surface, constructed via the intrinsic sampling method (Chacón and Tarazona 2003 Phys. Rev. Lett. 91 166103). We obtain the time autocorrelation of the Fourier modes to get the frequency and damping rate Γd(q) of each mode, with wavenumber q. Continuum hydrodynamics predicts \\Gamma (q) \\propto q\\gamma (q) and thus provides a dynamic measure of the q-dependent surface tension, γd(q). The dynamical estimation is much more robust than the structural prediction based on the amplitude of the Fourier mode, γs(q). Using the optimal estimation of the intrinsic surface, we obtain quantitative agreement between the structural and dynamic pictures. Quite surprisingly, the hydrodynamic prediction for CW remains valid up to wavelengths of about four molecular diameters. Surface tension hydrodynamics break down at shorter scales, whereby a transition to a molecular diffusion regime is observed.
NASA Astrophysics Data System (ADS)
Farsoiya, Palas Kumar; Dasgupta, Ratul
2017-11-01
When the interface between two radially unbounded, viscous fluids lying vertically in a stable configuration (denser fluid below) at rest, is perturbed, radially propagating capillary-gravity waves are formed which damp out with time. We study this process analytically using a recently developed linearised theory. For small amplitude initial perturbations, the analytical solution to the initial value problem, represented as a linear superposition of Bessel modes at time t = 0 , is found to agree very well with results obtained from direct numerical simulations of the Navier-Stokes equations, for a range of initial conditions. Our study extends the earlier work by John W. Miles who studied this initial value problem analytically, taking into account, a single viscous fluid only. Implications of this study for the mechanistic understanding of droplet impact into a deep pool, will be discussed. Some preliminary, qualitative comparison with experiments will also be presented. We thank SERB Dept. Science & Technology, Govt. of India, Grant No. EMR/2016/000830 for financial support.
Standing Waves in an Elastic Spring: A Systematic Study by Video Analysis
ERIC Educational Resources Information Center
Rodrigues Ventura, Daniel; Simeão de Carvalho, Paulo; Adriano Dias, Marco
2017-01-01
The word "wave" is part of the daily language of every student. However, the physical understanding of the concept demands a high level of abstract thought. In physics, waves are oscillating variations of a physical quantity that involve the transfer of energy from one point to another, without displacement of matter. A wave can be…
Micromachined chemical jet dispenser
Swierkowski, S.P.
1999-03-02
A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.
Micromachined chemical jet dispenser
Swierkowski, Steve P.
1999-03-02
A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.
Aspects of hysteresis in unsaturated porous media flow
NASA Astrophysics Data System (ADS)
van Duijn, Hans
2016-04-01
About 20 years ago, Peter Raats and I wrote a technical note related to the horizontal redistribution in unsaturated porous media with hysteresis in the capillary pressure (P.A.C. Raats & C.J. van Duijn, A note on horizontal redistribution with capillary hysteresis, WWR 31, p. 231-232, 1995). In the first part of my presentation, I will revisit the results of that paper. In particular the cases of unconventional flow, where the water flows from the dry region to the wet region. A comparison will be made with results obtained with the current interface area models as introduced by Gray & Hassanizadeh. I will explain and outline the differences. In the second part, travelling wave solutions of Richards equation with gravity and with hysteresis in both the capillary pressure and relative permeability will be discussed. It will be explained why such solutions oscillate in space-time and how they behave as the hysteresis regularization vanishes.
Relationship between wind, waves and radar backscatter
NASA Technical Reports Server (NTRS)
Katsaros, Kristina B.; Ataktuerk, Serhad S.
1991-01-01
The aim of the research was to investigate the relationship between wind, waves, and radar backscatter from water surface. To this end, three field experiments with periods of 2 to 4 weeks were carried out during summer months in 1988, 1989 and 1990. For these periods, the University of Washington group provided (1) environmental parameters such as wind speed, wind stress, and atmospheric stratification through measurements of surface fluxes (of momentum, sensible heat and latent heat) and of air and water temperatures; and (2) wave height spectra including both the dominant waves and the short gravity-capillary waves. Surface flux measurements were performed by using our well tested instruments: a K-Gill twin propeller-vane anemometer and a fast response thermocouple psychrometer. Wave heights were measured by a resistance wire wave gauge. The University of Kansas group was responsible for the operation of the microwave radars.
Bound states in the continuum on periodic structures: perturbation theory and robustness.
Yuan, Lijun; Lu, Ya Yan
2017-11-01
On periodic structures, a bound state in the continuum (BIC) is a standing or propagating Bloch wave with a frequency in the radiation continuum. Some BICs (e.g., antisymmetric standing waves) are symmetry protected, since they have incompatible symmetry with outgoing waves in the radiation channels. The propagating BICs do not have this symmetry mismatch, but they still crucially depend on the symmetry of the structure. In this Letter, a perturbation theory is developed for propagating BICs on two-dimensional periodic structures. The Letter shows that these BICs are robust against structural perturbations that preserve the symmetry, indicating that these BICs, in fact, are implicitly protected by symmetry.
A field data assessment of contemporary models of beach cusp formation
Allen, J.R.; Psuty, N.P.; Bauer, B.O.; Carter, R.W.G.
1996-01-01
Cusp formation was observed during an instrumented, daily profiled, time series of a reflective beach in Canaveral National Seashore, Florida on January 5, 1988. The monitored cusp embayment formed by erosion of the foreshore and the cusp series had a mean spacing of approximately 28 m. During this time, inshore fluid flows were dominated by two standing edge waves at frequencies of 0.06 Hz (primary) and 0.035 Hz (secondary) whereas incident waves were broadbanded at 0.12-0.16 Hz. Directly measured flows (and indirectly estimated swash excursion) data support both the standing wave subharmonic model and the self-organization model of cusp formation in this study.
Wu, Mu-ying; Ling, Dong-xiong; Ling, Lin; Li, William; Li, Yong-qing
2017-01-01
Optical manipulation and label-free characterization of nanoscale structures open up new possibilities for assembly and control of nanodevices and biomolecules. Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped particle, but is generally less effective for individual nanoparticles. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints. PMID:28211526
NASA Astrophysics Data System (ADS)
Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe
2017-11-01
We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.
Effects of transport coefficients on excitation of flare-induced standing slow-mode waves
NASA Astrophysics Data System (ADS)
Wang, Tongjiang; Ofman, Leon; Davila, Joseph
2017-08-01
The flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA, and interpreted as the slow-mode standing waves. By means of the seismology technique we have, for the first time, determined the transport coefficients in the hot (>9 MK) flare plasma, and found that thermal conductivity is suppressed by at least 3 times and viscosity coefficient is enhanced by a factor of 15 as the upper limit (Wang et al. 2015, ApJL, 811, L13). In this presentation, we first discuss possible causes for conduction suppression and viscosity enhancements. Then we use the nonlinear MHD simulations to validate the seismology method that is based on linear analytical analysis, and demonstrate the inversion scheme for determining transport coefficients using numerical parametric study. Finally, we show how the seismologically-determined transport coefficients are crucial for understanding the excitation of the observed standing slow-mode waves in coronal loops and the heating of the loop plasma by a footpoint flare.
Cavitation Bubble Streaming in Ultrasonic-Standing-Wave Field
NASA Astrophysics Data System (ADS)
Nomura, Shinfuku; Mukasa, Shinobu; Kuroiwa, Masaya; Okada, Yasuyuki; Murakami, Koichi
2005-05-01
The mechanism of cavitation bubble streaming by ultrasonic vibration in a water tank was experimentally investigated. A standard ultrasonic cleaner unit with a resonant frequency of 40 kHz was used as an ultrasonic generator. The behavior of the streaming was visualized by the schlieren method and sonochemical luminescence, and the velocity of the streaming was measured by laser Doppler velocity measurement equipment (LDV). The cavitation bubble streaming has two structures. A cavitation cloud, which consists of many cavitation bubbles, is shaped like a facing pair of bowls with a diameter of approximately 1/3 the wavelength of the standing wave, and moves inside the standing-wave field with a velocity of 30 to 60 mm/s. The cavitation bubbles move intensely in the cloud with a velocity of 5 m/s at an ultrasonic output power of 75 W. The streaming is completely different from conventional acoustic streaming. Also the cavitation bubble is generated neither at the pressure node nor at the antinode.
Exchange anisotropy pinning of a standing spin-wave mode
NASA Astrophysics Data System (ADS)
Magaraggia, R.; Kennewell, K.; Kostylev, M.; Stamps, R. L.; Ali, M.; Greig, D.; Hickey, B. J.; Marrows, C. H.
2011-02-01
Standing spin waves in a thin film are used as sensitive probes of interface pinning induced by an antiferromagnet through exchange anisotropy. Using coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin-wave thickness mode in Ni80Fe20/Ir25Mn75 exchange-biased bilayers was studied for a range of Ir25Mn75 thicknesses. We show that pinning of the standing mode can be used to amplify, relative to the fundamental resonance, frequency shifts associated with exchange bias. The shifts provide a unique “fingerprint” of the exchange bias and can be interpreted in terms of an effective ferromagnetic film thickness and ferromagnet-antiferromagnet interface anisotropy. Thermal effects are studied for ultrathin antiferromagnetic Ir25Mn75 thicknesses, and the onset of bias is correlated with changes in the pinning fields. The pinning strength magnitude is found to grow with cooling of the sample, while the effective ferromagnetic film thickness simultaneously decreases. These results suggest that exchange bias involves some deformation of magnetic order in the interface region.
The effect of standing acoustic waves on the formation of laser-induced air plasmas.
Craig, Stephanie M; Brownell, Kara; O'Leary, Brendon; Malfitano, Christopher; Kelley, Jude A
2013-03-01
The expected location of an air plasma produced by a focused YAG laser pulse has been found to be influenced by the acoustics of the surrounding environment. In open air, the expected location of a laser-induced air plasma is centered close to the focal point of the lens focusing the laser beam. When confining the same beam coaxially along the interior of a quartz tube, the expected location of the air plasma shifts away from the focal point, toward the focusing lens, in a region of less laser fluence. This shift is caused by an interaction between standing acoustic waves (formed from sound waves produced by previous laser-induced plasmas) and the impinging laser pulse. Standing acoustic waves in a tube produce areas (antinodes) of slightly higher and slightly lower pressure than ambient atmospheric conditions, that in turn have a noticeable affect on the probability of creating an air plasma at a given location. This leads to two observed phenomena: Increased probability of air plasma formation before the optical focal point is reached, and the formation of distinct (separate) air plasmas at the antinodes themselves.
Xiping Wang; Robert J. Ross; Steve Verrill; Eini Lowell; Jamie Barbour
2015-01-01
In this study, we examined the potential of using a time-of-flight (TOF) acoustic wave method to evaluate thinning and biosolid fertilization effects on acoustic velocity of trees and modulus of elasticity (MOE) of structural lumber in a 76-year-old Douglas-fir (Pseudotsuga menziesii, (Mirb., Franco)) experimental stand. The stand consisted of four...
Prediction of wood Quality in Small-Diameter Douglas-Fir using site and Stand Characteristics
C.D. Morrow; T.M. Gorman; J.W. Evans; D.E. Kretschmann; C.A. Hatfield
2013-01-01
Standing stress wave measurements were taken on 274 small-diameter Douglas-fir trees in western Montana. Stand, site, and soil measurements collected in the field and remotely through geographical information system (GIS) data layers were used to model dynamic modulus of elasticity (DMOE) in those trees. The best fit linear model developed resulted in an adjusted
Ultrasonic monitoring of spontaneous imbibition experiments: Acoustic signature of fluid migration
NASA Astrophysics Data System (ADS)
David, Christian; Barnes, Christophe; Desrues, Mathilde; Pimienta, Lucas; Sarout, Joël.; Dautriat, Jérémie
2017-07-01
Capillary rise experiments (spontaneous imbibition tests) were conducted in the laboratory with ultrasonic and X-ray monitoring on the Sherwood sandstone and the Majella grainstone. The aim was to provide a direct comparison between the variation in seismic attributes (amplitude, velocity, spectral content, and energy) and the actual fluid distribution in the rock. Two pairs of ultrasonic P wave sensors located at different heights on a cylindrical rock specimen recorded every 5 s the waveforms when capillary forces make water rise up into the rock from the bottom in contact with a water tank. Simultaneously, computerized tomography scan images of a vertical cross section were also recorded. Two important results were found. (i) The amplitude of the first P wave arrival is impacted by the upward moving fluid front before the P wave velocity is, while the fluid front has not yet reached the sensors level. In contrast, the P wave velocity decreases when the fluid front reaches the Fresnel clearance zone. The spectral analysis of the waveforms shows that the peak frequency amplitude is continuously decreasing without noticeable frequency shift. (ii) A methodology based on the calculation of the analytical signal and instantaneous phase was designed to decompose each waveform into discrete wavelets associated with direct or reflected waves. The energy carried by the wavelets is very sensitive to the fluid substitution process: the coda wavelets related to reflections on the bottom end face of the specimen are impacted as soon as imbibition starts and can be used as a precursor for the arriving fluid.
Energy-banded ions in Saturn's magnetosphere
NASA Astrophysics Data System (ADS)
Thomsen, M. F.; Badman, S. V.; Jackman, C. M.; Jia, X.; Kivelson, M. G.; Kurth, W. S.
2017-05-01
Using data from the Cassini Plasma Spectrometer ion mass spectrometer, we report the first observation of energy-banded ions at Saturn. Observed near midnight at relatively high magnetic latitudes, the banded ions are dominantly H+, and they occupy the range of energies typically associated with the thermal pickup distribution in the inner magnetosphere (L < 10), but their energies decline monotonically with increasing radial distance (or time or decreasing latitude). Their pitch angle distribution suggests a source at low (or slightly southern) latitudes. The band energies, including their pitch angle dependence, are consistent with a bounce-resonant interaction between thermal H+ ions and the standing wave structure of a field line resonance. There is additional evidence in the pitch angle dependence of the band energies that the particles in each band may have a common time of flight from their most recent interaction with the wave, which may have been at slightly southern latitudes. Thus, while the particles are basically bounce resonant, their energization may be dominated by their most recent encounter with the standing wave.
Transverse kink oscillations in the presence of twist
NASA Astrophysics Data System (ADS)
Terradas, J.; Goossens, M.
2012-12-01
Context. Magnetic twist is thought to play an important role in coronal loops. The effects of magnetic twist on stable magnetohydrodynamic (MHD) waves is poorly understood because they are seldom studied for relevant cases. Aims: The goal of this work is to study the fingerprints of magnetic twist on stable transverse kink oscillations. Methods: We numerically calculated the eigenmodes of propagating and standing MHD waves for a model of a loop with magnetic twist. The azimuthal component of the magnetic field was assumed to be small in comparison to the longitudinal component. We did not consider resonantly damped modes or kink instabilities in our analysis. Results: For a nonconstant twist the frequencies of the MHD wave modes are split, which has important consequences for standing waves. This is different from the degenerated situation for equilibrium models with constant twist, which are characterised by an azimuthal component of the magnetic field that linearly increases with the radial coordinate. Conclusions: In the presence of twist standing kink solutions are characterised by a change in polarisation of the transverse displacement along the tube. For weak twist, and in the thin tube approximation, the frequency of standing modes is unaltered and the tube oscillates at the kink speed of the corresponding straight tube. The change in polarisation is linearly proportional to the degree of twist. This has implications with regard to observations of kink modes, since the detection of this variation in polarisation can be used as an indirect method to estimate the twist in oscillating loops.
The Physical Meaning Of The Titius - Bode Formula
NASA Astrophysics Data System (ADS)
Smirnov, Vladimir
The process of evolution of the solar system means the development of the structure of gas-dust cloud after the initial impulse by way of the impact of a supernova explosion. Thus the wave motions are practically excluded from consideration. As the experience shows at the time of the formation of standing waves with the observed acoustic resonance the wave motions at the nodal points can accumulate clumps of matter that make up the primary cloud. (A similar pattern is observed in the experiments of Chladni E.). J. Kepler's plan of the solar system, which took into account the distribution of the planets according to their distance from the Sun, was built as a series of inscribed and circumscribed Platonic figures (J. Kepler ;1939): Welt-Harmonik, Verlag R.Oldenbourg, Munchen-Berlin,p. 403). According to his scheme the average distances of the planets from the Sun could be obtained in the form of the radiuses of the circumscribed spheres. This fact indicates the existence of a common measure of the Platonic figures constructed in such a way. In the time of Kepler the concepts of the wavelength were not yet used. That’s why Kepler could come to the conclusion that the length of a standing wave lambda, emitted by the central formation of the Solar system that forms waves of energy into space, which are shaping with the reflected waves from the interface of more dense environmental conditions of the gaseous nebula and less dense environmental conditions of the surrounding space, could serve as a common measure for measuring distances of the planets from the sun. If the standing wave in the one-dimensional case is formed in the Y axis direction with the displacement X, the wave equation can be written as : X=acos(2pi\\char92lambda)Ycos(2pi\\char92T)t The planets are being formed in the nodes generated in the wave where the oscillation amplitude is zero. In astronomical units the distances from the sun are determined at the points along the axisY=((2n+1)\\char924)lambda, wherein n=0,1,2... The comparison of the observed and calculated distances from the planets to the Sun and the distances from the satellites to the planets according to the proposed wave principle one can find in the author's work: 'The Wave Principle of Material Distribution within the Solar System’, published in Proceedings of the International Meteor Conference, Cerkno, Slovenia, 20 - 23 September 2001 Pp 64 - 71 The above formula for the distances from the planets to the Sun, the distances from the planets to their satellites, reveals the physical meaning of the well-known formula, composed empirically by Bode - Titius: Y=0,4+0,3*2 (n) , wherein n=1,2,4,5... Note that in some cases the standing waves are responsible for the formation of symmetrical shapes of galaxies by cosmic objects that resemble the inscribed and circumscribed Platonic figures and the vortex formation in the form of hexagon on Saturn recently shown on the Internet. According to the observations the elementary calculation shows that the hexagon vortex is formed by a standing wave with a wavelength lambda=6250km According to the reports of the Hubble telescope’s (Hubble EP) observations in outer space the energy waves are observed in the substance of the outer space while the evolution of galaxies and other objects, and the length of these energy waves reaches lambda hundreds of light years.
Degenerate mixing of plasma waves on cold, magnetized single-species plasmas
NASA Astrophysics Data System (ADS)
Anderson, M. W.; O'Neil, T. M.; Dubin, D. H. E.; Gould, R. W.
2011-10-01
In the cold-fluid dispersion relation ω =ωp/[1+(k⊥/kz)2]1/2 for Trivelpiece-Gould waves on an infinitely long magnetized plasma cylinder, the transverse and axial wavenumbers appear only in the combination k⊥/kz. As a result, for any frequency ω <ωp, there are infinitely many degenerate waves, all having the same value of k⊥/kz. On a cold finite-length plasma column, these degenerate waves reflect into one another at the ends; thus, each standing-wave normal mode of the bounded plasma is a mixture of many degenerate waves, not a single standing wave as is often assumed. A striking feature of the many-wave modes is that the short-wavelength waves often add constructively along resonance cones given by dz /dr=±(ωp2/ω2-1)1/2. Also, the presence of short wavelengths in the admixture for a predominantly long-wavelength mode enhances the viscous damping beyond what the single-wave approximation would predict. Here, numerical solutions are obtained for modes of a cylindrical plasma column with rounded ends. Exploiting the fact that the modes of a spheroidal plasma are known analytically (the Dubin modes), a perturbation analysis is used to investigate the mixing of low-order, nearly degenerate Dubin modes caused by small deformations of a plasma spheroid.
Traveling waves and chaos in thermosolutal convection
NASA Technical Reports Server (NTRS)
Deane, A. E.; Toomre, J.; Knobloch, E.
1987-01-01
Numerical experiments on two-dimensional thermosolutal convection reveal oscillations in the form of traveling, standing, modulated, and chaotic waves. Transitions between these wave forms and steady convection are investigated and compared with theory. Such rich nonlinear behavior is possible in fluid layers of wide horizontal extent, and provides an explanation for waves observed in recent laboratory experiments with binary fluid mixtures.
Standing-based office work shows encouraging signs of attenuating post-prandial glycaemic excursion.
Buckley, John P; Mellor, Duane D; Morris, Michael; Joseph, Franklin
2014-02-01
The main aim of this study was to compare two days of continuous monitored capillary blood glucose (CGM) responses to sitting and standing in normally desk-based workers. This open repeated-measures study took place in a real office environment, during normal working hours and subsequent CGM overnight measures in 10 participants aged 21-61 years (8 female). Postprandial (lunch) measures of: CGM, accelerometer movement counts (MC) heart rate, energy expenditure (EE) and overnight CGM following one afternoon of normal sitting work compared with one afternoon of the same work performed at a standing desk. Area-under-the-curve analysis revealed an attenuated blood glucose excursion by 43% (p=0.022) following 185 min of standing (143, 95% CI 5.09 to 281.46 mmol/L min) compared to sitting work (326; 95% CI 228 to 425 mmol/L min). Compared to sitting, EE during an afternoon of standing work was 174 kcals greater (0.83 kcals/min; p=0.028). The accelerometer MC showed no differences between the afternoons of seated versus standing work; reported differences were thus a function of the standing work and not from additional physical movements around the office. This is the first known 'office-based' study to provide CGM measures that add some of the needed mechanistic information to the existing evidence-base on why avoiding sedentary behaviour at work could lead to a reduced risk of cardiometabolic diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, H.; Dubois, D.; Russell, D.
1996-03-01
This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research concentrated on the time dependence of the heater, induced-turbulence, and electron-density profiles excited in the ionosphere by a powerful radio-frequency heater wave. The macroscopic density is driven by the ponderomotive pressure and the density self-consistently determines the heater propagation. For typical parameters of the current Arecibo heater, a dramatic quasi-periodic behavior was found. For about 50 ms after turn-on of the heater wave, the turbulence is concentrated at the first standing-wave maximum of the heater near reflectionmore » altitude. From 50--100 ms the standing-wave pattern drops by about 1--2 km in altitude and the quasi-periodicity reappears at the higher altitudes with a period of roughly 50 ms. This behavior is due to the half-wavelength density depletion grating that is set up by the ponderomotive pressure at the maxima of the heater standing-wave pattern. Once the grating is established the heater can no longer propagate to higher altitudes. The grating is then unsupported by the heater at these altitudes and decays, allowing the heater to propagate again and initiate another cycle. For stronger heater powers, corresponding to the Arecibo upgrade and the HAARP heater now under construction, the effects are much more dramatic.« less
Nopp, P; Zhao, T X; Brown, B H; Wang, W
1996-11-01
ECG-gated electrical impedance tomographic spectroscopy (EITS) measurements of the lungs were taken on seven normal subjects in the frequency range 9.6 kHz to 614.4 kHz. The results show that in late systole the resistivity p' relative to the R-wave (i.e. p' = 1 at the R-wave) decreases consistently within the lung. In addition there arises an increase in p' in early systole towards the periphery of the lung. Frequency behaviour of p' changes with location. At all times after the R-wave, in the centre of the lung p' is higher at higher frequency f whereas in the periphery it is lower at higher f. The principal decrease in p' can be explained by increasing pulmonary blood volume due to cardiac contraction. The early systolic increase is presumably due to venous return to the left atrium locally leading blood output from the right ventricle which is delayed by the windkessel effect. Based on a model taking extracapillary and capillary blood volume increase into account, the change in frequency behaviour of p' is explained by regional variations in extracapillary blood vessel size determining the relative contributions of extracapillary blood volume and capillary blood volume change to p' at a certain frequency.
NASA Astrophysics Data System (ADS)
Buffoni, Boris; Groves, Mark D.; Wahlén, Erik
2017-12-01
Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3} ) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3} . A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.
NASA Astrophysics Data System (ADS)
Buffoni, Boris; Groves, Mark D.; Wahlén, Erik
2018-06-01
Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3}) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3}. A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.
Interfacial waves generated by contact line motion through electrowetting
NASA Astrophysics Data System (ADS)
Ha, Jonghyun; Park, Jaebum; Kim, Yunhee; Bae, Jungmok; Kim, Ho-Young
2013-11-01
The contact angle of a liquid-fluid interface can be effectively modulated by EWOD (electrowetting on dielectric). Rapid movement of the contact line, which can be achieved by swift change of voltages at the electrodes, can give rise to interfacial waves under the strong influence of surface tension. Many optofluidic devices employing EWOD actuation, such as lenses, three-dimensional displays and laser radar, use two different liquids in a single cell, implying that the motions of the two liquids should be considered simultaneously to solve the dynamics of interfacial waves. Furthermore, the capillary waves excited by moving contact lines, which inherently involve slipping flows at solid boundaries, pose an interesting problem that has not been treated so far. We perform a perturbation analysis for this novel wave system to find the dispersion relation that relates the wavenumber, and the decay length over which the wave is dissipated by viscous effects. We experimentally corroborate our theory.
NASA Technical Reports Server (NTRS)
Laney, C. C., Jr.
1974-01-01
A microwave interferometer technique to determine the front interface velocity of a high enthalpy gas flow, is described. The system is designed to excite a standing wave in an expansion tube, and to measure the shift in this standing wave as it is moved by the test gas front. Data, in the form of a varying sinusoidal signal, is recorded on a high-speed drum camera-oscilloscope combination. Measurements of average and incremental velocities in excess of 6,000 meters per second were made.
Ion flux oscillations associated with a radially polarized transverse Pc 5 magnetic pulsation
NASA Technical Reports Server (NTRS)
Takahashi, K.; Mcentire, R. W.; Lui, A. T. Y.; Potemra, T. A.
1990-01-01
The AMPTE CCE spacecraft observed a transverse Pc 5 magnetic pulsation (period of about 200 s) at 2155-2310 UT on November 20, 1985, at a radial distance of 5.7 - 7.0 earth radii, at a magnetic latitude of 1.2 - 19 deg, and near 1300 magnetic local time. The magnetic pulsation exhibits properties consistent with a standing Alfven wave with a second-harmonic standing structure along the ambient magnetic field. The amplitude and the phase of the flux pulsation are found to be a function of the particle detector look direction and the particle energy. The observed energy dependence of the shift is interpreted as the result of a drift-bounce resonance of the ions with the wave. From this interpretation it follows that the wave propagated westward with an azimuthal wave number of approximately 100. Thus the study demonstrates that particle data can be useful for determining the spatial structure of some types of ULF waves.
Shi, Jinjie; Yazdi, Shahrzad; Lin, Sz-Chin Steven; Ding, Xiaoyun; Chiang, I-Kao; Sharp, Kendra; Huang, Tony Jun
2011-07-21
Three-dimensional (3D) continuous microparticle focusing has been achieved in a single-layer polydimethylsiloxane (PDMS) microfluidic channel using a standing surface acoustic wave (SSAW). The SSAW was generated by the interference of two identical surface acoustic waves (SAWs) created by two parallel interdigital transducers (IDTs) on a piezoelectric substrate with a microchannel precisely bonded between them. To understand the working principle of the SSAW-based 3D focusing and investigate the position of the focal point, we computed longitudinal waves, generated by the SAWs and radiated into the fluid media from opposite sides of the microchannel, and the resultant pressure and velocity fields due to the interference and reflection of the longitudinal waves. Simulation results predict the existence of a focusing point which is in good agreement with our experimental observations. Compared with other 3D focusing techniques, this method is non-invasive, robust, energy-efficient, easy to implement, and applicable to nearly all types of microparticles.
A model for the harmonic of compressional Pc 5 waves
NASA Technical Reports Server (NTRS)
Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Acuna, M. H.
1987-01-01
Compressional Pc 5 magnetic waves in the magnetosphere are a unique phenomenon showing a nonsinusoidal waveform in spite of a well-defined period. Although the waveform can be Fourier-decomposed into the fundamental and the second harmonics, the phase between the two is kept constant from event to event, implying that the waveform is not the result of a chance superposition of two magnetospheric eigenmodes. A phenomenological explanation to this waveform is offered using a field-line configuration model that is a modified version of a previously proposed antisymmetric standing wave. In this model, the location of the equatorial node of field-line displacement is assumed to oscillate with the wave, with a peak-to-peak amplitude greater than 10 percent of the wavelength of the standing wave. The predicted waveform at various magnetic latitudes is found to be in excellent agreement with an observation taken near the magnetic equator by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer spacecraft.
A model for the harmonic of compressional Pc 5 waves
NASA Astrophysics Data System (ADS)
Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Acuna, M. H.
1987-04-01
Compressional Pc 5 magnetic waves in the magnetosphere are a unique phenomenon showing a nonsinusoidal waveform in spite of a well-defined period. Although the waveform can be Fourier-decomposed into the fundamental and the second harmonics, the phase between the two is kept constant from event to event, implying that the waveform is not the result of a chance superposition of two magnetospheric eigenmodes. A phenomenological explanation to this waveform is offered using a field-line configuration model that is a modified version of a previously proposed antisymmetric standing wave. In this model, the location of the equatorial node of field-line displacement is assumed to oscillate with the wave, with a peak-to-peak amplitude greater than 10 percent of the wavelength of the standing wave. The predicted waveform at various magnetic latitudes is found to be in excellent agreement with an observation taken near the magnetic equator by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer spacecraft.
Simulation studies on the standing and traveling wave thermoacoustic prime movers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.
Thermoacoustic systems have been a focus of recent research due to its structural simplicity, high reliability due to absence of moving parts, and can be driven by low grade energy such as fuel, gas, solar energy, waste heat etc. There has been extensive research on both standing wave and traveling wave systems. Towards the development of such systems, simulations can be carried out by several methods such as (a) solving the energy equation, (b) enthalpy flow model, (c) DeltaEC, a free software available from LANL, USA (d) Computational Fluid Dynamics (CFD) etc. We present here the simulation studies of standingmore » wave and traveling wave thermoacoustic prime movers using CFD and DeltaEC. The CFD analysis is carried out using Fluent 6.3.26, incorporating the necessary boundary conditions with different working fluids at different operating pressures. The results obtained by CFD are compared with those obtained using DeltaEC. Also, the CFD simulation of the thermoacoustically driven refrigerator is presented.« less
Wave excitations of drifting two-dimensional electron gas under strong inelastic scattering
NASA Astrophysics Data System (ADS)
Korotyeyev, V. V.; Kochelap, V. A.; Varani, L.
2012-10-01
We have analyzed low-temperature behavior of two-dimensional electron gas in polar heterostructures subjected to a high electric field. When the optical phonon emission is the fastest relaxation process, we have found existence of collective wave-like excitations of the electrons. These wave-like excitations are periodic in time oscillations of the electrons in both real and momentum spaces. The excitation spectra are of multi-branch character with considerable spatial dispersion. There are one acoustic-type and a number of optical-type branches of the spectra. Their small damping is caused by quasi-elastic scattering of the electrons and formation of relevant space charge. Also there exist waves with zero frequency and finite spatial periods—the standing waves. The found excitations of the electron gas can be interpreted as synchronous in time and real space manifestation of well-known optical-phonon-transient-time-resonance. Estimates of parameters of the excitations for two polar heterostructures, GaN/AlGaN and ZnO/MgZnO, have shown that excitation frequencies are in THz-frequency range, while standing wave periods are in sub-micrometer region.
Proofs for the Wave Theory of Plants
NASA Astrophysics Data System (ADS)
Wagner, Orvin E.
1997-03-01
Oscillatory behavior in plants. (2)Standing waves observed coming from probes equally spaced up tree trunks and freshly cut live wood samples. (3)Beat frequencies observed while applying AC voltages to plants. (4)Plant length quantization. (5)Plant growth angle and voltage quantization with respect to the gravitational field. (6)The measurement of plant frequences with a low frequency spectrum analyzer which correlate with the frequencies observed by other means such as by measuring plant lengths, considered as half wavelengths, and beat frequencies. (7)Voltages obtained from insulated, isolated from light, diode dies placed in slits in tree trunks. Diodes become relatively low impedance sources for voltages as high as eight volts. Diodes indicate charge separating longitudinal standing waves sweeping up and down a tree trunk. Longitudinal waves also indicated by plant structure. (8)The measured discrete wave velocities appear to be dependent on their direction of travel with respect to the gravitational field. These provide growth references for the plant and a wave guide affect. For references see Wagner Research Laboratory Web Page.
Acoustic excitations in nanosponges, low-k dielectric thin films and oxide glasses
NASA Astrophysics Data System (ADS)
Zhou, Wei
The invention of the laser has made optical spectroscopy techniques especially valuable research tools. Brillouin light scattering (BLS) is one such powerful technique to measure low energy excitations as acoustic phonons and magnons (spin waves) in materials. In this thesis, the BLS technique is utilized to investigate acoustic excitations and the underlying physics in different media: carbon nanosponges, ultra thin low-k dielectric films and soda germanate glasses. The highlights include: (1) acoustic response of carbon nanosponges solvated in the organic solvent dimethylformamide (DMF) and the discovery of nanosponge formation by exposure to laser radiation. The observed acoustic mode is confirmed as the slow longitudinal wave within the nanosponge suspension. The counter intuitive result of the sound speed decreasing with increasing weight fraction of carbon nano tubes is found and modeled by an effective medium approximation theory; (2) in ultra thin low-k dielectric films, longitudinal standing waves, transverse standing waves and surface waves are observed and recorded. Using a Green's function method, the elastic constants are calculated by fitting the dispersion of these waves. The displacements of standing waves are also simulated and found to behave like the modes in an organ pipe; (3) the long wavelength bulk longitudinal and transverse modes in soda germanate glasses (Na2O)x(GeO2) 1-x glasses are found to be anomalous with increasing soda concentration. The elastic constants C11 and C44 are determined and related quantities such as the elastic energy are also found to have maxima around a soda concentration of x=17%. The elastic properties are compared with those of (Na2O)x(SiO2)1-x glasses, and structural differences are discussed to account for the origin of their different behaviors.
Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.
Coakley, W T; Whitworth, G; Grundy, M A; Gould, R K; Allman, R
1994-04-01
Cells or particles suspended in a sonic standing wave field experience forces which concentrate them at positions separated by half a wavelength. The aims of the study were: (1) To optimise conditions and test theoretical predictions for ultrasonic concentration and separation of particles or cells. (2) To investigate the scale-up of experimental systems. (3) To establish the maximum acoustic pressure to which a suspension might be exposed without inducing order-disrupting cavitation. (4) To compare the efficiencies of techniques for harvesting concentrated particles. The primary outcomes were: (1) To design of an acoustic pressure distribution within cylindrical containers which led to uniformly repeating sound pressure patterns throughout the containers in the standing wave mode, concentrated suspended eukaryotic cells or latex beads in clumps on the axis of wide containers, and provided uniform response of all particle clumps to acoustic harvesting regimes. Theory for the behaviour (e.g. movement to different preferred sites) of particles as a function of specific gravity and compressibility in containers of different lateral dimensions was extended and was confirmed experimentally. Convective streaming in the container was identified as a variable requiring control in the manipulation of particles of 1 micron or smaller size. (2) Consideration of scale-up from the model 10 ml volume led to the conclusion that flow systems in intermediate volume containers have more promise than scaled up batch systems. (3) The maximum acoustic pressures applicable to a suspension without inducing order-disrupting cavitation or excessive conductive streaming at 1 MHz and 3 MHz induce a force equivalent to a centrifugal field of about 10(3) g. (4) The most efficient technique for harvesting concentrated particles was the introduction of a frequency increment between two transducers to form a slowly sweeping pseudo-standing wave. The attractive inter-droplet ultrasonic standing wave force was employed to enhance the rate of aqueous biphasic cell separation and harvesting. The results help clarify the particle size, concentration, density and compressibility for which standing wave separation techniques can contribute either on a process engineering scale or on the scale of the manipulation of small particles for industrial and medical diagnostic procedures.
Short-Term TEC Perturbations Associated With Planetary Waves Occurrence in the Ionosphere
NASA Astrophysics Data System (ADS)
Shagimuratov, I. I.; Karpov, I.; Krankowski, A.
2008-12-01
Analysis of TEC response to storm showed short-term perturbations which were observed after initial phase of geomagnetic storms. The perturbations demonstrated very well expressed latitudinal structure and were recognized on diurnal variations as surges of TEC enhancement of TEC. Ordinary such storm-time positive effect was associated with TAD. Duration of the perturbations was about 2-4 hours and their amplitude increased toward low latitudes. Such TEC perturbations have the longitudinal dependence. It is important that time location of surges have week dependence on latitude. The observed structure appeared to arrive from high latitudes, but at middle latitudes it was represented as a standing wave. It is assumed that such TEC perturbations can be produced due to superposition of the eastward and westward propagating planetary Poincare waves. The periods of these waves are usually several hours. Poincare waves can be excited at the atmosphere in storm time. At middle latitudes their superposition is as standing wave that forms observing TEC perturbations. In the report, the possibilities of application Poincare waves to the ionosphere dynamics studies are discussed and an explanation of the observed ionospheric effects is given.
Light Diffraction by Large Amplitude Ultrasonic Waves in Liquids
NASA Technical Reports Server (NTRS)
Adler, Laszlo; Cantrell, John H.; Yost, William T.
2016-01-01
Light diffraction from ultrasound, which can be used to investigate nonlinear acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically reported in the literature. Large amplitude waves result in waveform distortion due to the nonlinearity of the medium that generates harmonics and produces asymmetries in the light diffraction pattern. For standing waves with amplitudes above a threshold value, subharmonics are generated in addition to the harmonics and produce additional diffraction orders of the incident light. With increasing drive amplitude above the threshold a cascade of period-doubling subharmonics are generated, terminating in a region characterized by a random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy model is introduced, which is derived from traveling wave solutions of the nonlinear wave equation corresponding to the fundamental and second harmonic standing waves. The toy model reduces the nonlinear partial differential equation to a mathematically more tractable nonlinear ordinary differential equation. The model predicts the experimentally observed cascade of period-doubling subharmonics terminating in chaos that occurs with increasing drive amplitudes above the threshold value. The calculated threshold amplitude is consistent with the value estimated from the experimental data.
Pozniak, Boguslaw P; Cole, Richard B
2004-12-01
Differential electrospray emitter potential (DEEP) maps, displaying variations in potential in the electrospray (ES) capillary and in the Taylor cone, have been generated in the negative ion mode of ES operation. In all examples, measured potential was found to be the highest at the points furthest into the Taylor cone, and values descended to zero at distances beyond approximately 15 mm within the ES capillary. In agreement with results obtained previously in the positive ion mode, negative mode data show a strong influence of electrolyte concentration on measured potentials. Weakly conductive solutions exhibited the highest values, and the steepest gradients, at points furthest into the Taylor cone. However, these same low conductivity solutions did not yield nonzero measured potentials to as deep a distance into the ES capillary as was possible from their higher conductivity counterparts. Addition of a readily reducible compound lowered measured potentials at all points near the ES capillary exit, in accordance with the description of the ES device as a controlled-current electrolytic cell. The development of potential inside the ES capillary upon the onset of ES was also studied, and initial results are presented. Potential waves are observed that can require 15 min or longer, to stabilize. The slow drift to steady potentials is evidence of upstream movement of electrochemically-produced species and follow-up reaction products; low conductivity solutions require longer intervals to reach a steady state. Potentials measured along the central ES axis reflect those at the ES capillary surface, although equipotential lines can be considered to be more compressed at the latter surface.
Yamamoto, Naoyuki; Kawashima, Natsumi; Kitazaki, Tomoya; Mori, Keita; Kang, Hanyue; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro
2018-05-01
Smart toilets could be used to monitor different components of urine in daily life for early detection of lifestyle-related diseases and prompt provision of treatment. For analysis of biological samples such as urine by midinfrared spectroscopy, thin-film samples like liquid cells are needed because of the strong absorption of midinfrared light by water. Conventional liquid cells or fixed cells are prepared based on the liquid membrane method and solution technique, but these are not quantitative and are difficult to set up and clean. We generated an ultrasonic standing wave reflection plane in a sample and produced an ultrasonic liquid cell. In this cell, the thickness of the optical path length was adjustable, as in the conventional method. The reflection plane could be generated at an arbitrary depth and internal reflected light could be detected by changing the frequency of the ultrasonic wave. We could generate refractive index boundaries using the density difference created by the ultrasonic standing wave. Creation of the reflection plane in the sample was confirmed by optical coherence tomography. Using the proposed method and midinfrared spectroscopy, we discriminated between normal urine samples spiked with glucose at different concentrations and obtained a high correlation coefficient. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orban, Chris, E-mail: orban@physics.osu.edu; Feister, Scott; Innovative Scientific Solutions, Inc., Dayton, Ohio 45459
Laser-accelerated electron beams have been created at a kHz repetition rate from the reflection of intense (∼10{sup 18 }W/cm{sup 2}), ∼40 fs laser pulses focused on a continuous water-jet in an experiment at the Air Force Research Laboratory. This paper investigates Particle-in-Cell simulations of the laser-target interaction to identify the physical mechanisms of electron acceleration in this experiment. We find that the standing-wave pattern created by the overlap of the incident and reflected laser is particularly important because this standing wave can “inject” electrons into the reflected laser pulse where the electrons are further accelerated. We identify two regimes of standingmore » wave acceleration: a highly relativistic case (a{sub 0} ≥ 1), and a moderately relativistic case (a{sub 0} ∼ 0.5) which operates over a larger fraction of the laser period. In previous studies, other groups have investigated the highly relativistic case for its usefulness in launching electrons in the forward direction. We extend this by investigating electron acceleration in the specular (back reflection) direction and over a wide range of intensities (10{sup 17}–10{sup 19 }W cm{sup −2})« less
Digital Data Acquisition for Laser Radar for Vibration Analysis
1998-06-01
and the resulting signal is a function of the relative phase of the two waves , which changes as the target vibrates. The relative phase is inversely...light crosses the medium in a direction perpendicular to the acoustic waves , a modulated optical wave front will result. A standing acoustic wave in the...mean that the frequency can be up or down-shifted, depending on the orientation of the AOM, or the direction of the traveling acoustic waves . An
Photodetector with absorbing region having resonant periodic absorption between reflectors
Bryan, R.P.; Olbright, G.R.; Brennan, T.M.; Tsao, J.Y.
1995-02-14
A photodetector is disclosed that is responsive to a wavelength or wavelengths of interest which have heretofore been unrealized. The photodetector includes a resonant cavity structure bounded by first and second reflectors, the resonant cavity structure being resonant at the wavelength or wavelengths of interest for containing a plurality of standing waves therein. The photodetector further includes a radiation absorbing region disposed within the resonant cavity structure, the radiation absorbing region including a plurality of radiation absorbing layers spaced apart from one another by a distance substantially equal to a distance between antinodes of adjacent ones of the standing waves. Each of radiation absorbing layers is spatially positioned at a location of one of the antinodes of one of the standing waves such that radiation absorption is enhanced. The radiation absorbing layers may be either bulk layers or quantum wells includes a plurality of layers, each of which is comprised of a strained layer of InGaAs. Individual ones of the InGaAs layers are spaced apart from one another by a GaAs barrier layer. 11 figs.
Ultrasonic alignment of microparticles in nozzle-like geometries
NASA Astrophysics Data System (ADS)
Whittaker, Molly A.; Dauson, Erin R.; Parra-Raad, Jaime; Heard, Robert A.; Oppenheim, Irving J.
2018-03-01
Additive manufacturing (3-D printing) is presently limited by the mechanical properties of the materials, such as polymer resins, that are otherwise efficient and economical for part-forming. Reinforcing the resin with microscale fibers and/or particles would be an effective mechanism to achieve desired mechanical properties such as strength and ductility. Our work combines standing wave ultrasonics and microfluidics to align microparticles in devices that can act as print nozzles, based in part on our prior work with cell sorting. In this paper three different approaches are presented illustrating different engineering tradeoffs, and demonstrating laboratory results of particle alignment. First acoustic resonators are discussed, in which the ultrasonic standing waves result mostly from the mechanical properties of the microfluidic structure, excited by a piezoceramic transducer. Next non-resonant microfluidic structures are discussed, in which ultrasonic standing waves are produced directly by symmetrical transducer deployment. Finally, devices that combine nozzle-like structures, which themselves are suitable acoustic resonators, subjected to symmetrical ultrasonic excitation are presented. We will show that all three configurations will align microparticles, and discuss the tradeoffs among them for subsequent configuration of a print nozzle.
Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers
NASA Astrophysics Data System (ADS)
Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing
2017-08-01
Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.
Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.
Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun
2014-01-01
The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method.
Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet.
Liu, Yingxiang; Shi, Shengjun; Li, Chunhong; Chen, Weishan; Wang, Liang; Liu, Junkao
2018-03-01
A bi-directional standing wave linear piezoelectric ultrasonic actuator with four driving feet is proposed in this work. Two sandwich type transducers operated in longitudinal-bending hybrid modes are set parallelly. The working mode of the transducer is not simple hybrid vibrations of a longitudinal one and a bending one, but a special coupling vibration mode contained both longitudinal and bending components. Two transducers with the same structure and unsymmetrical boundary conditions are set parallelly to accomplish the bi-directional driving: the first transducer can push the runner forward, while the other one produces the backward driving. In the experiments, two voltages with different amplitudes are applied on the two transducers, respectively: the one with higher voltage serves as the actuator, whereas the other one applied with lower voltage is used to reduce the frictional force. The prototype achieves maximum no-load speed and thrust force of 244 mm/s and 9.8 N. This work gives a new idea for the construction of standing wave piezoelectric ultrasonic actuator with bi-directional driving ability. Copyright © 2017 Elsevier B.V. All rights reserved.
Three-Dimensional Mid-Air Acoustic Manipulation by Ultrasonic Phased Arrays
Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun
2014-01-01
The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method. PMID:24849371
Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong
2017-01-01
Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955
Mitri, F G
2006-07-01
In this paper, analytical equations are derived for the time-averaged radiation force induced by progressive and standing acoustic waves incident on elastic spherical shells covered with a layer of viscoelastic and sound-absorbing material. The fluid surrounding the shells is considered compressible and nonviscous. The incident field is assumed to be moderate so that the scattered field from the shells is taken to linear approximation. The analytical results are illustrated by means of a numerical example in which the radiation force function curves are displayed, with particular emphasis on the coating thickness and the content of the hollow region of the shells. The fluid-loading on the radiation force function curves is analysed as well. This study attempts to generalize the various treatments of radiation force due to both progressive and standing waves on spherically-shaped structures immersed in ideal fluids. The results show that various ways can be effectively used for damping resonance peaks, such as by changing the fluid in the interior hollow region of the shells or by changing the coating thickness.
Photodetector with absorbing region having resonant periodic absorption between reflectors
Bryan, Robert P.; Olbright, Gregory R.; Brennan, Thomas M.; Tsao, Jeffrey Y.
1995-02-14
A photodetector that is responsive to a wavelength or wavelengths of interest which have heretofore been unrealized. The photodetector includes a resonant cavity structure bounded by first and second reflectors, the resonant cavity structure being resonant at the wavelength or wavelengths of interest for containing a plurality of standing waves therein. The photodetector further includes a radiation absorbing region disposed within the resonant cavity structure, the radiation absorbing region including a plurality of radiation absorbing layers spaced apart from one another by a distance substantially equal to a distance between antinodes of adjacent ones of the standing waves. Each of radiation absorbing layers is spatially positioned at a location of one of the antinodes of one of the standing waves such that radiation absorption is enhanced. The radiation absorbing layers may be either bulk layers or quantum wells includes a plurality of layers, each of which is comprised of a strained layer of InGaAs. Individual ones of the InGaAs layers are spaced apart from one another by a GaAs barrier layer.
Dynamic Effective Mass of Granular Media
NASA Astrophysics Data System (ADS)
Hsu, Chaur-Jian; Johnson, David L.; Ingale, Rohit A.; Valenza, John J.; Gland, Nicolas; Makse, Hernán A.
2009-02-01
We develop the concept of frequency dependent effective mass, Mtilde (ω), of jammed granular materials which occupy a rigid cavity to a filling fraction of 48%, the remaining volume being air of normal room condition or controlled humidity. The dominant features of Mtilde (ω) provide signatures of the dissipation of acoustic modes, elasticity, and aging effects in the granular medium. We perform humidity controlled experiments and interpret the data in terms of a continuum model and a “trap” model of thermally activated capillary bridges at the contact points. The results suggest that attenuation of acoustic waves in granular materials can be influenced significantly by the kinetics of capillary condensation between the asperities at the contacts.
NASA Astrophysics Data System (ADS)
Molina, A.; Laborda, E.; Compton, R. G.
2014-03-01
Simple theory for the electrochemical study of reversible ion transfer processes at micro- and nano-liquid|liquid interfaces supported on a capillary is presented. Closed-form expressions are obtained for the response in normal pulse and differential double pulse voltammetries, which describe adequately the particular behaviour of these systems due to the ‘asymmetric’ ion diffusion inside and outside the capillary. The use of different potential pulse techniques for the determination of the formal potential and diffusion coefficients of the ion is examined. For this, very simple analytical expressions are presented for the half-wave potential in NPV and the peak potential in DDPV.
One-Hertz Waves at Mars: MAVEN Observations
NASA Astrophysics Data System (ADS)
Ruhunusiri, Suranga; Halekas, J. S.; Espley, J. R.; Eparvier, F.; Brain, D.; Mazelle, C.; Harada, Y.; DiBraccio, G. A.; Thiemann, E. M. B.; Larson, D. E.; Mitchell, D. L.; Jakosky, B. M.; Sulaiman, A. H.
2018-05-01
We perform a survey of 1-Hz waves at Mars utilizing Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft observations for a Martian year. We find that the 1-Hz wave occurrence rate shows an apparent variation caused by masking of the waves by background turbulence during the times when the background turbulence levels are high. To correct for this turbulence masking, we select waves that occur in time intervals where the background turbulence levels are low. We find that the extreme ultraviolet flux does not affect the wave occurrence rate significantly, suggesting that the newly born pickup ions originating in the Mars's exosphere contribute minimally to the 1-Hz wave generation. We find that the wave occurrence rates are higher for low Mach numbers and low beta values than for high Mach numbers and high beta values. Further, we find that a high percentage of 1-Hz waves satisfy the group-standing condition, which suggests that a high percentage of the waves seen as monochromatic waves in the spacecraft frame can be broadband waves in the solar wind frame that have group velocities nearly equal and opposite to the solar wind velocity. We infer that the wave occurrence rate trends with the Mach number and proton beta are a consequence of how the Mach numbers and beta values influence the wave generation and damping or how those parameters affect the group-standing condition. Finally, we find that the 1-Hz waves are equally likely to be found in both the quasi-parallel and the quasi-perpendicular foreshock regions.
A model for wave propagation in a porous solid saturated by a three-phase fluid.
Santos, Juan E; Savioli, Gabriela B
2016-02-01
This paper presents a model to describe the propagation of waves in a poroelastic medium saturated by a three-phase viscous, compressible fluid. Two capillary relations between the three fluid phases are included in the model by introducing Lagrange multipliers in the principle of virtual complementary work. This approach generalizes that of Biot for single-phase fluids and allows to determine the strain energy density, identify the generalized strains and stresses, and derive the constitutive relations of the system. The kinetic and dissipative energy density functions are obtained assuming that the relative flow within the pore space is of laminar type and obeys Darcy's law for three-phase flow in porous media. After deriving the equations of motion, a plane wave analysis predicts the existence of four compressional waves, denoted as type I, II, III, and IV waves, and one shear wave. Numerical examples showing the behavior of all waves as function of saturation and frequency are presented.
An optical technique for detecting minute-amplitude standing waves on a liquid jet
NASA Astrophysics Data System (ADS)
Takahashi, I.; Mori, Y. H.
1995-10-01
A liquid jet emerging from a nozzle or an orifice whose outlet is slightly elliptic has a series of minute-amplitude waves on its surface. A quite simple technique is proposed which enables detecting such waves even if they are no longer recognizable with the aid of ordinary backlighting of the jet.
Visualization of Sound Waves Using Regularly Spaced Soap Films
ERIC Educational Resources Information Center
Elias, F.; Hutzler, S.; Ferreira, M. S.
2007-01-01
We describe a novel demonstration experiment for the visualization and measurement of standing sound waves in a tube. The tube is filled with equally spaced soap films whose thickness varies in response to the amplitude of the sound wave. The thickness variations are made visible based on optical interference. The distance between two antinodes is…
Measurements and modelling of beach groundwater flow in the swash-zone: a review
NASA Astrophysics Data System (ADS)
Horn, Diane P.
2006-04-01
This paper reviews research on beach groundwater dynamics and identifies research questions which will need to be answered before swash zone sediment transport and beach profile evolution can be successfully modelled. Beach groundwater hydrodynamics are a result of combined forcing from the tide and waves at a range of frequencies, and a large number of observations exist which describe the shape and elevation of the beach watertable in response to tidal forcing at diurnal, semi-diurnal and spring-neap tidal frequencies. Models of beach watertable response to tidal forcing have been successfully validated; however, models of watertable response to wave forcing are less well developed and require verification. Improved predictions of swash zone sediment transport and beach profile evolution cannot be achieved unless the complex fluid and sediment interactions between the surface flow and the beach groundwater are better understood, particularly the sensitivity of sediment transport processes to flow perpendicular to the permeable bed. The presence of a capillary fringe, particularly when it lies just below the sand surface, has influences on beach groundwater dynamics. The presence of a capillary fringe can have a significant effect on the exchange of water between the ocean and the coastal aquifer, particularly in terms of the storage capacity of the aquifer. Field and laboratory observations have also shown that natural groundwater waves usually propagate faster and decay more slowly in aquifers with a capillary fringe, and observations which suggest that horizontal flows may also occur in the capillary zone have been reported. The effects of infiltration and exfiltration are generally invoked to explain why beaches with a low watertable tend to accrete and beaches with a high watertable tend to erode. However, the relative importance of processes such as infiltration losses in the swash, changes in the effective weight of the sediment, and modified shear stress due to boundary layer thinning, are not yet clear. Experimental work on the influence of seepage flows within sediment beds provides conflicting results concerning the effect on bed stability. Both modelling and experimental work indicates that the hydraulic conductivity of the beach is a critical parameter. However, hydraulic conductivity varies both spatially and temporally on beaches, particularly on gravel and mixed sand and gravel beaches. Another important, but poorly understood, consideration in beach groundwater studies is the role of air encapsulation during the wetting of beach sand.
Collisional radiative model of an argon atmospheric capillary surface-wave discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.
2004-12-01
The characteristics of a microwave surface-wave sustained plasma operated at atmospheric pressure in an open-ended dielectric tube are investigated theoretically as a first step in the development of a self-consistent model for these discharges. The plasma column is sustained in flowing argon. A surface-wave discharge that fills the whole radial cross section of the discharge tube is considered. With experimental electron temperature profiles [Garcia et al., Spectrochim. Acta, Part B 55, 1733 (2000)] the numerical model is used to test the validity of the different approximations and to study the influence of the different kinetic processes and power loss mechanismsmore » on the discharge.« less
Flow profiling of a surface-acoustic-wave nanopump.
Guttenberg, Z; Rathgeber, A; Keller, S; Rädler, J O; Wixforth, A; Kostur, M; Schindler, M; Talkner, P
2004-11-01
The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.
Flow profiling of a surface-acoustic-wave nanopump
NASA Astrophysics Data System (ADS)
Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.
2004-11-01
The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.
ERIC Educational Resources Information Center
Wheeler, Andrew P. S.
2012-01-01
This article aims to describe how to visualize surface tension effects in liquid jets. A simple experiment is proposed using the liquid jet flow from a mains water tap/faucet. Using a modern digital camera with a high shutter speed, it is possible to visualize the instabilities (capillary waves) that form within the jet due to the action of…
Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.
Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R
2012-08-07
Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.
Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics
Abraham, B.M.; Ketterson, J.B.; Bohanon, T.M.; Mikrut, J.M.
1994-04-12
A non-contact method and apparatus are described for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement of mechanical characteristics of fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use. 4 figures.
Effect of wave action on near-well zone cleaning
NASA Astrophysics Data System (ADS)
Pen'kovskii, V. I.; Korsakova, N. K.
2017-10-01
Drilling filtrate invasion into the producing formation and native water accumulating of the near-well zone in well operation reduce the well productivity. As a result of that, depending on characteristic capillary pressure scale and differential pressure drawdown, oil production rate may become lower than expected one. In this paper, it is considered the hysteresis effects of capillary pressure after reversion of displacement. As applied to laboratory experiment conditions, the solution of problem of oil flow in formation model with a pressure drop on the model sides harmonically varied with time is presented. It was estimated a range of fluid vibration effective action on the near-well zone cleaning from capillary locking water. The plant simulating extraction of oil from formation using widely practised sucker-rod pump has been created. Formation model is presented as a slot filled with broken glass between two plates. In the process, natural oil and sodium chloride solution were used as working fluids. The experiments qualitatively confirm a positive effect of jack pumps on the near-well zone cleaning.
Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishihara, M.; Takashima, K.; Rich, J. W.
2011-06-15
Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 {+-} 30 K. Phase-locked Schlieren images are used to detect compression waves generatedmore » by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.« less
Mitri, F G
2005-08-01
The theory of the acoustic radiation force acting on elastic spherical shells suspended in a plane standing wave field is developed in relation to their thickness and the content of their hollow regions. The theory is modified to include the effect of a hysteresis type of absorption of compressional and shear waves in the material. The fluid-loading effect on the acoustic radiation force function Y(st) is analyzed as well. Results of numerical calculations are presented for a number of elastic and viscoelastic materials, with the hollow region filled with water or air. These results show how the damping due to absorption, the change of the interior fluid inside the shells' hollow regions, and the exterior fluid surrounding their structures, affect the acoustic radiation force.
Precision force sensing with optically-levitated nanospheres
NASA Astrophysics Data System (ADS)
Geraci, Andrew
2017-04-01
In high vacuum, optically-trapped dielectric nanospheres achieve excellent decoupling from their environment and experience minimal friction, making them ideal for precision force sensing. We have shown that 300 nm silica spheres can be used for calibrated zeptonewton force measurements in a standing-wave optical trap. In this optical potential, the known spacing of the standing wave anti-nodes can serve as an independent calibration tool for the displacement spectrum of the trapped particle. I will describe our progress towards using these sensors for tests of the Newtonian gravitational inverse square law at micron length scales. Optically levitated dielectric objects also show promise for a variety of other precision sensing applications, including searches for gravitational waves and other experiments in quantum optomechanics. National Science Foundation PHY-1205994, PHY-1506431, PHY-1509176.
Finite-size radiation force correction for inviscid spheres in standing waves.
Marston, Philip L
2017-09-01
Yosioka and Kawasima gave a widely used approximation for the acoustic radiation force on small liquid spheres surrounded by an immiscible liquid in 1955. Considering the liquids to be inviscid with negligible thermal dissipation, in their approximation the force on the sphere is proportional to the sphere's volume and the levitation position in a vertical standing wave becomes independent of the size. The analysis given here introduces a small correction term proportional to the square of the sphere's radius relative to the aforementioned small-sphere force. The significance of this term also depends on the relative density and sound velocity of the sphere. The improved approximation is supported by comparison with the exact partial-wave-series based radiation force for ideal fluid spheres in ideal fluids.
FAST TRACK COMMUNICATION: An electromagnetically induced grating by microwave modulation
NASA Astrophysics Data System (ADS)
Xiao, Zhi-Hong; Shin, Sung Guk; Kim, Kisik
2010-08-01
We study the phenomenon of an electromagnetically induced phase grating in a double-dark state system of 87Rb atoms, the two closely placed lower fold levels of which are coupled by a weak microwave field. Owing to the existence of the weak microwave field, the efficiency of the phase grating is strikingly improved, and an efficiency of approximately 33% can be achieved. Under the action of the weak standing wave field, the high efficiency of the phase grating can be maintained by modulating the strength and detuning of the weak microwave field, increasing the strength of the standing wave field.
Localized surface plasmon polariton resonance in holographically structured Al-doped ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, David; Lowell, David; Mao, Michelle
2016-07-28
In this paper, we studied the localized surface plasmon polariton (SPP) resonance in hole arrays in transparent conducting aluminum-doped zinc oxide (AZO). CMOS-compatible fabrication process was demonstrated for the AZO devices. The localized SPP resonance was observed and confirmed by electromagnetic simulations. Using a standing wave model, the observed SPP was dominated by the standing-wave resonance along (1,1) direction in square lattices. This research lays the groundwork for a fabrication technique that can contribute to the core technology of future integrated photonics through its extension into tunable conductive materials.
NASA Astrophysics Data System (ADS)
Meng, Long; Cai, Feiyan; Chen, Juanjuan; Niu, Lili; Li, Yanming; Wu, Junru; Zheng, Hairong
2012-04-01
A microfluidic device is developed to transport microbubbles (MBs) along a desired trajectory in fluid by introducing the phase-shift to a planar standing surface acoustic wave (SSAW). The radiation force of SSAW due to the acoustic pressure gradient modulated by a phase-shift can move MBs to anticipated potential wells in a programmable manner. The resolution of the transportation is approximately 2.2 µm and the estimated radiation force on the MBs is on the order of 10-9 N. This device can be used for manipulation of bioparticles, cell sorting, tissue engineering, and other biomedical applications.
Thermoacoustic enhancements for nuclear fuel rods and other high temperature applications
Garrett, Steven L.; Smith, James A.; Kotter, Dale K.
2017-05-09
A nuclear thermoacoustic device includes a housing defining an interior chamber and a portion of nuclear fuel disposed in the interior chamber. A stack is disposed in the interior chamber and has a hot end and a cold end. The stack is spaced from the portion of nuclear fuel with the hot end directed toward the portion of nuclear fuel. The stack and portion of nuclear fuel are positioned such that an acoustic standing wave is produced in the interior chamber. A frequency of the acoustic standing wave depends on a temperature in the interior chamber.
The effect of small-wave modulation on the electromagnetic bias
NASA Technical Reports Server (NTRS)
Rodriguez, Ernesto; Kim, Yunjin; Martin, Jan M.
1992-01-01
The effect of the modulation of small ocean waves by large waves on the physical mechanism of the EM bias is examined by conducting a numerical scattering experiment which does not assume the applicability of geometric optics. The modulation effect of the large waves on the small waves is modeled using the principle of conservation of wave action and includes the modulation of gravity-capillary waves. The frequency dependence and magnitude of the EM bias is examined for a simplified ocean spectral model as a function of wind speed. These calculations make it possible to assess the validity of previous assumptions made in the theory of the EM bias, with respect to both scattering and hydrodynamic effects. It is found that the geometric optics approximation is inadequate for predictions of the EM bias at typical radar altimeter frequencies, while the improved scattering calculations provide a frequency dependence of the EM bias which is in qualitative agreement with observation. For typical wind speeds, the EM bias contribution due to small-wave modulation is of the same order as that due to modulation by the nonlinearities of the large-scale waves.
Containerless Ripple Turbulence
NASA Astrophysics Data System (ADS)
Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles
2002-11-01
One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k5/3 which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear interaction. Furthermore, the steady state distribution of energy again follows a Kolmogorov scaling law; in this case the ripple energy is distributed according to 1/k 7/4. Again, in parallel with vortex turbulence ripple turbulence exhibits intermittency. The problem of ripple turbulence presents an experimental opportunity to generate data in a controlled, benchmarked system. In particular the surface of a sphere is an ideal environment to study ripple turbulence. Waves run around the sphere and interact with each other, and the effect of walls is eliminated. In microgravity this state can be realized for over 2 decades of frequency. Wave turbulence is a physically relevant problem in its own right. It has been studied on the surface of liquid hydrogen and its application to Alfven waves in space is a source of debate. Of course, application of wave turbulence perspectives to ocean waves has been a major success. The experiment which we plan to run in microgravity is conceptually straightforward. Ripples are excited on the surface of a spherical drop of fluid and then their amplitude is recorded with appropriate photography. A key challenge is posed by the need to stably position a 10cm diameter sphere of water in microgravity. Two methods are being developed. Orbitec is using controlled puffs of air from at least 6 independent directions to provided the positioning force. This approach has actually succeeded to position and stabilize a 4cm sphere during a KC 135 segment. Guigne International is using the radiation pressure of high frequency sound. These transducers have been organized into a device in the shape of a dodecahedron. This apparatus 'SPACE DRUMS' has already been approved for use for combustion synthesis experiments on the International Space Station. A key opportunity presented by the ripple turbulence data is its use in driving the development of codes to simulate its properties.
Containerless Ripple Turbulence
NASA Technical Reports Server (NTRS)
Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles
2002-01-01
One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k(sup 5/3) which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M$ millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear interaction. Furthermore, the steady state distribution of energy again follows a Kolmogorov scaling law; in this case the ripple energy is distributed according to 1/k (sup 7/4). Again, in parallel with vortex turbulence ripple turbulence exhibits intermittency. The problem of ripple turbulence presents an experimental opportunity to generate data in a controlled, benchmarked system. In particular the surface of a sphere is an ideal environment to study ripple turbulence. Waves run around the sphere and interact with each other, and the effect of walls is eliminated. In microgravity this state can be realized for over 2 decades of frequency. Wave turbulence is a physically relevant problem in its own right. It has been studied on the surface of liquid hydrogen and its application to Alfven waves in space is a source of debate. Of course, application of wave turbulence perspectives to ocean waves has been a major success. The experiment which we plan to run in microgravity is conceptually straightforward. Ripples are excited on the surface of a spherical drop of fluid and then their amplitude is recorded with appropriate photography. A key challenge is posed by the need to stably position a 10cm diameter sphere of water in microgravity. Two methods are being developed. Orbitec is using controlled puffs of air from at least 6 independent directions to provided the positioning force. This approach has actually succeeded to position and stabilize a 4cm sphere during a KC 135 segment. Guigne International is using the radiation pressure of high frequency sound. These transducers have been organized into a device in the shape of a dodecahedron. This apparatus 'SPACE DRUMS' has already been approved for use for combustion synthesis experiments on the International Space Station. A key opportunity presented by the ripple turbulence data is its use in driving the development of codes to simulate its properties.
Ocean wave-radar modulation transfer functions from the West Coast experiment
NASA Technical Reports Server (NTRS)
Wright, J. W.; Plant, W. J.; Keller, W. C.; Jones, W. L.
1980-01-01
Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the cross spectrum of the line-of-sight orbital speed and backscattered microwave power to the autospectrum of the line-of-sight orbital speed) were measured at 9.375 and 1.5 GHz (Bragg wavelengths of 2.3 and 13 cm) for winds up to 10 m/s and ocean wave periods from 2-18 s. The measurements were compared with the relaxation-time model; the principal result is that a source of modulation other than straining by the horizontal component of orbital speed, possibly the wave-induced airflow, is responsible for most of the modulation by waves of typical ocean wave period (10 s). The modulations are large; for unit coherence, spectra of radar images of deep-water waves should be proportional to the quotient of the slope spectra of the ocean waves by the ocean wave frequency.
Simple wave drivers: electric toothbrush, shaver and razor
NASA Astrophysics Data System (ADS)
Kağan Temiz, Burak; Yavuz, Ahmet
2018-05-01
This study was conducted to develop simple and low-cost wave drivers that can be used in experiments on string waves. These wave drivers were made using a toothbrush (Oral-B Vitality), an electric shaver (Braun 7505) and a razor (Gillette Fusion Proglide Power). A common feature of all of these product is that they have vibration motors. In the experiments, string waves were generated by transferring these vibrations to a stretched string. By changing the tightness and length of the string, standing waves were generated, and various harmonics were observed.
Turbulence and wave breaking effects on air-water gas exchange
Boettcher; Fineberg; Lathrop
2000-08-28
We present an experimental characterization of the effects of turbulence and breaking gravity waves on air-water gas exchange in standing waves. We identify two regimes that govern aeration rates: turbulent transport when no wave breaking occurs and bubble dominated transport when wave breaking occurs. In both regimes, we correlate the qualitative changes in the aeration rate with corresponding changes in the wave dynamics. In the latter regime, the strongly enhanced aeration rate is correlated with measured acoustic emissions, indicating that bubble creation and dynamics dominate air-water exchange.
ERIC Educational Resources Information Center
Barniol, Pablo; Zavala, Genaro
2017-01-01
The Mechanical Waves Conceptual Survey (MWCS), presented in 2009, is the most important test to date that has been designed to evaluate university students' understanding of four main topics: propagation, superposition, reflection, and standing waves. In a literature review, we detected a significant need for a study that uses this test as an…
Surface Gravity Waves: Resonance in a Fish Tank
ERIC Educational Resources Information Center
Sinick, Scott J.; Lynch, John J.
2010-01-01
In this work, an inexpensive 10-gallon glass aquarium was used to study wave motion in water. The waves travel at speeds comparable to a person walking ([approximately]1 m/s). The scale of the motion allows for distances to be measured with a meterstick and for times to be measured with a stopwatch. For a wide range of water depths, standing waves…
Cavitation in ultrasound and shockwave therapy
NASA Astrophysics Data System (ADS)
Colonius, Tim
2014-11-01
Acoustic waves, especially high-intensity ultrasound and shock waves, are used for medical imaging and intra- and extra-corporeal manipulation of cells, tissue, and urinary calculi. Waves are currently used to treat kidney stone disease, plantar fasciitis, and bone nonunion, and they are being investigated as a technique to ablate cancer tumors and mediate drug delivery. In many applications, acoustic waves induce the expansion and collapse of preexisting or newly cavitating bubbles whose presence can either mediate the generation of localized stresses or lead to collateral damage, depending on how effectively they can be controlled. We describe efforts aimed at simulating the collapse of bubbles, both individually and in clusters, with the aim to characterize the induced mechanical stresses and strains. To simulate collapse of one or a few bubbles, compressible Euler and Navier-Stokes simulations of multi-component materials are performed with WENO-based shock and interface capturing schemes. Repetitive insonification generates numerous bubbles that are difficult to resolve numerically. Such clouds are also important in traditional engineering applications such as caveating hydrofoils. Models that incorporate the dynamics of an unresolved dispersed phase consisting of the bubble cloud are also developed. The results of several model problems including bubble collapse near rigid surfaces, bubble collapse near compliant surfaces and in small capillaries are analyzed. The results are processed to determine the potential for micron-sized preexisting gas bubbles to damage capillaries. The translation of the fundamental fluid dynamics into improvements in the design and clinical application of shockwave lithotripters will be discussed. NIH Grant PO1-DK043881.
Wave energy trapping and localization in a plate with a delamination
NASA Astrophysics Data System (ADS)
Glushkov, Evgeny; Glushkova, Natalia; Golub, Mikhail V.; Moll, Jochen; Fritzen, Claus-Peter
2012-12-01
The research aims at an experimental approval of the trapping mode effect theoretically predicted for an elastic plate-like structure with a horizontal crack. The effect is featured by a sharp capture of incident wave energy at certain resonance frequencies with its localization between the crack and plate surfaces in the form of energy vortices yielding long-enduring standing waves. The trapping modes are eigensolutions of the related diffraction problem associated with nearly real complex points of its discrete frequency spectrum. To detect such resonance motion, a laser vibrometer based system has been employed for the acquisition and appropriate visualization of piezoelectrically actuated out-of-plane surface motion of a two-layer aluminum plate with an artificial strip-like delamination. The measurements at resonance and off-resonance frequencies have revealed a time-harmonic oscillation of good quality above the delamination in the resonance case. It lasts for a long time after the scattered waves have left that area. The measured frequency of the trapped standing-wave oscillation is in a good agreement with that predicted using the integral equation based mathematical model.
Masserey, Bernard; Raemy, Christian; Fromme, Paul
2014-09-01
Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
2008-03-01
it to strike targets with minimal collateral damage from a range of 15 kilometers. This stand -off type attack, made capable by the ATL, enables...levels they release a photon or quantum of light. This process continues until the light waves ’ strength builds and passes through the medium...mission level model. Lastly these models are classified by durability as standing models, or legacy models. Standing models are legacy models which have
Xu, Wei-Hai; Wang, Han; Wang, Bo; Niu, Fu-Sheng; Gao, Shan; Cui, Li-Ying
2009-01-15
The dynamic variance of cerebral blood flow velocity (CBFV), monitored by transcranial doppler (TCD), can reveal the integrated effects of cardio-cerebral vascular autoregulation. We investigated the characteristics of CBFV curve during active standing in multiple system atrophy (MSA), Parkinson's disease (PD) and healthy volunteers. The CBFV curve of middle cerebral arteries was recorded using TCD in 22 patients with probable MSA; 20 PD patients and 20 volunteers matched for age. All individuals started in a supine posture, followed by abrupt standing for 2 min before returning to supine. The features of CBFV curve were compared among the groups. In the healthy volunteers, the CBFV decreased following standing up but quickly rebounded and reached the same or greater level as the supine baseline. Afterwards, the CBFV decreased abruptly to a sustained level, lower than the supine baseline, forming a spike wave that appeared in CBFV curve. This spike wave was present in 5/22 of MSA, significantly less than PD patients (18/20) and volunteers (20/20) (P<0.001). The CBFV decrease after standing showed no significant difference between MSA than PD (9+/-7 vs. 6+/-3 cm/s, P=0.163). The different pattern of CBFV curves during active standing suggests MSA may possess cardio-cerebral vascular modulation different from PD. The clinical value of the CBFV curve in differentiating MSA from PD needs further investigation.
Vandenberghe, Nicolas; Duchemin, Laurent
2016-05-01
When impacted by a rigid body, a thin elastic membrane with negligible bending rigidity floating on a liquid pool deforms. Two axisymmetric waves radiating from the impact point propagate. First, a longitudinal wave front, associated with in-plane deformation of the membrane and traveling at constant speed, separates an outward stress-free domain from a stretched domain. Then, in the stretched domain a dispersive transverse wave travels at a speed that depends on the local stretching rate. The dynamics is found to be self-similar in time. Using this property, we show that the wave dynamics is similar to the capillary waves that propagate at a liquid-gas interface but with a surface tension coefficient that depends on impact speed. During wave propagation, we observe the development of a buckling instability that gives rise to radial wrinkles. We address the dynamics of this fluid-body system, including the rapid deceleration of an impactor of finite mass, an issue that may have applications in the domain of absorption of impact energy.
Standing wave tube electro active polymer wave energy converter
NASA Astrophysics Data System (ADS)
Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.
2012-04-01
Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.
Micro-scale extensional rheometry using hyperbolic converging/diverging channels and jet breakup
Keshavarz, Bavand
2016-01-01
Understanding the elongational rheology of dilute polymer solutions plays an important role in many biological and industrial applications ranging from microfluidic lab-on-a-chip diagnostics to phenomena such as fuel atomization and combustion. Making quantitative measurements of the extensional viscosity for dilute viscoelastic fluids is a long-standing challenge and it motivates developments in microfluidic fabrication techniques and high speed/strobe imaging of millifluidic capillary phenomena in order to develop new classes of instruments. In this paper, we study the elongational rheology of a family of dilute polymeric solutions in two devices: first, steady pressure-driven flow through a hyperbolic microfluidic contraction/expansion and, second, the capillary driven breakup of a thin filament formed from a small diameter jet (Dj∼O(100 μm)). The small length scale of the device allows very large deformation rates to be achieved. Our results show that in certain limits of low viscosity and elasticity, jet breakup studies offer significant advantages over the hyperbolic channel measurements despite the more complex implementation. Using our results, together with scaling estimates of the competing viscous, elastic, inertial and capillary timescales that control the dynamics, we construct a dimensionless map or nomogram summarizing the operating space for each instrument. PMID:27375824
NASA Astrophysics Data System (ADS)
Chabrol, C.; Jaud, M.; Delacourt, C.; Allemand, P.; Augereau, E.; Cuq, V.
2011-12-01
Beach cusps are rhythmic shoreline features made up of series of horns and embayments. Their build-up occurs in specific conditions (steep beachface, low-energy wave conditions...). These features can notably be characterized by the cusp spacing λ and their prominence ɛ (difference in beachface gradient between embayment and horn). At present, two main theories confront to explain the formation of such features on natural beaches : standing edge waves (special class of waves propagating longshore) and self-organisation hypothesis. - Standing edge wave theory proposes that the superimposition of incident waves and standing edge waves generates longshore variations of swash height linked with the position of edge wave nodes and anti-nodes. These variations of swash height result in regular zones of erosion. Depending on the context, different types of edge-waves may occur. The predicted beach cusp spacing is : λ = (g T^2 tanβ) / π for a sub-harmonic edge wave model λ = (g T^2 tanβ) / 2π for a synchronous edge wave model with : λ : beach cusp spacing (m) g : gravitational acceleration (9.81 m/s) T : incident wave period (s) tanβ : beach gradient - Self-organisation theory suggests that a combination of interactions and feedbacks between swash flow and beach topography leads to the growth of morphologic irregularities of a given wavelength (because of flow divergence or convergence), resulting in beach cusp formation and maintaining. The predicted beach cusp spacing is then : λ = f S with : λ : beach cusp spacing (m) S : horizontal extent of the swash flow (m) f : empirical constant (~1.5) Three multitemporal Terrestrial Laser Scan acquisitions have been carried out for three consecutive days on the sandy beach of Porsmilin (Brittany, France) with a spatial resolution varying from few centimetres to few metres. Moreover the hydrodynamic conditions have been obtained thanks to the Previmer project website (http://www.previmer.org/), notably based on WaveWatch3 and MARS-2D models. This study proposes to profit from the high resolution and accuracy of Terrestrial Laser data to measure the geometry and the spacing of beach cusps, to compare the measured parameters to the predicted ones (with both theories) and thus to attempt to identify the hydrodynamic process which sparks off their formation.
Acoustic Levitation Transportation of Small Objects Using a Ring-type Vibrator
NASA Astrophysics Data System (ADS)
Thomas, Gilles P. L.; Andrade, Marco A. B.; Adamowski, Julio C.; Silva, Eḿílio C. N.
A new device for noncontact transportation of small solid objects is presented here. Ultrasonic flexural vibrations are generated along the ring shaped vibrator using two Langevin transducers and by using a reflector parallel to the vibrator, small particles are trapped at the nodal points of the resulting acoustic standing wave. The particles are then moved by generating a traveling wave along the vibrator, which can be done by modulating the vibration amplitude of the transducers. The working principle of the traveling wave along the vibrator has been modeled by the superposition of two orthogonal standing waves, and the position of the particles can be predicted by using finite element analysis of the vibrator and the resulting acoustic field. A prototype consisting of a 3 mm thick, 220 mm long, 50 mm wide and 52 mm radius aluminum ring-type vibrator and a reflector of the same length and width was built and small polystyrene spheres have been successfully transported along the straight parts of the vibrator.
Narfström, K L; Nilsson, S E; Andersson, B E
1985-01-01
DC-recorded electroretinography (ERG) and direct recordings of the standing potential (SP) were performed on a group of normal cats and Abyssinian cats affected by a hereditary retinal degenerative disease with similarities to human retinitis pigmentosa. A significant reduction of a- and b-wave amplitudes was found at an early stage of disease at a time when there were no major alterations in the c-wave and SP. At later stages both the c-wave and the SP oscillations were significantly reduced or absent. These findings indicate a primary photo-receptor disorder. Threshold studies for the scotopic b-wave showed a loss of retinal sensitivity early in the disease at a time when 30 Hz flicker responses were normal, which could indicate an earlier involvement of the rods than of the cones. There were no major alterations in the timing of the ERG in the affected animals tested. PMID:4016061
Gusev, Vitalyi E; Lomonosov, Alexey M; Ni, Chenyin; Shen, Zhonghua
2017-09-01
An analytical theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous plate material on the Lamb waves near the S 1 zero group velocity point is developed. The theory predicts that the main effect of the hysteretic quadratic nonlinearity consists in the modification of the frequency and the induced absorption of the Lamb modes. The effects of the nonlinear self-action in the propagating and standing Lamb waves are expected to be, respectively, nearly twice and three times stronger than those in the plane propagating acoustic waves. The theory is restricted to the simplest hysteretic nonlinearity, which is influencing only one of the Lamé moduli of the materials. However, possible extensions of the theory to the cases of more general hysteretic nonlinearities are discussed as well as the perspectives of its experimental testing. Applications include nondestructive evaluation of micro-inhomogeneous and cracked plates. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Zhifeng; Yan, Yong; Li, Shufa; Xu, Xiaoguang; Jiang, Yong; Lai, Tianshu
2017-01-01
Spin-wave dynamics in full-Heusler Co2FeAl0.5Si0.5 films are studied using all-optical pump-probe magneto-optical polar Kerr spectroscopy. Backward volume magnetostatic spin-wave (BVMSW) mode is observed in films with thickness ranging from 20 to 100 nm besides perpendicular standing spin-wave (PSSW) mode, and found to be excited more efficiently than the PSSW mode. The field dependence of the effective Gilbert damping parameter appears especial extrinsic origin. The relationship between the lifetime and the group velocity of BVMSW mode is revealed. The frequency of BVMSW mode does not obviously depend on the film thickness, but the lifetime and the effective damping appear to do so. The simultaneous excitation of BVMSW and PSSW in Heusler alloy films as well as the characterization of their dynamic behaviors may be of interest for magnonic and spintronic applications. PMID:28195160
Interfacial waves generated by electrowetting-driven contact line motion
NASA Astrophysics Data System (ADS)
Ha, Jonghyun; Park, Jaebum; Kim, Yunhee; Shin, Bongsu; Bae, Jungmok; Kim, Ho-Young
2016-10-01
The contact angle of a liquid-fluid interface can be effectively modulated by the electrowetting-on-dielectric (EWOD) technology. Rapid movement of the contact line can be achieved by swift changes of voltage at the electrodes, which can give rise to interfacial waves under the strong influence of surface tension. Here we experimentally demonstrate EWOD-driven interfacial waves of overlapping liquids and compare their wavelength and decay length with the theoretical results obtained by a perturbation analysis. Our theory also allows us to predict the temporal evolution of the interfacial profiles in either rectangular or cylindrical containers, as driven by slipping contact lines. This work builds a theoretical framework to understand and predict the dynamics of capillary waves of a liquid-liquid interface driven by EWOD, which has practical implications on optofluidic devices used to guide light.
NASA Astrophysics Data System (ADS)
Lieberman, M. A.; Lichtenberg, A. J.; Kawamura, Emi; Marakhtanov, A. M.
2015-09-01
It is well known that standing waves having radially center-high rf voltage profiles exist in high frequency capacitive discharges. It is also known that in radially uniform discharges, the capacitive sheath nonlinearities excite strong nonlinear series resonance harmonics that enhance the electron power deposition. In this work, we consider the coupling of the series resonance-enhanced harmonics to the standing waves. A one-dimensional, asymmetric radial transmission line model is developed incorporating the wave and nonlinear sheath physics and a self-consistent dc potential. The resulting coupled pde equation set is solved numerically to determine the discharge voltages and currents. A 10 mT argon base case is chosen with plasma density 2 ×1016 m-3, gap width 2 cm and conducting electrode radius 15 cm, driven by a high frequency 500 V source with source resistance 0.5 ohms. We find that nearby resonances lead to an enhanced ratio of 4.5 of the electron power per unit area on axis, compared to the average. The radial dependence of electron power with frequency shows significant variations, with the central enhancement and sharpness of the spatial resonances depending in a complicated way on the harmonic structure. Work supported by DOE Fusion Energy Science Contract DE-SC000193 and by a gift from the Lam Research Corporation.
Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves
NASA Astrophysics Data System (ADS)
Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.
Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).
Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators
Mitrofanov, Oleg; Khromova, Irina; Siday, Thomas; ...
2016-04-22
We describe the temporal evolution of the terahertz (THz) field leading to the excitation of plasmonic resonances in carbon microfibers. The field evolution is mapped in space and time for the 3/2 wavelength resonance using a subwavelength aperture THz near-field probe with an embedded THz photoconductive detector. The excitation of surface waves at the fiber tips leads to the formation of a standing wave along the fiber. Local THz time-domain spectroscopy at one of the standing wave crests shows a clear third-order resonance peak at 1.65 THz, well described by the Lorentz model. Lastly, this application of the subwavelength aperturemore » THz near-field microscopy for mode mapping and local spectroscopy demonstrates the potential of near-field methods for studies of subwavelength plasmonic THz resonators.« less
Chang, Chao; Tang, Chuanxiang; Wu, Juhao
2017-05-09
An improved optical undulator for use in connection with free electron radiation sources is provided. A tilt is introduced between phase fronts of an optical pulse and the pulse front. Two such pulses in a counter-propagating geometry overlap to create a standing wave pattern. A line focus is used to increase the intensity of this standing wave pattern. An electron beam is aligned with the line focus. The relative angle between pulse front and phase fronts is adjusted such that there is a velocity match between the electron beam and the overlapping optical pulses along the line focus. This allows one to provide a long interaction length using short and intense optical pulses, thereby greatly increasing the radiation output from the electron beam as it passes through this optical undulator.
Dynamics and Stability of Rolling Viscoelastic Tires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, Trevor
2013-04-30
Current steady state rolling tire calculations often do not include treads because treads destroy the rotational symmetry of the tire. We describe two methodologies to compute time periodic solutions of a two-dimensional viscoelastic tire with treads: solving a minimization problem and solving a system of equations. We also expand on work by Oden and Lin on free spinning rolling elastic tires in which they disovered a hierachy of N-peak steady state standing wave solutions. In addition to discovering a two-dimensional hierarchy of standing wave solutions that includes their N-peak hiearchy, we consider the eects of viscoelasticity on the standing wavemore » solutions. Finally, a commonplace model of viscoelasticity used in our numerical experiments led to non-physical elastic energy growth for large tire speeds. We show that a viscoelastic model of Govindjee and Reese remedies the problem.« less
Numerical simulation and stability analysis of solutocapillary effect in ultrathin films
NASA Astrophysics Data System (ADS)
Gordeeva, V. Yu.; Lyushnin, A. V.
2017-04-01
Polar fluids, like water or polydimethylsiloxane, are widely used in technical and medical applications. Capillary effects arising from surface tension gradients can be significant in thin liquid films. The present paper is dedicated to investigation of capillary flow due to a surfactant added to a polar liquid under conditions when intermolecular forces and disjoining pressure play an important role. Evolution equations are formulated for a film profile and the surfactant concentration. Stability analysis shows that the Marangoni effect destabilizes the film, and oscillatory modes appear at slow evaporation rates. We find that the film has four stability modes of at slow evaporation: monotonic stable, monotonic unstable, oscillatory stable, and oscillatory unstable, depending on the wave number of disturbances.
Coherent Waves in Seismic Researches
NASA Astrophysics Data System (ADS)
Emanov, A.; Seleznev, V. S.
2013-05-01
Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of reflected waves. With use of developed algorithms of head wave conversion in time sections a work of studying of refracting boundaries in Siberia have been executed. Except for the research by method of refracting waves, the conversion of head waves in time sections, applied to seismograms of reflected wave method, allows to obtain information about refracting horizons in upper part of section in addition to reflecting horizons data. Recovery method of wave field coherent components is the basis of the engineering seismology on the level of accuracy and detail. In seismic microzoning resonance frequency of the upper part of section are determined on the basis of this method. Maps of oscillation amplification and result accuracy are constructed for each of the frequencies. The same method makes it possible to study standing wave field in buildings and constructions with high accuracy and detail, realizing diagnostics of their physical state on set of natural frequencies and form of self-oscillations, examined with high detail. The method of standing waves permits to estimate a seismic stability of structure on new accuracy level.
Mining volume measurement system
NASA Technical Reports Server (NTRS)
Heyman, Joseph Saul (Inventor)
1988-01-01
In a shaft with a curved or straight primary segment and smaller off-shooting segments, at least one standing wave is generated in the primary segment. The shaft has either an open end or a closed end and approximates a cylindrical waveguide. A frequency of a standing wave that represents the fundamental mode characteristic of the primary segment can be measured. Alternatively, a frequency differential between two successive harmonic modes that are characteristic of the primary segment can be measured. In either event, the measured frequency or frequency differential is characteristic of the length and thus the volume of the shaft based on length times the bore area.
Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field
NASA Astrophysics Data System (ADS)
Antypas, Dionysios; Fabricant, Anne; Budker, Dmitry
2018-05-01
Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -> 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.
Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun
2009-10-21
Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.
NASA Astrophysics Data System (ADS)
Hansen, Uwe J.
2005-09-01
A speaker, driven by an amplified audio signal is used to set up a standing wave in a 3b-ft-long, 4-in.-diam transparent tube. Initially the tube is oriented horizontally, and Styrofoam packing peanuts accumulate near the pressure nodes. When the tube is turned to a position with the axis oriented vertically, the peanuts drop slightly, until the gravitational force on the peanuts is balanced by the force due to the sound pressure, at which point levitation is observed. Sound-pressure level measurements are used to map the air column normal mode pattern. Similarly, standing waves are established between an ultrasonic horn and a metal reflector and millimeter size Styrofoam balls are levitated.
Efficient atom localization via probe absorption in an inverted-Y atomic system
NASA Astrophysics Data System (ADS)
Wu, Jianchun; Wu, Bo; Mao, Jiejian
2018-06-01
The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.
Revised model for the radiation force exerted by standing surface acoustic waves on a rigid cylinder
NASA Astrophysics Data System (ADS)
Liang, Shen; Chaohui, Wang
2018-03-01
In this paper, a model for the radiation force exerted by standing surface acoustic waves (SSAWs) on a rigid cylinder in inviscid fluids is extended to account for the dependence on the Rayleigh angle. The conventional model for the radiation force used in the SSAW-based applications is developed in plane standing waves, which fails to predict the movement of the cylinder in the SSAW. Our revised model reveals that, in the direction normal to the piezoelectric substrate on which the SSAW is generated, acoustic radiation force can be large enough to drive the cylinder even in the long-wavelength limit. Furthermore, the force in this direction can not only push the cylinder away, but also pull it back toward the substrate. In the direction parallel to the substrate, the equilibrium positions for particles can be actively tuned by changing Rayleigh angle. As an example considered in the paper, with the reduction of Rayleigh angle the equilibrium positions for steel cylinders in water change from pressure nodes to pressure antinodes. The model can thus be used in the design of SSAWs for particle manipulations.
Vecchiarelli, Anthony G.; Li, Min; Mizuuchi, Michiyo; Hwang, Ling Chin; Seol, Yeonee; Neuman, Keir C.; Mizuuchi, Kiyoshi
2016-01-01
The Escherichia coli Min system self-organizes into a cell-pole to cell-pole oscillator on the membrane to prevent divisions at the cell poles. Reconstituting the Min system on a lipid bilayer has contributed to elucidating the oscillatory mechanism. However, previous in vitro patterns were attained with protein densities on the bilayer far in excess of those in vivo and failed to recapitulate the standing wave oscillations observed in vivo. Here we studied Min protein patterning at limiting MinD concentrations reflecting the in vivo conditions. We identified “burst” patterns—radially expanding and imploding binding zones of MinD, accompanied by a peripheral ring of MinE. Bursts share several features with the in vivo dynamics of the Min system including standing wave oscillations. Our data support a patterning mechanism whereby the MinD-to-MinE ratio on the membrane acts as a toggle switch: recruiting and stabilizing MinD on the membrane when the ratio is high and releasing MinD from the membrane when the ratio is low. Coupling this toggle switch behavior with MinD depletion from the cytoplasm drives a self-organized standing wave oscillator. PMID:26884160
Vecchiarelli, Anthony G; Li, Min; Mizuuchi, Michiyo; Hwang, Ling Chin; Seol, Yeonee; Neuman, Keir C; Mizuuchi, Kiyoshi
2016-03-15
The Escherichia coli Min system self-organizes into a cell-pole to cell-pole oscillator on the membrane to prevent divisions at the cell poles. Reconstituting the Min system on a lipid bilayer has contributed to elucidating the oscillatory mechanism. However, previous in vitro patterns were attained with protein densities on the bilayer far in excess of those in vivo and failed to recapitulate the standing wave oscillations observed in vivo. Here we studied Min protein patterning at limiting MinD concentrations reflecting the in vivo conditions. We identified "burst" patterns--radially expanding and imploding binding zones of MinD, accompanied by a peripheral ring of MinE. Bursts share several features with the in vivo dynamics of the Min system including standing wave oscillations. Our data support a patterning mechanism whereby the MinD-to-MinE ratio on the membrane acts as a toggle switch: recruiting and stabilizing MinD on the membrane when the ratio is high and releasing MinD from the membrane when the ratio is low. Coupling this toggle switch behavior with MinD depletion from the cytoplasm drives a self-organized standing wave oscillator.
Lee, Kevin M; Wilson, Preston S; Wochner, Mark S
2014-04-01
The use of bubble resonance effects to attenuate low-frequency underwater sound was investigated experimentally in a large water tank. A compact electromechanical sound source was used to excite standing wave fields at frequencies ranging between 50 and 200 Hz in the tank. The source was then surrounded by a stationary array of tethered encapsulated air bubbles, and reduction in standing wave amplitude by as much as 26 dB was observed. The bubbles consisted of either thin-shelled latex balloons with approximately 5 cm radii or thicker-shelled vinyl boat fenders with 6.9 cm radii. The effects of changing the material and thickness of the bubble shells were found to be in qualitative agreement with predictions from Church's model for sound propagation in a liquid containing encapsulated bubbles [J. Acoust. Soc. Am. 97, 1510-1521 (1995)]. Although demonstrated here for low frequency noise abatement within a tank, which is useful for quieting acoustic test facilities and large tanks used for marine life husbandry, the eventual aim of this work is to use stationary arrays of large tethered encapsulated bubbles to abate low frequency underwater noise from anthropogenic sources in the marine environment.
Radiation pressure of standing waves on liquid columns and small diffusion flames
NASA Astrophysics Data System (ADS)
Thiessen, David B.; Marr-Lyon, Mark J.; Wei, Wei; Marston, Philip L.
2002-11-01
The radiation pressure of standing ultrasonic waves in air is demonstrated in this investigation to influence the dynamics of liquid columns and small flames. With the appropriate choice of the acoustic amplitude and wavelength, the natural tendency of long columns to break because of surface tension was suppressed in reduced gravity [M. J. Marr-Lyon, D. B. Thiessen, and P. L. Marston, Phys. Rev. Lett. 86, 2293-2296 (2001); 87(20), 9001(E) (2001)]. Evaluation of the radiation force shows that narrow liquid columns are attracted to velocity antinodes. The response of a small vertical diffusion flame to ultrasonic radiation pressure in a horizontal standing wave was observed in normal gravity. In agreement with our predictions of the distribution of ultrasonic radiation stress on the flame, the flame is attracted to a pressure antinode and becomes slightly elliptical with the major axis in the plane of the antinode. The radiation pressure distribution and the direction of the radiation force follow from the dominance of the dipole scattering for small flames. Understanding radiation stress on flames is relevant to the control of hot fluid objects. [Work supported by NASA.
Evaluation of small-diameter timber for value-added manufacturing : a stress wave approach
Xiping Wang; Robert J. Ross; John Punches; R. James Barbour; John W. Forsman; John R. Erickson
2003-01-01
The objective of this research was to investigate the use of a stress wave technology to evaluate the structural quality of small-diameter timber before harvest. One hundred and ninety-two Douglas-fir and ponderosa pine trees were sampled from four stands in southwestern Oregon and subjected to stress wave tests in the field. Twelve of the trees, six Douglas-fir and...
Scalable Directed Self-Assembly Using Ultrasound Waves
2015-09-04
SECURITY CLASSIFICATION OF: We aim to understand how ultrasound waves can be used to create organized patterns of nanoparticles in a host medium such...as a polymer matrix material. The critical difference between the ultrasound technology studied in this project, and other directed self-assembly...of nanoparticles dispersed in a host medium are assembled by means of standing ultrasound waves. Additionally, we have obtained experimental
Bateman, Grant A
2015-12-01
Most hypotheses trying to explain the pathophysiology of idiopathic syringomyelia involve mechanisms whereby CSF is pumped against a pressure gradient, from the subarachnoid space into the cord parenchyma. On review, these theories have universally failed to explain the disease process. A few papers have suggested that the syrinx fluid may originate from the cord capillary bed itself. However, in these papers, the fluid is said to accumulate due to impaired fluid drainage out of the cord. Again, there is little evidence to substantiate this. This proffered hypothesis looks at the problem from the perspective that syringomyelia and normal pressure hydrocephalus are almost identical in their manifestations but only differ in their site of effect within the neuraxis. It is suggested that the primary trigger for syringomyelia is a reduction in the compliance of the veins draining the spinal cord. This reduces the efficiency of the pulse wave dampening, occurring within the cord parenchyma, increasing arteriolar and capillary pulse pressure. The increased capillary pulse pressure opens the blood-spinal cord barrier due to a direct effect upon the wall integrity and interstitial fluid accumulates due to an increased secretion rate. An increase in arteriolar pulse pressure increases the kinetic energy within the cord parenchyma and this disrupts the cytoarchitecture allowing the fluid to accumulate into small cystic regions in the cord. With time the cystic regions coalesce to form one large cavity which continues to increase in size due to the ongoing interstitial fluid secretion and the hyperdynamic cord vasculature. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Rogue periodic waves of the focusing nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Chen, Jinbing; Pelinovsky, Dmitry E.
2018-02-01
Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn. Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.
Rogue periodic waves of the focusing nonlinear Schrödinger equation.
Chen, Jinbing; Pelinovsky, Dmitry E
2018-02-01
Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn . Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.
Experimental Study of Large-Amplitude Faraday Waves in Rectangular Cylinders
NASA Technical Reports Server (NTRS)
Iek, Chanthy; Alexander, Iwan J.; Tin, Padetha; Adamovsky, Gregory
2005-01-01
Experiment on single-mode Faraday waves having two, thee, and four wavelengths across a rectangular cylinder of high aspect ratio is the subject of discussion. Previous experiments recently done by Henderson & Miles (1989) and by Lei Jiang et. a1 (1996) focused on Faraday waves with one and two wavelengths across rectangular cylinders. In this experimental study the waves steepness ranges from small at threshold levels to a large amplitude which according to Penny & Price theory (1952) approaches the maximum sustainable amplitude for a standing wave. The waves characteristics for small amplitudes are evaluated against an existing well known linear theory by Benjamin & Ursell (l954) and against a weakly nonlinear theory by J. Miles (1984) which includes the effect of viscous damping. The evaluation includes the wave neutral stability and damping rate. In addition, a wave amplitude differential equation of a linear theory including viscous effect by Cerda & Tirapegui (1998) is solved numerically to yield prediction of temporal profiles of both wave damping and wave formation at the threshold. An interesting finding from this exercise is that the fluid kinematic viscosity needs to increase ten times in order to obtain good agreement between the theoretical prediction and the experimental data for both wave damping and wave starting. For large amplitude waves, the experimental data are evaluated against the theory of Penny & Price which predicts wave characteristics of any amplitude up to the point at which the wave reaches its maximum amplitude attainable for a standing wave. The theory yields two criteria to show the maximum wave steepness, the vertical acceleration at the wave crest of half the earth gravity field acceleration and the including angle at the crest of 90 degrees. Comparison with experimental data shows close agreement for the wave crest acceleration but a large discrepancy for the including angle. Additional information is included in the original extended abstract.
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
NASA Astrophysics Data System (ADS)
Santos, J. E.; Savioli, G. B.
2018-04-01
Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
The modification of X and L band radar signals by monomolecular sea slicks
NASA Technical Reports Server (NTRS)
Huehnerfuss, H.; Alpers, W.; Cross, A.; Garrett, W. D.; Keller, W. C.; Plant, W. J.; Schuler, D. L.; Lange, P. A.; Schlude, F.
1983-01-01
One methyl oleate and two oleyl alcohol surface films were produced on the surface of the North Sea under comparable oceanographic and meteorological conditions in order to investigate their influence on X and L band radar backscatter. Signals are backscattered in these bands primarily by surface waves with lengths of about 2 and 12 cm, respectively, and backscattered power levels in both bands were reduced by the slicks. The reduction was larger at X band than at L band, however, indicating that shorter waves are more intensely damped by the surface films. The oleyl alcohol film caused greater attenuation of short gravity waves than the film of methyl oleate, thus demonstrating the importance of the physicochemical properties of films on the damping of wind-generated gravity capillary waves. Finally, these experiments indicate a distinct dependence of the degree of damping on the angle between wind and waves. Wind-generated waves traveling in the wind direction are more intensely damped by surface films than are waves traveling at large angles to the wind.
Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.
Stothard, David J M; Dunn, Malcolm H
2010-01-18
We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.
Strength and stiffness assessment of standing trees using a nondestructive stress wave technique.
Xiping Wang; Robert J. Ross; Michael McClellan; R. James Barbour; John R. Erickson; John W. Forsman; Gary D. McGinnis
Natureas engineering of wood through genetics, stand conditions, and environment creates wide variability in wood as a material, which in turn introduces difficulties in wood processing and utilization. Manufacturers sometimes find it difficult to consistently process wood into quality products because of its wide range of properties. The primary objective of this...
MS Lonchakov waves while standing in the interdeck hatch of Endeavour
2001-04-21
S100-E-5073 (21 April 2001) --- Cosmonaut Yuri V. Lonchakov, mission specialist representing Rosaviakosmos, waves to a crew mate while translating through the passageway between the middeck and flight deck onboard the Earth-orbiting Space Shuttle Endeavour. The image was recorded with a digital still camera.
On Long Baroclinic Rossby Waves in the Tropical North Atlantic Observed From Profiling Floats
2007-05-16
15b and 15c). Reclosing of vortex isolines while forming a new corotating eddy pair typically indicates excitation of periodical auto-oscillations in...important dynamical effect as reclosing of vortex isolines between corotating eddies, which are components of the semiannual standing Rossby wave
Standing Waves and Inquiry Using Water Droplets
ERIC Educational Resources Information Center
Sinclair, Dina; Vondracek, Mark
2015-01-01
Most high school and introductory college physics classes study simple harmonic motion and various wave phenomena. With the majority of states adopting the Next Generation Science Standards and pushing students to explore the scientific process for themselves, there is a growing demand for hands-on inquiry activities that involve and develop more…
LETTERS AND COMMENTS: Energy in one-dimensional linear waves in a string
NASA Astrophysics Data System (ADS)
Burko, Lior M.
2010-09-01
We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course.
Van Allen Probes Observations of Second Harmonic Poloidal Standing Alfvén Waves
NASA Astrophysics Data System (ADS)
Takahashi, Kazue; Oimatsu, Satoshi; Nosé, Masahito; Min, Kyungguk; Claudepierre, Seth G.; Chan, Anthony; Wygant, John; Kim, Hyomin
2018-01-01
Long-lasting second-harmonic poloidal standing Alfvén waves (P2 waves) were observed by the twin Van Allen Probes (Radiation Belt Storm Probes, or RBSP) spacecraft in the noon sector of the plasmasphere, when the spacecraft were close to the magnetic equator and had a small azimuthal separation. Oscillations of proton fluxes at the wave frequency (˜10 mHz) were also observed in the energy (W) range 50-300 keV. Using the unique RBSP orbital configuration, we determined the phase delay of magnetic field perturbations between the spacecraft with a 2nπ ambiguity. We then used finite gyroradius effects seen in the proton flux oscillations to remove the ambiguity and found that the waves were propagating westward with an azimuthal wave number (m) of ˜-200. The phase of the proton flux oscillations relative to the radial component of the wave magnetic field progresses with W, crossing 0 (northward moving protons) or 180° (southward moving protons) at W ˜ 120 keV. This feature is explained by drift-bounce resonance (mωd ˜ ωb) of ˜120 keV protons with the waves, where ωd and ωb are the proton drift and bounce frequencies. At lower energies, the proton phase space density (FH+) exhibits a bump-on-tail structure with ∂FH+/∂W>0 occurring in the 1-10 keV energy range. This FH+ is unstable and can excite P2 waves through bounce resonance (ω ˜ ωb), where ω is the wave frequency.
Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW).
Ng, Jia Wei; Devendran, Citsabehsan; Neild, Adrian
2017-10-11
Surface acoustic waves offer a versatile and biocompatible method of manipulating the location of suspended particles or cells within microfluidic systems. The most common approach uses the interference of identical frequency, counter propagating travelling waves to generate a standing surface acoustic wave, in which particles migrate a distance less than half the acoustic wavelength to their nearest pressure node. The result is the formation of a periodic pattern of particles. Subsequent displacement of this pattern, the prerequisite for tweezing, can be achieved by translation of the standing wave, and with it the pressure nodes; this requires changing either the frequency of the pair of waves, or their relative phase. Here, in contrast, we examine the use of two counterpropagating traveling waves of different frequency. The non-linearity of the acoustic forces used to manipulate particles, means that a small frequency difference between the two waves creates a substantially different force field, which offers significant advantages. Firstly, this approach creates a much longer range force field, in which migration takes place across multiple wavelengths, and causes particles to be gathered together in a single trapping site. Secondly, the location of this single trapping site can be controlled by the relative amplitude of the two waves, requiring simply an attenuation of one of the electrical drive signals. Using this approach, we show that by controlling the powers of the opposing incoherent waves, 5 μm particles can be migrated laterally across a fluid flow to defined locations with an accuracy of ±10 μm.
Characterization of microchannel anechoic corners formed by surface acoustic waves
NASA Astrophysics Data System (ADS)
Destgeer, Ghulam; Alam, Ashar; Ahmed, Husnain; Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Sung, Hyung Jin
2018-02-01
Surface acoustic waves (SAWs) generated in a piezoelectric substrate couple with a liquid according to Snell's law such that a compressional acoustic wave propagates obliquely at a Rayleigh angle ( θ t) inside the microchannel to form a region devoid of a direct acoustic field, which is termed a microchannel anechoic corner (MAC). In the present study, we used microchannels with various heights and widths to characterize the width of the MAC region formed by a single travelling SAW. The attenuation of high-frequency SAWs produced a strong acoustic streaming flow that moved the particles in and out of the MAC region, whereas reflections of the acoustic waves within the microchannel resulted in standing acoustic waves that trapped particles at acoustic pressure nodes located within or outside of the MAC region. A range of actuation frequencies and particle diameters were used to investigate the effects of the acoustic streaming flow and the direct acoustic radiation forces by the travelling as well as standing waves on the particle motion with respect to the MAC region. The width of the MAC ( w c), measured experimentally by tracing the particles, increased with the height of the microchannel ( h m) according to a simple trigonometric equation w c = h m × tan ( θ t ).
1992-11-24
15 Code I: Internal Reports ................................................................. 19 Code M : Oral...experiments. 13. S. M . Baumer: completed M.S. thesis in 1988 on light scattering. 14. C. E. Dean: completed Ph.D. dissertation in 1989 on light...novel oscillation induced flow instabilities. 18. J. M . Winey: awarded M.S. degree in 1990 with project on capillary wave experiments. He
Fast, externally triggered, digital phase controller for an optical lattice
NASA Astrophysics Data System (ADS)
Sadgrove, Mark; Nakagawa, Ken'ichi
2011-11-01
We present a method to control the phase of an optical lattice according to an external trigger signal. The method has a latency of less than 30 μs. Two phase locked digital synthesizers provide the driving signal for two acousto-optic modulators which control the frequency and phase of the counter-propagating beams which form a standing wave (optical lattice). A micro-controller with an external interrupt function is connected to the desired external signal, and updates the phase register of one of the synthesizers when the external signal changes. The standing wave (period λ/2 = 390 nm) can be moved by units of 49 nm with a mean jitter of 28 nm. The phase change is well known due to the digital nature of the synthesizer, and does not need calibration. The uses of the scheme include coherent control of atomic matter-wave dynamics.
Coherent perfect absorption in deeply subwavelength films in the single-photon regime
Roger, Thomas; Vezzoli, Stefano; Bolduc, Eliot; Valente, Joao; Heitz, Julius J. F.; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay I.; Faccio, Daniele
2015-01-01
The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single-photon regime is of great interest and yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply subwavelength 50% absorber. We show that while the absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, for example, a localized plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications. PMID:25991584
Relaxation Oscillations in the Nearly Inviscid Faraday System
NASA Astrophysics Data System (ADS)
Knobloch, Edgar; Higuera, Maria
2004-11-01
The amplitude equations for nearly inviscid Faraday waves couple to a streaming flow driven by oscillatory viscous boundary layers at the rigid walls and the free surface produced by the waves. This flow is driven most efficiently by mixed mode oscillations created in secondary bifurcations from standing waves, and these occur at small amplitude in containers that are almost symmetric.(M. Higuera, J.M. Vega and E. Knobloch. J. Nonlin. Sci. 12, 505, 2002.) Among the new dynamical behavior that results are relaxation oscillations involving abrupt transitions between standing and mixed mode oscillations. Such oscillations are present both in almost circular and in almost square containers. The origin of these oscillations will be explained and the results related to experiments.(F. Simonelli and J. P. Gollub, J. Fluid Mech. 199, 471, 1989.)footnote[3]Z.C. Feng and P.R. Sethna, J. Fluid Mech. 199, 495, 1989.
Partners in Physics with Colorado School of Mines' Society of Physics Students
NASA Astrophysics Data System (ADS)
Moore, Shirley; Stilwell, Matthew; Boerner, Zach
2011-04-01
The Colorado School of Mines (CSM) Society of Physics Students (SPS) revitalized in 2008 and has since blown up with outreach activity, incorporating all age levels into our programs. In Spring 2010, CSM SPS launched a new program called Partners in Physics. Students from Golden High School came to CSM where they had a college-level lesson on standing waves and their applications. These students then joined volunteers from CSM in teaching local elementary school students about standing waves beginning with a science show. The CSM and high school students then helped the children to build make-and-take demonstrations incorporating waves. This year, rockets are the theme for Partners in Physics and we began with demonstrations with local middle school students. In Spring 2011, CSM SPS will be teaching elementary school students about projectile motion and model rockets along with these middle school students. Colorado School of Mines Department of Physics
NASA Astrophysics Data System (ADS)
2006-01-01
WE RECOMMEND GLX Xplorer Datalogger This hand-held device offers great portability and robustness. Theoretical Concepts in Physics A first-rate reference tool for physics teachers. Do Your Ears Pop in Space? This little gem gives a personal insight into space travel. Full Moon A collection of high-quality photographs from the Apollo missions. The Genius of Science A collection of memories from leading 20th-century physicists. The Simple Science of Flight An excellent source of facts and figures about flight. SUREHigherPhysics This simulation-based software complies with Higher physics. Interactive Physics A programme that makes building simulations quick and easy. WORTH A LOOK Astronomical Enigmas This guide to enigmas could be a little shorter. HANDLE WITH CARE Standing-wave machine This is basically a standing-wave generator with a built-in strobe. WEB WATCH Sounds Amazing is a fantastic site, aimed at Key Stage 4 pupils, for learning about sound and waves.
Dynamic patterns in a supported lipid bilayer driven by standing surface acoustic waves.
Hennig, Martin; Neumann, Jürgen; Wixforth, Achim; Rädler, Joachim O; Schneider, Matthias F
2009-11-07
In the past decades supported lipid bilayers (SLBs) have been an important tool in order to study the physical properties of biological membranes and cells. So far, controlled manipulation of SLBs is very limited. Here we present a new technology to create lateral patterns in lipid membranes controllable in both space and time. Surface acoustic waves (SAWs) are used to generate lateral standing waves on a piezoelectric substrate which create local "traps" in the lipid bilayer and lead to a lateral modulation in lipid concentration. We demonstrate that pattern formation is reversible and does not affect the integrity of the lipid bilayer as shown by extracting the diffusion constant of fluid membranes. The described method could possibly be used to design switchable interfaces for the lateral transport and organization of membrane bound macromolecules to create dynamic bioarrays and control biofilm formation.
Interfacial layering and capillary roughness in immiscible liquids.
Geysermans, P; Pontikis, V
2010-08-21
The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.
Foam on troubled water: Capillary induced finite-time arrest of sloshing waves
NASA Astrophysics Data System (ADS)
Viola, Francesco; Brun, P.-T.; Dollet, Benjamin; Gallaire, François
2016-09-01
Interfacial forces exceed gravitational forces on a scale small relative to the capillary length—two millimeters in the case of an air-water interface—and therefore dominate the physics of sub-millimetric systems. They are of paramount importance for various biological taxa and engineering processes where the motion of a liquid meniscus induces a viscous frictional force that exhibits a sublinear dependence in the meniscus velocity, i.e., a power law with an exponent smaller than one. Interested in the fundamental implications of this dependence, we use a liquid-foam sloshing system as a prototype to exacerbate the effect of sublinear friction on the macroscopic mechanics of multi-phase flows. In contrast to classical theory, we uncover the existence of a finite-time singularity in our system yielding the arrest of the fluid's oscillations. We propose a minimal theoretical framework to capture this effect, thereby amending the paradigmatic damped harmonic oscillator model. Our results suggest that, although often not considered at the macroscale, sublinear capillary forces govern the friction at liquid-solid and liquid-liquid interfaces.
Multi-pin chemiresistors for microchemical sensors
Ho, Clifford K [Albuquerque, NM
2007-02-20
A multi-pin chemiresistor for use in microchemical sensors. A pair of free-standing, bare wires is supported by an electrically insulating support, and are oriented parallel to each other and spaced closely together. A free-standing film of a chemically sensitive polymer that swells when exposed to vapors of a volatile chemical is formed in-between the pair of closely-spaced wires by capillary action. Similar in construction to a thermocouple, this "chemicouple" is relatively inexpensive and easy to fabricate by dipping the pair of bare wires into a bath of well-mixed chemiresistor ink. Also, a chemiresistor "stick" is formed by dipping an electrically insulating rod with two or more linear or spiral-wrapped electrical traces into the bath of well-mixed chemiresistor ink, which deposits a uniform coating of the chemically sensitive polymer on the rod and the electrical traces. These "sticks" can be easily removed and replaced from a multi-chemiresistor plug.
On the shape of giant soap bubbles.
Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe
2017-03-07
We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.
Isolated drops from capillary jets by means of Gaussian wave packets
NASA Astrophysics Data System (ADS)
Garcia, Francisco Javier; Gonzalez, Heliodoro; Castrejon-Pita, Alfonso Arturo; Castrejon-Pita, Jose Rafael; Gomez-Aguilar, Francisco Jose
2017-11-01
The possibility of obtaining isolated drops from a continuous liquid jet through localized velocity perturbations is explored analytically, numerically and experimentally. We show that Gaussian wave packets are appropriate for this goal. A temporal linear analysis predicts the early evolution of these wave packets and provides an estimate of the breakup length of the jet. Non-linear numerical simulations allow us both to corroborate these results and to obtain the shape of the surface of the jet prior to breakup. Finally, we show experimental evidence that stimulating with a Gaussian wave packet can lead to the formation of an isolated drop without disturbing the rest of the jet. The authors acknowledge support from the Spanish Government under Contract No. FIS2014-25161, the Junta de Andalucia under Contract No. P11-FQM-7919, the EPSRC-UK via the Grant EP/P024173/1, and the Royal Society.
Gas exchange across the air-sea interface
NASA Astrophysics Data System (ADS)
Hasse, L.; Liss, P. S.
1980-10-01
The physics of gas exchange at the air-sea interface are reviewed. In order to describe the transfer of gases in the liquid near the boundary, a molecular plus eddy diffusivity concept is used, which has been found useful for smooth flow over solid surfaces. From consideration of the boundary conditions, a similar dependence of eddy diffusivity on distance from the interface can be derived for the flow beneath a gas/liquid interface, at least in the absence of waves. The influence of waves is then discussed. It is evident from scale considerations that the effect of gravity waves is small. It is known from wind tunnel work that capillary waves enhance gas transfer considerably. The existing hypotheses are apparently not sufficient to explain the observations. Examination of field data is even more frustrating since the data do not show the expected increase of gas exchange with wind speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, O.; Efimov, S.; Gurovich, V. Tz.
The results of visible spectroscopy of the plasma formed inside a copper capillary placed at the equatorial plane of an underwater electrically exploded spherical wire array (30 mm in diameter; 40 wires, each of 100 μm in diameter) are reported. In the experiments, a pulsed power generator with current amplitude of ∼300 kA and rise time of ∼1.1 μs was used to produce wire array explosion accompanied by the formation of a converging strong shock wave. The data obtained support the assumption of uniformity of the shock wave along the main path of its convergence. The spectroscopic measurements show that this rather simple methodmore » of formation of a converging strong shock wave can be used successfully for studying the shock wave's interaction with matter and the evaporation processes of atoms from a target.« less
Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High- β Plasma
Squire, J.; Kunz, M. W.; Quataert, E.; ...
2017-10-12
Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear “interruption” of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes δB ⊥/B 0≳β –1/2 (where β is the ratio of thermal to magnetic pressure). We use highly elongated domains to obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the amplitude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly affected by the excitation of oblique firehosemore » modes, which transition into long-lived parallel fluctuations at the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demonstrate that collisionless plasmas cannot support linearly polarized Alfvén waves above δB ⊥/B 0~β –1/2. Here, they also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance of velocity-space instabilities in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale fluctuations, without the need for a scale-by-scale turbulent cascade.« less
Kinetic Simulations of the Interruption of Large-Amplitude Shear-Alfvén Waves in a High- β Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Squire, J.; Kunz, M. W.; Quataert, E.
Using two-dimensional hybrid-kinetic simulations, we explore the nonlinear “interruption” of standing and traveling shear-Alfvén waves in collisionless plasmas. Interruption involves a self-generated pressure anisotropy removing the restoring force of a linearly polarized Alfvénic perturbation, and occurs for wave amplitudes δB ⊥/B 0≳β –1/2 (where β is the ratio of thermal to magnetic pressure). We use highly elongated domains to obtain maximal scale separation between the wave and the ion gyroscale. For standing waves above the amplitude limit, we find that the large-scale magnetic field of the wave decays rapidly. The dynamics are strongly affected by the excitation of oblique firehosemore » modes, which transition into long-lived parallel fluctuations at the ion gyroscale and cause significant particle scattering. Traveling waves are damped more slowly, but are also influenced by small-scale parallel fluctuations created by the decay of firehose modes. Our results demonstrate that collisionless plasmas cannot support linearly polarized Alfvén waves above δB ⊥/B 0~β –1/2. Here, they also provide a vivid illustration of two key aspects of low-collisionality plasma dynamics: (i) the importance of velocity-space instabilities in regulating plasma dynamics at high β, and (ii) how nonlinear collisionless processes can transfer mechanical energy directly from the largest scales into thermal energy and microscale fluctuations, without the need for a scale-by-scale turbulent cascade.« less
Dispersion of capillary waves in elliptical cylindrical jets
NASA Astrophysics Data System (ADS)
Amini, Ghobad; Dolatabadi, Ali
2011-11-01
In this work motion of a low speed liquid jet issuing from an elliptic orifice through the air is studied. Mathematical solution of viscous free-surface flow for this asymmetric geometry is simplified by using one-dimensional Cosserat (directed curve) equations which can be assumed as a low order form of Navier-Stokes equations for slender jets. Linear solution is performed and temporal and spatial dispersion equations are derived. Growth rate and phase speed of unstable and stable modes under various conditions are presented. The possibility of instability of asymmetric disturbances is studied too. With distance down the jet, major and minor axes are altered and finally jet breaks up due to capillary instability. The effect of jet velocity and viscosity and also orifice ellipticity on axis-switching and breakup is investigated.
NASA Astrophysics Data System (ADS)
Sanlı, Ceyda; Saitoh, Kuniyasu; Luding, Stefan; van der Meer, Devaraj
2014-09-01
When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We apply the methods developed to study dynamic heterogeneity and show that the typical time and length scales of the fluctuations due to rearrangements of observed particle groups significantly increase when the system approaches its largest experimentally accessible packing concentration. To connect the system to the dynamic criticality literature, we fit power laws to our results. The resultant critical exponents are consistent with those found in densely packed suspensions of colloids.
Sanlı, Ceyda; Saitoh, Kuniyasu; Luding, Stefan; van der Meer, Devaraj
2014-09-01
When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We apply the methods developed to study dynamic heterogeneity and show that the typical time and length scales of the fluctuations due to rearrangements of observed particle groups significantly increase when the system approaches its largest experimentally accessible packing concentration. To connect the system to the dynamic criticality literature, we fit power laws to our results. The resultant critical exponents are consistent with those found in densely packed suspensions of colloids.
NASA Astrophysics Data System (ADS)
Chunping, Zhang; Wei, Liu; Zhichun, Yang; Zhengyu, Li; Xiaoqing, Zhang; Feng, Wu
2012-05-01
A small size standing wave thermoacoustic refrigerator driven by a high frequency loudspeaker has been experimentally studied. Instead of water cooling, the cold heat exchanger of the refrigerator was cooled by air through fins on it. By working at 600-700 Hz and adjusting the position of the thermoacoustic core components including the stack and adjacent exchangers, the influences of it on the capability of refrigeration were experimentally investigated. The lowest temperature of 4.1 °C in the cold heat exchanger with the highest temperature difference of 21.5 °C between two heat exchangers were obtained. And the maximum cooling power of 9.7 W has been achieved.
Observation of Landau quantization and standing waves in HfSiS
NASA Astrophysics Data System (ADS)
Jiao, L.; Xu, Q. N.; Qi, Y. P.; Wu, S.-C.; Sun, Y.; Felser, C.; Wirth, S.
2018-05-01
Recently, HfSiS was found to be a new type of Dirac semimetal with a line of Dirac nodes in the band structure. Meanwhile, Rashba-split surface states are also pronounced in this compound. Here we report a systematic study of HfSiS by scanning tunneling microscopy/spectroscopy at low temperature and high magnetic field. The Rashba-split surface states are characterized by measuring Landau quantization and standing waves, which reveal a quasilinear dispersive band structure. First-principles calculations based on density-functional theory are conducted and compared with the experimental results. Based on these investigations, the properties of the Rashba-split surface states and their interplay with defects and collective modes are discussed.
Spatiotemporal chaos involving wave instability.
Berenstein, Igal; Carballido-Landeira, Jorge
2017-01-01
In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.
Spatiotemporal chaos involving wave instability
NASA Astrophysics Data System (ADS)
Berenstein, Igal; Carballido-Landeira, Jorge
2017-01-01
In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.
On the influence of reflection over a rhythmic swash zone on surf zone dynamics
NASA Astrophysics Data System (ADS)
Almar, Rafael; Nicolae Lerma, Alexandre; Castelle, Bruno; Scott, Timothy
2018-05-01
The reflection of incident gravity waves over an irregular swash zone morphology and the resulting influence on surf zone dynamics remains mostly unexplored. The wave-phase resolving SWASH model is applied to investigate this feedback using realistic low-tide terraced beach morphology with well-developed beach cusps. The rhythmic reflection generates a standing wave that mimics a subharmonic edge wave, from the superimposition of incident and two-dimensional reflected waves. This mechanism is enhanced by shore-normal, narrow-banded waves in both direction and frequency. Our study suggests that wave reflection over steep beaches could be a mechanism for the development of rhythmic morphological features such as beach cusps and rip currents.
Angle-dependent spin-wave resonance spectroscopy of (Ga,Mn)As films
NASA Astrophysics Data System (ADS)
Dreher, L.; Bihler, C.; Peiner, E.; Waag, A.; Schoch, W.; Limmer, W.; Goennenwein, S. T. B.; Brandt, M. S.
2013-06-01
A modeling approach for standing spin-wave resonances based on a finite-difference formulation of the Landau-Lifshitz-Gilbert equation is presented. In contrast to a previous study [C. Bihler , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.79.045205 79, 045205 (2009)], this formalism accounts for elliptical magnetization precession and magnetic properties arbitrarily varying across the layer thickness, including the magnetic anisotropy parameters, the exchange stiffness, the Gilbert damping, and the saturation magnetization. To demonstrate the usefulness of our modeling approach, we experimentally study a set of (Ga,Mn)As samples grown by low-temperature molecular-beam epitaxy by means of angle-dependent standing spin-wave resonance spectroscopy and electrochemical capacitance-voltage measurements. By applying our modeling approach, the angle dependence of the spin-wave resonance data can be reproduced in a simulation with one set of simulation parameters for all external field orientations. We find that the approximately linear gradient in the out-of-plane magnetic anisotropy is related to a linear gradient in the hole concentrations of the samples.
High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
Antao, Dion Savio; Farouk, Bakhtier
2013-08-01
A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.
Giant frequency down-conversion of the dancing acoustic bubble
Deymier, P. A.; Keswani, M.; Jenkins, N.; Tang, C.; Runge, K.
2016-01-01
We have demonstrated experimentally the existence of a giant frequency down-conversion of the translational oscillatory motion of individual submillimeter acoustic bubbles in water in the presence of a high frequency (500 kHz) ultrasonic standing wave. The frequency of the translational oscillations (~170 Hz) is more than three orders of magnitude smaller than that of the driving acoustic wave. We elucidate the mechanism of this very slow oscillation with an analytical model leading to an equation of translational motion of a bubble taking the form of Mathieu’s equation. This equation illuminates the origin of the giant down conversion in frequency as arising from an unstable equilibrium. We also show that bubbles that form chains along the direction of the acoustic standing wave due to radiation interaction forces exhibit also translation oscillations that form a spectral band. This band extends approximately from 130 Hz up to nearly 370 Hz, a frequency range that is still at least three orders of magnitude lower than the frequency of the driving acoustic wave. PMID:27857217
NASA Astrophysics Data System (ADS)
Uecker, Hannes
2004-04-01
The Lombardo-Imbihl-Fink (LFI) ODE model of the NO+NH 3 reaction on a Pt(1 0 0) surface shows stable relaxation oscillations with very sharp transitions for temperatures T between 404 and 433 K. Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial dimension. Depending on the parameters and initial conditions we find a rich variety of spatio-temporal patterns which we group into four main regimes: bulk oscillations (BOs), standing waves (SW), phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively fast diffusion of the kinetically slaved variables NH 3 and H. In particular, the latter replaces the global coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The PW exist only under the assumption of (relatively) slow diffusion of NH 3 and H.
Acoustic and Seismic Fields of Hydraulic Jumps at Varying Froude Numbers
NASA Astrophysics Data System (ADS)
Ronan, Timothy J.; Lees, Jonathan M.; Mikesell, T. Dylan; Anderson, Jacob F.; Johnson, Jeffrey B.
2017-10-01
Mechanisms that produce seismic and acoustic wavefields near rivers are poorly understood because of a lack of observations relating temporally dependent river conditions to the near-river seismoacoustic fields. This controlled study at the Harry W. Morrison Dam (HWMD) on the Boise River, Idaho, explores how temporal variation in fluvial systems affects surrounding acoustic and seismic fields. Adjusting the configuration of the HWMD changed the river bathymetry and therefore the form of the standing wave below the dam. The HWMD was adjusted to generate four distinct wave regimes that were parameterized through their dimensionless Froude numbers (Fr) and observations of the ambient seismic and acoustic wavefields at the study site. To generate detectable and coherent signals, a standing wave must exceed a threshold Fr value of 1.7, where a nonbreaking undular jump turns into a breaking weak hydraulic jump. Hydrodynamic processes may partially control the spectral content of the seismic and acoustic energies. Furthermore, spectra related to reproducible wave conditions can be used to calibrate and verify fluvial seismic and acoustic models.
Giant frequency down-conversion of the dancing acoustic bubble
NASA Astrophysics Data System (ADS)
Deymier, P. A.; Keswani, M.; Jenkins, N.; Tang, C.; Runge, K.
2016-11-01
We have demonstrated experimentally the existence of a giant frequency down-conversion of the translational oscillatory motion of individual submillimeter acoustic bubbles in water in the presence of a high frequency (500 kHz) ultrasonic standing wave. The frequency of the translational oscillations (~170 Hz) is more than three orders of magnitude smaller than that of the driving acoustic wave. We elucidate the mechanism of this very slow oscillation with an analytical model leading to an equation of translational motion of a bubble taking the form of Mathieu’s equation. This equation illuminates the origin of the giant down conversion in frequency as arising from an unstable equilibrium. We also show that bubbles that form chains along the direction of the acoustic standing wave due to radiation interaction forces exhibit also translation oscillations that form a spectral band. This band extends approximately from 130 Hz up to nearly 370 Hz, a frequency range that is still at least three orders of magnitude lower than the frequency of the driving acoustic wave.
Method and device for stand-off laser drilling and cutting
Copley, John A.; Kwok, Hoi S.; Domankevitz, Yacov
1989-09-26
A device for perforating material and a method of stand-off drilling using a laser. In its basic form a free-running laser beam creates a melt on the target and then a Q-switched short duration pulse is used to remove the material through the creation of a laser detonation wave. The advantage is a drilling/cutting method capable of working a target at lengthy stand-off distance. The device may employ 2 lasers or a single one operated in a free-running/Q-switched dual mode.
Strait of Gibraltar as seen from STS-58
1993-10-20
STS058-73-009 (18 Oct-1 Nov 1993) --- Atlantic water flowing with the tide through the Strait of Gibraltar into the Mediterranean generates internal waves as depicted in this photo. The incoming cool, less dense Atlantic water flows over the warm, more saline Mediterranean water. As the tide moves into the Strait of Gibraltar it encounters the Camarinal Sill, which is like a cliff under water, south of Camarinal Point, Spain. Internal waves are generated at the Sill and travel along the density boundary between the Atlantic water and the Mediterranean water. Internal waves have very little effect on the sea surface, except for gentle slopes and slight differences in roughness. We can see them in the Space Shuttle photos because of sunglint which reflects off the water. Internal waves smooth out some of the capillary waves at the surface in bands. The sun reflects more brightly from these smooth areas showing us the pattern of the underwater waves. The Bay of Cadiz on the southwest coast of Spain, the Rock of Gibraltar, and the Moroccan coast are also visible in this photo.
Jiao, Junjie; He, Yong; Leong, Thomas; Kentish, Sandra E; Ashokkumar, Muthupandian; Manasseh, Richard; Lee, Judy
2013-10-17
When subjected to an ultrasonic standing-wave field, cavitation bubbles smaller than the resonance size migrate to the pressure antinodes. As bubbles approach the antinode, they also move toward each other and either form a cluster or coalesce. In this study, the translational trajectory of two bubbles moving toward each other in an ultrasonic standing wave at 22.4 kHz was observed using an imaging system with a high-speed video camera. This allowed the speed of the approaching bubbles to be measured for much closer distances than those reported in the prior literature. The trajectory of two approaching bubbles was modeled using coupled equations of radial and translational motions, showing similar trends with the experimental results. We also indirectly measured the secondary Bjerknes force by monitoring the acceleration when bubbles are close to each other under different acoustic pressure amplitudes. Bubbles begin to accelerate toward each other as the distance between them gets shorter, and this acceleration increases with increasing acoustic pressure. The current study provides experimental data that validates the theory on the movement of bubbles and forces acting between them in an acoustic field that will be useful in understanding bubble coalescence in an acoustic field.
Kruluc, P; Nemec, Alenka
2006-03-01
Clinically, the use of detomidine and butorphanol is suitable for sedation and deepening of analgosedation. The aim of our study was to establish the influence of detomidine used alone and a butorphanol-detomidine combination on brain activity and to evaluate and compare brain responses (using electroencephalography, EEG) by recording SEF90 (spectral edge frequency 90%), individual brain wave fractions (beta, alpha, theta and delta) and electromyographic (EMG) changes in the left temporal muscle in standing horses. Ten clinically healthy cold-blooded horses were divided into two groups of five animals each. Group I received detomidine and Group II received detomidine followed by butorphanol 10 min later. SEF90, individual brain wave fractions and EMG were recorded with a pEEG (processed EEG) monitor using computerised processed electroencephalography and electromyography. The present study found that detomidine alone and the detomidine-butorphanol combination significantly reduced SEF90 and EMG, and they caused changes in individual brain wave fractions during sedation and particularly during analgosedation. The EMG results showed that the detomidine-butorphanol combination provided greater and longer muscle relaxation. Our EEG and EMG results confirmed that the detomidine-butorphanol combination is safer and more appropriate for painless and non-painless procedures on standing horses compared to detomidine alone.
Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.
Xi, Xiaoyu; Cegla, Frederic; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander
2014-04-01
The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.
Interaction of the Radar Waves with the Capillary Waves on the Ocean.
1983-05-01
30 1 I | I I , . ’ , 3 4 6 8 10 15 20 30 40506070 Wind Speed ( m/see) Figure 3.1: Comparison between theoretical and measured for vertical and...wind speed cases, say, between 8 and 10 m/sec, one would not expect such a high value of standard deviation. Figure 8.6a illustrates a sample set of...1979 - 10 o -20 -30U -40 1 U-1’AIId 11111 1 0 10 20 30 40 50 60 70 80 20 - ~downwindf 10 - W polaizan -~ frequency1 - 150Hz - 24 Sept 979 Ma 0- - 10 -2 1
Tripathi, Dharmendra; Yadav, Ashu; Bég, O Anwar
2017-01-01
Analytical solutions are developed for the electro-kinetic flow of a viscoelastic biological liquid in a finite length cylindrical capillary geometry under peristaltic waves. The Jefferys' non-Newtonian constitutive model is employed to characterize rheological properties of the fluid. The unsteady conservation equations for mass and momentum with electro-kinetic and Darcian porous medium drag force terms are reduced to a system of steady linearized conservation equations in an axisymmetric coordinate system. The long wavelength, creeping (low Reynolds number) and Debye-Hückel linearization approximations are utilized. The resulting boundary value problem is shown to be controlled by a number of parameters including the electro-osmotic parameter, Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity), and Jefferys' first parameter (ratio of relaxation and retardation time), wave amplitude. The influence of these parameters and also time on axial velocity, pressure difference, maximum volumetric flow rate and streamline distributions (for elucidating trapping phenomena) is visualized graphically and interpreted in detail. Pressure difference magnitudes are enhanced consistently with both increasing electro-osmotic parameter and Helmholtz-Smoluchowski velocity, whereas they are only elevated with increasing Jefferys' first parameter for positive volumetric flow rates. Maximum time averaged flow rate is enhanced with increasing electro-osmotic parameter, Helmholtz-Smoluchowski velocity and Jefferys' first parameter. Axial flow is accelerated in the core (plug) region of the conduit with greater values of electro-osmotic parameter and Helmholtz-Smoluchowski velocity whereas it is significantly decelerated with increasing Jefferys' first parameter. The simulations find applications in electro-osmotic (EO) transport processes in capillary physiology and also bio-inspired EO pump devices in chemical and aerospace engineering. Copyright © 2016 Elsevier Inc. All rights reserved.
Choi, Y.; Eng, P.; Stubbs, J.; ...
2016-08-21
In this paper, X-ray standing wave fluorescence yield depth profiling was used to determine the solar wind implanted Fe and Ni fluences in a silicon-on-sapphire (SoS) Genesis collector (60326). An internal reference standardization method was developed based on fluorescence from Si and Al in the collector materials. Measured Fe fluence agreed well with that measured previously by us on a sapphire collector (50722) as well as SIMS results by Jurewicz et al. Measured Ni fluence was higher than expected by a factor of two; neither instrumental errors nor solar wind fractionation effects are considered significant perturbations to this value. Impuritymore » Ni within the epitaxial Si layer, if present, could explain the high Ni fluences and therefore needs further investigation. As they stand, these results are consistent with minor temporally-variable Fe and Ni fractionation on the timescale of a year.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Y.; Eng, P.; Stubbs, J.
In this paper, X-ray standing wave fluorescence yield depth profiling was used to determine the solar wind implanted Fe and Ni fluences in a silicon-on-sapphire (SoS) Genesis collector (60326). An internal reference standardization method was developed based on fluorescence from Si and Al in the collector materials. Measured Fe fluence agreed well with that measured previously by us on a sapphire collector (50722) as well as SIMS results by Jurewicz et al. Measured Ni fluence was higher than expected by a factor of two; neither instrumental errors nor solar wind fractionation effects are considered significant perturbations to this value. Impuritymore » Ni within the epitaxial Si layer, if present, could explain the high Ni fluences and therefore needs further investigation. As they stand, these results are consistent with minor temporally-variable Fe and Ni fractionation on the timescale of a year.« less
Partial Wave Dispersion Relations: Application to Electron-Atom Scattering
NASA Technical Reports Server (NTRS)
Temkin, A.; Drachman, Richard J.
1999-01-01
In this Letter we propose the use of partial wave dispersion relations (DR's) as the way of solving the long-standing problem of correctly incorporating exchange in a valid DR for electron-atom scattering. In particular a method is given for effectively calculating the contribution of the discontinuity and/or poles of the partial wave amplitude which occur in the negative E plane. The method is successfully tested in three cases: (i) the analytically solvable exponential potential, (ii) the Hartree potential, and (iii) the S-wave exchange approximation for electron-hydrogen scattering.
Imaging of acoustic fields using optical feedback interferometry.
Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry
2014-12-01
This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.
NASA Astrophysics Data System (ADS)
Shin, Dong Min; Cho, Yeunwoo
2017-11-01
Diffraction of waves past two vertical thin plates on the free surface is studied theoretically and experimentally. A particular attention is paid to the wave motions depending on the relationship between the wavelength (λ) and the width (b) between the two plates for a given draft (d) and water depth (h). For d/h =0.19, at resonance modes when b/ λ = 0.245 (first), 0.695 (second), 1.11 (third), 1.55 (fourth), etc., the overall transmission features the maximum with no reflection. In the first mode, the water column between the plates moves up and down with no wave motions. In the second mode, it shows the fundamental standing wave motion. In the remaining modes, it shows another standing wave motions with relatively higher frequencies. As d/h increases (0.1-0.4), the resonance points move to values b/ λ = 0, 0.5, 1, 1.5, etc., and, at those resonance points, the peaks of reflection and transmission coefficients become more sharp and narrow. The loss of energy of incoming waves is also observed at every transmission in the two plate system, and, in particular, more energy loss near a resonant frequency. In addition, it is found that energy is lost mainly due to the transmission process not the reflection process. This work was supported by the National Research Foundation of Korea (NRF). (NRF-2017R1D1A1B03028299).
Wave Tank Studies of Phase Velocities of Short Wind Waves
NASA Astrophysics Data System (ADS)
Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.
Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).
NASA Astrophysics Data System (ADS)
Williams, E.; Mushtak, N.; Temidis, E.; Galyuk, Y. P.; Nickolaenko, A. P.
2014-05-01
Vadim Constantinovich Mushtak, renowned for his work in radio physics and atmospheric electricity, died on 25 September 2013 in an automobile accident in Walker Valley, N.Y. He was 65. Vadim was a world expert in extremely low frequency (ELF) wave propagation and the Earth's naturally occurring Schumann resonances (SR)—quasi-standing electromagnetic waves trapped in the Earth-ionosphere cavity.
ERIC Educational Resources Information Center
Thompson, Frank
2017-01-01
Experiments with Lecher Lines have always been important in the physics curriculum for demonstrating standing waves and the important concept that waves can be guided as well as being emitted into space. A system operating at low power (less than 10 mW) and in the frequency range 300 MHz to 800MHz is described and the wavelength of the radiation…
Progress towards 3-cell superconducting traveling wave cavity cryogenic test
NASA Astrophysics Data System (ADS)
Kostin, R.; Avrakhov, P.; Kanareykin, A.; Yakovlev, V.; Solyak, N.
2017-12-01
This paper describes a superconducting L-band travelling wave cavity for electron linacs as an alternative to the 9-cell superconducting standing wave Tesla type cavity. A superconducting travelling wave cavity may provide 20-40% higher accelerating gradient by comparison with conventional cavities. This feature arises from an opportunity to use a smaller phase advance per cell which increases the transit time factor and affords the opportunity to use longer cavities because of its significantly smaller sensitivity to manufacturing errors. Two prototype superconducting travelling wave cavities were designed and manufactured for a high gradient travelling wave demonstration at cryogenic temperature. This paper presents the main milestones achieved towards this test.
The electric field standing wave effect in infrared transflection spectroscopy
NASA Astrophysics Data System (ADS)
Mayerhöfer, Thomas G.; Popp, Jürgen
2018-02-01
We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.
Subwavelength atom localization via coherent manipulation of the Raman gain process
NASA Astrophysics Data System (ADS)
Qamar, Sajid; Mehmood, Asad; Qamar, Shahid
2009-03-01
We present a simple scheme of atom localization in a subwavelength domain via manipulation of Raman gain process. We consider a four-level system with a pump and a weak probe field. In addition, we apply a coherent field to control the gain process. The system is similar to the one used by Agarwal and Dasgupta [Phys. Rev. A 70, 023802 (2004)] for the superluminal pulse propagation through Raman gain medium. For atom localization, we consider both pump and control fields to be the standing-wave fields of the cavity. We show that a much precise position of an atom passing through the standing-wave fields can be determined by measuring the gain spectrum of the probe field.
Method and apparatus for adapting steady flow with cyclic thermodynamics
Swift, Gregory W.; Reid, Robert S.; Ward, William C.
2000-01-01
Energy transfer apparatus has a resonator for supporting standing acoustic waves at a selected frequency with a steady flow process fluid thermodynamic medium and a solid medium having heat capacity. The fluid medium and the solid medium are disposed within the resonator for thermal contact therebetween and for relative motion therebetween. The relative motion is produced by a first means for producing a steady velocity component and second means for producing an oscillating velocity component at the selected frequency and concomitant wavelength of the standing acoustic wave. The oscillating velocity and associated oscillating pressure component provide energy transfer between the steady flow process fluid and the solid medium as the steady flow process fluid moves through the resonator.
Slot-coupled CW standing wave accelerating cavity
Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng
2017-05-16
A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.
Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun
2016-01-13
We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively.
NASA Astrophysics Data System (ADS)
Bates, Alan
2017-12-01
The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at the point where sound is perceived to have maximum loudness, or at the point where the amplitude of the standing wave has maximum value, namely an antinode. An antinode coincides with the position of the tuning fork, beyond the end of the air column, which consequently introduces an end correction. One way to minimize this end correction is to measure the distance between consecutive antinodes.
Experimentally Modeling Black and White Hole Event Horizons via Fluid Flow
NASA Astrophysics Data System (ADS)
Manheim, Marc E.; Lindner, John F.; Manz, Niklas
We will present a scaled down experiment that hydrodynamically models the interaction between electromagnetic waves and black/white holes. It has been mathematically proven that gravity waves in water can behave analogously to electromagnetic waves traveling through spacetime. In this experiment, gravity waves will be generated in a water tank and propagate in a direction opposed to a flow of varying rate. We observe a noticeable change in the wave's spreading behavior as it travels through the simulated horizon with decreased wave speeds up to standing waves, depending on the opposite flow rate. Such an experiment has already been performed in a 97.2 cubic meter tank. We reduced the size significantly to be able to perform the experiment under normal lab conditions.
Excitation of acoustic oscillations in superconducting films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golub, A.A.
1973-11-01
A study is made of the excitation of sound in a superconducting film by electromagnetic waves incident on the surface of the film. It is assumed that the thickness of the film d is much greater than the penetration depth of the field. If the acoustic wave is damped over a distance of the order of d, traveling acoustic waves can be excited in the superconductor; otherwise, standing waves are excited. The low-temperature contribution of acoustic oseillations to the surface resistence of pure superconductors ia calculated. At very low temperatures, the absorption of electromagnetic waves is mainly governed by themore » loss due to acoustic oscillations. (auth)« less
Large sand waves in Navarinsky Canyon head, Bering Sea
Karl, Herman A.; Carlson, P.R.
1982-01-01
Sand waves are present in the heads of large submarine canyons in the northwestern Bering Sea. They vary in height between 2 to 15 m and have wavelengths of 600 m. They are not only expressed on the seafloor, but are also well defined in the subsurface and resemble enormous climbing bed forms. We conjecture that the sand waves originated during lower stands of sea level in the Pleistocene. Although we cannot explain the mechanics of formation of the sand waves, internal-wave generated currents are among four types of current that could account for these large structures. ?? 1982 A. M. Dowden, Inc.
Effect of Electromagnetic Wave on Bone Healing in Fixed and Unfixed Conditions.
Onger, Mehmet Emin; Göçer, Hasan; Çirakli, Alper; Büyükceran, Ismail; Kiliç, Mesut; Kaplan, Süleyman
2016-09-01
Mobile phones have come into daily life and are now one of the most frequently used devices for communication. The aim of this study was to evaluate possible effect of electromagnetic wave (EMW) with and without fixation material on bone healing.Forty male rats were exposed to fracture on tibia bone and were randomly divided into 4 groups as E(+)K(+), E(+)K(-), E(-)K(+), and E(-)K(-) where E(+) means EMW exposure and K(+) means Kirschner wire fixation. At the end of study tibia samples were taken from all the groups for the quantitative evaluation of regeneration.Significant difference was found between Group E(+)K(+) and E(-)K(+) in terms of both new bone and capillary volume.Electromagnetic wave may be harmful for bone healing with fixation whereas it has no same effect on bone regeneration without fixation.
X-ray standing wave analysis of nanostructures using partially coherent radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in; Das, Gangadhar; Bedzyk, M. J.
2015-09-07
The effect of longitudinal (or temporal) coherence on total reflection assisted x-ray standing wave (TR-XSW) analysis of nanoscale materials is quantitatively demonstrated by showing how the XSW fringe visibility can be strongly damped by decreasing the spectral resolution of the incident x-ray beam. The correction for nonzero wavelength dispersion (δλ ≠ 0) of the incident x-ray wave field is accounted for in the model computations of TR-XSW assisted angle dependent fluorescence yields of the nanostructure coatings on x-ray mirror surfaces. Given examples include 90 nm diameter Au nanospheres deposited on a Si(100) surface and a 3 nm thick Zn layer trapped on top amore » 100 nm Langmuir-Blodgett film coating on a Au mirror surface. Present method opens up important applications, such as enabling XSW studies of large dimensioned nanostructures using conventional laboratory based partially coherent x-ray sources.« less
Mechanistic insights of the Min oscillator via cell-free reconstitution and imaging
NASA Astrophysics Data System (ADS)
Mizuuchi, Kiyoshi; Vecchiarelli, Anthony G.
2018-05-01
The MinD and MinE proteins of Escherichia coli self-organize into a standing-wave oscillator on the membrane to help align division at mid-cell. When unleashed from cellular confines, MinD and MinE form a spectrum of patterns on artificial bilayers—static amoebas, traveling waves, traveling mushrooms, and bursts with standing-wave dynamics. We recently focused our cell-free studies on bursts because their dynamics recapitulate many features of Min oscillation observed in vivo. The data unveiled a patterning mechanism largely governed by MinE regulation of MinD interaction with membrane. We proposed that the MinD to MinE ratio on the membrane acts as a toggle switch between MinE-stimulated recruitment and release of MinD from the membrane. In this review, we summarize cell-free data on the Min system and expand upon a molecular mechanism that provides a biochemical explanation as to how these two ‘simple’ proteins can form the remarkable spectrum of patterns.
Tunable Nanowire Patterning Using Standing Surface Acoustic Waves
Chen, Yuchao; Ding, Xiaoyun; Lin, Sz-Chin Steven; Yang, Shikuan; Huang, Po-Hsun; Nama, Nitesh; Zhao, Yanhui; Nawaz, Ahmad Ahsan; Guo, Feng; Wang, Wei; Gu, Yeyi; Mallouk, Thomas E.; Huang, Tony Jun
2014-01-01
Patterning of nanowires in a controllable, tunable manner is important for the fabrication of functional nanodevices. Here we present a simple approach for tunable nanowire patterning using standing surface acoustic waves (SSAW). This technique allows for the construction of large-scale nanowire arrays with well-controlled patterning geometry and spacing within 5 seconds. In this approach, SSAWs were generated by interdigital transducers (IDTs), which induced a periodic alternating current (AC) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires were assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. Additionally, we observed 3D spark-shape nanowire patterns in the SSAW field. The SSAW-based nanowire-patterning technique presented here possesses several advantages over alternative patterning approaches, including high versatility, tunability, and efficiency, making it promising for device applications. PMID:23540330
Transmission loss measurement of acoustic material using time-domain pulse-separation method (L).
Sun, Liang; Hou, Hong
2011-04-01
An alternative method for measuring the normal incidence sound transmission loss (nSTL) is presented in this paper based on the time-domain separation of so-called Butterworth pulse with a short-duration time about 1 ms in a standing wave tube. During the generation process of the pulse, inverse filter principle was adopted to compensate the loudspeaker response, besides this, the effect of the characteristics of tube termination can be eliminated through the generation process of the pulse so as to obtain a single plane pulse wave in the standing wave tube which makes the nSTL measurement very simple. A polyurethane foam material with low transmission loss and a kind of rubber material with relatively high transmission loss are used to verify the proposed method. When compared with the traditional two-load method, a relatively good agreement between these two methods can be observed. The main error of this method results from the measuring accuracy of the amplitude of transmission coefficient.
Alignment of an acoustic manipulation device with cepstral analysis of electronic impedance data.
Hughes, D A; Qiu, Y; Démoré, C; Weijer, C J; Cochran, S
2015-02-01
Acoustic particle manipulation is an emerging technology that uses ultrasonic standing waves to position objects with pressure gradients and acoustic radiation forces. To produce strong standing waves, the transducer and the reflector must be aligned properly such that they are parallel to each other. This can be a difficult process due to the need to visualise the ultrasound waves and as higher frequencies are introduced, this alignment requires higher accuracy. In this paper, we present a method for aligning acoustic resonators with cepstral analysis. This is a simple signal processing technique that requires only the electrical impedance measurement data of the resonator, which is usually recorded during the fabrication process of the device. We first introduce the mathematical basis of cepstral analysis and then demonstrate and validate it using a computer simulation of an acoustic resonator. Finally, the technique is demonstrated experimentally to create many parallel linear traps for 10 μm fluorescent beads inside an acoustic resonator. Copyright © 2014 Elsevier B.V. All rights reserved.
On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
Ding, Xiaoyun; Lin, Sz-Chin Steven; Kiraly, Brian; Yue, Hongjun; Li, Sixing; Chiang, I-Kao; Shi, Jinjie; Benkovic, Stephen J; Huang, Tony Jun
2012-07-10
Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based "acoustic tweezers" that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in a single-layer microfluidic chip. Our acoustic tweezers utilize the wide resonance band of chirped interdigital transducers to achieve real-time control of a standing surface acoustic wave field, which enables flexible manipulation of most known microparticles. The power density required by our acoustic device is significantly lower than its optical counterparts (10,000,000 times less than optical tweezers and 100 times less than optoelectronic tweezers), which renders the technique more biocompatible and amenable to miniaturization. Cell-viability tests were conducted to verify the tweezers' compatibility with biological objects. With its advantages in biocompatibility, miniaturization, and versatility, the acoustic tweezers presented here will become a powerful tool for many disciplines of science and engineering.
Models of Cerebral-Body Perfusion and Cerebral Chemical Transport.
1988-03-01
Pressure Waves 22 Conchusion 23 References 36 A Compartmental Brain Model for Chemical Transport and CO2 Controlled Blood Flow Abstract 37 Introduction 38...surrounding the body, e.g., atmospheric pressure , pressure al high and low altitudes, high underwater pressure , vacuum and excessive gravity acceleration...Resistance of the AreriolarNenous capillary, accounting for the pressure drop observed between them. RCB Resistance of the Blood -Brain barrier (between
Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun
NASA Astrophysics Data System (ADS)
Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.
2012-06-01
An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.