Science.gov

Sample records for capped silver nanoparticles

  1. Antiglycating potential of gum arabic capped-silver nanoparticles.

    PubMed

    Ashraf, Jalaluddin M; Ansari, Mohammad Azam; Choi, Inho; Khan, Haris M; Alzohairy, Mohammad A

    2014-09-01

    Advanced glycation end products are major contributors to the pathology of diabetes, Alzheimer's disease, and atherosclerosis; accordingly, identification of antiglycation compounds is attracting considerable interest. In the present study, the inhibitory effect of gum arabic capped-silver nanoparticles on advanced glycation end products formation was monitored by several biophysical techniques. Silver nanoparticles were characterized by ultraviolet-visible, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Bovine serum albumin and methylglyoxal mixtures incubated with increasing concentrations of silver nanoparticles showed significant reductions in advanced glycation end product formation that were confirmed by ultraviolet-visible, fluorescence spectrometry, and high-performance liquid chromatography techniques. High-performance liquid chromatography showed decreased adduct formation of glycated protein in the presence of silver nanoparticles. The structural changes induced by silver nanoparticles were further confirmed by circular dichroism and Fourier transform infrared spectroscopy. Strong inhibition of advanced glycation end product formation was observed in the presence of elevated silver nanoparticles. The results of this study suggest that silver nanoparticles are a potent antiglycating agent. PMID:25080376

  2. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    SciTech Connect

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-04-15

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.

  3. Size Selective Green Synthesis of Silver and Gold Nanoparticles: Enhanced Antibacterial Efficacy of Resveratrol Capped Silver Sol.

    PubMed

    Shukla, Shashi P; Roy, Mainak; Mukherjee, Poulomi; Das, Laboni; Neogy, Suman; Srivastava, Dinesh; Adhikari, Soumyakanti

    2016-03-01

    In view of potential biomedical application of the noble metal nanoparticles, we report a size controlled yet simple and green synthesis of resveratrol stabilized silver and gold nanoparticles having low polydispersity of size. Here, resveratrol plays two simultaneous roles, reducing the metal ions and providing efficient capping of the small nanoparticles. This gives rise to specific size of silver and gold nanoparticles at specific ratios of metal to resveratrol. The particles have been characterized by XRD and transmission electron microscopy. The nanoparticle sols are stable for months. The UV Visible absorption spectra of the silver sol show the plasmon peak of spherical nanoparticles, presence of which is further reflected in the TEM images. Size of the silver particles obtained is in between 11 to 21 nm depending on the ratio of resveratrol to metal ion used. Resveratrol capped silver nanoparticles exhibit high antibacterial activity against Gram negative wild type E coli BW (25113). The minimum inhibitory concentration (MIC) of nano-silver against the bacterium has been estimated to be 6.48 μg/ml, which is significantly lower than that reported in some earlier as well as recent publications. Reaction of gold ions with resveratrol, on the other hand, produces gold nanoparticles of sizes varying from 7 to 29 nm at different ratios of resveratrol to the metal ions. Particles with higher size and aspect ratio are formed at lower concentration of the capping agent whereas particles with very small size and pseudo-spherical morphology are formed at higher capping concentration. Difference in the formation kinetics of silver and gold nanoparticles has been attributed to the different growth mechanisms in the two cases. Possible modes of anchorage of resveratrol to silver nanoparticles have been investigated using surface enhanced resonance Raman spectroscopy (SERS) which shows that the silver nanoparticles are capped by resveratrol molecule primarily through O

  4. Biopolymer capped silver nanoparticles with potential for multifaceted applications.

    PubMed

    Vanamudan, Ageetha; Sudhakar, P Padmaja

    2016-05-01

    A sustainable, green and low cost method for the synthesis of silver nanoparticles at room temperature has been developed using guargum as a reducing and stabilizing agent. The synthesized silver nanoparticles (GAg) were characterized by UV-vis spectroscopy, FTIR, EDS, Raman, XRD and TEM. The interaction of the functional groups present in the biopolymer Guargum (G) with the silver nanoparticles (GAg) were responsible for the nanoparticle surface to function as active substrates for Surface Enhanced Raman Spectroscopic (SERS) detection of cationic and anionic dyes. The catalytic degradation of a copper phthalocyanine based dye- Reactive blue - 21(RB-21), an azo dye- Reactive red 141(RR-141) and a xanthene dye- Rhodamine - 6G(Rh-6G) as well as binary mixtures of the three dyes was evaluated using the synthesized nanoparticles. The catalyst also caused a significant reduction in Total Organic Carbon (TOC) suggesting the formation of smaller degraded products. PMID:26800899

  5. Laser-fabricated castor oil-capped silver nanoparticles.

    PubMed

    Zamiri, Reza; Zakaria, Azmi; Abbastabar, Hossein; Darroudi, Majid; Husin, Mohd Shahril; Mahdi, Mohd Adzir

    2011-01-01

    Silver nanoparticles were fabricated by ablation of a pure silver plate immersed in castor oil. A Nd:YAG-pulsed Q-switch laser with 1064-nm wavelength and 10-Hz frequency was used to ablate the plate for 10 minutes. The sample was characterized by ultraviolet-visible, atomic absorption, Fourier transform-infrared spectroscopies, and transmission electron microscopy. The results of the fabricated sample showed that the nanoparticles in castor oil were about 5-nm in diameter, well dispersed, and showed stability for a long period of time.

  6. Capsaicin-capped silver nanoparticles: its kinetics, characterization and biocompatibility assay

    NASA Astrophysics Data System (ADS)

    Amruthraj, Nagoth Joseph; Preetam Raj, John Poonga; Lebel, Antoine

    2015-04-01

    Capsaicin was used as a bio-reductant for the reduction of silver nitrate to form silver nanoparticles. The formation of the silver nanoparticles was initially confirmed by color change and Tyndall effect of light scattering. It was characterized with UV-visible spectroscopy, FTIR and TEM. Hemagglutination (H) test and H-inhibition assay were performed in the presence of AgNPs-capsaicin conjugates. The silver colloid solution after complete reduction turned into pale gray color. The characteristic surface plasmon resonance of silver nanoparticles (SNPs) was observed at 450 nm. Time taken for complete bio-reduction of silver nitrate and capping was found to be 16 hours. The amount of capsaicin required to reduce 20 ml of 1 mM silver nitrate solution was found to be 40 μg approximately. The FTIR results confirmed the capping of capsaicin on the silver metal. The particle size was within the range of 20-30 nm. The hemagglutination and H-inhibition test was negative for all the blood groups. The capsaicin-capped silver nanoparticles were compatible with blood cells in hemagglutination test implying biocompatibility as future therapeutic drug.

  7. γ-Cyclodextrin capped silver nanoparticles for molecular recognition and enhancement of antibacterial activity of chloramphenicol.

    PubMed

    Gannimani, Ramesh; Ramesh, Muthusamy; Mtambo, Sphamandla; Pillay, Karen; Soliman, Mahmoud E; Govender, Patrick

    2016-04-01

    Computational studies were conducted to identify the favourable formation of the inclusion complex of chloramphenicol with cyclodextrins. The results of molecular docking and molecular dynamics predicted the strongest interaction of chloramphenicol with γ-cyclodextrin. Further, the inclusion complex of chloramphenicol with γ-cyclodextrin was experimentally prepared and a phenomenon of inclusion was verified by using different characterization techniques such as thermogravimetric analysis, differential scanning calorimetry, (1)H nuclear magnetic resonance (NMR) and two dimensional nuclear overhauser effect spectroscopy (NOESY) experiments. From these results it was concluded that γ-cyclodextrins could be an appropriate cyclodextrin polymer which can be used to functionalize chloramphenicol on the surface of silver nanoparticles. In addition, γ-cyclodextrin capped silver nanoparticles were synthesized and characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR) and zeta potential analysis. Molecular recognition of chloramphenicol by these cyclodextrin capped silver nanoparticles was confirmed by surface enhanced raman spectroscopy (SERS) experiments. Synergistic antibacterial effect of chloramphenicol with γ-cyclodextrin capped silver nanoparticles was evaluated against Pseudomonas aeruginosa (ATCC 27853), Enterococcus faecalis (ATCC 5129), Klebsiella pneumoniae (ATCC 700603) and Staphylococcus aureus (ATCC 43300). The results from the antibacterial experiment were favourable thus allowing us to conclude that the approach of modifying organic drug molecules with cyclodextrin capped inorganic silver nanoparticles could help to enhance the antibacterial activity of them.

  8. Size Selective Green Synthesis of Silver and Gold Nanoparticles: Enhanced Antibacterial Efficacy of Resveratrol Capped Silver Sol.

    PubMed

    Shukla, Shashi P; Roy, Mainak; Mukherjee, Poulomi; Das, Laboni; Neogy, Suman; Srivastava, Dinesh; Adhikari, Soumyakanti

    2016-03-01

    In view of potential biomedical application of the noble metal nanoparticles, we report a size controlled yet simple and green synthesis of resveratrol stabilized silver and gold nanoparticles having low polydispersity of size. Here, resveratrol plays two simultaneous roles, reducing the metal ions and providing efficient capping of the small nanoparticles. This gives rise to specific size of silver and gold nanoparticles at specific ratios of metal to resveratrol. The particles have been characterized by XRD and transmission electron microscopy. The nanoparticle sols are stable for months. The UV Visible absorption spectra of the silver sol show the plasmon peak of spherical nanoparticles, presence of which is further reflected in the TEM images. Size of the silver particles obtained is in between 11 to 21 nm depending on the ratio of resveratrol to metal ion used. Resveratrol capped silver nanoparticles exhibit high antibacterial activity against Gram negative wild type E coli BW (25113). The minimum inhibitory concentration (MIC) of nano-silver against the bacterium has been estimated to be 6.48 μg/ml, which is significantly lower than that reported in some earlier as well as recent publications. Reaction of gold ions with resveratrol, on the other hand, produces gold nanoparticles of sizes varying from 7 to 29 nm at different ratios of resveratrol to the metal ions. Particles with higher size and aspect ratio are formed at lower concentration of the capping agent whereas particles with very small size and pseudo-spherical morphology are formed at higher capping concentration. Difference in the formation kinetics of silver and gold nanoparticles has been attributed to the different growth mechanisms in the two cases. Possible modes of anchorage of resveratrol to silver nanoparticles have been investigated using surface enhanced resonance Raman spectroscopy (SERS) which shows that the silver nanoparticles are capped by resveratrol molecule primarily through O

  9. The influence of the capping agent on the oxidation of silver nanoparticles: nano-impacts versus stripping voltammetry.

    PubMed

    Toh, Her Shuang; Jurkschat, Kerstin; Compton, Richard G

    2015-02-01

    The influence of capping agents on the oxidation of silver nanoparticles was studied by using the electrochemical techniques of anodic stripping voltammetry and anodic particle coulometry ("nano-impacts"). Five spherical silver nanoparticles each with a different capping agent (branched polyethylenimine (BPEI), citrate, lipoic acid, polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP)) were used to perform comparative experiments. In all cases, regardless of the capping agent, complete oxidation of the single nanoparticles was seen in anodic particle coulometry. The successful quantitative detection of the silver nanoparticle size displays the potential application of anodic particle coulometry for nanoparticle characterisation. In contrast, for anodic stripping voltammetry using nanoparticles drop casting, it was observed that the capping agent has a very significant effect on the extent of silver oxidation. All five samples gave a low oxidative charge corresponding to partial oxidation. It is concluded that the use of anodic stripping voltammetry to quantify nanoparticles is unreliable, and this is attributed to nanoparticle aggregation.

  10. Keratin capped silver nanoparticles - synthesis and characterization of a nanomaterial with desirable handling properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silver nanoparticles (NPs) were produced with keratin stabilizer and the NPs exhibited unimodal Gaussian distribution with average diameter of 3.5nm +/- 0.7 nm. The molecular mass of keratin stabilizer was 6-8 kDa. The mass of keratin capped NPs was >250 kDa to indicate the formation of crosslinked...

  11. Biocompatibility study of protein capped and uncapped silver nanoparticles on human hemoglobin

    NASA Astrophysics Data System (ADS)

    Bhunia, Amit Kumar; Kanti Samanta, Pijus; Aich, Debasish; Saha, Satyajit; Kamilya, Tapanendu

    2015-06-01

    The interactions of human hemoglobin with protein capped silver nanoparticles and bare silver nanoparticles were studied to understand fundamental perspectives about the biocompatibility of protein capped silver nanoparticles compared with bare silver nanoparticles. Bare silver (Ag) nanoparticles (NPs) were prepared by the chemical reduction method. High resolution transmission electron microscopy (HRTEM) analysis along with absorption at ~390 nm indicated the formation of bare Ag NPs. Protein coated Ag NPs were prepared by a green synthesis method. Absorption at ~440 nm along with ~280 nm indicated the formation of protein coated Ag NPs. The biocompatibility of the above mentioned Ag NPs was studied by interaction with human hemoglobin (Hb) protein. In presence of bare Ag NPs, the Soret band of Hb was red shifted. This revealed the distortion of iron from the heme pockets of Hb. Also, the fluorescence peak of Hb was quenched and red shifted which indicated that Hb became unfolded in the presence of bare Ag NPs. No red shift of the absorption of Soret, along with no shift and quenching of the fluorescence peak of Hb were observed in the presence of protein coated Ag NPs. A hemolysis assay suggested that protein coated Ag NPs were more biocompatible than bare one.

  12. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    NASA Astrophysics Data System (ADS)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-04-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  13. Hydroxy propyl cellulose capped silver nanoparticles produced by simple dialysis process

    SciTech Connect

    Francis, L.; Balakrishnan, A.; Marsano, E.

    2010-08-15

    Silver (Ag) nanoparticles ({approx}6 nm) were synthesized using a novel dialysis process. Silver nitrate was used as a starting precursor, ethylene glycol as solvent and hydroxy propyl cellulose (HPC) introduced as a capping agent. Different batches of reaction mixtures were prepared with different concentrations of silver nitrate (AgNO{sub 3}). After the reduction and aging, these solutions were subjected to ultra-violet visible spectroscopy (UVS). Optimized solution, containing 250 mg AgNO{sub 3} revealed strong plasmon resonance peak at {approx}410 nm in the spectrum indicating good colloidal state of Ag nanoparticles in the diluted solution. The optimized solution was subjected to dialysis process to remove any unreacted solvent. UVS of the optimized solution after dialysis showed the plasmon resonance peak shifting to {approx}440 nm indicating the reduction of Ag ions into zero-valent Ag. This solution was dried at 80 {sup o}C and the resultant HPC capped Ag (HPC/Ag) nanoparticles were studied using transmission electron microscopy (TEM) for their particle size and morphology. The particle size distribution (PSD) analysis of these nanoparticles showed skewed distribution plot with particle size ranging from 3 to 18 nm. The nanoparticles were characterized for phase composition using X-ray diffractrometry (XRD) and Fourier transform infrared spectroscopy (FT-IR).

  14. TOPO-capped silver selenide nanoparticles and their incorporation into polymer nanofibers using electrospinning technique

    SciTech Connect

    More, D.S.; Moloto, M.J.; Moloto, N.; Matabola, K.P.

    2015-05-15

    Highlights: • Ag{sub 2}Se nanoparticles produced spherical particles with sizes 12 nm (180 °C) and 27 nm (200 °C). • Higher temperature produced increased particle size (∼75 nm) and changed in shape. • Ag{sub 2}Se nanoparticles (0.2–0.6%) added into PVP (35–45%) to yield reduced fiber beading. • Polymer nanofibers electrospun at 11–20 kV produced fiber diameters of 425–461 nm. • Optical properties in the fibers were observed due to the Ag{sub 2}Se nanoparticles loaded. - Abstract: Electrospinning is the most common technique for fabricating polymer fibers as well as nanoparticles embedded polymer fibers. Silver selenide nanoparticles were synthesized using tri-n-octylphosphine (TOP) as solvent and tri-n-octylphosphine oxide (TOPO) as capping environment. Silver selenide was prepared by reacting silver nitrate and selenium with tri-n-octylphosphine (TOP) to form TOP–Ag and TOP–Se solutions. Both absorption and emission spectra signify the formation of nanoparticles as well as the TEM which revealed spherical particles with an average particle size of 22 nm. The polymer, PVP used was prepared at concentrations ranging from (35 to 45 wt%) and the TOPO-capped silver selenide nanoparticles (0.2 and 0.6 wt%) were incorporated into them and electrospun by varying the voltage from 11 to 20 kV. The SEM images of the Ag{sub 2}Se/PVP composite fibers revealed the fibers of diameters with average values of 425 and 461 nm. The X-ray diffraction results show peaks which were identified due to α-Ag{sub 2}Se body centered cubic compound. The sharp peak observed for all the samples at 2θ = 44.5 suggest the presence of Ag in the face centered cubic which can be attributed to higher concentration of silver nitrate used with molar ratio of selenium to silver and the abundance of silver in the silver selenide crystal. Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and ultraviolet–visible spectroscopy were used to characterize the

  15. Effect of pH and biological media on polyvinylpyrrolidone-capped silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lau, Chew Ping; Abdul-Wahab, Mohd Firdaus; Jaafar, Jafariah; Chan, Giek Far; Rashid, Noor Aini Abdul

    2016-07-01

    Toxicity and mobility of silver nanoparticles (AgNPs) vary in different surrounding environments. Surface coatings or functionalization, temperature, pH, dissolved oxygen concentration, nanoparticle concentration, the presence of organic matter, and ionic strength are factors which dictate the transformation of AgNPs in terms of aggregation and stabilization. Thus, the purpose of this study is to investigate the behavior of polyvinylpyrrolidone (PVP)-capped AgNPs at different pHs (pH 2 to 10) and in different biological media (0.1 M phosphate buffer, nutrient broth, P5 and modified P5 media) analyzed using UV-Vis spectroscopy and zeta potential analyzer. The PVP-capped AgNPs changed its behavior in the presence of varying media, after 24 h incubation with shaking at 200 rpm at 30°C. No aggregation was observed at pH 4 to 10, but distinctive at very low pH of 2. Low pH further destabilized PVP-capped AgNPs after 24 h of incubation. High ionic strength 0.1 M phosphate buffer also resulted in slow aggregation and eventually destabilized the nanoparticles. Biological media (nutrient broth, P5 and modified P5 media) containing organic components caused aggregation of the PVP-capped AgNPs. The increase in glucose and nutrient broth concentrations led to increased aggregation. However, PVP-capped AgNPs stabilized after 24 h incubation in media containing a high concentration of glucose and nutrient broth. The results demonstrate that low pH value, high ionic strength and the content of the biological media can influence the stability of AgNPs. This provides information on the aggregation behavior of PVP-capped AgNPs and can possibly further predict the fate, transport as well as the toxicity of silver nanoparticles after being released into the aquatic environment.

  16. a Gram Scale Synthesis of Monodispersed Silver Nanoparticles Capped by Carboxylates and Their Ligand Exchange

    NASA Astrophysics Data System (ADS)

    Keum, Chang-Dae; Ishii, Noriyuki; Michioka, Kanae; Wulandari, Priastuti; Tamada, Kaoru; Furusawa, Masahiko; Fukushima, Hitoshi

    In this paper, we report a simple yet powerful synthetic method for obtaining monodispersed silver nanoparticles by direct thermal decomposition of two materials — one is silver acetate as a source of the metal core and the other is myristic acid as a capping agent. The reaction was performed at 250°C, the boiling point of myristic acid, without additional solvent. The nucleation and growth of the particles were monitored by dynamic light scattering in order to optimize the reaction time. By this simple procedure, we could obtain uniformly sized Ag nanoparticles with the average diameter of 4.8 ± 0.1 nm. Although the particles were synthesized at high temperature, the ligand exchange between myristates and alkanethiolates can be achieved at room temperature. Significant characteristics of Ag nanoparticles attributed to localized surface plasmons were investigated.

  17. Hansen solubility parameters of surfactant-capped silver nanoparticles for ink and printing technologies.

    PubMed

    Petersen, Jacob B; Meruga, Jeevan; Randle, James S; Cross, William M; Kellar, Jon J

    2014-12-30

    Optimal ink formulations, inclusive of nanoparticles, are often limited to matching the nanoparticle's capping agent or surface degree of polarity to the solvent of choice. Rather than relying on this single attribute, nanoparticle dispersibility was optimized by identifying the Hansen solubility parameters (HSPs) of decanoic-acid-capped 5 nm silver nanoparticles (AgNPs) by broad spectrum dispersion testing and a more specific binary solvent gradient dispersion method. From the HSPs, solvents were chosen to disperse poly(methyl methacrylate) (PMMA) and nanoparticles, give uniform evaporation profiles, and yield a phase-separated microstructure of nanoparticles on PMMA via film formation by solvent evaporation. The goal of this research was to yield a film that is reflective or transparent depending on the angle of incident light (i.e., optically variable). The nanoparticle HSPs were very close to alkanes with added small polar and hydrogen-bonding components. This led to two ink formulations: one of 90:10 vol % toluene/methyl benzoate and one containing 80:10:10 vol % toluene/p-xylene/mesitylene, both of which yielded the desired final microstructure of a nanoparticle layer on a PMMA film. This approach to nanoparticle ink formulation allows one to obtain an ink that has desirable dispersive qualities, rheology, and evaporation to give a desired printed structure. PMID:25469943

  18. Synthesis and bioactivities of silver nanoparticles capped with 5-Amino-?-resorcylic acid hydrochloride dihydrate

    PubMed Central

    2014-01-01

    Background Conjugated and drug loaded silver nanoparticles are getting an increased attention for various biomedical applications. Nanoconjugates showed significant enhancement in biological activity in comparison to free drug molecules. In this perspective, we report the synthesis of bioactive silver capped with 5-Amino-?-resorcylic acid hydrochloride dihydrate (AR). The in vitro antimicrobial (antibacterial, antifungal), enzyme inhibition (xanthine oxidase, urease, carbonic anhydrase, ?-chymotrypsin, cholinesterase) and antioxidant activities of the developed nanostructures was investigated before and after conjugation to silver metal. Results The conjugation of AR to silver was confirmed through FTIR, UV¿vis and TEM techniques. The amount of AR conjugated with silver was characterized through UV¿vis spectroscopy and found to be 9% by weight. The stability of synthesized nanoconjugates against temperature, high salt concentration and pH was found to be good. Nanoconjugates, showed significant synergic enzyme inhibition effect against xanthine and urease enzymes in comparison to standard drugs, pure ligand and silver. Conclusions Our synthesized nanoconjugate was found be to efficient selective xanthine and urease inhibitors in comparison to Ag and AR. On a per weight basis, our nanoconjugates required less amount of AR (about 11 times) for inhibition of these enzymes. PMID:25201390

  19. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity

    NASA Astrophysics Data System (ADS)

    Aramwit, Pornanong; Bang, Nipaporn; Ratanavaraporn, Juthamas; Ekgasit, Sanong

    2014-02-01

    In this study, a `green chemistry' approach was introduced to synthesize silk sericin (SS)-capped silver nanoparticles (AgNPs) under an alkaline condition (pH 11) using SS as a reducing and stabilizing agent instead of toxic chemicals. The SS-capped AgNPs were successfully synthesized at various concentrations of SS and AgNO3, but the yields were different. A higher yield of SS-capped AgNPs was obtained when the concentrations of SS and AgNO3 were increased. The SS-capped AgNPs showed a round shape and uniform size with diameter at around 48 to 117 nm. The Fourier transform infrared (FT-IR) spectroscopy result proved that the carboxylate groups obtained from alkaline degradation of SS would be a reducing agent for the generation of AgNPs while COO- and NH2 + groups stabilized the AgNPs and prevented their precipitation or aggregation. Furthermore, the SS-capped AgNPs showed potent anti-bacterial activity against various gram-positive bacteria (minimal inhibitory concentration (MIC) 0.008 mM) and gram-negative bacteria (MIC ranging from 0.001 to 0.004 mM). Therefore, the SS-capped AgNPs would be a safe candidate for anti-bacterial applications.

  20. Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity

    PubMed Central

    2014-01-01

    In this study, a ‘green chemistry’ approach was introduced to synthesize silk sericin (SS)-capped silver nanoparticles (AgNPs) under an alkaline condition (pH 11) using SS as a reducing and stabilizing agent instead of toxic chemicals. The SS-capped AgNPs were successfully synthesized at various concentrations of SS and AgNO3, but the yields were different. A higher yield of SS-capped AgNPs was obtained when the concentrations of SS and AgNO3 were increased. The SS-capped AgNPs showed a round shape and uniform size with diameter at around 48 to 117 nm. The Fourier transform infrared (FT-IR) spectroscopy result proved that the carboxylate groups obtained from alkaline degradation of SS would be a reducing agent for the generation of AgNPs while COO− and NH2 + groups stabilized the AgNPs and prevented their precipitation or aggregation. Furthermore, the SS-capped AgNPs showed potent anti-bacterial activity against various gram-positive bacteria (minimal inhibitory concentration (MIC) 0.008 mM) and gram-negative bacteria (MIC ranging from 0.001 to 0.004 mM). Therefore, the SS-capped AgNPs would be a safe candidate for anti-bacterial applications. PMID:24533676

  1. Potent antimicrobial activity of bone cement encapsulating silver nanoparticles capped with oleic acid

    PubMed Central

    Prokopovich, Polina; Köbrick, Mathias; Brousseau, Emmanuel; Perni, Stefano

    2015-01-01

    Bone cement is widely used in surgical treatments for the fixation for orthopaedic devices. Subsequently, 2–3% of patients undergoing these procedures develop infections that are both a major health risk for patients and a cost for the health service providers; this is also aggravated by the fact that antibiotics are losing efficacy because of the rising resistance of microorganisms to these substances. In this study, oleic acid capped silver nanoparticles (NP) were encapsulated into Poly(methyl methacrylate) (PMMA)-based bone cement samples at various ratios. Antimicrobial activity against Methicillin Resistant Staphylococcus aureus, S. aureus, Staphylococcus epidermidis, Acinetobacter baumannii was exhibited at NP concentrations as low as 0.05% (w/w). Furthermore, the mechanical properties and cytotoxicity of the bone cement containing these NP were assessed to guarantee that such material is safe to be used in orthopaedic surgical practice. © 2014 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 273–281, 2015. PMID:24819471

  2. Spectrophotometric observations of thiacyanine dye J-aggregation on citrate capped silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Laban, Bojana B.; Vodnik, Vesna; Vasić, Vesna

    2015-05-01

    The J-aggregation of anionic cyanine dye, 5,5' - disulfopropyl-3,3' - dichloro - thiacyanine sodium salt (TC) in the presence of 2x10-3 M KCl and citrate capped silver nanoparticles (AgNPs, diameter ~10nm) was investigated. The influence of added salt (KCl), as well as AgNPs and TC concentration on the intensity of the absorption bands with the maxima at 464 and 481 nm, characteristic of the J-aggregation of the dye in solution and on AgNPs surface, respectively, was studied. The spectrophotometric and fluorescence spectra confirmed that AgNPs induced the decomposition of J-aggregates formed in solution on the account of their formation on NPs surface. The obtained results enabled the evaluation of number of TC molecules per AgNPs participating in J-aggregate formation. The experimental results yielded about 320 molecules of TC per AgNPs in at least three layers in a slanted orientation.

  3. A new, simple, green, and one-pot four-component synthesis of bare and poly(α,γ, L-glutamic acid)-capped silver nanoparticles

    PubMed Central

    Savanović, Igor; Uskoković, Vuk; Škapin, Srečo D.; Bračko, Ines; Jovanović, Uroš; Uskoković, Dragan

    2013-01-01

    A simple and green chemical method has been developed to synthesize stable bare and capped silver nanoparticles based on the reduction of silver ions by glucose and capping by poly(α,γ,L-glutamic acid) (PGA). The use of ammonia during synthesis was avoided. PGA has had a dual role in the synthesis and was used as a capping agent to make the silver nanoparticle more biocompatible and to protect the nanoparticles from agglomerating in the liquid medium. The synthesized PGA-capped silver nanoparticles in the size range 5–45 nm were stable over long periods of time, without signs of precipitation. Morphological examination has shown that the silver nanoparticles had a nearly spherical, multiply twinned structure. The effects of the reaction temperature and the reaction time during the synthesis were investigated too. The biocompatibility of the PGA-capped silver nano-particles is discussed in terms of in vitro toxicity with human intestinal Caco-2 cells. The samples were characterized by UV–Visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and zeta potential measurements. PMID:24062597

  4. The stability of citrate-capped silver nanoparticles in isotonic glucose solution for intravenous injection.

    PubMed

    Park, Kwangsik; Lee, Yeonjin

    2013-01-01

    Citrate-capped silver nanoparticles (AgNP) are widely used in industry, consumer products, and medical appliances. However, information on the environmental toxicity and human health is not comprehensive. Further, the physicochemical properties of AgNP make it difficult to test toxicity, as nanosized particles, due to their size, may increase by aggregation or agglomeration in some administration vehicles. In this study, stability of AgNP was investigated in different types of isotonic solutions, which is important for in vitro testing or toxicokinetic studies using intravenous (iv) injection. Size, morphology, zeta potential, and ion formation were investigated in isotonic solutions for the physicochemical characterization of AgNP. Aggregation and precipitation of AgNP were observed in phosphate-buffered saline or 0.9% NaCl, while AgNP were stable without aggregation or precipitation in 5% glucose in isotonic solution. The average size of AgNP in 5% glucose was approximately 10 nm at different temperatures of 10, 25, or 36°C and at varying concentrations from 10 to 1000 ppm. It is noteworthy that this is almost the same size distribution as that in the water-based suspension of AgNP supplied by the manufacturer. Zeta potential ranged from -40 to -60 mV, suggesting that the repulsion forces of AgNP are not disturbed to a sufficient degree to aggregate while osmolarity is in the isotonic range of 290 ± 10 mOsm/kg in 5% glucose solution. Data suggest that AgNP in a 5% glucose solution may be used in the toxicity test via iv injection without adverse consequences in blood. PMID:24283395

  5. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria

    PubMed Central

    2014-01-01

    In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2θ values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA. PMID:25114655

  6. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

    2014-07-01

    In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2 θ values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA.

  7. One-pot synthesis of PVA-capped silver nanoparticles their characterization and biomedical application

    NASA Astrophysics Data System (ADS)

    Patil, Rupali S.; Kokate, Mangesh R.; Jambhale, Chitra L.; Pawar, Sambhaji M.; Han, Sung H.; Kolekar, Sanjay S.

    2012-03-01

    The rapid one-pot synthesis of silver nanoparticles (SNPs) at room temperature by using hydrazine hydrate as reducing agent and polyvinyl alcohol as stabilizing agent is reported. The SNPs were characterized with UV-visible (UV-Vis) spectroscopy, x-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and transmission electron microscopy (TEM). The synthesized silver nanoparticle shows surface plasmon resonance at 410 nm. The XRD reveals face-centered cubic (FCC) structure of SNPs. FE-SEM, AFM and TEM show that nanoparticles have spherical morphology with diameters in the range of 10-60 nm. The antimicrobial activity of synthesized hybrid material against strains of four different bacteria (Bacillus cereus, Escherichia coli, Staphylococus aureus, Proteus vulgaris), that are commonly found in hospitals has been studied. The results indicate that such particles have potential applications in biotechnology and biomedical science.

  8. Fabrication of collagen scaffolds impregnated with sago starch capped silver nanoparticles suitable for biomedical applications and their physicochemical studies.

    PubMed

    Mandal, Abhishek; Sekar, Santhanam; Seeni Meera, Kamal Mohamed; Mukherjee, Amitava; Sastry, Thotapalli P; Mandal, Asit Baran

    2014-10-01

    The present investigation attempts at fabricating collagen-based scaffolds impregnated with sago starch capped silver nanoparticles (AgNPs), useful for biomedical applications, and aims at studying their physicochemical aspects. AgNPs synthesized through a chemical reduction method, capped using different concentrations of sago starch, are incorporated into collagen derived from fish scales, and lyophilized to form scaffolds. FT-IR spectra confirm and validate the interaction of sago starch capped AgNPs with collagen in the scaffolds. TGA and DSC results indicate enhanced thermal stability of collagen scaffolds impregnated with sago capped AgNPs compared to collagen alone. All the collagen scaffolds containing sago starch capped AgNPs show high tensile strength values for their use as wound dressing materials. Moreover, lower minimum inhibitory concentration values are obtained for the above capped AgNP collagen scaffolds, which indicate higher antibacterial activities compared to uncapped AgNPs tested against both gram positive and negative bacterial strains. The novelty is that the developed scaffolds are biodegradable and in vitro studies reveal them as biocompatible and suitable for tissue regeneration applications. PMID:25138771

  9. Ultrasound assisted green synthesis of poly(vinyl alcohol) capped silver nanoparticles for the study of its antifilarial efficacy

    NASA Astrophysics Data System (ADS)

    Saha, Swadhin Kr.; Chowdhury, Pranesh; Saini, Prasanta; Babu, Santi P. Sinha

    2014-01-01

    Poly(vinyl alcohol) (PVA) capped stable silver nanoparticles (AgNP) have been synthesized sonochemically with the help of catalytic amount of a biomolecule (tyrosine). An attempt has been made to reduce the harmfull chemical additives (like sodium borohydride, hydrazine, dimethyl formamide, etc.) used in conventional methods. Tyrosine shows excellent reducing activity in presence of PVA stabilizer. Ultra-sound increased the reaction rate and yield, and improved the quality of the AgNP in terms of regular size distribution. The synthetic route follows the principles of green chemistry. Bioactivity has been tested in the light of antifilarial efficacy through induction of apoptosis. The biocompatible polymer (PVA) capped AgNPs are suitable for the treatment of filarial nematode.

  10. The silver ions contribution into the cytotoxic activity of silver and silver halides nanoparticles

    NASA Astrophysics Data System (ADS)

    Klimov, A. I.; Zherebin, P. M.; Gusev, A. A.; Kudrinskiy, A. A.; Krutyakov, Y. A.

    2015-11-01

    The biocidal action of silver nanoparticles capped with sodium citrate and silver halides nanoparticles capped with non-ionic surfactant polyoxyethylene(20)sorbitan monooleate (Tween 80®) against yeast cells Saccharomyces cerevisiae was compared to the effect produced by silver nitrate and studied through the measurement of cell loss and kinetics of K+ efflux from the cells. The cytotoxicity of the obtained colloids was strongly correlated with silver ion content in the dispersions. The results clearly indicated that silver and silver halides nanoparticles destroyed yeast cells through the intermediate producing of silver ions either by dissolving of salts or by oxidation of silver.

  11. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra.

    PubMed

    Paramelle, D; Sadovoy, A; Gorelik, S; Free, P; Hobley, J; Fernig, D G

    2014-10-01

    We present a generalized table of extinction coefficient data for silver nanoparticles from 8 to 100 nm. This table allows for easy and quick estimation of the concentration and size of modified and mono-dispersed silver nanoparticles from their optical spectra. We obtained data by determining the silver content of citrate-stabilised silver nanoparticles using sodium cyanide to dissolve the nanoparticles, and measuring solution conductivity with a pH meter and a cyanide-ion selective electrode. The quantification of the silver ion concentration enabled the calculation of extinction coefficients. Experimentally calculated extinction coefficients, in the current work, are in good agreement with collated literature values measured by different authors with non-standardized methodology and each for a limited range of particle size. They are also in good agreement with our theoretical calculations using Mie theory. Thus, we provide a highly standardized and comprehensive tabulated reference data-set.

  12. Ultrasensitive fluorescence-quenched chemosensor for Hg(II) in aqueous solution based on mercaptothiadiazole capped silver nanoparticles.

    PubMed

    Vasimalai, N; Sheeba, G; John, S Abraham

    2012-04-30

    This manuscript describes a highly selective and ultra sensitive determination of Hg(II) in aqueous solution using functionalized mercaptothiadiazole capped silver nanoparticles (AgNPs) by spectrofluorimetry. We have synthesized 2,5-dimercapto-1,3,4-thiadiazole (DMT), 2-mercapto-5-methyl-1,3,4-thiadiazole (MMT) and 2-mercapto-5-amino-1,3,4-thiadiazole (AMT) capped AgNPs by wet chemical method. Among these AgNPs, DMT capped AgNPs (DMT-AgNPs) were more stable and highly fluorescent than the other two AgNPs. DMT-AgNPs show the emission maximum at 677 nm while exciting at 400 nm. After the addition of Hg(II), the emission intensity was decreased at 677 nm. The observed decreased emission intensity was ascribed to the aggregation of AgNPs and it was confirmed by TEM. Based on the decrease in emission intensity, the concentration of Hg(II) was determined. The lowest detection limit (LOD=3S/m) of 1.0 pg L(-1) was achieved for the first time using DMT-AgNPs by spectrofluorimetry. The quantum yield (φ(F)), Stern-Volmer constant (K(SV)), Gibbs free energy changes (ΔG°), association constant (K(f)) were calculated and the quenching mechanism also was discussed. Finally, the proposed method was successfully utilized for the determination of Hg(II) in river water, industrial effluent water and tap water samples. The obtained results were fairly matches with the ICP-AES method. PMID:22342901

  13. Effects from Filtration, Capping Agents, and Presence/Absence of Food on the Toxicity of Silver Nanoparticles to Daphnia Magna

    EPA Science Inventory

    Relatively little is known regarding the behavior and toxicity of nanoparticles in the environment. The objectives of the work presented here include establishing the toxicity of a variety of silver nanoparticles (AgNPs) to Daphnia magna neonates, assessing the applicability of ...

  14. Citrate-Coated Silver Nanoparticles Interactions with Effluent Organic Matter: Influence of Capping Agent and Solution Conditions.

    PubMed

    Gutierrez, Leonardo; Aubry, Cyril; Cornejo, Mauricio; Croue, Jean-Philippe

    2015-08-18

    Fate and transport studies of silver nanoparticles (AgNPs) discharged from urban wastewaters containing effluent organic matter (EfOM) into natural waters represent a key knowledge gap. In this study, EfOM interfacial interactions with AgNPs, and their aggregation kinetics were investigated by atomic force microscopy (AFM) and time-resolved dynamic light scattering (TR-DLS), respectively. Two well-characterized EfOM isolates, i.e., wastewater humic (WW humic) and wastewater colloids (WW colloids, a complex mixture of polysaccharides-proteins-lipids), and a River humic isolate of different characteristics were selected. Citrate-coated AgNPs were selected as representative capped-AgNPs. Citrate-coated AgNPs showed a considerable stability in Na(+) solutions. However, Ca(2+) ions induced aggregation by cation bridging between carboxyl groups on citrate. Although the presence of River humic increased the stability of citrate-coated AgNPs in Na(+) solutions due to electrosteric effects, they aggregated in WW humic-containing solutions, indicating the importance of humics characteristics during interactions. Ca(2+) ions increased citrate-coated AgNPs aggregation rates in both humic solutions, suggesting cation bridging between carboxyl groups on their structures as a dominant interacting mechanism. Aggregation of citrate-coated AgNPs in WW colloids solutions was significantly faster than those in both humic solutions. Control experiments in urea solution indicated hydrogen bonding as the main interacting mechanism. During AFM experiments, citrate-coated AgNPs showed higher adhesion to WW humic than to River humic, evidencing a consistency between TR-DLS and AFM results. Ca(2+) ions increased citrate-coated AgNPs adhesion to both humic isolates. Interestingly, strong WW colloids interactions with citrate caused AFM probe contamination (nanoparticles adsorption) even at low Na(+) concentrations, indicating the impact of hydrogen bonding on adhesion. These results suggest

  15. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    PubMed Central

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-01-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells. PMID:27125749

  16. Polysaccharide-capped silver Nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells

    NASA Astrophysics Data System (ADS)

    Sanyasi, Sridhar; Majhi, Rakesh Kumar; Kumar, Satish; Mishra, Mitali; Ghosh, Arnab; Suar, Mrutyunjay; Satyam, Parlapalli Venkata; Mohapatra, Harapriya; Goswami, Chandan; Goswami, Luna

    2016-04-01

    Development of effective anti-microbial therapeutics has been hindered by the emergence of bacterial strains with multi-drug resistance and biofilm formation capabilities. In this article, we report an efficient green synthesis of silver nanoparticle (AgNP) by in situ reduction and capping with a semi-synthetic polysaccharide-based biopolymer (carboxymethyl tamarind polysaccharide). The CMT-capped AgNPs were characterized by UV, DLS, FE-SEM, EDX and HR-TEM. These AgNPs have average particle size of ~20–40 nm, and show long time stability, indicated by their unchanged SPR and Zeta-potential values. These AgNPs inhibit growth and biofilm formation of both Gram positive (B. subtilis) and Gram negative (E. coli and Salmonella typhimurium) bacterial strains even at concentrations much lower than the minimum inhibitory concentration (MIC) breakpoints of antibiotics, but show reduced or no cytotoxicity against mammalian cells. These AgNPs alter expression and positioning of bacterial cytoskeletal proteins FtsZ and FtsA. CMT-capped AgNPs can effectively block growth of several clinical isolates and MDR strains representing different genera and resistant towards multiple antibiotics belonging to different classes. We propose that the CMT-capped AgNPs can have potential bio-medical application against multi-drug-resistant microbes with minimal cytotoxicity towards mammalian cells.

  17. Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles (Ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film.

    PubMed

    Bakare, Rotimi; Hawthrone, Samantha; Vails, Carmen; Gugssa, Ayele; Karim, Alamgir; Stubbs, John; Raghavan, Dharmaraj

    2016-03-01

    Bacterial infection of orthopedic devices has been a major concern in joint replacement procedures. Therefore, this study is aimed at formulating collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film loaded with bovine serum albumin capped silver nanoparticles (Ag/BSA NPs) to inhibit bacterial growth while retaining/promoting osteoblast cells viability. The nanoparticles loaded collagen immobilized PHBV film was characterized for its composition by X-ray Photoelectron Spectroscopy and Anodic Stripping Voltammetry. The extent of loading of Ag/BSA NPs on collagen immobilized PHBV film was found to depend on the chemistry of the functionalized PHBV film and the concentration of Ag/BSA NPs solution used for loading nanoparticles. Our results showed that more Ag/BSA NPs were loaded on higher molecular weight collagen immobilized PHEMA-g-PHBV film. Maximum loading of Ag/BSA NPs on collagen immobilized PHBV film was observed when 16ppm solution was used for adsorption studies. Colony forming unit and optical density measurements showed broad antimicrobial activity towards Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa at significantly lower concentration i.e., 0.19 and 0.31μg/disc, compared to gentamicin and sulfamethoxazole trimethoprim while MTT assay showed that released nanoparticles from Ag/BSA NPs loaded collagen immobilized PHBV film has no impact on MCTC3-E1 cells viability.

  18. Stability of citrate-capped silver nanoparticles in exposure media and their effects on the development of embryonic zebrafish (Danio rerio)

    PubMed Central

    Park, Kwangsik; Tuttle, George; Sinche, Federico; Harper, Stace L.

    2014-01-01

    The stability of citrate-capped silver nanoparticles (AgNPs) and the embryonic developmental toxicity were evaluated in the fish test water. Serious aggregation of AgNPs was observed in undiluted fish water (DM-100) in which high concentration of ionic salts exist. However, AgNPs were found to be stable for 7 days in DM-10, prepared by diluting the original fish water (DM-100) with deionized water to 10%. The normal physiology of zebrafish embryos were evaluated in DM-10 to see if DM-10 can be used as a control vehicle for the embryonic fish toxicity test. As results, DM-10 without AgNPs did not induce any significant adverse effects on embryonic development of zebrafish determined by mortality, hatching, malformations and heart rate. When embryonic toxicity of AgNPs was tested in both DM-10 and in DM-100, AgNPs showed higher toxicity in DM-10 than in DM-100. This means that the big-sized aggregates of AgNPs were low toxic compared to the nano-sized AgNPs. AgNPs induced delayed hatching, decreased heart rate, pericardial edema, and embryo death. Accumulation of AgNPs in the embryo bodies was also observed. Based on this study, citrate-capped AgNPs are not aggregated in DM-10 and it can be used as a control vehicle in the toxicity test of fish embryonic development. PMID:23325492

  19. Capping Agent-Dependent Toxicity and Antimicrobial Activity of Silver Nanoparticles: An In Vitro Study. Concerns about Potential Application in Dental Practice

    PubMed Central

    Niska, Karolina; Knap, Narcyz; Kędzia, Anna; Jaskiewicz, Maciej; Kamysz, Wojciech; Inkielewicz-Stepniak, Iwona

    2016-01-01

    Objectives: In dentistry, silver nanoparticles (AgNPs) have drawn particular attention because of their wide antimicrobial activity spectrum. However, controversial information on AgNPs toxicity limited their use in oral infections. Therefore, the aim of the present study was to evaluate the antibacterial activities against a panel of oral pathogenic bacteria and bacterial biofilms together with potential cytotoxic effects on human gingival fibroblasts of 10 nm AgNPs: non-functionalized - uncapped (AgNPs-UC) as well as surface-functionalized with capping agent: lipoic acid (AgNPs-LA), polyethylene glycol (AgNPs-PEG) or tannic acid (AgNPs-TA) using silver nitrate (AgNO3) as control. Methods: The interaction of AgNPs with human gingival fibroblast cells (HGF-1) was evaluated using the mitochondrial metabolic potential assay (MTT). Antimicrobial activity of AgNPs was tested against anaerobic Gram-positive and Gram-negative bacteria isolated from patients with oral cavity and respiratory tract infections, and selected aerobic Staphylococci strains. Minimal inhibitory concentration (MIC) values were determined by the agar dilution method for anaerobic bacteria or broth microdilution method for reference Staphylococci strains and Streptococcus mutans. These strains were also used for antibiofilm activity of AgNPs. Results: The highest antimicrobial activities at nontoxic concentrations were observed for the uncapped AgNPs and the AgNPs capped with LA. It was found that AgNPs-LA and AgNPs-PEG demonstrated lower cytotoxicity as compared with the AgNPs-TA or AgNPs-UC in the gingival fibroblast model. All of the tested nanoparticles proved less toxic and demonstrated wider spectrum of antimicrobial activities than AgNO3 solution. Additionally, AgNPs-LA eradicated Staphylococcus epidermidis and Streptococcus mutans 1-day biofilm at concentration nontoxic to oral cells. Conclusions: Our results proved that a capping agent had significant influence on the antibacterial

  20. Anaerobic Toxicity of Cationic Silver Nanoparticles

    EPA Science Inventory

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  1. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments.

    PubMed

    Durán, Nelson; Nakazato, Gerson; Seabra, Amedea B

    2016-08-01

    The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols. PMID:27289481

  2. Silver nanoparticles with tunable work functions

    SciTech Connect

    Wang, Pangpang; Tanaka, Daisuke; Ryuzaki, Sou; Araki, Shohei; Okamoto, Koichi; Tamada, Kaoru

    2015-10-12

    To improve the efficiencies of electronic devices, materials with variable work functions are required to decrease the energy level differences at the interfaces between working layers. Here, we report a method to obtain silver nanoparticles with tunable work functions, which have the same silver core of 5 nm in diameter and are capped by myristates and 1-octanethoilates self-assembled monolayers, respectively. The silver nanoparticles capped by organic molecules can form a uniform two-dimensional sheet at air-water interface, and the sheet can be transferred on various hydrophobic substrates. The surface potential of the two-dimensional nanoparticle sheet was measured in terms of Kelvin probe force microscopy, and the work function of the sheet was then calculated from the surface potential value by comparing with a reference material. The exchange of the capping molecules results in a work function change of approximately 150–250 meV without affecting their hydrophobicity. We systematically discussed the origin of the work function difference and found it should come mainly from the anchor groups of the ligand molecules. The organic molecule capped nanoparticles with tunable work functions have a potential for the applications in organic electronic devices.

  3. Silver Nanoparticles in Dental Biomaterials

    PubMed Central

    Corrêa, Juliana Mattos; Mori, Matsuyoshi; Sanches, Heloísa Lajas; da Cruz, Adriana Dibo; Poiate, Isis Andréa Venturini Pola

    2015-01-01

    Silver has been used in medicine for centuries because of its antimicrobial properties. More recently, silver nanoparticles have been synthesized and incorporated into several biomaterials, since their small size provides great antimicrobial effect, at low filler level. Hence, these nanoparticles have been applied in dentistry, in order to prevent or reduce biofilm formation over dental materials surfaces. This review aims to discuss the current progress in this field, highlighting aspects regarding silver nanoparticles incorporation, such as antimicrobial potential, mechanical properties, cytotoxicity, and long-term effectiveness. We also emphasize the need for more studies to determine the optimal concentration of silver nanoparticle and its release over time. PMID:25667594

  4. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract

    NASA Astrophysics Data System (ADS)

    Sumi Maria, Babu; Devadiga, Aishwarya; Shetty Kodialbail, Vidya; Saidutta, M. B.

    2015-08-01

    In the present paper, biosynthesis of silver nanoparticles using Zizyphus xylopyrus bark extract is reported. Z. xylopyrus bark extract is efficiently used for the biosynthesis of silver nanoparticles. UV-Visible spectroscopy showed surface plasmon resonance peaks in the range 413-420 nm confirming the formation of silver nanoparticles. Different factors affecting the synthesis of silver nanoparticles like methodology for the preparation of extract, concentration of silver nitrate solution used for biosynthesis and initial pH of the reaction mixture were studied. The extract prepared with 10 mM AgNO3 solution by reflux extraction method at optimum initial pH of 11, resulted in higher conversion of silver ions to silver nanoparticles as compared with those prepared by open heating or ultrasonication. SEM analysis showed that the biosynthesized nanoparticles are spherical in nature and ranged from 60 to 70 nm in size. EDX suggested that the silver nanoparticles must be capped by the organic components present in the plant extract. This simple process for the biosynthesis of silver nanoparticles using aqueous extract of Z. xylopyrus is a green technology without the usage of hazardous and toxic solvents and chemicals and hence is environment friendly. The process has several advantages with reference to cost, compatibility for its application in medical and drug delivery, as well as for large-scale commercial production.

  5. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.

    PubMed

    Stevanović, Magdalena; Bračko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipič, Metka; Uskoković, Dragan P

    2014-01-01

    A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect.

  6. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.

    PubMed

    Stevanović, Magdalena; Bračko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipič, Metka; Uskoković, Dragan P

    2014-01-01

    A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect. PMID:23988864

  7. Synthesis, characterization and SERS activity of biosynthesized silver nanoparticles.

    PubMed

    Bindhu, M R; Sathe, V; Umadevi, M

    2013-11-01

    Silver nanoparticles were rapidly synthesized using Moringa oleifera flower extract as the reducing agent shows surface plasmon resonance peak at 439nm. The size and shape of the nanoparticles controlled by varying the concentration of M. oleifera flower extract in the reaction medium. The synthesized silver nanoparticles were well-dispersed spherical nanoparticles with the average size of 14nm. The retinoic acid present in M. oleifera flower extract used as reducing agent and proteins was responsible for capping of the bioreduced silver nanoparticles. The obtained nanoparticle shows size-dependent SERS activity. The SERS spectrum indicates that the pyridine adsorbed on the silver surface in a stand-on orientation via its nitrogen lone pair electrons. PMID:23867642

  8. Synthesis, characterization and SERS activity of biosynthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Sathe, V.; Umadevi, M.

    2013-11-01

    Silver nanoparticles were rapidly synthesized using Moringa oleifera flower extract as the reducing agent shows surface plasmon resonance peak at 439 nm. The size and shape of the nanoparticles controlled by varying the concentration of M. oleifera flower extract in the reaction medium. The synthesized silver nanoparticles were well-dispersed spherical nanoparticles with the average size of 14 nm. The retinoic acid present in M. oleifera flower extract used as reducing agent and proteins was responsible for capping of the bioreduced silver nanoparticles. The obtained nanoparticle shows size-dependent SERS activity. The SERS spectrum indicates that the pyridine adsorbed on the silver surface in a stand-on orientation via its nitrogen lone pair electrons.

  9. Toxicity of silver nanoparticles in zebrafish models

    NASA Astrophysics Data System (ADS)

    Asharani, P. V.; Lian Wu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh

    2008-06-01

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag+ ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.

  10. Effect of silver on the shape of palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Gupta, Dikshita; Barman, P. B.; Hazra, S. K.

    2016-05-01

    We report a facile route to prepare palladium-silver nanoparticles at considerably low temperature. First the controlled synthesis of palladium nanoparticles was performed via reduction of sodium tetrachloropalladate (II) in ethylene glycol in the presence of PVP(polyvinylpyrrolidone) as capping agent. The reaction was carried out at three different temperatures-80°C, 100°C and 120°C for one hour. Short reaction time and low synthesis temperature adds advantage to this method over others. Formed palladium nanoparticles were nearly spherical with the average particle size of 7.5±0.5 nm, 9.5±0.5 nm and 10.5±0.5 nm at 80°C, 100°C and 120°C respectively. Secondly, the palladium-silver nanoparticles were prepared by the simultaneous reduction of palladium and silver from their respective precursors in ethylene glycol at 100°C (optimized temperature). The shape and size distribution was studied by TEM (Transmission Electron Microscopy). The role of silver in transforming the shape of palladium nanoparticles from spherical to triangular has been discussed. Spherical symmetry of palladium nanoparticles is disturbed by the interaction of silver ions on the crystal facets of palladium nanoparticles. From UV-vis spectra, the absorption maxima of palladium nanoparticles at 205 nm and absorption maxima of palladium-silver nanoparticles at 272 nm revealed the partial evidence of their formation.

  11. Malva parviflora extract assisted green synthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Zayed, Mervat F.; Eisa, Wael H.; Shabaka, A. A.

    2012-12-01

    Five plant leaf extracts (Malva parviflora, Beta vulgaris subsp. Vulgaris, Anethum graveolens, Allium kurrat and Capsicum frutescens) were screened for their bioreduction behavior for synthesis of silver nanoparticles. M. parviflora (Malvaceae) was found to exhibit the best reducing and protecting action in terms of synthesis rate and monodispersity of the prepared silver nanoparticles. Our measurements indicate that biosynthesis of Ag nanoparticles by M. parviflora produces Ag nanoparticles with the diameters in the range of 19-25 nm. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles of face-centered cubic structure. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process is an excellent candidate for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

  12. Malva parviflora extract assisted green synthesis of silver nanoparticles.

    PubMed

    Zayed, Mervat F; Eisa, Wael H; Shabaka, A A

    2012-12-01

    Five plant leaf extracts (Malva parviflora, Beta vulgaris subsp. Vulgaris, Anethum graveolens, Allium kurrat and Capsicum frutescens) were screened for their bioreduction behavior for synthesis of silver nanoparticles. M. parviflora (Malvaceae) was found to exhibit the best reducing and protecting action in terms of synthesis rate and monodispersity of the prepared silver nanoparticles. Our measurements indicate that biosynthesis of Ag nanoparticles by M. parviflora produces Ag nanoparticles with the diameters in the range of 19-25 nm. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles of face-centered cubic structure. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process is an excellent candidate for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

  13. Thermal stability of PLD grown silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Shokeen, Poonam; Jain, Amit; Kapoor, Avinashi

    2016-05-01

    Present work discusses the stability of silver nanoparticles at different annealing temperatures. Air muffle furnace annealing is performed to study the thermal stability of pulsed laser deposited silver nanoparticles. Silver reacts with atmospheric oxygen to form silver oxide at annealing temperatures below 473K and thermal decomposition of silver oxide takes place at temperatures above 473K. Oxide formation results in core shrinkage of silver, which in turn affects the surface plasmon resonance of silver nanoparticles. With increase in annealing temperature, the surface plasmon effect of nanoparticles starts to fade. SEM, XRD and UV-vis spectroscopy have been performed to analysis various structural and optical properties.

  14. Synthesis of silver nanoparticles by electron irradiation of silver acetate

    NASA Astrophysics Data System (ADS)

    Li, Yue; Kim, Yong Nam; Lee, Eun Je; Cai, Wei Ping; Cho, Sung Oh

    2006-10-01

    A novel and facile route to synthesize crystalline silver nanoparticles is presented, which is based on electron irradiation technique. Only by irradiating an electron beam onto silver acetate precursor material, silver nanocrystals with the sizes of 15-40 nm were synthesized. The morphology and chemical composition of the irradiated samples were characterized by SEM, TEM, XRD and EELS. The precursor material was decomposed by the energetic electrons and consequently the chemical composition of the material was changed. As the electron fluence was gradually increased, the precursor was converted to silver (I) oxide and finally into silver nanocrystals. Thus, besides silver nanoparticles, silver oxide film can also be synthesized using the electron irradiation technique by controlling the electron fluence. The technique can be useful for mass production of silver nanoparticles and for patterned silver nanoparticle film.

  15. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) capped silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) and titanium dioxide (TiO2) NPs in marine organisms via marine sediment exposure were investigated. Results from 7-d sedimen...

  16. Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract.

    PubMed

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-01-01

    Biomediated silver nanoparticles were synthesized with the aid of an eco-friendly biomaterial, namely, aqueous Tribulus terrestris extract. Silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous T. terrestris leaf extracts as both the reducing and capping agent. Silver ions were rapidly reduced by aqueous T. terrestris leaf extracts, leading to the formation of highly crystalline silver nanoparticles. An attempt has been made and formation of the silver nanoparticles was verified by surface plasmon spectra using an UV-vis (Ultra violet), spectrophotometer. Morphology and crystalline structure of the prepared silver nanoparticles were characterized by TEM (Transmission Electron Microscope) and XRD (X-ray Diffraction), techniques, respectively. FT-IR (Fourier Transform Infrared), analysis suggests that the obtained silver nanoparticles might be stabilized through the interactions of carboxylic groups, carbonyl groups and the flavonoids present in the T. terrestris extract.

  17. Sulfidation of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Levard, C.; Michel, F. M.; Brown, G. E.

    2010-12-01

    Rapid development of nanotechnologies that exploit the properties of silver nanoparticles (Ag-NPs) raises questions concerning the impact of Ag on the environment. Ag-NPs are currently among the most widely used in the nanotechnology industry and the amount released into the environment is expected to increase along with production (1). When present in geochemical systems, Ag-NPs may undergo a variety of changes due to varying redox, pH, and chemical conditions. Expected changes range from surface modification (e.g., oxidation, sulfidation, chloridation etc.) to complete dissolution and re-precipitation. In this context, the focus of our work is on understanding the behavior of synthetic Ag-NPs with different particle sizes under varying conditions relevant to the environment. Sulfidation of Ag-NPs is of particular interest since it among the processes most likely to occur in aqueous systems, in particular under reducing conditions. Three sizes of Ag-NPs coated with polyvinyl pyrrolidone were produced using the polyol process (2) (7 ±1; 20 ±4, and 40 ±9 nm). Batch solutions containing the different Ag-NPs were subsequently reacted with Na2S solutions of different concentrations. The sulfidation process was followed step-wise for 24 hours and the corrosion products formed were characterized by electron microscopy (TEM/SEM), diffraction (XRD), and photo-electron spectroscopy (XPS). Surface charge (pHPZC) of the products formed during this process was also measured, as were changes in solubility and reactivity. Based on experimental observations we infer that the sulfidation process is the result of dissolution-precipitation and find that: (i) acanthite (Ag2S) is formed as a corrosion product; (ii) Ag-NPs aggregation increased with sulfidation rate; (iii) pHPZC increases with the rate of sulfidation; and (iv) the solubility of the corrosion products formed from sulfidation appears lower than that of non-sulfidated Ag-NPs. We observe size-dependent differences in

  18. LL37 peptide@silver nanoparticles: combining the best of the two worlds for skin infection control

    NASA Astrophysics Data System (ADS)

    Vignoni, Mariana; de Alwis Weerasekera, Hasitha; Simpson, Madeline J.; Phopase, Jaywant; Mah, Thien-Fah; Griffith, May; Alarcon, Emilio I.; Scaiano, Juan C.

    2014-05-01

    Capping silver nanoparticles with LL37 peptide eradicates the antiproliferative effect of silver on primary skin cells, but retains the bactericidal properties of silver nanoparticles with activities comparable to silver nitrate or silver sulfadiazine. In addition, LL37 capped silver nanoparticles have anti-biofilm formation activity.Capping silver nanoparticles with LL37 peptide eradicates the antiproliferative effect of silver on primary skin cells, but retains the bactericidal properties of silver nanoparticles with activities comparable to silver nitrate or silver sulfadiazine. In addition, LL37 capped silver nanoparticles have anti-biofilm formation activity. Electronic supplementary information (ESI) available: Changes on AgNP-SPB absorption; changes on AgNP-SPB as A/A0 measured in LB or DMEM media; number of survival colonies in the presence of LL37; human skin fibroblasts cell toxicity in the presence of different silver sources measured using MTS assay; effect of LL37@AgNP on the proliferation profile of human skin fibroblasts; effect of AgSD and AgNO3 on the proliferation profile of human skin fibroblasts in the presence of LL37 peptide; representative flow cytometry profiles for human skin fibroblasts stained with Alexa Fluor®488 annexin V/Dead cell apoptosis kit. See DOI: 10.1039/c4nr01284d

  19. Biosynthesis, characterization and antimicrobial action of silver nanoparticles from root bark extract of Berberislycium Royle.

    PubMed

    Mehmood, Ansar; Murtaza, Ghulam; Bhatti, Tariq Mahmood; Kausar, Rehana; Ahmed, Muhammad Jamil

    2016-01-01

    Various biological methods are being recognized for the fabrication of silver nanoparticles, which are used in several fields. The phytosynthesis of nanoparticles came out as a cost effective and enviro-friendly approach. When root bark extract of Berberis lycium was treated with silver ions, they reduced to silver nanoparticles, which were spherical, crystalline, size ranged from 10-100nm and capped by biomolecules. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR). The plant mediated synthesized silver nanoparticles showed pronounced antimicrobial activities against both Gram negative bacteria (Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). The plant mediated process proved to be non-toxic and low cost contender as reducing agent for synthesizing stable silver nanoparticles.

  20. Anodic Stripping Voltammetry of Silver Nanoparticles: Aggregation Leads to Incomplete Stripping

    PubMed Central

    Cloake, Samantha J; Toh, Her Shuang; Lee, Patricia T; Salter, Chris; Johnston, Colin; Compton, Richard G

    2015-01-01

    The influence of nanoparticle aggregation on anodic stripping voltammetry is reported. Dopamine-capped silver nanoparticles were chosen as a model system, and melamine was used to induce aggregation in the nanoparticles. Through the anodic stripping of the silver nanoparticles that were aggregated to different extents, it was found that the peak area of the oxidative signal corresponding to the stripping of silver to silver(I) ions decreases with increasing aggregation. Aggregation causes incomplete stripping of the silver nanoparticles. Two possible mechanisms of ‘partial oxidation’ and ‘inactivation’ of the nanoparticles are proposed to account for this finding. Aggregation effects must be considered when anodic stripping voltammetry is used for nanoparticle detection and quantification. Hence, drop casting, which is known to lead to aggregation, is not encouraged for preparing electrodes for analytical purposes. PMID:25861566

  1. Coconut water assisted green synthesis of silver nanoparticles

    PubMed Central

    Elumalai, Erusan Kuppan; Kayalvizhi, Karuppsamy; Silvan, Simon

    2014-01-01

    Aim of the Study: The synthesis, characterization and application of biologically synthesized nanomaterials are an important aspect in nanotechnology. Materials and Methods: The present study deals with the synthesis of silver nanoparticles (Ag-NPs) using the coconut water (C. nucifera) as the reducing agent. The formation of Ag-NPs was characterized by UV-Visible Spectroscopy, Scanning Electron Microscopy (SEM), EDX, X-ray Diffraction (XRD) and FTIR spectroscopy. Results: The synthesized Ag-NPs were predominately polydispersed. Crystalline nature of the nanoparticle in the face centered cubic (fcc) structure are confirmed by the peaks in the XRD pattern corresponding to (111), (200), (220) and (311) planes. Fourier Transform Infra-Red (FT-IR) spectroscopy analysis showed that the synthesized nanoparicles was capped with bimolecular compounds which are responsible for the reduction of silver ions. Conclusion: The approach of green synthesis appears to be cost efficient, ecofriendly and easy alternative to conventional methods of silver nanoparticle synthesis. PMID:25400406

  2. Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging

    PubMed Central

    Chrastina, Adrian; Schnitzer, Jan E

    2010-01-01

    Silver nanoparticles are increasingly finding applications in medicine; however, little is known about their in vivo tissue distribution. Here, we have developed a rapid method for radiolabeling of silver nanoparticles with iodine-125 in order to track in vivo tissue uptake of silver nanoparticles after systemic administration by biodistribution analysis and single-photon emission computerized tomography (SPECT) imaging. Poly(N-vinyl-2 -pyrrolidone)-capped silver nanoparticles with an average size of 12 nm were labeled by chemisorption of iodine-125 with a > 80% yield of radiolabeling efficiency. Radiolabeled silver nanoparticles were intravenously injected in Balb/c mice, and the in vivo distribution pattern of these nanoparticles was evaluated by noninvasive whole-body SPECT imaging, which revealed uptake of the nanoparticles in the liver and spleen. Biodistribution analysis confirmed predominant accumulation of the silver nanoparticles in the spleen (41.5%ID/g) and liver (24.5%ID/g) at 24 h. Extensive uptake in the tissues of the reticuloendothelial system suggests that further investigation of silver nanoparticle interaction with hepatic and splenic tissues at the cellular level is critical for evaluation of the in vivo effects and potential toxicity of silver nanoparticles. This method enables rapid iodine-125 radiolabeling of silver nanoparticles with a specific activity sufficient for in vivo imaging and biodistribution analysis. PMID:20856841

  3. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent.

    PubMed

    Hu, Sixiao; Hsieh, You-Lo

    2015-10-20

    Lignin has proven to be highly effective "green" multi-functional binding, complexing and reducing agents for silver cations as well as capping agents for the synthesis of silver nanoparticles on ultra-fine cellulose fibrous membranes. Silver nanoparticles could be synthesized in 10min to be densely distributed and stably bound on the cellulose fiber surfaces at up to 2.9% in mass. Silver nanoparticle increased in sizes from 5 to 100nm and became more polydispersed in size distribution on larger fibers and with longer synthesis time. These cellulose fiber bound silver nanoparticles did not agglomerate under elevated temperatures and showed improved thermal stability. The presence of alkali lignin conferred moderate UV absorbing ability in both UV-B and UV-C regions whereas the bound silver nanoparticles exhibited excellent antibacterial activities toward Escherichia coli. PMID:26256169

  4. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent.

    PubMed

    Hu, Sixiao; Hsieh, You-Lo

    2015-10-20

    Lignin has proven to be highly effective "green" multi-functional binding, complexing and reducing agents for silver cations as well as capping agents for the synthesis of silver nanoparticles on ultra-fine cellulose fibrous membranes. Silver nanoparticles could be synthesized in 10min to be densely distributed and stably bound on the cellulose fiber surfaces at up to 2.9% in mass. Silver nanoparticle increased in sizes from 5 to 100nm and became more polydispersed in size distribution on larger fibers and with longer synthesis time. These cellulose fiber bound silver nanoparticles did not agglomerate under elevated temperatures and showed improved thermal stability. The presence of alkali lignin conferred moderate UV absorbing ability in both UV-B and UV-C regions whereas the bound silver nanoparticles exhibited excellent antibacterial activities toward Escherichia coli.

  5. Morphological transformations of silver nanoparticles in seedless photochemical synthesis

    NASA Astrophysics Data System (ADS)

    Lu, Ya; Zhang, Congyun; Hao, Rui; Zhang, Dongjie; Fu, Yizheng; Moeendarbari, Sina; Pickering, Christopher S.; Hao, Yaowu; Liu, Yaqing

    2016-05-01

    Photochemical synthesis is an easily controlled and reliable method for the fabrication of silver (Ag) nanoparticles with various morphologies. In this work, we have systematically investigated the seedless photochemical synthesis of anisotropic Ag nanoparticles with and without PVP as surface capping agent. The time evolution of anisotropic Ag nanoparticles during the synthesis process are studied using UV-visible spectra, optical images and transmission electron microscopy. The results show that the light irradiation precisely controls the start and termination of the reaction, and the presence or absence of PVP greatly affects the morphology evolution of anisotropic Ag nanoparticles. With PVP as the surface capping agent, Ag nanoparticles grow into decahedra or prism by the deposition of Ag atoms on {111} or {110} facets through epitaxial growth. However, a different morphology evolution could happen when Ag nanoparticle is synthesized without PVP as surface capping agent. In this case, Ag nanoparticles can fuse into the decahedrons through an edge-selective particle fusion mechanism, which involves attachment, rotation and realignment of Ag nanoparticles. This process was evidenced with HRTEM images at the different stages of the transformation from Ag colloid to decahedra nanoparticles. Oriented attachment and Ostwald ripening also play important role in the transformation process.

  6. Anaerobic toxicity of cationic silver nanoparticles.

    PubMed

    Gitipour, Alireza; Thiel, Stephen W; Scheckel, Kirk G; Tolaymat, Thabet

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag(+) under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10-15nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5mgL(-1), the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100mgL(-1) as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag(+). Both citrate and PVP-AgNPs did not exhibit toxicity at the 100mgL(-1) as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. PMID:27016684

  7. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract.

    PubMed

    Suman, T Y; Radhika Rajasree, S R; Kanchana, A; Elizabeth, S Beena

    2013-06-01

    Silver has been used since time to control bodily infection, prevent food spoilage and heal wounds by preventing infection. The present study aims at an environmental friendly method of synthesizing silver nanoparticles, from the root of Morinda citrifolia; without involving chemical agents associated with environmental toxicity. The obtained nanoparticles were characterized by UV-vis absorption spectroscopy with an intense surface plasmon resonance band at 413 nm clearly reveals the formation of silver nanoparticles. Fourier transmission infra red spectroscopy (FTIR) showed nanopartilces were capped with plant compounds. Field emission-scanning electron microscopy (FE-SEM) and Transmission electron microscopy (TEM) showed that the spherical nature of the silver nanoparticles with a size of 30-55 nm. The X-ray diffraction spectrum XRD pattern clearly indicates that the silver nanoparticles formed in the present synthesis were crystalline in nature. In addition these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on HeLa cell.

  8. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity

    NASA Astrophysics Data System (ADS)

    Vanaja, Mahendran; Annadurai, Gurusamy

    2013-06-01

    The utilization of various plant resources for the biosynthesis of metallic nanoparticles is called green nanotechnology, and it does not utilize any harmful chemical protocols. The present study reports the plant-mediated synthesis of silver nanoparticles using the plant leaf extract of Coleus aromaticus, which acts as a reducing and capping agent. The silver nanoparticles were characterized by ultraviolet visible spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and the size of the silver nanoparticles is 44 nm. The bactericidal activity of the silver nanoparticles was carried out by disc diffusion method that showed high toxicity against Bacillus subtilis and Klebsiella planticola. Biosynthesis of silver nanoparticles by using plant resources is an eco-friendly, reliable process and suitable for large-scale production. Moreover, it is easy to handle and a rapid process when compared to chemical, physical, and microbe-mediated synthesis process.

  9. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage

    NASA Astrophysics Data System (ADS)

    Raja, K.; Saravanakumar, A.; Vijayakumar, R.

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  10. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage.

    PubMed

    Raja, K; Saravanakumar, A; Vijayakumar, R

    2012-11-01

    In this paper, aqueous extract of fresh leaves of Prosopis juliflora was used for the synthesis of silver (Ag) nanoparticles. UV-Vis spectroscopy studies were carried out to asses silver nanoparticles formation within 5 min, scanning electron microscopic was used to characterize shape of the Ag nanoparticles, X-ray diffraction analysis confirms the nanoparticles as crystalline silver and facecentered cubic type and Fourier transform infra-red assed that shows biomolecule compounds which are responsible for reduction and capping material of silver nanoparticles. The anti microbial activity of silver nanoparticle was performed using sewage. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.

  11. Inkjet printed fractal-connected electrodes with silver nanoparticle ink.

    PubMed

    Vaseem, Mohammad; Lee, Kil Mok; Hong, A-Ra; Hahn, Yoon-Bong

    2012-06-27

    The development of a simple and reliable method for nanoparticles-based ink in an aqueous solution is still a challenge for its inkjet printing application. Herein, we demonstrate the inkjet printing of fractal-aggregated silver (Ag) electrode lines on substrates. Spherical, monodisperse Ag nanoparticles have been synthesized using silver nitrate as a precursor, ethylene glycol as a reducing agent, and polyvinyl pyrrollidone as a capping agent. As-synthesized pure Ag nanoparticles were well dispersed in water-ethylene glycol mixture, which was directly used as an ink for inkjet printing. Using this ink, the Ag electrodes of fractal-connected lines were printed on Si/SiO2, glass, and polymer substrates. The fractal-connected Ag lines were attributed to the diffusion-limited aggregation of Ag nanoparticles and the effect of annealing on conductivity was also examined. PMID:22670766

  12. Properties of polypropylene nanocomposites containing silver nanoparticles.

    PubMed

    Jang, Myung Wook; Kim, Ju-Young; Ihn, Kyo Jin

    2007-11-01

    Silver/polypropylene (PP) nanocomposites containing silver nanoparticles smaller than 10 nm were prepared using a new synthetic method. AgNO3 crystals were dissolved into hydrophilic domain of polyoxyethylene maleate-based surfactant (PEOM), which gives self-assembly nano-structures. The AgNO3 in the nano-domains of PEOM was reduced by NaBH4 to form nanoparticles. The colloidal solutions with silver nanoparticles were diluted with ethanol and were mixed with PP pellets. Silver nanocomposites were prepared by extrusion compounding process after drying the pellets. Contents of silver nanoparticles dispersed within PP resin were changed from 100 to 1000 ppm. Formation of silver nanoparticles within PP was confirmed by UV-Vis spectroscopy and TEM. Size and distribution of dispersed silver nanoparticles were also measured by TEM. Silver/PP nanocomposites films showed not only improved thermal stability but also increased mechanical properties compared to neat PP film. Tensile properties of PP nanocomposites were largely improved compared with neat PP resin, and elongation increased also by 175% for the nanocomposites containing 1000 ppm silver nanoparticles.

  13. Preparation of silver nanoparticles at low temperature

    NASA Astrophysics Data System (ADS)

    Mishra, Mini; Chauhan, Pratima

    2016-04-01

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  14. Risk assessment of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Shipelin, V. A.; Gmoshinski, I. V.; Khotimchenko, S. A.

    2015-11-01

    Nanoparticles of metallic silver (Ag) are among the most widely used products of nanotechnology. Nanosized colloidal silver (NCS) is presented in many kinds of production as solutions of particles with diameter less than 100 nm. NCS is used in a variety of fields, including food supplements, medicines, cosmetics, packaging materials, disinfectants, water filters, and many others. Problems of toxicity and related safety of NCS for humans and environmental systems are recently overestimated basing on data of numerous toxicological studies in vitro and in vivo. The article discusses the results of current studies in recent years and the data of author's own experiments on studying the safety of NCS, that allows to move on to risk assessment of this nanomaterial presented in consumer products and environmental samples.

  15. Synthesis and optical properties of silver nanoparticles

    SciTech Connect

    Singh, Jaiveer; Kaurav, Netram; Choudhary, K. K.; Okram, Gunadhor S.

    2015-07-31

    The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.

  16. Synthesis and optical properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Jaiveer; Kaurav, Netram; Choudhary, K. K.; Okram, Gunadhor S.

    2015-07-01

    The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.

  17. Synthesis of silver nanoparticle and its application.

    PubMed

    Pandian, A Muthu Kumara; Karthikeyan, C; Rajasimman, M; Dinesh, M G

    2015-11-01

    In this work, silver nanoparticles have been synthesized by wet chemical technique, green synthesis and microbial methods. Silver nitrate (10(-3)M) was used with aqueous extract to produce silver nanoparticles. From the results it was observed that the yield of nanoparticles was high in green synthesis. The size of the silver nanoparticles was determined from Scanning Electron Microscope analysis (SEM). Fourier Transform Infrared spectroscopy (FTIR) was carried out to determine the presence of biomolecules in them. Its cytotoxic effect was studied in cancerous cell line and normal cell line. MTT assay was done to test its optimal concentration and efficacy which gives valuable information for the use of silver nanoparticles for future cancer therapy. PMID:25866204

  18. Synthesis of silver nanoparticle and its application.

    PubMed

    Pandian, A Muthu Kumara; Karthikeyan, C; Rajasimman, M; Dinesh, M G

    2015-11-01

    In this work, silver nanoparticles have been synthesized by wet chemical technique, green synthesis and microbial methods. Silver nitrate (10(-3)M) was used with aqueous extract to produce silver nanoparticles. From the results it was observed that the yield of nanoparticles was high in green synthesis. The size of the silver nanoparticles was determined from Scanning Electron Microscope analysis (SEM). Fourier Transform Infrared spectroscopy (FTIR) was carried out to determine the presence of biomolecules in them. Its cytotoxic effect was studied in cancerous cell line and normal cell line. MTT assay was done to test its optimal concentration and efficacy which gives valuable information for the use of silver nanoparticles for future cancer therapy.

  19. Drastic nickel ion removal from aqueous solution by curcumin-capped Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Bettini, S.; Pagano, R.; Valli, L.; Giancane, G.

    2014-08-01

    A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%.A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02583k

  20. Photoactivable caps for reactive metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Patel, Ashish

    The synthesis and stabilization of reactive metal nanoparticles is often challenging under normal atmospheric conditions. This problem can be alleviated by capping and passivation. Our lab has focused on forming polymer coatings on the surface of reactive metal nanoparticles. We discovered a convenient and effective route for stabilization of aluminum nanoparticles (Al NPs), which uses the nascent metal core as a polymerization initiator for various organic monomers. In our previous work, we used this method to passivate the Al NPs using variety of epoxides and copolymers of epoxides and alkenes. These products have demonstrated air stability for weeks to months with little to no degradation in the active Al content. Since our previously synthesized Al NP's were not beneficial for rapid and efficient thermodynamic access to the active Al core, our goal was find polymers that could easily be photochemically activated to enhance such access. Since poly(methyl methacrylate) (PMMA) has photodegrading properties, we used PMMA as a capping agent to passivate Al NPs. In this work, we present capping and stabilization of Al NPs with PMMA, and also with 1,2-epoxyhexane/ PMMA. In our previous work, we increased the stability of Al NP capped with 1,2-epoxy-9-decene by adding 1,13-tetradecadiene as a cross-linker. Here, we used the methyl methacrylate (MMA) monomer as cross-linker for Al NP capped with 1,2-epoxy-9-decene. We have also used the MMA as capping agent. We use powder x-ray diffractametry (PXRD), differential scanning calorimetry (DSC), and thermogravity analysis (TGA) to confirm the presence of elemental Al and ATR-FTIR to confirm the presence of polymers.

  1. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast ( Saccharomyces cerevisiae) extract

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-11-01

    Synthesis of metallic and semiconductor nanoparticles through physical and chemical route is quiet common but biological synthesis procedures are gaining momentum due to their simplicity, cost-effectivity and eco-friendliness. Here, we report green synthesis of silver nanoparticles from aqueous solution of silver salts using yeast ( Saccharomyces cerevisiae) extract. The nanoparticles formation was gradually investigated by UV-Vis spectrometer. X-ray diffraction analysis was done to identify different phases of biosynthesized Ag nanoparticles. Transmission electron microscopy was performed to study the particle size and morphology of silver nanoparticles. Fourier transform infrared spectroscopy of the nanoparticles was performed to study the role of biomolecules capped on the surface of Ag nanoparticles during interaction. Photocatalytic activity of these biosynthesized nanoparticles was studied using an organic dye, methylene blue under solar irradiation and these nanoparticles showed efficacy in degrading the dye within a few hours of exposure.

  2. Green synthesis of silver nanoparticles using tannins

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  3. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves

    EPA Science Inventory

    Silver nanoparticles with size range 5-10 nm has been synthesized under microwave irradiation conditions using gluathione, an absolutely benign antioxidant that serves as the reducing as well as capping agent in aqueous medium. This rapid protocol yields the nanoparticles within ...

  4. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity.

    PubMed

    Kaviya, S; Santhanalakshmi, J; Viswanathan, B; Muthumary, J; Srinivasan, K

    2011-08-01

    Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25°C) and 60°C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (gram-negative), and Staphylococcus aureus (gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent.

  5. The bactericidal effect of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruben Morones, Jose; Elechiguerra, Jose Luis; Camacho, Alejandra; Holt, Katherine; Kouri, Juan B.; Tapia Ramírez, Jose; Yacaman, Miguel Jose

    2005-10-01

    Nanotechnology is expected to open new avenues to fight and prevent disease using atomic scale tailoring of materials. Among the most promising nanomaterials with antibacterial properties are metallic nanoparticles, which exhibit increased chemical activity due to their large surface to volume ratios and crystallographic surface structure. The study of bactericidal nanomaterials is particularly timely considering the recent increase of new resistant strains of bacteria to the most potent antibiotics. This has promoted research in the well known activity of silver ions and silver-based compounds, including silver nanoparticles. The present work studies the effect of silver nanoparticles in the range of 1 100 nm on Gram-negative bacteria using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). Our results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of ~1 10 nm.

  6. Biogenic synthesis of silver nanoparticles using guava ( Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Bose, Debadin; Chatterjee, Someswar

    2016-08-01

    Among the various inorganic nanoparticles, silver nanoparticles have received substantial attention in the field of antimicrobial research. For safe and biocompatible use of silver nanoparticles in antimicrobial research, the different biogenic routes are developed to synthesize silver nanoparticles that do not use toxic chemicals. Among those, to synthesize silver nanoparticles, the use of plant part extract becomes an emerging field because plant part acts as reducing as well as capping agent. For large-scale production of antibacterial silver nanoparticles using plant part, the synthesis route should be very simple, rapid, cost-effective and environment friendly based on easy availability and non-toxic nature of plant, stability and antibacterial potential of biosynthesized nanoparticles. In the present study, we report a very simple, rapid, cost-effective and environment friendly route for green synthesis of silver nanoparticles using guava ( Psidium guajava) leaf extract as reducing as well as capping agent. This plant has been opted for the present study for its known medicinal properties, and it is easily available in all seasons and everywhere. The biosynthesized silver nanoparticles are characterized by UV-Vis and TEM analysis. The average particle size is 40 nm in the range of 10-90 nm. The antibacterial activity of these nanoparticles against Pseudomonas aeruginosa MTCC 741 has been measured by disc diffusion method, agar cup assay and serial dilution turbidity measurement assay. The results show that green synthesized silver nanoparticles, using guava ( Psidium guajava) leaf extract, have a potential to inhibit the growth of bacteria.

  7. Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum

    NASA Astrophysics Data System (ADS)

    Kannan, R. Ragupathi Raja; Arumugam, R.; Ramya, D.; Manivannan, K.; Anantharaman, P.

    2013-06-01

    The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the seaweed ( Chaetomorpha linum) extract . The silver nanoparticles obtained were characterized by UV-visible spectrum, FTIR and scanning electron microscopy. The characteristic absorption peak at 422 nm in UV-vis spectrum confirmed the formation of silver nanoparticles. The colour intensity at 422 nm increased with duration of incubation. The size of nanoparticles synthesized varied from 3 to 44 nm with average of ~30 nm. The FTIR spectrum of C. linum extract showed peaks at 1,020, 1,112, 1,325, 1,512, 1,535, 1,610, 1,725, 1,862, 2,924, 3,330 cm-1. The vibrational bands corresponding to the bonds such as -C=C (ring), -C-O, -C-O-C and C=C (chain) are derived from water-soluble compounds such as amines, peptides, flavonoids and terpenoids present in C. linum extract. Hence, it may be inferred that these biomolecules are responsible for capping and efficient stabilization. Since no synthetic reagents were used in this investigation, it is environmentally safe and have potential for application in biomedicine and agriculture.

  8. Nanosecond laser ablation of silver nanoparticle film

    NASA Astrophysics Data System (ADS)

    Chung, Jaewon; Han, Sewoon; Lee, Daeho; Ahn, Sanghoon; Grigoropoulos, Costas P.; Moon, Jooho; Ko, Seung H.

    2013-02-01

    Nanosecond laser ablation of polyvinylpyrrolidone (PVP) protected silver nanoparticle (20 nm diameter) film is studied using a frequency doubled Nd:YAG nanosecond laser (532 nm wavelength, 6 ns full width half maximum pulse width). In the sintered silver nanoparticle film, absorbed light energy conducts well through the sintered porous structure, resulting in ablation craters of a porous dome shape or crown shape depending on the irradiation fluence due to the sudden vaporization of the PVP. In the unsintered silver nanoparticle film, the ablation crater with a clean edge profile is formed and many coalesced nanoparticles of 50 to 100 nm in size are observed inside the ablation crater. These results and an order of magnitude analysis indicate that the absorbed thermal energy is confined within the nanoparticles, causing melting of nanoparticles and their coalescence to larger agglomerates, which are removed following melting and subsequent partial vaporization.

  9. Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa.

    PubMed

    Kumar, C Ganesh; Mamidyala, Suman Kumar

    2011-06-01

    Bio-directed synthesis of metal nanoparticles is gaining importance due to their biocompatibility, low toxicity and eco-friendly nature. We used culture supernatant of Pseudomonas aeruginosa strain BS-161R for the simple and cost effective green synthesis of silver nanoparticles. The reduction of silver ions occurred when silver nitrate solution was treated with the Pseudomonas aeruginosa culture supernatant at room temperature. The nanoparticles were characterized by UV-visible, TEM, EDAX, FT-IR and XRD spectroscopy. The nanoparticles exhibited an absorption peak around 430 nm, a characteristic surface plasmon resonance band of silver nanoparticles. They were mono-dispersed and spherical in shape with an average particle size of 13 nm. The EDAX analysis showed the presence of elemental silver signal in the synthesized nanoparticles. The FT-IR analysis revealed that the protein component in the form of enzyme nitrate reductase and the rhamnolipids produced by the isolate in the culture supernatant may be responsible for reduction and as a capping material. The XRD spectrum showed the characteristic Bragg peaks of 111, 200, 220 and 311 facets of the face centered cubic silver nanoparticles and confirms that these nanoparticles are crystalline in nature. The prepared silver nanoparticles exhibited strong antimicrobial activity against gram-positive, gram-negative and different Candida species at concentrations ranging between 4 and 32 μg ml(-1).

  10. Mycosynthesis of silver nanoparticles bearing antibacterial activity.

    PubMed

    Azmath, Pasha; Baker, Syed; Rakshith, Devaraju; Satish, Sreedharamurthy

    2016-03-01

    Mycosynthesis of silver nanoparticles was achieved by endophytic Colletotrichum sp. ALF2-6 inhabiting Andrographis paniculata. Well dispersed nanoparticles were characterized using UV-Visible spectrometry with maximum absorption conferring at 420 nm. FTIR analysis revealed possible biomolecules reducing the metal salt and stabilization of nanoparticles. XRD analysis depicted the diffraction intensities exhibiting between 20 and 80 °C at 2theta angle thus conferring the crystalline nature of nanoparticles. Morphological characteristic using TEM revealed the polydispersity of nanoparticles with size ranging from 20 to 50 nm. Synthesized nanoparticles exhibited bactericidal activity against selected human pathogens. Nanoparticles mode of action was carried out to reveal DNA damage activity. Thus the present investigation reports facile fabrication of silver nanoparticles from endophytic fungi. PMID:27013906

  11. [In vitro percutaneous absorption of silver nanoparticles].

    PubMed

    Filon, F Larese; D'Agostin, F; Crosera, M; Adami, G; Rosani, R; Romano, C; Bovenzi, M; Maina, G

    2007-01-01

    There is a growing interest in the debate on nanoparticle safety for topical use. The benefits of nanoparticles have been shown in several scientific fields, but little is known about their potential to penetrate the skin lies. This study aims at evaluating in vitro silver nanoparticles skin penetration. Experiments were performed using the Franz diffusion cell method with intact and damaged human skin. Physiological solution was used as receiving phase and 70 microg/cm2 of silver nanoparticles dispersed in synthetic sweat were applied as donor phase to the outer surface of the skin for 24h. The receptor fluid measurements were performed by Electro Thermal Atomic Absorption Spectroscopy (ETAAS). Silver concentration of 0.2 microg/L was found in the receiving solutions of two cells, in which damaged skin membranes were set up. In the other tests, we obtained a silver concentration below the limit of detection in the receiving cells. Our experimental data show that silver nanoparticles permeation through intact and damaged skin is negligible. These findings are consistent with previously published results. Further researches are necessary to explore skin absorption of silver nanoparticles.

  12. Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract

    SciTech Connect

    Jagajjanani Rao, K.; Paria, Santanu

    2013-02-15

    Graphical abstract: Silver nanoparticles capped with polyphenols present in Aegle marmelos leaf extract. Display Omitted Highlights: ► Silver nanoparticles are synthesized using Aegle marmelos leaf extract in aqueous media. ► Reduction reaction is fast and occurs at room temperature. ► The presence of polyphenols acts as in situ capping agent. -- Abstract: Synthesis of nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the convention chemical routes. The present study reports one-pot synthesis and in situ stabilization of silver nanoparticles using Aegle marmelos leaf extract. Nanoparticles of almost uniform spherical size (∼60 nm) were synthesized within ∼25 min reaction time at room temperature. The size of particles depends on the ratio of AgNO{sub 3} and leaf extract. The crystallinity, size, and shape of the nanoparticles were characterized by X-ray diffraction, dynamic light scattering, and scanning electron microscopy respectively. The size stability was attained by the capping effect of polyphenolic tannin compound, procatacheuate in the extract. The capped polyphenols can be removed from the particle surface by simple NaOH/methanol wash. The involvement of phenolic compounds in metal ion reduction and capping were supported by UV–visible spectroscopy, infrared spectroscopy, high performance liquid chromatography, and zeta potential measurements.

  13. Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics

    NASA Astrophysics Data System (ADS)

    Jong Lee, Kwi; Jun, Byung Ho; Choi, Junrak; Lee, Young Il; Joung, Jaewoo; Oh, Yong Soo

    2007-08-01

    In this study, we attempted to synthesize organic-soluble silver nanoparticles in the concentrated organic phase with an environmentally friendly method. The fully organic phase system contains silver acetate as a silver precursor, oleic acid as both a medium and a capping molecule, and tin acetate as a reducing agent. Monodisperse silver nanoparticles with average diameters of ca. 5 nm can be easily synthesized at large scale. Only a small usage of tin acetate (<0.05 eq.mol) resulted in a high synthesis yield (>90%). Also, it was investigated that the residual tin atom does not exist in the synthesized silver nanoparticles. This implied that tin acetate acts as a reducing catalyst.

  14. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojun; Kakkar, Ashok

    2008-06-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles.

  15. Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study.

    PubMed

    Iram, Fozia; Iqbal, Mohammad S; Athar, Muhammad M; Saeed, Muhammad Z; Yasmeen, Abida; Ahmad, Riaz

    2014-04-15

    A green synthesis of gold and silver nanoparticles having exceptional high stability is reported. The synthesis involves the use of glucoxylans isolated from seeds of Mimosa pudica and excludes the use of conventional reducing and capping agents. The average particle sizes were 40 and 6 nm for gold and silver, respectively. The size of gold particles obtained in this work is suitable for drug delivery as they are non-cytotoxic. In phyto-toxicity tests the gold and silver nanoparticles did not show any significant effect on germination of radish seeds, whereas in radish seedling root growth assay the two particles behaved differently. The silver nanoparticles exhibited a concentration-dependent stimulatory effect on root length, whereas the gold nanoparticles had no significant effect in this test. The likely mechanism of these effects is discussed. PMID:24607156

  16. Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study.

    PubMed

    Iram, Fozia; Iqbal, Mohammad S; Athar, Muhammad M; Saeed, Muhammad Z; Yasmeen, Abida; Ahmad, Riaz

    2014-04-15

    A green synthesis of gold and silver nanoparticles having exceptional high stability is reported. The synthesis involves the use of glucoxylans isolated from seeds of Mimosa pudica and excludes the use of conventional reducing and capping agents. The average particle sizes were 40 and 6 nm for gold and silver, respectively. The size of gold particles obtained in this work is suitable for drug delivery as they are non-cytotoxic. In phyto-toxicity tests the gold and silver nanoparticles did not show any significant effect on germination of radish seeds, whereas in radish seedling root growth assay the two particles behaved differently. The silver nanoparticles exhibited a concentration-dependent stimulatory effect on root length, whereas the gold nanoparticles had no significant effect in this test. The likely mechanism of these effects is discussed.

  17. Trichoderma koningii assisted biogenic synthesis of silver nanoparticles and evaluation of their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Tripathi, R. M.; Gupta, Rohit Kumar; Shrivastav, Archana; Singh, M. P.; Shrivastav, B. R.; Singh, Priti

    2013-09-01

    The present study demonstrates the biosynthesis of silver nanoparticles using Trichoderma koningii and evaluation of their antibacterial activity. Trichoderma koningii secretes proteins and enzymes that act as reducing and capping agent. The biosynthesized silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD). UV-Vis spectra showed absorbance peak at 413 nm corresponding to the surface plasmon resonance of silver nanoparticles. DLS was used to find out the size distribution profile. The size and morphology of the AgNPs was determined by TEM, which shows the formation of spherical nanoparticles in the size range of 8-24 nm. X-ray diffraction showed intense peaks corresponding to the crystalline silver. The antibacterial activity of biosynthesized AgNPs was evaluated by growth curve and inhibition zone and it was found that the AgNPs show potential effective antibacterial activity.

  18. Photochromic silver nanoparticles fabricated by sputter deposition

    SciTech Connect

    Okumu, J.; Dahmen, C.; Sprafke, A.N.; Luysberg, M.; Plessen, G. von; Wuttig, M.

    2005-05-01

    In this study a simple route to preparing photochromic silver nanoparticles in a TiO{sub 2} matrix is presented, which is based upon sputtering and subsequent annealing. The formation of silver nanoparticles with sizes of some tens of nanometers is confirmed by x-ray diffraction and transmission electron microscopy. The inhomogeneously broadened particle-plasmon resonance of the nanoparticle ensemble leads to a broad optical-absorption band, whose spectral profile can be tuned by varying the silver load and the annealing temperature. Multicolor photochromic behavior of this Ag-TiO{sub 2} system upon irradiation with laser light is demonstrated and discussed in terms of a particle-plasmon-assisted electron transfer from the silver nanoparticles to TiO{sub 2} and subsequent trapping by adsorbed molecular oxygen. The electron depletion in the nanoparticles reduces the light absorption at the wavelength of irradiation. A gradual recovery of the absorption band is observed after irradiation, which is explained with a slow thermal release of electrons from the oxygen trapping centers and subsequent capture into the nanoparticles. The recovery can be accelerated by ultraviolet irradiation; the explanation for this observation is that electrons photoexcited in the TiO{sub 2} are captured into the nanoparticles and restore the absorption band.

  19. Application of statistical experimental design for optimization of silver nanoparticles biosynthesis by a nanofactory Streptomyces viridochromogenes.

    PubMed

    El-Naggar, Noura El-Ahmady; Abdelwahed, Nayera A M

    2014-01-01

    Central composite design was chosen to determine the combined effects of four process variables (AgNO3 concentration, incubation period, pH level and inoculum size) on the extracellular biosynthesis of silver nanoparticles (AgNPs) by Streptomyces viridochromogenes. Statistical analysis of the results showed that incubation period, initial pH level and inoculum size had significant effects (P<0.05) on the biosynthesis of silver nanoparticles at their individual level. The maximum biosynthesis of silver nanoparticles was achieved at a concentration of 0.5% (v/v) of 1 mM AgNO3, incubation period of 96 h, initial pH of 9 and inoculum size of 2% (v/v). After optimization, the biosynthesis of silver nanoparticles was improved by approximately 5-fold as compared to that of the unoptimized conditions. The synthetic process of silver nanoparticle generation using the reduction of aqueous Ag+ ion by the culture supernatants of S. viridochromogenes was quite fast, and silver nanoparticles were formed immediately by the addition of AgNO3 solution (1 mM) to the cell-free supernatant. Initial characterization of silver nanoparticles was performed by visual observation of color change from yellow to intense brown color. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 400 nm, which confirmed the presence of silver nanoparticles. Fourier Transform Infrared Spectroscopy analysis provided evidence for proteins as possible reducing and capping agents for stabilizing the nanoparticles. Transmission Electron Microscopy revealed the extracellular formation of spherical silver nanoparticles in the size range of 2.15-7.27 nm. Compared to the cell-free supernatant, the biosynthesized AgNPs revealed superior antimicrobial activity against Gram-negative, Gram-positive bacterial strains and Candida albicans.

  20. Cytotoxicity and genotoxicity of biogenic silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lima, R.; Feitosa, L. O.; Ballottin, D.; Marcato, P. D.; Tasic, L.; Durán, N.

    2013-04-01

    Biogenic silver nanoparticles with 40.3 ± 3.5 nm size and negative surface charge (- 40 mV) were prepared with Fusarium oxysporum. The cytotoxicity of 3T3 cell and human lymphocyte were studied by a TaliTM image-based cytometer and the genotoxicity through Allium cepa and comet assay. The results of BioAg-w (washed) and BioAg-nw (unwashed) biogenic silver nanoparticles showed cytotoxicity exceeding 50 μg/mL with no significant differences of response in 5 and 10 μg/mL regarding viability. Results of genotoxicity at concentrations 5.0 and 10.0 ug/mL show some response, but at concentrations 0.5 and 1.0 μg/mL the washed and unwashed silver nanoparticles did not present any effect. This in an important result since in tests with different bacteria species and strains, including resistant, MIC (minimal inhibitory concentration) had good answers at concentrations less than 1.9 μg/mL. This work concludes that biogenic silver nanoparticles may be a promising option for antimicrobial use in the range where no cyto or genotoxic effect were observed. Furthermore, human cells were found to have a greater resistance to the toxic effects of silver nanoparticles in comparison with other cells.

  1. Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media.

    PubMed

    Abebe, Lydia S; Su, Yi-Hsuan; Guerrant, Richard L; Swami, Nathan S; Smith, James A

    2015-11-01

    Ceramic water filters (CWFs) impregnated with silver nanoparticles are a means of household-level water treatment. CWFs remove/deactivate microbial pathogens by employing two mechanisms: metallic disinfection and physical filtration. Herein we report on the independent effects of silver salt and nanoparticles on Cryptosporidium parvum and the removal of C. parvum by physical filtration in porous ceramic filter media. Using a murine (mouse) model, we observed that treatment of oocysts with silver nitrate and proteinate-capped silver nanoparticles resulted in decreased infection relative to untreated oocysts. Microscopy and excystation experiments were conducted to support the disinfection investigation. Heat and proteinate-capped silver-nanoparticle treatment of oocysts resulted in morphological modifications and decreased excystation rates of sporozoites. Subsequently, disk-shaped ceramic filters were produced to investigate the transport of C. parvum. Two factors were varied: sawdust size and clay-to-sawdust ratio. Five disks were prepared with combinations of 10, 16, and 20 mesh sawdust and sawdust percentage that ranged from 9 to 11%. C. parvum removal efficiencies ranged from 1.5 log (96.4%) to 2.1 log (99.2%). The 16-mesh/10% sawdust had the greatest mean reduction of 2.1-log (99.2%), though there was no statistically significant difference in removal efficiency. Based on our findings, physical filtration and silver nanoparticle disinfection likely contribute to treatment of C. parvum for silver impregnated ceramic water filters, although the contribution of physical filtration is likely greater than silver disinfection.

  2. Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media.

    PubMed

    Abebe, Lydia S; Su, Yi-Hsuan; Guerrant, Richard L; Swami, Nathan S; Smith, James A

    2015-11-01

    Ceramic water filters (CWFs) impregnated with silver nanoparticles are a means of household-level water treatment. CWFs remove/deactivate microbial pathogens by employing two mechanisms: metallic disinfection and physical filtration. Herein we report on the independent effects of silver salt and nanoparticles on Cryptosporidium parvum and the removal of C. parvum by physical filtration in porous ceramic filter media. Using a murine (mouse) model, we observed that treatment of oocysts with silver nitrate and proteinate-capped silver nanoparticles resulted in decreased infection relative to untreated oocysts. Microscopy and excystation experiments were conducted to support the disinfection investigation. Heat and proteinate-capped silver-nanoparticle treatment of oocysts resulted in morphological modifications and decreased excystation rates of sporozoites. Subsequently, disk-shaped ceramic filters were produced to investigate the transport of C. parvum. Two factors were varied: sawdust size and clay-to-sawdust ratio. Five disks were prepared with combinations of 10, 16, and 20 mesh sawdust and sawdust percentage that ranged from 9 to 11%. C. parvum removal efficiencies ranged from 1.5 log (96.4%) to 2.1 log (99.2%). The 16-mesh/10% sawdust had the greatest mean reduction of 2.1-log (99.2%), though there was no statistically significant difference in removal efficiency. Based on our findings, physical filtration and silver nanoparticle disinfection likely contribute to treatment of C. parvum for silver impregnated ceramic water filters, although the contribution of physical filtration is likely greater than silver disinfection. PMID:26398590

  3. Physicochemical properties of protein-modified silver nanoparticles in seawater

    NASA Astrophysics Data System (ADS)

    Zhong, Hangyue

    2013-10-01

    This study investigated the physicochemical properties of silver nanoparticles stabilized with casein protein in seawater. UV?vis spectrometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM) were applied to measure the stability of silver nanoparticles in seawater samples. The obtained results show an increased aggregation tendency of silver nanoparticles in seawater, which could be attributed its relatively high cation concentration that could neutralize the negatively charges adsorbed on the surface of silver nanoparticles and reduce the electrostatic repulsion forces between nanoparticles. Similarly, due to the surface charge screening process, the zeta potential of silver nanoparticles in seawater decreased. This observation further supported the aggregation behavior of silver nanoparticles. This study also investigated the dissolution of silver nanoparticles in seawater. Result shows that the silver nanoparticle dissolution in DI water is lower than in seawater, which is attributed to the high Cl? concentration present in seawater. As Cl? can react with silver and form soluble AgCl complex, dissolution of silver nanoparticles was enhanced. Finally, this study demonstrated that silver nanoparticles are destabilized in seawater condition. These results may be helpful in understanding the environmental risk of discharged silver nanoparticles in seawater conditions.

  4. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract.

    PubMed

    Khan, Mujeeb; Khan, Merajuddin; Adil, Syed Farooq; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Alkhathlan, Hamad Z; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H

    2013-01-01

    The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs' surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines.

  5. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract

    PubMed Central

    Khan, Mujeeb; Khan, Merajuddin; Adil, Syed Farooq; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Alkhathlan, Hamad Z; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H

    2013-01-01

    The green synthesis of metallic nanoparticles (NPs) has attracted tremendous attention in recent years because these protocols are low cost and more environmentally friendly than standard methods of synthesis. In this article, we report a simple and eco-friendly method for the synthesis of silver NPs using an aqueous solution of Pulicaria glutinosa plant extract as a bioreductant. The as-prepared silver NPs were characterized using ultraviolet–visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. Moreover, the effects of the concentration of the reductant (plant extract) and precursor solution (silver nitrate), the temperature on the morphology, and the kinetics of reaction were investigated. The results indicate that the size of the silver NPs varied as the plant extract concentration increased. The as-synthesized silver NPs were phase pure and well crystalline with a face-centered cubic structure. Further, Fourier-transform infrared spectroscopy analysis confirmed that the plant extract not only acted as a bioreductant but also functionalized the NPs’ surfaces to act as a capping ligand to stabilize them in the solvent. The developed eco-friendly method for the synthesis of NPs could prove a better substitute for the physical and chemical methods currently used to prepare metallic NPs commonly used in cosmetics, foods, and medicines. PMID:23620666

  6. Polyethyleneimine Capped Silver Nanoclusters as Efficient Antibacterial Agents

    PubMed Central

    Xu, Dong; Wang, Qingyun; Yang, Tao; Cao, Jianzhong; Lin, Qinlu; Yuan, Zhiqin; Li, Le

    2016-01-01

    Development of efficient antibacterial agents is critical for human health. In the present study, we investigated the antibacterial activity of polyethyleneimine (PEI)-capped silver nanoclusters (PEI-AgNCs), based on the fact that nanoclusters normally have higher surface-to-volume ratios than traditional nanomaterials and PEI itself has a strong antimicrobial capacity. We synthesized stable silver nanoclusters by altering PEI molecular weight from 0.6 kDa to 25 kDa and characterized them by UV-Vis absorption and fluorescence spectroscopy and high resolution transmission electron microscopy. The sizes of AgNCs were around 2 nm in diameter and were little influenced by the molecular weight of PEIs. The antibacterial abilities of the four PEI-AgNCs were explored on agar plate and in liquid systems. Our results revealed that the antibacterial activity of PEI-AgNCs is excellent and the reduction of PEI molecular weight could result in the increased antibacterial capacity of PEI-AgNCs. Such proposed new materials might be useful as efficient antibacterial agents in practical clinical applications. PMID:26999183

  7. Plasmonic characterization of photo-induced silver nanoparticles extracted from silver halide based TEM film

    NASA Astrophysics Data System (ADS)

    Sudheer, Tiwari, P.; Varshney, G. K.; Rai, V. N.; Srivastava, A. K.

    2016-05-01

    The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.

  8. Plasmonic twinned silver nanoparticles with molecular precision

    PubMed Central

    Yang, Huayan; Wang, Yu; Chen, Xi; Zhao, Xiaojing; Gu, Lin; Huang, Huaqi; Yan, Juanzhu; Xu, Chaofa; Li, Gang; Wu, Junchao; Edwards, Alison J.; Dittrich, Birger; Tang, Zichao; Wang, Dongdong; Lehtovaara, Lauri; Häkkinen, Hannu; Zheng, Nanfeng

    2016-01-01

    Determining the structures of nanoparticles at atomic resolution is vital to understand their structure–property correlations. Large metal nanoparticles with core diameter beyond 2 nm have, to date, eluded characterization by single-crystal X-ray analysis. Here we report the chemical syntheses and structures of two giant thiolated Ag nanoparticles containing 136 and 374 Ag atoms (that is, up to 3 nm core diameter). As the largest thiolated metal nanoparticles crystallographically determined so far, these Ag nanoparticles enter the truly metallic regime with the emergence of surface plasmon resonance. As miniatures of fivefold twinned nanostructures, these structures demonstrate a subtle distortion within fivefold twinned nanostructures of face-centred cubic metals. The Ag nanoparticles reported in this work serve as excellent models to understand the detailed structure distortion within twinned metal nanostructures and also how silver nanoparticles can span from the molecular to the metallic regime. PMID:27611564

  9. Plasmonic twinned silver nanoparticles with molecular precision.

    PubMed

    Yang, Huayan; Wang, Yu; Chen, Xi; Zhao, Xiaojing; Gu, Lin; Huang, Huaqi; Yan, Juanzhu; Xu, Chaofa; Li, Gang; Wu, Junchao; Edwards, Alison J; Dittrich, Birger; Tang, Zichao; Wang, Dongdong; Lehtovaara, Lauri; Häkkinen, Hannu; Zheng, Nanfeng

    2016-01-01

    Determining the structures of nanoparticles at atomic resolution is vital to understand their structure-property correlations. Large metal nanoparticles with core diameter beyond 2 nm have, to date, eluded characterization by single-crystal X-ray analysis. Here we report the chemical syntheses and structures of two giant thiolated Ag nanoparticles containing 136 and 374 Ag atoms (that is, up to 3 nm core diameter). As the largest thiolated metal nanoparticles crystallographically determined so far, these Ag nanoparticles enter the truly metallic regime with the emergence of surface plasmon resonance. As miniatures of fivefold twinned nanostructures, these structures demonstrate a subtle distortion within fivefold twinned nanostructures of face-centred cubic metals. The Ag nanoparticles reported in this work serve as excellent models to understand the detailed structure distortion within twinned metal nanostructures and also how silver nanoparticles can span from the molecular to the metallic regime. PMID:27611564

  10. Plasmonic twinned silver nanoparticles with molecular precision

    NASA Astrophysics Data System (ADS)

    Yang, Huayan; Wang, Yu; Chen, Xi; Zhao, Xiaojing; Gu, Lin; Huang, Huaqi; Yan, Juanzhu; Xu, Chaofa; Li, Gang; Wu, Junchao; Edwards, Alison J.; Dittrich, Birger; Tang, Zichao; Wang, Dongdong; Lehtovaara, Lauri; Häkkinen, Hannu; Zheng, Nanfeng

    2016-09-01

    Determining the structures of nanoparticles at atomic resolution is vital to understand their structure-property correlations. Large metal nanoparticles with core diameter beyond 2 nm have, to date, eluded characterization by single-crystal X-ray analysis. Here we report the chemical syntheses and structures of two giant thiolated Ag nanoparticles containing 136 and 374 Ag atoms (that is, up to 3 nm core diameter). As the largest thiolated metal nanoparticles crystallographically determined so far, these Ag nanoparticles enter the truly metallic regime with the emergence of surface plasmon resonance. As miniatures of fivefold twinned nanostructures, these structures demonstrate a subtle distortion within fivefold twinned nanostructures of face-centred cubic metals. The Ag nanoparticles reported in this work serve as excellent models to understand the detailed structure distortion within twinned metal nanostructures and also how silver nanoparticles can span from the molecular to the metallic regime.

  11. Biosynthesis of silver nanoparticles from Premna serratifolia L. leaf and its anticancer activity in CCl4-induced hepato-cancerous Swiss albino mice

    NASA Astrophysics Data System (ADS)

    Arockia John Paul, J.; Karunai Selvi, B.; Karmegam, N.

    2015-11-01

    In this study, we report the biosynthesis of silver nanoparticles using the ethanolic leaf powder extract of Premna serratifolia L. and its anticancer activity in carbon tetra chloride (CCl4)-induced liver cancer in Swiss albino mice (Balb/c). The synthesized silver nanoparticles were characterized by SEM, FTIR and XRD analyses. The Debye-Scherrer equation was used to calculate particle size and the average size of silver nanoparticles synthesized from P. serratifolia leaf extract was 22.97 nm. The typical pattern revealed that the sample contained cubic structure of silver nanoparticles. FTIR analysis confirmed that the bioreduction of silver ions to silver nanoparticles is due to reduction by capping material of the plant extract. The silver nanoparticles of P. serratifolia leaf extract were effective in treating liver cancer in Swiss albino mice when compared with P. serratifolia leaf extract with isoleucine.

  12. Glass frits coated with silver nanoparticles for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-01

    Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  13. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles.

    PubMed

    Amooaghaie, Rayhaneh; Saeri, Mohammad Reza; Azizi, Morteza

    2015-10-01

    Despite the development potential in the field of nanotechnology, there is a concern about possible effects of nanoparticles on the environment and human health. In this study, silver nanoparticles (AgNPs) were synthesized by 'green' and 'chemical' methods. In the wet-chemistry method, sodium borohydrate, sodium citrate and silver nitrate were used as raw materials. Leaf extract of Nigella sativa was used as reducing as well as capping agent to reduce silver nitrate in the green synthesis method. In addition, toxic responses of both synthesized AgNPs were monitored on bone-building stem cells of mice as well as seed germination and seedling growth of six different plants (Lolium, wheat, bean and common vetch, lettuce and canola). In both synthesis methods, the colorless reaction mixtures turned brown and UV-visible spectra confirmed the presence of silver nanoparticles. Scanning electron microscope (SEM) observations revealed the predominance of silver nanosized crystallites and fourier transform infra-red spectroscopy (FTIR) indicated the role of different functional groups in the synthetic process. MTT assay showed cell viability of bone-building stem cells of mice was further in the green AgNPs synthesized using black cumin extract than chemical AgNPs. IC50 (inhibitory concentrations) values for seed germination, root and shoot length for 6 plants in green AgNPs exposures were higher than the chemical AgNPs. These results suggest that cytotoxicity and phytotoxicity of the green synthesized AgNPs were significantly less than wet-chemistry synthesized ones. This study indicated an economical, simple and efficient ecofriendly technique using leaves of N. sativa for synthesis of AgNPs and confirmed that green AgNPs are safer than chemically-synthesized AgNPs.

  14. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles.

    PubMed

    Amooaghaie, Rayhaneh; Saeri, Mohammad Reza; Azizi, Morteza

    2015-10-01

    Despite the development potential in the field of nanotechnology, there is a concern about possible effects of nanoparticles on the environment and human health. In this study, silver nanoparticles (AgNPs) were synthesized by 'green' and 'chemical' methods. In the wet-chemistry method, sodium borohydrate, sodium citrate and silver nitrate were used as raw materials. Leaf extract of Nigella sativa was used as reducing as well as capping agent to reduce silver nitrate in the green synthesis method. In addition, toxic responses of both synthesized AgNPs were monitored on bone-building stem cells of mice as well as seed germination and seedling growth of six different plants (Lolium, wheat, bean and common vetch, lettuce and canola). In both synthesis methods, the colorless reaction mixtures turned brown and UV-visible spectra confirmed the presence of silver nanoparticles. Scanning electron microscope (SEM) observations revealed the predominance of silver nanosized crystallites and fourier transform infra-red spectroscopy (FTIR) indicated the role of different functional groups in the synthetic process. MTT assay showed cell viability of bone-building stem cells of mice was further in the green AgNPs synthesized using black cumin extract than chemical AgNPs. IC50 (inhibitory concentrations) values for seed germination, root and shoot length for 6 plants in green AgNPs exposures were higher than the chemical AgNPs. These results suggest that cytotoxicity and phytotoxicity of the green synthesized AgNPs were significantly less than wet-chemistry synthesized ones. This study indicated an economical, simple and efficient ecofriendly technique using leaves of N. sativa for synthesis of AgNPs and confirmed that green AgNPs are safer than chemically-synthesized AgNPs. PMID:26122733

  15. In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells.

    PubMed

    Jang, Suk Ju; Yang, In Jun; Tettey, Clement O; Kim, Ki Mo; Shin, Heung Mook

    2016-11-01

    In recent years, green synthesis of metallic nanoparticles is a growing area of research because of their potential applications in nanomedicine. In the present study we synthesized silver nanoparticles (silver NPs) from AgNO3 using aqueous extract of Lonicera hypoglauca flower as reducing and capping agents. The synthesized silver NPs were characterized using UV-Vis spectroscopy, FTIR, SEM-ED, TEM and SAED. Silver NPs were found to be significantly toxic to MCF-7 cells via the induction of apoptosis whereas sparing normal immune system (RAW 264.7) cells. PMID:27524038

  16. Bactericidal Effect of Silver Nanoparticles on Intramacrophage Brucella abortus 544

    PubMed Central

    Alizadeh, Hamed; Salouti, Mojtaba; Shapouri, Reza

    2014-01-01

    Background: Brucellosis is an infectious disease that is caused by Brucella spp. As Brucella spp. are intramacrophage pathogens, the treatment of this infection is very difficult. On the other hand, due to the side effects of the brucellosis treatment regime, it is necessary to find new antimicrobial agents against it. Objectives: The aim of this study was to investigate the antimicrobial effect of silver nanoparticles against Brucella abortus 544 in the intramacrophage condition. Materials and Methods: The antimicrobial effect of silver nanoparticles was determined by an agar well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against B. abortus 544 were determined by a broth macrodilution method. The effect of time on the antimicrobial activity of silver nanoparticles was analyzed. The effect of silver nanoparticles on the intramacrophage survival of B. abortus 544 was studied on mice peritoneal macrophages. Results: The well diffusion agar study showed that silver nanoparticles have an antimicrobial effect on B. abortus 544. The MIC and MBC of silver nanoparticles against B. abortus 544 were; 6 ppm and 8 ppm, respectively. The silver nanoparticles showed antibacterial effects within 40 minutes. The results of the macrophage culture indicated that silver nanoparticles have antibacterial activity against intramacrophage B. abortus 544, and the highest efficiency was observed at a concentration of 8-10 ppm of silver nanoparticles. Conclusions: The results showed that silver nanoparticles have an antimicrobial effect against intramacrophage B. abortus 544. PMID:25147682

  17. Phytofabrication of bioinduced silver nanoparticles for biomedical applications

    PubMed Central

    Ahmad, Nabeel; Bhatnagar, Sharad; Ali, Syed Salman; Dutta, Rajiv

    2015-01-01

    Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60–80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs. PMID:26648715

  18. Phytofabrication of bioinduced silver nanoparticles for biomedical applications.

    PubMed

    Ahmad, Nabeel; Bhatnagar, Sharad; Ali, Syed Salman; Dutta, Rajiv

    2015-01-01

    Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60-80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs. PMID:26648715

  19. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    PubMed

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-01

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles. PMID:25819317

  20. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    PubMed

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-01

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles.

  1. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-07-01

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles.

  2. Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity.

    PubMed

    Lee, Jeong-Ho; Lim, Jeong-Muk; Velmurugan, Palanivel; Park, Yool-Jin; Park, Youn-Jong; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-09-01

    We present the simple, eco-friendly synthesis of silver nanoparticles (AgNPs) using sunlight or green, red, blue, or white LED light together with Dryopteris crassirhizoma rhizome extract (DCRE) as the reducing and capping agent. The preliminary indication of AgNP production was a color change from yellowish green to brown after light exposure in the presence of DCRE. Optimization of parameters such as pH, inoculum dose, and metal ion concentration played an important role in achieving nanoparticle production in 30min. The spectroscopic and morphological properties of AgNPs were characterized using UV-Vis spectroscopy through the presence of a characteristic surface plasmon resonance (SPR) band for AgNPs, Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD). The FT-IR results indicated that the phytochemical present in DCRE was the probable reducing/capping agent involved in the synthesis of AgNPs, and light radiation enhanced nanoparticle production. HR-TEM revealed that the AgNPs were almost spherical with an average size of 5-60nm under all light sources. XRD studies confirmed the face cubic center (fcc) unit cell structure of AgNPs. The synthesized AgNPs showed good antimicrobial activity against Bacillus cereus and Pseudomonas aeruginosa. This study will bring a new insight in ecofriendly production of metal nanoparticles. PMID:27348063

  3. Photobiologic-mediated fabrication of silver nanoparticles with antibacterial activity.

    PubMed

    Lee, Jeong-Ho; Lim, Jeong-Muk; Velmurugan, Palanivel; Park, Yool-Jin; Park, Youn-Jong; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-09-01

    We present the simple, eco-friendly synthesis of silver nanoparticles (AgNPs) using sunlight or green, red, blue, or white LED light together with Dryopteris crassirhizoma rhizome extract (DCRE) as the reducing and capping agent. The preliminary indication of AgNP production was a color change from yellowish green to brown after light exposure in the presence of DCRE. Optimization of parameters such as pH, inoculum dose, and metal ion concentration played an important role in achieving nanoparticle production in 30min. The spectroscopic and morphological properties of AgNPs were characterized using UV-Vis spectroscopy through the presence of a characteristic surface plasmon resonance (SPR) band for AgNPs, Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD). The FT-IR results indicated that the phytochemical present in DCRE was the probable reducing/capping agent involved in the synthesis of AgNPs, and light radiation enhanced nanoparticle production. HR-TEM revealed that the AgNPs were almost spherical with an average size of 5-60nm under all light sources. XRD studies confirmed the face cubic center (fcc) unit cell structure of AgNPs. The synthesized AgNPs showed good antimicrobial activity against Bacillus cereus and Pseudomonas aeruginosa. This study will bring a new insight in ecofriendly production of metal nanoparticles.

  4. Characteristic time scales of coalescence of silver nanocomposite and nanoparticle films induced by continuous wave laser irradiation

    SciTech Connect

    Paeng, Dongwoo; Grigoropoulos, Costas P.; Lee, Daeho

    2014-08-18

    In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.

  5. Plasmonic biocompatible silver-gold alloyed nanoparticles.

    PubMed

    Sotiriou, Georgios A; Etterlin, Gion Diego; Spyrogianni, Anastasia; Krumeich, Frank; Leroux, Jean-Christophe; Pratsinis, Sotiris E

    2014-11-14

    The addition of Au during scalable synthesis of nanosilver drastically minimizes its surface oxidation and leaching of toxic Ag(+) ions. These biocompatible and inexpensive silver-gold nanoalloyed particles exhibit superior plasmonic performance than commonly used pure Au nanoparticles, and as such these nanoalloys have great potential in theranostic applications.

  6. An extracellular enzyme synthesizes narrow-sized silver nanoparticles in both water and methanol

    NASA Astrophysics Data System (ADS)

    Rai, Tripti; Panda, Debashis

    2015-03-01

    Cellulase reduces silver ions in both aqueous and methanolic media yielding stable narrow-sized silver nanoparticles (Ag-NP) at room temperature. The synthesized nanoparticles have been characterized by various spectroscopic, microscopic methods. The redox potentials of tyrosine residues and protein backbone play an instrumental role to reduce the metal ions. The average size of nanoparticles formed in aqueous medium is of 5.04 ± 3.50 nm. Post-synthesis of Ag-NP secondary structure of enzyme is completely lost whereas upon incubation with chemically synthesized Ag-NP a significant gain in secondary structure is observed. Cellulase as a capping ligand stabilizes the silver nanoparticles even in methanol.

  7. Interactions between silver nanoparticles and polyvinyl alcohol nanofibers

    SciTech Connect

    Chou, H. L.; Wu, C. M.; Lin, F. D.; Rick, J.

    2014-08-15

    The interaction of polyvinylalcohol (PVA) nanofibers with silver (Ag) nanoparticles (mean diameter 8nm) has been modeled using density functional theory (DFT) calculations. The physical adsorption of PVA through the hydroxyl group, to the Ag, and its corresponding molecular orientation was compared with experimental results obtained from surface-enhanced Raman scattering (SERS) studies of the same material. A good agreement was found between the computational model of the vibrational spectrum of the adsorbate and the experimentally observed SERS. In general, aliphatic capping molecules are used to passivate the surface of Ag{sub 55} nanocrystals (55 = atomic number of Ag). In this study, a DFT simulation was employed to show binding energies and electron contour map analyses of Ag{sub 55} with PVA. Here we show that the PVA interacts with the Ag nanoparticle's surface, through the OH group, thereby contributing significantly to the increase in SERS activity.

  8. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana.

    PubMed

    Geisler-Lee, Jane; Wang, Qiang; Yao, Ying; Zhang, Wen; Geisler, Matt; Li, Kungang; Huang, Ying; Chen, Yongsheng; Kolmakov, Andrei; Ma, Xingmao

    2013-05-01

    The widespread availability of nano-enabled products in the global market may lead to the release of a substantial amount of engineered nanoparticles in the environment, which frequently display drastically different physiochemical properties than their bulk counterparts. The purpose of the study was to evaluate the impact of citrate-stabilised silver nanoparticles (AgNPs) on the plant Arabidopsis thaliana at three levels, physiological phytotoxicity, cellular accumulation and subcellular transport of AgNPs. The monodisperse AgNPs of three different sizes (20, 40 and 80 nm) aggregated into much larger sizes after mixing with quarter-strength Hoagland solution and became polydisperse. Immersion in AgNP suspension inhibited seedling root elongation and demonstrated a linear dose-response relationship within the tested concentration range. The phytotoxic effect of AgNPs could not be fully explained by the released silver ions. Plants exposed to AgNP suspensions bioaccumulated higher silver content than plants exposed to AgNO3 solutions (Ag(+) representative), indicating AgNP uptake by plants. AgNP toxicity was size and concentration dependent. AgNPs accumulated progressively in this sequence: border cells, root cap, columella and columella initials. AgNPs were apoplastically transported in the cell wall and found aggregated at plasmodesmata. In all the three levels studied, AgNP impacts differed from equivalent dosages of AgNO3.

  9. Utilization of hydroxypropyl carboxymethyl cellulose in synthesis of silver nanoparticles.

    PubMed

    Abdel-Halim, E S; Alanazi, Humaid H; Al-Deyab, Salem S

    2015-04-01

    Hydroxypropyl carboxymethyl cellulose samples having varying degrees of substitution and varying degrees of polymerization were used to reduce silver nitrate to silver nanoparticles. UV spectral analysis of silver nanoparticles colloidal solution reveal that increasing the pH of the reduction solution leads to improvement in the intensity of the absorption band for silver nanoparticles, to be maximum at pH 11. The absorption peak intensity also enhanced upon prolonging the reaction duration up to 60 min. The conversion of silver ions to metallic silver nanoparticles was found to be temperature-dependent and maximum transformation occurs at 60 °C. The reduction efficiency of hydroxypropyl carboxymethyl cellulose was found to be affected by its degree of polymerization. Colloidal solutions of silver nanoparticles having concentration up to 1000 ppm can be prepared upon fixing the ratio between silver nitrate and hydroxypropyl carboxymethyl cellulose at 0.017-0.3g per each 100ml of the reduction solution.

  10. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum

    SciTech Connect

    Basavaraja, S.; Balaji, S.D.; Lagashetty, Arunkumar; Rajasab, A.H.; Venkataraman, A.

    2008-05-06

    Development of environmental friendly procedures for the synthesis of metal nanoparticles through biological processes is evolving into an important branch of nanobiotechnology. In this paper, we report on the use of fungus 'Fusarium semitectum' for the extracellular synthesis of silver nanoparticles from silver nitrate solution (i.e. through the reduction of Ag{sup +} to Ag{sup 0}). Highly stable and crystalline silver nanoparticles are produced in solution by treating the filtrate of the fungus F. semitectum with the aqueous silver nitrate solution. The formations of nanoparticles are understood from the UV-vis and X-ray diffraction studies. Transmission electron microscopy of the silver particles indicated that they ranged in size from 10 to 60 nm and are mostly spherical in shape. Interestingly the colloidal suspensions of silver nanoparticles are stable for many weeks. Possible medicinal applications of these silver nanoparticles are envisaged.

  11. Subchronic oral toxicity of silver nanoparticles

    PubMed Central

    2010-01-01

    Background The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronic, consumer, medicinal, pesticide, and home products; however, silver nanoparticles remain a controversial area of research with respect to their toxicity in biological and ecological systems. Results This study tested the oral toxicity of silver nanoparticles (56 nm) over a period of 13 weeks (90 days) in F344 rats following Organization for Economic Cooperation and Development (OECD) test guideline 408 and Good Laboratory Practices (GLP). Five-week-old rats, weighing about 99 g for the males and 92 g for the females, were divided into four 4 groups (10 rats in each group): vehicle control, low-dose (30 mg/kg), middle-dose (125 mg/kg), and high-dose (500 mg/kg). After 90 days of exposure, clinical chemistry, hematology, histopathology, and silver distribution were studied. There was a significant decrease (P < 0.05) in the body weight of male rats after 4 weeks of exposure, although there were no significant changes in food or water consumption during the study period. Significant dose-dependent changes were found in alkaline phosphatase and cholesterol for the male and female rats, indicating that exposure to more than 125 mg/kg of silver nanoparticles may result in slight liver damage. Histopathologic examination revealed a higher incidence of bile-duct hyperplasia, with or without necrosis, fibrosis, and/or pigmentation, in treated animals. There was also a dose-dependent accumulation of silver in all tissues examined. A gender-related difference in the accumulation of silver was noted in the kidneys, with a twofold increase in female kidneys compared to male kidneys. Conclusions The target organ for the silver nanoparticles was found to be the liver in both the male and female rats. A NOAEL (no observable adverse effect level) of 30 mg/kg and LOAEL (lowest observable adverse effect level) of 125 mg/kg are suggested from the present study

  12. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna

    PubMed Central

    2012-01-01

    Background To better understand the potential ecotoxicological impacts of silver nanoparticles released into freshwater environments, the Daphnia magna 48-hour immobilization test was used. Methods The toxicities of silver nitrate, two types of colloidal silver nanoparticles, and a suspension of silver nanoparticles were assessed and compared using standard OECD guidelines. Also, the swimming behavior and visible uptake of the nanoparticles by Daphnia were investigated and compared. The particle suspension and colloids used in the toxicity tests were well-characterized. Results The results obtained from the exposure studies showed that the toxicity of all the silver species tested was dose and composition dependent. Plus, the silver nanoparticle powders subsequently suspended in the exposure water were much less toxic than the previously prepared silver nanoparticle colloids, whereas the colloidal silver nanoparticles and AgNO3 were almost similar in terms of mortality. The silver nanoparticles were ingested by the Daphnia and accumulated under the carapace, on the external body surface, and connected to the appendages. All the silver species in this study caused abnormal swimming by the D. magna. Conclusion According to the present results, silver nanoparticles should be classified according to GHS (Globally Harmonized System of classification and labeling of chemicals) as "category acute 1" to Daphnia neonates, suggesting that the release of nanosilver into the environment should be carefully considered. PMID:22472056

  13. Synthesis of gold nanoparticles and silver nanoparticles via green technology

    NASA Astrophysics Data System (ADS)

    Ahmed, Zulfiqaar; Balu, S. S.

    2012-11-01

    The proposed work describes the comparison of various methods of green synthesis for preparation of Gold and Silver nanoparticles. Pure extracts of Lemon (Citrus limon) and Tomato (Solanum lycopersicum) were mixed with aqueous solution of auric tetrachloride and silver nitrate. The resultant solutions were treated with four common techniques to assist in the reduction namely photo catalytic, thermal, microwave assisted reduction and solvo - thermal reduction. UV - Visible Spectroscopy results and STM images of the final solutions confirmed the formation of stable metallic nanoparticles. A preliminary account of the green synthesis work is presented here.

  14. Oxidation of Ag nanoparticles in aqueous media: Effect of particle size and capping

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yuri L.; Vishnyakova, Elena A.; Romanchenko, Alexander S.; Saikova, Svetlana V.; Likhatski, Maxim N.; Larichev, Yurii V.; Tuzikov, Fedor V.; Zaikovskii, Vladimir I.; Zharkov, Sergey M.

    2014-04-01

    Many applications and environmental impact of silver-bearing nanomaterials critically depend upon their specific reactivity, which is still poorly understood. Here, silver nanoparticles (Ag NPs) of about 3-5 nm and 10-12 nm in diameter, uncapped and capped with L-glucose or citrate, were prepared, characterized using UV-vis absorption spectroscopy, SAXS, TEM, and their (electro)chemical oxidation was examined in comparison with each other and bulk metal applying scanning tunneling microscopy and spectroscopy, cyclic voltammetry, and XPS. A resistive switching effect was found in the tunneling spectra measured in air at the smaller uncapped Ag NPs deposited on HOPG and was interpreted in terms of Ag transfer between the particle and the probe. The anodic oxidation of these Ag NPs in 1 M NaOH yielded 3D Ag2O, while only a layer of "primary" Ag(I) oxide emerged on larger uncapped nanoparticles during the potential sweep. The formation of AgO at higher potentials proceeded readily at the "primary" oxide but was retarded at the smaller NPs. The citrate- and glucose-capping substantially impeded the formation both of Ag2O and AgO. The findings highlighted, particularly, a non-trivial effect of particle size and transient mobilization of Ag species on the reactions of silver nanoparticles.

  15. Synthesis of silver nanoparticles and antibacterial property of silk fabrics treated by silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Guangyu; Liu, Yan; Gao, Xiaoliang; Chen, Yuyue

    2014-05-01

    A silver nanoparticle solution was prepared in one step by mixing AgNO3 and a multi-amino compound (RSD-NH2) solution under ambient condition. RSD-NH2 was in-house synthesized by methacrylate and polyethylene polyamine in methanol, which has abundant amino and imino groups. However, the characterization of silver nanoparticles indicated that these nanoparticles are easy to agglomerate in solution. Therefore, an in situ synthesis method of silver nanoparticles on the silk fabrics was developed. The examined results confirmed that the in situ synthesized silver nanoparticles were evenly distributed on the surface of fibers. The inhibition zone test and the antibacterial rate demonstrated that the finished fabrics have an excellent antibacterial property against Staphylococcus aureus and Escherichia coli. Moreover, the nanosilver-treated silk fabrics were laundered 0, 5, 10, 20, and 50 times and still retained the exceptional antibacterial property. When the treated fabrics were washed 50 times, the antibacterial rate is more than 97.43% for S. aureus and 99.86% for E. coli. The excellent laundering durability may be attributed to the tight binding between silver nanoparticles and silk fibers through the in situ synthesis. This method provides an economic method to enhance the antibacterial capability of silk fabrics with good resistance to washings.

  16. Biomediated synthesis of silver nanoparticles using Exiguobacterium mexicanum.

    PubMed

    Padman, Aparna J; Henderson, Janey; Hodgson, Simon; Rahman, Pattanathu K S M

    2014-10-01

    Biomediated silver nanoparticle were synthesized using a cell free extract of a soil bacterium, Exiguobacterium mexicanum PR 10.6. The silver nanoparticles were characterised using UV-Vis spectroscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The nanoparticles ranged from 5 to 40 nm. Extracellular polymeric substance played a critical role in the reduction of silver ion and nanoparticle stabilisation when using the cell free extract. The synthesis using E. mexicanum is an effective eco-friendly, rapid method for silver nanoparticle synthesis within 1 h. PMID:24966039

  17. Printed UHF RFID antennas with high efficiencies using nano-particle silver ink.

    PubMed

    Lee, Yongshik; Kim, Chung Hwan; Shin, Dong-Youn; Kim, Young Gook

    2011-07-01

    One of the most popular targets of conductive ink technology is to print RFID tag antennas. However, the printed RFID antennas, manufactured by conductive silver ink which is generally based on microsized silver particles, have lower conductivity and consequently lower radiation efficiency than those by conventional copper etching method. This work demonstrates nano-particle conductive silver ink that is capable of printing UHF RFID antennas with improved radiation efficiency. Compared with commercial micro-particle silver ink, the solid content of metal is much higher in the proposed nanoparticle silver ink, leading to better electrical properties. Two types of dipole antennas are printed with the proposed nano-particle as well as with commercial micro-particle inks. Also, the same antennas are fabricated by copper etching. With these conductive inks, a straight and a meandered dipole antennas are fabricated and their radiation efficiencies are measured with the Wheeler cap method. Experimental results show that the radiation efficiencies of the antennas based on nanoparticle silver ink are superior to those printed with the micro-particle silver ink, and are comparable to those of popular copper antennas.

  18. Enhanced thermal stability of phosphate capped magnetite nanoparticles

    SciTech Connect

    Muthukumaran, T.; Philip, John

    2014-06-14

    We have studied the effect of phosphate capping on the high temperature thermal stability and magnetic properties of magnetite (Fe{sub 3}O{sub 4}) nanoparticles synthesized through a single-step co-precipitation method. The prepared magnetic nanoparticles are characterized using various techniques. When annealed in air, the phosphate capped nanoparticle undergoes a magnetic to non-magnetic phase transition at a temperature of 689 °C as compared to 580 °C in the uncoated nanoparticle of similar size. The observed high temperature phase stability of phosphate capped nanoparticle is attributed to the formation of a phosphocarbonaceous shell over the nanoparticles, which acts as a covalently attached protective layer and improves the thermal stability of the core material by increasing the activation energy. The phosphocarbonaceous shell prevents the intrusion of heat, oxygen, volatiles, and mass into the magnetic core. At higher temperatures, the coalescence of nanoparticles occurs along with the restructuring of the phosphocarbonaceous shell into a vitreous semisolid layer on the nanoparticles, which is confirmed from the small angle X-ray scattering, Fourier transform infra red spectroscopy, and transmission electron microscopy measurements. The probable mechanism for the enhancement of thermal stability of phosphocarbonaceous capped nanoparticles is discussed.

  19. Inoculation of silicon nanoparticles with silver atoms

    PubMed Central

    Cassidy, Cathal; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Djurabekova, Flyura; Nordlund, Kai; Sowwan, Mukhles

    2013-01-01

    Silicon (Si) nanoparticles were coated inflight with silver (Ag) atoms using a novel method to prepare multicomponent heterostructured metal-semiconductor nanoparticles. Molecular dynamics (MD) computer simulations were employed, supported by high-resolution bright field (BF) transmission electron microscopy (HRTEM) and aberration-corrected scanning transmission electron microscopy (STEM) with a resolution ≤0.1 nm in high angle annular dark field (HAADF) mode. These studies revealed that the alloying behavior and phase dynamics during the coating process are more complex than when attaching hetero-atoms to preformed nanoparticles. According to the MD simulations, Ag atoms condense, nucleate and diffuse into the liquid Si nanoparticles in a process that we term “inoculation”, and a phase transition begins. Subsequent solidification involves an intermediate alloying stage that enabled us to control the microstructure and crystallinity of the solidified hybrid heterostructured nanoparticles. PMID:24170178

  20. Silver ions eluted from partially protected silver nanoparticles.

    PubMed

    Heidari Zare, Hamideh; Düttmann, Oliver; Vass, Attila; Franz, Gerhard; Jocham, Dieter

    2016-01-01

    The most prominent character of a new type of antibacterial urological catheters is the zebra-stripe pattern of a silver film, which is plated electroless on their interior wall and capped by a very thin semipermeable layer of parylene. This design effectively controls the release rate of Ag(+) ions in artificial urine, which has been measured as function of time with optical emission spectroscopy. By evaluating the minimum inhibitory concentration against certain strains of bacteria with solutions of AgNO3 of known concentration with the method of optical density and applying this analysis to the silver-eluting catheters, it was shown that this moderation prolongs the period of their application significantly. But to act as antibacterial agent in chlorine-containing solutions, as in urine, the presence of urea is required to avoid precipitation of AgCl and to meet or even exceed the minimum inhibitory concentration of Ag(+). The quality of the silver depot layer was further determined by the deposition rate and its morphology, which revealed that the film consisted of grains with a mean size of 150 nm. PMID:27400747

  1. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae.

    PubMed

    Korbekandi, Hassan; Mohseni, Soudabeh; Mardani Jouneghani, Rasoul; Pourhossein, Meraj; Iravani, Siavash

    2016-01-01

    The objectives of this study were the biosynthesis of silver nanoparticles (NPs) by biotransformations using Saccharomyces cerevisiae and analysis of the sizes and shapes of the NPs produced. Dried and freshly cultured S. cerevisiae were used as the biocatalyst. Dried yeast synthesized few NPs, but freshly cultured yeast produced a large amount of them. Silver NPs were spherical, 2-20 nm in diameter, and the NPs with the size of 5.4 nm were the most frequent ones. NPs were seen inside the cells, within the cell membrane, attached to the cell membrane during the exocytosis, and outside of the cells.

  2. Silver nanoparticles produced by green production method

    NASA Astrophysics Data System (ADS)

    Bunghez, Ioana-Raluca; Ion, Rodica-Mariana; Velea, Sanda; Ilie, Lucia; Fierascu, Radu-Claudiu; Dumitriu, Irina; Dinu, Angela; Troncea, Simona

    2010-11-01

    Nanomaterials as novel materials with nanometer sizes are involved in higher performance technology. On this context nanobiotechnology is able to create different nanostructures using living organisms.An attractive research area is the application of microorganisms to synthesize nanoparticles from different metals, one of which is silver, an antimicrobial agent. Green production methods have a considerable interest for environmental protection, often based on plant extracts, organic compounds or microorganisms (bacteria, fungi, algae). Marine plants were used as "real factors" for synthesis of nanoparticles of Au and Ag using different processes of biomineralization. This paper deals with a complete study about obtaining silver nanoparticles from AgNO3 using red algae (Porphyridium purpureum). The red algae contain the red pigment-phycobilins, responsible for red color and for the strong absorption in visible spectrum. The properties and structure of silver nanoparticles have been put into evidence by means of: Fourier transform infrared spectroscopy-FTIR, optical microscopy, X-ray fluorescence spectrometry-EDXRF.

  3. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles

    EPA Science Inventory

    Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxic...

  4. Bioactivity of albumins bound to silver nanoparticles.

    PubMed

    Mariam, Jessy; Sivakami, S; Kothari, D C; Dongre, P M

    2014-06-01

    The last decade has witnessed a tremendous rise in the proposed applications of nanomaterials in the field of medicine due to their very attractive physiochemical properties and novel actions such as the ability to reach previously inaccessible targets such as brain. However biological activity of functional molecules bound to nanoparticles and its physiological consequences is still unclear and hence this area requires immediate attention. The functional properties of Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) bound to silver nanoparticles (~60 nm) have been studied under physiological environment. Esterase activity, binding of drugs (warfarin and ibuprofen), antioxidant activity and copper binding by albumins was evaluated. The catalytic efficiencies of HSA and BSA diminished upon binding to silver nanoparticles. Perturbation in binding of warfarin and ibuprofen, loss of free sulphydryls, antioxidant activity and enhancement of copper binding were observed in albumins bound to nanoparticles. These alterations in functional activity of nanoparticle bound albumins which will have important consequences should be taken into consideration while using nanoparticles for diagnostic and therapeutic purposes.

  5. Three strategies to stabilise nearly monodispersed silver nanoparticles in aqueous solution

    PubMed Central

    2012-01-01

    Silver nanoparticles are extensively used due to their chemical and physical properties and promising applications in areas such as medicine and electronics. Controlled synthesis of silver nanoparticles remains a major challenge due to the difficulty in producing long-term stable particles of the same size and shape in aqueous solution. To address this problem, we examine three strategies to stabilise aqueous solutions of 15 nm citrate-reduced silver nanoparticles using organic polymeric capping, bimetallic core-shell and bimetallic alloying. Our results show that these strategies drastically improve nanoparticle stability by distinct mechanisms. Additionally, we report a new role of polymer functionalisation in preventing further uncontrolled nanoparticle growth. For bimetallic nanoparticles, we attribute the presence of a higher valence metal on the surface of the nanoparticle as one of the key factors for improving their long-term stability. Stable silver-based nanoparticles, free of organic solvents, will have great potential for accelerating further environmental and nanotoxicity studies. PACS: 81.07.-b; 81.16.Be; 82.70.Dd. PMID:22356679

  6. Synthesis of Capped AIIBVI Nanoparticles for Fluorescent Biomarkers

    NASA Astrophysics Data System (ADS)

    Rudko, Galyna; Fediv, Volodymyr; Davydenko, Igor; Gule, Evgen; Olar, Olena; Kovalchuk, Andrii

    2016-02-01

    The conditions for growing CdS nanoparticles suitable for the visualization of biological tissues were theoretically studied and experimentally checked. The optimal ranges for pH values and precursors' concentrations were determined. The applicability of the mercaptoethanol-capped nanoparticles for in vitro luminescence visualization of several cellular forms in histological specimens of human placenta has been proven.

  7. Application of Silver and Silver Oxide Nanoparticles Impregnated on Activated Carbon to the Degradation of Bromate.

    PubMed

    Choi, J S; Lee, H; Park, Y K; Kim, S J; Kim, B J; An, K H; Kim, B H; Jung, S C

    2016-05-01

    Silver and silver oxide nanoparticles were impregnated on the surface of powdered activated carbon (PAC) using a single-step liquid phase plasma (LPP) method. Spherical silver and silver oxide nanoparticles of 20 to 100 nm size were dipersed evenly on the surface of PAC. The impregnated PAC exhibited a higher activity for the decomposition of bromate than bare PAC. The XPS, Raman and EDX analyses showed that the Ag/PAC composites synthesized by the LPP process. PMID:27483780

  8. Biologically inspired stealth peptide-capped gold nanoparticles.

    PubMed

    Nowinski, Ann K; White, Andrew D; Keefe, Andrew J; Jiang, Shaoyi

    2014-02-25

    Introduction into the human body makes most nanoparticle systems susceptible to aggregation via nonspecific protein binding. Here, we developed a peptide-capped gold nanoparticle platform that withstands aggregation in undiluted human serum at 37 °C for 24 h. This biocompatible and natural system is based on mimicking human proteins which are enriched in negatively charged glutamic acid and positively charged lysine residues on their surface. The multifunctional EKEKEKE-PPPPC-Am peptide sequence consists of a stealth glutamic acid/lysine portion combined with a surface anchoring linker containing four prolines and a cysteine. Particle stability was measured via optical spectroscopy and dynamic light scattering in single protein, high salt, and undiluted human serum solutions. In vitro cell experiments demonstrate EKEKEKE-PPPPC-Am capped gold nanoparticles effectively minimize nonspecific cell uptake by nonphagocytic bovine aortic endothelial cells and phagocytic murine macrophage RAW 264.7 cells. Cytotoxicity studies show that peptide-capped gold nanoparticles do not affect cell viability. Finally, the peptide EKEKEKE-PPPPC-Am was extended with cyclic RGD to demonstrate specific cell targeting and stealth without using poly(ethylene glycol). Adding the functional peptide via peptide sequence extension avoids complex conjugation chemistries that are used for connection to synthetic materials. Inductively coupled plasma mass spectroscopy results indicate high aortic bovine endothelial cell uptake of c[RGDfE(SGG-KEKEKE-PPPPC-Am)] capped gold nanoparticles and low uptake of the control scrambled sequence c[RDGfE(SGG-KEKEKE-PPPPC-Am)] capped gold nanoparticles.

  9. A comparative study of silver nanoparticles synthesized by arc discharge and femtosecond laser ablation in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqiang; Zou, Guisheng; Liu, Lei; Li, Yong; Tong, Hao; Sun, Zhenguo; Zhou, Y. Norman

    2016-10-01

    Silver nanoparticles have been synthesized by arc discharge and femtosecond laser ablation in polyvinylpyrrolidone (PVP) aqueous solution. Both methods are the simple, cost-effective and environment-friendly way to obtain the purity silver nanoparticles. In this study, the structure, composition, morphology, size and distribution, stability, production rate and sintering properties of silver nanoparticles synthesized by both methods were compared. The spherical or pseudo-spherical silver nanoparticles were synthesized by both methods, and the diameters were below 50 nm. The arc discharge-synthesized particle distribution varied with the breakdown voltage, and laser-synthesized particle size mainly depended on the laser energy. PVP solution could cap and stabilize the silver nanoparticles by Ag-O bond, while arc discharge and laser ablation resulted in some level of PVP degradation during processing. Sliver nanoparticle colloids synthesized by both methods had the high negative values of zeta potential and exhibited the good stability. The maximum production rates of the silver nanoparticles synthesized by arc discharge and femtosecond laser ablation were 6.0 and 3.0 mg/min, respectively. In addition, the sintering properties of silver nanoparticles synthesized by both methods were also discussed.

  10. Silver nanoparticle studded porous polyethylene scaffolds: bacteria struggle to grow on them while mammalian cells thrive.

    PubMed

    D'Britto, Virginia; Kapse, Harsha; Babrekar, Harshada; Prabhune, A A; Bhoraskar, S V; Premnath, V; Prasad, B L V

    2011-07-01

    Silver nanoparticle studded scaffolds were prepared by exploiting the Ag(+) ion reducing activity of sophorolipids--a class of 'glycolipids' that cap the ensuing nanoparticles as well. To achieve this, the porous polyethylene scaffolds are subjected to N(2) + H(2) plasma treatment, in the first step. Subsequently the sophorolipids are covalently attached to the amine groups on the polymer surface through simple amide chemistry to yield sophorolipid grafted polymer scaffolds. These are then exposed to Ag(+) ions under appropriate conditions leading to the formation of silver nanoparticles immobilized on the polymer scaffolds. It has been found that while bacteria do not survive on these silver studded scaffolds, CHO-K1 cells thrive on them making them good candidates for tissue engineering and bio-implant applications. PMID:21643585

  11. Multistate resistive switching in silver nanoparticle films

    NASA Astrophysics Data System (ADS)

    Sandouk, Eric J.; Gimzewski, James K.; Stieg, Adam Z.

    2015-08-01

    Resistive switching devices have garnered significant consideration for their potential use in nanoelectronics and non-volatile memory applications. Here we investigate the nonlinear current-voltage behavior and resistive switching properties of composite nanoparticle films comprising a large collective of metal-insulator-metal junctions. Silver nanoparticles prepared via the polyol process and coated with an insulating polymer layer of tetraethylene glycol were deposited onto silicon oxide substrates. Activation required a forming step achieved through application of a bias voltage. Once activated, the nanoparticle films exhibited controllable resistive switching between multiple discrete low resistance states that depended on operational parameters including the applied bias voltage, temperature and sweep frequency. The films’ resistance switching behavior is shown here to be the result of nanofilament formation due to formative electromigration effects. Because of their tunable and distinct resistance states, scalability and ease of fabrication, nanoparticle films have a potential place in memory technology as resistive random access memory cells.

  12. Reprotoxicity of gold, silver, and gold-silver alloy nanoparticles on mammalian gametes.

    PubMed

    Tiedemann, Daniela; Taylor, Ulrike; Rehbock, Christoph; Jakobi, Jurij; Klein, Sabine; Kues, Wilfried A; Barcikowski, Stephan; Rath, Detlef

    2014-03-01

    Metal and alloy nanoparticles are increasingly developed for biomedical applications, while a firm understanding of their biocompatibility is still missing. Various properties have been reported to influence the toxic potential of nanoparticles. This study aimed to assess the impact of nanoparticle size, surface ligands and chemical composition of gold, silver or gold-silver alloy nanoparticles on mammalian gametes. An in vitro assay for porcine gametes was developed, since these are delicate primary cells, for which well-established culture systems exist and functional parameters are defined. During coincubation with oocytes for 46 h neither any of the tested gold nanoparticles nor the gold-silver alloy particles with a silver molar fraction of up to 50% showed any impact on oocyte maturation. Alloy nanoparticles with 80% silver molar fraction and pure silver nanoparticles inhibited cumulus-oocyte maturation. Confocal microscopy revealed a selective uptake of gold nanoparticles by oocytes, while silver and alloy particles mainly accumulated in the cumulus cell layer surrounding the oocyte. Interestingly sperm vitality parameters (motility, membrane integrity and morphology) were not affected by any of the tested nanoparticles. Only sporadic association of nanoparticles with the sperm plasma membrane was found by transmission electron microscopy. In conclusion, mammalian oocytes were sensitive to silver containing nanoparticles. Likely, the delicate process of completing meiosis in maternal gametes features high vulnerability towards nanomaterial derived toxicity. The results imply that released Ag(+)-ions are responsible for the observed toxicity, but the compounding into an alloy seemed to alleviate the toxic effects to a certain extent.

  13. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems.

  14. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems. PMID:25521618

  15. Antibacterial and catalytic activities of green synthesized silver nanoparticles.

    PubMed

    Bindhu, M R; Umadevi, M

    2015-01-25

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste. PMID:25093965

  16. Antibacterial and catalytic activities of green synthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2015-01-01

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste.

  17. Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen's reagent

    NASA Astrophysics Data System (ADS)

    Zienkiewicz-Strzałka, M.; Pasieczna-Patkowska, S.; Kozak, M.; Pikus, S.

    2013-02-01

    Noble metal nanostructures supported on mesoporous silica are bridge between traditional silica adsorbents and modern catalysts. In this work the Ag/SBA-15 mesoporous materials were synthesized and characterized. Various forms of nanosilver supported on ordered mesoporous template have been successfully obtained via proposed procedures. In all synthesized materials, Tollen's reagent (diammine silver complex [Ag(NH3)2]+) was used as a silver source. Silver nanoparticles were prepared by reduction of ammoniacal silver complex by formaldehyde in the solution of stabilizer. After reduction, Ag nanoparticles could be deposited on SBA-15, or added during traditional synthesis of SBA-15 giving silver or silver chloride nanoparticles in the combination with porous silica. Silver nanostructures as nanoparticles or nanowires were also embedded onto the SBA-15 by incipient wetness impregnation of silver ions. Absorbed silver ions were next reduced under hydrogen at high temperature. There are many advantages of utilized ammoniacal silver complex as a silver source. Proposed method is capable to synthesis of various metal nanostructures with controlled composition and morphology. The silver ammonia complex is composed of two ions surrounding and protecting the central silver ion, so it is possible to obtain very small nanoparticles using simple approach without any functionalization of external and internal surface of SBA-15. This approach allows obtaining greatly small silver nanoparticles on SBA-15 (4 nm) or nanowires depending on the metal loading amount. Moreover, the colloidal silver solution prepared from Tollen's reagent, in the presence of triblock copolymer, remains stable for a long time. Reduction of Tollen's reagent to silver colloidal solution seems to be efficient, fast and interesting approach for the preparation of supported silver nanostructures Obtained samples were characterized by powder X-ray diffraction, small angle X-ray scattering (SAXS), UV

  18. The cytotoxicity of NiO nanoparticle with borate capping.

    PubMed

    Liu, Zunjing; Wang, Yongjing; Pan, Danmei; Chen, Zhi; Pan, Xiaohong; Wang, Yonghao; Lin, Zhang

    2011-11-01

    The impact of surface capping on cytotoxicity of NiO nanoparticle was investigated with Escherichia coil (E.coli) in this work. The NiO nanoparticle and NiO nanoparticle capped by borate (denoted as NiO-borate) were synthesized by hydrothermal method. The average size of both nanoparticles is about 4.0 nm. The plate experiments demonstrated that NiO-borate nanoparticles show lower cytotoxicity than NiO nanopaticles. Further spectrophotometric analysis revealed that the concentration of both extracellular and intercellular Ni2+ in NiO-borate system were lower than that of uncapped one. Intracellular ICP-AES analysis also showed the concentration of Ni element was higher than Ni2+, suggesting the NiO nanoparticles might penetrate into the cellular interior. Comprehensive AFM, SEM and TEM observation illustrated both NiO-borate and NiO nanoparticles lead to the collapse of cellular body, the convex on the cell wall and the damage of cell wall ultimately. In summary, the surface capping with borate on NiO nanopaticles will suppress the release of the Ni2+ ions and impede the contact between the NiO nanoparticle and cell wall, which ultimately decreased the cytotoxicity of NiO nanoparticles.

  19. Silver nanoparticle studded porous polyethylene scaffolds: bacteria struggle to grow on them while mammalian cells thrive

    NASA Astrophysics Data System (ADS)

    D'Britto, Virginia; Kapse, Harsha; Babrekar, Harshada; Prabhune, A. A.; Bhoraskar, S. V.; Premnath, V.; Prasad, B. L. V.

    2011-07-01

    Silver nanoparticle studded scaffolds were prepared by exploiting the Ag+ ion reducing activity of sophorolipids--a class of `glycolipids' that cap the ensuing nanoparticles as well. To achieve this, the porous polyethylene scaffolds are subjected to N2 + H2 plasma treatment, in the first step. Subsequently the sophorolipids are covalently attached to the amine groups on the polymer surface through simple amide chemistry to yield sophorolipid grafted polymer scaffolds. These are then exposed to Ag+ ions under appropriate conditions leading to the formation of silver nanoparticles immobilized on the polymer scaffolds. It has been found that while bacteria do not survive on these silver studded scaffolds, CHO-K1 cells thrive on them making them good candidates for tissue engineering and bio-implant applications.Silver nanoparticle studded scaffolds were prepared by exploiting the Ag+ ion reducing activity of sophorolipids--a class of `glycolipids' that cap the ensuing nanoparticles as well. To achieve this, the porous polyethylene scaffolds are subjected to N2 + H2 plasma treatment, in the first step. Subsequently the sophorolipids are covalently attached to the amine groups on the polymer surface through simple amide chemistry to yield sophorolipid grafted polymer scaffolds. These are then exposed to Ag+ ions under appropriate conditions leading to the formation of silver nanoparticles immobilized on the polymer scaffolds. It has been found that while bacteria do not survive on these silver studded scaffolds, CHO-K1 cells thrive on them making them good candidates for tissue engineering and bio-implant applications. Electronic supplementary information (ESI) available: See DOI: 10.1039/c1nr10152d

  20. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: A novel green approach.

    PubMed

    Ahmad, Aftab; Wei, Yun; Syed, Fatima; Khan, Shafiullah; Khan, Gul Majid; Tahir, Kamran; Khan, Arif Ullah; Raza, Muslim; Khan, Faheem Ullah; Yuan, Qiping

    2016-08-01

    After malaria, Leishmaniasis is the most prevalent infectious disease in terms of fatality and geographical distribution. The availability of a limited number of antileishmanial agents, emerging resistance to the available drugs, and the high cost of treatment complicate the treatment of leishmaniasis. To overcome these issues, critical research for new therapeutic agents with enhanced antileishmanial potential and low treatment cost is needed. In this contribution, we developed a green protocol to prepare biogenic silver nanoparticles (AgNPs) and amphotericin B-bound biogenic silver nanoparticles (AmB-AgNPs). Phytochemicals from the aqueous extract of Isatis tinctoria were used as reducing and capping agents to prepare silver nanoparticles. Amphotericin B was successfully adsorbed on the surface of biogenic silver nanoparticles. The prepared nanoparticles were characterized by various analytical techniques. UV-Visible spectroscopy was employed to detect the characteristic localized surface plasmon resonance peaks (LSPR) for the prepared nanoparticles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) studies revealed the formation of spherical silver nanoparticles with an average particle size of 10-20nm. The cubic crystalline structure of the prepared nanoparticles was confirmed by X-ray diffraction (XRD) study. FTIR spectroscopic analysis revealed that plant polyphenolic compounds are mainly involved in metal reduction and capping. Under visible light irradiation, biogenic silver nanoparticles exhibited significant activity against Leishmania tropica with an IC50 value of 4.2μg/mL. The leishmanicidal activity of these nanoparticles was considerably enhanced by conjugation with amphotericin B (IC50=2.43μg/mL). In conclusion, the findings of this study reveal that adsorption of amphotericin B, an antileishmanial drug, to biogenic silver nanoparticles, could be a safe, more effective and economic alternative to the available

  1. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: A novel green approach.

    PubMed

    Ahmad, Aftab; Wei, Yun; Syed, Fatima; Khan, Shafiullah; Khan, Gul Majid; Tahir, Kamran; Khan, Arif Ullah; Raza, Muslim; Khan, Faheem Ullah; Yuan, Qiping

    2016-08-01

    After malaria, Leishmaniasis is the most prevalent infectious disease in terms of fatality and geographical distribution. The availability of a limited number of antileishmanial agents, emerging resistance to the available drugs, and the high cost of treatment complicate the treatment of leishmaniasis. To overcome these issues, critical research for new therapeutic agents with enhanced antileishmanial potential and low treatment cost is needed. In this contribution, we developed a green protocol to prepare biogenic silver nanoparticles (AgNPs) and amphotericin B-bound biogenic silver nanoparticles (AmB-AgNPs). Phytochemicals from the aqueous extract of Isatis tinctoria were used as reducing and capping agents to prepare silver nanoparticles. Amphotericin B was successfully adsorbed on the surface of biogenic silver nanoparticles. The prepared nanoparticles were characterized by various analytical techniques. UV-Visible spectroscopy was employed to detect the characteristic localized surface plasmon resonance peaks (LSPR) for the prepared nanoparticles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) studies revealed the formation of spherical silver nanoparticles with an average particle size of 10-20nm. The cubic crystalline structure of the prepared nanoparticles was confirmed by X-ray diffraction (XRD) study. FTIR spectroscopic analysis revealed that plant polyphenolic compounds are mainly involved in metal reduction and capping. Under visible light irradiation, biogenic silver nanoparticles exhibited significant activity against Leishmania tropica with an IC50 value of 4.2μg/mL. The leishmanicidal activity of these nanoparticles was considerably enhanced by conjugation with amphotericin B (IC50=2.43μg/mL). In conclusion, the findings of this study reveal that adsorption of amphotericin B, an antileishmanial drug, to biogenic silver nanoparticles, could be a safe, more effective and economic alternative to the available

  2. Aquatic Toxicity Comparison of Silver Nanoparticles and Silver Nanowires.

    PubMed

    Sohn, Eun Kyung; Johari, Seyed Ali; Kim, Tae Gyu; Kim, Jin Kwon; Kim, Ellen; Lee, Ji Hyun; Chung, Young Shin; Yu, Il Je

    2015-01-01

    To better understand the potential ecotoxicological impact of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) released into freshwater environments, the toxicities of these nanomaterials were assessed and compared using Organization for Economic Cooperation and Development (OECD) test guidelines, including a "Daphnia sp., acute immobilization test," "Fish, acute toxicity test," and "freshwater alga and cyanobacteria, growth inhibition test." Based on the estimated median lethal/effective concentrations of AgNPs and AgNWs, the susceptibility to the nanomaterials was different among test organisms (daphnia > algae > fish), suggesting that the AgNPs are classified as "category acute 1" for Daphnia magna, "category acute 2" for Oryzias latipes, and "category acute 1" for Raphidocelis subcapitata, while the AgNWs are classified as "category acute 1" for Daphnia magna, "category acute 2" for Oryzias latipes, and "category acute 2" for Raphidocelis subcapitata, according to the GHS (Globally Harmonized System of Classification and Labelling of Chemicals). In conclusion, the present results suggest that more attention should be paid to prevent the accidental or intentional release of silver nanomaterials into freshwater aquatic environments. PMID:26125025

  3. Aquatic Toxicity Comparison of Silver Nanoparticles and Silver Nanowires

    PubMed Central

    Kim, Tae Gyu; Kim, Jin Kwon; Kim, Ellen; Lee, Ji Hyun; Chung, Young Shin

    2015-01-01

    To better understand the potential ecotoxicological impact of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) released into freshwater environments, the toxicities of these nanomaterials were assessed and compared using Organization for Economic Cooperation and Development (OECD) test guidelines, including a “Daphnia sp., acute immobilization test,” “Fish, acute toxicity test,” and “freshwater alga and cyanobacteria, growth inhibition test.” Based on the estimated median lethal/effective concentrations of AgNPs and AgNWs, the susceptibility to the nanomaterials was different among test organisms (daphnia > algae > fish), suggesting that the AgNPs are classified as “category acute 1” for Daphnia magna, “category acute 2” for Oryzias latipes, and “category acute 1” for Raphidocelis subcapitata, while the AgNWs are classified as “category acute 1” for Daphnia magna, “category acute 2” for Oryzias latipes, and “category acute 2” for Raphidocelis subcapitata, according to the GHS (Globally Harmonized System of Classification and Labelling of Chemicals). In conclusion, the present results suggest that more attention should be paid to prevent the accidental or intentional release of silver nanomaterials into freshwater aquatic environments. PMID:26125025

  4. Antibacterial activity of biogenic silver nanoparticles synthesized with gum ghatti and gum olibanum: a comparative study.

    PubMed

    Kora, Aruna Jyothi; Sashidhar, Rao Beedu

    2015-02-01

    Presently, silver nanoparticles produced by biological methods have received considerable significance owing to the natural abundance of renewable, cost-effective and biodegradable materials, thus implementing the green chemistry principles. Compared with the nanoparticles synthesized using chemical methods, most biogenic silver nanoparticles are protein capped, which imparts stability and biocompatibility, and enhanced antibacterial activity. In this study, we compared the antibacterial effect of two biogenic silver nanoparticles produced with natural plant gums: gum ghatti and gum olibanum against Gram-negative and Gram-positive bacteria. Bacterial interaction with nanoparticles was probed both in planktonic and biofilm modes of growth; employing solid agar and liquid broth assays for inhibition zone, antibiofilm activity, inhibition of growth kinetics, leakage of intracellular contents, membrane permeabilization and reactive oxygen species production. In addition, cytotoxicity of the biogenic nanoparticles was evaluated in HeLa cells, a human carcinoma cell line. Antibacterial activity and cytotoxicity of the silver nanoparticles synthesized with gum ghatti (Ag NP-GT) was greater than that produced with gum olibanum (Ag NP-OB). This could be attributed to the smaller size (5.7 nm), monodispersity and zeta potential of the Ag NP-GT. The study suggests that Ag NP-GT can be employed as a cytotoxic bactericidal agent, whereas Ag NP-OB (7.5 nm) as a biocompatible bactericidal agent. PMID:25138141

  5. Synthesis and characterization of silver nanoparticles in AOT microemulsion system

    NASA Astrophysics Data System (ADS)

    Zhang, Wanzhong; Qiao, Xueliang; Chen, Jianguo

    2006-11-01

    Colloidal silver nanoparticles have been synthesized in water-in-oil microemulsion using silver nitrate solubilized in the water core of one microemulsion as source of silver ions, hydrazine hydrate solubilized in the water core of another microemulsion as reducing agent, dodecane as the oil phase, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant. The UV-vis absorption spectra and transmission electron microscopy (TEM) have been used to trace the growth process and elucidate the structure of the silver nanoparticles. UV-vis spectra show that the Ag4+ intermediates formed at early stages of the reaction and then the clusters grow or aggregate to larger nanoparticles. TEM micrographs confirm that the silver nanoparticles are all spherical. The resulting particles have a very narrow size distribution. Meanwhile, the diameter size of the particles is so small that the smallest mean diameter is only 1.6 nm. IR results show that the surfactant molecules are strongly adsorbed on the surface of silver particles through a coordination bond between the silver atom and the sulfonic group of AOT molecules, which endows the particles with a good stability in oil solvents. As dodecane is used as oil solvent to prepare silver nanoparticles, the formed nano-silver sol is almost nontoxic. As a result, the silver nanoparticles need not be separated from the reaction solution and the silver sol may be directly used in antibacterial fields.

  6. Antimicrobial efficacy and ocular cell toxicity from silver nanoparticles

    PubMed Central

    Santoro, Colleen M.; Duchsherer, Nicole L.

    2009-01-01

    Silver in various forms has long been recognized for antimicrobial properties, both in biomedical devices and in eyes. However, soluble drugs used on the ocular surface are rapidly cleared through tear ducts and eventually ingested, resulting in decreased efficacy of the drug on its target tissue and potential concern for systemic side effects. Silver nanoparticles were studied as a source of anti-microbial silver for possible controlled-release contact lens controlled delivery formulations. Silver ion release over a period of several weeks from nanoparticle sources of various sizes and doses in vitro was evaluated in vitro against Pseudomonas aeruginosa strain PA01. Mammalian cell viability and cytokine expression in response to silver nanoparticle exposure is evaluated using corneal epithelial cells and eye-associated macrophages cultured in vitro in serum-free media. Minimal microcidal and cell toxic effects were observed for several silver nanoparticle suspensions and aqueous extraction times for bulk total silver concentrations commensurate with comparative silver ion (e.g., Ag+(aq)) toxicity. This indicates that (1) silver particles themselves are not microcidal under conditions tested, and (2) insufficient silver ion is generated from these particles at these loadings to produce observable biological effects in these in vitro assays. If dosing allows substantially increased silver particle loading in the lens, the bactericidal efficacy of silver nanoparticles in vitro is one possible approach to limiting bacterial colonization problems associated with extended-wear contact lenses. PMID:19865601

  7. Degradation of Methylene Blue Using Biologically Synthesized Silver Nanoparticles

    PubMed Central

    Vanaja, M.; Paulkumar, K.; Baburaja, M.; Rajeshkumar, S.; Gnanajobitha, G.; Malarkodi, C.; Sivakavinesan, M.; Annadurai, G.

    2014-01-01

    Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time. PMID:24772055

  8. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp

    PubMed Central

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T.; Soniya, E.V.; Mathew, Jyothis; Radhakrishnan, E.K.

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm – 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus. PMID:25763025

  9. Effects of Surface Coating on Physical Properties of Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tariq, M.; Hasnain, S. M.

    2015-08-01

    Polymer-coated nanoparticles improve the stability of materials against aggregation and enhance the physical properties, thus making it possible to use different applications in vast fields of science. In this work, silver nanoparticles were synthesized by a chemical reduction method and were further coated with the polymers polyvinyl alcohol (PVA) and polystyrene (PS). The influence of the polymer coating on the optical and electrical properties of the silver nanoparticles were investigated and compared with that of as-prepared silver nanoparticles. The nature of the prepared silver nanoparticles in the face-centered cubic structure is confirmed by peaks in the x-ray diffraction pattern. The temperature dependence of resistivity of the silver nanoparticles exhibit semiconducting behavior in the temperature range 100-300 K.

  10. Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract

    NASA Astrophysics Data System (ADS)

    Zia, Faria; Ghafoor, Nida; Iqbal, Mudassir; Mehboob, Saliha

    2016-01-01

    The green synthesis of nanoparticles has emerged as a cost-effective and environmentally benign technique. The present study describes the synthesis of silver nanoparticles (Ag-NPs) using a seed extract of Cydonia oblonga. The conditions were optimized by adjusting pH, temperature, time and amount of seed extract. The nanoparticles produced were characterized by different techniques, namely UV-visible spectroscopy, Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy. The formation of Ag-NPs was confirmed by UV-visible spectroscopic analysis. FTIR analysis was performed to identify the biomolecules, which played a key role in the reduction of Ag+ ions. XRD confirmed that the silver nanoparticles possessed face-centered cubic structure. The green chemistry approach has proven that Ag-NPs can be synthesized by using plant extract in which biomolecules effectively act as capping and reducing agent.

  11. Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract

    NASA Astrophysics Data System (ADS)

    Zia, Faria; Ghafoor, Nida; Iqbal, Mudassir; Mehboob, Saliha

    2016-10-01

    The green synthesis of nanoparticles has emerged as a cost-effective and environmentally benign technique. The present study describes the synthesis of silver nanoparticles (Ag-NPs) using a seed extract of Cydonia oblonga. The conditions were optimized by adjusting pH, temperature, time and amount of seed extract. The nanoparticles produced were characterized by different techniques, namely UV-visible spectroscopy, Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy. The formation of Ag-NPs was confirmed by UV-visible spectroscopic analysis. FTIR analysis was performed to identify the biomolecules, which played a key role in the reduction of Ag+ ions. XRD confirmed that the silver nanoparticles possessed face-centered cubic structure. The green chemistry approach has proven that Ag-NPs can be synthesized by using plant extract in which biomolecules effectively act as capping and reducing agent.

  12. Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species

    NASA Astrophysics Data System (ADS)

    El-Rafie, Hanaa Mohamed; Abdel-Aziz Hamed, Manal

    2014-09-01

    The environmentally friendly synthesis of nanoparticles process is a revolutionary step in the field of nanotechnology. In recent years plant mediated biological synthesis of nanoparticles has been gaining importance due to its simplicity and eco-friendliness. In this study, a simple and an efficient eco-friendly approach for the biosynthesis of stable, monodisperse silver nanoparticles using aqueous extracts of four Terminalia species, namely, Terminalia catappa, Terminalia mellueri, Terminalia bentazoe and Terminalia bellerica were described. The silver nanoparticles were characterized in terms of synthesis, capping functionalities (polysaccharides, phenolics and flavonoidal compounds) and microscopic evaluation by UV-visible spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. The results showed a simple and feasible approach for obtaining stable aqueous monodispersive silver nanoparticles. Furthermore, biological activity of the biosynthesized silver nanoparticles was examined. Concerning this, dose-dependent antioxidant activity of silver nanoparticles imparted by the plant phenolic and flavonoidal components was evaluated using in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and found to be comparable to standard ascorbic acid. The same holds true for the anti-inflammatory activity where Terminalia catappa and Terminalia mellueri have a high-test inhibition percentage better than that of ascorbic acid in the carrageenan induced hind paw edema. The results also revealed that the aqueous extract of Terminallia catapa and its silver nanoparticles recorded the most potent in vivo antioxidant effect.

  13. Structural characterisation of alkyl amine-capped zinc sulphide nanoparticles

    PubMed Central

    Kremser, Gabriele; Rath, Thomas; Kunert, Birgit; Edler, Michael; Fritz-Popovski, Gerhard; Resel, Roland; Letofsky-Papst, Ilse; Grogger, Werner; Trimmel, Gregor

    2012-01-01

    Nanoparticles capped with amine ligands with different steric properties, dodecylamine and oleylamine, respectively, are investigated in the solid state as well as in solution. A combined X-ray diffraction, small angle X-ray scattering and electron microscopy investigation showed that the nanoparticles exhibit the sphalerite modification of ZnS as crystal phase with a diameter of 3–5 nm. A close packing of the monocrystalline nanoparticles in the solid state is observed. However, in the dodecylamine sample, besides spherical particles, a fraction of the nanoparticles is elongated. The nanoparticles are readily resoluble in apolar solvents like hexane. Dynamic light scattering (DLS) and SAXS investigations of the solutions reveal that the nanoparticles are dissolved as singular particles. In the case of oleylamine-capped ZnS, a defined core–shell structure with a ZnS core with a diameter of 4 nm and an organic shell with a thickness of approximately 2 nm have been found. Dodecylamine-capped nanoparticles slightly tend to form agglomerates with a diameter of approximately 40 nm. PMID:22239986

  14. Structural characterisation of alkyl amine-capped zinc sulphide nanoparticles.

    PubMed

    Kremser, Gabriele; Rath, Thomas; Kunert, Birgit; Edler, Michael; Fritz-Popovski, Gerhard; Resel, Roland; Letofsky-Papst, Ilse; Grogger, Werner; Trimmel, Gregor

    2012-03-01

    Nanoparticles capped with amine ligands with different steric properties, dodecylamine and oleylamine, respectively, are investigated in the solid state as well as in solution. A combined X-ray diffraction, small angle X-ray scattering and electron microscopy investigation showed that the nanoparticles exhibit the sphalerite modification of ZnS as crystal phase with a diameter of 3-5 nm. A close packing of the monocrystalline nanoparticles in the solid state is observed. However, in the dodecylamine sample, besides spherical particles, a fraction of the nanoparticles is elongated. The nanoparticles are readily resoluble in apolar solvents like hexane. Dynamic light scattering (DLS) and SAXS investigations of the solutions reveal that the nanoparticles are dissolved as singular particles. In the case of oleylamine-capped ZnS, a defined core-shell structure with a ZnS core with a diameter of 4 nm and an organic shell with a thickness of approximately 2 nm have been found. Dodecylamine-capped nanoparticles slightly tend to form agglomerates with a diameter of approximately 40 nm. PMID:22239986

  15. Impact of Environmental Conditions (pH, Ionic Strength, And Electrolyte Type) On The Surface Charge And Aggregation Of Silver Nanoparticles Suspensions

    EPA Science Inventory

    The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...

  16. Transformation of Silver Nanoparticles in Fresh, Aged, and Incinerated Biosolids

    EPA Science Inventory

    Abstract The purpose of this research was to assess the chemical transformation of silver nanoparticles (AgNPs) in aged, fresh, and incinerated biosolids in order to provide information for AgNP life cycle analyses. Silver nanoparticles were introduced to the influent of a pilot...

  17. Production of silver nanoparticles by laser ablation in open air

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; del Val, J.; Pou, J.

    2015-05-01

    Silver nanoparticles have attracted much attention as a subject of investigation due to their well-known properties, such as good conductivity, antibacterial and catalytic effects, etc. They are used in many different areas, such as medicine, industrial applications, scientific investigation, etc. There are different techniques for producing Ag nanoparticles, chemical, electrochemical, sonochemical, etc. These methods often lead to impurities together with nanoparticles or colloidal solutions. In this work, laser ablation of solids in open air conditions (LASOA) is used to produce silver nanoparticles and collect them on glass substrates. Production and deposition of silver nanoparticles are integrated in the same step to reduce the process. The obtained particles are analysed and the nanoparticles formation mechanism is discussed. The obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV/VIS absorption spectroscopy. The obtained nanoparticles consisted of Ag nanoparticles showing rounded shape with diameters ranging from few to 50 nm

  18. Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control.

    PubMed

    Lambadi, Paramesh Ramulu; Sharma, Tarun Kumar; Kumar, Piyush; Vasnani, Priyanka; Thalluri, Sitaramanjaneya Mouli; Bisht, Neha; Pathania, Ranjana; Navani, Naveen Kumar

    2015-01-01

    Infectious diseases cause a huge burden on healthcare systems worldwide. Pathogenic bacteria establish infection by developing antibiotic resistance and modulating the host's immune system, whereas opportunistic pathogens like Pseudomonas aeruginosa adapt to adverse conditions owing to their ability to form biofilms. In the present study, silver nanoparticles were biofunctionalized with polymyxin B, an antibacterial peptide using a facile method. The biofunctionalized nanoparticles (polymyxin B-capped silver nanoparticles, PBSNPs) were assessed for antibacterial activity against multiple drug-resistant clinical strain Vibrio fluvialis and nosocomial pathogen P. aeruginosa. The results of antibacterial assay revealed that PBSNPs had an approximately 3-fold higher effect than the citrate-capped nanoparticles (CSNPs). Morphological damage to the cell membrane was followed by scanning electron microscopy, testifying PBSNPs to be more potent in controlling the bacterial growth as compared with CSNPs. The bactericidal effect of PBSNPs was further confirmed by Live/Dead staining assays. Apart from the antibacterial activity, the biofunctionalized nanoparticles were found to resist biofilm formation. Electroplating of PBSNPs onto stainless steel surgical blades retained the antibacterial activity against P. aeruginosa. Further, the affinity of polymyxin for endotoxin was exploited for its removal using PBSNPs. It was found that the prepared nanoparticles removed 97% of the endotoxin from the solution. Such multifarious uses of metal nanoparticles are an attractive means of enhancing the potency of antimicrobial agents to control infections.

  19. Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control

    PubMed Central

    Lambadi, Paramesh Ramulu; Sharma, Tarun Kumar; Kumar, Piyush; Vasnani, Priyanka; Thalluri, Sitaramanjaneya Mouli; Bisht, Neha; Pathania, Ranjana; Navani, Naveen Kumar

    2015-01-01

    Infectious diseases cause a huge burden on healthcare systems worldwide. Pathogenic bacteria establish infection by developing antibiotic resistance and modulating the host’s immune system, whereas opportunistic pathogens like Pseudomonas aeruginosa adapt to adverse conditions owing to their ability to form biofilms. In the present study, silver nanoparticles were biofunctionalized with polymyxin B, an antibacterial peptide using a facile method. The biofunctionalized nanoparticles (polymyxin B-capped silver nanoparticles, PBSNPs) were assessed for antibacterial activity against multiple drug-resistant clinical strain Vibrio fluvialis and nosocomial pathogen P. aeruginosa. The results of antibacterial assay revealed that PBSNPs had an approximately 3-fold higher effect than the citrate-capped nanoparticles (CSNPs). Morphological damage to the cell membrane was followed by scanning electron microscopy, testifying PBSNPs to be more potent in controlling the bacterial growth as compared with CSNPs. The bactericidal effect of PBSNPs was further confirmed by Live/Dead staining assays. Apart from the antibacterial activity, the biofunctionalized nanoparticles were found to resist biofilm formation. Electroplating of PBSNPs onto stainless steel surgical blades retained the antibacterial activity against P. aeruginosa. Further, the affinity of polymyxin for endotoxin was exploited for its removal using PBSNPs. It was found that the prepared nanoparticles removed 97% of the endotoxin from the solution. Such multifarious uses of metal nanoparticles are an attractive means of enhancing the potency of antimicrobial agents to control infections. PMID:25834431

  20. Polyhexamethylene biguanide functionalized cationic silver nanoparticles for enhanced antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ashraf, Sumaira; Akhtar, Nasrin; Ghauri, Muhammad Afzal; Rajoka, Muhammad Ibrahim; Khalid, Zafar M.; Hussain, Irshad

    2012-05-01

    Polyhexamethylene biguanide (PHMB), a broad spectrum disinfectant against many pathogens, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles. The particles formed were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering, electrophoretic mobility, and TEM to measure their morphology and surface chemistry. PHMB-functionalized silver nanoparticles were then evaluated for their antimicrobial activity against a gram-negative bacterial strain, Escherichia coli. These silver nanoparticles were found to have about 100 times higher bacteriostatic and bactericidal activities, compared to the previous reports, due to the combined antibacterial effect of silver nanoparticles and PHMB. In addition to other applications, PHMB-functionalized silver nanoparticles would be extremely useful in textile industry due to the strong interaction of PHMB with cellulose fabrics.

  1. Sonochemical Synthesis of Silver Nanoparticles Using Starch: A Comparison

    PubMed Central

    Smita, Kumari; Cumbal, Luis; Debut, Alexis; Pathak, Ravinandan Nath

    2014-01-01

    A novel approach was applied to synthesize silver nanoparticles using starch under sonication. Colloidal silver nanoparticles solution exhibited an increase of absorption from 420 to 440 nm with increase starch quantity. Transmission electron microscopy followed by selected area electron diffraction pattern analysis indicated the formation of spherical, polydispersed, amorphous, silver nanoparticles of diameter ranging from 23 to 97 nm with mean particle size of 45.6 nm. Selected area electron diffraction (SAED) confirmed partial crystalline and amorphous nature of silver nanoparticles. Silver nanoparticles synthesized in this manner can be used for synthesis of 2-aryl substituted benzimidazoles which have numerous biomedical applications. The optimized reaction conditions include 10 ml of 1 mM AgNO3, 25 mg starch, 11 pH range, and sonication for 20 min at room temperature. PMID:24587771

  2. Remobilisation of silver and silver sulphide nanoparticles in soils.

    PubMed

    Navarro, Divina A; Kirby, Jason K; McLaughlin, Mike J; Waddington, Lynne; Kookana, Rai S

    2014-10-01

    Manufactured nanoparticles (NPs) present in consumer products could enter soils through re-use of biosolids. Among these NPs are those based on silver (Ag), which are found sulphidised (e.g. silver sulphide, Ag2S) in biosolids. Herein, our aim was to examine the release of retained Ag(0) and Ag2S NPs in soils and biosolids as facilitated by environmentally and agriculturally relevant ligands. Under natural soil conditions, exemplified by potassium nitrate and humic acid experiments, release of Ag retained in soil was limited. The highest total Ag release was facilitated by ligands that simulated root exudates (citrate) or fertilisers (thiosulphate). Released Ag was predominantly present in the colloidal phase (>3 kDa-< 0.45 μm); intact NPs only identified in Ag2S-NP extracts. For biosolids containing nanoparticulate-Ag-S, release was also enhanced by thiosulphate, though mostly as colloidal-Ag - not intact NPs. These results suggest that exposure to NPs as a result of its release from soils or biosolids will be low. PMID:25014017

  3. Remobilisation of silver and silver sulphide nanoparticles in soils.

    PubMed

    Navarro, Divina A; Kirby, Jason K; McLaughlin, Mike J; Waddington, Lynne; Kookana, Rai S

    2014-10-01

    Manufactured nanoparticles (NPs) present in consumer products could enter soils through re-use of biosolids. Among these NPs are those based on silver (Ag), which are found sulphidised (e.g. silver sulphide, Ag2S) in biosolids. Herein, our aim was to examine the release of retained Ag(0) and Ag2S NPs in soils and biosolids as facilitated by environmentally and agriculturally relevant ligands. Under natural soil conditions, exemplified by potassium nitrate and humic acid experiments, release of Ag retained in soil was limited. The highest total Ag release was facilitated by ligands that simulated root exudates (citrate) or fertilisers (thiosulphate). Released Ag was predominantly present in the colloidal phase (>3 kDa-< 0.45 μm); intact NPs only identified in Ag2S-NP extracts. For biosolids containing nanoparticulate-Ag-S, release was also enhanced by thiosulphate, though mostly as colloidal-Ag - not intact NPs. These results suggest that exposure to NPs as a result of its release from soils or biosolids will be low.

  4. Silver and gold nanoparticles for sensor and antibacterial applications

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2014-07-01

    Green biogenic method for the synthesis of gold and silver nanoparticles using Solanum lycopersicums extract as reducing agent was studied. The biomolecules present in the extract was responsible for reduction of Au3+ and Ag+ ions from HAuCl4 and AgNO3 respectively. The prepared nanoparticles were characterized by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) technique to identify the size, shape of nanoparticles and biomolecules act as reducing agents. UV-visible spectra show the surface plasmon resonance peak at 546 nm and 445 nm corresponding to gold and silver nanoparticles respectively. Crystalline nature of the nanoparticles was evident from TEM images and XRD analysis. TEM images showed average size of 14 nm and 12 nm for prepared gold and silver nanoparticles respectively. FTIR analysis provides the presence of biomolecules responsible for the reduction and stability of the prepared silver and gold nanoparticles. XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. The prepared gold and silver nanoparticles show good sensing and antimicrobial activity.

  5. Silver and gold nanoparticles for sensor and antibacterial applications.

    PubMed

    Bindhu, M R; Umadevi, M

    2014-07-15

    Green biogenic method for the synthesis of gold and silver nanoparticles using Solanum lycopersicums extract as reducing agent was studied. The biomolecules present in the extract was responsible for reduction of Au(3+) and Ag(+) ions from HAuCl4 and AgNO3 respectively. The prepared nanoparticles were characterized by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) technique to identify the size, shape of nanoparticles and biomolecules act as reducing agents. UV-visible spectra show the surface plasmon resonance peak at 546 nm and 445 nm corresponding to gold and silver nanoparticles respectively. Crystalline nature of the nanoparticles was evident from TEM images and XRD analysis. TEM images showed average size of 14 nm and 12 nm for prepared gold and silver nanoparticles respectively. FTIR analysis provides the presence of biomolecules responsible for the reduction and stability of the prepared silver and gold nanoparticles. XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. The prepared gold and silver nanoparticles show good sensing and antimicrobial activity. PMID:24657466

  6. Optimization and antioxidant properties of phytosynthesized silver nanoparticles using Dianthus caryophyllus L. (carnation)

    NASA Astrophysics Data System (ADS)

    Rachna, Saharan, Baljeet Singh; Yadav, M. S.; Sharma, Nisha

    2016-05-01

    In the recent years, silver nanoparticles have been the focus of Nanobiotechnology due to their unique interdisciplinary applications in the field of biomedicals, material diagnostics, optics and chemistry. A wide set of physical and chemical methods have been devised for providing the effective and efficient synthesis procedure of silver nanoparticles (AgNPs) but are somehow expensive and involve toxic substances. There is a critical need to develop reliable and eco-friendly process for synthesizing silver nanoparticles. In the present investigation, a simple and cost-effective green approach has been utilized for the production of stable silver nanoparticles by employing Dianthus caryophyllus flower extract. Different optimization conditions were checked for extract capped AgNPs and characterized by UV-Visible spectrophotometer. The optimum 0.02 dilution of extract found efficient to reduce 4 mM silver ions in the ratio 60:40 at pH 9. The antioxidant potential of the resultant AgNPs was observed using Hydrogen peroxide assay. There was an increasing trend of antioxidant property with increasing concentration. This potential of these photosynthesized AgNPs makes them reliable for good cause of society, mainly in therapeutic and biomedical applications.

  7. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method

    SciTech Connect

    Lin, Jian-Yang; Hsueh, Yu-Lee; Huang, Jung-Jie

    2014-06-01

    Silver nanowires were synthesized by the polyol method employing ethylene glycol, Poly(N-vinylpyrrolidone) (PVP) and silver nitrate (AgNO{sub 3}) as the precursors. Most of the studies used metal salts (PtCl{sub 2}, NaCl) as seed precursor to synthesize the silver nanowires. In the study, the metal salts were not used and the concentration of capping agent was changed to observe the aspect ratio of silver nanowires. The experimental results showed that controlling synthesis temperature, Poly(N-vinylpyrrolidone) (PVP) molecular weight, reactant concentrations, and addition rates of AgNO{sub 3} affects the growth characteristics of silver nanowires. Field-emission scanning electron microscopy, UV–vis spectrophotometry, and X-ray diffractometry were employed to characterize the silver nanowires. As increasing the concentration of PVP, the silver nanowire diameter widened and resulted in a smaller aspect ratio. We successfully prepared silver nanowires (diameter: 170 nm, length: 20 μm). The silver nanowire thin film suspension showed high transmittance, low sheet resistance, and may be used for transparent conductive film applications. - Graphical abstract: The FE-SEM image shows that nanostructures with considerable quantities of silver nanowires can also be produced when the PVP (Mw=360 K)/AgNO{sub 3} molar ratio was 2.5. - Highlights: • The polyol method was used to synthesize of silver nanowire. • The metal seed precursors were not used before synthesizing the silver nanowires. • The silver nanowire diameter and length was 170 nm and 20 μm, respectively. • Silver nanowire film with high transmittance (>85%) and low sheet resistance (<110 Ω/sq)

  8. Silver nanoparticles: synthesis, properties, and therapeutic applications

    PubMed Central

    Wei, Liuya; Lu, Jingran; Xu, Huizhong; Patel, Atish; Chen, Zhe-Sheng; Chen, Guofang

    2014-01-01

    Silver nanoparticles (AgNPs) have been widely used in biomedical fields because of their intrinsic therapeutic properties. Here, we introduce methods of synthesizing AgNPs and discuss their physicochemical, localized surface plasmon resonance (LSPR) and toxicity properties. We also review the impact of AgNPs on human health and the environment along with the underlying mechanisms. More importantly, we highlight the newly emerging applications of AgNPs as antiviral agents, photosensitizers and/or radiosensitizers, and anticancer therapeutic agents in the treatment of leukemia, breast cancer, hepatocellular carcinoma, lung cancer, and skin and/or oral carcinoma. PMID:25543008

  9. Biological coating of paper using silver nanoparticles.

    PubMed

    Ghorbani, Hamid Reza

    2014-12-01

    The capacity of Ag nanoparticles to destroy various micro-organisms makes it one of the most powerful antimicrobial agents, an attractive feature against antibiotic resistant bacteria. Here, a simple method to develop coating of colloidal silver on paper using a biological method is presented. The coated paper was studied by scanning electron microscopy, X-ray diffraction technique and atomic absorption spectroscopy. The antibacterial activity of the coated paper against Escherichia coli and Staphylococcus aureus was measured by agar diffusion method. This study shows the potential use of the coated paper as a food antimicrobial packing material for longer shelf life.

  10. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles

    PubMed Central

    Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Wang, Chao; Hwang, Kyu Hyon; Farh, Mohamed El-Agamy; Yang, Deok Chun

    2015-01-01

    In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis of silver nanoparticles by B. frigoritolerans DC2 and its effect on the enhancement of the antmicrobial efficacy of well-known commercial antibiotics. PMID:25848272

  11. Toxicity of Silver Nanoparticles at the Air-Liquid Interface

    PubMed Central

    Holder, Amara L.; Marr, Linsey C.

    2013-01-01

    Silver nanoparticles are one of the most prevalent nanomaterials in consumer products. Some of these products are likely to be aerosolized, making silver nanoparticles a high priority for inhalation toxicity assessment. To study the inhalation toxicity of silver nanoparticles, we have exposed cultured lung cells to them at the air-liquid interface. Cells were exposed to suspensions of silver or nickel oxide (positive control) nanoparticles at concentrations of 2.6, 6.6, and 13.2 μg cm−2 (volume concentrations of 10, 25, and 50 μg ml−1) and to 0.7 μg cm−2 silver or 2.1 μg cm−2 nickel oxide aerosol at the air-liquid interface. Unlike a number of in vitro studies employing suspensions of silver nanoparticles, which have shown strong toxic effects, both suspensions and aerosolized nanoparticles caused negligible cytotoxicity and only a mild inflammatory response, in agreement with animal exposures. Additionally, we have developed a novel method using a differential mobility analyzer to select aerosolized nanoparticles of a single diameter to assess the size-dependent toxicity of silver nanoparticles. PMID:23484109

  12. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles.

    PubMed

    Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Wang, Chao; Hwang, Kyu Hyon; Farh, Mohamed El-Agamy; Yang, Deok Chun

    2015-01-01

    In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis of silver nanoparticles by B. frigoritolerans DC2 and its effect on the enhancement of the antimicrobial efficacy of well-known commercial antibiotics.

  13. Targeted silver nanoparticles for ratiometric cell phenotyping

    NASA Astrophysics Data System (ADS)

    Willmore, Anne-Mari A.; Simón-Gracia, Lorena; Toome, Kadri; Paiste, Päärn; Kotamraju, Venkata Ramana; Mölder, Tarmo; Sugahara, Kazuki N.; Ruoslahti, Erkki; Braun, Gary B.; Teesalu, Tambet

    2016-04-01

    Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 +/- 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 +/- 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo.Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The

  14. Biological Mechanism of Silver Nanoparticle Toxicity

    NASA Astrophysics Data System (ADS)

    Armstrong, Najealicka Nicole

    Silver nanoparticles (AgNPs), like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities above that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, these investigations were attempted to monitor the effects of AgNPs at a non-lethal concentration on wild type Drosophila melanogaster by exposing them to nanoparticles throughout their development. All adult flies raised in AgNP doped food indicated that of not more than 50 mg/L had no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised after AgNP feeding. The determination of the amount of free ionic silver (Ag+) indicated that the observed biological effects had resulted from the AgNPs and not from Ag+. Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, were decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Furthermore, copper supplementation restored the loss of AgNP induced demelanization, and the reduction of functional Ctr1 in Ctr1 heterozygous mutants caused the flies to be resistant to demelanization. Consequently, these studies proposed a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explained the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, these investigations demonstrated that Drosophila, an established genetic model system, can be well utilized for further

  15. Silver nanoparticles-coated glass frits for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yingfen; Gan, Weiping; Li, Biyuan

    2016-04-01

    Silver nanoparticles-coated glass frit composite powders for silicon solar cells were prepared by electroless plating. Silver colloids were used as the activating agent of glass frits. The products were characterized by X-ray diffraction, scanning electron microscopy, and differential scanning calorimetry. The characterization results indicated that silver nanoparticles with the melting temperature of 838 °C were uniformly deposited on glass frit surface. The particle size of silver nanoparticles could be controlled by adjusting the [Ag(NH3)2]NO3 concentration. The as-prepared composite powders were applied in the front side metallization of silicon solar cells. Compared with those based on pure glass frits, the solar cells containing the composite powders had the denser silver electrodes and the better silver-silicon ohmic contacts. Furthermore, the photovoltaic performances of solar cells were improved after the electroless plating.

  16. Bio-conjugated silver nanoparticles: from Ocimum sanctum and role of cetyltrimethyl ammonium bromide.

    PubMed

    Zaheer, Zoya; Rafiuddin

    2013-08-01

    In this paper we have reported the spectrophotometeric and transmission electron microscopic (TEM) data to the shape-directing role of cetyltrimethylammonium bromide (CTAB) on the green extra-cellular synthesis of bio-conjugated Ag-nanoparticles using Ocimum sanctum leaves extract. TEM images revealed that the nanoparticles are mostly spherical (average particle size ranged from 18 to 35nm) with some truncated triangular nanoplates, aggregated in a beautiful manner to yield locket-like silver and capped by a thin layer of biomolecules of O. sanctum, whereas nanoparticles are highly poly-dispersed in presence of CTAB. The shape and position of wavelength maxima strongly depends on the reaction time, [leaves extract] and [CTAB]. The visual observations also suggest that the prefect transparent silver sol becomes turbid in presence of CTAB after some time. PMID:23524081

  17. Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum

    PubMed Central

    Korbekandi, Hassan; Ashari, Zeynab; Iravani, Siavash; Abbasi, Sajjad

    2013-01-01

    Silver nanoparticles are increasingly used in various fields of biotechnology and applications in the medicine. Objectives of this study were optimization of production of silver nanoparticles using biotransformations by Fusarium oxysporum, and a further study on the location of nanoparticles synthesis in this microorganism. The reaction mixture contained the following ingredients (final concentrations): AgNO3 (1-10 mM) as the biotransformation substrate, biomass as the biocatalyst, glucose (560 mM) as the electron donor, and phosphate buffer (pH= 7, 100 mM). The samples were taken from the reaction mixtures at different times, and the absorbance (430 nm) of the colloidal suspensions of silver nanoparticles hydrosols was read freshly (without freezing) and immediately after dilution (1:40). SEM and TEM analyses were performed on selected samples. The presence of AgNO3 (0.1 mM) in the culture as enzyme inducer, and glucose (560 mM) as electron donor had positive effects on nanoparticle production. In SEM micrographs, silver nanoparticles were almost spherical, single (25-50 nm) or in aggregates (100 nm), attached to the surface of biomass. The reaction mixture was successfully optimized to increase the yield of silver nanoparticles production. More details of the location of nanoparticles production by this fungus were revealed, which support the hypothesis that silver nanoparticles are synthesized intracellularly and not extracellularly. PMID:24250635

  18. Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum.

    PubMed

    Korbekandi, Hassan; Ashari, Zeynab; Iravani, Siavash; Abbasi, Sajjad

    2013-01-01

    Silver nanoparticles are increasingly used in various fields of biotechnology and applications in the medicine. Objectives of this study were optimization of production of silver nanoparticles using biotransformations by Fusarium oxysporum, and a further study on the location of nanoparticles synthesis in this microorganism. The reaction mixture contained the following ingredients (final concentrations): AgNO3 (1-10 mM) as the biotransformation substrate, biomass as the biocatalyst, glucose (560 mM) as the electron donor, and phosphate buffer (pH= 7, 100 mM). The samples were taken from the reaction mixtures at different times, and the absorbance (430 nm) of the colloidal suspensions of silver nanoparticles hydrosols was read freshly (without freezing) and immediately after dilution (1:40). SEM and TEM analyses were performed on selected samples. The presence of AgNO3 (0.1 mM) in the culture as enzyme inducer, and glucose (560 mM) as electron donor had positive effects on nanoparticle production. In SEM micrographs, silver nanoparticles were almost spherical, single (25-50 nm) or in aggregates (100 nm), attached to the surface of biomass. The reaction mixture was successfully optimized to increase the yield of silver nanoparticles production. More details of the location of nanoparticles production by this fungus were revealed, which support the hypothesis that silver nanoparticles are synthesized intracellularly and not extracellularly.

  19. Metal-metal bonding using silver/copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Maeda, T.; Yasuda, Y.; Morita, T.

    2016-08-01

    A method for producing nanoparticles composed of silver and copper and a metal-metal bonding technique using the silver/copper nanoparticles are proposed. The method consists of three steps. First, copper oxide nanoparticles are produced by mixing Cu(NO3)2 aqueous solution and NaOH aqueous solution. Second, copper metal nanoparticles are fabricated by reducing the copper oxide nanoparticles with hydrazine in the presence of poly(vinylpyrrolidone) (PVP). Third, silver/copper nanoparticles are synthesized by reducing Ag+ ions with hydrazine in the presence of the copper metal nanoparticles. Initial concentrations in the final silver/copper particle colloid, composed of 0.0075 M Cu2+, 0.0025 M Ag+, 1.0 g/L PVP, and 0.6 M hydrazine, produced silver/copper nanoparticles with an average size of 49 nm and a crystal size of 16.8 nm. Discs of copper metal were successfully bonded by the silver/copper nanoparticles under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in not only hydrogen gas but also nitrogen gas. The shear force required to separate the bonded discs was 22.3 MPa for the hydrogen gas annealing and 14.9 MPa for the nitrogen gas annealing (namely, 66.8 % of that for hydrogen gas annealing).

  20. Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum.

    PubMed

    Korbekandi, Hassan; Ashari, Zeynab; Iravani, Siavash; Abbasi, Sajjad

    2013-01-01

    Silver nanoparticles are increasingly used in various fields of biotechnology and applications in the medicine. Objectives of this study were optimization of production of silver nanoparticles using biotransformations by Fusarium oxysporum, and a further study on the location of nanoparticles synthesis in this microorganism. The reaction mixture contained the following ingredients (final concentrations): AgNO3 (1-10 mM) as the biotransformation substrate, biomass as the biocatalyst, glucose (560 mM) as the electron donor, and phosphate buffer (pH= 7, 100 mM). The samples were taken from the reaction mixtures at different times, and the absorbance (430 nm) of the colloidal suspensions of silver nanoparticles hydrosols was read freshly (without freezing) and immediately after dilution (1:40). SEM and TEM analyses were performed on selected samples. The presence of AgNO3 (0.1 mM) in the culture as enzyme inducer, and glucose (560 mM) as electron donor had positive effects on nanoparticle production. In SEM micrographs, silver nanoparticles were almost spherical, single (25-50 nm) or in aggregates (100 nm), attached to the surface of biomass. The reaction mixture was successfully optimized to increase the yield of silver nanoparticles production. More details of the location of nanoparticles production by this fungus were revealed, which support the hypothesis that silver nanoparticles are synthesized intracellularly and not extracellularly. PMID:24250635

  1. Ultrafast electronic relaxation processes in semiconductor nanoparticles (silver iodide, silver iodide/silver sulfide, silver bromide/silver sulfide, silver sulfide, cupric sulfide, and copper sulfide) and carotenoids

    NASA Astrophysics Data System (ADS)

    Brelle, Michael Chris

    2000-11-01

    This dissertation examines primarily the ultrafast dynamics of excited state charge carriers in semiconductor nanoparticles. The dissertation also briefly examines the excited state lifetimes of a few carotenoids. Understanding the dynamic properties of charge carriers in semiconductor nanoparticles is crucial for the further development of applications utilizing these systems. The dynamic properties including shallow and deep trapping as well as recombination have been studied in a variety of semiconductor nanoparticle systems. Kinetic modeling was utilized to assist in the assignment of all observed signals and the nature of the decays. The first observation of ultrafast trapping in silver halides was observed in AgI nanoparticles including the identification that interstitial silver ions may act as deep traps. Several interesting phenomena were observed in Ag2S and CuxS nanoparticles including dark shallow trap states and shallow trap state saturation leading to increased transient absorption over transient bleach with increasing excitation intensity. These observations have provided further insight into the relaxation pathways for charge carriers in semiconductor nanoparticle systems. Lifetimes of the S2 excited states of four carotenoids have also been determined. The S2 lifetime for beta-carotene was confirmed from previous fluorescence up-conversion experiments whereas the S2 lifetimes that were previously unknown for three carotenoids, violaxanthin, neaxanthin, and lutein were discovered. These experiments together demonstrate the capabilities of femtosecond pump-probe spectroscopy to characterize and better understand the processes involved in the ultrafast relaxation events in both molecular and nanoparticle systems.

  2. Size-separation of silver nanoparticles using sucrose gradient centrifugation

    SciTech Connect

    Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won; Phelps, Tommy; Doktycz, Mitchel John

    2015-08-28

    Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradient sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.

  3. Size-separation of silver nanoparticles using sucrose gradient centrifugation

    DOE PAGES

    Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won; Phelps, Tommy; Doktycz, Mitchel John

    2015-08-28

    Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradientmore » sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.« less

  4. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    NASA Astrophysics Data System (ADS)

    Holtz, R. D.; Souza Filho, A. G.; Brocchi, M.; Martins, D.; Durán, N.; Alves, O. L.

    2010-05-01

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  5. Silver nanoparticle protein corona and toxicity: a mini-review.

    PubMed

    Durán, Nelson; Silveira, Camila P; Durán, Marcela; Martinez, Diego Stéfani T

    2015-01-01

    Silver nanoparticles are one of the most important materials in the nanotechnology industry. Additionally, the protein corona is emerging as a key entity at the nanobiointerface; thus, a comprehensive understanding of the interactions between proteins and silver nanoparticles is imperative. Therefore, literature reporting studies involving both single molecule protein coronas (i.e., bovine and human serum albumin, tubulin, ubiquitin and hyaluronic-binding protein) and complex protein coronas (i.e., fetal bovine serum and yeast extract proteins) were selected to demonstrate the effects of protein coronas on silver nanoparticle cytotoxicity and antimicrobial activity. There is evidence that distinct and differential protein components may yield a "protein corona signature" that is related to the size and/or surface curvature of the silver nanoparticles. Therefore, the formation of silver nanoparticle protein coronas together with the biological response to these coronas (i.e., oxidative stress, inflammation and cytotoxicity) as well as other cellular biophysicochemical mechanisms (i.e., endocytosis, biotransformation and biodistribution) will be important for nanomedicine and nanotoxicology. Researchers may benefit from the information contained herein to improve biotechnological applications of silver nanoparticles and to address related safety concerns. In summary, the main aim of this mini-review is to highlight the relationship between the formation of silver nanoparticle protein coronas and toxicity. PMID:26337542

  6. Synthesis of stabilized myrrh-capped hydrocolloidal magnetite nanoparticles.

    PubMed

    Atta, Ayman M; Al-Lohedan, Hamad A; Al-Hussain, Sami A

    2014-01-01

    Herein we report a new method for synthesizing stabilized magnetic nanoparticle (MNP) colloids. A new class of monodisperse water-soluble magnetite nano-particles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The ferrous and ferric ions were hydrolyzed at low temperature at pH 9 in the presence of iodine to produce iron oxide nanoparticles. The natural product myrrh gum was used as capping agent to produce highly dispersed coated magnetite nanoparticles. The structure and morphology of the magnetic nanogel was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM), and X-ray diffraction (XRD) was used to examine the crystal structure of the produced magnetite nanoparticles. PMID:25090117

  7. Synthesis of stabilized myrrh-capped hydrocolloidal magnetite nanoparticles.

    PubMed

    Atta, Ayman M; Al-Lohedan, Hamad A; Al-Hussain, Sami A

    2014-07-31

    Herein we report a new method for synthesizing stabilized magnetic nanoparticle (MNP) colloids. A new class of monodisperse water-soluble magnetite nano-particles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The ferrous and ferric ions were hydrolyzed at low temperature at pH 9 in the presence of iodine to produce iron oxide nanoparticles. The natural product myrrh gum was used as capping agent to produce highly dispersed coated magnetite nanoparticles. The structure and morphology of the magnetic nanogel was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM), and X-ray diffraction (XRD) was used to examine the crystal structure of the produced magnetite nanoparticles.

  8. Mechanistic Study of Silver Nanoparticle's Synthesis by Dragon's Blood Resin Ethanol Extract and Antiradiation Activity.

    PubMed

    Hasan, Murtaza; Iqbal, Javed; Awan, Umer; Saeed, Yasmeen; Ranran, Yuan; Liang, Yanli; Dai, Rongji; Deng, Yulin

    2015-02-01

    Biological synthesis of nanoparticles is best way to avoid exposure of hazardous materials as compared to chemical manufacturing process which is a severe threat not only to biodiversity but also to environment. In present study, we reported a novel method of finding antiradiation compounds by bioreducing mechanism of silver nanoparticles formation using 50% ethanol extract of Dragons blood, a famous Chinese herbal plant. Color change during silver nanoparticles synthesis was observed and it was confirmed by ultra violet (UV) visible spectroscopy at wave length at 430 nm after 30 min of reaction at 60 °C. Well dispersed round shaped silver nanoparticles with approximate size (4 nm to 50 nm) were measured by TEM and particle size analyser. Capping of biomolecules on Ag nanoparticles was characterized by FTIR spectra. HPLC analysis was carried out to find active compounds in the extract. Furthermore, antiradiation activity of this extract was tested by MTT assay in vitro after incubating the SH-SY5Y cells for 24 h at 37 °C. The results indicate that presence of active compounds in plant extract not only involves in bioreduction process but also shows response against radiation. The dual role of plant extract as green synthesis of nanoparticles and exhibit activity against radiation which gives a new way of fishing out active compounds from complex herbal plants.

  9. A novel bone cement impregnated with silver-tiopronin nanoparticles: its antimicrobial, cytotoxic, and mechanical properties.

    PubMed

    Prokopovich, Polina; Leech, Ralph; Carmalt, Claire J; Parkin, Ivan P; Perni, Stefano

    2013-01-01

    Post-operatory infections in orthopedic surgeries pose a significant risk. The common approach of using antibiotics, both parenterally or embedded in bone cement (when this is employed during surgery) faces the challenge of the rising population of pathogens exhibiting resistance properties against one or more of these compounds; therefore, novel approaches need to be developed. Silver nanoparticles appear to be an exciting prospect because of their antimicrobial activity and safety at the levels used in medical applications. In this paper, a novel type of silver nanoparticles capped with tiopronin is presented. Two ratios of reagents during synthesis were tested and the effect on the nanoparticles investigated through TEM, TGA, and UV-Vis spectroscopy. Once encapsulated in bone cement, only the nanoparticles with the highest amount of inorganic fraction conferred antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA) at concentrations as low as 0.1% w/w. No other characteristics of the bone cement, such as cytotoxicity or mechanical properties, were affected by the presence of the nanoparticles. Our work presents a new type of silver nanoparticles and demonstrates that they can be embedded in bone cement to prevent infections once the synthetic conditions are tailored for such applications.

  10. Multifunctional modified silver nanoparticles as ion and pH sensors in aqueous solution.

    PubMed

    Chen, Xin; Cheng, Xiaoyu; Gooding, J Justin

    2012-05-21

    Silver nanoparticles capped with mercaptoacetic acid and 2-aminoethanethiol short-chain alkanethiols were prepared by a one-step method in aqueous solution for monitoring pH and a range of heavy metal ions. The mode of transduction is optical, based on the change in aggregation of the nanoparticles in solution. Because of the different ionic interactions between the modified nanoparticles, these nanoparticle sensors can rapidly detect Pb(2+), Cu(2+) and Fe(2+), with detection limits as low as 1 × 10(-5) M, 5 × 10(-7) M and 5 × 10(-5) M respectively, as well as having the ability to detect Cu(2+) ions from Pb(2+) and Fe(2+). Furthermore, the same functionalised nanoparticles are also sensitive to pH; exhibiting a good linear dynamic response between pH 1 and 10.

  11. Characterization and antimicrobial activity of silver nanoparticles prepared by a thermal decomposition technique

    NASA Astrophysics Data System (ADS)

    Tam, Le Thi; Phan, Vu Ngoc; Lan, Hoang; Thuy, Nguyen Thanh; Hien, Tran Minh; Huy, Tran Quang; Quy, Nguyen Van; Chinh, Huynh Dang; Tung, Le Minh; Tuan, Pham Anh; Lam, Vu Dinh; Le, Anh-Tuan

    2013-11-01

    Recently, there has been an increasing need of efficient synthetic protocols using eco-friendly conditions including low costs and green chemicals for production of metal nanoparticles. In this work, silver nanoparticles (silver NPs) with average particle size about 10 nm were synthesized by using a thermal decomposition technique. Unlike the colloidal chemistry method, the thermal decomposition method developed has advantages such as the high crystallinity, single-reaction synthesis, and easy dispersion ability of the synthesized NPs in organic solvents. In a modified synthesis process, we used sodium oleate as a capping agent to modify the surface of silver NPs because the oleate has a C18 tail with a double bond in the middle, therefore, forming a kink which is to be effective for aggregative stability. Importantly, the as-synthesized silver NPs have demonstrated strong antimicrobial effects against various bacteria and fungi strains. Electron microscopic studies reveal physical insights into the interaction and bactericidal mechanism between the prepared silver NPs and tested bacteria in question. The observed excellent antibacterial and antifungal activity of the silver NPs make them ideal for disinfection and biomedicine applications.

  12. The immunomodulatory effects of titanium dioxide and silver nanoparticles.

    PubMed

    Lappas, Courtney M

    2015-11-01

    Due to their characteristic physical, chemical and optical properties, titanium dioxide and silver nanoparticles are attractive tools for use in a wide range of applications. The use of nanoparticles for biological applications is, however, dependent upon their biocompatibility with living cells. Because of the importance of inflammation as a modulator of human health, the safe and efficacious in vivo use of titanium dioxide and silver nanoparticles is inherently linked to a favorable interaction with immune system cells. However, both titanium dioxide and silver nanoparticles have demonstrated potential to exert immunomodulatory and immunotoxic effects. Titanium dioxide and silver nanoparticles are readily internalized by immune system cells, may accumulate in peripheral lymphoid organs, and can influence multiple manifestations of immune cell activity. Although the factors influencing the biocompatibility of titanium dioxide and silver nanoparticles with immune system cells have not been fully elucidated, nanoparticle core composition, size, concentration and the duration of cell exposure seem to be important. Because titanium dioxide and silver nanoparticles are widely utilized in pharmaceutical, commercial and industrial products, it is vital that their effects on human health and immune system function be more thoroughly evaluated.

  13. Influence of antibiotic adsorption on biocidal activities of silver nanoparticles.

    PubMed

    Khurana, Chandni; Vala, Anjana K; Andhariya, Nidhi; Pandey, O P; Chudasama, Bhupendra

    2016-04-01

    Excessive use of antibiotics has posed two major challenges in public healthcare. One of them is associated with the development of multi-drug resistance while the other one is linked to side effects. In the present investigation, the authors report an innovative approach to tackle the challenges of multi-drug resistance and acute toxicity of antibiotics by using antibiotics adsorbed metal nanoparticles. Monodisperse silver nanoparticles (SNPs) have been synthesised by two-step process. In the first step, SNPs were prepared by chemical reduction of AgNO3 with oleylamine and in the second step, oleylamine capped SNPs were phase-transferred into an aqueous medium by ligand exchange. Antibiotics - tetracycline and kanamycin were further adsorbed on the surface of SNPs. Antibacterial activities of SNPs and antibiotic adsorbed SNPs have been investigated on gram-positive (Staphylococcus aureus, Bacillus megaterium, Bacillus subtilis), and gram-negative (Proteus vulgaris, Shigella sonnei, Pseudomonas fluorescens) bacterial strains. Synergistic effect of SNPs on antibacterial activities of tetracycline and kanamycin has been observed. Biocidal activity of tetracycline is improved by 0-346% when adsorbed on SNPs; while for kanamycin, the improvement is 110-289%. This synergistic effect of SNPs on biocidal activities of antibiotics may be helpful in reducing their effective dosages.

  14. Influence of antibiotic adsorption on biocidal activities of silver nanoparticles.

    PubMed

    Khurana, Chandni; Vala, Anjana K; Andhariya, Nidhi; Pandey, O P; Chudasama, Bhupendra

    2016-04-01

    Excessive use of antibiotics has posed two major challenges in public healthcare. One of them is associated with the development of multi-drug resistance while the other one is linked to side effects. In the present investigation, the authors report an innovative approach to tackle the challenges of multi-drug resistance and acute toxicity of antibiotics by using antibiotics adsorbed metal nanoparticles. Monodisperse silver nanoparticles (SNPs) have been synthesised by two-step process. In the first step, SNPs were prepared by chemical reduction of AgNO3 with oleylamine and in the second step, oleylamine capped SNPs were phase-transferred into an aqueous medium by ligand exchange. Antibiotics - tetracycline and kanamycin were further adsorbed on the surface of SNPs. Antibacterial activities of SNPs and antibiotic adsorbed SNPs have been investigated on gram-positive (Staphylococcus aureus, Bacillus megaterium, Bacillus subtilis), and gram-negative (Proteus vulgaris, Shigella sonnei, Pseudomonas fluorescens) bacterial strains. Synergistic effect of SNPs on antibacterial activities of tetracycline and kanamycin has been observed. Biocidal activity of tetracycline is improved by 0-346% when adsorbed on SNPs; while for kanamycin, the improvement is 110-289%. This synergistic effect of SNPs on biocidal activities of antibiotics may be helpful in reducing their effective dosages. PMID:27074856

  15. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    NASA Astrophysics Data System (ADS)

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  16. Catalytically and biologically active silver nanoparticles synthesized using essential oil.

    PubMed

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-11

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone--12 mm) and Gram negative, Escherichia coli (inhibition zone--14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays. PMID:24956490

  17. Characterization and Biocompatibility of ``Green'' Synthesized Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Moulton, Michael; Kunzelman, Samantha; Braydich-Stolle, Laura; Nadagouda, M.; Varma, R.; Hussain, Saber

    2008-10-01

    With ever increasing emphasis on nanotechnology, silver nanoparticle are being considered for many antimicrobial needs ranging from catheter coatings, to burn wound bandages. Current synthesis methods for creating silver nanoparticles typically call for potentially hazardous chemicals, extreme heat, and produce environmentally dangerous byproducts. As a culture intent on reducing our carbon footprint on the earth, societies' focus has turned to ``green'' production capabilities. Therefore, if nanotechnology is to continue to grow at its current rate it is essential that novel ``green'' synthesis of nanoparticles becomes a reality. Furthermore, with the current and near-future applications of silver nanoparticles in biological systems it is imperative to fully analyze the potential toxic effects of these nanoparticles. In this study we have shown that by reducing silver nitrate in solutions of tea extract or epinephrine of varying concentrations spherical silver nanoparticle are formed. Furthermore, evaluation of mitochondrial function (MTS) and membrane integrity (LDH) in alveolar rat macrophages and human keratinocytes showed that these ``green'' synthesized silver nanoparticles were nontoxic.

  18. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species.

    PubMed

    Zomorodian, Kamiar; Pourshahid, Seyedmohammad; Sadatsharifi, Arman; Mehryar, Pouyan; Pakshir, Keyvan; Rahimi, Mohammad Javad; Arabi Monfared, Ali

    2016-01-01

    Currently, researchers turn to natural processes such as using biological microorganisms in order to develop reliable and ecofriendly methods for the synthesis of metallic nanoparticles. In this study, we have investigated extracellular biosynthesis of silver nanoparticles using four Aspergillus species including A. fumigatus, A. clavatus, A. niger, and A. flavus. We have also analyzed nitrate reductase activity in the studied species in order to determine the probable role of this enzyme in the biosynthesis of silver nanoparticles. The formation of silver nanoparticles in the cell filtrates was confirmed by the passage of laser light, change in the color of cell filtrates, absorption peak at 430 nm in UV-Vis spectra, and atomic force microscopy (AFM). There was a logical relationship between the efficiencies of studied Aspergillus species in the production of silver nanoparticles and their nitrate reductase activity. A. fumigatus as the most efficient species showed the highest nitrate reductase activity among the studied species while A. flavus exhibited the lowest capacity in the biosynthesis of silver nanoparticles which was in accord with its low nitrate reductase activity. The present study showed that Aspergillus species had potential for the biosynthesis of silver nanoparticles depending on their nitrate reductase activity. PMID:27652264

  19. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species

    PubMed Central

    Pourshahid, Seyedmohammad; Mehryar, Pouyan; Pakshir, Keyvan; Rahimi, Mohammad Javad; Arabi Monfared, Ali

    2016-01-01

    Currently, researchers turn to natural processes such as using biological microorganisms in order to develop reliable and ecofriendly methods for the synthesis of metallic nanoparticles. In this study, we have investigated extracellular biosynthesis of silver nanoparticles using four Aspergillus species including A. fumigatus, A. clavatus, A. niger, and A. flavus. We have also analyzed nitrate reductase activity in the studied species in order to determine the probable role of this enzyme in the biosynthesis of silver nanoparticles. The formation of silver nanoparticles in the cell filtrates was confirmed by the passage of laser light, change in the color of cell filtrates, absorption peak at 430 nm in UV-Vis spectra, and atomic force microscopy (AFM). There was a logical relationship between the efficiencies of studied Aspergillus species in the production of silver nanoparticles and their nitrate reductase activity. A. fumigatus as the most efficient species showed the highest nitrate reductase activity among the studied species while A. flavus exhibited the lowest capacity in the biosynthesis of silver nanoparticles which was in accord with its low nitrate reductase activity. The present study showed that Aspergillus species had potential for the biosynthesis of silver nanoparticles depending on their nitrate reductase activity. PMID:27652264

  20. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species

    PubMed Central

    Pourshahid, Seyedmohammad; Mehryar, Pouyan; Pakshir, Keyvan; Rahimi, Mohammad Javad; Arabi Monfared, Ali

    2016-01-01

    Currently, researchers turn to natural processes such as using biological microorganisms in order to develop reliable and ecofriendly methods for the synthesis of metallic nanoparticles. In this study, we have investigated extracellular biosynthesis of silver nanoparticles using four Aspergillus species including A. fumigatus, A. clavatus, A. niger, and A. flavus. We have also analyzed nitrate reductase activity in the studied species in order to determine the probable role of this enzyme in the biosynthesis of silver nanoparticles. The formation of silver nanoparticles in the cell filtrates was confirmed by the passage of laser light, change in the color of cell filtrates, absorption peak at 430 nm in UV-Vis spectra, and atomic force microscopy (AFM). There was a logical relationship between the efficiencies of studied Aspergillus species in the production of silver nanoparticles and their nitrate reductase activity. A. fumigatus as the most efficient species showed the highest nitrate reductase activity among the studied species while A. flavus exhibited the lowest capacity in the biosynthesis of silver nanoparticles which was in accord with its low nitrate reductase activity. The present study showed that Aspergillus species had potential for the biosynthesis of silver nanoparticles depending on their nitrate reductase activity.

  1. Antibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract

    PubMed Central

    Mamun Or Rashida, Md.; Shafiul Islam, Md.; Azizul Haque, Md.; Arifur Rahman, Md.; Tanvir Hossain, Md.; Abdul Hamid, Md.

    2016-01-01

    Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles and extracts were mixed thoroughly and then coated by polyaniline. Prepared nanoparticles were characterized by Visual inspection, Ultraviolet-visible spectroscopy (UV), Fourier transform infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) techniques. Antibacterial activities of the synthesized silver nanoparticles were tested against Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. UV–Vis spectrum of reaction mixture showed strong absorption peak with centering at 400 nm. The FT-IR results imply that Ag-NPs were successfully synthesized and capped with bio-compounds present in P. betle. TEM image showed that Ag-NPs formed were well dispersed with a spherical structures and particle size ranging from 10 to 30 nm. The result revealed that Ag-Extract NPs showed 32.78±0.64 mm zone of inhibition against S. aureus, whereas norfloxacin (positive control) showed maximum 32.15±0.40 mm zone of inhibition for S. aureus. Again, maximum zone of inhibition 29.55±0.45 mm was found for S. typhi, 27.12±0.38 mm for E. coli and 21.95±0.45 mm for P. aeruginosa. The results obtained by this study can’t be directly extrapolated to human; so further studies should be undertaken to established the strong antimicrobial activity of Ag-Extract NPs for drug development program. PMID:27642330

  2. Antibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract.

    PubMed

    Mamun Or Rashida, Md; Shafiul Islam, Md; Azizul Haque, Md; Arifur Rahman, Md; Tanvir Hossain, Md; Abdul Hamid, Md

    2016-01-01

    Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles and extracts were mixed thoroughly and then coated by polyaniline. Prepared nanoparticles were characterized by Visual inspection, Ultraviolet-visible spectroscopy (UV), Fourier transform infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) techniques. Antibacterial activities of the synthesized silver nanoparticles were tested against Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. UV-Vis spectrum of reaction mixture showed strong absorption peak with centering at 400 nm. The FT-IR results imply that Ag-NPs were successfully synthesized and capped with bio-compounds present in P. betle. TEM image showed that Ag-NPs formed were well dispersed with a spherical structures and particle size ranging from 10 to 30 nm. The result revealed that Ag-Extract NPs showed 32.78±0.64 mm zone of inhibition against S. aureus, whereas norfloxacin (positive control) showed maximum 32.15±0.40 mm zone of inhibition for S. aureus. Again, maximum zone of inhibition 29.55±0.45 mm was found for S. typhi, 27.12±0.38 mm for E. coli and 21.95±0.45 mm for P. aeruginosa. The results obtained by this study can't be directly extrapolated to human; so further studies should be undertaken to established the strong antimicrobial activity of Ag-Extract NPs for drug development program. PMID:27642330

  3. Antibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract.

    PubMed

    Mamun Or Rashida, Md; Shafiul Islam, Md; Azizul Haque, Md; Arifur Rahman, Md; Tanvir Hossain, Md; Abdul Hamid, Md

    2016-01-01

    Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles and extracts were mixed thoroughly and then coated by polyaniline. Prepared nanoparticles were characterized by Visual inspection, Ultraviolet-visible spectroscopy (UV), Fourier transform infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) techniques. Antibacterial activities of the synthesized silver nanoparticles were tested against Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. UV-Vis spectrum of reaction mixture showed strong absorption peak with centering at 400 nm. The FT-IR results imply that Ag-NPs were successfully synthesized and capped with bio-compounds present in P. betle. TEM image showed that Ag-NPs formed were well dispersed with a spherical structures and particle size ranging from 10 to 30 nm. The result revealed that Ag-Extract NPs showed 32.78±0.64 mm zone of inhibition against S. aureus, whereas norfloxacin (positive control) showed maximum 32.15±0.40 mm zone of inhibition for S. aureus. Again, maximum zone of inhibition 29.55±0.45 mm was found for S. typhi, 27.12±0.38 mm for E. coli and 21.95±0.45 mm for P. aeruginosa. The results obtained by this study can't be directly extrapolated to human; so further studies should be undertaken to established the strong antimicrobial activity of Ag-Extract NPs for drug development program.

  4. The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications.

    PubMed

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-06-01

    The biosynthesis of nanoparticles has received attention because of the development of economic and environmentally friendly technology for the synthesis of nanoparticles. The study develops a convenient method for the green synthesis of silver and gold nanoparticles by utilizing fresh root extract of the four-year old Panax ginseng plant, and evaluated the antimicrobial applications of silver nanoparticles against pathogenic microorganisms. P. ginseng is a well-known herbal medicinal plant, and its active ingredients are mainly ginsenosides. The fresh root of the 4 year old P. ginseng plant has been explored for the synthesis of silver and gold nanoparticles without the use of any additional reducing and capping agents. The reduction of silver nitrate led to the formation of silver nanoparticles within 2 h of reaction at 80°C. The gold nanoparticles were also successfully synthesized by the reduction of auric acid at 80°C, within 5 min of reaction. The biosynthesized gold and silver nanoparticles were characterized by techniques using various instruments, viz. ultraviolet-visible spectroscopy (UV-Vis spectroscopy), field emission transmission electron microscopy (FE-TEM), energy dispersive X-ray analysis (EDX), elemental mapping, and X-ray diffraction (XRD). In addition, the silver nanoparticles have shown antimicrobial potential against Bacillus anthracis, Vibrio parahaemolyticus, Staphylococcus aureus, Escherichia coli, and Bacillus cereus.

  5. Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant.

    PubMed

    Khan, Mujeeb; Khan, Shams Tabrez; Khan, Merajuddin; Adil, Syed Farooq; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Alkhathlan, Hamad Z

    2014-01-01

    The antibacterial properties of nanoparticles (NPs) can be significantly enhanced by increasing the wettability or solubility of NPs in aqueous medium. In this study, we investigated the effects of the stabilizing agent on the solubility of silver NPs and its subsequent effect on their antimicrobial activities. Silver NPs were prepared using an aqueous solution of Pulicaria glutinosa plant extract as bioreductant. The solution also acts as a capping ligand. During this study, the antimicrobial activities of silver NPs, as well as the plant extract alone, were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Micrococcus luteus. Silver NPs were prepared with various concentrations of the plant extract to study its effect on antimicrobial activity. Interestingly, various concentrations of P. glutinosa extract did not show any effect on the growth of tested bacteria; however, a significant effect on the antimicrobial property of plant extract capped silver NPs (Ag-NPs-PE) was observed. For instance, the half maximal inhibitory concentration values were found to decrease (from 4% to 21%) with the increasing concentrations of plant extract used for the synthesis of Ag-NPs-PE. These results clearly indicate that the addition of P. glutinosa extracts enhances the solubility of Ag-NPs-PE and, hence, increases their toxicity against the tested microorganisms.

  6. Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant

    PubMed Central

    Khan, Mujeeb; Khan, Shams Tabrez; Khan, Merajuddin; Adil, Syed Farooq; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Alkhathlan, Hamad Z

    2014-01-01

    The antibacterial properties of nanoparticles (NPs) can be significantly enhanced by increasing the wettability or solubility of NPs in aqueous medium. In this study, we investigated the effects of the stabilizing agent on the solubility of silver NPs and its subsequent effect on their antimicrobial activities. Silver NPs were prepared using an aqueous solution of Pulicaria glutinosa plant extract as bioreductant. The solution also acts as a capping ligand. During this study, the antimicrobial activities of silver NPs, as well as the plant extract alone, were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Micrococcus luteus. Silver NPs were prepared with various concentrations of the plant extract to study its effect on antimicrobial activity. Interestingly, various concentrations of P. glutinosa extract did not show any effect on the growth of tested bacteria; however, a significant effect on the antimicrobial property of plant extract capped silver NPs (Ag-NPs-PE) was observed. For instance, the half maximal inhibitory concentration values were found to decrease (from 4% to 21%) with the increasing concentrations of plant extract used for the synthesis of Ag-NPs-PE. These results clearly indicate that the addition of P. glutinosa extracts enhances the solubility of Ag-NPs-PE and, hence, increases their toxicity against the tested microorganisms. PMID:25114525

  7. Plasmonic coupling of SiO{sub 2}-Ag 'post-cap' nanostructures and silver film for surface enhanced Raman scattering

    SciTech Connect

    Wu, Hsin-Yu; Cunningham, Brian T.

    2011-04-11

    We demonstrate a surface enhanced Raman scattering (SERS) substrate consisting of SiO{sub 2}-Ag''post-cap'' nanostructures with an underlying silver film fabricated by the glancing angle deposition technique. Electromagnetic simulations predict that SERS enhancement is strongly polarization-dependent, consistent with experimental measurements. Optimized coupling between Ag cap nanoparticles and the underlying silver film can be achieved by controlling the thickness of SiO{sub 2} post sandwiched between them to significantly enhance local electric-field intensity and to increase the density of electromagnetic hot spots. A maximum SERS enhancement factor of 2.38x10{sup 9} within the hot spot region is demonstrated, providing sufficient sensitivity for many important applications.

  8. Colorimetric determination of melamine in milk using unmodified silver nanoparticles.

    PubMed

    Kumar, Naveen; Kumar, Harish; Mann, Bimlesh; Seth, Raman

    2016-03-01

    Melamine is nitrogen rich chemical compound used as an adulterant in dairy products by unscrupulous people to increase the apparent protein content. This incident prompted the researchers to develop simple methods for easy detection of melamine in food samples. In the present paper, we report a simple and sensitive colorimetric method for detection of melamine in milk based on silver nanoparticles. This method relies upon the principle that melamine causes the aggregation of silver nanoparticles, resulting in abrupt color change from yellow to red under optimized conditions. The concentration of melamine in adulterated sample can be quantitated by monitoring the absorption spectra of silver nanoparticles using ultraviolet-visible (UV-Vis) spectrometer. The present colorimetric method which utilizes silver nanoparticles of 35 nm can reliably detect melamine down to a concentration of 0.04 mg l(-1).

  9. Colorimetric determination of melamine in milk using unmodified silver nanoparticles.

    PubMed

    Kumar, Naveen; Kumar, Harish; Mann, Bimlesh; Seth, Raman

    2016-03-01

    Melamine is nitrogen rich chemical compound used as an adulterant in dairy products by unscrupulous people to increase the apparent protein content. This incident prompted the researchers to develop simple methods for easy detection of melamine in food samples. In the present paper, we report a simple and sensitive colorimetric method for detection of melamine in milk based on silver nanoparticles. This method relies upon the principle that melamine causes the aggregation of silver nanoparticles, resulting in abrupt color change from yellow to red under optimized conditions. The concentration of melamine in adulterated sample can be quantitated by monitoring the absorption spectra of silver nanoparticles using ultraviolet-visible (UV-Vis) spectrometer. The present colorimetric method which utilizes silver nanoparticles of 35 nm can reliably detect melamine down to a concentration of 0.04 mg l(-1). PMID:26654965

  10. Fate of Zinc and Silver Engineered Nanoparticles in Sewerage Networks

    EPA Science Inventory

    Engineered zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) used in consumer products are largely released into the environment through the wastewater stream. Limited information is available regarding the transformations they undergo during their transit through sewerage sy...

  11. Colorimetric determination of melamine in milk using unmodified silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Kumar, Harish; Mann, Bimlesh; Seth, Raman

    2016-03-01

    Melamine is nitrogen rich chemical compound used as an adulterant in dairy products by unscrupulous people to increase the apparent protein content. This incident prompted the researchers to develop simple methods for easy detection of melamine in food samples. In the present paper, we report a simple and sensitive colorimetric method for detection of melamine in milk based on silver nanoparticles. This method relies upon the principle that melamine causes the aggregation of silver nanoparticles, resulting in abrupt color change from yellow to red under optimized conditions. The concentration of melamine in adulterated sample can be quantitated by monitoring the absorption spectra of silver nanoparticles using ultraviolet-visible (UV-Vis) spectrometer. The present colorimetric method which utilizes silver nanoparticles of 35 nm can reliably detect melamine down to a concentration of 0.04 mg l- 1.

  12. Eco-friendly synthesis of gelatin-capped bimetallic Au-Ag nanoparticles for chemiluminescence detection of anticancer raloxifene hydrochloride.

    PubMed

    Alarfaj, Nawal A; El-Tohamy, Maha F

    2016-09-01

    This study described the utility of green analytical chemistry in the synthesis of gelatin-capped silver, gold and bimetallic gold-silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin-capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV-vis, X-ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol-potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco-friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10(-9) to 1.0 × 10(-1)  mol/L was obtained with a limit of detection of 5.0 × 10(-10)  mol/L and a limit of quantification of 1.0 × 10(-9)  mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26781988

  13. Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate.

    PubMed

    Raut, Rajesh Warluji; Mendhulkar, Vijay Damodhar; Kashid, Sahebrao Balaso

    2014-03-01

    The metal nanoparticle synthesis is highly explored field of nanotechnology. The biological methods seem to be more effective; however, due to slow reduction rate and polydispersity of the resulting products, they are less preferred. In the present study, we report rapid and facile synthesis of silver nanoparticles at room temperature. The exposure of reaction mixtures containing silver nitrate and dried leaf powder of Withania somnifera Linn to direct sunlight resulted in reduction of metal ions within five minutes whereas, the dark exposure took almost 12h. Further studies using different light filters reveal the role of blue light in reduction of silver ions. The synthesized silver nanoparticles were characterized by UV-Vis, Infrared spectroscopy (IR), Transmission Electron Microscopy (TEM), X-ray Diffraction studies (XRD), Nanoparticle Tracking Analysis (NTA), Energy Dispersive Spectroscopy (EDS), and Cyclic Voltammetry (CV). The Antibacterial and antifungal studies showed significant activity as compared to their respective standards.

  14. Characterization and Biocompatibility of Green Synthesized Silver Nanoparticles

    EPA Science Inventory

    There are currently ~1,000 commercially available products which contain some form of silver nanotechnology, ranging from topological creams and cosmetics, to anti-microbial socks and household cleansers. Previous studies have indicated that silver nanoparticles (Ag NPs) have a ...

  15. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles.

    PubMed

    Park, Sohyun; Cha, Song-Hyun; Cho, Inyoung; Park, Soomin; Park, Yohan; Cho, Seonho; Park, Youmie

    2016-01-01

    This study focused on the preparation of resveratrol nanocarrier systems and the evaluation of their in vitro antibacterial activities. Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) for resveratrol nanocarrier systems were synthesized using green synthetic routes. During the synthesis steps, resveratrol was utilized as a reducing agent to chemically reduce gold and silver ions to AuNPs and AgNPs. This system provides green and eco-friendly synthesis routes that do not involve additional chemical reducing agents. Resveratrol nanocarriers with AuNPs (Res-AuNPs) and AgNPs (Res-AgNPs) were observed to be spherical and to exhibit characteristic surface plasmon resonance at 547 nm and at 412-417 nm, respectively. The mean size of the nanoparticles ranged from 8.32 to 21.84 nm, as determined by high-resolution transmission electron microscopy. The face-centered cubic structure of the Res-AuNPs was confirmed by high-resolution X-ray diffraction. Fourier-transform infrared spectra indicated that the hydroxyl groups and C=C in the aromatic ring of resveratrol were involved in the reduction reaction. Res-AuNPs retained excellent colloidal stability during ultracentrifugation and re-dispersion, suggesting that resveratrol also played a role as a capping agent. Zeta potentials of Res-AuNPs and Res-AgNPs were in the range of -20.58 to -48.54 mV. Generally, against Gram-positive and Gram-negative bacteria, the Res-AuNPs and Res-AgNPs exhibited greater antibacterial activity compared to that of resveratrol alone. Among the tested strains, the highest antibacterial activity of the Res-AuNPs was observed against Streptococcus pneumoniae. The addition of sodium dodecyl sulfate during the synthesis of Res-AgNPs slightly increased their antibacterial activity. These results suggest that the newly developed resveratrol nanocarrier systems with metallic nanoparticles show potential for application as nano-antibacterial agents with enhanced activities.

  16. Modelling encapsulation of gold and silver nanoparticles inside lipid nanotubes

    NASA Astrophysics Data System (ADS)

    Baowan, Duangkamon; Thamwattana, Ngamta

    2014-02-01

    Lipid nanotubes are of particular interest for use as a template to create various one-dimensional nanostructures and as a carrier for drug and gene delivery. Understanding the encapsulation process is therefore crucial for such development. This paper models the interactions between lipid nanotubes and spheres of gold and silver nanoparticles and determines the critical dimension of lipid nanotubes that maximises the interaction with the nanoparticles. Our results confirm the acceptance of gold and silver nanoparticles inside lipid nanotubes. Further, we find that the lipid nanotube of radius approximately 10.23 nm is most favourable to encapsulate both types of nanoparticles.

  17. Imaging of Biological Cells Using Luminescent Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kravets, Vira; Almemar, Zamavang; Jiang, Ke; Culhane, Kyle; Machado, Rosa; Hagen, Guy; Kotko, Andriy; Dmytruk, Igor; Spendier, Kathrin; Pinchuk, Anatoliy

    2016-01-01

    The application of luminescent silver nanoparticles as imaging agents for neural stem and rat basophilic leukemia cells was demonstrated. The experimental size dependence of the extinction and emission spectra for silver nanoparticles were also studied. The nanoparticles were functionalized with fluorescent glycine dimers. Spectral position of the resonance extinction and photoluminescence emission for particles with average diameters ranging from 9 to 32 nm were examined. As the particle size increased, the spectral peaks for both extinction and the intrinsic emission of silver nanoparticles shifted to the red end of the spectrum. The intrinsic photoluminescence of the particles was orders of magnitude weaker and was spectrally separated from the photoluminescence of the glycine dimer ligands. The spectral position of the ligand emission was independent of the particle size; however, the quantum yield of the nanoparticle-ligand system was size-dependent. This was attributed to the enhancement of the ligand's emission caused by the local electric field strength's dependence on the particle size. The maximum quantum yield determined for the nanoparticle-ligand complex was (5.2 ± 0.1) %. The nanoparticles were able to penetrate cell membranes of rat basophilic leukemia and neural stem cells fixed with paraformaldehyde. Additionally, toxicity studies were performed. It was found that towards rat basophilic leukemia cells, luminescent silver nanoparticles had a toxic effect in the silver atom concentration range of 10-100 μM.

  18. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Anandalakshmi, K.; Venugobal, J.; Ramasamy, V.

    2016-03-01

    In this paper, an aqueous extract of fresh leaves of Pedalium murex was used for the synthesis of silver (Ag) nanoparticles. Different biological methods are gaining recognition for the production of silver nanoparticles (AgNPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost-effective and eco-friendly approach. Characterization of nanoparticles was done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR), powder X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray analysis (EDAX), fluorescence emission spectroscopy, transmission electron microscope (TEM), dynamic light scattering (DLS), zeta potential and antibacterial activity. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 430 nm. Fourier transform infrared spectra had shown that the biomolecule compounds were responsible for the reduction and capping material of silver nanoparticles. XRD study showed the particles to be crystalline in nature, with a face-centered cubic (fcc) structure. The size and stability were detected using DLS and zeta potential analysis. The antibacterial activity of AgNPs against generally found bacteria was assessed to find their potential use in silver-containing antibacterial product.

  19. Synthesis of silver nanoparticles prepared in aqueous solutions using helium dc microplasma jet

    NASA Astrophysics Data System (ADS)

    Li Thong, Ying; Hoong Chin, Oi; Hoong Ong, Boon; Huang, Nay Ming

    2016-01-01

    Silver nanoparticles (AgNPs) were synthesized in aqueous solutions by reduction of silver nitrate (AgNO3) assisted by a helium dc microplasma jet at atmospheric pressure without additional chemical reducing agents. Surfactant-free AgNPs were obtained at low initial AgNO3 precursor concentrations ≤0.5 mM. A surface plasmon resonance peak at approximately 400 nm confirmed the presence of AgNPs. At higher concentrations, sucrose was used to prevent agglomeration and cap the growth of nanoparticles. The effects of the molar ratio of sucrose/AgNO3 on the size distribution and morphologies of AgNPs were investigated. The average sizes of AgNPs synthesized at molar ratios of 20, 50, and 60% were 11.2 ± 0.4, 10.0 ± 0.2, and 6.2 ± 0.1 nm, respectively.

  20. Silver ion mediated shape control of platinum nanoparticles: Removal of silver by selective etching leads to increased catalytic activity

    SciTech Connect

    Grass, Michael E.; Yue, Yao; Habas, Susan E.; Rioux, Robert M.; Teall, Chelsea I.; Somorjai, G.A.

    2008-01-09

    A procedure has been developed for the selective etching of Ag from Pt nanoparticles of well-defined shape, resulting in the formation of elementally-pure Pt cubes, cuboctahedra, or octahedra, with a largest vertex-to-vertex distance of {approx}9.5 nm from Ag-modified Pt nanoparticles. A nitric acid etching process was applied Pt nanoparticles supported on mesoporous silica, as well as nanoparticles dispersed in aqueous solution. The characterization of the silica-supported particles by XRD, TEM, and N{sub 2} adsorption measurements demonstrated that the structure of the nanoparticles and the mesoporous support remained conserved during etching in concentrated nitric acid. Both elemental analysis and ethylene hydrogenation indicated etching of Ag is only effective when [HNO{sub 3}] {ge} 7 M; below this concentration, the removal of Ag is only {approx}10%. Ethylene hydrogenation activity increased by four orders of magnitude after the etching of Pt octahedra that contained the highest fraction of silver. High-resolution transmission electron microscopy of the unsupported particles after etching demonstrated that etching does not alter the surface structure of the Pt nanoparticles. High [HNO{sub 3}] led to the decomposition of the capping agent, polyvinylpyrollidone (PVP); infrared spectroscopy confirmed that many decomposition products were present on the surface during etching, including carbon monoxide.

  1. Development of Biogenic Silver Nanoparticle Using Rosa Chinensis Flower Extract and Its Antibacterial Property.

    PubMed

    Meng, Yongde; Sun, Yanjie

    2016-04-01

    In the present study, biosynthesis of silver nanoparticles was carried out using Rosa chinensis flower extract as reducing agent. The characterization of silver nanoparticles was done by UV-VIS spectrum. The morphology and size of silver nanoparticles were determined by transmission electron microscope (TEM) image. The crystallization of silver nanoparticles was confirmed by X-ray diffraction (XRD) measurements. The Fourier transform infrared (FT-IR) analysis was used to confirm the possible involvement in the formation and stabilization of synthesized silver nanoparticles by the extract of Rosa chinensis flower. Antibacterial activity of silver nanoparticles was studied against Gram positive Staphycoccus aureus and Gram negative Escherichia coil. PMID:27451748

  2. Development of Biogenic Silver Nanoparticle Using Rosa Chinensis Flower Extract and Its Antibacterial Property.

    PubMed

    Meng, Yongde; Sun, Yanjie

    2016-04-01

    In the present study, biosynthesis of silver nanoparticles was carried out using Rosa chinensis flower extract as reducing agent. The characterization of silver nanoparticles was done by UV-VIS spectrum. The morphology and size of silver nanoparticles were determined by transmission electron microscope (TEM) image. The crystallization of silver nanoparticles was confirmed by X-ray diffraction (XRD) measurements. The Fourier transform infrared (FT-IR) analysis was used to confirm the possible involvement in the formation and stabilization of synthesized silver nanoparticles by the extract of Rosa chinensis flower. Antibacterial activity of silver nanoparticles was studied against Gram positive Staphycoccus aureus and Gram negative Escherichia coil.

  3. Chemiluminescent Reactions Catalyzed by Nanoparticles of Gold, Silver, and Gold/Silver Alloys

    NASA Astrophysics Data System (ADS)

    Abideen, Saqib Ul

    Chemiluminescence (CL) reactions are catalyzed by metals nanoparticles, which display unique catalytic properties due to an increased surface area. The present study describes the catalytic effects of nanoparticles (NP) of silver, gold, and alloys of Au/Ag nanoparticles on the chemiluminescent reaction taking place between luminol and potassium ferricyanide. It was found that silver nanoparticles and alloy nanoparticles enhance the CL process when their sizes remained in the range of 30 nm to 50 nm. The data show that the intensity and rate of chemiluminescence were influenced by the mole fraction of gold and silver in the alloy. Data to this chemiluminescence reaction are modeled by a double exponential curve, which indicates that two competing processes are occurring.

  4. Green synthesis of silver nanoparticles from Gloriosa superba L. leaf extract and their catalytic activity

    NASA Astrophysics Data System (ADS)

    Ashokkumar, S.; Ravi, S.; Velmurugan, S.

    2013-11-01

    The present work focuses the use of aqueous extract of Gloriosa superba Linn. (Glory Lily) for producing silver nanoparticles (AgNPs) from silver nitrate aqueous solution. Phytochemical analysis of the extract revealed the presence of alkaloid, amino acids, carbohydrates and proteins in the extract and they serve as effective reducing and capping agents for converting silver nitrate to silver nanoparticles. The nanoparticles were characterised by UV (Ultra violet), FT-IR (Fourier Transform Infrared), XRD (X-ray diffraction), TEM (Transmission Electron Microscope) SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-ray), and PL (Photoluminescence) studies. Moreover, the catalytic activity of synthesized AgNPs in the reduction of methylene blue was studied by UV-vis spectrophotometer. The synthesized AgNPs are observed to have a good catalytic activity on the reduction of methylene blue by G. superba extract which is confirmed by the decrease in absorbance maximum values of methylene blue with respect to time using UV-vis spectrophotometer.

  5. Biosynthesis, characterization and antibacterial studies of silver nanoparticles using pods extract of Acacia auriculiformis.

    PubMed

    Nalawade, Pradnya; Mukherjee, Poulomi; Kapoor, Sudhir

    2014-08-14

    The present study reports an environmental friendly method for the synthesis of silver nanoparticles (Ag NPs) using an aqueous extract of Acacia auriculiformis that acts as reducing agent as well as capping agent. The obtained NPs were characterized by UV-vis absorption spectroscopy and showed a sharp surface plasmon absorption band at ∼400 nm. Fourier transform infrared spectroscopy (FTIR) showed nanoparticles were capped with plant compounds. Transmission electron microscopy (TEM) showed that the particles were spherical in nature with diameter ranging from 20 to 150 nm depending on the pH of the solution. The as-synthesized Ag NPs showed antibacterial activity against both Gram negative and Gram positive bacteria with more efficacy against Gram negative bacteria.

  6. Biosynthesis, characterization and antibacterial studies of silver nanoparticles using pods extract of Acacia auriculiformis

    NASA Astrophysics Data System (ADS)

    Nalawade, Pradnya; Mukherjee, Poulomi; Kapoor, Sudhir

    2014-08-01

    The present study reports an environmental friendly method for the synthesis of silver nanoparticles (Ag NPs) using an aqueous extract of Acacia auriculiformis that acts as reducing agent as well as capping agent. The obtained NPs were characterized by UV-vis absorption spectroscopy and showed a sharp surface plasmon absorption band at ∼400 nm. Fourier transform infrared spectroscopy (FTIR) showed nanoparticles were capped with plant compounds. Transmission electron microscopy (TEM) showed that the particles were spherical in nature with diameter ranging from 20 to 150 nm depending on the pH of the solution. The as-synthesized Ag NPs showed antibacterial activity against both Gram negative and Gram positive bacteria with more efficacy against Gram negative bacteria.

  7. Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles

    PubMed Central

    2011-01-01

    Background Elucidation of molecular mechanism of silver nanoparticles (SNPs) biosynthesis is important to control its size, shape and monodispersity. The evaluation of molecular mechanism of biosynthesis of SNPs is of prime importance for the commercialization and methodology development for controlling the shape and size (uniform distribution) of SNPs. The unicellular algae Chlamydomonas reinhardtii was exploited as a model system to elucidate the role of cellular proteins in SNPs biosynthesis. Results The C. reinhardtii cell free extract (in vitro) and in vivo cells mediated synthesis of silver nanoparticles reveals SNPs of size range 5 ± 1 to 15 ± 2 nm and 5 ± 1 to 35 ± 5 nm respectively. In vivo biosynthesized SNPs were localized in the peripheral cytoplasm and at one side of flagella root, the site of pathway of ATP transport and its synthesis related enzymes. This provides an evidence for the involvement of oxidoreductive proteins in biosynthesis and stabilization of SNPs. Alteration in size distribution and decrease of synthesis rate of SNPs in protein-depleted fractions confirmed the involvement of cellular proteins in SNPs biosynthesis. Spectroscopic and SDS-PAGE analysis indicate the association of various proteins on C. reinhardtii mediated in vivo and in vitro biosynthesized SNPs. We have identified various cellular proteins associated with biosynthesized (in vivo and in vitro) SNPs by using MALDI-MS-MS, like ATP synthase, superoxide dismutase, carbonic anhydrase, ferredoxin-NADP+ reductase, histone etc. However, these proteins were not associated on the incubation of pre-synthesized silver nanoparticles in vitro. Conclusion Present study provides the indication of involvement of molecular machinery and various cellular proteins in the biosynthesis of silver nanoparticles. In this report, the study is mainly focused towards understanding the role of diverse cellular protein in the synthesis and capping of silver nanoparticles using C. reinhardtii as

  8. Synthesis of silver nanoparticles: chemical, physical and biological methods

    PubMed Central

    Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B.

    2014-01-01

    Silver nanoparticles (NPs) have been the subjects of researchers because of their unique properties (e.g., size and shape depending optical, antimicrobial, and electrical properties). A variety of preparation techniques have been reported for the synthesis of silver NPs; notable examples include, laser ablation, gamma irradiation, electron irradiation, chemical reduction, photochemical methods, microwave processing, and biological synthetic methods. This review presents an overview of silver nanoparticle preparation by physical, chemical, and biological synthesis. The aim of this review article is, therefore, to reflect on the current state and future prospects, especially the potentials and limitations of the above mentioned techniques for industries. PMID:26339255

  9. Controlling the Shape and Crystallinity of Gold and Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Personick, Michelle Louise

    The strong dependence of the optical, electronic, and catalytic properties of noble metal nanoparticles on their shape has necessitated the high-yield synthesis of gold and silver nanostructures with precisely defined morphologies. This directed synthesis requires a detailed mechanistic understanding of the chemical and physical factors which control nanoparticle shape; however, these mechanistic explanations are still incomplete. To this end, the work of this dissertation seeks to enhance the understanding of nanoparticle growth on a mechanistic level, while also developing synthetic methods for producing novel nanoparticle shapes. Chapter 1 describes the state of the art in shape-controlled noble metal nanoparticle synthesis prior to the work conducted in this dissertation. In Chapter 2, a method is reported for synthesizing {110}-faceted bipyramids and rhombic dodecahedra, in which the combination of a chloride-containing surfactant and a low concentration of silver ions leads to the stabilization of the {110} facets. Chapter 3 explores in mechanistic detail the use of silver underpotential deposition to control particle growth in the synthesis of four gold nanoparticle shapes: octahedra, rhombic dodecahedra, truncated ditetragonal prisms, and concave cubes. This mechanistic understanding is expanded in Chapter 4, where the independent and synergistic roles of silver ions and halide ions in the seed-mediated synthesis of gold nanoparticles are systematically probed, culminating in a set of design considerations for controlling the shape of gold nanoparticles. Chapter 5 investigates the role of excitation wavelength in controlling the rate of silver ion reduction in the plasmon-mediated synthesis of silver nanoparticles and describes the synthesis of silver cubes with an unusual twinning structure. Finally, Chapter 6 combines the mechanistic insights gained in Chapters 2-5 to address a standing challenge in shape-controlled gold nanoparticle synthesis: the direct

  10. Influence of temperature and precursor concentration on the synthesis of HDA-capped Ag{sub 2}Se nanoparticles

    SciTech Connect

    Mlambo, M.; Moloto, M.J.; Moloto, N.; Mdluli, P.S.

    2013-06-01

    Graphical abstract: The temperature effect on the growth and size of silver selenide nanoparticles with the size distribution and XRD patterns. Highlights: ► The HDA-capped Ag{sub 2}Se nanoparticles were synthesized via the colloidal route. ► Temperature and monomer concentration of the reaction were varied. ► The concentration as a factor influenced particles with a decrease observed as the amount of Ag{sup +} ion source is increased. ► Temperature has expected influence on the growth of particles resulting in increase as the temperature is increased. ► TEM images shows spherical particles and their orthorhombic phase from structural analysis by XRD. - Abstract: The size dependent of temperature and precursor concentration on the synthesis of hexadecylamine capped Ag{sub 2}Se nanoparticles via the colloidal route were studied using the combination of optical and structural analysis. The as-prepared Ag{sub 2}Se nanoparticles showed the quantum confinement with all the obtained absorption band edges blue-shifted from the bulk and their corresponding emission maxima displaying a red-shift from band edges characterised by UV–vis absorption and photoluminescence spectroscopy. The particle sizes were obtained from transmission electron microscopy analysis. The increase in precursor concentration resulted in a decrease in nanoparticle sizes. The increase in reaction temperature showed an increase in the nanoparticle sizes, when the critical temperature at 160 °C was reached, the nanoparticle sizes decreased.

  11. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    PubMed

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  12. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities

    PubMed Central

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C. B.; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications. PMID:27304672

  13. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    PubMed

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.

  14. Silver nanoparticles: green synthesis and their antimicrobial activities.

    PubMed

    Sharma, Virender K; Yngard, Ria A; Lin, Yekaterina

    2009-01-30

    This review presents an overview of silver nanoparticles (Ag NPs) preparation by green synthesis approaches that have advantages over conventional methods involving chemical agents associated with environmental toxicity. Green synthetic methods include mixed-valence polyoxometallates, polysaccharide, Tollens, irradiation, and biological. The mixed-valence polyoxometallates method was carried out in water, an environmentally-friendly solvent. Solutions of AgNO(3) containing glucose and starch in water gave starch-protected Ag NPs, which could be integrated into medical applications. Tollens process involves the reduction of Ag(NH(3))(2)(+) by saccharides forming Ag NP films with particle sizes from 50-200 nm, Ag hydrosols with particles in the order of 20-50 nm, and Ag colloid particles of different shapes. The reduction of Ag(NH(3))(2)(+) by HTAB (n-hexadecyltrimethylammonium bromide) gave Ag NPs of different morphologies: cubes, triangles, wires, and aligned wires. Ag NPs synthesis by irradiation of Ag(+) ions does not involve a reducing agent and is an appealing procedure. Eco-friendly bio-organisms in plant extracts contain proteins, which act as both reducing and capping agents forming stable and shape-controlled Ag NPs. The synthetic procedures of polymer-Ag and TiO(2)-Ag NPs are also given. Both Ag NPs and Ag NPs modified by surfactants or polymers showed high antimicrobial activity against gram-positive and gram-negative bacteria. The mechanism of the Ag NP bactericidal activity is discussed in terms of Ag NP interaction with the cell membranes of bacteria. Silver-containing filters are shown to have antibacterial properties in water and air purification. Finally, human and environmental implications of Ag NPs to the ecology of aquatic environment are briefly discussed.

  15. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction.

    PubMed

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO3 aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20-30nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. PMID:25842144

  16. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction.

    PubMed

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO3 aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20-30nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields.

  17. Engineering Silver Nanoparticles: Towards a Tunable Antimicrobial

    NASA Astrophysics Data System (ADS)

    Puppala, Hema Lakshmi

    Overwhelming production of commercially available products containing silver nanoparticles (AgNPs) underscores the studies determining their fate in the environment. In order to regulate the use, assess the environmental impact and develop eco-responsible silver products, models that can predict AgNP toxicity based on physicochemical properties are vital. With that vision, this thesis developed well-characterized model libraries of uniform AgNPs stabilized with oleate in the range of 2-45 nm diameter with variable surface coating and investigated the dissolution properties that link AgNP structure to antimicrobial activity. High temperature organic synthesis allowed controlled growth of AgNPs (sigma<15%) by an Ostwald ripening mechanism in the first few hours, and followed by size dependent growth rates yielding uniform nanocrystals. Characterization of these materials revealed a crystalline nature, bidentate binding mode of oleate and non-oxidized pristine silver surface. Phase transfer of these AgNPs from organics to water was facilitated by encapsulation and ligand exchange methods using amphiphilic polymers and methoxy poly (ethylene glycol) (mPEGSH) respectively. Among these surface coatings, steric stabilization by mPEGSH not only helped retain their optical properties but also reduced the dissolution (<1(w/w)%) of AgNPs. This enhanced the stability in various environmentally relevant high ionic strength media (such as Hoaglands, EPA hard water and OECD medium), thereby increasing the shelf life. In addition, size, surface coating, pH of the medium and grafting density of the polymer mediated the dissolution of AgNPs. For instance, the rate of dissolution was decreased by 40% when the polymer coating possessed a mushroom conformation and increased with reducing core size. Analogous to dissolution, physicochemical properties also influenced the antimicrobial activity which were studied by minimum inhibitory concentration (MIC) and bactericidal efficacy assays

  18. Biosynthesis of silver nanoparticles by using Ganoderma-mushroom extract

    NASA Astrophysics Data System (ADS)

    Ekar, S. U.; Khollam, Y. B.; Koinkar, P. M.; Mirji, S. A.; Mane, R. S.; Naushad, M.; Jadhav, S. S.

    2015-03-01

    Present study reports the biochemical synthesis of silver nanoparticles (Ag-NPs) from aqueous medium by using the extract of medicinal mushroom Ganoderma, as a reducing and stabilizing agents. The Ag-NPs are prepared at room temperature by the reduction of Ag+ to Ag in aqueous solution of AgNO3. The resultant particles are characterized by using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) measurement techniques. The formation of Ag-NPs is confirmed by recording the UV-visible absorption spectra for surface plasmon resonance (SPR) where peak around 427 nm. The prominent changes observed in FTIR spectra supported the reduction of Ag+ to Ag. The morphological features of Ag-NPs are evaluated from HRTEM. The spherical Ag-NPs are observed in transmission electron microscopy (TEM) studies. The particle size distribution is found to be nearly uniform with average particle size of 2 nm. The Ag-NPs aged for 15, 30, 60 and 120 days showed no profound effect on the position of SPR peak in UV-visible studies, indicating the protecting/capping ability of medicinal mushroom Ganoderma in the synthesis of Ag-NPs.

  19. Antibacterial activity of silver nanoparticles synthesized from serine.

    PubMed

    Jayaprakash, N; Judith Vijaya, J; John Kennedy, L; Priadharsini, K; Palani, P

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV-Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443nm. The emission spectrum of Ag NPs showed an emission band at 484nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO3 against Gram-positive and Gram-negative bacteria.

  20. Size-dependent structure of silver nanoparticles under high pressure

    SciTech Connect

    Koski, Kristie Jo

    2008-12-31

    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  1. Applications and toxicity of silver nanoparticles: a recent review.

    PubMed

    Marin, Stefania; Vlasceanu, George Mihail; Tiplea, Roxana Elena; Bucur, Ioana Raluca; Lemnaru, Madalina; Marin, Maria Minodora; Grumezescu, Alexandru Mihai

    2015-01-01

    Silver nanoparticles (AgNPs) exhibit a consistent amount of flexible properties which endorse them for a larger spectrum of applications in biomedicine and related fields. Over the years, silver nanoparticles have been subjected to numerous in vitro and in vivo tests to provide information about their toxic behavior towards living tissues and organisms. Researchers showed that AgNPs have high antimicrobial efficacy against many bacteria species including Escherichia coli, Neisseria gonorrhea, Chlamydia trachomatis and also viruses. Due to their novel properties, the incorporation of silver nanoparticles into different materials like textile fibers and wound dressings can extend their utility on the biomedical field while inhibiting infections and biofilm development. Among the noble metal nanoparticles, AgNPs present a series of features like simple synthesis routes, adequate and tunable morphology, and high surface to volume ratio, intracellular delivery system, a large plasmon field area recommending them as ideal biosensors, catalysts or photo-controlled delivery systems. In bioengineering, silver nanoparticles are considered potentially ideal gene delivery systems for tissue regeneration. The remote triggered detection and release of bioactive compounds of silver nanoparticles has proved their relevance also in forensic sciences. The authors report an up to date review related to the toxicity of AgNPs and their applications in antimicrobial activity and biosensors for gene therapy. PMID:25877089

  2. Applications and toxicity of silver nanoparticles: a recent review.

    PubMed

    Marin, Stefania; Vlasceanu, George Mihail; Tiplea, Roxana Elena; Bucur, Ioana Raluca; Lemnaru, Madalina; Marin, Maria Minodora; Grumezescu, Alexandru Mihai

    2015-01-01

    Silver nanoparticles (AgNPs) exhibit a consistent amount of flexible properties which endorse them for a larger spectrum of applications in biomedicine and related fields. Over the years, silver nanoparticles have been subjected to numerous in vitro and in vivo tests to provide information about their toxic behavior towards living tissues and organisms. Researchers showed that AgNPs have high antimicrobial efficacy against many bacteria species including Escherichia coli, Neisseria gonorrhea, Chlamydia trachomatis and also viruses. Due to their novel properties, the incorporation of silver nanoparticles into different materials like textile fibers and wound dressings can extend their utility on the biomedical field while inhibiting infections and biofilm development. Among the noble metal nanoparticles, AgNPs present a series of features like simple synthesis routes, adequate and tunable morphology, and high surface to volume ratio, intracellular delivery system, a large plasmon field area recommending them as ideal biosensors, catalysts or photo-controlled delivery systems. In bioengineering, silver nanoparticles are considered potentially ideal gene delivery systems for tissue regeneration. The remote triggered detection and release of bioactive compounds of silver nanoparticles has proved their relevance also in forensic sciences. The authors report an up to date review related to the toxicity of AgNPs and their applications in antimicrobial activity and biosensors for gene therapy.

  3. The Use of chitosan in The Formation of Silver Nanoparticles, Chitosanic Nanoparticles and Fibrous Structures

    NASA Astrophysics Data System (ADS)

    Abdelgawad, Abdelrahman Mohamed

    Nanoscale materials have attracted much attention in the last two decades due to their unique properties. The size effect attains new chemical and physical properties to these materials. Nanoparticles and nanofiber are major component of nanomaterials and they have heavily investigated in the literature for different applications. Nanoparticles could be produced from both metals as well as polymers. Chitosan, which is a natural polymer, can be used as capping agent in the preparation of metallic nanoparticles and itself, can produce nanoparticles. The utilization of nanoparticles and nanofibers for wound dressing materials is a very popular approach. Acquiring antibacterial properties to the wound dressing materials could be obtained either by formulation of nanomaterials composites or direct chemical modification of the substance. To improve the antibacterial properties of chitosan two approaches were applied. First, is through the formulation of chitosan with silver nanoparticles and the formation of nanofiber mats. In this study, the concepts of green chemistry were applied and silver nanoparticles were prepared in high concentration using chitosan as a capping polymer and glucose as a reducing agent. Nanofiber mats of polyvinyl alcohol/chitosan/silvernanoparticles were produced via electrospinning. The antibacterial activity of these fibers shows bactericidal effect against E. coli at low concentrations of Ag-NPs. In the second approach, direct chemical modification of chitosan was performed by grafting of Iodoacetic acid to the amino group at carbon-2. The chemical structure of chitosan Iodoacetamide derivative (CIA) was confirmed by FTIR and H1-NMR. The derivative was amorphous and water soluble at neutral pH. The minimum inhibitory concentration of CIA, against E. coli, was 400ig/mL and the derivative was bacteriostatic after 4h of treatment. Nanofiber mats of polyvinyl alcohol/chitosan/chitosan Iodoacetamide were produced via electrospinning. The

  4. Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Rajendran; Roopan, Selvaraj Mohana; Prabhakarn, Arunachalam; Khanna, Venkatesan Gopiesh; Chakroborty, Subhendu

    2012-05-01

    Development of reliable and eco-friendly process for the synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. We have developed modern method by using agriculture waste to synthesize silver nanoparticles by employing an aqueous peel extract of Annona squamosa in AgNO3. Controlled growth of silver nanoparticles was formed in 4 h at room temperature (25 °C) and 60 °C. AgNPs were irregular spherical in shape and the average particle size was about 35 ± 5 nm and it is consistent with particle size obtained by XRD Scherer equation.

  5. New Paradigm Shift for the Green Synthesis of Antibacterial Silver Nanoparticles Utilizing Plant Extracts

    PubMed Central

    2014-01-01

    This review covers general information regarding the green synthesis of antibacterial silver nanoparticles. Owing to their antibacterial properties, silver nanoparticles are widely used in many areas, especially biomedical applications. In green synthesis practices, the chemical reducing agents are eliminated, and biological entities are utilized to convert silver ions to silver nanoparticles. Among the various biological entities, natural plant extracts have emerged as green reducing agents, providing eco-friendly routes for the preparation of silver nanomaterials. The most obvious merits of green synthesis are the increased biocompatibility of the resulting silver nanoparticles and the ease with which the reaction can be carried out. This review summarizes some of the plant extracts that are used to produce antibacterial silver nanoparticles. Additionally, background information regarding the green synthesis and antibacterial activity of silver nanoparticles is provided. Finally, the toxicological aspects of silver nanoparticles are briefly mentioned. PMID:25343010

  6. Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria.

    PubMed

    Velmurugan, Palanivel; Lee, Sang-Myeong; Cho, Min; Park, Jung-Hee; Seo, Sang-Ki; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek

    2014-10-01

    We present a simple, eco-friendly synthesis of silver and gold nanoparticles using a natural polymer pine gum solution as the reducing and capping agent. The pine gum solution was combined with silver nitrate (AgNO3) or a chloroauric acid (HAuCl4) solution to produce silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), respectively. The reaction process was simple; formation of the nanoparticles was achieved by autoclaving the silver and gold ions with the pine gum. UV-Vis spectra showed surface plasmon resonance (SPR) for silver and gold nanoparticles at 432 and 539 nm, respectively. The elemental forms of AgNPs and AuNPs were confirmed by energy-dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FTIR) showed the biomolecules present in the pine gum, AgNPs, and AuNPs. Transmission electron microscopy (TEM) images showed the shape and size of AgNPs and AuNPs. The crystalline nature of synthesized AgNPs and AuNPs was confirmed by X-ray crystallography [X-ray diffraction (XRD)]. Application of synthesized AgNPs onto cotton fabrics and leather, in order to evaluate their antibacterial properties against odor- or skin infection-causing bacteria, is also discussed. Among the four tested bacteria, AgNP-coated cotton fabric and leather samples displayed excellent antibacterial activity against Brevibacterium linens.

  7. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate

    PubMed Central

    2011-01-01

    Background The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs) and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food and food contact materials. Results AgNPs were synthesized with a size distribution of 14 ± 4 nm in diameter (90% of the nanoparticle volume) and stabilized in aqueous suspension by the polymer polyvinylpyrrolidone (PVP). The AgNPs remained stable throughout the duration of the 28-day oral toxicity study in rats. The organ distribution pattern of silver following administration of AgNPs and AgAc was similar. However the absolute silver concentrations in tissues were lower following oral exposure to AgNPs. This was in agreement with an indication of a higher fecal excretion following administration of AgNPs. Besides the intestinal system, the largest silver concentrations were detected in the liver and kidneys. Silver was also found in the lungs and brain. Autometallographic (AMG) staining revealed a similar cellular localization of silver in ileum, liver, and kidney tissue in rats exposed to AgNPs or AgAc. Using transmission electron microscopy (TEM), nanosized granules were detected in the ileum of animals exposed to AgNPs or AgAc and were mainly located in the basal lamina of the ileal epithelium and in lysosomes of macrophages within the lamina propria. Using energy dispersive x-ray spectroscopy it was shown that the granules in lysosomes consisted of silver, selenium, and sulfur for both AgNP and AgAc exposed rats. The diameter of the deposited granules was in the same size range as that of the administered AgNPs. No silver granules were detected by TEM in the liver. Conclusions The results of the present study demonstrate that the organ distribution of silver was similar when AgNPs or AgAc were administered orally to rats. The presence of silver granules containing

  8. Thermoluminescence of mercaptoethanol-capped ZnS:Mn nanoparticles.

    PubMed

    Sharma, Ravi; Bisen, D P

    2015-03-01

    The thermoluminescence (TL) of nanoparticles has become a matter of keen interest in recent times but is rarely reported. This article reports the synthesis of ZnS:Mn nanocrystals using a chemical route, with mercaptoethanol (ME) as the capping agent. The particle sizes for the nanocrystals were measured by X-ray diffraction (XRD) and also by studying transmission electron microscopy (TEM) patterns. The particle sizes of the synthesized samples were found to be between 1 and 3 nm. For samples with different concentrations of the capping agent, it was found that the TL intensity of the ZnS:Mn nanoparticles increased as the particle size decreased. A shift in the peak position of the TL glow curve was also seen with decreasing particle size. The TL intensity was found to be maximal for samples with 1.2% of Mn. A change in the peak position was not found for samples with different concentrations of Mn. The half-width glow peak curve method was used to determine the trap-depth. The frequency factor of the synthesized samples was also calculated. The stability of the charge carriers in the traps increases with decreasing nanoparticle size. The higher stability may be attributed to the higher surface/volume ratio and also to the increase in the trap-depth with decreasing particle size.

  9. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity

    PubMed Central

    Butler, Kimberly S.; Peeler, David J.; Casey, Brendan J.; Dair, Benita J.; Elespuru, Rosalie K.

    2015-01-01

    The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (reverse mutation assay) was assessed in five bacterial strains of Salmonella typhimurium and Echerichia coli, including TA102 that is sensitive to oxidative DNA damage. AgNPs of all sizes tested (10, 20, 50 and 100nm), along with silver nitrate (AgNO3), were negative for mutagenicity in bacteria. No AgNPs could be identified within the bacteria cells using transmission electron microscopy (TEM), indicating these bacteria lack the ability to actively uptake AgNPs 10nm or larger. Clastogenicity (flow cytometry-based micronucleus assay) and intermediate DNA damage (DNA strand breaks as measured in the Comet assay) were assessed in two mammalian white blood cell lines: Jurkat Clone E6-1 and THP-1. It was observed that micronucleus and Comet assay end points were inversely correlated with AgNP size, with smaller NPs inducing a more genotoxic response. TEM results indicated that AgNPs were confined within intracellular vesicles of mammalian cells and did not penetrate the nucleus. The genotoxicity test results and the effect of AgNO3 controls suggest that silver ions may be the primary, and perhaps only, cause of genotoxicity. Furthermore, since AgNO3 was not mutagenic in the gram-negative bacterial Ames strains tested, the lack of bacterial uptake of the AgNPs may not be the major reason for the lack of genotoxicity observed. PMID:25964273

  10. Preparation of conducting silver paste with Ag nanoparticles prepared by e-beam irradiation

    NASA Astrophysics Data System (ADS)

    Sohn, Jong Hwa; Pham, Long Quoc; Kang, Hyun Suk; Park, Ji Hyun; Lee, Byung Cheol; Kang, Young Soo

    2010-11-01

    Conducting silver paste was prepared by using Ag nanoparticles which were synthesized by e-beam irradiation method (from KAERI); its conductivity was comparatively determined with Ag nanoparticles which were prepared by thermolysis method (commercial). The silver nanoparticles with the diameter of approximately 150 nm size prepared by e-beam irradiation were mixed with glass frit and sintered for 1 h at 500 °C. It is presumably concluded that the wt% of silver nanoparticle, size distribution and homogenous dispersibility of Ag nanoparticles in the pastes are the critical factors for the high conductivity of the paste. Among the various wt% of silver nanoparticle in the conducting silver pastes, silver paste with 90 wt% of silver nanoparticle has the highest conductivity as 1.6×10 4 S cm -1. This conductivity value is 1.6 times higher than the Ag pastes which were prepared with silver nanoparticles obtained by thermolysis method.

  11. Ceragenin mediated selectivity of antimicrobial silver nanoparticles.

    PubMed

    Hoppens, Mark A; Sylvester, Christopher B; Qureshi, Ammar T; Scherr, Thomas; Czapski, Desiree R; Duran, Randolph S; Savage, Paul B; Hayes, Daniel

    2014-08-27

    The understanding that common broad-spectrum antimicrobials disrupt natural microbial flora important in acquiring nutrients and preventing infection has resulted in a paradigm shift favoring more selective antimicrobials. This work explores silver nanoparticles conjugated with ceragenin, or cationic antimicrobials (CSA-SNPs), as a potential Gram-positive selective antimicrobial. Herein, CSA-SNPs are characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, and high-performance liquid chromatography-electrospray time-of-flight mass spectrometry (HPLC-ESI-TOF-MS). The antimicrobial properties are determined through minimum inhibitory concentration/minimum bactericidal concentration (MIC/MBC) and time-kill studies. Spatial selectivity of the conjugate nanoparticle was evaluated using confocal imaging, MATLAB statistical analysis, and video monitored interactions between bacteria and CSA-SNPs via laser trapping techniques. Cytotoxicity was also determined by live/dead staining and flow cytometry. Average particle size, as determined through TEM analysis, and hydrodynamic diameter, as determined via DLS, are 63.5 ± 38.8 and 102.23 ± 2.3 nm, respectively. The zeta potential of the SNP before and after CSA attachment is -18.23 and -8.34 mV, respectively. MIC/MBC data suggest that CSA-SNPs are 8 times more effective against Staphylococcus aureus than SNPs alone. Furthermore, MATLAB analysis of confocal imaging found that 70% of CSA-SNPs are within 2 μm of S. aureus, whereas this percentage falls to below 40% with respect to Escherichia coli. These results are bolstered further by laser trapping experiments demonstrating selective adherence of CSA-SNPs conjugates with bacterial strains. Cytotoxicity studies of CSA-SNPs against 3T3 fibroblasts indicate 50% cell viability at 50 ppm.

  12. PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

    PubMed Central

    Ahlberg, Sebastian; Antonopulos, Alexandra; Diendorf, Jörg; Dringen, Ralf; Flöck, Rebekka; Goedecke, Wolfgang; Graf, Christina; Haberl, Nadine; Helmlinger, Jens; Herzog, Fabian; Heuer, Frederike; Hirn, Stephanie; Johannes, Christian; Kittler, Stefanie; Köller, Manfred; Korn, Katrin; Kreyling, Wolfgang G; Krombach, Fritz; Lademann, Jürgen; Loza, Kateryna; Luther, Eva M; Malissek, Marcelina; Meinke, Martina C; Nordmeyer, Daniel; Pailliart, Anne; Raabe, Jörg; Rancan, Fiorenza; Rothen-Rutishauser, Barbara; Rühl, Eckart; Schleh, Carsten; Seibel, Andreas; Sengstock, Christina; Treuel, Lennart; Vogt, Annika; Weber, Katrin; Zellner, Reinhard

    2014-01-01

    Summary PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as demonstrated for hMSC, primary T-cells, primary monocytes, and astrocytes. A visualization of particles inside cells is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM analysis. By staining organelles, their localization inside the cell can be additionally determined. While primary brain astrocytes are shown to be fairly tolerant toward silver nanoparticles, silver nanoparticles induce the formation of DNA double-strand-breaks (DSB) and lead to chromosomal aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo induced a moderate pulmonary toxicity, however, only at rather high concentrations. The same was found in precision-cut lung slices of rats in which silver nanoparticles remained mainly at the tissue surface. In a human 3D triple-cell culture model consisting of three cell types (alveolar epithelial cells, macrophages, and dendritic cells), adverse effects were also only found at high silver concentrations. The silver ions that are released from silver nanoparticles may be harmful

  13. PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments.

    PubMed

    Ahlberg, Sebastian; Antonopulos, Alexandra; Diendorf, Jörg; Dringen, Ralf; Epple, Matthias; Flöck, Rebekka; Goedecke, Wolfgang; Graf, Christina; Haberl, Nadine; Helmlinger, Jens; Herzog, Fabian; Heuer, Frederike; Hirn, Stephanie; Johannes, Christian; Kittler, Stefanie; Köller, Manfred; Korn, Katrin; Kreyling, Wolfgang G; Krombach, Fritz; Lademann, Jürgen; Loza, Kateryna; Luther, Eva M; Malissek, Marcelina; Meinke, Martina C; Nordmeyer, Daniel; Pailliart, Anne; Raabe, Jörg; Rancan, Fiorenza; Rothen-Rutishauser, Barbara; Rühl, Eckart; Schleh, Carsten; Seibel, Andreas; Sengstock, Christina; Treuel, Lennart; Vogt, Annika; Weber, Katrin; Zellner, Reinhard

    2014-01-01

    PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of -20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as demonstrated for hMSC, primary T-cells, primary monocytes, and astrocytes. A visualization of particles inside cells is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM analysis. By staining organelles, their localization inside the cell can be additionally determined. While primary brain astrocytes are shown to be fairly tolerant toward silver nanoparticles, silver nanoparticles induce the formation of DNA double-strand-breaks (DSB) and lead to chromosomal aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo induced a moderate pulmonary toxicity, however, only at rather high concentrations. The same was found in precision-cut lung slices of rats in which silver nanoparticles remained mainly at the tissue surface. In a human 3D triple-cell culture model consisting of three cell types (alveolar epithelial cells, macrophages, and dendritic cells), adverse effects were also only found at high silver concentrations. The silver ions that are released from silver nanoparticles may be harmful to skin

  14. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection

    NASA Astrophysics Data System (ADS)

    Yang, Xiao Xi; Li, Chun Mei; Huang, Cheng Zhi

    2016-01-01

    Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition effect against respiratory syncytial virus (RSV) infection, giving a decrease of viral titers about two orders of magnitude at the concentration of cAgNPs under which no toxicity was found to the host cells. Mechanism investigations showed that cAgNPs could prevent RSV from infecting the host cells by inactivating the virus directly, indicating that cAgNPs are a novel promising efficient virucide for RSV.Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition

  15. RIR-MAPLE deposition of plasmonic silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ge, Wangyao; Hoang, Thang B.; Mikkelsen, Maiken H.; Stiff-Roberts, Adrienne D.

    2016-09-01

    Nanoparticles are being explored in many different applications due to the unique properties offered by quantum effects. To broaden the scope of these applications, the deposition of nanoparticles onto substrates in a simple and controlled way is highly desired. In this study, we use resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) for the deposition of metallic, silver nanoparticles for plasmonic applications. We find that RIR-MAPLE, a simple and versatile approach, is able to deposit silver nanoparticles as large as 80 nm onto different substrates with good adhesion, regardless of substrate properties. In addition, the nanoparticle surface coverage of the substrates, which result from the random distribution of nanoparticles across the substrate per laser pulse, can be simply and precisely controlled by RIR-MAPLE. Polymer films of poly(3-hexylthiophene-2,5-diyl) (P3HT) are also deposited by RIR-MAPLE on top of the deposited silver nanoparticles in order to demonstrate enhanced absorption due to the localized surface plasmon resonance effect. The reported features of RIR-MAPLE nanoparticle deposition indicate that this tool can enable efficient processing of nanoparticle thin films for applications that require specific substrates or configurations that are not easily achieved using solution-based approaches.

  16. Production of silver ions from colloidal silver by nanoparticle iontophoresis system.

    PubMed

    Tseng, Kuo-Hsiung; Liao, Chih-Yu

    2011-03-01

    Metal ions, especially the silver ion, were used to treat infection before the initiation of antibiotic therapy. Unfortunately, there is a lack of research on the metallic nanoparticle suspension as a reservoir for metal ion release application. For medical purposes, conversion of colloidal silver into an ionic form is necessary, but not using silver salts (e.g., AgNO3, Ag2SO4), due to the fact that the counter-ion of silver salts may cause problems to the body as the silver ion (Ag+) is consumed. The goal of this research is to develop a silver nanoparticle iontophoresis system (NIS) which can provide a relatively safe bactericidal silver ion solution with a controllable electric field. In this study, ion-selective electrodes were used to identify and observe details of the system's activity. Both qualitative and quantitative data analyses were performed. The experimental results show that the ion releasing peak time (R(PT)) has an inversely proportional relationship with the applied current and voltage. The ion releasing maximum level (R(ML)) and dosage (R(D)) are proportional to the current density and inversely proportional to the voltage, respectively. These results reveal that the nanoparticle iontophoresis system (NIS) is an alternative method for the controlled release of a metal ion and the ion's concentration profile, by controlling the magnitude of current density (1 microA/cm2 equal to 1 ppm/hour) and applied voltage.

  17. Fate of Silver Nanoparticles in Lake Mesocosms

    NASA Astrophysics Data System (ADS)

    Furtado, Lindsay

    The fate of silver nanoparticles (AgNPs) in surface waters determines the ecological risk of this emerging contaminant. In this research, the fate of AgNPs in lake mesocosms was studied using both a continuous (i.e. drip) and one-time (i.e. plug) dosing regime. AgNPs were persistent in the tested lake environment as there was accumulation in the water column over time in drip mesocosms and slow dissipation from the water column (half life of 20 days) in plug mesocosms. In drip mesocosms, AgNPs were found to accumulate in the water column, periphtyon, and sediment according to loading rate; and, AgNP coating (PVP vs. CT) had no effect on agglomeration and dissolution based on filtration analysis. In plug mesocosms, cloud point extraction (CPE), single-particle-inductively coupled mass spectroscopy (spICP-MS), and asymmetrical flow field-flow fractionation (AF4-ICP-MS) confirmed the temporal dissolution of AgNPs into Ag+ over time; however, complexation is expected to reduce the toxicity of Ag + in natural waters.

  18. Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens.

    PubMed

    Krishnaraj, Chandran; Ji, Byoung-Jun; Harper, Stacey L; Yun, Soon-Il

    2016-05-01

    Silver nanoparticles (AgNPs), manganese dioxide nanoparticles (MnO₂NPs) and silver-doped manganese dioxide nanoparticles (Ag-doped MnO₂NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extract from the leaves of medicinally important plant Cucurbita pepo was used as reducing and capping agents. Various characterization techniques were carried out to affirm the formation of nanoparticles. HR-TEM analysis confirmed the size of nanoparticles in the range of 15-70 nm and also metal doping was confirmed through XRD and EDS analyses. FT-IR analysis confirmed that the presence of biomolecules in the aqueous leaves extract was responsible for nanoparticles synthesis. Further, the concentration of metals and their doping in the reaction mixture was achieved by ICP-MS. The growth curve and well diffusion study of synthesized nanoparticles were performed against food- and water-borne Gram-positive and Gram-negative bacterial pathogens. The mode of interaction of nanoparticles on bacterial cells was demonstrated through Bio-TEM analysis. Interestingly, AgNPs and Ag-doped MnO₂NPs showed better antibacterial activity against all the tested bacterial pathogens; however, MnO₂NPs alone did not show any antibacterial properties. Hence, AgNPs and Ag-doped MnO₂NPs synthesized from aqueous plant leaves extract may have important role in controlling various food spoilage caused by bacteria. PMID:26857369

  19. Preparation and characterization of Au nanoparticles capped with mercaptocarboranyl clusters.

    PubMed

    Cioran, Ana M; Teixidor, Francesc; Krpetić, Željka; Brust, Mathias; Viñas, Clara

    2014-04-01

    The preparation of 3-4 nm and 10 nm gold nanoparticles capped with neutral carborane-based mercaptocarboranes, via two different preparative routes, is reported. The resulting boron-enriched nanomaterials exhibit complete dispersibility in water, opening the way for the use of these monolayer protected clusters (MPCs) in medical applications, such as boron neutron capture therapy (BNCT). These newly prepared MPCs have been characterized by FTIR, (1)H and (11)B NMR spectroscopy, UV-visible, centrifugal particle sizing (CPS), and, in some cases, inductively coupled plasma atomic emission spectrometry (ICP-AES). Water dispersibility exhibited by these MPCs allowed the study of the cellular uptake by HeLa cells.

  20. Catalytic degradation of organic dyes using biosynthesized silver nanoparticles.

    PubMed

    Vidhu, V K; Philip, Daizy

    2014-01-01

    The green synthesis of metallic nanoparticles paved the way to improve and protect the environment by decreasing the use of toxic chemicals and eliminating biological risks in biomedical applications. Plant mediated synthesis of metal nanoparticles is gaining more importance owing to its simplicity, rapid rate of synthesis of nanoparticles and eco-friendliness. The present article reports an environmentally benign and unexploited method for the synthesis of silver nanocatalysts using Trigonella foenum-graecum seeds, which is a potential source of phytochemicals. The UV-visible absorption spectra of the silver samples exhibited distinct band centered around 400-440 nm. The major phytochemicals present in the seed extract responsible for the formation of silver nanocatalysts are identified using FTIR spectroscopy. The report emphasizes the effect of the size of silver nanoparticles on the degradation rate of hazardous dyes, methyl orange, methylene blue and eosin Y by NaBH4. The efficiency of silver nanoparticles as a promising candidate for the catalysis of organic dyes by NaBH4 through the electron transfer process is established in the present study.

  1. Tuning nanoscale friction on Pt nanoparticles with engineering of organic capping layer.

    PubMed

    Park, Jeong Young

    2011-03-15

    Nanoscale friction and adhesion on Pt colloid nanoparticles coated with different organic capping layers were probed with atomic/friction force microscopy. Platinum colloid nanoparticles with four types of capping layers have been synthesized and used as model lubricant systems: TTAB (tetradecyltrimethylammonium bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). Two-dimensional arrays of colloid nanoparticles were prepared using the Langmuir-Blodgett method. We found that the friction and adhesion properties on colloid nanoparticles are lower than those on a silicon surface. The variation of friction when changing the capping layers is ∼30%, and it appears that the friction depends on the packing and ordering of the capping layers. Partial removal of the capping layers using ultraviolet light (UV)-ozone surface treatment resulted in increased friction. These results suggest a new method of tuning nanometer scale friction and adhesion by engineering organic capping layers on nanoparticles.

  2. Green synthesis of the silver nanoparticles mediated by pullulan and 6-carboxypullulan.

    PubMed

    Coseri, Sergiu; Spatareanu, Alina; Sacarescu, Liviu; Rimbu, Cristina; Suteu, Daniela; Spirk, Stefan; Harabagiu, Valeria

    2015-02-13

    Unoxidized and carboxylated pullulan (obtained by pullulan oxidation using TEMPO-sodium hypochlorite-sodium bromide system) have been used as mediators for the silver nanoparticles formation (AgNPs), under environment-friendly conditions: using aqueous solutions, room temperature and notably, by using both mediators as reducing and stabilizing agents. The formation of AgNPs was first screened by measuring the surface plasmon resonance peak in the range of 380-440 nm using UV-vis spectroscopy. The morphology of the synthesized silver nanoparticles was determined by TEM, which indicated that the AgNPs differ on shape and thickness of the polymer shell by varying the silver nitrate concentration, different size and shape of AgNPs was achieved. The presence of elemental silver and the crystalline structure of the AgNPs were confirmed by EDX and XRD analyses. Moreover, the possible functional groups of pullulan (oxidized pullulan) responsible for the reduction and stabilization of AgNPs were evaluated using FT-IR. The results showed that both, pullulan and 6-carboxypullulan could be successfully used as reducing as well as capping agents for the AgNPs synthesis which shows potential antimicrobial activity against Gram positive and Gram negative bacteria.

  3. Green synthesis of silver nanoparticles as antibacterial agent using Rhodomyrtus tomentosa acetone extract

    NASA Astrophysics Data System (ADS)

    Voravuthikunchai, Supayang P.; Chorachoo, Julalak; Jaiswal, Lily; Shankar, Shiv

    2013-12-01

    The capability of Rhodomyrtus tomentosa acetone extract (RAE) for the production of silver nanoparticles (AgNPs) has been explored for the first time. Silver nanoparticles with a surface plasmon resonance band centered at 420-430 nm were synthesized by reacting RAE with AgNO3. Reaction time, temperature, concentration of AgNO3 and RAE could accelerate the reduction rate of Ag+ and affect AgNPs size. The nanoparticles were found to be 10-30 nm in size and spherical in shape. XRD data demonstrated crystalline nature of AgNPs dominated by (200) facets. FTIR results showed decrease in intensity of peaks at 3394, 1716 and 1618 cm-1 indicating the involvement of O-H, carbonyl group and C=C stretching with the formation of AgNPs with RAE, respectively. The C-O-C and C-N stretching suggested the presence of many phytochemicals on the surface of the nanoparticles. High negative zeta potential values confirmed the stability of AgNPs in water. In vitro antibacterial activity of AgNPs was tested against Staphylococcus aureus using broth microdilution method. AgNPs capped with RAE demonstrated profound antibacterial activity against the organisms with minimum inhibitory concentration and minimum bactericidal concentration in the range between 3.1-6.2 and 6.2-50 μgmL-1, respectively. The synthesized nanoparticles could be applied as an effective antimicrobial agent against staphylococcal infections.

  4. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-stabilized silver nanoparticles were prepared from amylose-sodium palmitate complexes by first converting sodium palmitate to silver palmitate by reaction with silver nitrate and then reducing the silver ion to metallic silver. This process produced water solutions that could be dried and the...

  5. Nanoparticle impacts show high-ionic-strength citrate avoids aggregation of silver nanoparticles.

    PubMed

    Lees, Jessica C; Ellison, Joanna; Batchelor-McAuley, Christopher; Tschulik, Kristina; Damm, Christine; Omanović, Dario; Compton, Richard G

    2013-12-01

    Quantitative analytical detection and sizing of silver nanoparticles is achieved by applying the new electrochemical method nanoparticle coulometry. For the first time, tri-sodium citrate is used as both an electrolyte and a nanoparticle stabilizing agent, allowing the individual particles to be addressed.

  6. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zamanian, Ali; Sangpour, Parvanh; Shabanzadeh, Parvaneh; Abdollahi, Yadollah; Zargar, Mohsen

    2012-01-01

    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries. PMID:23341739

  7. Nanoscale self-arranged layers of silver nanoparticles in glass

    NASA Astrophysics Data System (ADS)

    Redkov, Alexey V.; Lipovskii, Andrey A.; Dussauze, Marc; Paraillous, Maxime; Cardinal, Thierry

    2016-05-01

    We characterized changes in the composition of subsurface layer of silver ion-exchanged soda-lime glass during annealing in hydrogen atmosphere. The formation of tens of nanometers distanced layers of silver nanoparticles in the glass at temperature of 300 °C has been revealed. Performed numerical modeling of the process demonstrates a good qualitative agreement with the experiment. This is of interest for simple formation of 3D-optoplasmonic structures, Bragg gratings or photonic crystals.

  8. Distribution of silver nanoparticles in pregnant mice and developing embryos.

    PubMed

    Austin, Carlye A; Umbreit, Thomas H; Brown, Ken M; Barber, David S; Dair, Benita J; Francke-Carroll, Sabine; Feswick, April; Saint-Louis, Melissa A; Hikawa, Hiroyuki; Siebein, Kerry N; Goering, Peter L

    2012-12-01

    The objective of this study was to evaluate the distribution of silver nanoparticles (NPs) in pregnant mice and their developing embryos. Silver NPs (average diameter 50 nm) were intravenously injected into pregnant CD-1 mice on gestation days (GDs) 7, 8, and 9 at dose levels of 0, 35, or 66 μg Ag/mouse. Mice were euthanised on GD10, and tissue samples were collected and analysed for silver content. Compared with control animals injected with citrate buffer vehicle, silver content was significantly increased (p < 0.05) in nearly all tissues from silver NP-treated mice. Silver accumulation was significantly higher in liver, spleen, lung, tail (injection site), visceral yolk sac, and endometrium compared with other organs from silver NP-treated mice. Furthermore, silver NPs were identified in vesicles in endodermal cells of the visceral yolk sac. In summary, the results demonstrated that silver NPs distributed to most maternal organs, extra-embryonic tissues, and embryos, but did not accumulate significantly in embryos. PMID:22023110

  9. Effects of dental porcelain containing silver nanoparticles on static fatigue.

    PubMed

    Fujieda, Tokushi; Uno, Mitsunori; Ishigami, Hajime; Kurachi, Masakazu; Kamemizu, Hideo; Wakamatsu, Nobukazu; Doi, Yutaka

    2013-01-01

    The purpose of this study was to clarify the effect of silver nanoparticles on the behavior of subcritical crack growth (SCG) in dental porcelains. Prior to occurrence of fast fracture in dental porcelains, SCG occurs and leads to strength degradation over time. SCG in dental porcelains can be characterized by the stress corrosion susceptibility coefficient, n. A higher n value means a higher resistance to SCG. In this study, porcelain disks were prepared by mixing a commercial dental porcelain powder with different concentrations of silver nanoparticles, and then air-dried and fired according to manufacturer's instructions. Stress corrosion susceptibility coefficients of powder compacts were determined using a post-indentation method. A Vickers indenter was applied to the porcelain surface, and lengths of median cracks were measured at fixed time intervals over a 24-h period to calculate n. Addition of silver nanoparticles significantly increased the stress corrosion susceptibility coefficient of dental porcelain.

  10. Sulfidation of Silver Nanoparticles: Natural antidote to their toxicity

    PubMed Central

    Levard, Clément; Hotze, Ernest M.; Colman, Benjamin P.; Truong, Lisa; Yang, X. Y.; Bone, Audrey; Brown, Gordon E.; Tanguay, Robert L.; Di Giulio, Richard T.; Bernhardt, Emily S.; Meyer, Joel N.; Wiesner, Mark R.; Lowry, Gregory V.

    2014-01-01

    Nanomaterials are highly dynamic in biological and environmental media. A critical need for advancing environmental health and safety research for nanomaterials is to identify commonly occurring physical and chemical transformations affecting nanomaterial properties and toxicity. Silver nanoparticles, one of the most ecotoxic and well-studied nanomaterials, readily sulfidize in the environment. Here, we show that very low degrees of sulfidation (0.019 S/Ag mass ratio) universally and significantly decreases the toxicity of silver nanoparticles to four diverse types of aquatic and terrestrial eukaryotic organisms. Toxicity reduction is primarily associated with a decrease in Ag+ availability after sulfidation due to the lower solubility of Ag2S relative to elemental Ag (Ag(0)). We also show that chloride in exposure media determines silver nanoparticle toxicity by controlling the speciation of Ag. These results highlight the need to consider environmental transformation of NPs in assessing their toxicity to accurately portray their potential environmental risks. PMID:24180218

  11. Fungicidal activity of silver nanoparticles against Alternaria brassicicola

    NASA Astrophysics Data System (ADS)

    Gupta, Deepika; Chauhan, Pratima

    2016-04-01

    This work highlighted the fungicidal properties of silver nanoparticles against Alternaria brassicicola. Alternaria brassicicola causes Black spot of Cauliflower, radish, cabbage, kale which results in sever agricultural loss. We treat the synthesised silver nanoparticles (AgNPs) of 10, 25, 50, 100 and 110 ppm concentrations against Alternaria brassicicola on PDA containing Petri dish. We calculated inhibitory rate (%) in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. Treatment with 100ppm AgNPs resulted in maximum inhibition of Alternaria brassicicola i.e.92.2%. 110ppm of AgNPS also shows the same result, therefore 100ppm AgNPs was treated as optimize concentration. AgNPs effectively inhibited the growth of a Alternaria brassicicola, which suggests that AgNPs could be used as fungicide in plant disease management. Further research and development are necessary to translate this technology into plant disease management strategies.

  12. Photocurrent enhancement in polythiophene doped with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Szeremeta, Janusz; Nyk, Marcin; Samoc, Marek

    2014-11-01

    We studied the spectral dependence of the influence of silver nanoparticles (Ag NPs) on the photoconductivity of poly(3-hexylthiophene) (P3HT) thin films. 7 ± 2 nm silver nanoparticles were synthesized by thermal decomposition of an organometallic silver salt in organic solvent. Optical properties of the mixture of P3HT and Ag NPs and thin films with various Ag content were investigated. Spectral dependences of the photocurrent were measured for the films cast on the top of interdigitated microelectrodes. Antibatic behavior of the photocurrent with respect to the absorption spectrum was observed. Results shows 40-150 times enhancement of the photocurrents, depending on the wavelength, in films doped with Ag NPs compared with the pristine films. The existing theories on the influence of metallic nanoparticles in the photoactive layer of organic solar cells are reviewed and discussed.

  13. Innovative method to avoid the reduction of silver ions to silver nanoparticles \\left( A{{g}^{+}}\\to Ag{}^\\circ \\right) in silver ion conducting based polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.; Abidin, Zul Hazrin Z.; Kadir, M. F. Z.

    2015-03-01

    In this research work an innovative method is used to prevent the silver ion reduction in solid polymer electrolytes. The x-ray diffraction (XRD) results reveal the disruption of the crystalline nature of chitosan (CS) and formation of silver nanoparticles upon addition of silver triflate (AgTf) salt. The UV-vis measurement confirms the existence of silver nanoparticles via the broad surface plasmon resonance (SPR) peak. Upon the addition of Al2O3 nanoparticles the SPR peak intensity is greatly reduced. The amorphous domain of the CS:silver triflate (CS:AgTf) system increases with the addition of Al2O3 nanoparticles up to 4 wt.%. Deconvolution of the XRD results reveals that a larger crystallite size is obtained for higher Al2O3 concentrations and the peaks due to silver nanoparticles almost disappear. Scanning electron microscope (SEM) analyses show that Al2O3 nanoparticles are well dispersed at low concentrations and the leakage of chains of silver nanoparticles to the membrane surface almost disappear. The XRD, UV-vis, SEM and energy-dispersive x-ray (EDX) results strongly support that the reduction of silver ions to silver nanoparticles (Ag+ → Ag°) in the CS:silver triflate system is significantly avoided upon the addition of an Al2O3 filler.

  14. Dual effects of β-cyclodextrin-stabilised silver nanoparticles: enhanced biofilm inhibition and reduced cytotoxicity.

    PubMed

    Jaiswal, Swarna; Bhattacharya, Kunal; McHale, Patrick; Duffy, Brendan

    2015-01-01

    The composition and mode of synthesis of nanoparticles (NPs) can affect interaction with bacterial and human cells differently. The present work describes the ability of β-cyclodextrin (β-CD) capped silver nanoparticles (AgNPs) to inhibit biofilm growth and reduce cytotoxicity. Biofilm formation of Staphylococcus epidermidis CSF 41498 was quantified by a crystal violet assay in the presence of native and capped AgNPs (Ag-10CD and Ag-20CD), and the morphology of the biofilm was observed by scanning electron microscope. The cytotoxicity of the AgNPs against HaCat cells was determined by measuring the increase in intracellular reactive oxygen species and change in mitochondrial membrane potential (ΔΨm). Results indicated that capping AgNPs with β-CD improved their efficacy against S. epidermidis CSF 41498, reduced biofilm formation and their cytotoxicity. The study concluded that β-CD is an effective capping and stabilising agent that reduces toxicity of AgNPs against the mammalian cell while enhancing their antibiofilm activity. PMID:25596861

  15. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    PubMed

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials.

  16. Reducing Environmental Toxicity of Silver Nanoparticles through Shape Control.

    PubMed

    Gorka, Danielle E; Osterberg, Joshua S; Gwin, Carley A; Colman, Benjamin P; Meyer, Joel N; Bernhardt, Emily S; Gunsch, Claudia K; DiGulio, Richard T; Liu, Jie

    2015-08-18

    The use of antibacterial silver nanomaterials in consumer products ranging from textiles to toys has given rise to concerns over their environmental toxicity. These materials, primarily nanoparticles, have been shown to be toxic to a wide range of organisms; thus methods and materials that reduce their environmental toxicity while retaining their useful antibacterial properties can potentially solve this problem. Here we demonstrate that silver nanocubes display a lower toxicity toward the model plant species Lolium multiflorum while showing similar toxicity toward other environmentally relevant and model organisms (Danio rerio and Caenorhabditis elegans) and bacterial species (Esherichia coli, Bacillus cereus, and Pseudomonas aeruginosa) compared to quasi-spherical silver nanoparticles and silver nanowires. More specifically, in the L. multiflorum experiments, the roots of silver nanocube treated plants were 5.3% shorter than the control, while silver nanoparticle treated plant roots were 39.6% shorter than the control. The findings here could assist in the future development of new antibacterial products that cause less environmental toxicity after their intended use.

  17. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    NASA Astrophysics Data System (ADS)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  18. Evolution of Silver Nanoparticles in the Rat Lung Investigated by X-ray Absorption Spectroscopy

    PubMed Central

    2015-01-01

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurements taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. We found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period. PMID:25517690

  19. Biocide silver nanoparticles in two different silica-based coating

    NASA Astrophysics Data System (ADS)

    Babapour, A.; Yang, B.; Bahang, S.; Cao, W.

    2012-09-01

    Silica-based coatings containing biocide silver nanoparticles have been synthesized using low temperature sol-gel method. Two different silane based matrices, phenyltriethoxysilane (PhTEOS) and tetraethyl orthosilicate (TEOS), were selected as precursor to prepare silica-based film. The films were analyzed by using UV-visible spectrophotometry, atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their optical, surface morphological as well as structural properties. Optical properties of nanosilver in these two matrices showed that the peak absorption observed at different wavelength, which is due to the fact that optical absorption of nanoparticles is affected by the surrounding medium. It is also found that the silver absorption has higher intensity in PhTEOS than in TEOS matrix, indicating higher concentration of silver nanoparticles being loaded into the coating. To study silver release property, the films were immersed in water for 12 and 20 days. AFM and SEM analyzes present that higher concentration of silver nanoparticles and smaller particle sizes were synthesis in PhTEOS coating and consequently, more particles remains on the surfaces after 20 days which leads to longer antibacterial activity of PhTEOS coating.

  20. Interaction between Silver Nanoparticles and Spinach Leaf

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Li, H.; Zhang, Y.; Riser, E.; He, S.; Zhang, W.

    2013-12-01

    Interactions of engineered nanoparticles (ENPs) with plant surfaces are critical to assessing the bioavailability of ENPs to edible plants and to further evaluating impacts of ENPs on ecological health and food safety. Silver nanoparticles (i.e., nanoAg) could enter the agroecosystems either as an active ingredient in pesticides or from other industrial and consumer applications. Thus, in the events of pesticide application, rainfall, and irrigation, vegetable leaves could become in contact and then interact with nanoAg. The present study was to assess whether the interaction of nanoAg with spinach leaves can be described by classical sorption models and to what extent it depends on and varies with dispersion methods, environmental temperature, and ion release. We investigated the stability and ion release of nanoAg dispersed by sodium dodecyl sulfate (SDS, 1%) and humic acid (HA, 10 mg C/L) solutions, as well as sorption and desorption of nanoAg on and from the fresh spinach leaf. Results showed SDS-nanoAg released about 2%-8% more Ag ion than HA-nanoAg. The sorption of Ag ion, described by the Freundlich model in the initial concentration range of 0.6-50 mg/L, was 2-4 times higher than that of nanoAg. The sorption of nanoAg on spinach leaf can be fitted by the Langmuir model, and the maximum sorption amount of HA-nanoAg and SDS-nanoAg was 0.21 and 0.41 mg/g, respectively. The higher sorption of SDS-nanoAg relative to that of HA-nanoAg could be partially resulted from the higher release of Ag ion from the former. The maximum desorption amount of HA-nanoAg and SDS-nanoAg in 1% SDS solution was 0.08 and 0.10 mg/g, respectively. NanoAg attachment on and its penetration to the spinach leaf was visualized by the Scanning Electron Microscope equipped with an Energy Dispersive Spectrometer (SEM-EDS). It is equally important that the less sorption of nanoAg under low environmental temperature could be partially due to the closure of stomata, as verified by SEM-EDS. Cyto

  1. Addition of platinum and silver nanoparticles to toughen dental porcelain.

    PubMed

    Fujieda, Tokushi; Uno, Mitsunori; Ishigami, Hajime; Kurachi, Masakazu; Wakamatsu, Nobukazu; Doi, Yutaka

    2012-01-01

    Several studies have investigated toughening porcelain that is layered over a frame or a core. The introduction of residual compressive stress to the surface of porcelain has been shown to be effective to strengthen it. In the present study, nanoparticles of precious metals of silver and platinum (rather than non-precious metals) were used to evaluate if they could increase the fracture resistance of porcelain. The addition of silver and platinum nanoparticles was found to improve the mechanical properties of porcelain since it increased both the Young's modulus and the fracture toughness of commercial porcelain.

  2. Silver Nanoparticles as Real Topical Bullets for Wound Healing

    PubMed Central

    Gunasekaran, Thirumurugan; Nigusse, Tadele; Dhanaraju, Magharla Dasaratha

    2012-01-01

    Nanotechnology is on the threshold of providing a host of new materials and approaches, revolutionizing the medical and pharmaceutical fields. Several areas of medical care are already profiting from the advantage that nanotechnology offers. Recently, silver nanoparticles are attracting interest for a clinical application because of its potential biological properties such as antibacterial activity, anti-inflammatory effects, and wound healing efficacy, which could be exploited in developing better dressings for wounds and ulcers. This article reviews the role of silver nanoparticles in wound healing. PMID:24527370

  3. Photothermal-reaction-assisted two-photon lithography of silver nanocrystals capped with thermally cleavable ligands

    SciTech Connect

    Kim, Won Jin; Vidal, Xavier; Baev, Alexander; Jee, Hong Sub; Swihart, Mark T.; Prasad, Paras N.

    2011-03-28

    We report an alternative approach to produce micropatterns of metallic nanoparticles using photothermal-reaction-assisted two-photon direct laser writing. The patterns are achieved using a facile surface treatment of silver nanoparticles (Ag NPs) functionalized with thermally cleavable ligands; N-(tert-butoxycarbonyl)-L-cysteine methyl ester. The ligand cleavage initiated by pulsed laser-induced thermal reaction results in a significant change in dispersiblility of the nanocrystals, thereby enabling a solvent-selective development process after photopatterning. We demonstrated that Ag NP patterns with submicron linewidths can be achieved using near infrared pulsed laser illumination.

  4. Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity

    NASA Astrophysics Data System (ADS)

    Kathiravan, V.; Ravi, S.; Ashokkumar, S.

    2014-09-01

    Silver nanoparticles have a significant role in the pharmaceutical science. Especially, silver nanoparticles synthesized by the plant extracts lead a significant role in biological activities such as antimicrobial, antioxidant and anticancer. Keeping this in mind, the present work investigation has been taken up with the synthesized silver nanoparticles using the plant extract of Melia dubia and it characterizes by using UV-visible, XRD and SEM-EDS. The effect of the silver nanoparticles on human breast cancer (KB) cell line has been tested. Silver nanoparticles showed remarkable cytotoxicity activity against KB cell line with evidence of high therapeutic index value are the results are discussed.

  5. Pulmonary Toxicity of Instilled Silver Nanoparticles: Influence of Size, Coating and Rat Strain

    PubMed Central

    Seiffert, Joanna; Hussain, Farhana; Wiegman, Coen; Li, Feng; Bey, Leo; Baker, Warren; Porter, Alexandra; Ryan, Mary P.; Chang, Yan; Gow, Andrew; Zhang, Junfeng; Zhu, Jie; Tetley, Terry D.; Chung, Kian Fan

    2015-01-01

    Particle size and surface chemistry are potential determinants of silver nanoparticle (AgNP) respiratory toxicity that may also depend on the lung inflammatory state. We compared the effects of intratracheally-administered AgNPs (20nm and 110nm; polyvinylpyrrolidone (PVP) and citrate-capped; 0.1 mg/Kg) in Brown-Norway (BN) and Sprague-Dawley (SD) rats. In BN rats, there was both a neutrophilic and eosinophilic response, while in SD rats, there was a neutrophilic response at day 1, greatest for the 20nm citrate-capped AgNPs. Eosinophilic cationic protein was increased in bronchoalveolar lavage (BAL) in BN and SD rats on day 1. BAL protein and malondialdehyde levels were increased in BN rats at 1 and 7 days, and BAL KC, CCL11 and IL-13 levels at day 1, with increased expression of CCL11 in lung tissue. Pulmonary resistance increased and compliance decreased at day 1, with persistence at day 7. The 20nm, but not the 110 nm, AgNPs increased bronchial hyperresponsiveness on day 1, which continued at day 7 for the citrate-capped AgNPs only. The 20nm versus the 110 nm size were more proinflammatory in terms of neutrophil influx, but there was little difference between the citrate-capped versus the PVP-capped AgNPs. AgNPs can induce pulmonary eosinophilic and neutrophilic inflammation with bronchial hyperresponsiveness, features characteristic of asthma. PMID:25747867

  6. Green Synthesis of Robust, Biocompatible Silver Nanoparticles Using Garlic Extract

    PubMed Central

    Von White, Gregory; Kerscher, Petra; Brown, Ryan M.; Morella, Jacob D.; McAllister, William; Dean, Delphine; Kitchens, Christopher L.

    2012-01-01

    This paper details a facile approach for the synthesis of stable and monodisperse silver nanoparticles performed at ambient/low temperature where Allium sativum (garlic) extract functions as the silver salt reducing agent during nanoparticle synthesis as well as the post-synthesis stabilizing ligands. Varying the synthesis conditions provides control of particle size, size-distribution, and kinetics of particle formation. Infrared spectroscopy, energy dispersive x-ray chemical analysis, and high performance liquid chromatography indicated that the carbohydrates present in the garlic extract are the most likely nanoparticle stabilizing chemistry. The synthesized silver nanoparticles also demonstrate potential for biomeical applications, owing to the 1) enhanced stability in biological media, 2) resistance to oxidation by the addition of H2O2, 3) ease and scalability of synthesis, and 4) lack of harsh chemicals required for synthesis. Cytotoxicity assays indicated no decrease in cellular proliferation for vascular smooth muscle cells and 3T3 fibroblasts at a concentration of 25 μg/ml, confirming that garlic extract prepared silver nanoparticles are ideal candidates for future experimentation and implementation into biomedical applications. PMID:24683414

  7. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures

    PubMed Central

    Acosta-Torres, Laura Susana; Mendieta, Irasema; Nuñez-Anita, Rosa Elvira; Cajero-Juárez, Marcos; Castaño, Víctor M

    2012-01-01

    Background Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work. Methods Poly(methyl methacrylate) [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay). Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles. Results The results show that PMMA-silver nanoparticle discs significantly reduce adherence of C. albicans and do not affect metabolism or proliferation. They also appear not to cause genotoxic damage to cells. Conclusion The present work has developed a new biocompatible antifungal PMMA denture base material. PMID:22969297

  8. Dermal exposure potential from textiles that contain silver nanoparticles

    PubMed Central

    Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Abbas Virji, M

    2014-01-01

    Background: Factors that influence exposure to silver particles from the use of textiles are not well understood. Objectives: The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Methods: Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Results: Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated “use” and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0.51±0.04%) than the masterbatch process textile (0.21±0.01%); P<0.01. Conclusions: We found that the process (masterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva. PMID:25000110

  9. Neurotoxicity of Silver Nanoparticles in Rat Brain After Intragastric Exposure.

    PubMed

    Xu, Liming; Shao, Anliang; Zhao, Yanhong; Wang, Zhijie; Zhang, Cuiping; Sun, Yilin; Deng, Jie; Chou, Laisheng Lee

    2015-06-01

    It is known that the biological half-life of silver in the central nervous system is longer than in other organs. However, the potential toxicity of silver nanoparticles (NPs) on brain tissue and the underlying mechanism(s) of action are not well understood. In this study, neurotoxicity of silver NPs was examined in rat after intragastric administration. After a two-week exposure to low-dose (1 mg/kg, body weight) or high-dose (10 mg/kg) silver NPs, the pathological and ultrastructural changes in brain tissue were evaluated with H&E staining and transmission electron microscopy. The mRNA expression levels of key tight junction proteins of the blood-brain barrier (BBB) were analyzed by real-time RT-PCR, and several inflammatory factors were assessed in blood using ELISA assay. We observed neuron shrinkage, cytoplasmic or foot swelling of astrocytes, and extra-vascular lymphocytes in silver NP exposure groups. The cadherin 1 (2(-ΔΔCt): 1.45-fold/control) and Claudin-1 (2(-ΔΔCt): 2.77-fold/control) were slightly increase in mRNA expression levels, and IL-4 significantly increased after silver NP exposure. It was suggest that silver NP can induce neuronal degeneration and astrocyte swelling, even with a low-dose (1 mg/kg) oral exposure. One potential mechanism for the effects of silver NPs to the nervous cells is involved in inflammatory effects.

  10. Characterization of enhanced antibacterial effects of novel silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Shrivastava, Siddhartha; Bera, Tanmay; Roy, Arnab; Singh, Gajendra; Ramachandrarao, P.; Dash, Debabrata

    2007-06-01

    In the present study, we report the preparation of silver nanoparticles in the range of 10-15 nm with increased stability and enhanced anti-bacterial potency. The morphology of the nanoparticles was characterized by transmission electron microscopy. The antibacterial effect of silver nanoparticles used in this study was found to be far more potent than that described in the earlier reports. This effect was dose dependent and was more pronounced against gram-negative bacteria than gram-positive organisms. Although bacterial cell lysis could be one of the reasons for the observed antibacterial property, nanoparticles also modulated the phosphotyrosine profile of putative bacterial peptides, which could thus affect bacterial signal transduction and inhibit the growth of the organisms.

  11. Adding two active silver atoms on Au₂₅ nanoparticle.

    PubMed

    Yao, Chuanhao; Chen, Jishi; Li, Man-Bo; Liu, Liren; Yang, Jinlong; Wu, Zhikun

    2015-02-11

    Alloy nanoparticles with atomic monodispersity is of importance for some fundamental research (e.g., the investigation of active sites). However, the controlled preparation of alloy nanoparticles with atomic monodispersity has long been a major challenge. Herein, for the first time a unique method, antigalvanic reduction (AGR), is introduced to synthesize atomically monodisperse Au25Ag2(SC2H4Ph)18 in high yield (89%) within 2 min. Interestingly, the two silver atoms in Au25Ag2(SC2H4Ph)18 do not replace the gold atoms in the precursor particle Au25(SC2H4Ph)18 but collocate on Au25, which was supported by experimental and calculated results. Also, the two silver atoms are active to play roles in stabilizing the alloy nanoparticle, triggering the nanoparticle fluorescence and catalyzing the hydrolysis of 1,3-diphenylprop-2-ynyl acetate. PMID:25580617

  12. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    NASA Astrophysics Data System (ADS)

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R.; Bohidar, H. B.

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe3O4)) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe3O4 and CA-Fe3O4/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, CA-Fe3O4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe3O4) and 189.51 nm (CA-Fe3O4) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe2O3/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL-1 with a low detection limit of 0.32 ng mL-1, sensitivity 0.03 Ω/ng ml-1 cm-2, and reproducibility more than 11 times.

  13. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection.

    PubMed

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe(3)O(4))) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe(3)O(4) and CA-Fe(3)O(4)/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe(3)O(4), CA-Fe(3)O(4) nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe(3)O(4)) and 189.51 nm (CA-Fe(3)O(4)) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe(2)O(3)/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL(-1) with a low detection limit of 0.32 ng mL(-1), sensitivity 0.03 Ω/ng ml(-1) cm(-2), and reproducibility more than 11 times.

  14. Interaction studies between biosynthesized silver nanoparticle with calf thymus DNA and cytotoxicity of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Roy, Swarup; Sadhukhan, Ratan; Ghosh, Utpal; Das, Tapan Kumar

    2015-04-01

    The interaction of calf thymus DNA (CTDNA) with silver nanoparticles (SNP) has been investigated following spectroscopic studies, analysis of melting temperature (Tm) curves and hydrodynamic measurement. In spectrophotometric titration and thermal denaturation studies of CTDNA it was found that SNP can form a complex with double-helical DNA and the increasing value of Tm also supported the same. The association constant of SNP with DNA from UV-Vis study was found to be 4.1 × 103 L/mol. The fluorescence emission spectra of intercalated ethidium bromide (EB) with increasing concentration of SNP represented a significant reduction of EB intensity and quenching of EB fluorescence. The results of circular dichroism (CD) suggested that SNP can change the conformation of DNA. From spectroscopic, hydrodynamic, and DNA melting studies, SNP has been found to be a DNA groove binder possessing partial intercalating property. Cell cytotoxicity of SNP was compared with that of normal silver salt solution on HeLa cells. Our results show that SNP has less cytotoxicity compared to its normal salt solution and good cell staining property.

  15. Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens.

    PubMed

    Velmurugan, Palanivel; Anbalagan, Krishnan; Manosathyadevan, Manoharan; Lee, Kui-Jae; Cho, Min; Lee, Sang-Myeong; Park, Jung-Hee; Oh, Sae-Gang; Bang, Keuk-Soo; Oh, Byung-Taek

    2014-10-01

    In the present study, we synthesized silver and gold nanoparticles with a particle size of 10-20 nm, using Zingiber officinale root extract as a reducing and capping agent. Chloroauric acid (HAuCl4) and silver nitrate (AgNO3) were mixed with Z. officinale root extract for the production of silver (AgNPs) and gold nanoparticles (AuNPs). The surface plasmon absorbance spectra of AgNPs and AuNPs were observed at 436-531 nm, respectively. Optimum nanoparticle production was achieved at pH 8 and 9, 1 mM metal ion, a reaction temperature 50 °C and reaction time of 150-180 min for AgNPs and AuNPs, respectively. An energy-dispersive X-ray spectroscopy (SEM-EDS) study provides proof for the purity of AgNPs and AuNPs. Transmission electron microscopy images show the diameter of well-dispersed AgNPs (10-20 nm) and AuNPs (5-20 nm). The nanocrystalline phase of Ag and Au with FCC crystal structures have been confirmed by X-ray diffraction analysis. Fourier transform infrared spectroscopy analysis shows the respective peaks for the potential biomolecules in the ginger rhizome extract, which are responsible for the reduction in metal ions and synthesized AgNPs and AuNPs. In addition, the synthesized AgNPs showed a moderate antibacterial activity against bacterial food pathogens.

  16. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity.

    PubMed

    Ajitha, B; Ashok Kumar Reddy, Y; Sreedhara Reddy, P

    2014-07-15

    This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect. PMID:24674916

  17. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P.

    2014-07-01

    This study reports the simple green synthesis method for the preparation of silver nanoparticles (Ag NPs) using Plectranthus amboinicus leaf extract. The pathway of nanoparticles formation is by means of reduction of AgNO3 by leaf extract, which acts as both reducing and capping agents. Synthesized Ag NPs were subjected to different characterizations for studying the structural, chemical, morphological, optical and antimicrobial properties. The bright circular fringes in SAED pattern and diffraction peaks in XRD profile reveals high crystalline nature of biosynthesized Ag NPs. Morphological studies shows the formation of nearly spherical nanoparticles. FTIR spectrum confirms the existence of various functional groups of biomolecules capping the nanoparticles. UV-visible spectrum displays single SPR band at 428 nm indicating the absence of anisotropic particles. The synthesized Ag NPs exhibited better antimicrobial property towards gram negative Escherichia coli and towards tested Penicillium spp. than other tested microorganisms using disc diffusion method. Finally it has proven that the synthesized bio-inspired Ag NPs have potent antimicrobial effect.

  18. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity.

    PubMed

    Gunsolus, Ian L; Mousavi, Maral P S; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L

    2015-07-01

    The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag(+) influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM's chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution.

  19. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity

    PubMed Central

    Gunsolus, Ian L.; Mousavi, Maral P. S.; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L.

    2015-01-01

    The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag+ influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM’s chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution. PMID:26047330

  20. Toxicity, bioaccumulation, and biotransformation of silver nanoparticles in marine organisms.

    PubMed

    Wang, Huanhua; Ho, Kay T; Scheckel, Kirk G; Wu, Fengchang; Cantwell, Mark G; Katz, David R; Horowitz, Doranne Borsay; Boothman, Warren S; Burgess, Robert M

    2014-12-01

    The toxicity, bioaccumulation, and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that AgNP-citrate and AgNP-PVP did not exhibit toxicity to the amphipod (Ampelisca abdita) and mysid (Americamysis bahia) at ≤75 mg/kg dry wt. A 28-d bioaccumulation study showed that Ag was significantly accumulated in the marine polychaete Nereis virens (N. virens) in the AgNP-citrate, AgNP-PVP and a conventional salt (AgNO3) treatments. Synchrotron X-ray absorption spectroscopy (XAS) results showed the distribution of Ag species in marine sediments amended with AgNP-citrate, AgNP-PVP, and AgNO3 was AgCl (50–65%) > Ag2S (32–42%) > Ag metal (Ag0) (3–11%). In N virens, AgCl (25–59%) and Ag2S (10–31%) generally decreased and, Ag metal (32–44%) increased, relative to the sediments. The patterns of speciation in the worm were different depending upon the coating of the AgNP and both types of AgNPs were different than the AgNO3 salt. These results show that the AgNP surface capping agents influenced Ag uptake, biotransformation, and/or excretion. To our knowledge, this is the first demonstration of the bioaccumulation and speciation of AgNPs in a marine organism (N. virens).

  1. Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode.

    PubMed

    Lu, Haifei; Zhang, Di; Ren, Xingang; Liu, Jian; Choy, Wallace C H

    2014-10-28

    Recently, metal nanowires have received great research interests due to their potential as next-generation flexible transparent electrodes. While great efforts have been devoted to develop enabling nanowire electrodes, reduced contact resistance of the metal nanowires and improved electrical stability under continuous bias operation are key issues for practical applications. Here, we propose and demonstrate an approach through a low-cost, robust, room temperature and room atmosphere process to fabricate a conductive silver nano-network comprising silver nanowires and silver nanoparticles. To be more specific, silver nanoparticles are selectively grown and chemically integrated in situ at the junction where silver nanowires meet. The site-selective growth of silver nanoparticles is achieved by a plasmon-induced chemical reaction using a simple light source at very low optical power density. Compared to silver nanowire electrodes without chemical treatment, we observe tremendous conductivity improvement in our silver nano-networks, while the loss in optical transmission is negligible. Furthermore, the silver nano-networks exhibit superior electrical stability under continuous bias operation compared to silver nanowire electrodes formed by thermal annealing. Interestingly, our silver nano-network is readily peeled off in water, which can be easily transferred to other substrates and devices for versatile applications. We demonstrate the feasibly transferrable silver conductive nano-network as the top electrode in organic solar cells. Consequently, the transparent and conductive silver nano-networks formed by our approach would be an excellent candidate for various applications in optoelectronics and electronics.

  2. Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle-nanowires

    NASA Astrophysics Data System (ADS)

    Muhammed Ajmal, C.; Mol Menamparambath, Mini; Ryeol Choi, Hyouk; Baik, Seunghyun

    2016-06-01

    Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm-1) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.

  3. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties

    PubMed Central

    Geethalakshmi, R; Sarada, DVL

    2012-01-01

    Background There is an increasing commercial demand for nanoparticles due to their wide applicability in various markets, including medicine, catalysis, electronics, chemistry, and energy. In this report, a simple and ecofriendly chemical reaction for the synthesis of gold and silver nanoparticles from Trianthema decandra (Aizoaceae) has been developed. Methods and results On treatment of aqueous solutions containing chloroauric acid or silver nitrate with root extract of T. decandra, stable gold or silver nanoparticles were rapidly formed. The kinetics of reduction of gold and silver ions during the reaction was analyzed by ultraviolet-visible spectroscopy. Field emission-scanning electron microscopy showed formation of gold nanoparticles in various shapes, including spherical, cubical, triangular, and hexagonal, while silver nanoparticles were spherical. The size of the gold nanoparticles was 33–65 nm and that of the silver nanoparticles was 36–74 nm. Energy dispersive x-ray and Fourier transform infrared spectroscopy confirmed the presence of metallic gold and metallic silver in the respective nanoparticles. The antimicrobial properties of the synthesized nanoparticles were analyzed using the Kirby-Bauer method. The results show varied susceptibility of microorganisms to the gold and silver nanoparticles. Conclusion It is believed that phytochemicals present in T. decandra extract reduce the silver and gold ions into metallic nanoparticles. This strategy reduces the cost of production and the environmental impact. The silver and gold nanoparticles formed showed strong activity against all microorganisms tested. PMID:23091381

  4. Enhanced antibacterial activities of leonuri herba extracts containing silver nanoparticles.

    PubMed

    Im, A-Rang; Han, Lina; Kim, E Ray; Kim, Jinwoong; Kim, Yeong Shik; Park, Youmie

    2012-08-01

    We report an efficient and powerful green process to enhance the antibacterial activities of the Leonuri herba extract. Plant sources, especially leaves and herbs, are precious for the generation of gold and silver nanoparticles. Various kinds of polyphenols and hydroxyl groups are capable of processing a reduction reaction to generate metals from its corresponding salts. We have prepared gold and silver nanoparticles with 70% ethanol and water extracts. No other toxic chemicals were utilized and the extracts played dual roles as reducing and stabilizing agents. For the generation of nanoparticles, both oven incubation and autoclaving methods were applied and the reaction conditions were optimized. Surface plasmon resonance band indicated that the formation of nanoparticles was successful. Images of high-resolution transmission electron microscopy revealed mostly spherical nanoparticles ranging from 9.9 to 13.0 nm in size. A water extract containing silver nanoparticles exhibited remarkable (approximately 127-fold) enhancement in antibacterial activities against Pseudomonas aeruginosa, Escherichia coli and Enterobacter cloacae when compared with the water extract alone. In addition, antibacterial activity towards Gram-negative bacteria was greater than that against Gram-positive bacteria. The process reported here has the potential to be a new approach to improve the antibacterial activities of plant extracts.

  5. Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Singaravelan, R.; Bangaru Sudarsan Alwar, S.

    2015-11-01

    This work exemplifies a simple and rapid method for the synthesis of silver nanodendrite with a novel electrochemical technique. The antibacterial activity of these silver nanoparticles (Ag NPs) against pathogenic bacteria was investigated along with the routine study of optical and spectral characterisation. The optical properties of the silver nanoparticles were characterised by diffuse reflectance spectroscopy. The optical band gap energy of the electrodeposited Ag NPs was determined from the diffuse reflectance using Kubelka-Munk formula. X-ray diffraction (XRD) studies were carried out to determine the crystalline nature of the silver nanoparticles which confirmed the formation of silver nanocrystals. The XRD pattern revealed that the electrodeposited Ag NPs were in the cubic geometry with dendrite preponderance. The average particle size and the peak broadening were deliberated using Debye-Scherrer equation and lattice strain due to the peak broadening was studied using Williamson-Hall method. Surface morphology of the Ag NPs was characterised by high-resolution scanning electron microscope and the results showed the high degree of aggregation in the particles. The antibacterial activity of the Ag NPs was evaluated and showed unprecedented level antibacterial activity against multidrug resistant strains such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia and Escherichia coli in combination with Streptomycin.

  6. Adsorption mechanisms of RNA mononucleotides on silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Miljanić, Snežana; Dijanošić, Adriana; Matić, Ivona

    2015-02-01

    Surface-enhanced Raman scattering (SERS) of four RNA mononucleotides (AMP, GMP, CMP and UMP) has been studied on the citrate-reduced silver colloid aggregated with sodium sulfate. Concentration dependent spectra in the range of 1 × 10-7-1 × 10-4 mol dm-3 were obtained, assigned and interpreted according to the surface selection rules. For purine mononucleotides, AMP and GMP, adsorption onto the silver nanoparticles through the six-membered ring of the nitrogenous base was suggested. Concentration dependent splitting of the ring breathing band in the spectra of AMP indicated coexistence of two species on the silver surface, which differed in contribution of the adenine N1 atom and the exocyclic NH2 group in binding. Unlike the AMP spectra, the spectra of GMP implied only one mode of adsorption of the molecules onto the silver nanoparticles, taking place through the guanine N1H and Cdbnd O group. Weak SERS spectra of pyrimidine mononucleotides, CMP and UMP, pointed to involvement of carbonyl oxygen in adsorption process, whereby the molecules adopted the position on the nanoparticles with ribose close to the metal surface. Intense bands in the low wavenumber region, associated with stretching of the formed Agsbnd N and/or Agsbnd O bonds, supported chemical binding of the RNA mononucleotides with the silver surface.

  7. Oxidative dissolution of silver nanoparticles: A new theoretical approach.

    PubMed

    Adamczyk, Zbigniew; Oćwieja, Magdalena; Mrowiec, Halina; Walas, Stanisław; Lupa, Dawid

    2016-05-01

    A general model of an oxidative dissolution of silver particle suspensions was developed that rigorously considers the bulk and surface solute transport. A two-step surface reaction scheme was proposed that comprises the formation of the silver oxide phase by direct oxidation and the acidic dissolution of this phase leading to silver ion release. By considering this, a complete set of equations is formulated describing oxygen and silver ion transport to and from particles' surfaces. These equations are solved in some limiting cases of nanoparticle dissolution in dilute suspensions. The obtained kinetic equations were used for the interpretation of experimental data pertinent to the dissolution kinetics of citrate-stabilized silver nanoparticles. In these kinetic measurements the role of pH and bulk suspension concentration was quantitatively evaluated by using the atomic absorption spectrometry (AAS). It was shown that the theoretical model adequately reflects the main features of the experimental results, especially the significant increase in the dissolution rate for lower pH. Also the presence of two kinetic regimes was quantitatively explained in terms of the decrease in the coverage of the fast dissolving oxide layer. The overall silver dissolution rate constants characterizing these two regimes were determined.

  8. In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio)

    PubMed Central

    Bilberg, Katrine; Hovgaard, Mads Bruun; Besenbacher, Flemming; Baatrup, Erik

    2012-01-01

    The influence of water chemistry on characterised polyvinyl pyrrolidone- (PVP-) coated silver nanoparticles (81 nm) was investigated. NaCl solution series of 100–800 mg L−1 lead to initial and temporal increase in nanoparticles size, but agglomeration was limited. pH variation (5–8) had only minor influence on the hydrodynamic particle size. Acute toxicity of nanosivler to zebrafish (Danio rerio) was investigated in a 48-hour static renewal study and compared with the toxicity of silver ions (AgNO3). The nanosilver and silver ion 48-hour median lethal concentration (LC50) values were 84 μg L−1 and 25 μg L−1, respectively. To investigate exposure-related stress, the fish behaviour was observed visually after 0, 3, 6, 12, 24, 27, 30, and 48 hours of both nanosilver and ionic silver treatments. These observations revealed increased rate of operculum movement and surface respiration after nanosilver exposure, suggesting respiratory toxicity. The present study demonstrates that silver nanoparticles are lethal to zebrafish. PMID:22174711

  9. In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio).

    PubMed

    Bilberg, Katrine; Hovgaard, Mads Bruun; Besenbacher, Flemming; Baatrup, Erik

    2012-01-01

    The influence of water chemistry on characterised polyvinyl pyrrolidone- (PVP-) coated silver nanoparticles (81 nm) was investigated. NaCl solution series of 100-800 mg L(-1) lead to initial and temporal increase in nanoparticles size, but agglomeration was limited. pH variation (5-8) had only minor influence on the hydrodynamic particle size. Acute toxicity of nanosivler to zebrafish (Danio rerio) was investigated in a 48-hour static renewal study and compared with the toxicity of silver ions (AgNO(3)). The nanosilver and silver ion 48-hour median lethal concentration (LC(50)) values were 84 μg L(-1) and 25 μg L(-1), respectively. To investigate exposure-related stress, the fish behaviour was observed visually after 0, 3, 6, 12, 24, 27, 30, and 48 hours of both nanosilver and ionic silver treatments. These observations revealed increased rate of operculum movement and surface respiration after nanosilver exposure, suggesting respiratory toxicity. The present study demonstrates that silver nanoparticles are lethal to zebrafish.

  10. Understanding the Synthesis and Properties of Molecular Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ashenfelter, Brian A.

    Molecular nanoparticles have emerged as an interesting class of materials whose atomically precise structures and discrete properties set them apart from their larger counterparts. Molecular silver nanoparticles are of particular interest because they provide a host of advantages as optical materials for possible use in sensing and imaging applications. However, relatively little is known about molecular silver nanoparticles including the details of their formation and their optical and mechanical properties. Size control remains a longstanding challenge in the production of glutathionate (SG) protected silver nanoparticles. Singular Ag:SG nanoparticle products have been difficult to obtain directly, but size focusing of larger distributions through attrition has been found to lead to useful isolation of particular species. Here, we present a methodology for controlling the size of Ag:SG molecular nanoparticles that leverages the stability of the most robust species. These results were then used to develop a facile approach for achieving two of the most stable species in the Ag:SG system. Molecular metal nanoparticles are known to be much more fluorescent than larger plasmonic nanoparticles, however the nature and origin of this fluorescence are not fully understood. Fluorescence can originate from either the quantum states within the metal core or mixed ligand states at the inorganic-organic interface. We have presented compelling evidence that fluorescence from molecular silver glutathionate nanoparticles has its origin in interfacial electronic states. Fluorescence spectra were found to be independent of size, with very similar wavelength and bandwidth, although the quantum yield was not. Excitation spectra indicated that the strongest fluorescence had its origin in that part of the spectrum that is dominated by ligand-related states. Further, excitations to strictly core states and to higher lying d-band states had little to no contribution to the fluorescence

  11. Suspended hybrid films assembled from thiol-capped gold nanoparticles.

    PubMed

    Zhang, Yu Xin; Huang, Ming; Hao, Xiao Dong; Dong, Meng; Li, Xin Lu; Huang, Jia Mu

    2012-01-01

    In this work, we explored the formation processes of suspended hybrid thin films of thiol-capped Au nanoparticles (AuNPs) inside metal oxide tubular structures. We found that a balance between in-film interactions of the AuNPs and boundary interactions with metal oxides is a key in making these special organic-inorganic thin films. The hybrid films process many processing advantages and flexibilities, such as controllable film thickness, interfacial shape and inter-AuNPs distance, tuning of particle sizes, thiol population, chain lengths, and other new properties by introducing functional groups to thiol chains. Among their many unique features, the assembly-disassembly property may be useful for future on-off or store-release applications.

  12. Silver nanoparticles cause complications in pregnant mice

    PubMed Central

    Zhang, Xi-Feng; Park, Jung-Hyun; Choi, Yun-Jung; Kang, Min-Hee; Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2015-01-01

    Background Silver nanoparticles (AgNPs) have attracted much interest and have been used for antibacterial, antifungal, anticancer, and antiangiogenic applications because of their unique properties. The increased usage of AgNPs leads to a potential hazard to human health. However, the potential effects of AgNPs on animal models are not clear. This study was designed to investigate the potential impact of AgNPs on pregnant mice. Methods The synthesis of AgNPs was performed using culture extracts of Bacillus cereus. The synthesized AgNPs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. AgNPs were administrated into pregnant mice via intravenous infusion at 1.0 mg/kg doses at 6.5 days postcoitum (dpc). At 13.5, 15.5, and 17.5 dpc, the pregnant mice were euthanized, and the embryo and placenta were isolated. The meiotic status of oocytes was evaluated. DNA methylation studies were performed, and aberrant imprinting disrupted fetal, placental, and postnatal development. Quantitative real-time polymerase chain reaction analysis and Western blot were used to analyze various gene expressions. Results The synthesized AgNPs were uniformly distributed and were spherical in shape with an average size of 8 nm. AgNPs exposure increased the meiotic progression of female germ cells in the fetal mouse ovaries, and maternal AgNP exposure significantly disrupted imprinted gene expression in 15.5 dpc embryos and placentas, such as Ascl2, Snrpn, Kcnq1ot1, Peg3, Zac1, H19, Igf2r, and Igf2; DNA methylation studies revealed that AgNPs exposure significantly altered the methylation levels of differentially methylated regions of Zac1. Conclusion The results from this study indicated that early exposure to AgNPs has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta. These results can contribute to research involved in the safe use of

  13. Interaction of Silver Nanoparticles with Serum Proteins Affects Their Antimicrobial Activity In Vivo

    PubMed Central

    Gnanadhas, Divya Prakash; Ben Thomas, Midhun; Thomas, Rony; Raichur, Ashok M.

    2013-01-01

    The emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapy in vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activity in vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs [with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand the in vivo relevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activities in vivo against Salmonella infection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes. PMID:23877702

  14. One-step synthesis of lignosulfonate-stabilized silver nanoparticles.

    PubMed

    Milczarek, Grzegorz; Rebis, Tomasz; Fabianska, Justyna

    2013-05-01

    Softwood lignosulfonate (SLS) was used as a reducing agent for one-step synthesis of silver nanoparticles (SLS-AgNPs) in an aqueous solution at room temperature. In this reaction SLS acts also as a stabilizing agent and as a result, stable colloids of silver nanoparticles are formed during the reaction with the average particle size of 41 nm. The obtained SLS-AgNPs were characterized by UV-vis spectrophotometry, size distribution and AFM imaging after casting on mica. Due to metal ion complexing capability of lignosulfonates, the SLS-AgNPs appeared to be capable of colorimetric detection of metal ions (especially nickel). Additionally, the SLS-AgNPs could be assembled into thin films on conducting substrates (ITO glass) using electrophoretic deposition. XPS spectroscopy was used to characterize such films and revealed a strong interaction of silver atoms with some carbon atoms of the SLS.

  15. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria.

    PubMed

    Rai, M K; Deshmukh, S D; Ingle, A P; Gade, A K

    2012-05-01

    In the present scenario, pharmaceutical and biomedical sectors are facing the challenges of continuous increase in the multidrug-resistant (MDR) human pathogenic microbes. Re-emergence of MDR microbes is facilitated by drug and/or antibiotic resistance, which is acquired way of microbes for their survival and multiplication in uncomfortable environments. MDR bacterial infections lead to significant increase in mortality, morbidity and cost of prolonged treatments. Therefore, development, modification or searching the antimicrobial compounds having bactericidal potential against MDR bacteria is a priority area of research. Silver in the form of various compounds and bhasmas have been used in Ayurveda to treat several bacterial infections since time immemorial. As several pathogenic bacteria are developing antibiotic resistance, silver nanoparticles are the new hope to treat them. This review discusses the bactericidal potential of silver nanoparticles against the MDR bacteria. This multiactional nanoweapon can be used for the treatment and prevention of drug-resistant microbes.

  16. Transparent conductive grids via direct writing of silver nanoparticle inks

    SciTech Connect

    Ahn, Bok Y; Lorang, David J; Lewis, Jennifer A

    2011-01-01

    Transparent conductive grids are patterned by direct writing of concentrated silver nanoparticle inks. This maskless, etch-free patterning approach is used to produce well-defined, two-dimensional periodic arrays composed of conductive features with center-to-center separation distances of up to 400 µm and an optical transmittance as high as 94.1%.

  17. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms.

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that Ag...

  18. Silver nanoparticles and electroporation: Their combinational effect on Leishmania major.

    PubMed

    Dolat, Elham; Rajabi, Omid; Salarabadi, Samaneh Soudmand; Yadegari-Dehkordi, Sajedeh; Sazgarnia, Ameneh

    2015-12-01

    Leishmaniasis is an emerging and uncontrolled disease. The use of routine drugs has been limited due to proven side effects and drug resistance. Interestingly, novel approaches such as nanotechnology have been applied as a therapeutic modality. Silver nanoparticles have shown antileishmanial effects but because of their nonspecific and toxic effects on normal cells, their use has been limited. On the other hand, it has been demonstrated that electric pulses induce electropores on cell membranes resulting in higher entrance of certain molecules into cells. There is a hypothesis proposing that use of electroporation and silver nanoparticles simultaneously can induce greater accumulation of particles in infected cells, besides higher toxicity. In this study, after applying electric pulses with different concentrations of silver nanoparticles (SNPs), cell survival rate was determined by standard viability assays. On the basis of these data, 2 μg/ml of SNPs and 700 V/cm with 100 μs duration of electroporation were selected as the non-lethal condition. Promastigotes and infected macrophage cells received both treatments and the survival percentage and Infection Index were calculated. In parasites and cells receiving both treatments, higher toxicity was observed in comparison to each treatment given individually, showing a synergic effect on promastigotes. Therefore, application of electric pulses could overcome limitations in using the antileishmanial properties of silver nanoparticles.

  19. Silver nanoparticles: Large scale solvothermal synthesis and optical properties

    SciTech Connect

    Wani, Irshad A.; Khatoon, Sarvari; Ganguly, Aparna; Ahmed, Jahangeer; Ganguli, Ashok K.; Ahmad, Tokeer

    2010-08-15

    Silver nanoparticles have been successfully synthesized by a simple and modified solvothermal method at large scale using ethanol as the refluxing solvent and NaBH{sub 4} as reducing agent. The nanopowder was investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible and BET surface area studies. XRD studies reveal the monophasic nature of these highly crystalline silver nanoparticles. Transmission electron microscopic studies show the monodisperse and highly uniform nanoparticles of silver of the particle size of 5 nm, however, the size is found to be 7 nm using dynamic light scattering which is in good agreement with the TEM and X-ray line broadening studies. The surface area was found to be 34.5 m{sup 2}/g. UV-visible studies show the absorption band at {approx}425 nm due to surface plasmon resonance. The percentage yield of silver nanoparticles was found to be as high as 98.5%.

  20. Synthesis and Characterization of Silver Nanoparticles for an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Orbaek, Alvin W.; McHale, Mary M.; Barron, Andrew R.

    2015-01-01

    The aim of this simple, quick, and safe laboratory exercise is to provide undergraduate students an introduction to nanotechnology using nanoparticle (NP) synthesis. Students are provided two procedures that allow for the synthesis of different yet controlled sizes of silver NPs. After preparing the NPs, the students perform UV-visible…

  1. Quenching of chlorophyll fluorescence induced by silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Queiroz, A. M.; Mezacasa, A. V.; Graciano, D. E.; Falco, W. F.; M'Peko, J.-C.; Guimarães, F. E. G.; Lawson, T.; Colbeck, I.; Oliveira, S. L.; Caires, A. R. L.

    2016-11-01

    The interaction between chlorophyll (Chl) and silver nanoparticles (AgNPs) was evaluated by analyzing the optical behavior of Chl molecules surrounded by different concentrations of AgNPs (10, 60, and 100 nm of diameter). UV-Vis absorption, steady state and time-resolved fluorescence measurements were performed for Chl in the presence and absence of these nanoparticles. AgNPs strongly suppressed the Chl fluorescence intensity at 678 nm. The Stern-Volmer constant (KSV) showed that fluorescence suppression is driven by the dynamic quenching process. In particular, KSV was nanoparticle size-dependent with an exponential decrease as a function of the nanoparticle diameter. Finally, changes in the Chl fluorescence lifetime in the presence of nanoparticles demonstrated that the fluorescence quenching may be induced by the excited electron transfer from the Chl molecules to the metal nanoparticles.

  2. Quenching of chlorophyll fluorescence induced by silver nanoparticles.

    PubMed

    Queiroz, A M; Mezacasa, A V; Graciano, D E; Falco, W F; M'Peko, J-C; Guimarães, F E G; Lawson, T; Colbeck, I; Oliveira, S L; Caires, A R L

    2016-11-01

    The interaction between chlorophyll (Chl) and silver nanoparticles (AgNPs) was evaluated by analyzing the optical behavior of Chl molecules surrounded by different concentrations of AgNPs (10, 60, and 100nm of diameter). UV-Vis absorption, steady state and time-resolved fluorescence measurements were performed for Chl in the presence and absence of these nanoparticles. AgNPs strongly suppressed the Chl fluorescence intensity at 678nm. The Stern-Volmer constant (KSV) showed that fluorescence suppression is driven by the dynamic quenching process. In particular, KSV was nanoparticle size-dependent with an exponential decrease as a function of the nanoparticle diameter. Finally, changes in the Chl fluorescence lifetime in the presence of nanoparticles demonstrated that the fluorescence quenching may be induced by the excited electron transfer from the Chl molecules to the metal nanoparticles.

  3. Upconversion nanoparticles with a strong acid-resistant capping

    NASA Astrophysics Data System (ADS)

    Recalde, Ileana; Estebanez, Nestor; Francés-Soriano, Laura; Liras, Marta; González-Béjar, María; Pérez-Prieto, Julia

    2016-03-01

    Water-dispersible upconversion nanoparticles (β-NaYF4:Yb3+,Er3+, UCNP) coated with a thin shell of a biocompatible copolymer comprising 2-hydroxyethylmethacrylate (HEMA) and 2-acrylamido-2-methyl-1-propanesulphonsulphonic acid (AMPS), which we will term COP, have been prepared by multidentate grafting. This capping is remarkably resistant to strong acidic conditions as low as pH 2. The additional functionality of the smart UCNP@COP nanosystem has been proved by its association to a well-known photosensitizer (namely, methylene blue, MB). The green-to-red emission ratio of the UC@COP@MB nanohybrid exhibits excellent linear dependence in the 7 to 2 pH range as a consequence of the release of the dye as the pH decreases.Water-dispersible upconversion nanoparticles (β-NaYF4:Yb3+,Er3+, UCNP) coated with a thin shell of a biocompatible copolymer comprising 2-hydroxyethylmethacrylate (HEMA) and 2-acrylamido-2-methyl-1-propanesulphonsulphonic acid (AMPS), which we will term COP, have been prepared by multidentate grafting. This capping is remarkably resistant to strong acidic conditions as low as pH 2. The additional functionality of the smart UCNP@COP nanosystem has been proved by its association to a well-known photosensitizer (namely, methylene blue, MB). The green-to-red emission ratio of the UC@COP@MB nanohybrid exhibits excellent linear dependence in the 7 to 2 pH range as a consequence of the release of the dye as the pH decreases. Electronic supplementary information (ESI) available: Additional spectra and data of HEMA, AMPS, COP, UCNP@oleate, UCNP@COP, and UCNP@COP@MB. See DOI: 10.1039/c5nr06653k

  4. Mycosynthesis of silver nanoparticles using extract of endophytic fungi, Penicillium species of Glycosmis mauritiana, and its antioxidant, antimicrobial, anti-inflammatory and tyrokinase inhibitory activity

    NASA Astrophysics Data System (ADS)

    Govindappa, M.; Farheen, H.; Chandrappa, C. P.; Channabasava; Rai, Ravishankar V.; Raghavendra, Vinay B.

    2016-09-01

    Silver nanoparticles were synthesized using endophytic fungal species, Penicillium species from Glycosmis mautitiana. Phytochemicals, namely tannins, saponins, terpenoids and flavonoids, were identified in Penicillium species extracts, and act as agents of reducing and capping in the conversion of silver nanoparticles into nanoparticles. Using SEM, UV-spectroscopy and XRD, the Penicillium species silver nanoparticles (PsAgNPs) were characterized. The PsAgNPs are shown to be strong antioxidants (DDPH and FRAP), have demonstrated anti-inflammatory properties by three different methods in vitro and strongly inhibited the activity of xanthine oxidase, lipoxygenase and tyrosine kinase. E. coli and P. aeruginosa bacterial species were strongly inhibited by PsAgNPs activity at maximum levels and SEM picture of P. aeruginosa confirms these effects and that they were shrunken due to the toxic effect of PsAgNPs.

  5. The Speciation Of Silver Nanoparticles In Antimicrobial Fabric Before and After Exposure To A Hypochlorite/Detergent Solution

    EPA Science Inventory

    Because of their antibacterial properties, silver nanoparticles are often used in consumer products. To assess environmental and/or human health risks from these nanoparticles, there is a need to identify the chemical transformations that Silver nanoparticles undergo in differen...

  6. Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts

    PubMed Central

    Kumar, Brajesh; Smita, Kumari; Cumbal, Luis; Debut, Alexis

    2014-01-01

    Silver nanoparticles (AgNPs) are fabricated using Sacha inchi (SI) or (Plukenetia volubilis L.) leaf extract as non-toxic reducing agent with particle size ranging from 4 to 25 nm. Optical, structural and morphological properties of the synthesized nanoparticles have been characterized by using Visual, UV–Vis spectrophotometer, transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis. Selected area electron diffraction (SAED) confirmed the formation of metallic Ag. Infrared spectrum measurement was carried out to hypothesize the possible phytochemicals responsible for stabilization and capping of the AgNPs. It shows the significant antioxidant efficacy in comparison with SI leaf extracts against 1,1-diphenyl-2-picrylhydrazyl. From the results obtained it is suggested that green AgNPs could be used effectively in future engineering and medical concerns. PMID:25473370

  7. Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts.

    PubMed

    Kumar, Brajesh; Smita, Kumari; Cumbal, Luis; Debut, Alexis

    2014-12-01

    Silver nanoparticles (AgNPs) are fabricated using Sacha inchi (SI) or (Plukenetia volubilis L.) leaf extract as non-toxic reducing agent with particle size ranging from 4 to 25 nm. Optical, structural and morphological properties of the synthesized nanoparticles have been characterized by using Visual, UV-Vis spectrophotometer, transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis. Selected area electron diffraction (SAED) confirmed the formation of metallic Ag. Infrared spectrum measurement was carried out to hypothesize the possible phytochemicals responsible for stabilization and capping of the AgNPs. It shows the significant antioxidant efficacy in comparison with SI leaf extracts against 1,1-diphenyl-2-picrylhydrazyl. From the results obtained it is suggested that green AgNPs could be used effectively in future engineering and medical concerns. PMID:25473370

  8. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    PubMed

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast.

  9. Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa).

    PubMed

    Stegemeier, John P; Schwab, Fabienne; Colman, Benjamin P; Webb, Samuel M; Newville, Matthew; Lanzirotti, Antonio; Winkler, Christopher; Wiesner, Mark R; Lowry, Gregory V

    2015-07-21

    Terrestrial crops are directly exposed to silver nanoparticles (Ag-NPs) and their environmentally transformed analog silver sulfide nanoparticles (Ag2S-NPs) when wastewater treatment biosolids are applied as fertilizer to agricultural soils. This leads to a need to understand their bioavailability to plants. In the present study, the mechanisms of uptake and distribution of silver in alfalfa (Medicago sativa) were quantified and visualized upon hydroponic exposure to Ag-NPs, Ag2S-NPs, and AgNO3 at 3 mg total Ag/L. Total silver uptake was measured in dried roots and shoots, and the spatial distribution of elements was investigated using transmission electron microscopy (TEM) and synchrotron-based X-ray imaging techniques. Despite large differences in release of Ag(+) ions from the particles, Ag-NPs, Ag2S-NPs, and Ag(+) became associated with plant roots to a similar degree, and exhibited similarly limited (<1%) amounts of translocation of silver into the shoot system. X-ray fluorescence (XRF) mapping revealed differences in the distribution of Ag into roots for each treatment. Silver nanoparticles mainly accumulated in the (columella) border cells and elongation zone, whereas Ag(+) accumulated more uniformly throughout the root. In contrast, Ag2S-NPs remained largely adhered to the root exterior, and the presence of cytoplasmic nano-SixOy aggregates was observed. Exclusively in roots exposed to particulate silver, NPs smaller than the originally dosed NPs were identified by TEM in the cell walls. The apparent accumulation of Ag in the root apoplast determined by XRF, and the presence of small NPs in root cell walls suggests uptake of partially dissolved NPs and translocation along the apoplast. PMID:26106801

  10. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  11. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles.

    PubMed

    Tian, Yue; Qi, Juanjuan; Zhang, Wei; Cai, Qiang; Jiang, Xingyu

    2014-08-13

    In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2-10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics.

  12. Green synthesis and characterization of silver nanoparticle using Aloe barbadensis

    SciTech Connect

    Thappily, Praveen E-mail: shiiuvenus@gmail.com; Shiju, K. E-mail: shiiuvenus@gmail.com

    2014-10-15

    Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.

  13. Green synthesis and characterization of silver nanoparticle using Aloe barbadensis

    NASA Astrophysics Data System (ADS)

    Thappily, Praveen; Shiju, K.

    2014-10-01

    Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.

  14. Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Apalangya, Vitus; Rangari, Vijaya; Tiimob, Boniface; Jeelani, Shaik; Samuel, Temesgen

    2014-03-01

    Biobased calcium carbonate and silver hybrid nanoparticles were synthesized using a simple mechanochemical milling technique. The XRD spectrum showed that the hybrid materials is composed of crystalline calcite and silver nanoparticles. The TEM results indicated that the silver nanoparticles are discrete, uncapped and well stabilized in the surface of the eggshell derived calcium carbonate particles. The silver nanoparticles are spherical in shape and 5-20 nm in size. The SEM studies indicated that the eggshells are in micron size with the silver nanoparticle embedded in their surface. The hybrid eggshell/silver nanocomposite exhibited superior inhibition of E. coli growth using the Kirby-Bauer discs diffusion assay and comparing the zone of inhibition around the filter paper disc impregnated with the hybrid particles against pristine silver nanoparticles.

  15. Effect of silver nanoparticles on the DC conductivity in chitosan-silver triflate polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.; Abidin, Z. H. Z.; Arof, A. K.

    2010-11-01

    A solid polymer electrolyte composed of chitosan and silver triflate (AgCF 3SO 3) has been prepared by the solution cast technique. The formation of polymer-salt complex has been confirmed by X-ray diffraction. The DC electrical conductivity of chitosan-silver triflate electrolyte has been investigated between 303 and 423 K, using electrochemical impedance spectroscopy over the frequency range from 50 Hz to 1000 kHz. The conductivity was found to increase with increase in AgCF 3SO 3 concentration at room temperature. The DC conductivity obeys Arrhenius relationship up to a particular temperature and decreases at higher temperatures due to decrease in silver ions as a result of the formation of silver nanoparticles. The presence of an additional semicircular arc in the Cole-Cole plot obtained above 328 K indicates the existence of grain boundaries, which can be attributed to the silver particles. The presence of silver particles also have been proven by XRD after heating at 333, 363, and 393 K where the (1 1 1) peak of Ag is observed to increase with temperature. The silver particles were shown to be of nanosize using transmission electron microscopy (TEM).

  16. Comparison of in vitro toxicity of silver ions and silver nanoparticles on human hepatoma cells.

    PubMed

    Vrček, Ivana Vinković; Žuntar, Irena; Petlevski, Roberta; Pavičić, Ivan; Dutour Sikirić, Maja; Ćurlin, Marija; Goessler, Walter

    2016-06-01

    Scientific information on the potential harmful effects of silver nanoparticles (AgNPs) on human health severely lags behind their exponentially growing applications in consumer products. In assessing the toxic risk of AgNP usage, liver, as a detoxifying organ, is particularly important. The aim of this study was to explore the toxicity mechanisms of nano and ionic forms of silver on human hepatoblastoma (HepG2) cells. The results showed that silver ions and citrate-coated AgNPs reduced cell viability in a dose-dependent manner. The IC50 values of silver ions and citrate-coated AgNPs were 0.5 and 50 mg L(-1) , respectively. The LDH leakage and inhibition of albumin synthesis, along with decreased ALT activity, indicated that treatment with either AgNP or Ag ions resulted in membrane damage and reduced the cell function of human liver cells. Evaluation of oxidative stress markers demonstrating depletion of GSH, increased ROS production, and increased SOD activity, indicated that oxidative stress might contribute to the toxicity effects of nano and ionic forms of silver. The observed toxic effect of AgNP on HepG2 cells was substantially weaker than that caused by ionic silver, while the uptake of nano and ionic forms of silver by HepG2 cells was nearly the same. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 679-692, 2016. PMID:25448069

  17. Presence of nanoparticles in wash water from conventional silver and nano-silver textiles.

    PubMed

    Mitrano, Denise M; Rimmele, Elisa; Wichser, Adrian; Erni, Rolf; Height, Murray; Nowack, Bernd

    2014-07-22

    Questions about how to regulate nanoenhanced products regularly arise as researchers determine possible nanoparticle transformation(s). Focusing concern on the incorporation and subsequent release of nano-Ag in fabrics often overshadows the fact that many "conventional silver" antimicrobials such as ionic silver, AgCl, metallic Ag, and other forms will also form different species of silver. In this study we used a laboratory washing machine to simulate the household laundering of a number of textiles prepared with known conventional Ag or nano-Ag treatments and a commercially available fabric incorporating yarns coated with bulk metallic Ag. Serial filtration allowed for quantification of total Ag released in various size fractions (>0.45 μm, < 0.45 μm, <0.1 μm, and <10 kDa), while characterization of particles with TEM/EDX provided insight on Ag transformation mechanisms. Most conventional Ag additives yielded more total Ag and more nanoparticulate-sized Ag in the washing liquid than fabrics that used nano-Ag treatments. Incorporating nano-silver into the fiber (as opposed to surface treatments) yielded less total Ag during fabric washing. A variety of metallic Ag, AgCl, and Ag/S particles were observed in washing solution by TEM/EDX to various extents depending on the initial Ag speciation in the fabrics. Very similar particles were also observed when dissolved ionic Ag was added directly into the washing liquid. On the basis of the present study, we can state that all silver-treated textiles, regardless of whether the treatment is "conventional" or "nano", can be a source of silver nanoparticles in washing solution when laundering fabrics. Indeed, in this study we observed that textiles treated with "conventional" silver have equal or greater propensity to form nano-silver particles during washing conditions than those treated with "nano"-silver. This fact needs to be strongly considered when addressing the risks of nano-silver and emphasizes that regulatory

  18. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract

    NASA Astrophysics Data System (ADS)

    Ramesh, P. S.; Kokila, T.; Geetha, D.

    2015-05-01

    A green straight forward method of synthesizing silver nanoparticles (AgNPs) in an aqueous medium was designed using Emblica officinalis (EO) fruit extract as stabilizer and reducer. The formation of AgNPs depends on the effect of extract concentration and pH were studied. The AgNPs was synthesized using E.officinalis (fruit extract) and nanoparticles were characterized using UV-Vis spectrophotometer, the presence of biomolecules of E.officinalis capped in AgNPs was found by FT-IR analysis, shape and size were examined by SEM and XRD. The XRD analysis respects the Bragg's law and confirmed the crystalline nature of silver nanoparticles. From XRD the average size of AgNPs was found to be around 15 nm. AFM has proved to be very helpful in the determination and verification of various morphological features and parameters. EO fruit extract mediated AgNPs was synthesized and confirmed through kinetic behavior of nanoparticles. The shape of the bio-synthesized AgNPs was spherical. Potent biomolecules of E.officinalis such as polyphenols, glucose, and fructose was capped with AgNPs which reduces the toxicity. The synthesized AgNPs were tested for its antibacterial activity against the isolates by disc diffusion method. The obtained results confirmed that the E.officinalis fruit extract is a very good bioreductant for the synthesis of AgNPs. It was investigated that the synthesized AgNPs showed inhibition and had significant antibacterial against both gram-positive and gram-negative bacterial strains.

  19. Strain effects on the SERS enhancements for spherical silver nanoparticles.

    PubMed

    Qian, Xiaohu; Park, Harold S

    2010-09-10

    We demonstrate in the present work through the utilization of classical Mie scattering theory in conjunction with a radiation damping and dynamic depolarization-corrected electrostatic approximation the significant effect that mechanical strain has on the optical properties of spherical silver nanoparticles. Through appropriate modifications of the bulk dielectric functions, we find that the application of tensile strain generates significant enhancements in the local electric field for the silver nanoparticles, leading to large SERS enhancements of more than 300% compared to bulk, unstrained nanoparticles when a 5% tensile strain is applied. While the strain-induced SERS enhancements are found to be strongest for nanoparticle diameters where radiation damping effects are minimized, we find that the surface plasmon resonance wavelengths are relatively unchanged by mechanical strain, and that the various measures of the far field optical efficiencies (absorption, scattering, extinction) can be enhanced by up to 150% through the application of tensile strain. The present findings indicate the opportunity to actively engineer and enhance the optical properties of silver nanoparticles through the application of mechanical deformation.

  20. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth.

    PubMed

    Choi, Okkyoung; Deng, Kathy Kanjun; Kim, Nam-Jung; Ross, Louis; Surampalli, Rao Y; Hu, Zhiqiang

    2008-06-01

    Emerging nanomaterials are of great concern to wastewater treatment utilities and the environment. The inhibitory effects of silver nanoparticles (Ag NPs) and other important Ag species on microbial growth were evaluated using extant respirometry and an automatic microtiter fluorescence assay. Using autotrophic nitrifying organisms from a well-controlled continuously operated bioreactor, Ag NPs (average size=14+/-6 nm), Ag(+) ions (AgNO(3)), and AgCl colloids (average size=0.25 microm), all at 1mg/L Ag, inhibited respiration by 86+/-3%, 42+/-7%, and 46+/-4%, respectively. Based on a prolonged microtiter assay, at about 0.5mg/L Ag, the inhibitions on the growth of Escherichia coli PHL628-gfp by Ag NPs, Ag(+) ions, and AgCl colloids were 55+/-8%, 100%, and 66+/-6%, respectively. Cell membrane integrity was not compromised under the treatment of test Ag species by using a LIVE/DEAD Baclight bacterial viability assay. However, electron micrographs demonstrated that Ag NPs attached to the microbial cells, probably causing cell wall pitting. The results suggest that nitrifying bacteria are especially susceptible to inhibition by Ag NPs, and the accumulation of Ag NPs could have detrimental effects on the microorganisms in wastewater treatment.

  1. Optical absorption properties of dispersed gold and silver alloy nanoparticles.

    PubMed

    Wilcoxon, Jess

    2009-03-01

    The oldest topic in nanoscience is the size-dependent optical properties of gold and silver colloids or nanoparticles, first investigated scientifically by Michael Faraday in 1857. In the modern era, advances in both synthesis and characterization have resulted in new insights into the size-dependent absorbance of Au and Ag nanoparticles with sizes below the classical limit for Mie theory. In this paper we discuss the synthesis and properties of core/shell and nanoalloy particles of Au and Ag, compare them to particles of pure gold and silver, and discuss how alloying affects nanoparticle chemical stability. We show that composition, size, and nanostructure (e.g., core/shell vs quasi-random nanoalloy) can all be employed to adjust the optical absorbance properties. The type of nanostructure--core/shell vs alloy--is reflected in their optical absorbance features. PMID:19708105

  2. Optical absorption properties of dispersed gold and silver alloy nanoparticles.

    PubMed

    Wilcoxon, Jess

    2009-03-01

    The oldest topic in nanoscience is the size-dependent optical properties of gold and silver colloids or nanoparticles, first investigated scientifically by Michael Faraday in 1857. In the modern era, advances in both synthesis and characterization have resulted in new insights into the size-dependent absorbance of Au and Ag nanoparticles with sizes below the classical limit for Mie theory. In this paper we discuss the synthesis and properties of core/shell and nanoalloy particles of Au and Ag, compare them to particles of pure gold and silver, and discuss how alloying affects nanoparticle chemical stability. We show that composition, size, and nanostructure (e.g., core/shell vs quasi-random nanoalloy) can all be employed to adjust the optical absorbance properties. The type of nanostructure--core/shell vs alloy--is reflected in their optical absorbance features.

  3. Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds.

    PubMed

    Liu, Jianhua; Zhang, Xiaoliang; Yu, Mei; Li, Songmei; Zhang, Jindan

    2012-01-23

    Biological scaffolds are being actively explored for the synthesis of nanomaterials with novel structures and unexpected properties. Toroidal plasmid DNA separated from the Bacillus host is applied as a sacrificial mold for the synthesis of silver nanoparticles and nanorings. The photoirradiation method is applied to reduce Ag(I) on the plasmid. The nanoparticles are obtained by varying the concentration of the Ag(I) ion solution and the exposure time of the plasmid-Ag(I) complex under UV light at 254 nm and room temperature. It is found that the plasmid serves not only as a template but also as a reductant to drive the silver nucleation and deposition. The resulting nanoparticles have a face-centered cubic (fcc) crystal structure and 20-30 nm average diameter. The detailed mechanism is discussed, and other metals or alloys could also be synthesized with this method.

  4. Functionalization of textiles with silver and zinc oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pulit-Prociak, Jolanta; Chwastowski, Jarosław; Kucharski, Arkadiusz; Banach, Marcin

    2016-11-01

    The paper presents a method for functionalization of textile materials using fabric dyes modified with silver or zinc oxide nanoparticles. Embedding of these nanoparticles into the structure of other materials makes that the final product is characterized by antimicrobial properties. Indigo and commercially available dye were involved in studies. It is worth to note that silver nanoparticles were obtained in-situ in the reaction of preparing indigo dye and in the process of preparing commercial dye baths. Such a method allows reducing technological steps. The modified dyes were used for dyeing of cotton fibers. The antimicrobial properties of final textile materials were studied. Saccharomyces cerevisiae strain was used in microbiological test. The results confirmed biocidal activity of prepared materials.

  5. Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications.

    PubMed

    Lovera, Pierre; Creedon, Niamh; Alatawi, Hanan; Mitchell, Micki; Burke, Micheal; Quinn, Aidan J; O'Riordan, Alan

    2014-05-01

    In this paper, we describe the fabrication, simulation and characterization of dense arrays of freestanding silver capped polystyrene nanotubes, and demonstrate their suitability for surface enhanced Raman scattering (SERS) applications. Substrates are fabricated in a rapid, low-cost and scalable way by melt wetting of polystyrene (PS) in an anodized alumina (AAO) template, followed by silver evaporation. Scanning electron microscopy reveals that substrates are composed of a dense array of freestanding polystyrene nanotubes topped by silver nanocaps. SERS characterization of the substrates, employing a monolayer of 4-aminothiophenol (4-ABT) as a model molecule, exhibits an enhancement factor of ∼1.6 × 10(6), in agreement with 3D finite difference time domain simulations. Contact angle measurements of the substrates revealed super-hydrophobic properties, allowing pre-concentration of target analyte into a small volume. These super-hydrophobic properties of the samples are taken advantage of for sensitive detection of the organic pollutant crystal violet, with detection down to ∼400 ppt in a 2 μl aliquot demonstrated. PMID:24717806

  6. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens

    PubMed Central

    Elbeshehy, Essam K. F.; Elazzazy, Ahmed M.; Aggelis, George

    2015-01-01

    Extracellular agents produced by newly isolated bacterial strains were able to catalyze the synthesis of silver nanoparticles (AgNPs). The most effective isolates were identified as Bacillus pumilus, B. persicus, and Bacillus licheniformis using molecular identification. DLS analysis revealed that the AgNPs synthesized by the above strains were in the size range of 77–92 nm. TEM observations showed that the nanoparticles were coated with a capping agent, which was probably involved in nanoparticle stabilization allowing their perfect dispersion in aqueous solutions. FTIR analyses indicated the presence of proteins in the capping agent of the nanoparticles and suggested that the oxidation of hydroxyl groups of peptide hydrolysates (originated from the growth medium) is coupled to the reduction of silver ions. Energy Dispersive X-ray Spectroscopy confirmed the above results. The nanoparticles, especially those synthesized by B. licheniformis, were stable (zeta potential ranged from −16.6 to −21.3 mV) and showed an excellent in vitro antimicrobial activity against important human pathogens and a considerable antiviral activity against the Bean Yellow Mosaic Virus. The significance of the particular antiviral activity is highlighted, given the significant yield reduction in fava bean crops resulting from Bean Yellow Mosaic Virus infections, in many African countries. PMID:26029190

  7. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens.

    PubMed

    Elbeshehy, Essam K F; Elazzazy, Ahmed M; Aggelis, George

    2015-01-01

    Extracellular agents produced by newly isolated bacterial strains were able to catalyze the synthesis of silver nanoparticles (AgNPs). The most effective isolates were identified as Bacillus pumilus, B. persicus, and Bacillus licheniformis using molecular identification. DLS analysis revealed that the AgNPs synthesized by the above strains were in the size range of 77-92 nm. TEM observations showed that the nanoparticles were coated with a capping agent, which was probably involved in nanoparticle stabilization allowing their perfect dispersion in aqueous solutions. FTIR analyses indicated the presence of proteins in the capping agent of the nanoparticles and suggested that the oxidation of hydroxyl groups of peptide hydrolysates (originated from the growth medium) is coupled to the reduction of silver ions. Energy Dispersive X-ray Spectroscopy confirmed the above results. The nanoparticles, especially those synthesized by B. licheniformis, were stable (zeta potential ranged from -16.6 to -21.3 mV) and showed an excellent in vitro antimicrobial activity against important human pathogens and a considerable antiviral activity against the Bean Yellow Mosaic Virus. The significance of the particular antiviral activity is highlighted, given the significant yield reduction in fava bean crops resulting from Bean Yellow Mosaic Virus infections, in many African countries.

  8. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens.

    PubMed

    Elbeshehy, Essam K F; Elazzazy, Ahmed M; Aggelis, George

    2015-01-01

    Extracellular agents produced by newly isolated bacterial strains were able to catalyze the synthesis of silver nanoparticles (AgNPs). The most effective isolates were identified as Bacillus pumilus, B. persicus, and Bacillus licheniformis using molecular identification. DLS analysis revealed that the AgNPs synthesized by the above strains were in the size range of 77-92 nm. TEM observations showed that the nanoparticles were coated with a capping agent, which was probably involved in nanoparticle stabilization allowing their perfect dispersion in aqueous solutions. FTIR analyses indicated the presence of proteins in the capping agent of the nanoparticles and suggested that the oxidation of hydroxyl groups of peptide hydrolysates (originated from the growth medium) is coupled to the reduction of silver ions. Energy Dispersive X-ray Spectroscopy confirmed the above results. The nanoparticles, especially those synthesized by B. licheniformis, were stable (zeta potential ranged from -16.6 to -21.3 mV) and showed an excellent in vitro antimicrobial activity against important human pathogens and a considerable antiviral activity against the Bean Yellow Mosaic Virus. The significance of the particular antiviral activity is highlighted, given the significant yield reduction in fava bean crops resulting from Bean Yellow Mosaic Virus infections, in many African countries. PMID:26029190

  9. Disinfection action of electrostatic versus steric-stabilized silver nanoparticles on E. coli under different water chemistries.

    PubMed

    Fauss, Emma K; MacCuspie, Robert I; Oyanedel-Craver, Vinka; Smith, James A; Swami, Nathan S

    2014-01-01

    The capping layer stabilizing silver nanoparticles (AgNPs) affects its aggregation, dissolution, and net disinfection action, especially under conditions of varying water composition, such as, pH, ionic strength and organic matter content. Herein, we correlate the silver ion (Ag(+)) release and reactive oxygen species (ROS) generation rates for AgNPs of varying functionalization to their net disinfection coefficient on Escherichia coli, under conditions of differing water chemistries. For electrostatically stabilized citrate-capped AgNPs, the rate of ROS generation, as measured using a fluorescent dye, is found to dominate over that of Ag(+) release, especially for smaller sized AgNP suspensions (~10nm) at low pH (~6.2). For these AgNPs, the ROS disinfection mechanism is confirmed to dominate net disinfection action, as measured by the live/dead assay, especially at low levels of organic matter. Steric stabilization of AgNPs by protein or starch-capped layers enables disinfection through reducing AgNP aggregation and promoting silver dissolution over ROS generation. We suggest the involvement of protons and dissolved oxygen in causing the independent formation of Ag(+) and ROS, regardless of the AgNP capping layer. While protein-capping layers effectively stabilize AgNPs, the generated ROS is likely dissipated by interference with the bulky capping layer, whereas the interference is lower with citrate-capping layers. Steric stabilization of AgNPs enables disinfection within a wide range of water chemistries, whereas effective disinfection can occur under electrostatic stabilization, only at low NaCl (<1 mmol/L) and organic matter (<5 mg/L) levels.

  10. Three Phoma spp. synthesised novel silver nanoparticles that possess excellent antimicrobial efficacy.

    PubMed

    Rai, Mahendra; Ingle, Avinash P; Gade, Aniket K; Duarte, Marta Cristina Teixeira; Duran, Nelson

    2015-10-01

    The authors report extracellular mycosynthesis of silver nanoparticles (AgNPs) by Phoma capsulatum, Phoma putaminum and Phoma citri. The AgNPs thus synthesised were characterised by UV-visible spectrophotometer, Fourier transform infrared spectroscopy, Nanosight LM20 and transmission electron microscopy, which confirmed the synthesis of mostly spherical and polydisperse nanoparticles capped with proteins. The size of AgNPs was found in the range of 10-80 , 5-80 and 5-90 nm with an average size of 31.85, 25.43 and 23.29 nm by P. capsulatum, P. putaminum and P. citri, respectively. Further, potential antimicrobial activity was reported against Aspergillus niger, Candida albicans, Salmonella choleraesuis, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. The lowest minimal inhibitory concentration (MIC) (0.85 µg/ml) was reported for AgNPs synthesised from P. citri against S. choleraesuis. However, AgNPs synthesised from P. capsulatum showed the highest MIC (10.62 µg/ml) against S. choleraesuis, P. aeruginosa and E. coli (clinical isolate). The same MIC values (10.62 µg/ml) were also reported against P. aeruginosa and both clinical and standard isolates of E. coli for AgNPs synthesised from P. citri. It was also observed that all the silver nanoparticles showed remarkable antifungal and antibacterial activity against these tested pathogens as compared with the commercially available antifungal and antibacterial agents. PMID:26435281

  11. Timber industry waste-teak ( Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Devadiga, Aishwarya; Shetty, K. Vidya; Saidutta, M. B.

    2015-08-01

    The current research article emphasizes efficacious use of teak leaves, an agro -biowaste from world's premier hardwood timber industry, for "green" synthesis of silver nanoparticles (AgNPs). Bioactive compounds of the leaves act as prolific reducing and stabilizing agents in AgNP synthesis. The characterization of the AgNPs synthesized using teak leaves revealed that the particles are spherical with an average size of 28 nm and the presence of bioactive compounds present in teak leaf extract as capping agents on the nanoparticles. A prominent decrease in the content of bioactive compounds such as polyphenols, antioxidants and flavonoids after the biosynthesis of AgNPs signifies that these class of compounds act as reductants and stabilizers during biosynthesis. The biosynthesized silver nanoparticles were also successfully evaluated for their antibacterial characteristics against waterborne pathogens, E. coli and S. aureus, with minimum inhibitory concentration of 25.6 μg/mL. Exploitation of agrowaste resources for synthesis of AgNPs curtails indiscriminate usage of food and commercial plant materials, rather contributing a sustainable way for effective plant waste biomass utilization and management. The biosynthesized AgNps have potential application in water purifiers, antibacterial fabrics, sports wear and in cosmetics as antibacterial agent and the process used for its synthesis being greener is highly beneficial from environmental, energy consumption and economic perspectives.

  12. Concentration of polycyclic aromatic hydrocarbons by chemically modified silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Romanovskaya, G. I.; Olenin, A. Yu.; Vasil'Eva, S. Yu.

    2011-02-01

    The ability of silver nanoparticles stabilized by cetyltrimethylammonium bromide (CTAB) to concentrate polycyclic aromatic hydrocarbons (PAHs) from aqueous solutions was shown. It was found that fixed PAH molecules are capable of acting as electronic energy donors and of generating sensibilized fluorescence of silver nanoparticles. It was shown by spectral-luminescent investigations of dilute PAH solutions (5 × 10-10-1 × 10-6 g/ml) in the presence of silver nanoparticles (˜0.7 vol %) that the concentration of PAH molecules from solutions occurs due to its sorption on hydrocarbon CTAB radicals in close contact to the surface of metallic silver. On the basis of the spectral data, the sorption isotherms were obtained and the values of extraction degree and partition coefficients for naphthalene, phenanthrene, anthracene, chrysene, pyrene, and 3,4-benzopyrene were calculated. It was found that the degree of extraction values of the investigated PAHs fall within the range of 73-98%, the partition coefficients (log D) ˜ 6, and the concentration coefficients ˜105.

  13. Environmental and human health risks of aerosolized silver nanoparticles.

    PubMed

    Quadros, Marina E; Marr, Linsey C

    2010-07-01

    Silver nanoparticles (AgNPs) are gaining attention from the academic and regulatory communities, not only because of their antimicrobial effects and subsequent product applications, but also because of their potential health and environmental risks. Whereas AgNPs in the aqueous phase are under intensive study, those in the atmosphere have been largely overlooked, although it is well established that inhalation of nanoparticles is associated with adverse health effects. This review summarizes the present state of knowledge concerning airborne AgNPs to shed light on the possible environmental exposure scenarios that may accompany the production and popularization of silver nanotechnology consumer products. The current understanding of the toxicity of AgNPs points toward a potential threat via the inhalation exposure route. Nanoparticle size, chemical composition, crystal structure, surface area, and the rate of silver ion release are expected to be important variables in determining toxicity. Possible routes of aerosolization of AgNPs from the production, use, and disposal of existing consumer products are presented. It is estimated that approximately 14% of silver nanotechnology products that have been inventoried could potentially release silver particles into the air during use, whether through spraying, dry powder dispersion, or other methods. In laboratory and industrial settings, six methods of aerosolization have been used to produce airborne AgNPs: spray atomization, liquid-flame spray, thermal evaporation-condensation, chemical vaporization, dry powder dispersion, and manual handling. Fundamental uncertainties remain about the fate of AgNPs in the environment, their short- and long-term health effects, and the specific physical and chemical properties of airborne particles that are responsible for health effects. Thus, to better understand the risks associated with silver nanotechnology, it is vital to understand the conditions under which AgNPs could become

  14. Bio-functionalized silver nanoparticles: a novel colorimetric probe for cysteine detection.

    PubMed

    Borase, Hemant P; Patil, Chandrashekhar D; Salunkhe, Rahul B; Suryawanshi, Rahul K; Kim, Beom S; Bapat, Vishwas A; Patil, Satish V

    2015-04-01

    Chemical interactions between nanoparticles and biomolecules are vital for applying nanoparticles in medicine and life science. Development of sensitive, rapid, low-cost, and eco-friendly sensors for the detection of molecules acting as disease indicator is need of an hour. In the present investigation, a green trend for silver nanoparticle synthesis was followed using leaf extract of Calotropis procera. Silver nanoparticles exhibited surface plasmon absorption peak at 421 nm, spherical shape with average size of 10 nm, and zeta potential of -22.4 mV. The as-synthesized silver nanoparticles were used for selective and sensitive detection of cysteine. Cysteine induces aggregation in stable silver nanoparticles owing to selective and strong interaction of -SH group of cysteine with silver nanoparticle surface. Cysteine-induced silver nanoparticle aggregation can be observed visually by change in color of silver nanoparticles from yellow to pink. Cysteine concentration was estimated colorimetrically by measuring absorption at surface plasmon wavelength. Limit of detection for cysteine using silver nanoparticles is ultralow, i.e., 100 nM. The mechanistic insight into cysteine detection by silver nanoparticles was investigated using FT-IR, TEM, DLS, and TLC analysis. Proposed method can be applied for the detection of cysteine in blood plasma and may give rise to a new insight into development of eco-friendly fabricated nanodiagnostic device in future.

  15. Spatially controlled synthesis of silver nanoparticles and nanowires by photosensitized reduction.

    PubMed

    Jradi, S; Balan, L; Zeng, X H; Plain, J; Lougnot, D J; Royer, P; Bachelot, R; Akil, S; Soppera, O; Vidal, L

    2010-03-01

    The present paper reports on the spatially controlled synthesis of silver nanoparticles (NPs) and silver nanowires by photosensitized reduction. In a first approach, direct photogeneration of silver NPs at the end of an optical fiber was carried out. Control of both size and density of silver NPs was possible by changing the photonic conditions. In a further development, a photochemically assisted procedure allowing silver to be deposited at the surface of a polymer microtip was implemented. Finally, polymer tips terminated by silver nanowires were fabricated by simultaneous photopolymerization and silver photoreduction. The silver NPs were characterized by UV-visible spectroscopy and scanning electron microscopy.

  16. Morphology and Optical Properties of Bare and Silica Coated Hybrid Silver Nanoparticles.

    PubMed

    Ghimire, Sushant; Lebek, Werner; Godehardt, Reinhold; Lee, Wan In; Adhikari, Rameshwar

    2016-05-01

    Owing to their wide applications in the field of optoelectronics, photonics, catalysis, and medicine; plasmonic metal nanoparticles are attaining considerable interest nowadays. The optical properties of these metal nanoparticles depend upon their size, shape, and surrounding medium. The present work studies the morphology and optical properties of bare silver nanoparticles and silica coated hybrid silver nanoparticles. Aqueous phase mediated synthesis and water-in-oil microemulsion mediated synthesis are two different wet chemical routes employed for nanosynthesis. Direct coating of silica is performed in water-in-oil microemulsion on pre-synthesized silver nanoparticles using tetraethyl orthosilicate as silica precursor. This study shows that using different wet chemical routes the size of the synthesized nanoparticles could be tuned. In addition, using reverse micelles as nanoreactors, the thickness of the silica shell around the core silver nanoparticles could be significantly controlled. Further, the optical properties of silver nanoparticles could be adjusted through the size and the surface coating. PMID:27483900

  17. Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis

    NASA Astrophysics Data System (ADS)

    Petkova, Galina A.; Záruba, Кamil; Žvátora, Pavel; Král, Vladimír

    2012-06-01

    In this work, a simple method for alcohol synthesis with high enantiomeric purity was proposed. For this, colloidal gold and silver surface modifications with 3-mercaptopropanoic acid and cysteamine were used to generate carboxyl and amine functionalized gold and silver nanoparticles of 15 and 45 nm, respectively. Alcohol dehydrogenase from Thermoanaerobium brockii (TbADH) and its cofactor (NADPH) were physical and covalent (through direct adsorption and using cross-linker) immobilized on nanoparticles' surface. In contrast to the physical and covalent immobilizations that led to a loss of 90% of the initial enzyme activity and 98% immobilization, the use of a cross-linker in immobilization process promoted a loss to 30% of the initial enzyme activity and >92% immobilization. The yield of NADPH immobilization was about 80%. The best results in terms of activity were obtained with Ag-citr nanoparticle functionalized with carboxyl groups (Ag-COOH), Au-COOH(CTAB), and Au-citr functionalized with amine groups and stabilized with CTAB (Au-NH2(CTAB)) nanoparticles treated with 0.7% and 1.0% glutaraldehyde. Enzyme conformation upon immobilization was studied using fluorescence and circular dichroism spectroscopies. Shift in ellipticity at 222 nm with about 4 to 7 nm and significant decreasing in fluorescence emission for all bioconjugates were observed by binding of TbADH to silver/gold nanoparticles. Emission redshifting of 5 nm only for Ag-COOH-TbADH bioconjugate demonstrated change in the microenvironment of TbADH. Enzyme immobilization on glutaraldehyde-treated Au-NH2(CTAB) nanoparticles promotes an additional stabilization preserving about 50% of enzyme activity after 15 days storage. Nanoparticles attached-TbADH-NADPH systems were used for enantioselective ( ee > 99%) synthesis of ( S)-7-hydroxy-2-tetralol.

  18. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract

    NASA Astrophysics Data System (ADS)

    Gavade, N. L.; Kadam, A. N.; Suwarnkar, M. B.; Ghodake, V. P.; Garadkar, K. M.

    2015-02-01

    Herein, we are reporting for the first time one step biogenic synthesis of silver nanoparticles (AgNPs) at room temperature by using Ziziphus Jujuba leaf extract as a reducing and stabilizing agent. The process of nanoparticles preparation is green, rapid, environmentally benign and cost effective. The synthesized AgNPs were characterized by means of UV-Vis., XRD, FT-IR, TEM, DLS and Zeta potential. The absorption band centered at λmax 434 nm in UV-Vis. reflects surface plasmon resonance (SPR) of AgNPs. XRD analysis revealed, that biosynthesized AgNPs are crystalline in nature with the face centered cubic structure. FT-IR analysis indicates that nanoparticles were capped with the leaf extract. TEM images shows the synthesized nanoparticles are having different shapes with 20-30 nm size. The data obtained from DLS that support the hydrodynamic size of 28 nm. Zeta potential of -26.4 mV indicates that the nanoparticles were highly stable in colloidal state. The effect of pH, quantity of leaf extract and concentrations of AgNO3 were also studied to attend control over the particle size and stability. The synthesized AgNPs shows highly efficient catalytic activity towards the reduction of anthropogenic pollutant 4-nitrophenol (4-NP) and Methylene Blue (MB) for environmental protection. Synthesized AgNPs also exhibited good antimicrobial activity against Escherichia coli.

  19. Silver and Gold Nanoparticles Alter Cathepsin Activity In vitro

    NASA Astrophysics Data System (ADS)

    Speshock, Janice L.; Braydich-Stolle, Laura K.; Szymanski, Eric R.; Hussain, Saber M.

    2011-12-01

    Nanomaterials are being incorporated into many biological applications for use as therapeutics, sensors, or labels. Silver nanomaterials are being utilized for biological implants and wound dressings as an antiviral material, whereas gold nanomaterials are being used as biological labels or sensors due to their surface properties and biocompatibility. Cytotoxicity data of these materials are becoming more prevalent; however, little research has been performed to understand how the introduction of these materials into cells affects cellular processes. Here, we demonstrate the impact that silver and gold nanoparticles have on cathepsin activity in vitro. Cathepsins are important cellular proteases that are imperative for proper immune system function. We have selected to examine gold and silver nanoparticles due to the increased use of these materials in biological applications. This manuscript depicts how both of these types of nanomaterials affect cathepsin activity, which could impact the host's immune system and its ability to respond to pathogens. Cathepsin B activity decreases in a dose-dependent manner with all nanoparticles tested. Alternatively, the impact of nanoparticles on cathepsin L activity depends greatly on the type and size of the material.

  20. Synthesis and Study of Silver Nanoparticles

    ERIC Educational Resources Information Center

    Soloman, Sally D.; Bahadory, Mozghan; Jeyarajasingam, Aravindan V.; Rutkowsky, Susan A.; Boritz, Charles; Mulfinger, Lorraine

    2007-01-01

    A laboratory experiment was conducted in which the students synthesized yellow colloidal silver, estimate particle size using visible spectroscopy and studied aggregation effects. The students were thus introduced to nanotechnology along with other topics such as redox chemistry, limiting and excess reactants, spectroscopy and atomic size.

  1. Green synthesis of silver nanoparticles for the control of mosquito disease vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A biological method was used to synthesize stable silver nanoparticles. The nanoparticles were tested as larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous AgNO3 to stable silver nanoparticles with average particle siz...

  2. TOXICITY OF SILVER NANOPARTICLES TO DAPHNIA MAGNA

    EPA Science Inventory

    Relatively little is known regarding toxicity of nanoparticles in the environment. It is widely assumed that the toxicity of nanoparticles will be less than that of their metallic ions. Also the effect of organics on metal toxicity is well established. Presented here are the resu...

  3. Aggregation kinetics and dissolution of coated silver nanoparticles.

    PubMed

    Li, Xuan; Lenhart, John J; Walker, Harold W

    2012-01-17

    Determining the fate of manufactured nanomaterials in the environment is contingent upon understanding how stabilizing agents influence the stability of nanoparticles in aqueous systems. In this study, the aggregation and dissolution tendencies of uncoated silver nanoparticles and the same particles coated with three common coating agents, trisodium citrate, sodium dodecyl sulfate (SDS), and Tween 80 (Tween), were evaluated. Early stage aggregation kinetics of the uncoated and coated silver nanoparticles were assessed by dynamic light scattering over a range of electrolyte types (NaCl, NaNO(3), and CaCl(2)) and concentrations that span those observed in natural waters. Although particle dissolution was observed, aggregation of all particle types was still consistent with classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The aggregation of citrate-coated particles and SDS-coated particles were very similar to that for the uncoated particles, as the critical coagulation concentrations (CCC) of the particles in different electrolytes were all approximately the same (40 mM NaCl, 30 mM NaNO(3), and 2 mM CaCl(2)). The Tween-stabilized particles were significantly more stable than the other particles, however, and in NaNO(3) aggregation was not observed up to an electrolyte concentration of 1 M. Differences in the rate of aggregation under diffusion-limited aggregation conditions at high electrolyte concentrations for the SDS and Tween-coated particles, in combination with the moderation of their electrophoretic mobilities, suggest SDS and Tween imparted steric interactions to the particles. The dissolution of the silver nanoparticles was inhibited by the SDS and Tween coatings, but not by the citrate coating, and in chloride-containing electrolytes a secondary precipitate of AgCl was observed bridging the individual particles. These results indicate that coating agents could significant influence the fate of silver nanoparticles in aquatic systems, and in some

  4. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    SciTech Connect

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2008-12-17

    We report the catalytic activity of colloid platinum nanoparticles synthesized with different organic capping layers. On the molecular scale, the porous organic layers have open spaces that permit the reactant and product molecules to reach the metal surface. We carried out CO oxidation on several platinum nanoparticle systems capped with various organic molecules to investigate the role of the capping agent on catalytic activity. Platinum colloid nanoparticles with four types of capping layer have been used: TTAB (Tetradecyltrimethylammonium Bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). The reactivity of the Pt nanoparticles varied by 30%, with higher activity on TTAB coated nanoparticles and lower activity on HDT, while the activation energy remained between 27-28 kcal/mol. In separate experiments, the organic capping layers were partially removed using ultraviolet light-ozone generation techniques, which resulted in increased catalytic activity due to the removal of some of the organic layers. These results indicate that the nature of chemical bonding between organic capping layers and nanoparticle surfaces plays a role in determining the catalytic activity of platinum colloid nanoparticles for carbon monoxide oxidation.

  5. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Ping; Li, Juan; Wu, Changzhu; Wu, Qingsheng; Li, Jian

    2005-09-01

    The bactericidal action of silver (0) nanoparticles and amoxicillin on Escherichia coli is studied, respectively. Increasing concentration of both amoxicillin (0-0.525 mg ml-1) and silver nanoparticles (0-40 µg ml-1) showed a higher antibacterial effect in Luria-Bertani (LB) medium. Escherichia coli cells have different bactericidal sensitivity to them. When amoxicillin and silver nanoparticles are combined, it results in greater bactericidal efficiency on Escherichia coli cells than when they were applied separately. Dynamic tests on bacterial growth indicated that exponential and stationary phases are greatly decreased and delayed in the synergistic effect of amoxicillin and silver nanoparticles. In addition, the effect induced by a preincubation with silver nanoparticles is examined. The results show that solutions with more silver nanoparticles have better antimicrobial effects. One hypothesized mechanism is proposed to explain this phenomenon.

  6. PVP capped CdS nanoparticles for UV-LED applications

    SciTech Connect

    Sivaram, H.; Selvakumar, D.; Jayavel, R.

    2015-06-24

    Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.

  7. PVP capped CdS nanoparticles for UV-LED applications

    NASA Astrophysics Data System (ADS)

    Sivaram, H.; Selvakumar, D.; Jayavel, R.

    2015-06-01

    Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.

  8. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  9. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  10. Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles.

    PubMed

    Qu, Haiou; Mudalige, Thilak K; Linder, Sean W

    2016-01-15

    Speciation and accurate quantification of ionic silver and metallic silver nanoparticles are critical to investigate silver toxicity and to determine the shelf-life of products that contain nano silver under various storage conditions. We developed a rapid method for quantification of silver ions and silver nanoparticles using capillary electrophoresis (CE) interfaced with inductively-coupled plasma mass spectrometry (ICPMS). The addition of 2-mercaptopropionylglycine (tiopronin) to the background electrolyte was used to facilitate the chromatographic separation of ionic silver and maintain the oxidation state of silver. The obtained limits of detection were 0.05 μg kg(-1) of silver nanoparticles and 0.03 μg kg(-1) of ionic silver. Nanoparticles of varied sizes (10-110 nm) with different surface coating, including citrate acid, lipoic acid, polyvinylpyrrolidone and bovine serum albumin (BSA) were successfully analyzed. Particularly good recoveries (>93%) were obtained for both ionic silver and silver nanoparticle in the presence of excess amount of BSA. The method was further tested with six commercially available dietary supplements which varied in concentration and matrix components. The summed values of silver ions and silver nanoparticles correlated well with the total silver concentration determined by ICPMS after acid digestion. This method can serve as an alternative to cloud point extraction technique when the extraction efficiency for protein coated nanoparticles is low.

  11. Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles

    PubMed Central

    Qu, Haiou; Mudalige, Thilak K.; Linder, Sean W.

    2016-01-01

    Speciation and accurate quantification of ionic silver and metallic silver nanoparticles are critical to investigate silver toxicity and to determine the shelf-life of products that contain nano silver under various storage conditions. We developed a rapid method for quantification of silver ions and silver nanoparticles using capillary electrophoresis (CE) interfaced with inductively-coupled plasma mass spectrometry (ICPMS). The addition of 2-mercaptopropionylglycine (tiopronin) to the background electrolyte was used to facilitate the chromatographic separation of ionic silver and maintain the oxidation state of silver. The obtained limits of detection were 0.05 μg kg−1 of silver nanoparticles and 0.03 μg kg−1 of ionic silver. Nanoparticles of varied sizes (10–110 nm) with different surface coating, including citrate acid, lipoic acid, polyvinylpyrrolidone and bovine serum albumin (BSA) were successfully analyzed. Particularly good recoveries (>93%) were obtained for both ionic silver and silver nanoparticle in the presence of excess amount of BSA. The method was further tested with six commercially available dietary supplements which varied in concentration and matrix components. The summed values of silver ions and silver nanoparticles correlated well with the total silver concentration determined by ICPMS after acid digestion. This method can serve as an alternative to cloud point extraction technique when the extraction efficiency for protein coated nanoparticles is low. PMID:26724893

  12. Capillary electrophoresis coupled with inductively coupled mass spectrometry as an alternative to cloud point extraction based methods for rapid quantification of silver ions and surface coated silver nanoparticles.

    PubMed

    Qu, Haiou; Mudalige, Thilak K; Linder, Sean W

    2016-01-15

    Speciation and accurate quantification of ionic silver and metallic silver nanoparticles are critical to investigate silver toxicity and to determine the shelf-life of products that contain nano silver under various storage conditions. We developed a rapid method for quantification of silver ions and silver nanoparticles using capillary electrophoresis (CE) interfaced with inductively-coupled plasma mass spectrometry (ICPMS). The addition of 2-mercaptopropionylglycine (tiopronin) to the background electrolyte was used to facilitate the chromatographic separation of ionic silver and maintain the oxidation state of silver. The obtained limits of detection were 0.05 μg kg(-1) of silver nanoparticles and 0.03 μg kg(-1) of ionic silver. Nanoparticles of varied sizes (10-110 nm) with different surface coating, including citrate acid, lipoic acid, polyvinylpyrrolidone and bovine serum albumin (BSA) were successfully analyzed. Particularly good recoveries (>93%) were obtained for both ionic silver and silver nanoparticle in the presence of excess amount of BSA. The method was further tested with six commercially available dietary supplements which varied in concentration and matrix components. The summed values of silver ions and silver nanoparticles correlated well with the total silver concentration determined by ICPMS after acid digestion. This method can serve as an alternative to cloud point extraction technique when the extraction efficiency for protein coated nanoparticles is low. PMID:26724893

  13. Effect of Accelerator in Green Synthesis of Silver Nanoparticles

    PubMed Central

    Darroudi, Majid; Ahmad, Mansor Bin; Abdullah, Abdul Halim; Ibrahim, Nor Azowa; Shameli, Kamyar

    2010-01-01

    Silver nanoparticles (Ag-NPs) were successfully synthesized in the natural polymeric matrix. Silver nitrate, gelatin, glucose, and sodium hydroxide have been used as silver precursor, stabilizer, reducing agent, and accelerator reagent, respectively. This study investigated the role of NaOH as the accelerator. The resultant products have been confirmed to be Ag-NPs using powder X-ray diffraction (PXRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The colloidal sols of Ag-NPs obtained at different volumes of NaOH show strong and different surface plasmon resonance (SPR) peaks, which can be explained from the TEM images of Ag-NPs and their particle size distribution. Compared with other synthetic methods, this work is green, rapid, and simple to use. The newly prepared Ag-NPs may have many potential applications in chemical and biological industries. PMID:21152307

  14. Time-dependent effect in green synthesis of silver nanoparticles.

    PubMed

    Darroudi, Majid; Ahmad, Mansor Bin; Zamiri, Reza; Zak, A K; Abdullah, Abdul Halim; Ibrahim, Nor Azowa

    2011-01-01

    The application of "green" chemistry rules to nanoscience and nanotechnology is very important in the preparation of various nanomaterials. In this work, we successfully developed an eco-friendly chemistry method for preparing silver nanoparticles (Ag-NPs) in natural polymeric media. The colloidal Ag-NPs were synthesized in an aqueous solution using silver nitrate, gelatin, and glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag-NPs were studied at different reaction times. The ultraviolet-visible (UV-vis) spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The prepared samples were also characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM). The use of eco-friendly reagents, such as gelatin and glucose, provides green and economic attributes to this work. PMID:21556342

  15. Rapid evolution of silver nanoparticle resistance in Escherichia coli

    PubMed Central

    Graves, Joseph L.; Tajkarimi, Mehrdad; Cunningham, Quincy; Campbell, Adero; Nonga, Herve; Harrison, Scott H.; Barrick, Jeffrey E.

    2015-01-01

    The recent exponential increase in the use of engineered nanoparticles (eNPs) means both greater intentional and unintentional exposure of eNPs to microbes. Intentional use includes the use of eNPs as biocides. Unintentional exposure results from the fact that eNPs are included in a variety of commercial products (paints, sunscreens, cosmetics). Many of these eNPs are composed of heavy metals or metal oxides such as silver, gold, zinc, titanium dioxide, and zinc oxide. It is thought that since metallic/metallic oxide NPs impact so many aspects of bacterial physiology that it will difficult for bacteria to evolve resistance to them. This study utilized laboratory experimental evolution to evolve silver nanoparticle (AgNP) resistance in the bacterium Escherichia coli (K-12 MG1655), a bacterium that does not harbor any known silver resistance elements. After 225 generations of exposure to the AgNP environment, the treatment populations demonstrated greater fitness vs. control strains as measured by optical density (OD) and colony forming units (CFU) in the presence of varying concentrations of 10 nm citrate-coated silver nanoparticles (AgNP) or silver nitrate (AgNO3). Genomic analysis shows that changes associated with AgNP resistance were already accumulating within the treatment populations by generation 100, and by generation 200 three mutations had swept to high frequency in the AgNP resistance stocks. This study indicates that despite previous claims to the contrary bacteria can easily evolve resistance to AgNPs, and this occurs by relatively simple genomic changes. These results indicate that care should be taken with regards to the use of eNPs as biocides as well as with regards to unintentional exposure of microbial communities to eNPs in waste products. PMID:25741363

  16. Rapid evolution of silver nanoparticle resistance in Escherichia coli.

    PubMed

    Graves, Joseph L; Tajkarimi, Mehrdad; Cunningham, Quincy; Campbell, Adero; Nonga, Herve; Harrison, Scott H; Barrick, Jeffrey E

    2015-01-01

    The recent exponential increase in the use of engineered nanoparticles (eNPs) means both greater intentional and unintentional exposure of eNPs to microbes. Intentional use includes the use of eNPs as biocides. Unintentional exposure results from the fact that eNPs are included in a variety of commercial products (paints, sunscreens, cosmetics). Many of these eNPs are composed of heavy metals or metal oxides such as silver, gold, zinc, titanium dioxide, and zinc oxide. It is thought that since metallic/metallic oxide NPs impact so many aspects of bacterial physiology that it will difficult for bacteria to evolve resistance to them. This study utilized laboratory experimental evolution to evolve silver nanoparticle (AgNP) resistance in the bacterium Escherichia coli (K-12 MG1655), a bacterium that does not harbor any known silver resistance elements. After 225 generations of exposure to the AgNP environment, the treatment populations demonstrated greater fitness vs. control strains as measured by optical density (OD) and colony forming units (CFU) in the presence of varying concentrations of 10 nm citrate-coated silver nanoparticles (AgNP) or silver nitrate (AgNO3). Genomic analysis shows that changes associated with AgNP resistance were already accumulating within the treatment populations by generation 100, and by generation 200 three mutations had swept to high frequency in the AgNP resistance stocks. This study indicates that despite previous claims to the contrary bacteria can easily evolve resistance to AgNPs, and this occurs by relatively simple genomic changes. These results indicate that care should be taken with regards to the use of eNPs as biocides as well as with regards to unintentional exposure of microbial communities to eNPs in waste products. PMID:25741363

  17. Sprayable Elastic Conductors Based on Block Copolymer Silver Nanoparticle Composites

    PubMed Central

    2015-01-01

    Block copolymer silver nanoparticle composite elastic conductors were fabricated through solution blow spinning and subsequent nanoparticle nucleation. The reported technique allows for conformal deposition onto nonplanar substrates. We additionally demonstrated the ability to tune the strain dependence of the electrical properties by adjusting nanoparticle precursor concentration or localized nanoparticle nucleation. The stretchable fiber mats were able to display electrical conductivity values as high as 2000 ± 200 S/cm with only a 12% increase in resistance after 400 cycles of 150% strain. Stretchable elastic conductors with similar and higher bulk conductivity have not achieved comparable stability of electrical properties. These unique electromechanical characteristics are primarily the result of structural changes during mechanical deformation. The versatility of this approach was demonstrated by constructing a stretchable light emitting diode circuit and a strain sensor on planar and nonplanar substrates. PMID:25491507

  18. Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver.

    PubMed

    Oberemm, Axel; Hansen, Ulf; Böhmert, Linda; Meckert, Christine; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso

    2016-03-01

    Even although quite a number of studies have been performed so far to demonstrate nanoparticle-specific effects of substances in living systems, clear evidence of these effects is still under debate. The present study was designed as a comparative proteomic analysis of human intestinal cells exposed to a commercial silver nanoparticle reference material and ions from AgNO3. A two-dimensional gel electrophoresis/MALDI mass spectrometry (MS)-based proteomic analysis was conducted after 24-h incubation of differentiated Caco-2 cells with non-cytotoxic and low cytotoxic silver concentrations (2.5 and 25 µg ml(-1) nanosilver, 0.5 and 5 µg ml(-1) AgNO3). Out of an overall number of 316 protein spots differentially expressed at a fold change of ≥ 1.4 or ≤ -1.4 in all treatments, 169 proteins could be identified. In total, 231 spots were specifically deregulated in particle-treated groups compared with 41 spots, which were limited to AgNO3-treatments. Forty-four spots (14 %) were commonly deregulated by both types of treatment. A considerable fraction of the proteins differentially expressed after treatment with nanoparticles is related to protein folding, synthesis or modification of proteins as well as cellular assembly and organization. Overlays of networks obtained for particulate and ionic treatments showed matches, indicating common mechanisms of combined particle and ionic silver exposure and exclusive ionic silver treatment. However, proteomic responses of Caco-2 cells treated with higher concentrations of silver species also showed some differences, for example regarding proteins related to fatty acid and energy metabolism, suggesting an induction of also some different molecular mechanisms for particle exposure and ionic treatment.

  19. Transport of Silver Nanoparticles in Unsaturated Sand

    NASA Astrophysics Data System (ADS)

    Kumahor, S. K.; Hron, P.; Metreveli, G.; Schaumann, G. E.; Klitzke, S.; Vogel, H. J.

    2015-12-01

    Transport of citrate-coated Ag nanoparticles in the presence of a monovalent cation was compared with "soil-aged" Ag nanoparticles in the presence of both monovalent and multivalent cations using experimental breakthrough curves and numerical modeling. We integrated information on hydraulic state variables measured during transport, optimal parameters obtained from a numerical solution of a convection dispersion reaction model, structure of the flow field derived from morphological analysis and a classical DLVO model extended for hydrophobic interaction to understand the governing transport dynamics. The citrate-coated Ag NP were relatively more mobile compared to the "soil-aged" Ag nanoparticles explained by the differences in solution chemistry. Two processes are peculiar to both citrate-coated and "soil-aged" Ag nanoparticles: retardation and irreversible straining attributed to the air-water and solid-water interfaces respectively. However, the retardation seems to be less pronounced for the "soil-aged" Ag nanoparicles which could be explained by the differences in nanoparticle properties. As an additional phenomenon, cation brigding complexation is suggested for the "soil-aged" Ag nanoparticles due to the presence of multivalent cations. We suggest coupled physical and chemical processes during transport which could be fairly well described by the proposed convection-dispersion-reaction model.

  20. Orientation of glycine on silver nanoparticles: SERS studies

    NASA Astrophysics Data System (ADS)

    Parameswari, A.; Benial, A. Milton Franklin

    2016-05-01

    Surface enhanced Raman scattering (SERS) studies of glycine (Gly) adsorbed on silver nanoparticles (AgNPs) was investigated by experimental and density functional theory approach. The AgNPs were prepared and characterized. The molecular structure of the Gly and Gly adsorbed on silver cluster were optimized by the DFT/B3PW91 method with LanL2DZ basis set. The calculated and observed vibrational frequencies were assigned on the basis of potential energy distribution calculation. The perpendicular orientation of Gly on the silver surface was predicted from the enhanced Raman signal correspond to the C=O and C-H stretching vibrational modes. The frontier molecular orbitals analysis and molecular electrostatic potential calculation were carried out. The reduced band gap value was obtained for Gly adsorbed on silver nanoparticles, which paves the way for designing the bio molecular devices. The first order hyperpolarizability value for Ag-Gly is 461 times greater than the urea. Thus, Ag-Gly is a promising candidate for NLO materials.

  1. Characteristics of silver nanoparticles in vehicles for biological applications.

    PubMed

    Kejlová, Kristina; Kašpárková, Věra; Krsek, Daniel; Jírová, Dagmar; Kolářová, Hana; Dvořáková, Markéta; Tománková, Kateřina; Mikulcová, Veronika

    2015-12-30

    Silver nanoparticles (AgNPs) have been used for decades as anti-bacterial agents in various industrial fields such as cosmetics, health industry, food storage, textile coatings and environmental applications, although their toxicity is not fully recognized yet. Antimicrobial and catalytic activity of AgNPs depends on their size as well as structure, shape, size distribution, and physico-chemical environment. The unique properties of AgNPs require novel or modified toxicological methods for evaluation of their toxic potential combined with robust analytical methods for characterization of nanoparticles applied in relevant vehicles, e.g., culture medium with/without serum and phosphate buffered saline.

  2. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bharti, Amardeep; Singh, Suman; Singla, M. L.; Goyal, Navdeep

    2015-08-01

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM).

  3. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    SciTech Connect

    Bharti, Amardeep Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-08-28

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  4. Can silver nanoparticles be useful as potential biological labels?

    NASA Astrophysics Data System (ADS)

    Schrand, Amanda M.; Braydich-Stolle, Laura K.; Schlager, John J.; Dai, Liming; Hussain, Saber M.

    2008-06-01

    Silver (Ag) nanoparticles have unique plasmon-resonant optical scattering properties that are finding use in nanomedical applications such as signal enhancers, optical sensors, and biomarkers. In this study, we examined the chemical and biological properties of Ag nanoparticles of similar sizes, but that differed primarily in their surface chemistry (hydrocarbon versus polysaccharide), in neuroblastoma cells for their potential use as biological labels. We observed strong optical labeling of the cells in a high illumination light microscopy system after 24 h of incubation due to the excitation of plasmon resonance by both types of Ag nanoparticle. Surface binding of both types of Ag nanoparticle to the plasma membrane of the cells was verified with scanning electron microscopy as well as the internalization and localization of the Ag nanoparticles into intracellular vacuoles in thin cell sections with transmission electron microscopy. However, the induction of reactive oxygen species (ROS), degradation of mitochondrial membrane integrity, disruption of the actin cytoskeleton, and reduction in proliferation after stimulation with nerve growth factor were found after incubation with Ag nanoparticles at concentrations of 25 µg ml-1 or greater, with a more pronounced effect produced by the hydrocarbon-based Ag nanoparticles in most cases. Therefore, the use of Ag nanoparticles as potential biological labels, even if the surface is chemically modified with a biocompatible material, should be approached with caution.

  5. Stress-induced phase transformation and optical coupling of silver nanoparticle superlattices into mechanically stable nanowires

    NASA Astrophysics Data System (ADS)

    Li, Binsong; Wen, Xiaodong; Li, Ruipeng; Wang, Zhongwu; Clem, Paul G.; Fan, Hongyou

    2014-06-01

    One-dimensional silver materials display unique optical and electrical properties with promise as functional blocks for a new generation of nanoelectronics. To date, synthetic approaches and property engineering of silver nanowires have primarily focused on chemical methods. Here we report a simple physical method of metal nanowire synthesis, based on stress-induced phase transformation and sintering of spherical Ag nanoparticle superlattices. Two phase transformations of nanoparticles under stress have been observed at distinct length scales. First, the lattice dimensions of silver nanoparticle superlattices may be reversibly manipulated between 0-8 GPa compressive stresses to enable systematic and reversible changes in mesoscale optical coupling between silver nanoparticles. Second, stresses greater than 8 GPa induced an atomic lattice phase transformation, which induced sintering of silver nanoparticles into micron-length scale nanowires. The nanowire synthesis mechanism displays a dependence on both nanoparticle crystal surface orientation and presence of particular grain boundaries to enable nanoparticle consolidation into nanowires.

  6. Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Oluwaniyi, Omolara O.; Adegoke, Haleemat I.; Adesuji, Elijah T.; Alabi, Aderemi B.; Bodede, Sunday O.; Labulo, Ayomide H.; Oseghale, Charles O.

    2016-08-01

    Biosynthesizing of silver nanoparticles using microorganisms or various plant parts have proven more environmental friendly, cost-effective, energy saving and reproducible when compared to chemical and physical methods. This investigation demonstrated the plant-mediated synthesis of silver nanoparticles using the aqueous leaf extract of Thevetia peruviana. UV-Visible spectrophotometer was used to measure the surface plasmon resonance of the nanoparticles at 460 nm. Fourier Transform Infrared showed that the glycosidic -OH and carbonyl functional group present in extract were responsible for the reduction and stabilization of the silver nanoparticles. X ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Selected Area Electron Diffraction analyses were used to confirm the nature, morphology and shape of the nanoparticles. The silver nanoparticles are spherical in shape with average size of 18.1 nm. The synthesized silver nanoparticles showed activity against fungal pathogens and bacteria. The zone of inhibition observed in the antimicrobial study ranged between 10 and 20 mm.

  7. Spectroscopic analysis of biologically synthesized silver nanoparticles under clinorotation

    NASA Astrophysics Data System (ADS)

    Jagtap, Sagar; Vidyasagar, Pandit; Ghemud, Vipul; Dixit, Jyotsana

    Nanoparticles are one of the hot topics of research due to their size dependent optical, electrical and magnetic properties & their anti-bacterial and anti-fungal nature. Synthesis of nano particles can be done by various physical and chemical methods. However, Biosynthesis of nanoparticles is environment friendly, can take place around room temperature, and require little intervention or input of energy. In the present study, the synthesis of silver nanoparticles (AgNPs) using bacteria and the effect of clinorotation on rate of synthesis is discussed. The freshly grown bacterial isolate was inoculated in to 250-ml Erlenmeyer flask containing 50 ml sterile nutrient broth (LB). The cultured flasks were incubated in a shaker at 120 rpm for 24 h at 370C. Culture was centrifuged at 10,000 rpm for 10 min. The supernatant was used for carrying extracellular production of silver nanoparticles by mixing it with 5mM AgNO3 solution. The above solution was clinorotated at 2 rpm for 24 h. The synthesis was carried out at 60oC. Visual observation was conducted periodically to check for the nanoparticles formation in normal gravity as well as under clinorotation. UV-visible spectroscopic analysis showed that rate of synthesis was faster in case of clinorotated sample than control. Further, the results of FTIR and XRD characterization will be discussed.

  8. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach.

    PubMed

    Gopinath, V; MubarakAli, D; Priyadarshini, S; Priyadharsshini, N Meera; Thajuddin, N; Velusamy, P

    2012-08-01

    In the recent decades, increased development of green synthesis of nanoparticles is inevitable because of its incredible applications in all fields of science. There were numerous work have been produced based on the plant and its extract mediated synthesis of nanoparticles, in this present study to explore that the novel approaches for the biosynthesis of silver nanoparticles using plant fruit bodies. The plant, Tribulus terrestris L. fruit bodies are used in this study, where the dried fruit body extract was mixed with silver nitrate in order to synthesis of silver nanoparticles. The active phytochemicals present in the plant were responsible for the quick reduction of silver ion (Ag(+)) to metallic silver nanoparticles (Ag(0)). The reduced silver nanoparticles were characterized by Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), XRD, FTIR, UV-vis spectroscopy. The spherical shaped silver nanoparticles were observed and it was found to be 16-28 nm range of sizes. The diffraction pattern also confirmed that the higher percentage of silver with fine particles size. The antibacterial property of synthesized nanoparticles was observed by Kirby-Bauer method with clinically isolated multi-drug resistant bacteria such as Streptococcus pyogens, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The plant materials mediated synthesis of silver nanoparticles have comparatively rapid and less expensive and wide application to antibacterial therapy in modern medicine.

  9. Optical properties of monodispersed silver nanoparticles produced via reverse micelle microemulsion

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Liu, Xiaoheng; Wang, Xin; Yang, Xujie; Lu, Lude

    2011-04-01

    Silver nanoparticles produced by the sodium borohydride reduction of silver nitrate were stabilized by means of 1-dodecanethiol providing sulfur atom. (n-Dodecyl) trimethylammonium bromide (DTAB), which was used as a phase transfer agent in two-phase system involving water and toluene, played a significant role in the formation of monolayer-protected silver nanoparticles. These nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible absorption spectroscopy (UV-vis), FT-IR spectra and fluorescence. The results indicate that the system is monodispersed and leads to the self-assembly of silver nanoparticles into 0-D quanta-dot arrays.

  10. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    NASA Astrophysics Data System (ADS)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  11. The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance

    NASA Astrophysics Data System (ADS)

    Li, Jian-Hua; Shao, Xi-Sheng; Zhou, Qing; Li, Mi-Zi; Zhang, Qi-Qing

    2013-01-01

    In this study, silver nanoparticles were used to endow poly(vinylidene fluoride) (PVDF) membrane with excellent surface hydrophilicity and outstanding antifouling performance. Silver nanoparticles were successfully immobilized onto PVDF membrane surface under the presence of poly(acrylic acid) (PAA). The double effects of silver nanoparticles on PVDF membrane, i.e., surface hydrophilicity and anti-fouling performance, were systematically investigated. Judging from result of water static contact measurement, silver nanoparticles had provided a significant improvement in PVDF membrane surface hydrophilicity. And the possible explanation on the improvement of PVDF membrane surface hydrophilicity with silver nanoparticles was firstly proposed in this study. Membrane permeation and anti-bacterial tests were carried out to characterize the antifouling performance of PVDF membrane. Flux recovery ratio (FRR) increased about 40% after the presence of silver nanoparticles on the PVDF membrane surface, elucidating the anti-organic fouling performance of PVDF membrane was elevated by silver nanoparticles. Simultaneously, anti-bacterial test confirmed that PVDF membrane showed superior anti-biofouling activity because of silver nanoparticles. The above-mentioned results clarified that silver nanoparticles can endow PVDF membrane with both excellent surface hydrophilicity and outstanding antifouling performance in this study.

  12. Silver nanowires decorated with silver nanoparticles for low-haze flexible transparent conductive films

    PubMed Central

    Mol Menamparambath, Mini; Muhammed Ajmal, C.; Hee Kim, Kwang; Yang, Daejin; Roh, Jongwook; Cheol Park, Hyeon; Kwak, Chan; Choi, Jae-Young; Baik, Seunghyun

    2015-01-01

    Silver nanowires have attracted much attention for use in flexible transparent conductive films (TCFs) due to their low sheet resistance and flexibility. However, the haze was too high for replacing indium-tin-oxide in high-quality display devices. Herein, we report flexible TCFs, which were prepared using a scalable bar-coating method, with a low sheet resistance (24.1 Ω/sq at 96.4% transmittance) and a haze (1.04%) that is comparable to that of indium-tin-oxide TCFs. To decrease the haze and maintain a low sheet resistance, small diameter silver nanowires (~20 nm) were functionalized with low-temperature surface-sintering silver nanoparticles (~5 nm) using bifunctional cysteamine. The silver nanowire-nanoparticle ink stability was excellent. The sheet resistance of the TCFs was decreased by 29.5% (from 34.2 to 24.1 Ω/sq) due to the functionalization at a low curing temperature of 85 °C. The TCFs were highly flexible and maintained their stability for more than 2 months and 10,000 bending cycles after coating with a protective layer. PMID:26575970

  13. Assessment of total silver and silver nanoparticle extraction from medical devices.

    PubMed

    Sussman, Eric M; Jayanti, Priyanka; Dair, Benita J; Casey, Brendan J

    2015-11-01

    There is concern over the release of silver nanoparticles (AgNPs) from medical devices due to their potential toxicological consequences inside the body. Towards developing the exposure component of a risk assessment model, the purpose of this study was to determine the amount and physical form of silver released from medical devices. Scanning electron microscopy was used to confirm that three of five marketed medical devices contained nanosilver coatings (mean feature sizes 115-341 nm). Aqueous device extracts (water, saline and human plasma) were analyzed with inductively coupled plasma mass spectrometry, ultraviolet-visible spectroscopy, dynamic light scattering, transmission electron microscopy, and nanoparticle tracking analysis. The amount of silver extracted from the devices ranged from 1 × 10(-1) to 1 × 10(6) ng/cm(2) (conditions ranged from 37 to 50 °C, over one hour to seven days). The results further indicated that one of the five devices (labeled MD1) released significantly more AgNPs than the other devices. This data suggests that some but not all devices that are formulated with nanosilver may release detectable levels of AgNPs upon extraction. Further work is underway to quantitate the proportion of silver released as AgNPs and to incorporate this data into a risk assessment for AgNP exposure from medical devices.

  14. Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna.

    PubMed

    Das, Pranab; Xenopoulos, Marguerite A; Metcalfe, Chris D

    2013-07-01

    The purpose of this study was to investigate the 48 h acute toxicity of capped silver nanoparticles (AgNPs), and capped and uncapped titanium dioxide (nTiO₂) to Daphnia magna neonates. In addition, a 24 days chronic toxicity study was performed for D. magna exposed to uncapped nTiO₂ to evaluate effects on growth, reproduction and survival. The 48 h median lethal concentrations (LC₅₀) for carboxy-functionalized capped AgNPs and uncapped nTiO₂ were 2.75 μg/L and 7.75 mg/L, respectively. In contrast, no mortalities were observed for Daphnia exposed to carboxy-functionalized capped nTiO₂ at concentrations up to 30 mg/L. In the chronic toxicity experiment with uncapped nTiO₂, the growth, reproduction and survival of D. magna were significantly (p < 0.05) reduced at concentrations ranging from 4.5 to 7.5 mg/L. Growth and reproduction were reduced by 35 % and 93 %, respectively in the treatments at the highest uncapped nTiO₂ concentration (7.5 mg/L). Time to first reproduction was delayed by 2-3 days in D. magna and the test organisms produced only 1-2 broods over 24 days exposure to the highest concentration of uncapped nTiO₂. Overall, the results from the present study indicate that exposures of aquatic invertebrates to nanoparticles could have important ecological effects on lower trophic levels in aquatic ecosystems.

  15. Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors.

    PubMed

    Polavarapu, Lakshminarayana; Manga, Kiran Kumar; Yu, Kuai; Ang, Priscilla Kailian; Cao, Hanh Duyen; Balapanuru, Janardhan; Loh, Kian Ping; Xu, Qing-Hua

    2011-05-01

    We report a facile and general method for the preparation of alkylamine capped metal (Au and Ag) nanoparticle "ink" with high solubility. Using these metal nanoparticle "inks", we have demonstrated their applications for large scale fabrication of highly efficient surface enhanced Raman scattering (SERS) substrates by a facile solution processing method. These SERS substrates can detect analytes down to a few nM. The flexible plastic SERS substrates have also been demonstrated. The annealing temperature dependent conductivity of the nanoparticle films indicated a transition temperature above which high conductivity was achieved. The transition temperature could be tailored to the plastic compatible temperatures by using proper alkylamine as the capping agent. The ultrafast electron relaxation studies of the nanoparticle films demonstrated that faster electron relaxation was observed at higher annealing temperatures due to stronger electronic coupling between the nanoparticles. The applications of these highly concentrated alkylamine capped metal nanoparticle inks for the printable electronics were demonstrated by printing the oleylamine capped gold nanoparticles ink as source and drain for the graphene field effect transistor. Furthermore, the broadband photoresponse properties of the Au and Ag nanoparticle films have been demonstrated by using visible and near-infrared lasers. These investigations demonstrate that these nanoparticle "inks" are promising for applications in printable SERS substrates, electronics, and broadband photoresponse devices.

  16. Heterogeneous precipitation of silver nanoparticles on kaolinite plates

    NASA Astrophysics Data System (ADS)

    Cabal, B.; Torrecillas, R.; Malpartida, F.; Moya, J. S.

    2010-11-01

    Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates. The silver nanoparticles were localized mainly at the edge of the single crystal plates, the hydroxyl groups being the main centres of adsorption. The samples were fully characterized by XRD, UV-vis spectroscopy and TEM. The antimicrobial benefits of the composites were evaluated as antibacterial against common Gram-positive and Gram-negative bacteria, and antifungal activity against yeast. The results indicated a high antimicrobial activity for Escherichia coli JM 110 and Micrococcus luteus, while being inactive against yeast under our experimental conditions. The chemical analysis of Ag in the fermentation broths show that only a small portion of metal (<9 ppm) is released from the kaolin/metakaolin particles. Therefore, the risk of toxicity due to a high concentration of metal in the medium is minimized.

  17. Characterization by spectroscopic Ellipsometry, the physical properties of silver nanoparticles.

    NASA Astrophysics Data System (ADS)

    Coanga, Jean-Maurice

    2013-04-01

    Physicists are able to change their minds through their experiments. I think it is time to go kick the curse and go further in research if we want a human future. I work in the Nano-Optics and Plasmonics research. I defined with ellipsomètrie the structure of new type of Nano particles of silver. It's same be act quickly to replace the old dirty leaded electronic-connexion chip and by the other hand to find a new way for the heath care of cancer disease by nanoparticles the next killers of bad cells. Silver nanoparticle layers are obtained by Spark Plasma Sintering are investigated as an alternative to lead alloy based material for solder joint in power mechatronics modules. These layers are characterized by mean of conventional techniques that is the dilatometry technique, the resistivity measurement through the van der Pauw method, and the flash laser technique. Furthermore, the nanoparticles of silver layer are deeply studied by UV-Visible spectroscopic ellipsometry. Spectroscopic angles parameters are determined in function of temperature and dielectric constants are deduced and analyzed through an optical model which takes into account a Drude and a Lorentz component within the Bruggeman effective medium approximation (EMA). The relaxation times and the electrical conductivity are plot in function of temperature. The obtained electrical conductivity give significant result in good agreement to those reported by four points electrical measurement method.

  18. Field effect on digestive ripening of thiol-capped gold nanoparticles

    SciTech Connect

    Lin, Meng-Lin; Peng, J. S.; Lee, Sanboh; Yang, Fuqian

    2014-02-07

    We studied the digestive ripening of thiol-capped gold nanoparticles under simultaneous action of electric field and reflux heating in a silicone oil bath at 130 °C, using transmission electron microscopy. Observation revealed that a polydispersed gold nanoparticle system reached the state of nearly monodispersity under the action of an electric field and the thiol-capped gold nanoparticles carried negative charges. The electric field caused the increase of the particle size for the nearly monodispersed gold nanoparticle system. The self-assembly of the nearly monodisperse gold nanoparticles under the action of an electric field of a high field intensity was observed. The gold nanoparticles tended to form self-assembled nanostructures of six-fold symmetry. This study provides a new route for system engineering to control the particle size of metallic nanoparticles by electric field and digestive ripening.

  19. Preparation and Characterization of Gelatin Nanofibers Containing Silver Nanoparticles

    PubMed Central

    Jeong, Lim; Park, Won Ho

    2014-01-01

    Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM). PMID:24758929

  20. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms.

    PubMed

    Zhang, Chiqian; Hu, Zhiqiang; Deng, Baolin

    2016-01-01

    Nanosilver (silver nanoparticles or AgNPs) has unique physiochemical properties and strong antimicrobial activities. This paper provides a comprehensive review of the physicochemical behavior (e.g., dissolution and aggregation) and antimicrobial mechanisms of nanosilver in aquatic environments. The inconsistency in calculating the Gibbs free energy of formation of nanosilver [ΔGf(AgNPs)] in aquatic environments highlights the research needed to carefully determine the thermodynamic stability of nanosilver. The dissolutive release of silver ion (Ag(+)) in the literature is often described using a pseudo-first-order kinetics, but the fit is generally poor. This paper proposes a two-stage model that could better predict silver ion release kinetics. The theoretical analysis suggests that nanosilver dissolution could occur under anoxic conditions and that nanosilver may be sulfidized to form silver sulfide (Ag2S) under strict anaerobic conditions, but more investigation with carefully-designed experiments is required to confirm the analysis. Although silver ion release is likely the main antimicrobial mechanism of nanosilver, the contributions of (ion-free) AgNPs and reactive oxygen species (ROS) generation to the overall toxicity of nanosilver must not be neglected. Several research directions are proposed to better understand the dissolution kinetics of nanosilver and its antimicrobial mechanisms under various aquatic environmental conditions.

  1. Bioactivity and protein attachment onto bioactive glasses containing silver nanoparticles.

    PubMed

    Vulpoi, A; Gruian, C; Vanea, E; Baia, L; Simon, S; Steinhoff, H-J; Göller, G; Simon, V

    2012-05-01

    There is much interest in silver containing glasses for use in bone replacement owing to the demonstrated antibacterial effect. In this work, 2 and 8 mol % of silver was added during the sol-gel process to the composition of a bioactive glass belonging to CaO-SiO(2 -P(2)O(5) system. The samples were characterized by means of ultraviolet-visible spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques to demonstrate that the silver is embedded into the glass matrix as nanoparticles. Bioactivity test in simulated body fluid proved that the presence of silver in the bioactive glass composition, even in high amount, preserve or even improve the bioactivity of the starting glass, and consequently, leads to the carbonated apatite formation, which is the prerequisite for bioactive materials to bond with living bones. Complementary information proving these findings were delivered by performing X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and XPS measurements. The presence of silver also improves protein binding capability to the bioactive glass surface as demonstrated by cw-electron paramagnetic resonance experiments and XPS measurements.

  2. Controlled Synthesis of Functional Silver Nanoparticles Dispersible in Aqueous and Non-Aqueous Medium.

    PubMed

    Pandey, Prem C; Singh, Richa

    2015-08-01

    The synthesis of silver nanoparticles (AgNPs) controlled by active participation of 3-Amino-propyltrimethoxysilane (3-APTMS) and 3-Glycidoxypropyltrimethoxysilane (GPTMS) is found to be function of two sequential processes; (1) interaction of metal ions with 3-APTMS and (2) interaction of GPTMS with 3-APTMS capped metal ions. The mechanism of such process as evidenced from visual photographs, UV-visible spectroscopy, energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM) is reported. The experimental findings demonstrate the followings; (1) There is faster interaction of 3-APTMS with gold ions as compared to that of silver ions under similar conditions, (2) Methanolic solution of GPTMS undergo interaction with 3-APTMS and the same is facilitated in the presence of 3-APTMS treated silver ions, (3) The size of as synthesized AgNPs increases with an increase in 3-APTMS concentration whereas reverse is recorded for change in GPTMS concentration, (4) The molar ratio of 3-APTMS/GPTMS control the nanogeometry as well as the dispersibility of AgNPs in both aqueous and non aqueous media, (5) The dispersion ability of AgNPs is attributed to the hydrophobic alkyl chain of the reaction product of GPTMS and 3-APTMS (6) AgNPs shows absorption maxima as a function of refractive index of the medium and (7) The as synthesized AgNPs behave as peroxidase mimetic in both aqueous and non-aqueous medium justifying the potential typical applications.

  3. Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles

    PubMed Central

    2013-01-01

    Background Knowledge about silver nanoparticles in soils is limited even if soils are a critical pathway for their environmental fate. In this paper, speciation results have been acquired using a silver ion selective electrode in three different soils. Results Soil organic matter and pH were the most important soil properties controlling the occurrence of silver ions in soils. In acidic soils, more free silver ions are available while in the presence of organic matter, ions were tightly bound in complexes. The evolution of the chemical speciation of the silver nanoparticles in soils was followed over six months. Conclusion During the first few hours, there appeared to be a strong sorption of the silver with soil ligands, whereas over time, silver ions were released, the final concentration being approximately 10 times higher than at the beginning. Ag release was associated with either the oxidation of the nanoparticles or a dissociation of adsorbed silver from the soil surfaces. PMID:23617903

  4. Green synthesis of silver nanoparticles using latex extract of Thevetia peruviana: a novel approach towards poisonous plant utilization

    NASA Astrophysics Data System (ADS)

    Nyoman Rupiasih, N.; Aher, Avinash; Gosavi, Suresh; Vidyasagar, P. B.

    2013-04-01

    The development of green synthesis of nanoparticles has received increasing attention due to ease of preparation, less chemical handling, and eco-friendly. In the present study, silver nanoparticles (AgNPs) were successfully synthesized from AgNO3 through a simple green synthesis route using the latex of Thevetia peruviana as reducing as well as capping agent. Synthesized silver nanoparticles were characterized using UV-vis, FTIR, SEM-EDS, XRD and HRTEM. UV-vis spectra showed absorption at 570 nm with shoulder at 395 nm. FTIR spectra analysis confirmed the functional groups involved in the AgNPs formation. X-ray diffraction pattern of AgNPs exhibited the diffraction at 2θ = 34.48°, 40.12° and 45.39° corresponding to (222), (400), and (420) Braggs reflection planes of silver nanoparticles. TEM analysis showed the particles size is spherical in nature with its size distribution between 10-30 nm. The HRTEM image showed 2.59Å interplaner spacing.

  5. Molecular recognition by gold, silver and copper nanoparticles

    PubMed Central

    Tauran, Yannick; Brioude, Arnaud; Coleman, Anthony W; Rhimi, Moez; Kim, Beonjoom

    2013-01-01

    The intrinsic physical properties of the noble metal nanoparticles, which are highly sensitive to the nature of their local molecular environment, make such systems ideal for the detection of molecular recognition events. The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles. In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization. A brief discussion of the three common methods of functionalization: Electrostatic adsorption; Chemisorption; Affinity-based coordination is given. In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition. In the main section the various types of capping agents for molecular recognition; nucleic acid coatings, protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications. Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition. For the proteins the recognition properties of antibodies form the core of the section. With respect to the supramolecular systems the cyclodextrins, calix[n]arenes, dendrimers, crown ethers and the cucurbitales are treated in depth. Finally a short section deals with the possible toxicity of the nanoparticles, a concern in public health. PMID:23977421

  6. Synthesis of Silver Nanoparticles Using Buchu Plant Extracts and Their Analgesic Properties.

    PubMed

    Chiguvare, Herbert; Oyedeji, Opeoluwa O; Matewu, Reuben; Aremu, Olukayode; Oyemitan, Idris A; Oyedeji, Adebola O; Nkeh-Chungag, Benedicta N; Songca, Sandile P; Mohan, Sneha; Oluwafemi, Oluwatobi S

    2016-01-01

    We herein report for the first time the synthesis and analgesic properties of silver nanoparticles (Ag-NPs) using buchu plant extract. The as-synthesised Ag-NPs at different temperatures were characterised by UV-Vis spectroscopy, Fourier transform infra-red spectroscopy (FTIR) and transmission transform microscopy (TEM) to confirm the formation of silver nanoparticles. Phytochemical screening of the ethanolic extract revealed the presence of glycosides, proteins, tannins, alkaloids, flavonoids and saponins. The absorption spectra showed that the synthesis is temperature and time dependent. The TEM analysis showed that the as-synthesised Ag-NPs are polydispersed and spherical in shape with average particle diameter of 19.95 ± 7.76 nm while the FTIR results confirmed the reduction and capping of the as-synthesised Ag-NPs by the phytochemicals present in the ethanolic extract. The analgesic study indicated that the combined effect of the plant extract and Ag-NPs is more effective in pain management than both the aspirin drug and the extract alone. PMID:27314316

  7. Fast preparation of printable highly conductive polymer nanocomposites by thermal decomposition of silver carboxylate and sintering of silver nanoparticles.

    PubMed

    Zhang, Rongwei; Lin, Wei; Moon, Kyoung-sik; Wong, C P

    2010-09-01

    We show the fast preparation of printable highly conductive polymer nanocomposites for future low-cost electronics. Highly conductive polymer nanocomposites, consisting of an epoxy resin, silver flakes, and incorporated silver nanoparticles, have been prepared by fast sintering between silver flakes and the incorporated silver nanoparticles. The fast sintering is attributed to: 1) the thermal decomposition of silver carboxylate-which is present on the surface of the incorporated silver flakes-to form in situ highly reactive silver nanoparticles; 2) the surface activation of the incorporated silver nanoparticles by the removal of surface residues. As a result, polymer nanocomposites prepared at 230 °C for 5 min, at 260 °C for 10 min, and using a typical lead-free solder reflow process show electrical resistivities of 8.1×10(-5), 6.0×10(-6), and 6.3×10(-5) Ω cm, respectively. The correlation between the rheological properties of the adhesive paste and the noncontact printing process has been discussed. With the optimal rheological properties, the formulated highly viscous pastes (221 mPa s at 2500 s(-1)) can be non-contact-printed into dot arrays with a radius of 130 μm. The noncontact printable polymer nanocomposites with superior electrical conductivity and fast processing are promising for the future of printed electronics.

  8. Multilevel modeling of retention and disinfection efficacy of silver nanoparticles on ceramic water filters.

    PubMed

    Mikelonis, Anne M; Lawler, Desmond F; Passalacqua, Paola

    2016-10-01

    This research examined how variations in synthesis methods of silver nanoparticles affect both the release of silver from ceramic water filters (CWFs) and disinfection efficacy. The silver nanoparticles used were stabilized by four different molecules: citrate, polyvinylpyrrolidone, branched polyethylenimine, and casein. A multilevel statistical model was built to quantify if there was a significant difference in: a) extent of silver lost, b) initial amount of silver lost, c) silver lost for water of different quality, and d) total coliform removal. Experiments were performed on location at Pure Home Water, a CWF factory in Tamale, Ghana using stored rainwater and dugout water (a local surface water). The results indicated that using dugout vs. rainwater significantly affects the initial (p-value 0.0015) and sustained (p-value 0.0124) loss of silver, but that silver type does not have a significant effect. On average, dugout water removed 37.5μg/L more initial silver and had 1.1μg/L more silver in the filtrate than rainwater. Initially, filters achieved 1.9 log reduction values (LRVs) on average, but among different silver and water types this varied by as much as 2.5 LRV units. Overall, bacterial removal effectiveness was more challenging to evaluate, but some data suggest that the branched polyethylenimine silver nanoparticles provided improved initial bacterial removal over filters which were not painted with silver nanoparticles (p-value 0.038). PMID:27232964

  9. Multilevel modeling of retention and disinfection efficacy of silver nanoparticles on ceramic water filters.

    PubMed

    Mikelonis, Anne M; Lawler, Desmond F; Passalacqua, Paola

    2016-10-01

    This research examined how variations in synthesis methods of silver nanoparticles affect both the release of silver from ceramic water filters (CWFs) and disinfection efficacy. The silver nanoparticles used were stabilized by four different molecules: citrate, polyvinylpyrrolidone, branched polyethylenimine, and casein. A multilevel statistical model was built to quantify if there was a significant difference in: a) extent of silver lost, b) initial amount of silver lost, c) silver lost for water of different quality, and d) total coliform removal. Experiments were performed on location at Pure Home Water, a CWF factory in Tamale, Ghana using stored rainwater and dugout water (a local surface water). The results indicated that using dugout vs. rainwater significantly affects the initial (p-value 0.0015) and sustained (p-value 0.0124) loss of silver, but that silver type does not have a significant effect. On average, dugout water removed 37.5μg/L more initial silver and had 1.1μg/L more silver in the filtrate than rainwater. Initially, filters achieved 1.9 log reduction values (LRVs) on average, but among different silver and water types this varied by as much as 2.5 LRV units. Overall, bacterial removal effectiveness was more challenging to evaluate, but some data suggest that the branched polyethylenimine silver nanoparticles provided improved initial bacterial removal over filters which were not painted with silver nanoparticles (p-value 0.038).

  10. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration

    NASA Astrophysics Data System (ADS)

    Banerjee, Madhuchanda; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2011-12-01

    Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was possibly due to the more active silver atoms in the shell surrounding gold core due to high surface free energy of the surface Ag atoms owing to shell thinness in the bimetallic NP structure.Herein we report the development of bimetallic Au@Ag core-shell nanoparticles (NPs) where gold nanoparticles (Au NPs) served as the seeds for continuous deposition of silver atoms on its surface. The core-shell structure and morphology were examined by UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). The core-shell NPs showed antibacterial activity against both Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive (Enterococcus faecalis and Pediococcus acidilactici) bacteria at low concentration of silver present in the shell, with more efficacy against Gram negative bacteria. TEM and flow cytometric studies showed that the core-shell NPs attached to the bacterial surface and caused membrane damage leading to cell death. The enhanced antibacterial properties of Au@Ag core-shell NPs was

  11. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial

    NASA Astrophysics Data System (ADS)

    Ebrahiminezhad, Alireza; Bagheri, Mahboobeh; Taghizadeh, Seyedeh-Masoumeh; Berenjian, Aydin; Ghasemi, Younes

    2016-03-01

    Secreted carbohydrates by Chlorella vulgaris cells were used for reducing and capping Silver nanoparticles (AgNPs). Oxygen-bearing functional groups on the carbohydrates found to be the main biochemical groups responsible for anchoring the metal nanoparticles. Transmission electron microscopy (TEM) micrographs showed that isotropic small particles with mean particles size of 7 nm were synthesized. Comparing the TEM results with DLS analysis revealed that the thickness of carbohydrate capping was about 2 nm. A zeta potential of +26 mV made the particles colloidally stable and desirable for anticancer and antimicrobial applications. The MIC against gram positive (Staphylococcus aureus) and gram negative bacteria (Escherichia coli) were determined to be 37.5 μg ml-1 and 9.4 μg ml-1, respectively. Treatment of Hep-G2 cells with 4.7 μg ml-1 AgNPs for 24 h reduced the cell viability to 61%. This concentration was also reduced the cell viability to 37% after 48 h of exposure.

  12. Microwave-assisted ultrafast synthesis of silver nanoparticles for detection of Hg²⁺.

    PubMed

    Ma, Yun; Pang, Yuehong; Liu, Fei; Xu, Hanqi; Shen, Xiaofang

    2016-01-15

    Silver nanoparticles (AgNPs) were successfully prepared in aqueous solution by a one-pot procedure based on a rapid microwave-assisted green approach. L-Cysteine acted as a capping agent in the process of AgNP formation. The structural and morphological characteristics of the L-cysteine-capped AgNPs were investigated by the UV-vis, CD, FL, FTIR, XRD, TEM and EDX analysis. It was found that the well-dispersed crystalline AgNPs were formed after irradiation for 90 s and had sphere-like morphology. Such strategy may facilitate new ways to the synthesis of other metal nanoparticles, such as Au, Pt and Pd. In addition, the synthesized AgNPs were developed as a platform for the detection of Hg(2+) and showed a high sensitivity on the order of 1×10(-8) M. This sensing system could discriminate Hg(2+) from a wide range of cations (Ca(2+), Ba(2+), Mn(2+), etc.). The selectivity and sensitivity of AgNPs indicated its potential use as a sensor for Hg(2+) detection in the ecosystems.

  13. Microwave-assisted ultrafast synthesis of silver nanoparticles for detection of Hg2 +

    NASA Astrophysics Data System (ADS)

    Ma, Yun; Pang, Yuehong; Liu, Fei; Xu, Hanqi; Shen, Xiaofang

    2016-01-01

    Silver nanoparticles (AgNPs) were successfully prepared in aqueous solution by a one-pot procedure based on a rapid microwave-assisted green approach. L-Cysteine acted as a capping agent in the process of AgNP formation. The structural and morphological characteristics of the L-cysteine-capped AgNPs were investigated by the UV-vis, CD, FL, FTIR, XRD, TEM and EDX analysis. It was found that the well-dispersed crystalline AgNPs were formed after irradiation for 90 s and had sphere-like morphology. Such strategy may facilitate new ways to the synthesis of other metal nanoparticles, such as Au, Pt and Pd. In addition, the synthesized AgNPs were developed as a platform for the detection of Hg2 + and showed a high sensitivity on the order of 1 × 10- 8 M. This sensing system could discriminate Hg2 + from a wide range of cations (Ca2 +, Ba2 +, Mn2 +, etc.). The selectivity and sensitivity of AgNPs indicated its potential use as a sensor for Hg2 + detection in the ecosystems.

  14. Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles

    PubMed Central

    Romero-Urbina, Dulce G; Lara, Humberto H; Velázquez-Salazar, J Jesús; Arellano-Jiménez, M Josefina; Larios, Eduardo; Srinivasan, Anand; Lopez-Ribot, Jose L

    2015-01-01

    Summary Silver nanoparticles offer a possible means of fighting antibacterial resistance. Most of their antibacterial properties are attributed to their silver ions. In the present work, we study the actions of positively charged silver nanoparticles against both methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. We use aberration-corrected transmission electron microscopy to examine the bactericidal effects of silver nanoparticles and the ultrastructural changes in bacteria that are induced by silver nanoparticles. The study revealed that our 1 nm average size silver nanoparticles induced thinning and permeabilization of the cell wall, destabilization of the peptidoglycan layer, and subsequent leakage of intracellular content, causing bacterial cell lysis. We hypothesize that positively charged silver nanoparticles bind to the negatively charged polyanionic backbones of teichoic acids and the related cell wall glycopolymers of bacteria as a first target, consequently stressing the structure and permeability of the cell wall. This hypothesis provides a major mechanism to explain the antibacterial effects of silver nanoparticles on Staphylococcus aureus. Future research should focus on defining the related molecular mechanisms and their importance to the antimicrobial activity of silver nanoparticles. PMID:26734530

  15. Microwave-assisted deposition of silver nanoparticles on bamboo pulp fabric through dopamine functionalization

    NASA Astrophysics Data System (ADS)

    Peng, Linghui; Guo, Ronghui; Lan, Jianwu; Jiang, Shouxiang; Lin, Shaojian

    2016-11-01

    Silver nanoparticles were synthesized on bamboo pulp fabric with dopamine as the adhesive and reducing agent under microwave radiation. The silver nanoparticle coated bamboo pulp fabrics were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and X-ray diffraction. Ultraviolet (UV) protection, color and water contact angles of the silver nanoparticle coated bamboo pulp fabrics were evaluated. In addition, the influences of concentrations of dopamine and treatment time on color strength (K/S values) of the silver nanoparticle coated fabric were investigated. Fastness to washing was employed to evaluate the adhesive strength between the silver coating and the bamboo pulp fabric modified with dopamine. The results show that the dopamine modified bamboo pulp fabric is evenly covered with silver nanoparticles. The silver nanoparticle coated bamboo pulp fabric modified with dopamine shows the excellent UV protection with an ultraviolet protection factor of 157.75 and the hydrophobicity with a water contact angle of 132.4°. In addition, the adhesive strength between the silver nanoparticles and bamboo pulp fabric is significantly improved. Silver nanoparticles coating on bamboo pulp fabric modified with dopamine is environmentally friendly, easy to carry out and highly efficient.

  16. Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles.

    PubMed

    Romero-Urbina, Dulce G; Lara, Humberto H; Velázquez-Salazar, J Jesús; Arellano-Jiménez, M Josefina; Larios, Eduardo; Srinivasan, Anand; Lopez-Ribot, Jose L; Yacamán, Miguel José

    2015-01-01

    Silver nanoparticles offer a possible means of fighting antibacterial resistance. Most of their antibacterial properties are attributed to their silver ions. In the present work, we study the actions of positively charged silver nanoparticles against both methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. We use aberration-corrected transmission electron microscopy to examine the bactericidal effects of silver nanoparticles and the ultrastructural changes in bacteria that are induced by silver nanoparticles. The study revealed that our 1 nm average size silver nanoparticles induced thinning and permeabilization of the cell wall, destabilization of the peptidoglycan layer, and subsequent leakage of intracellular content, causing bacterial cell lysis. We hypothesize that positively charged silver nanoparticles bind to the negatively charged polyanionic backbones of teichoic acids and the related cell wall glycopolymers of bacteria as a first target, consequently stressing the structure and permeability of the cell wall. This hypothesis provides a major mechanism to explain the antibacterial effects of silver nanoparticles on Staphylococcus aureus. Future research should focus on defining the related molecular mechanisms and their importance to the antimicrobial activity of silver nanoparticles. PMID:26734530

  17. Preferential Interaction of Na+ over K+ to Carboxylate-functionalized Silver Nanoparticles

    EPA Science Inventory

    Elucidating mechanistic interactions between specific ions (Na+/ K+) and nanoparticle surfaces to alter particle stability in polar media has received little attention. We investigated relative preferential binding of Na+ and K+ to carboxylate-functionalized silver nanoparticles ...

  18. Caging antimicrobial silver nanoparticles inside cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a stable, non-leaching Ag-cotton nanocomposite fiber has been characterized. Siver nanoparticles (Ag NPs) were previously synthesized in the alkali-swollen substructure of cotton fiber; the nano-sized micofibrillar channels allowed diffusion-controlled conditions to produce mono-dispe...

  19. Determination of ion pairing on capping structures of gold nanoparticles by phase extraction.

    PubMed

    Cheng, Han-Wen; Schadt, Mark J; Young, Kaylie; Luo, Jin; Zhong, Chuan-Jian

    2015-09-21

    As nanoparticles with different capping structures in solution phases have found widespread applications of wide interest, understanding how the capping structure change influences their presence in phases or solutions is important for gaining full control over both the intended nanoactivity and the unintended nanotoxicity. This report describes a simple and effective phase extraction method for analyzing the degree of ion pairing in the capping molecular structure of nanoparticles. Gold nanoparticles of a few nanometers diameter with a mixed monolayer capping structure consisting of both hydrophobic and hydrophilic and reactive groups were studied as a model system, and a quantitative model was derived based on chemical equilibria in a two-phase system, and used to assess the experimental data for phase extraction by cationic species. In contrast to the traditional perception of 100% ion pairing, only a small fraction (∼20%) of the negatively-charged groups was found to be responsible for the phase extraction. The viability of using this phase extraction method for analyzing the degree of ion-pairing in the capping molecular structure of different nanoparticles is also discussed, which has implications for the control of the nanoactivity and nanotoxicity of molecularly-capped or bio-conjugated nanoparticles.

  20. Influence of gold, silver and gold-silver alloy nanoparticles on germ cell function and embryo development.

    PubMed

    Taylor, Ulrike; Tiedemann, Daniela; Rehbock, Christoph; Kues, Wilfried A; Barcikowski, Stephan; Rath, Detlef

    2015-01-01

    The use of engineered nanoparticles has risen exponentially over the last decade. Applications are manifold and include utilisation in industrial goods as well as medical and consumer products. Gold and silver nanoparticles play an important role in the current increase of nanoparticle usage. However, our understanding concerning possible side effects of this increased exposure to particles, which are frequently in the same size regime as medium sized biomolecules and accessorily possess highly active surfaces, is still incomplete. That particularly applies to reproductive aspects, were defects can be passed onto following generations. This review gives a brief overview of the most recent findings concerning reprotoxicological effects. The here presented data elucidate how composition, size and surface modification of nanoparticles influence viablility and functionality of reproduction relevant cells derived from various animal models. While in vitro cultured embryos displayed no toxic effects after the microinjection of gold and silver nanoparticles, sperm fertility parameters deteriorated after co-incubation with ligand free gold nanoparticles. However, the effect could be alleviated by bio-coating the nanoparticles, which even applies to silver and silver-rich alloy nanoparticles. The most sensitive test system appeared to be in vitro oocyte maturation showing a dose-dependent response towards protein (BSA) coated gold-silver alloy and silver nanoparticles leading up to complete arrest of maturation. Recent biodistribution studies confirmed that nanoparticles gain access to the ovaries and also penetrate the blood-testis and placental barrier. Thus, the design of nanoparticles with increased biosafety is highly relevant for biomedical applications. PMID:25821705

  1. L-Phenylalanine functionalized silver nanoparticles: Photocatalytic and nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Nidya, M.; Umadevi, M.; Sankar, Pranitha; Philip, Reji; Rajkumar, Beulah J. M.

    2015-04-01

    An extensive study on the behavior of L-Phenylalanine capped silver nanoparticles (Phe-Ag NPs) in the aqueous phase and in a sol-gel thin film showed different UV/Vis, Transmission Electron Microscope (TEM), Dynamic Light Scattering and Zeta potential profiles. Scanning Electron Microscope (SEM) images of the samples in the sol gel film showed Ag embedded in the SiO2 matrix. Surface Enhanced Raman Spectra (SERS) confirmed that both in the aqueous media and in the sol gel film, the attachment of Phe to the Ag NP surface was through the benzene ring, with the sol-gel film showing a better enhancement. Photocatalytic degradation of crystal violet was measured spectrophotometrically using Phe-Ag NPs as a nanocatalyst under visible light illumination. Intensity-dependent nonlinear optical absorption of Phe-Ag measured using the open aperture Z-scan technique revealed that the material is an efficient optical limiter with potential applications.

  2. Green synthesis of silver nanoparticles, decorated on graphene oxide nanosheets and their catalytic activity

    NASA Astrophysics Data System (ADS)

    Sreekanth, T. V. M.; Jung, Min-Ji; Eom, In-Yong

    2016-01-01

    In this study, we develop an inexpensive and green route for the synthesis of silver nanoparticles (AgNPs) using Picrasma quassioides bark aqueous extract as reducing and capping agent and also eco-friendly decorate graphene oxide (GO) nanosheets with AgNPs (GO-AgNPs). Green synthesized AgNPs and GO-AgNPs composites were characterized by UV-Visible spectroscopy, SEM-EDX, and TEM-SAED techniques. The resulting GO-AgNPs contained about 41.35% of Ag and the AgNPs size ranges 17.5-66.5 nm, and GO-AgNPs size ranges 10-49.5 nm. Moreover, the GO-AgNPs exhibited excellent catalytic activity towards the methylene blue (MB) in the presence of sodium borohydride (NaBH4) at room temperature. This catalytic reaction completed within 15 min.

  3. Silver nanoparticles-induced cytotoxicity requires ERK activation in human bladder carcinoma cells.

    PubMed

    Castiglioni, Sara; Cazzaniga, Alessandra; Perrotta, Cristiana; Maier, Jeanette A M

    2015-09-17

    Silver nanoparticles are toxic both in vitro and in vivo. We have investigated the possibility to exploit the cytotoxic potential of silver nanoparticles in T24 bladder carcinoma cells using both bare and PolyVinylPyrrolidone-coated silver nanoparticles. We show that the two types of silver nanoparticles promote morphological changes and cytoskeletal disorganization, are cytotoxic and induce cell death. These effects are due to the increased production of reactive oxygen species which are responsible, at least in part, for the sustained activation of ERK1/2. Indeed, both cytotoxicity and ERK1/2 activation are prevented by exposing the cells to the anti-oxidant N-acetylcysteine. Also blocking the ERK1/2 pathway with the MEK inhibitor PD98059 protects the cells from nanoparticles' cytotoxicity. Our findings suggest that ERK activation plays a role in silver nanoparticle-mediated cytotoxicity in T24 cells.

  4. Synthesis and anti-fungal effect of silver nanoparticles-chitosan composite particles.

    PubMed

    Wang, Lung-Shuo; Wang, Chih-Yu; Yang, Chih-Hui; Hsieh, Chen-Ling; Chen, Szu-Yu; Shen, Chi-Yen; Wang, Jia-Jung; Huang, Keng-Shiang

    2015-01-01

    Silver nanoparticles have been used in various fields, and several synthesis processes have been developed. The stability and dispersion of the synthesized nanoparticles is vital. The present article describes a novel approach for one-step synthesis of silver nanoparticles-embedded chitosan particles. The proposed approach was applied to simultaneously obtain and stabilize silver nanoparticles in a chitosan polymer matrix in-situ. The diameter of the synthesized chitosan composite particles ranged from 1.7 mm to 2.5 mm, and the embedded silver nanoparticles were measured to be 15 ± 3.3 nm. Further, the analyses of ultraviolet-visible spectroscopy, energy dispersive spectroscopy, and X-ray diffraction were employed to characterize the prepared composites. The results show that the silver nanoparticles were distributed over the surface and interior of the chitosan spheres. The fabricated spheres had macroporous property, and could be used for many applications such as fungicidal agents in the future.

  5. Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity.

    PubMed

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2015-01-01

    Green synthesis of silver nanoparticles has been achieved using environmentally acceptable plant extract. It is observed that Abutilon indicum leaf extract can reduce silver ions into silver nanoparticles within 15 min of reaction time. The formation and stability of the reduced silver nanoparticles in the colloidal solution were monitored by UV-Vis spectrophotometer analysis. The mean particle diameter of silver nanoparticles was calculated from the XRD pattern. FT-IR spectra of the leaf extract after the development of nanoparticles are determined to allow identification of possible functional groups responsible for the conversion of metal ions to metal nanoparticles. The AgNPs thus obtained showed highly potent antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus subtilis) and Gram-negative (Salmonella typhi and Escherichia coli) microorganisms. PMID:24997264

  6. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3

    PubMed Central

    Gaikwad, Swapnil; Ingle, Avinash; Gade, Aniket; Rai, Mahendra; Falanga, Annarita; Incoronato, Novella; Russo, Luigi; Galdiero, Stefania; Galdiero, Massimilano

    2013-01-01

    The interaction between silver nanoparticles and viruses is attracting great interest due to the potential antiviral activity of these particles, and is the subject of much research effort in the treatment of infectious diseases. In this work, we demonstrate that silver nanoparticles undergo a size-dependent interaction with herpes simplex virus types 1 and 2 and with human parainfluenza virus type 3. We show that production of silver nanoparticles from different fungi is feasible, and their antiviral activity is dependent on the production system used. Silver nanoparticles are capable of reducing viral infectivity, probably by blocking interaction of the virus with the cell, which might depend on the size and zeta potential of the silver nanoparticles. Smaller-sized nanoparticles were able to inhibit the infectivity of the viruses analyzed. PMID:24235828

  7. Stable silver isotope fractionation in the natural transformation process of silver nanoparticles.

    PubMed

    Lu, Dawei; Liu, Qian; Zhang, Tuoya; Cai, Yong; Yin, Yongguang; Jiang, Guibin

    2016-08-01

    Nanoparticles in the environment can form by natural processes or be released due to human activities. Owing to limited analytical methods, the behaviour of nanoparticles in the natural environment is poorly understood and until now they have only been described by the variations in the nanoparticle size or the concentration of the element of interest. Here we show that by using inductively coupled plasma mass spectrometry to measure silver (Ag) isotope ratios it is possible to understand the transformation processes of silver nanoparticles (AgNPs) in the environment. We found that the formation and dissolution of AgNPs under natural conditions caused significant variations in the ratio of natural Ag isotopes ((107)Ag and (109)Ag) with an isotopic enrichment factor (ε) up to 0.86‰. Furthermore, we show that engineered AgNPs have distinctly different isotope fractionation effects to their naturally formed counterparts. Further studies will be needed to understand whether isotope analysis can be used to reveal the sources of AgNPs in the environment.

  8. Stable silver isotope fractionation in the natural transformation process of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lu, Dawei; Liu, Qian; Zhang, Tuoya; Cai, Yong; Yin, Yongguang; Jiang, Guibin

    2016-08-01

    Nanoparticles in the environment can form by natural processes or be released due to human activities. Owing to limited analytical methods, the behaviour of nanoparticles in the natural environment is poorly understood and until now they have only been described by the variations in the nanoparticle size or the concentration of the element of interest. Here we show that by using inductively coupled plasma mass spectrometry to measure silver (Ag) isotope ratios it is possible to understand the transformation processes of silver nanoparticles (AgNPs) in the environment. We found that the formation and dissolution of AgNPs under natural conditions caused significant variations in the ratio of natural Ag isotopes (107Ag and 109Ag) with an isotopic enrichment factor (ε) up to 0.86‰. Furthermore, we show that engineered AgNPs have distinctly different isotope fractionation effects to their naturally formed counterparts. Further studies will be needed to understand whether isotope analysis can be used to reveal the sources of AgNPs in the environment.

  9. Hybrid biocomposite with a tunable antibacterial activity and bioactivity based on RF magnetron sputter deposited coating and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Surmenev, R. A.; Surmeneva, M. A.; Mukhametkaliyev, T.; Loza, K.; Prymak, O.; Epple, M.

    2015-02-01

    In this work, we describe fabrication techniques used to prepare a multifunctional biocomposite based on a hydroxyapatite (HA) coating and silver nanoparticles (AgNPs). AgNPs synthesized by a wet chemical reduction method were deposited on Ti substrates using a dripping/drying method followed by deposition of calcium phosphate (CaP) coating via radio-frequency (RF) magnetron sputter-deposition. The negatively charged silver nanoparticles (zeta potential -21 mV) have a spherical shape with a metallic core diameter of 50 ± 20 nm. The HA coating was deposited as a dense nanocrystalline film over a surface of AgNPs. The RF-magnetron sputter deposition of HA films on the AgNPs layer did not affect the initial content of AgNPs on the substrate surface as well as NPs size and shape. SEM cross-sectional images taken using the backscattering mode revealed a homogeneous layer of AgNPs under the CaP layer. The diffraction patterns from the coatings revealed reflexes of crystalline HA and silver. The concentration of Ag ions released from the biocomposites after 7 days of immersion in phosphate and acetate buffers was estimated. The obtained results revealed that the amount of silver in the solutions was 0.27 ± 0.02 μg mL-1 and 0.54 ± 0.02 μg mL-1 for the phosphate and acetate buffers, respectively, which corresponded well with the minimum inhibitory concentration range known for silver ions in literature. Thus, this work establishes a new route to prepare a biocompatible layer using embedded AgNPs to achieve a local antibacterial effect.

  10. Silver Nanoparticle Enhanced Freestanding Thin-Film Silicon Solar Cells

    NASA Astrophysics Data System (ADS)

    Winans, Joshua David

    As the supply of fossil fuels diminishes in quantity the demand for alternative energy sources will consistently increase. Solar cells are an environmentally friendly and proven technology that suffer in sales due to a large upfront cost. In order to help facilitate the transition from fossil fuels to photovoltaics, module costs must be reduced to prices well below $1/Watt. Thin-film solar cells are more affordable because of the reduced materials costs, but lower in efficiency because less light is absorbed before passing through the cell. Silver nanoparticles placed at the front surface of the solar cell absorb and reradiate the energy of the light in ways such that more of the light ends being captured by the silicon. Silver nanoparticles can do this because they have free electron clouds that can take on the energy of an incident photon through collective action. This bulk action of the electrons is called a plasmon. This work begins by discussing the economics driving the need for reduced material use, and the pros and cons of taking this step. Next, the fundamental theory of light-matter interaction is briefly described followed by an introduction to the study of plasmonics. Following that we discuss a traditional method of silver nanoparticle formation and the initial experimental studies of their effects on the ability of thin-film silicon to absorb light. Then, Finite-Difference Time-Domain simulation software is used to simulate the effects of nanoparticle morphology and size on the scattering of light at the surface of the thin-film.

  11. Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria

    NASA Astrophysics Data System (ADS)

    Thuy Duong, Thi; Son Le, Thanh; Thu Huong Tran, Thi; Kien Nguyen, Trung; Ho, Cuong Tu; Hien Dao, Trong; Phuong Quynh Le, Thi; Chau Nguyen, Hoai; Dang, Dinh Kim; Thu Huong Le, Thi; Thu Ha, Phuong

    2016-09-01

    Silver nanoparticle (AgNP) has a wide range antibacterial effect and is extensively used in different aspects of medicine, food storage, household products, disinfectants, biomonitoring and environmental remediation etc. In the present study, we examined the growth inhibition effect of engineered silver nanoparticles against bloom forming cyanobacterial M. aeruginosa strain. AgNPs were synthesized by a chemical reduction method at room temperature and UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM) showed that they presented a maximum absorption at 410 nm and size range between 10 and 18 nm. M. aeruginosa cells exposed during 10 d to AgNPs to a range of concentrations from 0 to 1 mg l-1. The changes in cell density and morphology were used to measure the responses of the M. aeruginosa to AgNPs. The control and treatment units had a significant difference in terms of cell density and growth inhibition (p < 0.05). Increasing the concentration of AgNPs, a reduction of the cell growths in all treatment was observed. The inhibition efficiency was reached 98.7% at higher concentration of AgNPs nanoparticles. The term half maximal effective concentration (EC50) based on the cell growth measured by absorbance at 680 nm (A680) was 0.0075 mg l-1. The inhibition efficiency was 98.7% at high concentration of AgNPs (1 mg l-1). Image of SEM and TEM reflected a shrunk and damaged cell wall indicating toxicity of silver nanoparticles toward M. aeruginosa.

  12. Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria

    NASA Astrophysics Data System (ADS)

    Thuy Duong, Thi; Son Le, Thanh; Thu Huong Tran, Thi; Kien Nguyen, Trung; Ho, Cuong Tu; Hien Dao, Trong; Phuong Quynh Le, Thi; Chau Nguyen, Hoai; Dang, Dinh Kim; Thu Huong Le, Thi; Thu Ha, Phuong

    2016-09-01

    Silver nanoparticle (AgNP) has a wide range antibacterial effect and is extensively used in different aspects of medicine, food storage, household products, disinfectants, biomonitoring and environmental remediation etc. In the present study, we examined the growth inhibition effect of engineered silver nanoparticles against bloom forming cyanobacterial M. aeruginosa strain. AgNPs were synthesized by a chemical reduction method at room temperature and UV–Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM) showed that they presented a maximum absorption at 410 nm and size range between 10 and 18 nm. M. aeruginosa cells exposed during 10 d to AgNPs to a range of concentrations from 0 to 1 mg l‑1. The changes in cell density and morphology were used to measure the responses of the M. aeruginosa to AgNPs. The control and treatment units had a significant difference in terms of cell density and growth inhibition (p < 0.05). Increasing the concentration of AgNPs, a reduction of the cell growths in all treatment was observed. The inhibition efficiency was reached 98.7% at higher concentration of AgNPs nanoparticles. The term half maximal effective concentration (EC50) based on the cell growth measured by absorbance at 680 nm (A680) was 0.0075 mg l‑1. The inhibition efficiency was 98.7% at high concentration of AgNPs (1 mg l‑1). Image of SEM and TEM reflected a shrunk and damaged cell wall indicating toxicity of silver nanoparticles toward M. aeruginosa.

  13. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    NASA Technical Reports Server (NTRS)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  14. Spectroscopic studies on the interaction of cysteine capped CuS nanoparticles with tyrosine

    SciTech Connect

    Prasanth, S.; Raj, D. Rithesh; Kumar, T. V. Vineesh; Sudarsanakumar, C.

    2015-06-24

    Biocompatible cysteine coated CuS nanoparticles were synthesized by a simple aqueous solution method. Hexagonal phase of the samples were confirmed from X-ray diffraction and particle size found to be 9 nm. The possible interaction between the bioactive cysteine capped CuS nanoparticles and tyrosine were investigated using spectroscopic techniques such as UV-Visible absorption and fluorescence spectroscopy. It is observed that the luminescence intensity of tyrosine molecule enhanced by the addition CuS nanoparticles.

  15. Spectroscopic studies on the interaction of cysteine capped CuS nanoparticles with tyrosine

    NASA Astrophysics Data System (ADS)

    Prasanth, S.; Raj, D. Rithesh; Kumar, T. V. Vineesh; Sudarsanakumar, C.

    2015-06-01

    Biocompatible cysteine coated CuS nanoparticles were synthesized by a simple aqueous solution method. Hexagonal phase of the samples were confirmed from X-ray diffraction and particle size found to be 9 nm. The possible interaction between the bioactive cysteine capped CuS nanoparticles and tyrosine were investigated using spectroscopic techniques such as UV-Visible absorption and fluorescence spectroscopy. It is observed that the luminescence intensity of tyrosine molecule enhanced by the addition CuS nanoparticles.

  16. Ultrastructural Analysis of Candida albicans When Exposed to Silver Nanoparticles

    PubMed Central

    Vazquez-Muñoz, Roberto; Avalos-Borja, Miguel; Castro-Longoria, Ernestina

    2014-01-01

    Candida albicans is the most common fungal pathogen in humans, and recently some studies have reported the antifungal activity of silver nanoparticles (AgNPs) against some Candida species. However, ultrastructural analyses on the interaction of AgNPs with these microorganisms have not been reported. In this work we evaluated the effect of AgNPs on C. albicans, and the minimum inhibitory concentration (MIC) was found to have a fungicidal effect. The IC50 was also determined, and the use of AgNPs with fluconazole (FLC), a fungistatic drug, reduced cell proliferation. In order to understand how AgNPs interact with living cells, the ultrastructural distribution of AgNPs in this fungus was determined. Transmission electron microscopy (TEM) analysis revealed a high accumulation of AgNPs outside the cells but also smaller nanoparticles (NPs) localized throughout the cytoplasm. Energy dispersive spectroscopy (EDS) analysis confirmed the presence of intracellular silver. From our results it is assumed that AgNPs used in this study do not penetrate the cell, but instead release silver ions that infiltrate into the cell leading to the formation of NPs through reduction by organic compounds present in the cell wall and cytoplasm. PMID:25290909

  17. Photodegradation of Eosin Y Using Silver-Doped Magnetic Nanoparticles

    PubMed Central

    Alzahrani, Eman

    2015-01-01

    The purification of industrial wastewater from dyes is becoming increasingly important since they are toxic or carcinogenic to human beings. Nanomaterials have been receiving significant attention due to their unique physical and chemical properties compared with their larger-size counterparts. The aim of the present investigation was to fabricate magnetic nanoparticles (MNPs) using a coprecipitation method, followed by coating with silver (Ag) in order to enhance the photocatalytic activity of the MNPs by loading metal onto them. The fabricated magnetic nanoparticles coated with Ag were characterised using different instruments such as a scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDAX) spectroscopy, and X-ray diffraction (XRD) analysis. The average size of the magnetic nanoparticles had a mean diameter of about 48 nm, and the average particle size changed to 55 nm after doping. The fabricated Ag-doped magnetic nanoparticles were used for the degradation of eosin Y under UV-lamp irradiation. The experimental results revealed that the use of fabricated magnetic nanoparticles coated with Ag can be considered as reliable methods for the removal of eosin Y since the slope of evaluation of pseudo-first-order rate constant from the slope of the plot between ln⁡(Co/C) and the irradiation time was found to be linear. Ag-Fe3O4 nanoparticles would be considered an efficient photocatalyst to degrade textile dyes avoiding the tedious filtration step. PMID:26617638

  18. Photodegradation of Eosin Y Using Silver-Doped Magnetic Nanoparticles.

    PubMed

    Alzahrani, Eman

    2015-01-01

    The purification of industrial wastewater from dyes is becoming increasingly important since they are toxic or carcinogenic to human beings. Nanomaterials have been receiving significant attention due to their unique physical and chemical properties compared with their larger-size counterparts. The aim of the present investigation was to fabricate magnetic nanoparticles (MNPs) using a coprecipitation method, followed by coating with silver (Ag) in order to enhance the photocatalytic activity of the MNPs by loading metal onto them. The fabricated magnetic nanoparticles coated with Ag were characterised using different instruments such as a scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDAX) spectroscopy, and X-ray diffraction (XRD) analysis. The average size of the magnetic nanoparticles had a mean diameter of about 48 nm, and the average particle size changed to 55 nm after doping. The fabricated Ag-doped magnetic nanoparticles were used for the degradation of eosin Y under UV-lamp irradiation. The experimental results revealed that the use of fabricated magnetic nanoparticles coated with Ag can be considered as reliable methods for the removal of eosin Y since the slope of evaluation of pseudo-first-order rate constant from the slope of the plot between ln⁡(C o /C) and the irradiation time was found to be linear. Ag-Fe3O4 nanoparticles would be considered an efficient photocatalyst to degrade textile dyes avoiding the tedious filtration step. PMID:26617638

  19. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model.

    PubMed

    Walczak, Agata P; Fokkink, Remco; Peters, Ruud; Tromp, Peter; Herrera Rivera, Zahira E; Rietjens, Ivonne M C M; Hendriksen, Peter J M; Bouwmeester, Hans

    2013-11-01

    Oral ingestion is an important exposure route for silver nanoparticles (AgNPs), but their fate during gastrointestinal digestion is unknown. This was studied for 60 nm AgNPs and silver ions (AgNO₃) using in vitro human digestion model. Samples after saliva, gastric and intestinal digestion were analysed with SP-ICPMS, DLS and SEM-EDX. In presence of proteins, after gastric digestion the number of particles dropped significantly, to rise back to original values after the intestinal digestion. SEM-EDX revealed that reduction in number of particles was caused by their clustering. These clusters were composed of AgNPs and chlorine. During intestinal digestion, these clusters disintegrated back into single 60 nm AgNPs. The authors conclude that these AgNPs under physiological conditions can reach the intestinal wall in their initial size and composition. Importantly, intestinal digestion of AgNO₃ in presence of proteins resulted in particle formation. These nanoparticles (of 20-30 nm) were composed of silver, sulphur and chlorine.

  20. Synthesis of silver nanoparticles by silver salt reduction and its characterization

    NASA Astrophysics Data System (ADS)

    Muzamil, Muhammad; Khalid, Naveed; Danish Aziz, M.; Aun Abbas, S.

    2014-06-01

    The wet chemical method route by metal salt reduction has been used to synthesize nanoparticles, using silver nitrate as an inorganic salt, aldehyde as a reducing agent and amino acid as a catalyst. During the reaction aldehyde oxidizes to carboxylic acid and encapsulates the silver nanoparticles to prevent agglomeration and provide barrier in the growth of particle. The existing work produces particles using lab grade chemical, here the presented work is by using industrial grade chemicals to make the process more cost & time effective. The nano silver powder has been studied for their formation, particle size, shape & compositional analysis using Scanning Electron Microscope (SEM) equipped with EDS. The particles size distributions were analyzed by Laser Particle Analyzer (LPA), structure & morphological analysis using x-ray diffraction (XRD) and Fourier-transform-infrared Spectroscopy (FTIR) confirmed the stabilization of particles by coating of carboxylic group. These studies infer that the particles are mostly spherical in shape and have an average size between 70 to 350 nm.

  1. Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles.

    PubMed

    Mohiti-Asli, Mahsa; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2014-05-01

    Nanofibers, with their morphological similarities to the extracellular matrix of skin, hold great potential for skin tissue engineering. Over the last decade, silver nanoparticles have been extensively investigated in wound-healing applications for their ability to provide antimicrobial benefits to nanofibrous scaffolds. However, the use of silver nanoparticles has raised concerns as these particles can penetrate into the stratum corneum of skin, or even diffuse into the cellular plasma membrane. We present and evaluate a new silver ion release polymeric coating that we have found can be applied to biocompatible, biodegradable poly(l-lactic acid) nanofibrous scaffolds. Using this compound, custom antimicrobial silver-ion-releasing nanofibers were created. The presence of a uniform, continuous silver coating on the nanofibrous scaffolds was verified by XPS analysis. The antimicrobial efficacy of the antimicrobial scaffolds against Staphylococcus aureus and Escherichia coli bacteria was determined via industry-standard AATCC protocols. Cytotoxicity analyses of the antimicrobial scaffolds toward human epidermal keratinocytes and human dermal fibroblasts were performed via quantitative analyses of cell viability and proliferation. Our results indicated that the custom antimicrobial scaffolds exhibited excellent antimicrobial properties while also maintaining human skin cell viability and proliferation for silver ion concentrations below 62.5μgml(-1) within the coating solution. This is the first study to show that silver ions can be effectively delivered with nanofibrous scaffolds without the use of silver nanoparticles.

  2. In situ synthesis of nano silver/lecithin on wool: enhancing nanoparticles diffusion.

    PubMed

    Barani, Hossein; Montazer, Majid; Samadi, Nasrin; Toliyat, Tayebeh

    2012-04-01

    Silver nanoparticles are being used increasingly in various applications because of their antibacterial properties. It is necessary to lower their direct contact with the skin by embedding in a polymer reducing their side effects. In this study, silver nanoparticles were synthesized inside the wool fibers acted as a polyfunctional ligands. Lecithin as a biological lipid was used to enhance the diffusion of silver ions and nanoparticles into the wool fibers reducing cytotoxicity effects of the nano silver loaded wool. The highest loading efficiency and inhibition zone was observed on the wool with the highest lecithin concentration. Presence of lecithin reduced the rate of nano silver release which results in decreasing the specific coefficient of lethality. Also, the extracted solution of the synthesized silver nanoparticles on the wool has not altered the morphology of L929 fibroblast cells.

  3. Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation.

    PubMed

    Eghbalifam, Naeimeh; Frounchi, Masoud; Dadbin, Susan

    2015-09-01

    Polyvinyl alcohol/sodium alginate/nano silver (PVA/SA/Ag) composite films were made by solution casting method. Gamma irradiation was used to synthesize silver nanoparticles in situ via reduction of silver nitrate without using harmful chemical agents for biomedical applications. UV-vis and XRD results demonstrated that spherical silver nanoparticles were produced even at low irradiation dose of 5 kGy. By increasing irradiation dose, more nanoparticles were synthesized while no PVA hydrogel was formed up to 15 kGy. Also the size of nanoparticles was reduced with increasing gamma dose evidenced by higher release rate of silver nanoparticles in lukewarm water and SEM images. Comparing SEM images with DLS results indicated good performance of PVA/SA as an efficient stabilizer in preventing agglomeration of the silver nanoparticles. Good miscibility of polyvinyl alcohol and sodium alginate observed on the SEM images was supported with FTIR spectroscopy. Upon addition of sodium alginate to polyvinyl alcohol and increasing silver nanoparticles, the melting peak shifted to lower temperature and crystallinity percent was decreased. Addition of sodium alginate led to remarkable increase in rigidity of PVA. The composites exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli even at very low level of silver nanoparticles. PMID:26123816

  4. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    EPA Science Inventory

    Silver nanoparticles have antibacterial properties but their use has been a cause for concern because they persist in the environment. Here we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green a...

  5. Endophytic synthesis of silver chloride nanoparticles from Penicillium sp. of Calophyllum apetalum

    NASA Astrophysics Data System (ADS)

    Chandrappa, C. P.; Govindappa, M.; Chandrasekar, N.; Sarkar, Sonia; Ooha, Sepuri; Channabasava, R.

    2016-06-01

    In the present study, Penicillium species extract isolated from Calophyllum apetalum was used for the synthesis of silver nanoparticles and it was confirmed by changing the color of the silver nitrate UV-Vis spectrum. The synthesized nanoparticles have been characterized by biophysical techniques such as scanning electron microscopy and x-ray diffraction.

  6. Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation.

    PubMed

    Eghbalifam, Naeimeh; Frounchi, Masoud; Dadbin, Susan

    2015-09-01

    Polyvinyl alcohol/sodium alginate/nano silver (PVA/SA/Ag) composite films were made by solution casting method. Gamma irradiation was used to synthesize silver nanoparticles in situ via reduction of silver nitrate without using harmful chemical agents for biomedical applications. UV-vis and XRD results demonstrated that spherical silver nanoparticles were produced even at low irradiation dose of 5 kGy. By increasing irradiation dose, more nanoparticles were synthesized while no PVA hydrogel was formed up to 15 kGy. Also the size of nanoparticles was reduced with increasing gamma dose evidenced by higher release rate of silver nanoparticles in lukewarm water and SEM images. Comparing SEM images with DLS results indicated good performance of PVA/SA as an efficient stabilizer in preventing agglomeration of the silver nanoparticles. Good miscibility of polyvinyl alcohol and sodium alginate observed on the SEM images was supported with FTIR spectroscopy. Upon addition of sodium alginate to polyvinyl alcohol and increasing silver nanoparticles, the melting peak shifted to lower temperature and crystallinity percent was decreased. Addition of sodium alginate led to remarkable increase in rigidity of PVA. The composites exhibited strong antibacterial activity against Staphylococcus aureus and Escherichia coli even at very low level of silver nanoparticles.

  7. Plasma-Synthesized Silver Nanoparticles on Electrospun Chitosan Nanofiber Surfaces for Antibacterial Applications.

    PubMed

    Annur, Dhyah; Wang, Zhi-Kai; Liao, Jiunn-Der; Kuo, Changshu

    2015-10-12

    Chitosan nanofibers have been electrospun with poly(ethylene oxide) and silver nitrate, as a coelectrospinning polymer and silver nanoparticle precursor, respectively. The average diameter of the as-spun chitosan nanofibers with up to 2 wt % silver nitrate loading was approximately 130 nm, and there was no evidence of bead formation or polymer agglomeration. Argon plasma was then applied for surface etching and synthesis of silver nanoparticles via precursor decomposition. Plasma surface bombardment induced nanoparticle formation primarily on the chitosan nanofiber surfaces, and the moderate surface plasma etching further encouraged maximum exposure of silver nanoparticles. UV-vis spectra showed the surface plasmon resonance signature of silver nanoparticles. The surface-immobilized nanoparticles were visualized by TEM and were found to have average particle diameters as small as 1.5 nm. Surface analysis by infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the interactions between the silver nanoparticles and chitosan molecules, as well as the effect of plasma treatment on the nanofiber surfaces. Finally, a bacteria inhibition study revealed that the antibacterial activity of the electrospun chitosan nanofibers correspondingly increased with the plasma-synthesized silver nanoparticles. PMID:26366749

  8. Specific biomolecule corona is associated with ring-shaped organization of silver nanoparticles in cells

    NASA Astrophysics Data System (ADS)

    Drescher, Daniela; Guttmann, Peter; Büchner, Tina; Werner, Stephan; Laube, Gregor; Hornemann, Andrea; Tarek, Basel; Schneider, Gerd; Kneipp, Janina

    2013-09-01

    We correlate the localization of silver nanoparticles inside cells with respect to the cellular architecture with the molecular information in the vicinity of the particle surface by combining nanoscale 3D cryo-soft X-ray tomography (cryo-SXT) with surface-enhanced Raman scattering (SERS). The interaction of the silver nanoparticle surface with small molecules and biopolymers was monitored by SERS in vitro over time in living cells. The spectra indicate a stable, time-independent surface composition of silver nanoparticles, despite the changing environment in the endosomal structure. Cryo-SXT reveals a characteristic ring-shaped organization of the silver nanoparticles in endosomes of different cell types. The ring-like structures inside the endosomes suggest a strong association among silver particles and with membrane structures. The comparison of the data with those obtained with gold nanoparticles suggests that the interactions between the nanoparticles and with the endosomal component are influenced by the molecular composition of the corona.We correlate the localization of silver nanoparticles inside cells with respect to the cellular architecture with the molecular information in the vicinity of the particle surface by combining nanoscale 3D cryo-soft X-ray tomography (cryo-SXT) with surface-enhanced Raman scattering (SERS). The interaction of the silver nanoparticle surface with small molecules and biopolymers was monitored by SERS in vitro over time in living cells. The spectra indicate a stable, time-independent surface composition of silver nanoparticles, despite the changing environment in the endosomal structure. Cryo-SXT reveals a characteristic ring-shaped organization of the silver nanoparticles in endosomes of different cell types. The ring-like structures inside the endosomes suggest a strong association among silver particles and with membrane structures. The comparison of the data with those obtained with gold nanoparticles suggests that the

  9. Retention and transport of silver nanoparticles in a ceramic porous medium used for point-of-use water treatment.

    PubMed

    Ren, Dianjun; Smith, James A

    2013-04-16

    The retention and transport of silver nanoparticles (Ag-NPs) through a ceramic porous medium used for point-of-use drinking water purification is investigated. Two general types of experiments were performed: (i) pulse injections of suspensions of Ag-NPs in aqueous MgSO4 solutions were applied to the ceramic medium, and effluent silver was quantified over time; (ii) Ag-NPs were applied directly to the porous medium during fabrication using a paint-on, dipping, or fire-in method, a synthetic, moderately hard water sample with monovalent and divalent inorganic ions was applied to the ceramic medium, and effluent silver was quantified over time. These latter experiments were performed to approximate real-world use of the filter medium. For experiments with Ag-NPs suspended in the inflow solution, the percentage of applied Ag-NPs retained in the ceramic porous medium ranged from about 13 to 100%. Ag-NP mobility decreased with increasing ionic strength for all cases and to a lesser extent with increasing nanoparticle diameter. Citrate-capped particles were slightly less mobile than proteinate-capped particles. For ceramic disks fabricated with Ag-NPs by the paint-on and dipping methods (where the Ag-NPs are applied to the disks after firing), significant release of nanoparticles into the filter disk effluent was observed relative to the fire-in method (where the nanoparticles are combined with the clay, water, grog, and flour before firing). These results suggest that the fire-in method may be a new and significant improvement to ceramic filter design.

  10. Sequential studies of silver released from silver nanoparticles in aqueous media simulating sweat, laundry detergent solutions and surface water.

    PubMed

    Hedberg, Jonas; Skoglund, Sara; Karlsson, Maria-Elisa; Wold, Susanna; Odnevall Wallinder, Inger; Hedberg, Yolanda

    2014-07-01

    From an increased use of silver nanoparticles (Ag NPs) as an antibacterial in consumer products follows a need to assess the environmental interaction and fate of their possible dispersion and release of silver. This study aims to elucidate an exposure scenario of the Ag NPs potentially released from, for example, impregnated clothing by assessing the release of silver and changes in particle properties in sequential contact with synthetic sweat, laundry detergent solutions, and freshwater, simulating a possible transport path through different aquatic media. The release of ionic silver is addressed from a water chemical perspective, compared with important particle and surface characteristics. Released amounts of silver in the sequential exposures were significantly lower, approximately a factor of 2, than the sum of each separate exposure. Particle characteristics such as speciation (both of Ag ionic species and at the Ag NP surface) influenced the release of soluble silver species present on the surface, thereby increasing the total silver release in the separate exposures compared with sequential immersions. The particle stability had no drastic impact on the silver release as most of the Ag NPs were unstable in solution. The silver release was also influenced by a lower pH (increased release of silver), and cotransported zeolites (reduced silver in solution).

  11. Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance.

    PubMed

    Du, Huamao; Lo, Tat-Ming; Sitompul, Johnner; Chang, Matthew Wook

    2012-08-10

    Despite extensive use of silver nanoparticles for antimicrobial applications, cellular mechanisms underlying microbial response to silver nanoparticles remain to be further elucidated at the systems level. Here, we report systems-level response of Escherichia coli to silver nanoparticles using transcriptome-based biochemical and phenotype assays. Notably, we provided the evidence that anaerobic respiration is induced upon exposure to silver nanoparticles. Further we showed that anaerobic respiration-related regulators and enzymes play an important role in E. coli resistance to silver nanoparticles. In particular, our results suggest that arcA is essential for resistance against silver NPs and the deletion of fnr, fdnH and narH significantly increases the resistance. We envision that this study offers novel insights into modes of antimicrobial action of silver nanoparticles, and cellular mechanisms contributing to the development of microbial resistance to silver nanoparticles.

  12. Synthesis, characterization and evaluation of silver nanoparticles through leaves of Abrus precatorius L.: an important medicinal plant

    NASA Astrophysics Data System (ADS)

    Gaddala, Bhumi; Nataru, Savithramma

    2015-01-01

    Biologically synthesized nanoparticles have been widely used in the field of medicine. The present study reports the green synthesis of silver nanoparticles using Abrus precatorius leaf extract with silver nitrate solution as reducing agent. The synthesized silver nanoparticles were analyzed through UV-Visible spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, atomic force microscopy and Fourier transform infrared. The synthesized silver nanoparticles were disk shaped with an average size of 19 nm. These silver nanoparticles were evaluated for antibacterial activity. The diameter of inhibition zones around the disk of Pseudomonas aeruginosa and Staphylococcus aureus are resistant to silver nanoparticles, whereas Escherichia coli and Bacillus thuringiensis are susceptible when compared with the other two species. The results were compared w