Sample records for caprylic capric lauric

  1. Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid.

    PubMed

    Huang, Wen-Cheng; Tsai, Tsung-Hsien; Chuang, Lu-Te; Li, You-Yi; Zouboulis, Christos C; Tsai, Po-Jung

    2014-03-01

    Propionibacterium acnes (P. acnes) is a commensal bacterium which is possibly involved in acne inflammation. The saturated fatty acid, lauric acid (C12:0) has been shown to possess antibacterial and anti-inflammatory properties against P. acnes. Little is known concerning the potential effects of its decanoic counterpart, capric acid (C10:0). To examine the antibacterial and anti-inflammatory activities of capric acid against P. acnes and to investigate the mechanism of the anti-inflammatory action. The antimicrobial activity of fatty acids was detected using the broth dilution method. An evaluation of P. acnes-induced ear edema in mice was conducted to evaluate the in vivo anti-inflammatory effect. To elucidate the in vitro anti-inflammatory effect, human SZ95 sebocytes and monocytic THP-1 cells were treated with P. acnes alone or in the presence of a fatty acid. The mRNA levels and secretion of pro-inflammatory cytokines were measured by qRT-PCR and enzyme immunoassay, respectively. NF-κB activation and MAPK expression were analyzed by ELISA and Western blot, respectively. Lauric acid had stronger antimicrobial activity against P. acnes than capric acid in vitro and in vivo. However, both fatty acids attenuated P. acnes-induced ear swelling in mice along with microabscess and significantly reduced interleukin (IL)-6 and CXCL8 (also known as IL-8) production in P. acnes-stimulated SZ95 sebocytes. P. acnes-induced mRNA levels and secretion of IL-8 and TNF-α in THP-1 cells were suppressed by both fatty acids, which inhibited NF-κB activation and the phosphorylation of MAP kinases. Our data demonstrate that both capric acid and lauric acid exert bactericidal and anti-inflammatory activities against P. acnes. The anti-inflammatory effect may partially occur through the inhibition of NF-κB activation and the phosphorylation of MAP kinases. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. In Silico and Wet Lab Studies Reveal the Cholesterol Lowering Efficacy of Lauric Acid, a Medium Chain Fat of Coconut Oil.

    PubMed

    Lekshmi Sheela, Devi; Nazeem, Puthiyaveetil Abdulla; Narayanankutty, Arunaksharan; Manalil, Jeksy Jos; Raghavamenon, Achuthan C

    2016-12-01

    The coconut oil (CO) contains 91 % of saturated fatty acids in which 72 % are medium chain fatty acids (MCFAs) like lauric, capric and caprylic acids. In contrast to animal fat, coconut oil has no cholesterol. Despite this fact, CO is sidelined among other vegetable oils due to the health hazards attributed to the saturated fatty acids. Though various medicinal effects of CO have been reported including the hypolipidemic activity, people are still confused in the consumption of this natural oil. In silico analyses and wet lab experiments have been carried out to identify the hypolipidemic properties of MCFAs and phenolic acids in CO by using different protein targets involved in cholesterol synthesis. The molecular docking studies were carried out using CDOCKER protocol in Accelery's Discovery Studio, by taking different proteins like HMG- CoA reductase and cholesterol esterase as targets and the different phytocompounds in coconut as ligands. Molecular docking highlighted the potential of lauric acid in inhibiting the protein targets involved in hyperlipidemics. Further, validation of in silico results was carried out through in vivo studies. The activity of key enzymes HMG- CoA reductase and lipoprotein lipase were found reduced in animals fed with lauric acid and CO.

  3. Influence of ethylenediamine-n,n’-disuccinic acid (EDDS) concentration on the bactericidal activity of fatty acids in vitro

    USDA-ARS?s Scientific Manuscript database

    The antibacterial activity of mixtures of ethylenediamine-N,N’-disuccinic acid (EDDS) and antibacterial fatty acids (FA) was examined using the agar diffusion assay. Solutions of caproic, caprylic, capric, and lauric acids dissolved in potassium hydroxide (KOH) were supplemented with 0, 5, or 10 mM ...

  4. Bactericidal activity of alkaline salts of fatty acids towards bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    Antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids were determined using the agar diffusion assay. A 0.5M concentration of each fatty acid (FA) was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric aci...

  5. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  6. Influence of ethylenediaminetetraacetic acid (EDTA) on the on the ability of fatty acids to inhibit the growth of bacteria associated with poultry processing.

    USDA-ARS?s Scientific Manuscript database

    The effect of ethylenediaminetetraacetic acid (EDTA) on the bactericidal activity of alkaline salts of fatty acids was examined. A 0.5 M concentration of caproic, caprylic, capric, and lauric acids was dissolved in 1.0 M potassium hydroxide (KOH), and then supplemented with 0, 5, or 10 mM of EDTA. T...

  7. Comparison of the structures of triacylglycerols from native and transgenic medium-chain fatty acid-enriched rape seed oil by liquid chromatography--atmospheric pressure chemical ionization ion-trap mass spectrometry (LC-APCI-ITMS).

    PubMed

    Beermann, Christopher; Winterling, Nadine; Green, Angelika; Möbius, Michael; Schmitt, Joachim J; Boehm, Günther

    2007-04-01

    The sn position of fatty acids in seed oil lipids affects physiological function in pharmaceutical and dietary applications. In this study the composition of acyl-chain substituents in the sn positions of glycerol backbones in triacylglycerols (TAG) have been compared. TAG from native and transgenic medium-chain fatty acid-enriched rape seed oil were analyzed by reversed-phase high performance liquid chromatography coupled with online atmospheric-pressure chemical ionization ion-trap mass spectrometry. The transformation of summer rape with thioesterase and 3-ketoacyl-[ACP]-synthase genes of Cuphea lanceolata led to increased expression of 1.5% (w/w) caprylic acid (8:0), 6.7% (w/w) capric acid (10:0), 0.9% (w/w) lauric acid (12:0), and 0.2% (w/w) myristic acid (14:0). In contrast, linoleic (18:2n6) and alpha-linolenic acid (18:3n3) levels decreased compared with the original seed oil. The TAG sn position distribution of fatty acids was also modified. The original oil included eleven unique TAG species whereas the transgenic oil contained sixty. Twenty species were common to both oils. The transgenic oil included trioctadecenoyl-glycerol (18:1/18:1/18:1) and trioctadecatrienoyl-glycerol (18:3/18:3/18:3) whereas the native oil included only the latter. The transgenic TAG were dominated by combinations of caprylic, capric, lauric, myrisitic, palmitic (16:0), stearic (18:0), oleic (18:1n9), linoleic, arachidic (20:0), behenic (22:0), and lignoceric acids (24:0), which accounted for 52% of the total fat. In the original TAG palmitic, stearic, oleic, and linoleic acids accounted for 50% of the total fat. Medium-chain triacylglycerols with capric and lauric acids combined with stearic, oleic, linoleic, alpha-linolenic, arachidic, and gondoic acids (20:1n9) accounted for 25% of the transgenic oil. The medium-chain fatty acids were mainly integrated into the sn-1/3 position combined with the essential linoleic and alpha-linolenic acids at the sn-2 position. Eight species

  8. Use of agar diffusion assay to measure bactericidal activity of alkaline salts of fatty acids against bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    The agar diffusion assay was used to examine antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids. A 0.5M concentration of each fatty acid was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric acid. Solu...

  9. Capric Acid Secreted by S. boulardii Inhibits C. albicans Filamentous Growth, Adhesion and Biofilm Formation

    PubMed Central

    Murzyn, Anna; Krasowska, Anna; Stefanowicz, Piotr; Dziadkowiec, Dorota; Łukaszewicz, Marcin

    2010-01-01

    Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation. PMID

  10. [Interaction of free fatty acids with mitochondria during uncoupling of oxidative phosphorylation].

    PubMed

    Samartsev, V N; Rybakova, S R; Dubinin, M V

    2013-01-01

    The activity of free saturated fatty acids (caprylic, capric, lauric, myristic, palmitic and stearic) as inducers and regulators of uncoupling of oxidative phosphorylation with participation of ADP/ATP antiporter, aspartate/glutamate antiporter and cyclosporin A-sensitive structure was investigated in experiments on rat liver mitochondria. It is established that at equal uncoupling activity of fatty acids the regulatory effect is minimal for caprylic acid and raised with increasing the hydrophobicity of fatty acids reaching the maximum value for stearic acid. There exists the linear dependence of the regulatory effect value of fatty acids on fatty acids content in the hydrophobic region of the inner membrane. The model that describes the interaction of fatty acids with the hydrophobic region of the mitochondrial inner membrane preserving functional activity of organelles is developed. It is established that if molecules of various fatty acids being in the hydrophobic region of the membrane are equally effective as uncoupling regulators, their specific uncoupling activity is different. Caprylic acid, a short-chain fatty acid, possesses the highest uncoupling activity. As the acyl chain length increases, the specific uncoupling activity of fatty acids reduces exponentially. Under these conditions components of the uncoupling activity sensitive to glutamate and carboxyatractylate and glutamate and insensitive to these reagents (but sensitive to cyclosporin A) change approximately equally.

  11. Lymphatic fatty acids from rats fed human milk and formula containing coconut oil.

    PubMed

    Roche, M E; Clark, R M

    1994-06-01

    Human milk and infant formula containing coconut/soy oil were infused into the duodenum of rats to determine the incorporation of capric, lauric, myristic and palmitic acids into lymphatic triacylglycerol (TAG). The proportion of capric and lauric acids in the lymphatic TAG reflected the fatty acid composition of the diet. Based on positional analysis, it appears that more than 50% of the capric and lauric acids could have been absorbed from the intestine as sn-2 monoacylglycerols. In the rats fed human milk, 50% of palmitic acid in lymphatic TAG was in the sn-2 position. Because of the nonrandom distribution of palmitic acid in the lymphatic TAG, the nonspecific lipase in human milk, i.e., bile salt-stimulated lipase, did not appear to be a factor in milk lipid digestion.

  12. Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on Clostridium difficile.

    PubMed

    Shilling, Michael; Matt, Laurie; Rubin, Evelyn; Visitacion, Mark Paul; Haller, Nairmeen A; Grey, Scott F; Woolverton, Christopher J

    2013-12-01

    Clostridium difficile is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide; in addition, the proliferation of antibiotic-resistant C. difficile is becoming a significant problem. Virgin coconut oil (VCO) has been shown previously to have the antimicrobial activity. This study evaluates the lipid components of VCO for the control of C. difficile. VCO and its most active individual fatty acids were tested to evaluate their antimicrobial effect on C. difficile in vitro. The data indicate that exposure to lauric acid (C12) was the most inhibitory to growth (P<.001), as determined by a reduction in colony-forming units per milliliter. Capric acid (C10) and caprylic acid (C8) were inhibitory to growth, but to a lesser degree. VCO did not inhibit the growth of C. difficile; however, growth was inhibited when bacterial cells were exposed to 0.15-1.2% lipolyzed coconut oil. Transmission electron microscopy (TEM) showed the disruption of both the cell membrane and the cytoplasm of cells exposed to 2 mg/mL of lauric acid. Changes in bacterial cell membrane integrity were additionally confirmed for VCO and select fatty acids using Live/Dead staining. This study demonstrates the growth inhibition of C. difficile mediated by medium-chain fatty acids derived from VCO.

  13. High-Energy Deuteron Measurement with the CAPRICE98 Experiment

    NASA Astrophysics Data System (ADS)

    Vannuccini, E.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Boezio, M.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Finetti, N.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Mocchiutti, E.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Zampa, N.; WIZARD/CAPRICE Collaboration

    2001-08-01

    The CAPRICE98 balloon-borne experiment was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA. The detector configuration included the NMSUWiZard/CAPRICE magnetic spectrometer equipped with a gas RICH detector, a silicon-tungsten calorimeter and a timeof-flight system. By combining the RICH and the spectrometer information it was possible to separate 2 H from 1 H in the rigidity range from 29 to 40 GV. We describe the method of analysis and we report results on the 2 H abundance.

  14. Production of medium chain fatty acid rich mustard oil using packed bed bioreactor.

    PubMed

    Sengupta, Avery; Roy, Susmita; Mukherjee, Sohini; Ghosh, Mahua

    2015-01-01

    A comparative study was done on the production of different medium chain fatty acid (MCFA) rich mustard oil using a stirred tank batchreactor (STBR) and packed bed bio reactor (PBBR) using three commercially available immobilised lipases viz. Thermomyces lanuginosus, Candida antarctica and Rhizomucor meihe. Three different MCFAs capric, caprylic and lauric acids were incorporated in the mustard oil. Reaction parameters, such as substrate molar ratio, reaction temperature and enzyme concentration were standardized in the STBR and maintained in the PBBR. To provide equal time of residence between the substrate and enzyme in both the reactors for the same amount of substrates, the substrate flow rate in the PBBR was maintainedat 0.27 ml/min. Gas liquid chromatography was used to monitor the incorporation of MCFA in mustard oil. The study showed that the PBBR was more efficient than the STBR in the synthesis of structured lipids with less migration of acyl groups. The physico-chemical parameters of the product along with fatty acid composition in all positions and sn-2 positions were also determined.

  15. Free fatty acids as inducers and regulators of uncoupling of oxidative phosphorylation in liver mitochondria with participation of ADP/ATP- and aspartate/glutamate-antiporter.

    PubMed

    Samartsev, V N; Marchik, E I; Shamagulova, L V

    2011-02-01

    In liver mitochondria fatty acids act as protonophoric uncouplers mainly with participation of internal membrane protein carriers - ADP/ATP and aspartate/glutamate antiporters. In this study the values of recoupling effects of carboxyatractylate and glutamate (or aspartate) were used to assess the degree of participation of ADP/ATP and aspartate/glutamate antiporters in uncoupling activity of fatty acids. These values were determined from the ability of these recoupling agents to suppress the respiration stimulated by fatty acids and to raise the membrane potential reduced by fatty acids. Increase in palmitic and lauric acid concentration was shown to increase the degree of participation of ADP/ATP antiporter and to decrease the degree of participation of aspartate/glutamate antiporter in uncoupling to the same extent. These data suggest that fatty acids are not only inducers of uncoupling of oxidative phosphorylation, but that they also act the regulators of this process. The linear dependence of carboxyatractylate and glutamate recoupling effects ratio on palmitic and lauric acids concentration was established. Comparison of the effects of fatty acids (palmitic, myristic, lauric, capric, and caprylic having 16, 14, 12, 10, and 8 carbon atoms, respectively) has shown that, as the hydrophobicity of fatty acids decreases, the effectiveness decreases to a greater degree than the respective values of their specific uncoupling activity. The action of fatty acids as regulators of uncoupling is supposed to consist of activation of transport of their anions from the internal to the external monolayer of the internal membrane with participation of ADP/ATP antiporter and, at the same time, in inhibition of this process with the participation of aspartate/glutamate antiporter.

  16. Enzymatic synthesis of capric acid-rich structured lipids (MUM type) using Candida antarctica lipase.

    PubMed

    SilRoy, Sumita; Ghosh, Mahua

    2011-01-01

    The objective of the work was to produce capric acid rich structured lipids starting from various Indian indigenous vegetable oils, such as rice bran, ground nut and mustard oils. Acidolysis reaction between individual vegetable oils and capric acid in one is to three molar ratios at 45 degree centigrade temperature was carried out using position specific Candida antarctica lipase so as to protect the Sn-2 position of the oils which are rich in unsaturated fatty acids. The incorporation of capric acid depended on the reaction time showing 6 % within 6 h and 30.8 % in 72 h with rice bran oil. Similarly, in ground nut oil incorporation of capric acid was 34.2 % in 72 h compared to 5.3 % in 6 h. Thus mustard oil showed much lower incorporation than the other two oils, with 3.3 % and 19.5 % in 6 and 72 h respectively. The incorporation of capric acid was influenced by the nature of the fatty acids present in the original oil. The fatty acid composition of Sn-2 position of the structured triacylglycerols of the three oils revealed that capric acid was mainly replacing the fatty acids occupying the Sn-1 and 3 positions of the triglyceride molecule.

  17. Cuphea: a new plant source of medium-chain fatty acids.

    PubMed

    Graham, S A

    1989-01-01

    The plant genus Cuphea (family Lythraceae) promises to provide a new source of industrially and nutritionally important medium-chain fatty acids, especially of lauric acid now supplied exclusively by coconut and palm kernel oils from foreign sources. The seed lipids of Cuphea were first discovered in the 1960s to contain high percentages of several medium-chain fatty acids, including caprylic, capric, lauric, and myristic acid. Research is still in the early stages, but it is intensifying toward the goal of developing the genus into a new temperate climate crop for production of specialty oils. Given the diversity of Cuphea seed lipid composition and the wide ecological and distributional range of the genus, it may be possible to tailor crops to produce selected fatty acids on demand under a variety of growing conditions. Cuphea comprises about 260 species, most native to the New World tropics. Its morphology, classification, chromosome numbers, distribution, ecology, and folk uses are presented. Seed structure is described and seed lipid composition for 73 species is summarized. Problems in domestication and agronomic progress are reviewed. Knowledge of the biosynthetic mechanism controlling the lipids produced by Cuphea remains very limited. Future research in this area, and particularly successful employment of gene transfer techniques, may allow genes controlling the mechanism to be transferred to an already established seed oil producer such as rapeseed. Presently, both traditional plant breeding techniques and newer biotechnological methods are directed toward Cuphea oilseed development.

  18. High-Energy Cosmic-Ray Antiprotons with the CAPRICE98 experiment

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Finetti, N.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Mocchitti, E.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.; WIZARD/CAPRICE Collaboration

    2001-08-01

    Observations of cosmic-ray antiprotons were performed by the balloon-borne experiment CAPRICE98 that was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA. The experiment used the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov detector, a time-of-flight system, a tracking device consisting of drift chambers and a superconducting magnet and a silicon-tungsten calorimeter. We report on the absolute-antiproton-energy spectrum determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV.

  19. Acute anticonvulsant effects of capric acid in seizure tests in mice.

    PubMed

    Wlaź, Piotr; Socała, Katarzyna; Nieoczym, Dorota; Żarnowski, Tomasz; Żarnowska, Iwona; Czuczwar, Stanisław J; Gasior, Maciej

    2015-03-03

    Capric acid (CA10) is a 10-carbon medium-chain fatty acid abundant in the medium-chain triglyceride ketogenic diet (MCT KD). The purpose of this study was to characterize acute anticonvulsant effects of CA10 across several seizure tests in mice. Anticonvulsant effects of orally (p.o.) administered CA10 were assessed in the maximal electroshock seizure threshold (MEST), 6-Hz seizure threshold, and intravenous pentylenetetrazole (i.v. PTZ) seizure tests in mice. Acute effects of CA10 on motor coordination were assessed in the grip and chimney tests. Plasma and brain concentrations of CA10 were measured. Co-administration studies with CA10 and another abundant medium-chain fatty acid, caprylic acid (CA8) were performed. CA10 showed significant and dose-dependent anticonvulsant properties by increasing seizure thresholds in the 6-Hz and MEST seizure tests; it was ineffective in the i.v. PTZ seizure test. At higher doses than those effective in the 6-Hz and MEST seizure tests, CA10 impaired motor performance in the grip and chimney tests. An enhanced anticonvulsant response in the 6-Hz seizure test was produced when CA8 and CA10 were co-administered. An acute p.o. administration of CA10 resulted in dose-proportional increases in its plasma and brain concentrations. CA10 exerted acute anticonvulsant effects at doses that produce plasma exposures comparable to those reported in epileptic patients on the MCT KD. An enhanced anticonvulsant effect is observed when CA10 and the other main constituent of the MCT KD, CA8, were co-administered. Thus, acute anticonvulsant properties of CA10 and CA8 may influence the overall clinical efficacy of the MCT KD. Copyright © 2014. Published by Elsevier Inc.

  20. Multiple functions of caprylic acid-induced impurity precipitation for process intensification in monoclonal antibody purification.

    PubMed

    Trapp, Anja; Faude, Alexander; Hörold, Natalie; Schubert, Sven; Faust, Sabine; Grob, Thilo; Schmidt, Stefan

    2018-05-02

    New emerging technologies delivering benefits in terms of process robustness and economy are an inevitable prerequisite for monoclonal antibody purification processes intensification. Caprylic acid was proven as an effective precipitating agent enabling efficient precipitaton of product- and process-related impurities while leaving the antibody in solution. This purification step at mild acidic pH was therefore introduced in generic antibody platform approaches after Protein A capture and evaluated for its impact regarding process robustness and antibody stability. Comparison of 13 different monoclonal antibodies showed significant differences in antibody recovery between 65-95% during caprylic acid-induced impurity precipitation. Among six compared physicochemical properties, isoelectric point of the antibody domains was figured out to correlate with yield. Antibodies with mild acidic pI of the light chain were significantly susceptible to caprylic acid-induced precipitation resulting in lower yields. Virus clearance studies revealed that caprylic acid provided complete virus inactivation of an enveloped virus. Multiple process relevant factors such as pH range, caprylic acid concentration and antibody stability were investigated in this study to enable an intensified purification process including caprylic acid precipitation for HCP removal of up to 2 log 10 reduction values at mAb yields >90% while also contributing to the virus safety of the process. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. 21 CFR 184.1025 - Caprylic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...] is the chemical name for octanoic acid. It is considered to be a short or medium chain fatty acid. It... fermentation and fractional distillation of the volatile fatty acids present in coconut oil. (b) The ingredient... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Caprylic acid. 184.1025 Section 184.1025 Food and...

  2. Measurements of cosmic-ray electrons and positrons by the Wizard/CAPRICE collaboration

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Barbiellini, G.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Bergström, D.; Carlson, P.; Francke, T.; Grinstein, S.; Weber, N.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Stephens, S. A.; Ambriola, M.; Bellotti, R.; Cafagna, F. S.; Ciacio, F.; Circella, M.; De Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Bartalucci, S.; Ricci, M.; Grimani, C.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.

    Two recent ballon-borne experiments have been performed by the WiZard/CAPRICE collaboration in order to study the electron and positron components in the cosmic radiation. On 1994 August 8-9 the CAPRICE94 experiment flew from norther Canada and on 1998 May 28-29 the CAPRICE98 experiment flew from New Mexico, USA at altitudes corresponding to 3.9 and 5.5 g/cm 2 of average residual atmosphere respectively. The apparatus were equipped with a Ring Imaging Cherenkov (RICH) detector, a time-of-flight system, a superconducting magnet spectrometer with a tracking system and a 7-radiation-length silicon-tungsten imaging calorimeter. The RICH used in 1994 had a solid NaF radiator while in 1998 the RICH had a C 4F 10 gaseous radiator. We report on the electron and positron spectra and positron fraction at the top of the atmosphere from few hundred MeV to 40 GeV measured by these two experiments.

  3. Synthesis of the Fatty Esters of Solketal and Glycerol-Formal: Biobased Specialty Chemicals.

    PubMed

    Perosa, Alvise; Moraschini, Andrea; Selva, Maurizio; Noè, Marco

    2016-01-30

    The caprylic, lauric, palmitic and stearic esters of solketal and glycerol formal were synthesized with high selectivity and in good yields by a solvent-free acid catalyzed procedure. No acetal hydrolysis was observed, notwithstanding the acidic reaction conditions.

  4. High-energy deuteron measurement with the CAPRICE98 experiment

    NASA Astrophysics Data System (ADS)

    Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Boezio, M.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Finetti, N.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Mocchiutti, E.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.

    The CAPRICE98 balloon-borne instrument was flown on 28-29 May 1998 from Fort Sumner (New Mexico, USA). The detector configuration included the NMSU-WiZard/CAPRICE superconducting-magnet spectrometer equipped with a gas RICH, a silicon-tungsten calorimeter and a time-of-flight system. By combining the information from the spectrometer and the RICH, which was used as a threshold device, it was possible to separate 2H from 1H in the kinetic energy range from 12 to 22 GeV/n. In order to estimate the proton background and the deuteron selection efficiency, an empirical model for the response of the instrument, based on the data collected in this experiment, was developed. The analysis procedure is described in this paper and the results on the absolute flux of 2H and 2H/He ratio are presented. These data on 2H abundance represent the only measurements above 10 GeV/n.

  5. Caprylic and Polygalacturonic Acid Combinations for Eradication of Microbial Organisms Embedded in Biofilm

    PubMed Central

    Rosenblatt, Joel; Reitzel, Ruth A.; Vargas-Cruz, Nylev; Chaftari, Anne-Marie; Hachem, Ray; Raad, Issam

    2017-01-01

    There is a need for non-antibiotic, antimicrobial compositions with low toxicity capable of broad-spectrum eradication of pathogenic biofilms in food preparation and healthcare settings. In this study we demonstrated complete biofilm eradication within 60 min with synergistic combinations of caprylic and polygalacturonic (PG) acids in an in vitro biofilm eradication model against representative hospital and foodborne infectious pathogen biofilms (methicillin-resistant Staphylococcus aureus, multidrug-resistant Pseudomonas aeruginosa, Candida albicans, Escherichia coli, and Salmonella enteritidis). Antimicrobial synergy against biofilms was demonstrated by quantifying viable organisms remaining in biofilms exposed to caprylic acid alone, PG acid alone, or combinations of the two. The combinations also synergistically inhibited growth of planktonic organisms. Toxicity of the combination was assessed in vitro on L929 fibroblasts incubated with extracts of caprylic and PG acid combinations using the Alamar Blue metabolic activity assay and the Trypan Blue exclusion cell viability assay. The extracts did not produce cytotoxic responses relative to untreated control fibroblasts. PMID:29093703

  6. Controlled production of camembert-type cheeses: part III role of the ripening microflora on free fatty acid concentrations.

    PubMed

    Leclercq-Perlat, Marie-Noëlle; Corrieu, Georges; Spinnler, Henry-Eric

    2007-05-01

    Phenomena generating FFAs, important flavour precursors, are significant in cheese ripening. In Camembert-like cheeses, it was intended to establish the relationships between the dynamics of FFA concentrations changes and the succession of ripening microflora during ripening. Experimental Camembert-type cheeses were prepared in duplicate from pasteurised milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum under aseptic conditions. For each cheese and each cheesy medium, concentrations of FFAs with odd-numbered carbons, except for 9:0 and 13:0, did not change over time. For long-chain FFAs, concentrations varied with the given cheese part (rind or core). K. lactis produced only short or medium-chain FFAs during its growth and had a minor influence on caproic, caprylic, capric, and lauric acids in comparison with G. candidum, the most lipolytic of the strains used here. It generated all short or medium-chain FFAs (4:0-12:0) during its exponential and slowdown growth periods and only long-chain ones (14:0-18:0) during its stationary phase. Pen. camemberti produced more long-chain FFAs (14:0-18:0) during its sporulation. Brev. aurantiacum did not generate any FFAs. The evidence of links between specific FFAs and the growth of a given microorganism is shown.

  7. Triacylglycerols determine the unusual storage physiology of Cuphea seed.

    PubMed

    Crane, Jennifer; Miller, Annette L; van Roekel, J William; Walters, Christina

    2003-09-01

    Many species within the genus Cuphea (Lythraceae) produce seed with high levels of medium-chain fatty acids. Seeds of some Cuphea species lose viability when placed into storage at -18 degrees C. These species tolerate significant drying to 0.05 g/g and may, therefore, be intermediate in their storage characteristics. The thermal properties of seed lipids were observed using differential scanning calorimetry. Species with peak lipid melting temperatures >/=27 degrees C were found to be sensitive to -18 degrees C exposure while those with melting temperatures <27 degrees C were able to tolerate low-temperature exposure. This relationship was determined by the triacylglycerol composition of the individual species. Sensitive species have high concentrations of lauric acid (C(12)) and/or myristic acid (C(14)). Species with high concentrations of capric (C(8)) or caprylic acid (C(10)) or with high concentrations of unsaturated fatty acids tolerate low temperature exposure. Potential damage caused by low temperature exposure can be avoided by exposing seeds to a brief heat pulse of 45 degrees C to melt solidified lipids prior to imbibition. The relationship between the behavior of triacylglycerols in vivo, seed storage behavior and sensitivity to imbibitional damage is previously unreported and may apply to other species with physiologies that make them difficult to store.

  8. Lauric Acid Stimulates Ketone Body Production in the KT-5 Astrocyte Cell Line.

    PubMed

    Nonaka, Yudai; Takagi, Tetsuo; Inai, Makoto; Nishimura, Shuhei; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin

    2016-08-01

    Coconut oil has recently attracted considerable attention as a potential Alzheimer's disease therapy because it contains large amounts of medium-chain fatty acids (MCFAs) and its consumption is thought to stimulate hepatic ketogenesis, supplying an alternative energy source for brains with impaired glucose metabolism. In this study, we first reevaluated the responses of plasma ketone bodies to oral administration of coconut oil to rats. We found that the coconut oil-induced increase in plasma ketone body concentration was negligible and did not significantly differ from that observed after high-oleic sunflower oil administration. In contrast, the administration of coconut oil substantially increased the plasma free fatty acid concentration and lauric acid content, which is the major MCFA in coconut oil. Next, to elucidate whether lauric acid can activate ketogenesis in astrocytes with the capacity to generate ketone bodies from fatty acids, we treated the KT-5 astrocyte cell line with 50 and 100 μM lauric acid for 4 h. The lauric acid treatments increased the total ketone body concentration in the cell culture supernatant to a greater extent than oleic acid, suggesting that lauric acid can directly and potently activate ketogenesis in KT-5 astrocytes. These results suggest that coconut oil intake may improve brain health by directly activating ketogenesis in astrocytes and thereby by providing fuel to neighboring neurons.

  9. High-Energy Deuteron Measurement with the CAPRICE98 Experiment

    NASA Astrophysics Data System (ADS)

    Papini, P.; Piccardi, S.; Spillantini, P.; Vannuccini, E.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C. N.; Bartalucci, S.; Ricci, M.; Bergström, D.; Carlson, P.; Francke, T.; Hansen, P.; Mocchiutti, E.; Boezio, M.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Bravar, U.; Stochaj, S. J.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Mitchell, J. W.; Ormes, J. F.; Stephens, S. A.; Streitmatter, R. E.; Suffert, M.

    2004-11-01

    We report the first measurement of the deuterium abundance in cosmic rays above 10 GeV nucleon-1 of kinetic energy. The data were collected by the balloon-borne experiment CAPRICE98, which was flown on 1998 May 28-29 from Fort Sumner, New Mexico. The detector configuration included the NMSU-WiZard/CAPRICE superconducting magnet spectrometer equipped with a gas RICH detector, a silicon-tungsten calorimeter, and a time-of-flight system. By combining the information from the spectrometer and the RICH detector, it was possible to separate deuterons from protons in the kinetic energy range from 12 to 22 GeV nucleon-1. In order to estimate the proton background and the deuteron selection efficiency, we developed an empirical model for the response of the instrument, based on the data collected in this experiment. The analysis procedure is described in this paper, and the result on the absolute flux of deuterium is presented. We found that the deuterium abundance at high energy is consistent with the hypothesis that the propagation mechanism of light nuclei is the same as that of heavier secondary components.

  10. Simultaneous determination of kolliphor HS15 and miglyol 812 in microemulsion formulation by ultra-high performance liquid chromatography coupled with nano quantity analyte detector.

    PubMed

    Zhang, Honggen; Wang, Zhenyu; Liu, Oscar

    2016-02-01

    A novel method for simultaneous determination of kolliphor HS15 and miglyol 812 in microemulsion formulation was developed using ultra-high performance liquid chromatography coupled with a nano quantitation analytical detector (UHPLC-NQAD). All components in kolliphor HS15 and miglyol 812 were well separated on an Acquity BEH C 18 column. Mobile phase A was 0.1% trifluoroacetic acid (TFA) in water and mobile phase B was acetonitrile. A gradient elution sequence was programed initially with 60% organic solvent, slowly increased to 100% within 8 min. The flow rate was 0.7 mL/min. Good linearity ( r >0.95) was obtained in the range of 27.6-1381.1 μg/mL for polyoxyl 15 hydroxystearate in kolliphor HS15, 0.8-202.0 μg/mL for caprylic acid triglyceride and 2.7-221.9 μg/mL for capric acid triglyceride in miglyol 812. The relative standard deviations (RSD) ranged from 0.6% to 1.7% for intra-day precision and from 0.4% to 2.7% for inter-day precision. The overall recoveries (accuracy) were 99.7%-101.4% for polyoxyl 15 hydroxystearate in kolliphor HS15, 96.7%-99.6% for caprylic acid triglyceride, and 94.1%-103.3% for capric acid triglyceride in miglyol 812. Quantification limits (QL) were determined as 27.6 μg/mL for polyoxyl 15 hydroxystearate in kolliphor HS15, 0.8 μg/mL for caprylic acid triglyceride, and 2.7 μg/mL for capric acid triglyceride in miglyol 812. No interferences were observed in the retention time ranges of kolliphor HS15 and miglyol 812. The method was validated in terms of specificity, linearity, precision, accuracy, QL, and robustness. The proposed method has been applied to microemulsion formulation analyses with good recoveries (82.2%-103.4%).

  11. Lauric acid as feed additive – An approach to reducing Campylobacter spp. in broiler meat

    PubMed Central

    Zeiger, Katrin; Popp, Johanna; Becker, André; Hankel, Julia; Visscher, Christian

    2017-01-01

    The increasing prevalence of Campylobacter spp. within broiler populations is a major problem for food safety and consumer protection worldwide. In vitro studies could already demonstrate that Campylobacter spp. are susceptible to lauric acid. The purpose of this study was to examine in vivo the influence of lauric acid as a feed additive on slaughter parameters, muscle fatty acid profile, meat quality traits and the reduction of Campylobacter coli in inoculated meat of Ross 308 (R308) and Hubbard JA 757 (HJA) broilers in three independent trials (n = 3). Although slaughter parameters did not show any significant differences, the fatty acid profile of both breeds revealed significantly higher lauric acid concentrations (P < 0.0001) in the Musculus pectoralis superficialis of treated broilers. Comparing both tested breeds, R308 test broilers had significantly higher lauric acid concentrations than HJA test broilers (P < 0.0001), indicating a higher conversion rate in those animals. The meat quality traits showed no differences in the R308 breed (P > 0.05), but HJA test broilers had higher values for drip loss, electrical conductivity, CIE color values L* and b*, and lower pH values. The inoculation trials of R308 showed that initial bacterial loads of 5.9 log10 cfu/g were reduced during six days of storage (4°C) to approximately 4.3 log10 cfu/g in the control groups compared to 3.5 log10 cfu/g in the treatment groups (P = 0.0295), which could be due to antimicrobial effects of lauric acid within the muscle. This study therefore suggests that lauric acid as a feed additive has the potential to improve food safety by reducing the numbers of Campylobacter coli in broiler meat. However, this effect seems to be dependent on the breed determining the feed intake capacity, the fat deposition and therefore the ability to incorporate lauric acid in the muscle. PMID:28419122

  12. The synthesis and characterization of hydrogel chitosan-alginate with the addition of plasticizer lauric acid for wound dressing application

    NASA Astrophysics Data System (ADS)

    Izak Rudyardjo, Djony; Wijayanto, Setiawan

    2017-05-01

    The writers conducted a study about the synthesis and characterization of hydrogel chitosan-alginate by addition plasticizer lauric acid for wound dressing application. The purpose was to find out the impact of lauric acid concentration variation on hydrogel chitosan-alginate to get the best mechanical and physical properties to be applied as wound dressing in accordance with existing standards. This study used commercially chitosan from extract of shells crab, commercially-available alginate from the extract of sargassum sp, and commercial lauric acid from palm starch. The addition of lauric acid was aimed to repair mechanical properties of hydrogel. The composition of chitosan-alginate is 4:1 (v/v), while the lauric acid concentration variations are 0%, 1%, 2%, 3%, 4%, and 5% w/v. The characterization of mechanical properties test (Tensile strength and Elongation at break) at hydrogel showed the hydrogel chitosan-alginate-lauric acid have the characteristic which meets the standard of mechanical properties for human skin. The best performance of hydrogel chitosan-alginate-lauric acid was obtained by increasing luric acid concentration by 4%, which has a thickness value of 125.46±0.63 µm, elongation 28.89±1.01 %, tensile strength (9.01±0.65) MPa, and ability to absorb liquids (601.45 ±1.24) %.

  13. Single-reagent one-step procedures for the purification of ovine IgG, F(ab')2 and Fab antivenoms by caprylic acid.

    PubMed

    Al-Abdulla, Ibrahim; Casewell, Nicholas R; Landon, John

    2014-01-15

    Antivenoms are typically produced in horses or sheep and often purified using salt precipitation of immunoglobulins or F(ab')2 fragments. Caprylic (octanoic) acid fractionation of antiserum has the advantage of not precipitating the desired antibodies, thereby avoiding potential degradation that can lead to the formation of aggregates, which may be the cause of some adverse reactions to antivenoms. Here we report that when optimising the purification of immunoglobulins from ovine antiserum raised against snake venom, caprylic acid was found to have no effect on the activity of the enzymes pepsin and papain, which are employed in antivenom manufacturing to digest immunoglobulins to obtain F(ab')2 and Fab fragments, respectively. A "single-reagent" method was developed for the production of F(ab')2 antivenom whereby whole ovine antiserum was mixed with both caprylic acid and pepsin and incubated for 4h at 37°C. For ovine Fab antivenom production from whole antiserum, the "single reagent" comprised of caprylic acid, papain and l-cysteine; after incubation at 37°C for 18-20h, iodoacetamide was added to stop the reaction. Caprylic acid facilitated the precipitation of albumin, resulting in a reduced protein load presented to the digestion enzymes, culminating in substantial reductions in processing time. The ovine IgG, F(ab')2 and Fab products obtained using these novel caprylic acid methods were comparable in terms of yield, purity and specific activity to those obtained by multi-step conventional salt fractionation with sodium sulphate. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Caprylate Salts Based on Amines as Volatile Corrosion Inhibitors for Metallic Zinc: Theoretical and Experimental Studies.

    PubMed

    Valente, Marco A G; Teixeira, Deiver A; Azevedo, David L; Feliciano, Gustavo T; Benedetti, Assis V; Fugivara, Cecílio S

    2017-01-01

    The interaction of volatile corrosion inhibitors (VCI), caprylate salt derivatives from amines, with zinc metallic surfaces is assessed by density functional theory (DFT) computer simulations, electrochemical impedance (EIS) measurements and humid chamber tests. The results obtained by the different methods were compared, and linear correlations were obtained between theoretical and experimental data. The correlations between experimental and theoretical results showed that the molecular size is the determining factor in the inhibition efficiency. The models used and experimental results indicated that dicyclohexylamine caprylate is the most efficient inhibitor.

  15. Energy spectra of atmospheric muons measured with the CAPRICE98 balloon experiment

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Bergström, D.; Carlson, P.; Francke, T.; Hansen, P.; Mocchiutti, E.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; de Marzo, C. N.; Papini, P.; Piccardi, S.; Spillantini, P.; Vannuccini, E.; Bartalucci, S.; Ricci, M.; Casolino, M.; de Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Mitchell, J. W.; Ormes, J. F.; Stephens, S. A.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.

    2003-04-01

    The measurement of the atmospheric muon spectrum is currently of great interest because of the study of atmospheric neutrinos and the claim of neutrino oscillations made in 1998 by the Super-Kamiokande Collaboration. A measurement of the muon flux is an indirect measure of the neutrino flux. Therefore, it can be used to improve the calculation of the atmospheric neutrino flux, which in turn can be compared with the observed neutrino rates in underground detectors. This article reports a new measurement of the μ+ and μ- spectra at several atmospheric depths in the momentum ranges 0.3 20 GeV/c and 0.3 40 GeV/c, respectively. The data were collected by the balloon-borne experiment CAPRICE98 during the ascent of the payload on 28 May 1998 from Fort Sumner, N. M. The experiment used the NMSU-WIZARD/CAPRICE 98 balloon-borne magnet spectrometer equipped with a gas ring imaging Cherenkov detector and a silicon-tungsten calorimeter.

  16. Caprylic acid and medium-chain triglycerides inhibit IL-8 gene transcription in Caco-2 cells: comparison with the potent histone deacetylase inhibitor trichostatin A

    PubMed Central

    Hoshimoto, Aihiro; Suzuki, Yasuo; Katsuno, Tatsuro; Nakajima, Hiroshi; Saito, Yasushi

    2002-01-01

    Medium-chain triglyceride (MCT) is often administered to patients with Crohn's disease (CD) or short-bowel syndrome. However, little is known about the effects of medium-chain fatty acids (MCFAs) and MCT on intestinal inflammation. In this study we examined whether caprylic acid, one of the MCFAs, and MCT suppress IL-8 secretion by differentiated Caco-2 cells.We found for the first time that caprylic acid and MCT suppress IL-8 secretion by Caco-2 cells at the transcriptional level when precultured together for 24 h. We also tried to clarify the mechanism of IL-8 gene inhibition by examining the activation of NF-κB and other transcription factors by electrophoretic mobility shift assay (EMSA), and found that caprylic acid did not modulate their activation.The result of dual-luciferase assay using Caco-2 cells transfected with IL-8 promoter/luciferase reporter plasmid revealed that caprylic acid inhibited the activation of IL-8 promoter.Similar results were observed when cells were precultured with the well-known potent histone deacetylase inhibitor trichostatin A (TSA).We examined the state of H4 acetylation in IL-8 promoter using the technique known as chromatin immunoprecipitation (Chr-IP). TSA rapidly induced H4 acetylation in IL-8 promoter chromatin, whereas caprylic acid did not. These results suggest that the inhibition of IL-8 gene transcription induced by caprylic acid and TSA does not necessarily require the marked suppression of transcription factors, and the mechanism of inhibition of IL-8 gene transcription may be different between caprylic acid and TSA. PMID:12010777

  17. Caprylate Salts Based on Amines as Volatile Corrosion Inhibitors for Metallic Zinc: Theoretical and Experimental Studies

    PubMed Central

    Valente, Marco A. G.; Teixeira, Deiver A.; Azevedo, David L.; Feliciano, Gustavo T.; Benedetti, Assis V.; Fugivara, Cecílio S.

    2017-01-01

    The interaction of volatile corrosion inhibitors (VCI), caprylate salt derivatives from amines, with zinc metallic surfaces is assessed by density functional theory (DFT) computer simulations, electrochemical impedance (EIS) measurements and humid chamber tests. The results obtained by the different methods were compared, and linear correlations were obtained between theoretical and experimental data. The correlations between experimental and theoretical results showed that the molecular size is the determining factor in the inhibition efficiency. The models used and experimental results indicated that dicyclohexylamine caprylate is the most efficient inhibitor. PMID:28620602

  18. Synthesis of glycerol mono-laurate from lauric acid and glycerol for food antibacterial additive

    NASA Astrophysics Data System (ADS)

    Setianto, W. B.; Wibowo, T. Y.; Yohanes, H.; Illaningtyas, F.; Anggoro, D. D.

    2017-05-01

    Synthesis of glycerol mono-laurate (GML) has been performed using esterification reaction of glycerol and lauric acid. The reaction was performed at the condition of temperature of 120-140 °C within 7 hour, variation of molar ratio of glycerol - lauric acid, and was using heterogeneous catalyst of zeolist Y. Without catalyst dealumination the maximum acid conversion was 78%, with GML contained in the sample was 38.6%, and it was obtained at the reaction condition of 140 oC, 15wt% catalyst, and 8:1 molar ratio of glycerol - lauric acid. At the same condition, using dealuminated catalyst, the maximum acid conversion was increased up to 98%, with GML contained in the sample was 50.4%. The GML antibacterial activity was examined. It was observed that the GML has antibacterial activity against gram positive bacterial such as B. cereus and S. aureus.

  19. Synergistic antimicrobial activity of caprylic acid in combination with citric acid against both Escherichia coli O157:H7 and indigenous microflora in carrot juice.

    PubMed

    Kim, S A; Rhee, M S

    2015-08-01

    The identification of novel, effective, and non-thermal decontamination methods is imperative for the preservation of unpasteurized and fresh vegetable juices. The aim of this study was to examine the bactericidal effects of caprylic acid + citric acid against the virulent pathogen Escherichia coli O157:H7 and the endogenous microflora in unpasteurized fresh carrot juice. Carrot juice was treated with either caprylic acid, citric acid, or a combination of caprylic acid + citric acid at mild heating temperature (45 °C or 50 °C). The color of the treated carrot juice as well as microbial survival was examined over time. Combined treatment was more effective than individual treatment in terms of both color and microbial survival. Caprylic acid + citric acid treatment (each at 5.0 mM) at 50 °C for 5 min resulted in 7.46 and 3.07 log CFU/ml reductions in the E. coli O157:H7 and endogenous microflora populations, respectively. By contrast, there was no apparent reduction in either population following individual treatment. A validation assay using a low-density E. coli O157:H7 inoculum (3.31 log CFU/ml) showed that combined treatment with caprylic acid (5.0 mM) + citric acid (2.5 mM) at 50 °C for >5 min or with caprylic acid + citric acid (both at 5.0 mM) at either 45 °C or 50 °C for >5 min completely destroyed the bacteria. Combined treatment also increased the redness of the juice, which is a perceived indication of quality. Taken together, these results indicate that combined treatment with low concentrations of caprylic acid and citric acid, which are of biotic origin, can eliminate microorganisms from unpasteurized carrot juice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Performance of the CAPRICE98 balloon-borne gas-RICH detector

    NASA Astrophysics Data System (ADS)

    Bergström, D.; Boezio, M.; Carlson, P.; Francke, T.; Grinstein, S.; Weber, N.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Stephens, S. A.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Castellano, M.; Ciacio, F.; Circella, M.; De Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Bartalucci, S.; Ricci, M.; Bidoli, V.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Barbiellini, G.; Schiavon, P.; Vacchi, A.; Zampa, N.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.

    2001-05-01

    A RICH counter using a gas radiator of C 4F 10 and a photosensitive MWPC with pad readout has been developed, tested in particle beam at CERN and used in the CAPRICE98 balloon-borne experiment. The MWPC was operated with a TMAE and ethane mixture at atmospheric pressure and used a cathode pad plane to give an unambiguous image of the Cherenkov light. The induced signals in the pad plane were read out using the AMPLEX chip and CRAMS. The good efficiency of the Cherenkov light collection, the efficient detection of the weak signal from single UV photons together with a low noise level in the electronics of the RICH detector, resulted in a large number of detected photoelectrons per event. For β≃1 charge one particles, an average of 12 photoelectrons per event were detected. The reconstructed Cherenkov angle of 50 mrad for a β≃1 particle had a resolution of 1.2 mrad (rms). The RICH was flown with the CAPRICE98 magnetic spectrometer and was the first RICH counter ever used in a balloon-borne experiment capable of identifying charge one particles at energies above 5 GeV. The RICH provided an identification of cosmic ray antiprotons up to the highest energies ever studied (about 50 GeV of total energy). The spectrometer was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA.

  1. Progesterone lipid nanoparticles: Scaling up and in vivo human study.

    PubMed

    Esposito, Elisabetta; Sguizzato, Maddalena; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Nastruzzi, Claudio; Cortesi, Rita

    2017-10-01

    This investigation describes a scaling up study aimed at producing progesterone containing nanoparticles in a pilot scale. Particularly hot homogenization techniques based on ultrasound homogenization or high pressure homogenization have been employed to produce lipid nanoparticles constituted of tristearin or tristearin in association with caprylic-capric triglyceride. It was found that the high pressure homogenization method enabled to obtain nanoparticles without agglomerates and smaller mean diameters with respect to ultrasound homogenization method. X-ray characterization suggested a lamellar structural organization of both type of nanoparticles. Progesterone encapsulation efficiency was almost 100% in the case of high pressure homogenization method. Shelf life study indicated a double fold stability of progesterone when encapsulated in nanoparticles produced by the high pressure homogenization method. Dialysis and Franz cell methods were performed to mimic subcutaneous and skin administration. Nanoparticles constituted of tristearin in mixture with caprylic/capric triglyceride display a slower release of progesterone with respect to nanoparticles constituted of pure tristearin. Franz cell evidenced a higher progesterone skin uptake in the case of pure tristearin nanoparticles. A human in vivo study, based on tape stripping, was conducted to investigate the performance of nanoparticles as progesterone skin delivery systems. Tape stripping results indicated a decrease of progesterone concentration in stratum corneum within six hours, suggesting an interaction between nanoparticle material and skin lipids. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Anticarcinogenic properties of medium chain fatty acids on human colorectal, skin and breast cancer cells in vitro.

    PubMed

    Narayanan, Amoolya; Baskaran, Sangeetha Ananda; Amalaradjou, Mary Anne Roshni; Venkitanarayanan, Kumar

    2015-03-05

    Colorectal cancer, breast cancer and skin cancer are commonly-reported cancer types in the U.S. Although radiation and chemotherapy are routinely used to treat cancer, they produce side effects in patients. Additionally, resistance to chemotherapeutic drugs has been noticed in cancers. Thus, there is a need for effective and safe bioprophylactics and biotherapeutics in cancer therapy. The medicinal value of goat milk has been recognized for centuries and is primarily attributed to three fatty acids, namely capric, caprylic and caproic acids. This research investigates the anticancer property of these fatty acids on human colorectal, skin and mammary gland cancer cells. The cancer cells were treated with various concentrations of fatty acids for 48 h, and cell viability was monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Additionally, real-time quantitative PCR (RT-qPCR) was performed to elucidate the potential anti-cancer mechanisms of the three fatty acids under investigation. Capric, caprylic and caproic acids reduced cancer cell viability by 70% to 90% (p < 0.05) compared to controls. RT-qPCR data indicated that these natural molecules produced anticancer effects by down-regulating cell cycle regulatory genes and up-regulating genes involved in apoptosis. Future research will validate the anticancer effect of these fatty acids in an appropriate in vivo model.

  3. Activity of virgin coconut oil, lauric acid or monolaurin in combination with lactic acid against Staphylococcus aureus.

    PubMed

    Tangwatcharin, Pussadee; Khopaibool, Prapaporn

    2012-07-01

    The objective of this study was to investigate the in vitro activities of virgin coconut oil, lauric acid and monolaurin in combination with lactic acid against two strains of Staphylococcus aureus, ATCC 25923 and an isolate from a pig carcass, by determination of Fractional Bactericidal Concentration Index (FBCI), time-kill method, as well as scanning and transmission electron microscopy. Minimum bactericidal concentrations (MBC) of lauric acid, monolaurin and lactic acid were 3.2 mg/ml, 0.1 mg/ml and 0.4% (v/v), respectively. The effects of lauric acid + lactic acid and monolaurin + lactic acid combinations were synergistic against both strains, exhibiting FBCIs of 0.25 and 0.63, respectively. In time-kill studies, lauric acid and monolaurin + lactic acid combinations added at their minimum inhibitory concentrations produced a bactericidal effect. The induction of stress in non-stressed cells was dependent on the type and concentration of antimicrobial. This resulted in a loss and change of the cytoplasm and membrane in cells of the bacterium. In contrast, virgin coconut oil (10%) was not active against S. aureus. The bacterial counts found in pork loin treated with lauric acid and monolaurin alone were significantly higher (p <0.05) than those treated with both lipids in combination with lactic acid at sub-inhibitory concentrations. The color, odor and overall acceptability of the pork loins were adversely affected by treatment with the three lipids and lactic acid alone but when combinations of the agents were used the sensory quality was acceptable.

  4. Revisiting the metabolism and physiological functions of caprylic acid (C8:0) with special focus on ghrelin octanoylation.

    PubMed

    Lemarié, Fanny; Beauchamp, Erwan; Legrand, Philippe; Rioux, Vincent

    2016-01-01

    Caprylic acid (octanoic acid, C8:0) belongs to the class of medium-chain saturated fatty acids (MCFAs). Dairy products and specific oils like coconut oil are natural sources of dietary C8:0 but higher intakes of this fatty acid can be provided with MCT (Medium-Chain Triglycerides) oil that consists in 75% of C8:0. MCFAs have physical and metabolic properties that are distinct from those of long-chain saturated fatty acids (LCFAs ≥ 12 carbons). Beneficial physiological effects of dietary C8:0 have been studied for a long time and MCT oil has been used as a special energy source for patients suffering from pancreatic insufficiency, impaired lymphatic chylomicron transport and fat malabsorption. More recently, caprylic acid was also shown to acylate ghrelin, the only known peptide hormone with an orexigenic effect. Through its covalent binding to the ghrelin peptide, caprylic acid exhibits an emerging and specific role in modulating physiological functions themselves regulated by octanoylated ghrelin. Dietary caprylic acid is therefore now suspected to provide the ghrelin O-acyltransferase (GOAT) enzyme with octanoyl-CoA co-substrates necessary for the acyl modification of ghrelin. This review tries to highlight the discrepancy between the formerly described beneficial effects of dietary MCFAs on body weight loss and the C8:0 newly reported effect on appetite stimulation via ghrelin octanoylation. The subsequent aim of this review is to demonstrate the relevance of carrying out further studies to better understand the physiological functions of this particular fatty acid. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. Collagen-chitosan scaffold - Lauric acid plasticizer for skin tissue engineering on burn cases

    NASA Astrophysics Data System (ADS)

    Widiyanti, Prihartini; Setyadi, Ewing Dian; Rudyardjo, Djony Izak

    2017-02-01

    The prevalence of burns in the world is more than 800 cases per one million people each year and this is the second highest cause of death due to trauma after traffic accident. Many studies are turning to skin substitute methods of tissue engineering. The purpose of this study is to determine the composition of the collagen, chitosan, and lauric acid scaffold, as well as knowing the results of the characterization of the scaffold. The synthesis of chitosan collagen lauric acid scaffold as a skin tissue was engineered using freeze dried method. Results from making of collagen chitosan lauric acid scaffold was characterized physically, biologically and mechanically by SEM, cytotoxicity, biodegradation, and tensile strength. From the morphology test, the result obtained is that pore diameter size ranges from 94.11 to 140.1 µm for samples A,B,C,D, which are in the range of normal pore size 63-150 µm, while sample E has value below the standard which is about 37.87 to 47.36 µm. From cytotoxicity assay, the result obtained is the percentage value of living cells between 20.11 to 21.51%. This value is below 50% the standard value of living cells. Incompatibility is made possible because of human error mainly the replication of washing process over the standard. Degradation testing obtained values of 19.44% - 40% by weight which are degraded during the 7 days of observation. Tensile test results obtained a range of values of 0.192 - 3.53 MPa. Only sample A (3.53 MPa) and B (1.935 MPa) meet the standard values of skin tissue scaffold that is 1-24 MPa. Based on the results of the characteristics of this study, composite chitosan collagen scaffold with lauric acid plasticizer has a potential candidate for skin tissue engineering for skin burns cases.

  6. Self-assembled Lyotropic Liquid Crystalline Phase Behavior of Monoolein-Capric Acid-Phospholipid Nanoparticulate Systems.

    PubMed

    Zhai, Jiali; Tran, Nhiem; Sarkar, Sampa; Fong, Celesta; Mulet, Xavier; Drummond, Calum J

    2017-03-14

    We report here the lyotropic liquid crystalline phase behavior of two lipid nanoparticulate systems containing mixtures of monoolein, capric acid, and saturated diacyl phosphatidylcholines dispersed by the Pluronic F127 block copolymer. Synchrotron small-angle X-ray scattering (SAXS) was used to screen the phase behavior of a library of lipid nanoparticles in a high-throughput manner. It was found that adding capric acid and phosphatidylcholines had opposing effects on the spontaneous membrane curvature of the monoolein lipid layer and hence the internal mesophase of the final nanoparticles. By varying the relative concentration of the three lipid components, we were able to establish a library of nanoparticles with a wide range of mesophases including at least the inverse bicontinuous primitive and double diamond cubic phases, the inverse hexagonal phase, the fluid lamellar phase, and possibly other phases. Furthermore, the in vitro cytotoxicity assay showed that the endogenous phospholipid-containing nanoparticles were less toxic to cultured cell lines compared to monoolein-based counterparts, improving the potential of the nonlamellar lipid nanoparticles for biomedical applications.

  7. Starch-based Antimicrobial Films Incorporated with Lauric Acid and Chitosan

    NASA Astrophysics Data System (ADS)

    Salleh, E.; Muhamad, I. I.

    2010-03-01

    Antimicrobial (AM) packaging is one of the most promising active packaging systems. Starch-based film is considered an economical material for antimicrobial packaging. This study aimed at the development of food packaging based on wheat starch incorporated with lauric acid and chitosan as antimicrobial agents. The purpose is to restrain or inhibit the growth of spoilage and/or pathogenic microorganisms that are contaminating foods. The antimicrobial effect was tested on B. substilis and E. coli. Inhibition of bacterial growth was examined using two methods, i.e. zone of inhibition test on solid media and liquid culture test (optical density measurements). The control and AM films (incorporated with chitosan and lauric acid) were produced by casting method. From the observations, AM films exhibited inhibitory zones. Interestingly, a wide clear zone on solid media was observed for B. substilis growth inhibition whereas inhibition for E. coli was not as effective as B. substilis. From the liquid culture test, the AM films clearly demonstrated a better inhibition against B. substilis than E. coli.

  8. Caprylic Triglyceride as a Novel Therapeutic Approach to Effectively Improve the Performance and Attenuate the Symptoms Due to the Motor Neuron Loss in ALS Disease

    PubMed Central

    Zhao, Wei; Varghese, Merina; Vempati, Prashant; Dzhun, Anastasiya; Cheng, Alice; Wang, Jun; Lange, Dale; Bilski, Amanda; Faravelli, Irene; Pasinetti, Giulio Maria

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and finally death. ALS patients suffer from asthenia and their progressive weakness negatively impacts quality of life, limiting their daily activities. They have impaired energy balance linked to lower activity of mitochondrial electron transport chain enzymes in ALS spinal cord, suggesting that improving mitochondrial function may present a therapeutic approach for ALS. When fed a ketogenic diet, the G93A ALS mouse shows a significant increase in serum ketones as well as a significantly slower progression of weakness and lower mortality rate. In this study, we treated SOD1-G93A mice with caprylic triglyceride, a medium chain triglyceride that is metabolized into ketone bodies and can serve as an alternate energy substrate for neuronal metabolism. Treatment with caprylic triglyceride attenuated progression of weakness and protected spinal cord motor neuron loss in SOD1-G93A transgenic animals, significantly improving their performance even though there was no significant benefit regarding the survival of the ALS transgenic animals. We found that caprylic triglyceride significantly promoted the mitochondrial oxygen consumption rate in vivo. Our results demonstrated that caprylic triglyceride alleviates ALS-type motor impairment through restoration of energy metabolism in SOD1-G93A ALS mice, especially during the overt stage of the disease. These data indicate the feasibility of using caprylic acid as an easily administered treatment with a high impact on the quality of life of ALS patients. PMID:23145119

  9. Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease.

    PubMed

    Zhao, Wei; Varghese, Merina; Vempati, Prashant; Dzhun, Anastasiya; Cheng, Alice; Wang, Jun; Lange, Dale; Bilski, Amanda; Faravelli, Irene; Pasinetti, Giulio Maria

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and finally death. ALS patients suffer from asthenia and their progressive weakness negatively impacts quality of life, limiting their daily activities. They have impaired energy balance linked to lower activity of mitochondrial electron transport chain enzymes in ALS spinal cord, suggesting that improving mitochondrial function may present a therapeutic approach for ALS. When fed a ketogenic diet, the G93A ALS mouse shows a significant increase in serum ketones as well as a significantly slower progression of weakness and lower mortality rate. In this study, we treated SOD1-G93A mice with caprylic triglyceride, a medium chain triglyceride that is metabolized into ketone bodies and can serve as an alternate energy substrate for neuronal metabolism. Treatment with caprylic triglyceride attenuated progression of weakness and protected spinal cord motor neuron loss in SOD1-G93A transgenic animals, significantly improving their performance even though there was no significant benefit regarding the survival of the ALS transgenic animals. We found that caprylic triglyceride significantly promoted the mitochondrial oxygen consumption rate in vivo. Our results demonstrated that caprylic triglyceride alleviates ALS-type motor impairment through restoration of energy metabolism in SOD1-G93A ALS mice, especially during the overt stage of the disease. These data indicate the feasibility of using caprylic acid as an easily administered treatment with a high impact on the quality of life of ALS patients.

  10. Spray washing carcasses with alkaline solutions of lauric acid to reduce bacterial contamination.

    USDA-ARS?s Scientific Manuscript database

    The effect of spray washing carcasses with lauric acid (LA)-potassium hydroxide (KOH) on bacteria recovered from whole-carcass-rinsates (WCR) was examined. Skin of carcasses was inoculated with a cecal paste containing antibiotic resistant strains of Escherichia coli, Salmonella Typhimirum, and Camp...

  11. Influence of fat addition on the antimicrobial activity of sodium lactate, lauric arginate and methylparaben in minced meat.

    PubMed

    Magrinyà, Núria; Terjung, Nino; Loeffler, Myriam; Gibis, Monika; Bou, Ricard; Weiss, Jochen

    2015-12-23

    A minced meat model system containing three different fat levels (0, 15, and 50 wt.%) was used to evaluate the antimicrobial efficacy of three antimicrobials with different aqueous solubilities (sodium lactate>lauric arginate (Nα-lauroyl-L-arginine ethyl ester, LAE)>methylparaben). Various concentrations of sodium lactate (20, 40, and 60 mg/g), lauric arginate (0.5, 1, 1.5, 2.0, and 2.5 mg/g) and methylparaben (0.1, 0.5, 1.0, and 2.0 mg/g) were used to evaluate the antimicrobial activity against natural meat microbiota (total aerobic mesophilic colony counts, coliform bacteria, and lactic acid bacteria). The results indicate that the three antimicrobials tested are influenced at different strengths by the changes of the fat addition of the minced meat. The antimicrobial efficacy of LAE and methylparaben is increased by a higher fat content in the meat batter, whereas for lactate no clear lactate proportionality relationship can be seen. This structure sensitivity is most strongly pronounced with lauric arginate, which we attributed to the amphiphilic character of the molecule. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Transdermal diffusion of xenon in vitro using diffusion cells

    NASA Astrophysics Data System (ADS)

    Verkhovsky, A.; Petrov, E.

    2015-11-01

    The aim of this research was to study the diffusion rate of xenon through guinea pig skin and how viscosity of cosmetic component capryl/capric triglyceride (CCT) facilitates to deliver xenon to surface of skin patches. They were placed in Franz cell for 24 hours and diffusion rate and permeability of xenon were calculated. Thus diffusion rate was 0.031 mg/hour*cm2 and permeability was 0.003 cm/hour. Using Brookfield viscometer it was shown that viscosity of CCT decreased upon increasing xenon concentration. Obtained results can be utilized in developing of new xenon containing drugs for topical administration.

  13. CAPRICE positively regulates stomatal formation in the Arabidopsis hypocotyl

    PubMed Central

    2008-01-01

    In the Arabidopsis hypocotyl, stomata develop only from a set of epidermal cell files. Previous studies have identified several negative regulators of stomata formation. Such regulators also trigger non-hair cell fate in the root. Here, it is shown that TOO MANY MOUTHS (TMM) positively regulates CAPRICE (CPC) expression in differentiating stomaless-forming cell files, and that the CPC protein might move to the nucleus of neighbouring stoma-forming cells, where it promotes stomata formation in a redundant manner with TRIPTYCHON (TRY). Unexpectedly, the CPC protein was also localized in the nucleus and peripheral cytoplasm of hypocotyl fully differentiated epidermal cells, suggesting that CPC plays an additional role to those related to stomata formation. These results identify CPC and TRY as positive regulators of stomata formation in the embryonic stem, which increases the similarity between the genetic control of root hair and stoma cell fate determination. PMID:19513241

  14. The triglyceride composition of 17 seed fats rich in octanoic, decanoic, or lauric acid.

    PubMed

    Litchfield, C; Miller, E; Harlow, R D; Reiser, R

    1967-07-01

    Seed fats of eight species ofLauraceae (laurel family), six species ofCuphea (Lythraceae family), and three species ofUlmaceae (elm family) were extracted, and the triglycerides were isolated by preparative thin-layer chromatography. GLC of the triglycerides on a silicone column resolved 10 to 18 peaks with a 22 to 58 carbon number range for each fat. These carbon number distributions yielded considerable information about triglyceride compositions of the fats.The most interesting finding was withLaurus nobilis seed fat, which contained 58.4% lauric acid and 29.2-29.8% trilaurin. A maximum of 19.9% trilaurin would be predicted by a 1, 2, 3-random, a 1, 3-random-2-random, or a 1-random-2-random-3-random distribution of the lauric acid(3). This indicates a specificity for the biosynthesis of a simple triglyceride byLaurus nobilis seed enzymes.Cuphea lanceolata seed fat also contained more simple triglyceride (tridecanoin) than would be predicted by the fatty acid distribution theories.

  15. The solubilization of fatty acids in systems based on block copolymers and nonionic surfactants

    NASA Astrophysics Data System (ADS)

    Mirgorodskaya, A. B.; Yatskevich, E. I.; Zakharova, L. Ya.

    2010-12-01

    The solubilizing action of micellar, microemulsion, and polymer-colloid systems formed on the basis of biologically compatible amphiphilic polymers and nonionic surfactants on capric, lauric, palmitic, and stearic acids was characterized quantitatively. Systems based on micelle forming oxyethyl compounds increased the solubility of fatty acids by more than an order of magnitude. Acid molecules incorporated into micelles increased their size and caused structural changes. Solubilization was accompanied by complete or partial destruction of intrinsic acid associates and an increase in their p K a by 1.5-2 units compared with water.

  16. In vivo treatment of Propionibacterium acnes infection with liposomal lauric acids.

    PubMed

    Pornpattananangkul, Dissaya; Fu, Victoria; Thamphiwatana, Soracha; Zhang, Li; Chen, Michael; Vecchio, James; Gao, Weiwei; Huang, Chun-Ming; Zhang, Liangfang

    2013-10-01

    Propionibacterium acnes (P. acnes) is a Gram-positive bacterium strongly associated with acne infection. While many antimicrobial agents have been used in clinic to treat acne infection by targeting P. acnes, these existing anti-acne agents usually produce considerable side effects. Herein, the development and evaluation of liposomal lauric acids (LipoLA) is reported as a new, effective and safe therapeutic agent for the treatment of acne infection. By incorporating lauric acids into the lipid bilayer of liposomes, it is observed that the resulting LipoLA readily fuse with bacterial membranes, causing effective killing of P. acnes by disrupting bacterial membrane structures. Using a mouse ear model, we demonstrated that the bactericidal property of LipoLA against P. acne is well preserved at physiological conditions. Topically applying LipoLA in a gel form onto the infectious sites leads to eradication of P. acnes bacteria in vivo. Further skin toxicity studies show that LipoLA does not induce acute toxicity to normal mouse skin, while benzoyl peroxide and salicylic acid, the two most popular over-the-counter acne medications, generate moderate to severe skin irritation within 24 h. These results suggest that LipoLA hold a high therapeutic potential for the treatment of acne infection and other P. acnes related diseases. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Role of lauric acid-potassium hydroxide concentration on bacterial contamination of spray washed broiler carcasses

    USDA-ARS?s Scientific Manuscript database

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed in a spray cabinet with various concentrations of lauric acid (LA)-potassium hydroxide (KOH) solutions. Fifty eviscerated carcasses and 5 ceca were obtained from the processing line of...

  18. Caprylic acid reduces enteric Campylobacter colonization in market-aged broiler chickens but does not appear to alter cecal microbial populations

    USDA-ARS?s Scientific Manuscript database

    Campylobacter is one of the leading causes of food-borne illness in the United States, and epidemiological evidence indicates poultry and poultry products to be a significant source of human Campylobacter infections. Caprylic acid, an 8-carbon medium chain fatty acid, can reduce Campylobacter colon...

  19. Influence of washing time on residual contamination of carcasses sprayed with lauric acid-potassium hydroxide.

    USDA-ARS?s Scientific Manuscript database

    A series of experiments were conducted to examine reductions in bacterial contamination of broiler carcasses washed for various times in a spray cabinet with a 2% lauric acid (LA)-1% potassium hydroxide (KOH) (w/v) solution. Forty eviscerated carcasses and 5 ceca were obtained from the processing l...

  20. Deoxygenation of Palmitic and Lauric Acids over Pt/ZIF-67 Membrane/Zeolite 5A Bead Catalysts.

    PubMed

    Yang, Liqiu; Carreon, Moises A

    2017-09-20

    The deoxygenation of palmitic and lauric acids over 0.5 wt % Pt/ZIF-67 membrane/zeolite 5A bead catalysts is demonstrated. Almost complete conversion (% deoxygenation of ≥95%) of these two fatty acids was observed over both fresh and recycled catalyst after a 2 h reaction time. The catalysts displayed high selectivity to pentadecane and undecane via decarboxylation reaction pathway even at low 0.5 wt % Pt loading. Selectivity to pentadecane and undecane as high as ∼92% and ∼94% was observed under CO 2 atmosphere when palmitic and lauric acids were used respectively as reactants. Depending on the reaction gas atmosphere, two distinctive reaction pathways were observed: decarboxylation and hydrodeoxygenation. Specifically, it was found that decarboxylation reaction pathway was more favorable in the presence of helium and CO 2 , while hydrodeoxygenation pathway strongly competed against the decarboxylation pathway when hydrogen was employed during the deoxygenation reactions. Esters were identified as the key reaction intermediates leading to decarboxylation and hydrodeoxygenation pathways.

  1. Waste Conversion into n-Caprylate and n-Caproate: Resource Recovery from Wine Lees Using Anaerobic Reactor Microbiomes and In-line Extraction

    PubMed Central

    Kucek, Leo A.; Xu, Jiajie; Nguyen, Mytien; Angenent, Largus T.

    2016-01-01

    To convert wastes into sustainable liquid fuels and chemicals, new resource recovery technologies are required. Chain elongation is a carboxylate-platform bioprocess that converts short-chain carboxylates (SCCs) (e.g., acetate [C2] and n-butyrate [C4]) into medium-chain carboxylates (MCCs) (e.g., n-caprylate [C8] and n-caproate [C6]) with hydrogen gas as a side product. Ethanol or another electron donor (e.g., lactate, carbohydrate) is required. Competitive MCC productivities, yields (product vs. substrate fed), and specificities (product vs. all products) were only achieved previously from an organic waste material when exogenous ethanol had been added. Here, we converted a real organic waste, which inherently contains ethanol, into MCCs with n-caprylate as the target product. We used wine lees, which consisted primarily of settled yeast cells and ethanol from wine fermentation, and produced MCCs with a reactor microbiome. We operated the bioreactor at a pH of 5.2 and with continuous in-line extraction and achieved a MCC productivity of 3.9 g COD/L-d at an organic loading rate of 5.8 g COD/L-d, resulting in a promising MCC yield of 67% and specificities of 36% for each n-caprylate and n-caproate (72% for both). Compared to all other studies that used complex organic substrates, we achieved the highest n-caprylate-to-ncaproate product ratio of 1.0 (COD basis), because we used increased broth-recycle rates through the forward membrane contactor, which improved in-line extraction rates. Increased recycle rates also allowed us to achieve the highest reported MCC production flux per membrane surface area thus far (20.1 g COD/m2-d). Through microbial community analyses, we determined that an operational taxonomic unit (OTU) for Bacteroides spp. was dominant and was positively correlated with increased MCC productivities. Our data also suggested that the microbiome may have been shaped for improved MCC production by the high broth-recycle rates. Comparable abiotic

  2. [Effects of inhibitory activity on mycelial growth of Candida albicans and therapy for murine oral candidiasis by the combined use of terpinen-4-ol and a middle-chain fatty acid, capric acid].

    PubMed

    Ninomiya, Kentaro; Hayama, Kazumi; Ishijima, Sanae; Takahashi, Miki; Kurihara, Junichi; Abe, Shigeru

    2013-01-01

    The combined effect of terpinen-4-ol, the main component of tea tree oil, and capric acid against mycelial growth of Candida albicans and murine oral candidiasis was evaluated in vitro and in vivo. Mycelial growth of C. albicans was estimated by the Cristal violet method. Combination of these compounds revealed a potent synergistic inhibition of growth. Therapeutic efficacy of the combination was evaluated microbiologically in murine oral candidiasis, and its application of the compounds clearly demonstrated therapeutic activity. Based on these results, the combined agent of terpinen-4-ol and capric acid was discussed as a possible candidate for oral candidiasis therapy.

  3. Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Carlson, P.; Francke, T.; Weber, N.; Suffert, M.; Hof, M.; Menn, W.; Simon, M.; Stephens, S. A.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Ricci, M.; Casolino, M.; de Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Barbiellini, G.; Schiavon, P.; Vacchi, A.; Zampa, N.; Grimani, C.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Golden, R. L.; Stochaj, S. J.

    2000-08-01

    A new measurement of the momentum spectra of both positive and negative muons as a function of atmospheric depth was made by the balloon-borne experiment CAPRICE94. The data were collected during ground runs in Lynn Lake on 19 and 20 July 1994 and during the balloon flight on 8 and 9 August 1994. We present results that cover the momentum intervals 0.3-40 GeV/c for μ - and 0.3-2 GeV/c for μ +, for atmospheric depths from 3.3 to 1000 g/cm2, respectively. Good agreement is found with previous measurements for high momenta, while at momenta below 1 GeV/c we find latitude dependent geomagnetic effects. These measurements are important cross-checks for the simulations carried out to calculate the atmospheric neutrino fluxes and to understand the observed atmospheric neutrino anomaly.

  4. Experimental study on thermal storage performance of binary mixtures of fatty acids

    NASA Astrophysics Data System (ADS)

    Yan, Quanying; Zhang, Jing; Liu, Chao; Liu, Sha; Sun, Xiangyu

    2018-02-01

    We selected five kinds of fatty acids including the capric acid, stearic acid, lauric acid, palmitic acid and myristic acid and mixed them to prepare10 kinds of binary mixtures of fatty acids according to the predetermined proportion,tested the phase change temperature and latent heat of mixtures by differential scanning calorimetry(DSC). In order to find the fatty acid mixture which has suitable phase change temperature, the larger phase change latent heat and can be used for phase change wall. The results showed that the phase change temperature and latent heats of the binary mixtures of fatty acids decreased compared with the single component;The phase change temperature of the binary mixtures of fatty acids containing capric acid were lower, the range was roughly 20∼30°C,and latent heat is large,which are ideal phase change materials for phase change wall energy storage;The phase change temperature of the binary mixtures consisting of other fatty acids were still high,didn’t meet the temperature requirements of the wall energy storage.

  5. Effects of lauric acid on ruminal protozoal numbers and fermentation pattern and milk production in lactating dairy cows

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to evaluate lauric acid (LA) as a practical agent to suppress ruminal protozoa (RP), and to assess the effects of RP suppression on fermentation patterns and milk production in dairy cows. In experiment 1, six Holstein cows fitted with ruminal cannulae were used in ...

  6. Characterization of cider apples on the basis of their fatty acid profiles.

    PubMed

    Blanco-Gomis, Domingo; Mangas Alonso, Juan J; Margolles Cabrales, Inmaculada; Arias Abrodo, Pilar

    2002-02-27

    In the current study, the fatty acids composition of 30 monovarietal apple juices from six cider apple varieties belonging to two categories was analyzed. The different apple juices were obtained from three consecutive harvests (1997, 1998, and 1999). The fatty acids concentration in apple juice together with chemometric techniques such as principal components analysis (PCA), soft independent modeling of class analogy (SIMCA), and linear discriminant analysis (LDA), allowed us to differentiate apple juices on the basis of the sweet or sharp category to which the cider apple variety belongs. Fatty acids such as the unsaturated oleic and linoleic acids, and saturated caprylic, capric, stearic, and palmitic acids were related to the sweet cider apple category, while pentadecanoic acid is related to the sharp class.

  7. Effects of feeding lauric acid on ruminal protozoa numbers, fermentation, and digestion and on milk production in dairy cows

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were: (1) to determine the level of lauric acid (LA) addition to the diet necessary to effectively suppress ruminal protozoa (RP) to the extent observed when a single dose was given directly into the rumen; (2) to assess its effects on production and ruminal metabolism; ...

  8. Composition of Cosmic Ray Particles in the Atmosphere as Measured by the CAPRICE98 Balloon Borne Apparatus

    NASA Astrophysics Data System (ADS)

    Mocchiutti, E.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Boezio, M.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.

    2003-07-01

    We report a measurement of the composition and spectra of both the primary and secondary cosmic ray particles at different depths in the atmosphere. The data were collected by the balloon-b orne experiment CAPRICE98 during the ascent of the payload on 28 May 1998 from Fort Sumner, New Mexico. The identification of various kinds of particles, such as, protons, deuterons, helium nuclei, electrons and positrons was possible in various energy ranges depending on the kind of particle and the particle background at different residual atmosphere. These measurements, together with the atmospheric muon spectra, will allow fine-tuning of models used in air shower simulations.

  9. CAPRICE98: A balloon borne magnetic spectrometer to study cosmic ray antimatter and composition at different atmospheric depths

    NASA Astrophysics Data System (ADS)

    Ambriola, M. L.; Barbiellini, G.; Bartalucci, S.; Basini, G.; Bellotti, R.; Bergstroem, D.; Bocciolini, M.; Boezio, M.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Castellano, M.; Ciacio, F.; Circella, M.; de Marzo, C.; de Pascale, M. P.; Finetti, N.; Francke, T.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Perego, A.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N.

    1999-08-01

    CAPRICE98 is a superconducting magnetic spectrometer built by the WiZard collaboration. It was launched from Ft. Sumner, NM, USA on the 28th of May 1998. For the first time a gas RICH detector has been flown together with a silicon electromagnetic calorimeter. The instrument configuration included a time of flight detector and a drift chamber stack, which were placed in the region of a magnet field, for rigidity measurement. Science objectives for this experiment include the study of antimatter in cosmic rays and that of cosmic ray composition in the atmosphere with special focus on muons.

  10. Characterization and optimization of carboxylesterase-catalyzed esterification between capric acid and glycerol for the production of 1-monocaprin in reversed micellar system.

    PubMed

    Park, Kyung Min; Kwon, Oh Taek; Ahn, Seon Min; Lee, JaeHwan; Chang, Pahn-Shick

    2010-02-28

    Calotropis procera R. Br. carboxylesterase (EC 3.1.1.1) solubilized in reversed micellar glycerol droplets containing a very small amount of water (less than 5ppm) and stabilized by a surfactant effectively catalyzed the esterification between glycerol and capric acid to produce 1-monocaprin. Reaction variables including surfactant types, organic solvent media, reaction time, G-value ([glycerol]/[capric acid]), R-value ([water]/[surfactant]), pH, temperature, and types of metal ion inhibitors on the carboxylesterase-catalyzed esterification were characterized and optimized to efficiently produce 1-monocaprin. Bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and isooctane were the most effective surfactant and organic solvent medium, respectively, for 1-monocaprin formation in reversed micelles. The optimum G- and R-values were 3.0 and 0.05, respectively, and the optimum pH and temperature were determined to be 10.0 and 60 degrees C, respectively. K(m,app.) and V(max,app.) were calculated from a Hanes-Woolf plot, and the values were 9.64 mM and 2.45 microM/min mg protein, respectively. Among various metal ions, Cu(2+) and Fe(2+) severely inhibited carboxylesterase-catalyzed esterification activity (less than 6.0% of relative activity). Copyright 2009 Elsevier B.V. All rights reserved.

  11. Thermal storage in drywall using organic phase-change material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, M.M.; Feldman, D.; Hawes, D.

    1987-01-01

    Two mixtures of phase-change material (PCM), 49% butyl stearate with 48% butyl palmitate, and 55% lauric acid with 45% capric acid, diluted 10% with fire retardant, were diffused into 13-mm (0.5-in.) wallboard. No exudation of liquid PCM occurs below 25% by weight. In the wallboard, initial PCM freezing points were 21/sup 0/ and 22/sup 0/C (70/sup 0/ and 72/sup 0/F), respectively, with melting points of 17/sup 0/ and 18/sup 0/C (63/sup 0/ and 64/sup 0/F). For a 4/sup 0/C (7/sup 0/F) temperature swing, thermal storage capacities up to 350 kJ/m/sup 2/ (31 Btu/ft/sup 2/) and 317 kJ/m/sup 2/ (28 Btu/ft/supmore » 2/), respectively, are available. These are equivalent to about 3.8 cm (1.5 in.) of concrete cycled through 7/sup 0/C (13/sup 0/F). Preliminary tests showed little extra flame spread beyond that of unloaded wallboard. The thermal conductivity of the wallboard increased from 0.19 to 0.22 W/m /sup 0/C (0.11 to 0.13 Btu/h ft /sup 0/F) with liquid PCM. During melting, the effective thermal diffusivity falls from 2.1 x 10/sup -7/ m/sup 2//s (2.3 x 10/sup -6/ ft/sup 2//s) for the unloaded wallboard to 1.4 x 10/sup -7/ m/sup 2//s (1.5 x 10/sup -6/ ft/sup 2//s) with 23.4% butyl stearate-palmitate and to 1.6 x 10/sup -7/ m/sup 2//s (1.7 x 10/sup -6/ ft/sup 2//s) with 28% of the lauric-capric mixture. (The mixture fraction is defined as the ratio of PCM mass to gypsum mass.)« less

  12. Novel therapeutic mechanisms determine the effectiveness of lipid-core nanocapsules on melanoma models

    PubMed Central

    Drewes, Carine C; Fiel, Luana A; Bexiga, Celina G; Asbahr, Ana Carolina C; Uchiyama, Mayara K; Cogliati, Bruno; Araki, Koiti; Guterres, Sílvia S; Pohlmann, Adriana R; Farsky, Sandra P

    2016-01-01

    Melanoma is a severe metastatic skin cancer with poor prognosis and no effective treatment. Therefore, novel therapeutic approaches using nanotechnology have been proposed to improve therapeutic effectiveness. Lipid-core nanocapsules (LNCs), prepared with poly(ε-caprolactone), capric/caprylic triglyceride, and sorbitan monostearate and stabilized by polysorbate 80, are efficient as drug delivery systems. Here, we investigated the effects of acetyleugenol-loaded LNC (AcE-LNC) on human SK-Mel-28 melanoma cells and its therapeutic efficacies on melanoma induced by B16F10 in C57B6 mice. LNC and AcE-LNC had z-average diameters and zeta potential close to 210 nm and -10.0 mV, respectively. CytoViva® microscopy images showed that LNC and AcE-LNC penetrated into SK-Mel-28 cells, and remained in the cytoplasm. AcE-LNC in vitro treatment (18–90×109 particles/mL; 1 hour) induced late apoptosis and necrosis; LNC and AcE-LNC (3–18×109 particles/mL; 48 hours) treatments reduced cell proliferation and delayed the cell cycle. Elevated levels of nitric oxide were found in supernatant of LNC and AcE-LNC, which were not dependent on nitric oxide synthase expressions. Daily intraperitoneal or oral treatment (days 3–10 after tumor injection) with LNC or AcE-LNC (1×1012 particles/day), but not with AcE (50 mg/kg/day, same dose as AcE-LNC), reduced the volume of the tumor; nevertheless, intraperitoneal treatment caused toxicity. Oral LNC treatment was more efficient than AcE-LNC treatment. Moreover, oral treatment with nonencapsulated capric/caprylic triglyceride did not inhibit tumor development, implying that nanocapsule supramolecular structure is important to the therapeutic effects. Together, data herein presented highlight the relevance of the supramolecular structure of LNCs to toxicity on SK-Mel-28 cells and to the therapeutic efficacy on melanoma development in mice, conferring novel therapeutic mechanisms to LNC further than a drug delivery system. PMID:27099491

  13. Preparation of Salicylic Acid Loaded Nanostructured Lipid Carriers Using Box-Behnken Design: Optimization, Characterization and Physicochemical Stability.

    PubMed

    Pantub, Ketrawee; Wongtrakul, Paveena; Janwitayanuchit, Wicharn

    2017-01-01

    Nanostructured lipid carriers loaded salicylic acid (NLCs-SA) were developed and optimized by using the design of experiment (DOE). Box-Behnken experimental design of 3-factor, 3-level was applied for optimization of nanostructured lipid carriers prepared by emulsification method. The independent variables were total lipid concentration (X 1 ), stearic acid to Lexol ® GT-865 ratio (X 2 ) and Tween ® 80 concentration (X 3 ) while the particle size was a dependent variable (Y). Box-Behnken design could create 15 runs by setting response optimizer as minimum particle size. The optimized formulation consists of 10% of total lipid, a mixture of stearic acid and capric/caprylic triglyceride at a 4:1 ratio, and 25% of Tween ® 80 which the formulation was applied in order to prepare in both loaded and unloaded salicylic acid. After preparation for 24 hours, the particle size of loaded and unloaded salicylic acid was 189.62±1.82 nm and 369.00±3.37 nm, respectively. Response surface analysis revealed that the amount of total lipid is a main factor which could affect the particle size of lipid carriers. In addition, the stability studies showed a significant change in particle size by time. Compared to unloaded nanoparticles, the addition of salicylic acid into the particles resulted in physically stable dispersion. After 30 days, sedimentation of unloaded lipid carriers was clearly observed. Absolute values of zeta potential of both systems were in the range of 3 to 18 mV since non-ionic surfactant, Tween ® 80, providing steric barrier was used. Differential thermograms indicated a shift of endothermic peak from 55°C for α-crystal form in freshly prepared samples to 60°C for β´-crystal form in storage samples. It was found that the presence of capric/caprylic triglyceride oil could enhance encapsulation efficiency up to 80% and facilitate stability of the particles.

  14. Reduction of Salmonella in skinless chicken breast fillets by lauric arginate surface application.

    PubMed

    Sharma, C S; Ates, A; Joseph, P; Nannapaneni, R; Kiess, A

    2013-05-01

    Lauric arginate (LAE) has been found to be effective against various foodborne pathogens. In this study, the antimicrobial efficacy of LAE against Salmonella and mesophilic organisms was evaluated in fresh, skinless, boneless, uncooked chicken breast fillets. The effect of LAE treatments on pH and color of breast fillets was also assessed. Chicken breast fillets were inoculated with a 4-strain Salmonella cocktail (Salmonella Enteritidis ATCC 4931, Salmonella Heidelberg ATCC 8326, Salmonella Kentucky ATCC 9263, and Salmonella Typhimurium ATCC 14028) and then treated with sterile dionized water (positive control) and 200 ppm and 400 ppm of LAE. The chicken breast fillets were stored at 4 ± 1°C and analyzed on d 0, 1, 3, 5, and 7 for Salmonella, total aerobes, color, and pH. The fillets destined for color analysis were not inoculated with Salmonella cocktail and stored under conditions simulating the retail display. The fillets treated with 400 ppm LAE had lower (P < 0.05) Salmonella counts compared with the positive control from d 0 through d 7 of storage except on d 3, when no effect of LAE was observed. Treating fillets with 200 ppm of LAE caused a significant reduction in Salmonella counts (P < 0.1) on d 0, 1, and 7. Reductions in Salmonella spp. were 0.7 log cfu/g and 0.7 to 1.0 log cfu/g for 200 and 400 ppm treatments, respectively. Lauric arginate did not exhibit any treatment effect on the growth of mesophilic microorganisms, pH, and color of chicken breast fillets (P > 0.05) when applied at 200 and 400 ppm concentrations. These results indicate that surface application of LAE in chicken breast fillets significantly reduces Salmonella during refrigerated aerobic storage without negatively affecting the color of chicken breast fillets.

  15. Operation of the CAPRICE electron cyclotron resonance ion source applying frequency tuning and double frequency heating.

    PubMed

    Maimone, F; Tinschert, K; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P

    2012-02-01

    The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.

  16. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis.

    PubMed

    Koshino-Kimura, Yoshihiro; Wada, Takuji; Tachibana, Tatsuhiko; Tsugeki, Ryuji; Ishiguro, Sumie; Okada, Kiyotaka

    2005-06-01

    Epidermal cell differentiation in Arabidopsis root is studied as a model system for understanding cell fate specification. Two types of MYB-related transcription factors are involved in this cell differentiation. One of these, CAPRICE (CPC), encoding an R3-type MYB protein, is a positive regulator of hair cell differentiation and is preferentially transcribed in hairless cells. We analyzed the regulatory mechanism of CPC transcription. Deletion analyses of the CPC promoter revealed that hairless cell-specific transcription of the CPC gene required a 69 bp sequence, and a tandem repeat of this region was sufficient for its expression in epidermis. This region includes two MYB-binding sites, and the epidermis-specific transcription of CPC was abolished when base substitutions were introduced in these sites. We showed by gel mobility shift experiments and by yeast one-hybrid assay that WEREWOLF (WER), which is an R2R3-type MYB protein, directly binds to this region. We showed that WER also binds to the GL2 promoter region, indicating that WER directly regulates CPC and GL2 transcription by binding to their promoter regions.

  17. Composition and antimicrobial activity of fatty acids detected in the hygroscopic secretion collected from the secretory setae of larvae of the biting midge Forcipomyia nigra (Diptera: Ceratopogonidae).

    PubMed

    Urbanek, Aleksandra; Szadziewski, Ryszard; Stepnowski, Piotr; Boros-Majewska, Joanna; Gabriel, Iwona; Dawgul, Małgorzata; Kamysz, Wojciech; Sosnowska, Danuta; Gołębiowski, Marek

    2012-09-01

    The hygroscopic secretion produced by the secretory setae of terrestrial larvae of the biting midge Forcipomyia nigra (Winnertz) was analysed using gas chromatography coupled with mass spectrometry (GC-MS). The viscous secretion is stored at the top of each seta and absorbs water from moist air. GC-MS analyses (four independent tests) showed that the secretion contained 12 free fatty acids, the most abundant of which were oleic (18:1), palmitic (16:0), palmitoleic (16:1) and linoleic (18:2). Other acids identified were valeric (5:0), enanthic (7:0), caprylic (8:0), pelargonic (9:0), capric (10:0), lauric (12:0), myristic (14:0) and stearic (18:0). Two other compounds, glycerol and pyroglutamic acid, were also found. The antibacterial activity of the fatty acids and pyroglutamic acid was tested using the agar disc diffusion method and targeted Gram positive (Bacillus cereus, Bacillus subtilis, Enterococcus faecalis) and Gram negative bacterial strains (Citrobacter freundii, Pseudomonas aeruginosa, Pseudomonas fluorescens). The antifungal activity was tested by determining minimal inhibitory concentration (MIC) of examined compounds. Fatty acids were tested against enthomopathogenic fungi (Paecilomyces lilacinus, Paecilomyces fumosoroseus, Lecanicillium lecanii, Metarhizium anisopliae, Beauveria bassiana (Tve-N39), Beauveria bassiana (Dv-1/07)). The most effective acids against bacterial and fungal growth were C(9:0), C(10:0) and C(16:1), whereas C(14:0), C(16:0,) C(18:0) and C(18:1) demonstrated rather poor antifungal activity and did not inhibit the growth of bacteria. The antimicrobial assay investigated mixtures of fatty and pyroglutamic acids (corresponding to the results of each GC-MS test): they were found to be active against almost all the bacteria except P. fluorescens and also demonstrated certain fungistatic activity against enthomopathogenic fungi. The hygroscopic secretion facilitates cuticular respiration and plays an important role in the

  18. CAPRICE98: a balloon-borne magnetic spectrometer equipped with a gas RICH and a silicon calorimeter to study cosmic rays

    NASA Astrophysics Data System (ADS)

    Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bidoli, V.; Boezio, M.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C.; De Pascale, M. P.; Finetti, N.; Francke, T.; Grinstein, S.; Hof, M.; Khalchukov, F.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Simon, M.; Schiavon, P.; Sparvoli, R.; Spillantini, P.; Stochaj, S. J.; Streitmatter, R. E.; Stephens, S. A.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N.

    2001-04-01

    CAPRICE98 is a superconducting magnetic spectrometer, equipped with a gas RICH and a silicon calorimeter, launched from Ft. Sumner (USA), on the 28th of May 1998, by the WiZard collaboration. For the first time a gas RICH detector flew together with a silicon electromagnetic calorimeter, allowing mass resolved antiprotons, with E>18 GeV, to be detected. The detector configuration was completed by a time of flight for particle identification, and a set of three drift chambers for rigidity measurement. The science objectives are the study of antimatter in cosmic rays and the cosmic ray composition in the atmosphere with special focus on muons.

  19. Arabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) Control Tomato (Solanum lycopersicum) Anthocyanin Biosynthesis

    PubMed Central

    Wada, Takuji; Kunihiro, Asuka; Tominaga-Wada, Rumi

    2014-01-01

    In Arabidopsis thaliana the MYB transcription factor CAPRICE (CPC) and the bHLH transcription factor GLABRA3 (GL3) are central regulators of root-hair differentiation and trichome initiation. By transforming the orthologous tomato genes SlTRY (CPC) and SlGL3 (GL3) into Arabidopsis, we demonstrated that these genes influence epidermal cell differentiation in Arabidopsis, suggesting that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation. CPC and GL3 are also known to be involved in anthocyanin biosynthesis. After transformation into tomato, 35S::CPC inhibited anthocyanin accumulation, whereas GL3::GL3 enhanced anthocyanin accumulation. Real-time reverse transcription PCR analyses showed that the expression of anthocyanin biosynthetic genes including Phe-ammonia lyase (PAL), the flavonoid pathway genes chalcone synthase (CHS), dihydroflavonol reductase (DFR), and anthocyanidin synthase (ANS) were repressed in 35S::CPC tomato. In contrast, the expression levels of PAL, CHS, DFR, and ANS were significantly higher in GL3::GL3 tomato compared with control plants. These results suggest that CPC and GL3 also influence anthocyanin pigment synthesis in tomato. PMID:25268379

  20. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.

    PubMed

    Nobmann, Patricia; Smith, Aoife; Dunne, Julie; Henehan, Gary; Bourke, Paula

    2009-01-15

    Novel mono-substituted carbohydrate fatty acid (CFA) esters and ethers were investigated for their antibacterial activity against a range of pathogenic and spoilage bacteria focussing on Listeria monocytogenes. Carbohydrate derivatives with structural differences enable comparative studies on the structure/activity relationship for antimicrobial efficacy and mechanism of action. The antimicrobial efficacy of the synthesized compounds was compared with commercially available compounds such as monolaurin and monocaprylin, as well as the pure free fatty acids, lauric acid and caprylic acid, which have proven antimicrobial activity. Compound efficacy was compared using an absorbance based broth microdilution assay to determine the minimum inhibitory concentration (MIC), increase in lag phase and decrease in maximum growth rate. Among the carbohydrate derivatives synthesized, lauric ether of methyl alpha-d-glucopyranoside and lauric ester of methyl alpha-d-mannopyranoside showed the highest growth-inhibitory effect with MIC values of 0.04 mM, comparable to monolaurin. CFA derivatives were generally more active against Gram positive bacteria than Gram negative bacteria. The analysis of both ester and ether fatty acid derivatives of the same carbohydrate, in tandem with alpha and beta configuration of the carbohydrate moiety suggest that the carbohydrate moiety is involved in the antimicrobial activity of the fatty acid derivatives and that the nature of the bond also has a significant effect on efficacy, which requires further investigation. This class of CFA derivatives has great potential for developing antibacterial agents relevant to the food industry, particularly for control of Listeria or other Gram-positive pathogens.

  1. Blend-modification of soy protein/lauric acid edible films using polysaccharides.

    PubMed

    Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu

    2014-05-15

    Different types of polysaccharides (propyleneglycol alginate (PGA), pectin, carrageenan and aloe polysaccharide) were incorporated into soy protein isolate (SPI)/lauric acid (La) films using a co-drying process or by direct addition to form biodegradable composite films with modified water vapour permeability (WVP) and mechanical properties. The WVP of SPI/La/polysaccharide films decreased when polysaccharides were added using the co-drying process, regardless of the type of polysaccharide. The tensile strength of SPI/La film was increased by the addition of polysaccharides, and the percentage elongation at break was increased by incorporating PGA using the co-drying process. Regarding oxygen-barrier performance, no notable differences were observed between the SPI/La and SPI/La/polysaccharide films. The most significant improvement was observed by blending PGA, with the co-dried preparation exhibiting better properties than the direct-addition preparation. Scanning electron microscopy (SEM) revealed that the microstructures of the films are the basis for the differences in the barrier and mechanical properties of the modified blends of SPI, polysaccharides and La. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Nanoemulsions of thymol and eugenol co-emulsified by lauric arginate and lecithin.

    PubMed

    Ma, Qiumin; Davidson, P Michael; Zhong, Qixin

    2016-09-01

    Lauric arginate (LAE) is a cationic surfactant with excellent antimicrobial activities. To incorporate essential oil components (EOCs) in aqueous systems, properties of EOC nanoemulsions prepared with a LAE and lecithin mixture were studied. The LAE-lecithin mixture resulted in stable translucent nanoemulsions of thymol and eugenol with spherical droplets smaller than 100nm, contrasting with the turbid emulsions prepared with individual emulsifiers. Zeta-potential data suggested the formation of LAE-lecithin complexes probably through hydrophobic interaction. Negligible difference was observed for antimicrobial activities of nanoemulsions and LAE in tryptic soy broth. In 2% reduced fat milk, nanoemulsions showed similar antilisterial activities compared to free LAE in inhibiting Listeria monocytogenes, but was less effective against Escherichia coli O157:H7 than free LAE, which was correlated with the availability of LAE as observed in release kinetics. Therefore, mixing LAE with lecithin improved the physical properties of EOC nanoemulsions but did not improve antimicrobial activities, especially against Gram-negative bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Human plasma-derived immunoglobulin G fractionated by an aqueous two-phase system, caprylic acid precipitation, and membrane chromatography has a high purity level and is free of detectable in vitro thrombogenic activity.

    PubMed

    Vargas, M; Segura, Á; Wu, Y-W; Herrera, M; Chou, M-L; Villalta, M; León, G; Burnouf, T

    2015-02-01

    Instituto Clodomiro Picado has developed an immunoglobulin G (IgG) plasma fractionation process combining a polyethylene glycol/phosphate aqueous two-phase system (ATPS), caprylic acid precipitation and anion-exchange membrane chromatography. We evaluated the purity and in vitro thrombogenicity of such IgG, in line with current international requirements. Contributions of the different production steps to reduce thrombogenicity were assessed at 0·2 l-scale, and then the methodology was scaled-up to a 10 l-scale and final products (n = 3) were analysed. Purity, immunoglobulin composition, and subclass distribution were determined by electrophoretic and immunochemical methods. The in vitro thrombogenic potential was determined by a thrombin generation assay (TGA) using a Technothrombin fluorogenic substrate. Prekallikrein activator (PKA), plasmin, factor Xa, thrombin and thrombin-like activities were assessed using S-2302, S-2251, S-2222, S-2238 and S-2288 chromogenic substrates, respectively, and FXI by an ELISA. The thrombogenicity markers were reduced mostly during the ATPS step and were found to segregate mostly into the discarded liquid upper phase. The caprylic acid precipitation eliminated the residual procoagulant activity. The IgG preparations made from the 10 l-batches contained 100% gamma proteins, low residual IgA and undetectable IgM. The IgG subclass distribution was not substantially affected by the process. TGA and amidolytic activities revealed an undetectable in vitro thrombogenic risk and the absence of proteolytic enzymes in the final product. Fractionating human plasma by an ATPS combined with caprylic acid and membrane chromatography resulted in an IgG preparation of high purity and free of a detectable in vitro thrombogenic risk. © 2014 International Society of Blood Transfusion.

  4. Voriconazole-Loaded Nanostructured Lipid Carriers for Ocular Drug Delivery.

    PubMed

    Andrade, Lígia M; Rocha, Kamilla A D; De Sá, Fernando A P; Marreto, Ricardo N; Lima, Eliana M; Gratieri, Tais; Taveira, Stephânia F

    2016-06-01

    To design and evaluate the potential of a topical delivery system for ocular administration of voriconazole, based on cationic nanostructured lipid carriers (NLCs). NLC dispersions composed of glyceryl behenate/capric caprylic triglyceride, polysorbate 80, sorbitan trioleate, and cetylpyridinium chloride were obtained and characterized. Ex vivo permeations experiments were performed to evaluate their drug delivery potential. NLCs presented a mean diameter of 250.2 ± 03.1 nm, narrow polydispersity index (0.288 ± 0.03), positive zeta potential (31.22 ± 3.8 mV), and over 75% encapsulation efficiency. Ex vivo ocular experiments proved that NLCs were able to deliver therapeutically relevant drug amounts to the cornea after only 30 minutes (13.88 ± 0.24 μg/cm). The formulation was nonexpensive, easy to prepare, and composed of well-tolerated and accepted excipients. Further in vivo experiments are necessary to confirm the improved performance and tolerability of the formulation.

  5. Aversion of the cat to dietary medium-chain triglycerides and caprylic acid.

    PubMed

    MacDonald, M L; Rogers, Q R; Morris, J G

    1985-09-01

    Young, specific-pathogen-free cats were fed purified diets containing different sources of fat. Food intake was depressed and cats lost weight when the diet contained either hydrogenated coconut oil (HCO) or medium-chain triglycerides (MCT). With an MCT preparation enriched in 8:0 (MCT8), cats would not eat after first tasting the diet. When cats were offered a choice of two high-fat diets, they chose the basal diet over a diet containing 30% HCO, by a ratio of 4.5:1. Low levels of MCT8 (5% or 10% by weight) were also rejected, whereas cats did not reject 5% or 15% MCT12. Caprylic acid, at 0.1-1.0% of the diet, was rejected. In other studies, food intake and body weight decreased when HCO was added to a fat-free diet. Cats fed 25% or 35% HCO lost weight. When 5% safflower seed oil was added to the HCO diets, body weights and food intake improved, but were still less than optimal. These studies indicate that the food intake depression in cats fed dietary HCO and MCT is primarily a result of impalatability, and that the fatty acid moiety may be responsible for the aversion.

  6. Functional analysis of the epidermal-specific MYB genes CAPRICE and WEREWOLF in Arabidopsis.

    PubMed

    Tominaga, Rumi; Iwata, Mineko; Okada, Kiyotaka; Wada, Takuji

    2007-07-01

    Epidermis cell differentiation in Arabidopsis thaliana is a model system for understanding the developmental end state of plant cells. Two types of MYB transcription factors, R2R3-MYB and R3-MYB, are involved in cell fate determination. To examine the molecular basis of this process, we analyzed the functional relationship of the R2R3-type MYB gene WEREWOLF (WER) and the R3-type MYB gene CAPRICE (CPC). Chimeric constructs made from the R3 MYB regions of WER and CPC used in reciprocal complementation experiments showed that the CPC R3 region cannot functionally substitute for the WER R3 region in the differentiation of hairless cells. However, WER R3 can substantially substitute for CPC R3. There are no differences in yeast interaction assays of WER or WER chimera proteins with GLABRA3 (GL3) or ENHANCER OF GLABRA3 (EGL3). CPC and CPC chimera proteins also have similar activity in preventing GL3 WER and EGL3 WER interactions. Furthermore, we showed by gel mobility shift assays that WER chimera proteins do not bind to the GL2 promoter region. However, a CPC chimera protein, which harbors the WER R3 motif, still binds to the GL2 promoter region.

  7. Lauric Acid Accelerates Glycolytic Muscle Fiber Formation through TLR4 Signaling.

    PubMed

    Wang, Leshan; Luo, Lv; Zhao, Weijie; Yang, Kelin; Shu, Gang; Wang, Songbo; Gao, Ping; Zhu, Xiaotong; Xi, Qianyun; Zhang, Yongliang; Jiang, Qingyan; Wang, Lina

    2018-06-18

    Lauric acid (LA), which is the primary fatty acid in coconut oil, was reported to have many metabolic benefits. TLR4 is a common receptor of lipopolysaccharides and involved mainly in inflammation responses. Here, we focused on the effects of LA on skeletal muscle fiber types and metabolism. We found that 200 μM LA treatment in C2C12 or dietary supplementation of 1% LA increased MHCIIb protein expression and the proportion of type IIb muscle fibers from 0.452 ± 0.0165 to 0.572 ± 0.0153, increasing the mRNA expression of genes involved in glycolysis, such as HK2 and LDH2 (from 1.00 ± 0.110 to 1.35 ± 0.0843 and from 1.00 ± 0.123 to 1.71 ± 0.302 in vivo, respectively), decreasing the catalytic activity of lactate dehydrogenase (LDH), and transforming lactic acid to pyruvic acid. Furthermore, LA activated TLR4 signaling, and TLR4 knockdown reversed the effect of LA on muscle fiber type and glycolysis. Thus, we inferred that LA promoted glycolytic fiber formation through TLR4 signaling.

  8. Application of compound mixture of caprylic acid, iron and mannan oligosaccharide against Sparicotyle chrysophrii (Monogenea: Polyopisthocotylea) in gilthead sea bream, Sparus aurata.

    PubMed

    Rigos, George; Mladineo, Ivona; Nikoloudaki, Chrysa; Vrbatovic, Anamarija; Kogiannou, Dimitra

    2016-08-05

    We have evaluated the therapeutic effect of a compound mixture of caprylic acid (200 mg/kg fish), organic iron (0.2% of diet) and mannan oligosaccharide (0.4% of diet) in gilthead sea bream, Sparus aurata Linnaeus, infected with Sparicotyle chrysophrii Beneden et Hesse, 1863 in controlled conditions. One hundred and ten reared and S. chrysophrii-free fish (197 g) located in a cement tank were infected by the parasite two weeks following the addition of 150 S. chrysophrii-infected fish (70 g). Growth parameters and gill parasitic load were measured in treated against control fish after a ten-week-period. Differences in final weight, feed conversion ratio, specific growth rate and feed efficiency were not statistically significant between the experimental groups, suggesting no evident effect with respect to fish growth during the study period. Although the prevalence of S. chrysophrii was not affected by the mixture at the end of the experiment, the number of adults and larvae was significantly lower. The mean intensity encompassing the number of adults and larvae was 8.1 in treated vs 17.7 in control fish. Individual comparisons of gill arches showed that the preferred parasitism site for S. chrysophrii it the outermost or fourth gill arch, consistently apparent in fish fed the modified diet and in control fish. In conclusion, the combined application of caprylic acid, organic iron and mannan oligosaccharide can significantly affect the evolution of infection with S. chrysophrii in gilthead sea bream, being capable of reducing adult and larval stages of the monogenean. However, no difference in growth improvement was observed after the trial period, potentially leaving space for further optimisation of the added dietary compounds.

  9. Functional Analysis of the Epidermal-Specific MYB Genes CAPRICE and WEREWOLF in Arabidopsis[W

    PubMed Central

    Tominaga, Rumi; Iwata, Mineko; Okada, Kiyotaka; Wada, Takuji

    2007-01-01

    Epidermis cell differentiation in Arabidopsis thaliana is a model system for understanding the developmental end state of plant cells. Two types of MYB transcription factors, R2R3-MYB and R3-MYB, are involved in cell fate determination. To examine the molecular basis of this process, we analyzed the functional relationship of the R2R3-type MYB gene WEREWOLF (WER) and the R3-type MYB gene CAPRICE (CPC). Chimeric constructs made from the R3 MYB regions of WER and CPC used in reciprocal complementation experiments showed that the CPC R3 region cannot functionally substitute for the WER R3 region in the differentiation of hairless cells. However, WER R3 can substantially substitute for CPC R3. There are no differences in yeast interaction assays of WER or WER chimera proteins with GLABRA3 (GL3) or ENHANCER OF GLABRA3 (EGL3). CPC and CPC chimera proteins also have similar activity in preventing GL3 WER and EGL3 WER interactions. Furthermore, we showed by gel mobility shift assays that WER chimera proteins do not bind to the GL2 promoter region. However, a CPC chimera protein, which harbors the WER R3 motif, still binds to the GL2 promoter region. PMID:17644729

  10. Site-specific immunosuppression using a new formulation of topical cyclosporine A with polyethylene glycol-8 glyceryl caprylate/caprate.

    PubMed

    Tran, H S; Malli, D; Chrzanowski, F A; Puc, M M; Matthews, M S; Hewitt, C W

    1999-05-15

    Dermal application of immunosuppressants can be an effective means of achieving site-specific immunosuppression (SITE) on skin allografts in burn wound management and in the treatment of various immune skin disorders. We have previously reported success with topical cyclosporine A (tCsA) in the treatment of skin allograft rejection in rats. Using a new tCsA formulation with a penetration enhancer (PE), polyethylene glycol-8 (PEG-8) glyceryl caprylate/caprate (Labrasol, Gattefossé, St. Priest, France), in a trinary drug delivery system, we hypothesized that we would induce SITE and significantly delay rejection of dual skin allografts in rats. Dual rat skin allografts from Lewis x Brown-Norway (LBN) donors were grafted to Lewis (Lew) recipients. Experimental animals (EXP, n = 7) received a 10-day course of systemic cyclosporine (sCsA, 8 mg/kg/day) followed by topical application. One of the two allografts on each experimental animal received tCsA/PE application (5 mg/kg/day) until sacrifice (tCsA/PE-treated). The other allograft received vehicle only (vehicle-treated). Allogeneic controls (ALLO-CON, n = 9) received no sCsA or tCsA. First signs of rejection were determined based on the initial observation of erythema, hair loss, flakiness, and/or scabs. The mean time to rejection for ALLO-CON allografts was 6.3 +/- 0.7 days (t test, P = 0.0013); for vehicle-treated allografts, 12.3 +/- 3.8 days (paired t test, P = 0.0146); and for tCsA/PE-treated allografts, 25.6 +/- 5.4 days. The disparity of days to rejection between dual allografts in the ALLO-CON group was 0.0 +/- 0.0 day and that between the tCsA/PE- and vehicle-treated dual allografts was 13.3 +/- 3.9 days (t test, P = 0.0016). A new formulation of tCsA in a trinary drug delivery system is successful at delaying the onset of rejection in dual skin allografts in rats by SITE, and PEG-8 glyceryl caprylate/caprate may represent a potentially effective transdermal penetration enhancer. Copyright 1999 Academic

  11. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} andmore » a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.« less

  12. The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery.

    PubMed

    Jiang, Lijuan; Liang, Xin; Liu, Gan; Zhou, Yun; Ye, Xinyu; Chen, Xiuli; Miao, Qianwei; Gao, Li; Zhang, Xudong; Mei, Lin

    2018-11-01

    Protein nanocapsules have exhibited promising potential applications in the field of protein drug delivery. A major issue with various promising nano-sized biotherapeutics including protein nanocapsules is that owing to their particle size they are subject to cellular uptake via endocytosis, and become entrapped and then degraded within endolysosomes, which can significantly impair their therapeutic efficacy. In addition, many nano-sized biotherapeutics could be also sequestered by autophagosomes and degraded through the autolysosomal pathway. Thus, a limiting step in achieving an effective protein therapy is to facilitate the endosomal escape and auto-lysosomal escape to ensure cytosolic delivery of the protein drugs. Here, we prepared a protein nanocapsule based on BSA (nBSA) and the BSA nanocapsules modified with a bilayer of lauric acid (LA-nBSA) to investigate the escape effects from the endosome and autophagosome. The size distribution of nBSA and LA-nBSA analyzed using DLS presents a uniform diameter centered at 10 nm and 16 nm. The data also showed that FITC-labeled nBSA and LA-nBSA were taken up by the cells mainly through Arf-6-dependent endocytosis and Rab34-mediated macropinocytosis. In addition, LA-nBSA could efficiently escape from endosomal before the degradation in endo-lysosomes. Autophagy could also sequester the LA-nBSA through p62 autophagosome vesicles. These two types of nanocapsules underwent different intracellular destinies and lauric acid (LA) coating played a vital role in intracellular particle retention. In conclusion, the protein nanocapsules modified with LA could enhance the protein nanocapsules escape from intercellular trafficking vesicles, and protect the protein from degradation by the lysosomes.

  13. The cosmic-ray proton and helium spectra measured with the CAPRICE98 balloon experiment

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Bergström, D.; Carlson, P.; Francke, T.; Hansen, P.; Mocchiutti, E.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C. N.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Vannuccini, E.; Bartalucci, S.; Ricci, M.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Mitchell, J. W.; Ormes, J. F.; Stephens, S. A.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.

    2003-08-01

    A new measurement of the primary cosmic-ray proton and helium fluxes from 3 to 350 GeV was carried out by the balloon-borne CAPRICE experiment in 1998. This experimental setup combines different detector techniques and has excellent particle discrimination capabilities allowing clear particle identification. Our experiment has the capability to determine accurately detector selection efficiencies and systematic errors associated with them. Furthermore, it can check for the first time the energy determined by the magnet spectrometer by using the Cherenkov angle measured by the RICH detector well above 20 GeV n -1. The analysis of the primary proton and helium components is described here and the results are compared with other recent measurements using other magnet spectrometers. The observed energy spectra at the top of the atmosphere can be represented by (1.27±0.09)×10 4E-2.75±0.02 particles (m 2 GeV sr s) -1, where E is the kinetic energy in GeV, for protons between 20 and 350 GeV and (4.8±0.8)×10 2E-2.67±0.03 particles (m 2 GeV n -1 sr s) -1, where E is the kinetic energy in GeV per nucleon, for helium nuclei between 15 and 150 GeV n -1.

  14. Cell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE.

    PubMed

    Song, Sang-Kee; Ryu, Kook Hui; Kang, Yeon Hee; Song, Jae Hyo; Cho, Young-Hee; Yoo, Sang-Dong; Schiefelbein, John; Lee, Myeong Min

    2011-11-01

    The root hair and nonhair cells in the Arabidopsis (Arabidopsis thaliana) root epidermis are specified by a suite of transcriptional regulators. Two of these are WEREWOLF (WER) and CAPRICE (CPC), which encode MYB transcription factors that are required for promoting the nonhair cell fate and the hair cell fate, respectively. However, the precise function and relationship between these transcriptional regulators have not been fully defined experimentally. Here, we examine these issues by misexpressing the WER gene using the GAL4-upstream activation sequence transactivation system. We find that WER overexpression in the Arabidopsis root tip is sufficient to cause epidermal cells to adopt the nonhair cell fate through direct induction of GLABRA2 (GL2) gene expression. We also show that GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3), two closely related bHLH proteins, are required for the action of the overexpressed WER and that WER interacts with these bHLHs in plant cells. Furthermore, we find that CPC suppresses the WER overexpression phenotype quantitatively. These results show that WER acts together with GL3/EGL3 to induce GL2 expression and that WER and CPC compete with one another to define cell fates in the Arabidopsis root epidermis.

  15. Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals.

    PubMed

    Chu, Jacquelene; Cheng, Yu-Ling; Rao, A Venketeshwer; Nouraei, Mehdi; Zarate-Muñoz, Silvia; Acosta, Edgar J

    2014-08-25

    Lecithin-linker microemulsions are formulations produced with soybean lecithin in combination with a highly lipophilic (lipophilic linker) and highly hydrophilic (hydrophilic linkers) surfactant-like additives. In this work, lecithin-linker systems were formulated to produce self-emulsifying delivery systems for β-carotene and β-sitosterol. The concentration of the lipophilic linker, sorbitan monooleate, was adjusted to minimize the formation of liquid crystals. The concentration of hydrophilic linkers, decaglyceryl caprylate/caprate and PEG-6-caprylic/capric glycerides, was gradually increased (scanned) until single phase clear microemulsions were obtained. For these scans, the oil (ethyl caprate) to water ratio was set to 1. The single phase, clear microemulsions were diluted with fed-state simulated intestinal fluid (FeSSIF) and produced stable emulsions, with drop sizes close to 200 nm. Using pseudo-ternary phase diagrams to evaluate the process of dilution of microemulsion preconcentrates (mixtures of oil, lecithin and linkers with little or no water) with FeSSIF, it was determined that self-emulsifying systems are obtained when the early stages of the dilution produce single phase microemulsions. If liquid crystals or multiple phase systems are obtained during those early stages, then the emulsification yields unstable emulsions with large drop sizes. An in vitro permeability study conducted using a Flow-Thru Dialyzer revealed that stable emulsions with drop sizes of 150-300 nm produce large and irreversible permeation of β-carotene to sheep intestine. On the other hand, unstable emulsions produced without the linker combination separated in the dialyzer chamber. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Modeling the efficacy of triplet antimicrobial combinations: yeast suppression by lauric arginate, cinnamic acid, and sodium benzoate or potassium sorbate as a case study.

    PubMed

    Dai, Yumei; Normand, Mark D; Weiss, Jochen; Peleg, Micha

    2010-03-01

    The growth of four spoilage yeasts, Saccharomyces cerevisiae, Zygosaccharomyces bailii, Brettanomyces bruxellensis, and Brettanomyces naardenensis, was inhibited with three-agent (triplet) combinations of lauric arginate, cinnamic acid, and sodium benzoate or potassium sorbate. The inhibition efficacy was determined by monitoring the optical density of yeast cultures grown in microtiter plates for 7 days. The relationship between the optical density and the sodium benzoate and potassium sorbate concentrations followed a single-term exponential decay model. The critical effective concentration was defined as the concentration at which the optical density was 0.05, which became an efficacy criterion for the mixtures. Critical concentrations of sodium benzoate or potassium sorbate as a function of the lauric arginate and cinnamic acid concentrations were then fitted with an empirical model that mapped three-agent combinations of equal efficacy. The contours of this function are presented in tabulated form and as two- and three-dimensional plots. Triplet combinations were highly effective against all four spoilage yeasts at three practical pH levels, especially at pH 3.0. The triplet combinations were particularly effective for inhibiting growth of Z. bailii, and combinations containing potassium sorbate had synergistic activities. The equal efficacy concentration model also allowed tabulation of the cost of the various combinations of agents and identification of those most economically feasible.

  17. Thermal Characterization of Lauric-Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials.

    PubMed

    Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming

    2015-04-01

    The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG.

  18. Pathway of oral absorption of heparin with sodium N-[8-(2-hydroxybenzoyl)amino] caprylate.

    PubMed

    Malkov, Dmitry; Wang, Huai-Zhen; Dinh, Steven; Gomez-Orellana, Isabel

    2002-08-01

    The oral bioavailability of heparin is negligible. Recent studies, however, have shown that sodium N-[8-(2-hydroxybenzoyl) amino]caprylate (SNAC) and other N-acylated amino acids enable oral heparin absorption. To investigate the mechanism by which heparin crosses the intestinal epithelium in the presence of SNAC, we have used fluorescence microscopy to follow the transport of heparin across Caco-2 cell monolayers. The experiments were carried out on Caco-2 monolayers and Caco-2 cells grown to confluence on culture dishes, using different concentrations of SNAC. The localization of fluorescently labeled heparin was determined using epi-fluorescence and confocal microscopy. DNA dyes were used to determine the effect of SNAC on the plasma membrane integrity. F-actin was labeled with fluorescent phalloidin to investigate the stability of perijunctional actin rings in the presence of SNAC. Heparin was detected in the cytoplasm only after incubation of the cells with heparin and SNAC. No DNA staining was observed in cells incubated with a DNA dye in the presence of SNAC concentrations at which heparin transport occurred. In addition, no signs of actin redistribution or perijunctional ring disbandment were observed during the transport of heparin. The results indicate that SNAC enables heparin transport across Caco-2 monolayers via the transcellular pathway. Heparin transport in the presence of SNAC is selective and does not involve permeabilization of the plasma membrane or tight junction disruption.

  19. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI.

    PubMed

    Mascali, D; Celona, L; Maimone, F; Maeder, J; Castro, G; Romano, F P; Musumarra, A; Altana, C; Caliri, C; Torrisi, G; Neri, L; Gammino, S; Tinschert, K; Spaedtke, K P; Rossbach, J; Lang, R; Ciavola, G

    2014-02-01

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source - operating at GSI, Darmstadt - has been carried out. Two different detectors (a SDD - Silicon Drift Detector and a HpGe - hyper-pure Germanium detector) have been used to characterize the warm (2-30 keV) and hot (30-500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract the plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.

  20. Fatty acids and fat-soluble vitamins in ewe's milk predicted by near infrared reflectance spectroscopy. Determination of seasonality.

    PubMed

    Revilla, I; Escuredo, O; González-Martín, M I; Palacios, C

    2017-01-01

    The aim of the present work was to determine the fatty acid and fat-soluble vitamin composition and the season of ewe's milk production using NIR spectroscopy. 219 ewe's milk samples from different breeds and feeding regimes were taken each month over one year. Fatty acids were analyzed by gas chromatography, and retinol and α-, and γ-tocopherol by liquid chromatography. The results showed that the quantification was more accurate for the milk dried on paper, except for vitamins. Calibration statistical descriptors on milk dried on paper were good for capric, lauric, myristic, palmitoleic, stearic and oleic acids, and acceptable for caprilic, undecanoic, 9c, 11tCLA, ΣCLA, PUFA, ω3, ω6, retinol and α-tocopherol. The equations for the discrimination of seasonality was obtained using the partial least squares discriminant analysis (PLSDA) algorithm. 93% of winter samples and 89% of summer samples were correctly classified using the NIR spectra of milk dried on paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Potential use of caprylic acid in broiler chickens: effect on Salmonella enteritidis.

    PubMed

    Skřivanová, Eva; Hovorková, Petra; Čermák, Ladislav; Marounek, Milan

    2015-01-01

    The effect of dietary caprylic acid (CA) on Salmonella Enteritidis, as well as the surface treatment of chicken skin contaminated with Salmonella Enteritidis was evaluated. To evaluate the dietary effect of CA on Salmonella Enteritidis, the individually housed broiler chickens (n=48) were divided into 4 groups (positive control, negative control, 2.5 g/kg of CA in the feed, and 5 g/kg of CA in the feed). The feed of all groups, except the negative control, was artificially contaminated with Salmonella Enteritidis ATCC 13076 (10(7) colony-forming units/100 g of feed). Both concentrations of dietary CA significantly decreased counts of Salmonella Enteritidis in the crop and cecum of experimental chickens (p<0.05). The effect of CA in the crop contents was more pronounced than in the cecum. Surface treatment of chilled chicken halves with CA at 1.25 and 2.5 mg/mL significantly decreased Salmonella Enteritidis contamination of chicken skin (p<0.05). The sensory evaluation of the skin and meat showed that treatment of the skin with 1.25 mg/mL of CA worsened odor and appearance of the chicken skin, while sensory traits of chicken meat were not significantly affected. Taste and overall acceptability was not influenced by CA in both meat and skin. Treatment of the skin with 2.5 mg/mL of CA resulted in more pronounced changes of the skin odor and appearance. In conclusion, dietary CA reduced carriage of Salmonella Enteritidis in chickens, whereas surface-treatment reduced or eliminated Salmonella Enteritidis contamination in the processed bird.

  2. Ketogenic Medium Chain Triglycerides Increase Brain Energy Metabolism in Alzheimer's Disease.

    PubMed

    Croteau, Etienne; Castellano, Christian-Alexandre; Richard, Marie Anne; Fortier, Mélanie; Nugent, Scott; Lepage, Martin; Duchesne, Simon; Whittingstall, Kevin; Turcotte, Éric E; Bocti, Christian; Fülöp, Tamàs; Cunnane, Stephen C

    2018-06-09

    In Alzheimer's disease (AD), it is unknown whether the brain can utilize additional ketones as fuel when they are derived from a medium chain triglyceride (MCT) supplement. To assess whether brain ketone uptake in AD increases in response to MCT as it would in young healthy adults. Mild-moderate AD patients sequentially consumed 30 g/d of two different MCT supplements, both for one month: a mixture of caprylic (55%) and capric acids (35%) (n = 11), followed by a wash-out and then tricaprylin (95%; n = 6). Brain ketone (11C-acetoacetate) and glucose (FDG) uptake were quantified by PET before and after each MCT intervention. Brain ketone consumption doubled on both types of MCT supplement. The slope of the relationship between plasma ketones and brain ketone uptake was the same as in healthy young adults. Both types of MCT increased total brain energy metabolism by increasing ketone supply without affecting brain glucose utilization. Ketones from MCT compensate for the brain glucose deficit in AD in direct proportion to the level of plasma ketones achieved.

  3. Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study

    NASA Astrophysics Data System (ADS)

    dos Santos, Priscilla Pereira; Paese, Karina; Guterres, Silvia Stanisçuaski; Pohlmann, Adriana Raffin; Costa, Tania Hass; Jablonski, André; Flôres, Simone Hickmann; Rios, Alessandro de Oliveira

    2015-02-01

    The objective of this study was to develop lycopene-loaded lipid-core nanocapsules (Lyc-LNCs) by the interfacial deposition of preformed poly(ɛ-caprolactone) (PCL). Lyc extract (93.9 %) was obtained from tomatoes, and the organic phase was prepared with polymer (PCL), caprylic/capric triglycerides, sorbitan monostearate, and Lyc in a mixture of acetone and ethanol under magnetic stirring at 40 °C. The organic phase was injected into an aqueous phase containing polysorbate 80, and the suspension was concentrated under reduced pressure. The formulation with a Lyc concentration of 85 µg/mL was characterized in terms of size distribution, zeta potential, encapsulation efficiency, pH, viscosity, and color. The Lyc-LNC formulation presented stable values for the z-average (193 ± 4.7 nm) and zeta potential (-11.5 ± 0.40 mV). Despite the lower pH, Lyc content, and color change of the suspension, the nanocapsules showed satisfactory stability, presenting around 50 % Lyc content after 14 days of storage at room temperature (25 °C).

  4. Lauric fat cocoa butter replacer from krabok (irvingia malayana) seed fat and coconut oil.

    PubMed

    Sonwai, Sopark; Ornla-Ied, Pimwalan; Aneknun, Tanapa

    2015-01-01

    Lauric fat cocoa butter replacer (LCBR) was produced from a blend of krabok seed fat (KSF) and coconut oil (CO). Four fat blends with different ratios of KSF/CO (20/80, 40/60, 60/40 and 80/20 (%wt)), CO, KSF and a commercial LCBR (C-LCBR) were characterized using various techniques. It was found that blend 60/40 exhibited SFC curve and crystallization/melting behavior most similar to that of C-LCBR. The blend met the requirements to be considered as LCBR and has potential as an alternative to commercial LCBR that are being used nowadays and hence it was recommended as LCBR (called R-LCBR). The polymorphic behavior of both C-LCBR and R-LCBR was investigated and both fats displayed mainly short spacing pattern associated with β' polymorph, a required polymorph for LCBR. The compatibility between R-LCBR and CB was investigated by mixing the R-LCBR with CB in different proportions and softening due to the eutectic effect was observed in the mixed fats. This limits the proportion of CB and the R-LCBR in compound coatings to no more than 5% of CB in the total fat phase.

  5. Fractionation of equine antivenom using caprylic acid precipitation in combination with cationic ion-exchange chromatography.

    PubMed

    Raweerith, Rutai; Ratanabanangkoon, Kavi

    2003-11-01

    A combined process of caprylic acid (CA) precipitation and ion-exchange chromatography on SP-Sepharose was studied as a means to fractionate pepsin-digested horse antivenom F(ab')(2) antibody. In the CA precipitation, the optimal concentration for fractionation of F(ab')(2) from pepsin-digested horse plasma was 2%, in which 89.61% of F(ab')(2) antibody activity was recovered in the supernatant with 1.5-fold purification. A significant amount of pepsin was not precipitated and remained active under these conditions. An analytical cation exchanger Protein-Pak SP 8HR HPLC column was tested to establish optimal conditions for the effective separation of IgG, albumin, pepsin and CA from the F(ab')(2) product. From these results, the supernatant from CA precipitation of pepsin-digested plasma was subjected to a SP-Sepharose column chromatography using a linear salt gradient. With stepwise elution, a peak containing F(ab')(2) antibody could be obtained by elution with 0.25 M NaCl. The total recovery of antibody was 65.56% with 2.91-fold purification, which was higher than that achieved by ammonium sulfate precipitation. This process simultaneously and effectively removed residual pepsin, high molecular weight aggregates and CA in the final F(ab')(2) product, and should be suitable for large-scale fractionation of therapeutic equine antivenoms.

  6. Plasma capric acid concentrations in healthy subjects determined by high-performance liquid chromatography.

    PubMed

    Shrestha, Rojeet; Hui, Shu-Ping; Imai, Hiromitsu; Hashimoto, Satoru; Uemura, Naoto; Takeda, Seiji; Fuda, Hirotoshi; Suzuki, Akira; Yamaguchi, Satoshi; Hirano, Ken-Ichi; Chiba, Hitoshi

    2015-09-01

    Capric acid (FA10:0, decanoic acid) is a medium-chain fatty acid abundant in tropical oils such as coconut oil, whereas small amounts are present in milk of goat, cow, and human. Orally ingested FA10:0 is transported to the liver and quickly burnt within it. Only few reports are available for FA10:0 concentrations in human plasma. Fasting (n = 5, male/female = 3/2, age 31 ± 9.3 years old) and non-fasting (n = 106, male/female = 44/62, age 21.9 ± 3.2 years old) blood samples were collected from apparently healthy Japanese volunteers. The total FA10:0 in the plasma were measured by high-performance liquid chromatography after derivatization with 2-nitrophenylhydrazine followed by UV detection. Inter and intra-assay coefficient of variation of FA10:0 assay at three different concentrations ranged in 1.7-3.9 and 1.3-5.4%, respectively, with an analytical recovery of 95.2-104.0%. FA10:0 concentration was below detection limit (0.1 µmol/L) in each fasting human plasma. FA10:0 was not detected in 50 (47.2%) of 106 non-fasting blood samples, while 29 (27.4%) plasma samples contained FA10:0 less than or equal to 0.5 µmol/L (0.4 ± 0.1), and 27 (25.5%) contained it at more than 0.5 µmol/L (0.9 ± 0.3). A half of the non-fasting plasma samples contained detectable FA10:0. This simple, precise, and accurate high-performance liquid chromatography method might be useful for monitoring plasma FA10:0 during medium-chain triglycerides therapy. © The Author(s) 2015.

  7. X-ray spectroscopy of warm and hot electron components in the CAPRICE source plasma at EIS testbench at GSI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascali, D., E-mail: davidmascali@lns.infn.it; Celona, L.; Castro, G.

    2014-02-15

    An experimental campaign aiming to detect X radiation emitted by the plasma of the CAPRICE source – operating at GSI, Darmstadt – has been carried out. Two different detectors (a SDD – Silicon Drift Detector and a HpGe – hyper-pure Germanium detector) have been used to characterize the warm (2–30 keV) and hot (30–500 keV) electrons in the plasma, collecting the emission intensity and the energy spectra for different pumping wave frequencies and then correlating them with the CSD of the extracted beam measured by means of a bending magnet. A plasma emissivity model has been used to extract themore » plasma density along the cone of sight of the SDD and HpGe detectors, which have been placed beyond specific collimators developed on purpose. Results show that the tuning of the pumping frequency considerably modifies the plasma density especially in the warm electron population domain, which is the component responsible for ionization processes: a strong variation of the plasma density near axis region has been detected. Potential correlations with the charge state distribution in the plasma are explored.« less

  8. Effects of feeding lauric acid or coconut oil on ruminal protozoa numbers, fermentation pattern, digestion, omasal nutrient flow, and milk production in dairy cows.

    PubMed

    Faciola, A P; Broderick, G A

    2014-01-01

    The objectives of this study were to evaluate the feeding of coconut oil (CO), in which lauric acid (La) comprises about 50% of the fatty acid composition, as a practical rumen protozoa (RP) suppressing agent, to assess whether the source of La affects ruminal fermentation and animal performance and to test whether suppressing RP improves N utilization, nutrient digestion, nutrient flow at the omasal canal, and milk production. Fifteen multiparous Holstein cows (3 fitted with ruminal cannulas) and 15 primiparous Holstein cows (3 fitted with ruminal cannulas) were used in a replicated 3×3 Latin square experiment with 14d of adaptation and 14d of sample collection. Diets were fed as total mixed ration and contained (dry matter basis) 10% corn silage, 50% alfalfa silage, and 40% concentrate. The control diet contained 3% (dry matter basis) calcium soaps of palm oil fatty acids (Megalac, Church & Dwight Co. Inc., Princeton, NJ) as a ruminally inert fat source and had no added La or CO. Diets with La and CO were formulated to contain equal amounts of La (1.3%, dry matter basis). Dry matter intake was not affected by treatment. Both CO and La reduced RP numbers by about 40%. Lauric acid reduced yield of milk and milk components; however, CO did not affect yield of milk and yields of milk components. Both La and CO caused small reductions in total VFA concentration; CO increased molar proportion of ruminal propionate, reduced ruminal ammonia and branched-chain volatile fatty acids, suggesting reduced protein degradation, and reduced milk urea N and blood urea N concentrations, suggesting improved protein efficiency. Lauric acid reduced total-tract apparent digestibility of neutral detergent fiber and acid detergent fiber as well as ruminal apparent digestibility of neutral detergent fiber and acid detergent fiber as measured at the omasal canal; however, CO did not alter fiber digestion. Microbial protein flow at the omasal canal, as well as the flow of N fractions at

  9. Cell Fate in the Arabidopsis Root Epidermis Is Determined by Competition between WEREWOLF and CAPRICE1[C][W

    PubMed Central

    Song, Sang-Kee; Ryu, Kook Hui; Kang, Yeon Hee; Song, Jae Hyo; Cho, Young-Hee; Yoo, Sang-Dong; Schiefelbein, John; Lee, Myeong Min

    2011-01-01

    The root hair and nonhair cells in the Arabidopsis (Arabidopsis thaliana) root epidermis are specified by a suite of transcriptional regulators. Two of these are WEREWOLF (WER) and CAPRICE (CPC), which encode MYB transcription factors that are required for promoting the nonhair cell fate and the hair cell fate, respectively. However, the precise function and relationship between these transcriptional regulators have not been fully defined experimentally. Here, we examine these issues by misexpressing the WER gene using the GAL4-upstream activation sequence transactivation system. We find that WER overexpression in the Arabidopsis root tip is sufficient to cause epidermal cells to adopt the nonhair cell fate through direct induction of GLABRA2 (GL2) gene expression. We also show that GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3), two closely related bHLH proteins, are required for the action of the overexpressed WER and that WER interacts with these bHLHs in plant cells. Furthermore, we find that CPC suppresses the WER overexpression phenotype quantitatively. These results show that WER acts together with GL3/EGL3 to induce GL2 expression and that WER and CPC compete with one another to define cell fates in the Arabidopsis root epidermis. PMID:21914815

  10. Diacylglycerol-enriched structured lipids containing CLA and capric acid alter body fat mass and lipid metabolism in rats.

    PubMed

    Kim, Hye-Jin; Lee, Ki-Teak; Lee, Mi-Kyung; Jeon, Seon-Min; Choi, Myung-Sook

    2006-01-01

    The present study compared the effect of corn oil, diacylglycerol (DG) oil, and DG-enriched structured lipids (SL-DG) produced from corn oil, capric and conjugated linoleic acid on adiposity in rats fed an AIN-76 diet (5% fat) for 6 weeks. The plasma and hepatic lipids, adipose tissue weight, and enzyme activities related to fatty acid metabolism were determined. The weights of the epididymal white adipose tissue (WAT), perirenal WAT, and interscapular WAT were significantly lower in the SL-DG group than in the DG group. Reduction of fat mass in the SL-DG group was related to suppressing fatty acid synthase activities and enhancing beta-oxidation activity in perirenal WAT. The plasma leptin was lower in the SL-DG group than in the DG group, plus a lower plasma TG level was accompanied by an increase in adipocyte LPL activity. Meanwhile the SL-DG supplement lowered the plasma and hepatic cholesterol level. In addition, the hepatic HMG-CoA reductase and ACAT activities were significantly lower in the SL-DG group than in the other groups. The DG-enriched SL used in this study was effective in enhancing triglyceride metabolism in adipose tissue, especially as regards reducing the abdominal fat mass and cholesterol metabolism in the liver. Copyright 2006 S. Karger AG, Basel.

  11. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials.

    PubMed

    Feng, Yanhui; Wei, Runzhi; Huang, Zhi; Zhang, Xinxin; Wang, Ge

    2018-03-14

    Carbon nanotubes (CNTs) filled with lauric acid (LA) as a kind of shape-stabilized phase change material were prepared and their structures and phase change properties were characterized. The results showed that the melting point and latent heat of LA confined in carbon nanotubes were lower than those of the bulk material, and both decrease as the diameters of CNTs and the filling ratios of LA decrease. Molecular dynamics (MD) simulations indicated that LA molecules form a liquid layer near pore walls and crystallize at the pore center. When the LA filling ratio was reduced to a certain value, all LA molecules were attached to the inner walls of CNTs, hindering their crystallization. A linear relationship between the melting temperature shift and structural properties was obtained based on the modified Gibbs-Thomson equation, which gives a reliable interpretation of the size effect of nanochannels in phase change materials. We also found that the thermal conductivity of the composite CNTs/LA was four times larger than that of pure LA. This study will provide insights into the design of novel composite phase change materials with better thermal properties by the selection of suitable porous materials and tailoring their pore structures.

  12. Effect of chitosan-carvacrol coating on the quality of Pacific white shrimp during iced storage as affected by caprylic acid.

    PubMed

    Wang, Qianyun; Lei, Jun; Ma, Junjie; Yuan, Gaofeng; Sun, Haiyan

    2018-01-01

    This study aimed to investigate the effect of chitosan-carvacrol coating with or without caprylic acid (CAP) on the quality of Pacific white shrimp (Litopenaeus vannamei) during 10days of iced storage. The result showed that chitosan-carvacrol coating significantly inhibited the increase in total aerobic plate count (TPC), pH and total volatile basic nitrogen content (TVB-N) of shrimp in comparison with the control. Chitosan-carvacrol coating also delayed the melanosis formation and changes of ΔE values, and improved the texture and sensory properties of shrimp. Moreover, incorporation of CAP potentiated the efficacy of chitosan-carvacrol coating in retarding the increase of TPC and TVB-N. Incorporation of CAP into chitosan-carvacrol coating also enabled the texture characteristics of shrimp to be retained greater degrees. These results suggested that chitosan-carvacrol coating may be promising to be used as active packaging for extending the shelf life, and incorporation of CAP may enhance the efficacy of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate).

    PubMed

    Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian

    2015-04-01

    The influence of a cationic surfactant (lauric arginate, LAE) on the physical properties and antimicrobial efficacy of thyme oil nanoemulsions was investigated. Nanoemulsions prepared from pure thyme oil were highly unstable due to Ostwald ripening, but they could be stabilized by adding a ripening inhibitor (corn oil) to the oil phase prior to homogenisation. The loading capacity and antimicrobial efficacy of thyme oil nanoemulsions were significantly increased by adding LAE. In the absence of LAE, at least 60 wt% corn oil had to be added to the lipid phase to inhibit Ostwald ripening; but in the presence of 0.1 wt% LAE, only 30 wt% corn oil was needed. LAE addition substantially increased the antimicrobial efficacy of the thyme oil nanoemulsions: 200 μg/ml thyme oil was needed to inhibit growth of a spoilage yeast (Zygosaccharomyces bailii) if LAE was added, whereas ⩾ 400 μg/ml was needed in the absence of LAE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel.

    PubMed

    Li, Y; Zhang, P; Cai, W; Rosenblatt, J S; Raad, I I; Xu, D; Gu, T

    2016-02-01

    Microbiologically influenced corrosion (MIC), also known as biocorrosion, is caused by corrosive biofilms. MIC is a growing problem, especially in the oil and gas industry. Among various corrosive microbes, sulfate reducing bacteria (SRB) are often the leading culprit. Biofilm mitigation is the key to MIC mitigation. Biocide applications against biofilms promote resistance over time. Thus, it is imperative to develop new biodegradable and cost-effective biocides for large-scale field applications. Using the corrosive Desulfovibrio vulgaris (an SRB) biofilm as a model biofilm, this work demonstrated that a cocktail of glyceryl trinitrate (GTN) and caprylic acid (CA) was very effective for biofilm prevention and mitigation of established biofilms on C1018 carbon steel coupons. The most probable number sessile cell count data and confocal laser scanning microscope biofilm images proved that the biocide cocktail of 25 ppm (w/w) GTN + 0.1% (w/w) CA successfully prevented the D. vulgaris biofilm establishment on C1018 carbon steel coupons while 100 ppm GTN + 0.1% CA effectively mitigated pre-established D. vulgaris biofilms on C1018 carbon steel coupons. In both cases, the cocktails were able to reduce the sessile cell count from 10(6) cells/cm(2) to an undetectable level.

  15. Altered concentrate to forage ratio in cows ration enhanced bioproduction of specific size subpopulation of milk fat globules.

    PubMed

    Mesilati-Stahy, Ronit; Moallem, Uzi; Magen, Yogev; Argov-Argaman, Nurit

    2015-07-15

    The mechanism underlying the shift in milk-fat-globule (MFG) mean diameter upon changing the concentrate-to-forage ratio in dairy cow rations was investigated. Cows were fed high-concentrate low-forage (HCLF) or high-forage low-concentrate (LCHF) rations for 4 weeks. Mean diameter of MFG, determined in raw whole milk, was 0.4 μm larger in the LCHF-fed vs. HCLF-fed group. The main compositional differences between treatments were found in a specific MFG subgroup with the diameter of 3.3 μm (F1), with higher capric, lauric, myristic and lower oleic acid concentrations in HCLF vs. LCHF milk. Similarly, lipid concentration differences between treatments were only found in F1, with higher triglyceride and phosphatidylethanolamine, and lower sphingomyelin concentrations in LCHF vs. HCLF milk. The higher MFG mean diameter in whole raw LCHF milk might therefore be attributed to increased secretion of F1-group MFG, while fat content and composition in the other MFG size groups remains unchanged. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The effectiveness of organic PCM based on lauric acid from coconut oil and inorganic PCM based on salt hydrate CaCl2.6H2o as latent heat energy storage system in Indonesia

    NASA Astrophysics Data System (ADS)

    U, Sri Rahayu A.; Putri, Widya A.; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    A latent heat energy storage system utilizing phase change materials (PCM) is an alternative strategy to reduce the use of Air Conditioning (AC) system in big cities in Indonesia in order for energy conservation in the future. In this research we used two kinds of materials, namely organic PCM based on lauric acid from coconut oil (CO) and inorganic PCM based on salt hydrate CaCl2.6H2O, because they have thermophysical parameters suitable for human's thermal comfort application in the building. The CO which contained more than 50% lauric acid has the melting temperature (Tm ) of about 26 °C and heat entalphy (ΔH) around 103 kJ/kg, while CaCl2.6H2O has the melting point of 29 °C and heat entalphy of 190 kJ/kg. In this paper we report the effectiveness of those two kinds of PCM in reducing the air temperature as one of some criteria for human's thermal comfort. The experiments were performed in a close and adiabatic room and the time-temperature measurements were done automatically using Arduino microcontroller and LM35 temperature sensor connected to the PC.

  17. Evaluation of the efficacy of four weak acids as antifungal preservatives in low-acid intermediate moisture model food systems.

    PubMed

    Huang, Yang; Wilson, Mark; Chapman, Belinda; Hocking, Ailsa D

    2010-02-01

    The potential efficacy of four weak acids as preservatives in low-acid intermediate moisture foods was assessed using a glycerol based agar medium. The minimum inhibitory concentrations (MIC, % wt./wt.) of each acid was determined at two pH values (pH 5.0, pH 6.0) and two a(w) values (0.85, 0.90) for five food spoilage fungi, Eurotium herbariorum, Eurotium rubrum, Aspergillus niger, Aspergillus flavus and Penicillium roqueforti. Sorbic acid, a preservative commonly used to control fungal growth in low-acid intermediate moisture foods, was included as a reference. The MIC values of the four acids were lower at pH 5.0 than pH 6.0 at equivalent a(w) values, and lower at 0.85 a(w) than 0.90 a(w) at equivalent pH values. By comparison with the MIC values of sorbic acid, those of caprylic acid and dehydroacetic acid were generally lower, whereas those for caproic acid were generally higher. No general observation could be made in the case of capric acid. The antifungal activities of all five weak acids appeared related not only to the undissociated form, but also the dissociated form, of each acid.

  18. A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis.

    PubMed

    Savage, Natasha Saint; Walker, Tom; Wieckowski, Yana; Schiefelbein, John; Dolan, Liam; Monk, Nicholas A M

    2008-09-23

    The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition.

  19. A Mutual Support Mechanism through Intercellular Movement of CAPRICE and GLABRA3 Can Pattern the Arabidopsis Root Epidermis

    PubMed Central

    Savage, Natasha Saint; Walker, Tom; Wieckowski, Yana; Schiefelbein, John; Dolan, Liam; Monk, Nicholas A. M

    2008-01-01

    The patterning of the Arabidopsis root epidermis depends on a genetic regulatory network that operates both within and between cells. Genetic studies have identified a number of key components of this network, but a clear picture of the functional logic of the network is lacking. Here, we integrate existing genetic and biochemical data in a mathematical model that allows us to explore both the sufficiency of known network interactions and the extent to which additional assumptions about the model can account for wild-type and mutant data. Our model shows that an existing hypothesis concerning the autoregulation of WEREWOLF does not account fully for the expression patterns of components of the network. We confirm the lack of WEREWOLF autoregulation experimentally in transgenic plants. Rather, our modelling suggests that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells. Our combined modelling and experimental studies show that WEREWOLF autoregulation does not contribute to the initial patterning of epidermal cell fates in the Arabidopsis seedling root. In contrast to a patterning mechanism relying on local activation, we propose a mechanism based on lateral inhibition with feedback. The active intercellular movements of proteins that are central to our model underlie a mechanism for pattern formation in planar groups of cells that is centred on the mutual support of two cell fates rather than on local activation and lateral inhibition. PMID:18816165

  20. Antibacterial efficacy of triple-layered poly(lactic-co-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria.

    PubMed

    Saarani, Nur Najiha; Jamuna-Thevi, Kalitheerta; Shahab, Neelam; Hermawan, Hendra; Saidin, Syafiqah

    2017-05-31

    A guided bone regeneration (GBR) membrane has been extensively used in the repair and regeneration of damaged periodontal tissues. One of the main challenges of GBR restoration is bacterial colonization on the membrane, constitutes to premature membrane degradation. Therefore, the purpose of this study was to investigate the antibacterial efficacy of triple-layered GBR membrane composed of poly(lactic-co-glycolic acid) (PLGA), nanoapatite (NAp) and lauric acid (LA) with two types of Gram-negative periodontal bacteria, Fusobacterium nucleatum and Porphyromonas gingivalis through a disc diffusion and bacterial count tests. The membranes exhibited a pattern of growth inhibition and killing effect against both bacteria. The increase in LA concentration tended to increase the bactericidal activities which indicated by higher diameter of inhibition zone and higher antibacterial percentage. It is shown that the incorporation of LA into the GBR membrane has retarded the growth and proliferation of Gram-negative periodontal bacteria for the treatment of periodontal disease.

  1. Nuclear Trapping Controls the Position-Dependent Localization of CAPRICE in the Root Epidermis of Arabidopsis1[C][W

    PubMed Central

    Kang, Yeon Hee; Song, Sang-Kee; Schiefelbein, John; Lee, Myeong Min

    2013-01-01

    Cell fate determination and differentiation are central processes in the development of multicellular organisms, and the Arabidopsis (Arabidopsis thaliana) root epidermis provides a model system to study the molecular basis of these processes. A lateral inhibition mechanism mediated by an R3 single-repeat MYB protein, CAPRICE (CPC), has been proposed to explain the specification of the two types of root epidermal cells (hair cells and nonhair cells). However, it is not clear how CPC acts preferentially in the H-position cells, rather than the N-position cells, where its gene is expressed. To explore this issue, we examined the effect of misexpressed CPC on cell fate specification and CPC localization in the root epidermis. We show that CPC is able to move readily within the root epidermis when its expression level is high and that CPC can induce the hair cell fate in a cell-autonomous manner. We provide evidence that CPC is capable of moving from the stele tissue in the center of the root to the outermost epidermal layer, where it can induce the hair cell fate. In addition, we show that CPC protein accumulates primarily in the nuclei of H-position cells in the early meristematic region, and this localization requires the H-cell-expressed ENHANCER OF GLABRA3 (EGL3) basic helix-loop-helix transcription factor. These results suggest that cell-cell movement of CPC occurs readily within the meristematic region of the root and that EGL3 preferentially traps the CPC protein in the H-position cells of the epidermis. PMID:23832626

  2. Engineering Synergistically Active and Bioavailable Cost-effective Medicines for Neglected Tropical Diseases; The Role of Excipients.

    PubMed

    Serrano, Dolores R; Lalatsa, Aikaterini; Dea-Ayuela, M Auxiliadora

    2017-07-19

    Leishmaniasis is a neglected tropical disease responsible for the ninth largest disease burden in the world threatening 350 million people mostly in developing countries. The lack of efficacy, severe adverse effects, long duration, high cost and parenteral administration of the current therapies result in poor patient compliance and emergence of resistance. Leishmaniasis' unmet need for safer, affordable and more effective treatments is only partly addressed by today's global health product pipeline that focuses on products amenable to rapid clinical development, mainly by reformulating or repurposing existing drugs for new uses. Excipients are necessary for ensuring the stability and bioavailability of currently available antileishmaniasis drugs which in their majority are poorly soluble or have severe side-effects. Thus, selection of excipients that can ensure bioavailability and safety as well as elicit a synergistic effect against the Leishmania parasites without compromising safety will result in a more efficacious, safe and fast to market medicine. We have evaluated the in vitro activity of 30 commercially available generally regarded as safe (GRAS) excipients against different Leishmania spp., their cytotoxicity and potential use for inclusion in novel formulations. Amongst the tested excipients, the compounds with higher selectivity index were Eudragit E100 (cationic triblock copolymer of dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate), CTAB (cetyltrimethylammonium bromide, cationic), lauric acid, Labrasol(non-ionic, caprylocaproyl polyoxyl- 8 glycerides) and sodium deoxycholate. An ideal excipient need to possess amphiphilic nature with ionic/polar groups and possess a short or medium fatty acid chain such as lauric (C12), capric C10) or caprylicacid (C8). Inclusion of these excipients and identification of the optimal combination of drug and excipients would lead to a more effective and safer antileishmanial therapies

  3. Effect of Acrocomia aculeata Kernel Oil on Adiposity in Type 2 Diabetic Rats.

    PubMed

    Nunes, Ângela A; Buccini, Danieli F; Jaques, Jeandre A S; Portugal, Luciane C; Guimarães, Rita C A; Favaro, Simone P; Caldas, Ruy A; Carvalho, Cristiano M E

    2018-03-01

    The macauba palm (Acrocomia aculeata) is native of tropical America and is found mostly in the Cerrados and Pantanal biomes. The fruits provide an oily pulp, rich in long chain fatty acids, and a kernel that encompass more than 50% of lipids rich in medium chain fatty acids (MCFA). Based on biochemical and nutritional evidences MCFA is readily catabolized and can reduce body fat accumulation. In this study, an animal model was employed to evaluate the effect of Acrocomia aculeata kernel oil (AKO) on the blood glucose level and the fatty acid deposit in the epididymal adipose tissue. The A. aculeata kernel oil obtained by cold pressing presented suitable quality as edible oil. Its fatty acid profile indicates high concentration of MCFA, mainly lauric, capric and caprilic. Type 2 diabetic rats fed with that kernel oil showed reduction of blood glucose level in comparison with the diabetic control group. Acrocomia aculeata kernel oil showed hypoglycemic effect. A small fraction of total dietary medium chain fatty acid was accumulated in the epididymal adipose tissue of rats fed with AKO at both low and high doses and caprilic acid did not deposit at all.

  4. Comparison of the fatty acid composition of transitional and mature milk of mothers who delivered healthy full-term babies, preterm babies and full-term small for gestational age infants.

    PubMed

    Bobiński, R; Mikulska, M; Mojska, H; Simon, M

    2013-09-01

    The fatty acid (FA) composition of breast milk throughout the period of lactation is fairly well understood. What is not known, however, is the FA composition of breast milk at the interface of physiology and pathology of pregnancy. We therefore decided to analyse and compare the differences in the FA composition of transitional and mature milk of mothers who delivered small for gestational age (SGA) neonates born at term; infants delivered at 35-37 weeks of gestation, that is 'late preterm'; and that of mothers who gave birth to appropriate for gestational age neonates (AGA). The FAs were analysed by HPLC equipped with MS detector. We found differences in the percentage share of the studied FA pool regarding levels of capric, lauric and gadoleic acids. Comparing transitional and mature milk, the greatest diversity was seen in the group of mothers of AGA neonates and the least was noted in the group of mothers of SGA neonates. Both 'late prematurity' and reduced neonatal weight of children born at term affect the FA composition of breast milk. Even a small degree of fetal malformation alters the composition of breast milk, which is probably related to the child's needs and condition.

  5. Self-emulsifying excipient platform for improving technological properties of alginate-hydroxypropylcellulose pellets.

    PubMed

    Mannina, Paolo; Segale, Lorena; Giovannelli, Lorella; Bonda, Andrea Foglio; Pattarino, Franco

    2016-02-29

    In this work, alginate, alginate-pectin and alginate-hydroxypropylcellulose pellets were produced by ionotropic gelation and characterized. Ibuprofen was selected as model drug; it was suspended in the polymeric solution in crystalline form or dissolved in a self-emulsifying phase and then dispersed into the polymeric solution. The self-emulsifying excipient platform composed of Labrasol (PEG-8 caprylic/capric glycerides) and d-α-tocopherol polyethylene glycol 1000 succinate (TPGS), able to solubilize the drug was used to improve the technological and biopharmaceutical properties of the alginate pellets. The pellets had diameters between 1317 and 2026 μm and a high drug content (>51%). DSC analysis showed the amorphous state of drug in the pellets containing the self-emulsifying phase. All the systems restricted drug release in conditions simulating the gastric environment and made the drug completely available at a pH value typical for the intestine. Only alginate-HPC systems containing the drug solubilized into the self-emulsifying phase showed the ability to partially control the release of ibuprofen at neutral pH. The self-emulsifying excipient platform is a useful tool to improve technological and biopharmaceutical properties of alginate-HPC pellets. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Glycyrrhetinic Acid Liposomes Containing Mannose-Diester Lauric Diacid-Cholesterol Conjugate Synthesized by Lipase-Catalytic Acylation for Liver-Specific Delivery.

    PubMed

    Chen, Jing; Chen, Yuchao; Cheng, Yi; Gao, Youheng

    2017-09-24

    Mannose-diester lauric diacid-cholesterol (Man-DLD-Chol), as a liposomal target ligand, was synthesized by lipase catalyzed in a non-aqueous medium. Its chemical structure was confirmed by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Glycyrrhetinic acid (GA) liposomes containing Man-DLD-Chol (Man-DLD-Chol-GA-Lp) were prepared by the film-dispersion method. We evaluated the characterizations of liposomes, drug-release in vitro, the hemolytic test, cellular uptake, pharmacokinetics, and the tissue distributions. The cellular uptake in vitro suggested that the uptake of Man-DLD-Chol-modified liposomes was significantly higher than that of unmodified liposomes in HepG2 cells. Pharmacokinetic parameters indicated that Man-DLD-Chol-GA-Lp was eliminated more rapidly than GA-Lp. In tissue distributions, the targeting efficiency (Te) of Man-DLD-Chol-GA-Lp on liver was 54.67%, relative targeting efficiency (R Te ) was 3.39, relative uptake rate (Re) was 4.78, and peak concentration ratio (Ce) was 3.46. All these results supported the hypothesis that Man-DLD-Chol would be an efficient liposomal carrier, and demonstrated that Man-DLD-Chol-GA-Lp has potential as a drug delivery for liver-targeting therapy.

  7. Lauric Acid Stimulates Mammary Gland Development of Pubertal Mice through Activation of GPR84 and PI3K/Akt Signaling Pathway.

    PubMed

    Meng, Yingying; Zhang, Jing; Zhang, Fenglin; Ai, Wei; Zhu, Xiaotong; Shu, Gang; Wang, Lina; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Liang, Xingwei; Jiang, Qingyan; Wang, Songbo

    2017-01-11

    It has been demonstrated that dietary fat affects pubertal mammary gland development. However, the role of lauric acid (LA) in this process remains unclear. Thus, this study aimed to investigate the effects of LA on mammary gland development in pubertal mice and to explore the underlying mechanism. In vitro, 100 μM LA significantly promoted proliferation of mouse mammary epithelial cell line HC11 by regulating expression of proliferative markers (cyclin D1/3, p21, PCNA). Meanwhile, LA activated the G protein-coupled receptor 84 (GPR84) and PI3K/Akt signaling pathway. In agreement, dietary 1% LA enhanced mammary duct development, increased the expression of GPR84 and cyclin D1, and activated PI3K/Akt in mammary gland of pubertal mice. Furthermore, knockdown of GPR84 or inhibition of PI3K/Akt totally abolished the promotion of HC11 proliferation induced by LA. These results showed that LA stimulated mammary gland development of pubertal mice through activation of GPR84 and PI3K/Akt signaling pathway.

  8. An innovative method for analysis of Pb (II) in rice, milk and water samples based on TiO2 reinforced caprylic acid hollow fiber solid/liquid phase microextraction.

    PubMed

    Bahar, Shahriyar; Es'haghi, Zarrin; Nezhadali, Azizollah; Banaei, Alireza; Bohlooli, Shahab

    2017-04-15

    In the present study, nano-sized titanium oxides were applied for preconcentration and determination of Pb(II) in aqueous samples using hollow fiber based solid-liquid phase microextraction (HF-SLPME) combined with flame atomic absorption spectrometry (FAAS). In this work, the nanoparticles dispersed in caprylic acid as an extraction solvent was placed into a polypropylene porous hollow fiber segment supported by capillary forces and sonification. This membrane was in direct contact with solutions containing Pb (II). The effect of experimental conditions on the extraction, such as pH, stirring rate, sample volume, and extraction time were optimized. Under the optimal conditions, the performance of the proposed method was investigated for the determination of Pb (II) in food and water samples. The method was linear in the range of 0.6-3000μgmL -1 . The relative standard deviations and relative recovery of Pb (II) was 4.9% and 99.3%, respectively (n=5). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility

    PubMed Central

    Zaloga, Jan; Janko, Christina; Nowak, Johannes; Matuszak, Jasmin; Knaup, Sabine; Eberbeck, Dietmar; Tietze, Rainer; Unterweger, Harald; Friedrich, Ralf P; Duerr, Stephan; Heimke-Brinck, Ralph; Baum, Eva; Cicha, Iwona; Dörje, Frank; Odenbach, Stefan; Lyer, Stefan; Lee, Geoffrey; Alexiou, Christoph

    2014-01-01

    The promising potential of superparamagnetic iron oxide nanoparticles (SPIONs) in various nanomedical applications has been frequently reported. However, although many different synthesis methods, coatings, and functionalization techniques have been described, not many core-shell SPION drug delivery systems are available for clinicians at the moment. Here, bovine serum albumin was adsorbed onto lauric acid-stabilized SPIONs. The agglomeration behavior, zeta potential, and their dependence on the synthesis conditions were characterized with dynamic light scattering. The existence and composition of the core-shell-matrix structure was investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta potential measurements. We showed that the iron oxide cores form agglomerates in the range of 80 nm. Moreover, despite their remarkably low tendency to aggregate even in a complex media like whole blood, the SPIONs still maintained their magnetic properties and were well attractable with a magnet. The magnetic properties were quantified by vibrating sample magnetometry and a superconducting quantum interference device. Using flow cytometry, we further investigated the effects of the different types of nanoparticle coating on morphology, viability, and DNA integrity of Jurkat cells. We showed that by addition of bovine serum albumin, the toxicity of nanoparticles is greatly reduced. We also investigated the effect of the particles on the growth of primary human endothelial cells to further demonstrate the biocompatibility of the particles. As proof of principle, we showed that the hybrid-coated particles are able to carry payloads of up to 800 μg/mL of the cytostatic drug mitoxantrone while still staying colloidally stable. The drug-loaded system exhibited excellent therapeutic potential in vitro, exceeding that of free mitoxantrone. In conclusion, we have synthesized a biocompatible ferrofluid that shows great potential for clinical

  10. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    PubMed

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  11. Efficacy of ε-polylysine, lauric arginate, or acidic calcium sulfate applied sequentially for Salmonella reduction on membrane filters and chicken carcasses.

    PubMed

    Benli, Hakan; Sanchez-Plata, Marcos X; Keeton, Jimmy T

    2011-05-01

    Salmonella contamination continues to be one of the major concerns for the microbiological safety of raw poultry products. Application of more than one decontamination agent as a multihurdle intervention to carcasses in a processing line might produce greater reductions than one treatment alone due to different modes of action of individual antimicrobials. In this study, all possible two-way combinations and individual applications of ε-polylysine (EPL), lauric arginate (LAE), and acidic calcium sulfate (ACS) solutions were evaluated for their effects against Salmonella enterica serovars, including Enteritidis and Typhimurium, using a sterile membrane filter model system. The combinations that provided higher Salmonella reductions were further evaluated on inoculated chicken carcasses in various concentrations applied in a sequential manner. Sequential spray applications of 300 mg of EPL per liter followed by 30% ACS and of 200 mg of LAE per liter followed by 30% ACS produced the highest Salmonella reductions on inoculated chicken carcasses, by 2.1 and 2.2 log CFU/ml, respectively. Our results indicated that these sequential spray applications of decontamination agents are effective for decreasing Salmonella contamination on poultry carcasses, but further studies are needed to determine the effectiveness of these combinations over a storage period.

  12. Study of O/W micro- and nano-emulsions based on propylene glycol diester as a vehicle for geranic acid.

    PubMed

    Jaworska, Małgorzata; Sikora, Elżbieta; Ogonowski, Jan; Konieczna, Monika

    2015-01-01

    Nano- and microemulsions containing as the oil phase caprylic/capric propylene glycol diesters (Crodamol PC) were investigated as potential vehicle for controlled release of geranic acid. The influence of emulsifiers and co-surfactants on stability of the emulsions was investigated. Different kind of polysorbates (ethoxylated esters of sorbitan and fatty acids) were applied as the emulsifiers. The short-chain alcohols (ethanol, 1-propanol, 1-butanol) were used as co-surfactants. The emulsions were prepared at ambient temperature (25°C), by the phase inversion composition method (PIC). The stable O/W high dispersed emulsion systems based on Crodamol PC, of mean droplets size less than 200 nm, were prepared. Microemulsions stabilized by the mixture of Polisorbat 80 and 1-butanol were characterized by the largest degree of dispersion (137 nm) and the lowest PDI value (0.094), at surfactant/co-surfactant: oil weight ratio 90:10. The stable nano-emulsion (mean droplet size of 33 nm) was obtained for surfactant: oil (S:O) weight ratio 90:10, without co-surfactant addition. This nano-emulsion was chosen to release studies. The obtained results showed that the prepared stable nano-emulsion can be used as a carrier for controlled release of geranic acid. The active substance release from the nano-emulsion and the oil solution, after 24 hours was 22%.

  13. Optimized mixed oils remarkably reduce the amount of surfactants in microemulsions without affecting oral bioavailability of ibuprofen by simultaneously enlarging microemulsion areas and enhancing drug solubility.

    PubMed

    Chen, Yizhen; Tuo, Jue; Huang, Huizhi; Liu, Dan; You, Xiuhua; Mai, Jialuo; Song, Jiaqi; Xie, Yanqi; Wu, Chuanbin; Hu, Haiyan

    2015-06-20

    The toxicity and irritation associated with high amounts of surfactants restrict the extensive utilization of microemulsions. To address these shortcomings, employing mixed oils to enlarge microemulsion areas therefore reducing surfactant contents is a promising strategy. However, what kinds of mixed oils are more efficient in enlarging microemulsion areas still remains unclear. In this research, we found that the chain length and degree of unsaturation of oils play a key role in enlarging microemulsion areas. The combination of moderate chain saturated oil caprylic/capric triglyceride (GTCC) with long chain unsaturated oil glycerol trioleate significantly increased the microemulsion areas. Solubility of ibuprofen in the mixed oils was unexpectedly and remarkably increased (almost 300mg/mL) compared with that (around 100mg/mL) of the single oil (GTCC), which also resulted in greatly increased solubility of ibuprofen in mixed oils-containing microemulsions. By optimizing the mixed oil formulation, the absolute amount of surfactant in drug-loaded microemulsions was reduced but increased drug oral bioavailability in rats was maintained. It could be concluded that the combined use of moderate chain oils and long chain unsaturated oils could not only acquire enlarged microemulsion areas but also enhanced drug solubility, therefore doubly reducing surfactant amount, which is extremely beneficial for developing safe microemulsions. Copyright © 2015. Published by Elsevier B.V.

  14. Does Inhalation of Virgin Coconut Oil Accelerate Reversal of Airway Remodelling in an Allergic Model of Asthma?

    PubMed

    Kamalaldin, N A; Sulaiman, S A; Yusop, M R; Yahaya, B

    2017-01-01

    Many studies have been done to evaluate the effect of various natural products in controlling asthma symptoms. Virgin coconut oil (VCO) is known to contain active compounds that have beneficial effects on human health and diseases. The objective of this study was to evaluate the effect of VCO inhalation on airway remodelling in a rabbit model of allergic asthma. The effects of VCO inhalation on infiltration of airway inflammatory cells, airway structures, goblet cell hyperplasia, and cell proliferation following ovalbumin induction were evaluated. Allergic asthma was induced by a combination of ovalbumin and alum injection and/or followed by ovalbumin inhalation. The effect of VCO inhalation was then evaluated via the rescue or the preventive route. Percentage of inflammatory cells infiltration, thickness of epithelium and mucosa regions, and the numbers of goblet and proliferative cells were reduced in the rescue group but not in preventive group. Analysis using a gas chromatography-mass spectrometry found that lauric acid and capric acid were among the most abundant fatty acids present in the sample. Significant improvement was observed in rescue route in alleviating the asthma symptoms, which indicates the VCO was able to relieve asthma-related symptoms more than preventing the onset of asthma.

  15. Does Inhalation of Virgin Coconut Oil Accelerate Reversal of Airway Remodelling in an Allergic Model of Asthma?

    PubMed Central

    Sulaiman, S. A.

    2017-01-01

    Many studies have been done to evaluate the effect of various natural products in controlling asthma symptoms. Virgin coconut oil (VCO) is known to contain active compounds that have beneficial effects on human health and diseases. The objective of this study was to evaluate the effect of VCO inhalation on airway remodelling in a rabbit model of allergic asthma. The effects of VCO inhalation on infiltration of airway inflammatory cells, airway structures, goblet cell hyperplasia, and cell proliferation following ovalbumin induction were evaluated. Allergic asthma was induced by a combination of ovalbumin and alum injection and/or followed by ovalbumin inhalation. The effect of VCO inhalation was then evaluated via the rescue or the preventive route. Percentage of inflammatory cells infiltration, thickness of epithelium and mucosa regions, and the numbers of goblet and proliferative cells were reduced in the rescue group but not in preventive group. Analysis using a gas chromatography-mass spectrometry found that lauric acid and capric acid were among the most abundant fatty acids present in the sample. Significant improvement was observed in rescue route in alleviating the asthma symptoms, which indicates the VCO was able to relieve asthma-related symptoms more than preventing the onset of asthma. PMID:28660089

  16. Experimental investigation on the thermal performance of heat storage walls coupled with active solar systems

    NASA Astrophysics Data System (ADS)

    Zhao, Chunyu; You, Shijun; Zhu, Chunying; Yu, Wei

    2016-12-01

    This paper presents an experimental investigation of the performance of a system combining a low-temperature water wall radiant heating system and phase change energy storage technology with an active solar system. This system uses a thermal storage wall that is designed with multilayer thermal storage plates. The heat storage material is expanded graphite that absorbs a mixture of capric acid and lauric acid. An experiment is performed to study the actual effect. The following are studied under winter conditions: (1) the temperature of the radiation wall surface, (2) the melting status of the thermal storage material in the internal plate, (3) the density of the heat flux, and (4) the temperature distribution of the indoor space. The results reveal that the room temperature is controlled between 16 and 20 °C, and the thermal storage wall meets the heating and temperature requirements. The following are also studied under summer conditions: (1) the internal relationship between the indoor temperature distribution and the heat transfer within the regenerative plates during the day and (2) the relationship between the outlet air temperature and inlet air temperature in the thermal storage wall in cooling mode at night. The results indicate that the indoor temperature is approximately 27 °C, which satisfies the summer air-conditioning requirements.

  17. Estimate of colostral immunoglobulin G concentration using refractometry without or with caprylic acid fractionation.

    PubMed

    Morrill, K M; Conrad, E; Polo, J; Lago, A; Campbell, J; Quigley, J; Tyler, H

    2012-07-01

    Our objectives were to evaluate the use of refractometry as a means of estimating immunoglobulin G (IgG) concentration of bovine maternal colostrum (MC) and determine if fractionation of MC using caprylic acid (CA) improved estimates of IgG. Samples (n=85) of MC were collected from a single dairy in California and used to determine the method of CA fraction that produced the best prediction of IgG based on CA fractionation followed by refractometry. Subsequently, samples of MC (n=827) were collected from 67 farms in 12 states to compare refractometry with or without CA fractionation as methods to estimate IgG concentration. Samples were collected from the feeding pool and consisted of fresh (n=196), previously frozen (n=479), or refrigerated (n=152) MC. Samples were further classified by the number freeze-thaw cycles before analysis. Fractionation with CA was conducted by adding 1 mL of MC to a tube containing 75 μL of CA and 1 mL of 0.06 M acetic acid. The tube was shaken and allowed to react for 1 min. Refractive index of the IgG-rich supernatant (nDf) was determined using a digital refractometer. Whole, nonfractionated MC was analyzed for IgG by radial immunodiffusion (RID) and refractive index (nDw). The relationship between nDf and IgG (r=0.53; n=805) was weak, whereas that between nDw and IgG was stronger (r=0.73; n=823). Fresh samples analyzed by refractometry that subsequently went through 1 freeze-thaw cycle before RID analysis resulted in the strongest relationship between IgG and nDf or nDw (r=0.93 and 0.90, respectively). The MC samples collected fresh on the farm but frozen 2 or more times before analysis by refractometry or RID had low correlations between IgG and nDf and nDw (r=0.09 and 0.01). Samples refrigerated or frozen on the farm before analysis had weaker relationships between RID and nDf or nDw (r=0.38 to 0.80), regardless of the number of freeze-thaw cycles. Breed and lactation number did not affect the accuracy of either test. These

  18. Tacrolimus loaded biocompatible lecithin-based microemulsions with improved skin penetration: Structure characterization and in vitro/in vivo performances.

    PubMed

    Savić, Vedrana; Todosijević, Marija; Ilić, Tanja; Lukić, Milica; Mitsou, Evgenia; Papadimitriou, Vassiliki; Avramiotis, Spyridon; Marković, Bojan; Cekić, Nebojša; Savić, Snežana

    2017-08-30

    In order to improve skin penetration of tacrolimus we aimed to develop potentially non-irritant, lecithin-based microemulsions containing ethanol, isopropanol and/or propylene glycol as cosurfactants, varying caprylic/capric triglycerides and propylene glycol monocaprylate as oil phase. The influence of excipients on the size of microemulsion region in pseudo-ternary phase diagrams and their ability to form different types of microemulsions was evaluated. The comprehensive physicochemical characterization of microemulsions and the evaluation of their structure was performed, while the localization of tacrolimus in microemulsions was further investigated using electron paramagnetic resonance spectroscopy. Moreover, stability studies proved no change in tacrolimus content during one year of storage at room temperature. In addition, in vivo skin performance indicated no skin irritation potential of blank microemulsions, whereas in vitro release testing using Franz diffusion cells showed superior release rate of tacrolimus from microemulsions (0.98±0.10 and 0.92±0.11μg/cm 2 /h for two bicontinuous and 1.00±0.24μg/cm 2 /h for oil-in-water microemulsion) compared to referent Protopic ointment (0.15±0.08μg/cm 2 /h). Furthermore, ex vivo penetration assessed through porcine ear skin using tape stripping, confirmed superiority of two microemulsions related to the reference, implying developed microemulsions as promising carriers for dermal delivery of tacrolimus. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Characterisation and Skin Distribution of Lecithin-Based Coenzyme Q10-Loaded Lipid Nanocapsules

    NASA Astrophysics Data System (ADS)

    Zhou, Huafeng; Yue, Yang; Liu, Guanlan; Li, Yan; Zhang, Jing; Yan, Zemin; Duan, Mingxing

    2010-10-01

    The purpose of this study was to investigate the influence of the inner lipid ratio on the physicochemical properties and skin targeting of surfactant-free lecithin-based coenzyme Q10-loaded lipid nanocapsules (CoQ10-LNCs). The smaller particle size of CoQ10-LNCs was achieved by high pressure and a lower ratio of CoQ10/GTCC (Caprylic/capric triglyceride); however, the zeta potential of CoQ10-LNCs was above /- 60 mV/ with no distinct difference among them at different ratios of CoQ10/GTCC. Both the crystallisation point and the index decreased with the decreasing ratio of CoQ10/GTCC and smaller particle size; interestingly, the supercooled state of CoQ10-LNCs was observed at particle size below about 200 nm, as verified by differential scanning calorimetry (DSC) in one heating-cooling cycle. The lecithin monolayer sphere structure of CoQ10-LNCs was investigated by cryogenic transmission electron microscopy (Cryo-TEM). The skin penetration results revealed that the distribution of Nile red-loaded CoQ10-LNCs depended on the ratio of inner CoQ10/GTCC; moreover, epidermal targeting and superficial dermal targeting were achieved by the CoQ10-LNCs application. The highest fluorescence response was observed at a ratio of inner CoQ10/GTCC of 1:1. These observations suggest that lecithin-based LNCs could be used as a promising topical delivery vehicle for lipophilic compounds.

  20. Characterization of medium-chain triacylglycerol (MCT)-enriched seed oil from Cinnamomum camphora (Lauraceae) and its oxidative stability.

    PubMed

    Hu, Jiang-Ning; Zhang, Bing; Zhu, Xue-Mei; Li, Jing; Fan, Ya-Wei; Liu, Rong; Tang, Liang; Lee, Ki-Teak; Deng, Ze-Yuan

    2011-05-11

    Medium-chain triacylglycerol (MCT)-enriched oil was extracted by supercritical fluid extraction of carbon dioxide (SFE-CO(2)) from Cinnamomum camphora seeds. The SFE-CO(2) process was optimized using the Box-Behnken design (BBD). The maximum oil yield (42.82%) was obtained under the optimal SFE-CO(2) conditions: extraction pressure, 21.16 MPa; extraction temperature, 45.67 °C; and extraction time, 2.38 h. Subsequently, the physicochemical characteristics, fatty acid composition, triacylglycerol (TAG) composition, tocopherol content, and DSC profile as well as oxidative stabilities of C. camphora seed oil (CCSO) were studied. Results showed that CCSO contained two major medium-chain fatty acids, capric acid (53.27%) and lauric acid (39.93%). The predominant TAG species in CCSO was LaCC/CLaC (ECN 32, 79.29%). Meanwhile, it can be found that CCSO had much higher oxidative stabilities than coconut oil due to the higher content of tocopherols in CCSO (α-tocopherol, 8.67 ± 0.51 mg/100 g; γ-tocopherol, 22.6 ± 1.02 mg/100 g; δ-tocopherol, 8.38 ± 0.47 mg/100 g). Conclusively, CCSO with such a high level of MCTs and high oxidative stabilities could be potentially applied in special food for specific persons such as weak patients and overweight persons because oils enriched in MCTs can be rapidly absorbed into body to provide energy without fat accumulation.

  1. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis

    PubMed Central

    Huang, Jingyu; Lu, Shilei; Kong, Xiangfei; Liu, Shangbao; li, Yiran

    2013-01-01

    This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs), based on eutectic mixtures as phase change materials (PCMs) for thermal energy storage and high-density polyethylene (HDPE)-ethylene-vinyl acetate (EVA) polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD)–capric acid (CA), TD–lauric acid (LA), and TD–myristic acid (MA), which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC). The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD–CA PCM), 24.53 °C/24.92 °C (FS TD–LA PCM), and 33.15 °C/30.72 °C (FS TD–MA PCM), respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP). It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties. PMID:28788358

  2. Form-Stable Phase Change Materials Based on Eutectic Mixture of Tetradecanol and Fatty Acids for Building Energy Storage: Preparation and Performance Analysis.

    PubMed

    Huang, Jingyu; Lu, Shilei; Kong, Xiangfei; Liu, Shangbao; Li, Yiran

    2013-10-22

    This paper is focused on preparation and performance analysis of a series of form-stable phase change materials (FSPCMs), based on eutectic mixtures as phase change materials (PCMs) for thermal energy storage and high-density polyethylene (HDPE)-ethylene-vinyl acetate (EVA) polymer as supporting materials. The PCMs were eutectic mixtures of tetradecanol (TD)-capric acid (CA), TD-lauric acid (LA), and TD-myristic acid (MA), which were rarely explored before. Thermal properties of eutectic mixtures and FSPCMs were measured by differential scanning calorimeter (DSC). The onset melting/solidification temperatures of form-stable PCMs were 19.13 °C/13.32 °C (FS TD-CA PCM), 24.53 °C/24.92 °C (FS TD-LA PCM), and 33.15 °C/30.72 °C (FS TD-MA PCM), respectively, and latent heats were almost greater than 90 J/g. The surface morphologies and chemical stability of form-stable PCM were surveyed by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) spectroscopy, respectively. The thermal cycling test revealed that the thermal reliability of these three form-stable PCMs was good. Thermal storage/release experiment indicated melting/solidification time was shortened by introducing 10 wt % aluminum powder (AP). It is concluded that these FSPCMs can act as potential building thermal storage materials in terms of their satisfactory thermal properties.

  3. Mutation analysis and molecular modeling for the investigation of ligand-binding modes of GPR84.

    PubMed

    Nikaido, Yoshiaki; Koyama, Yuuta; Yoshikawa, Yasushi; Furuya, Toshio; Takeda, Shigeki

    2015-05-01

    GPR84 is a G protein-coupled receptor for medium-chain fatty acids. Capric acid and 3,3'-diindolylmethane are specific agonists for GPR84. We built a homology model of a GPR84-capric acid complex to investigate the ligand-binding mode using the crystal structure of human active-state β2-adrenergic receptor. We performed site-directed mutagenesis to subject ligand-binding sites to our model using GPR84-Giα fusion proteins and a [(35)S]GTPγS-binding assay. We compared the activity of the wild type and mutated forms of GPR84 by [(35)S]GTPγS binding to capric acid and diindolylmethane. The mutations L100D `Ballesteros-Weinstein numbering: 3.32), F101Y (3.33) and N104Q (3.36) in the transmembrane helix III and N357D (7.39) in the transmembrane helix VII resulted in reduced capric acid activity but maintained the diindolylmethane responses. Y186F (5.46) and Y186H (5.46) mutations had no characteristic effect on capric acid but with diindolylmethane they significantly affected the G protein activation efficiency. The L100D (3.32) mutant responded to decylamine, a fatty amine, instead of a natural agonist, the fatty acid capric acid, suggesting that we have identified a mutated G protein-coupled receptor-artificial ligand pairing. Our molecular model provides an explanation for these results and interactions between GPR84 and capric acid. Further, from the results of a double stimulation assay, we concluded that diindolylmethane was a positive allosteric modulator for GPR84. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Fat high in stearic acid favorably affects blood lipids and factor VII coagulant activity in comparison with fats high in palmitic acid or high in myristic and lauric acids.

    PubMed

    Tholstrup, T; Marckmann, P; Jespersen, J; Sandström, B

    1994-02-01

    The effect of fats high in individual, prevalent saturated dietary fatty acids on lipoproteins and hemostatic variables in young healthy subjects was evaluated in a randomized strictly controlled metabolic feeding study. Three experimental diets: shea butter (S; 42% stearic acid), palm oil (P; 43% palmitic palmitic acid), and palm-kernel oil with high-oleic sunflower oil (ML; 10% myristic acid, 30% lauric acid) were served to 15 men for 3 wk each, separated by washout periods. Diet S compared with diet P resulted in significant reduction in plasma cholesterol (22%) LDL cholesterol (26%), apolipoprotein B (18%), HDL cholesterol (12%), apolipoprotein A-I (13%), and a 13% lower factor VII coagulant activity (P = 0.001). Similar differences were observed between diets S and ML. In conclusion, intake of shea butter high in stearic acid favorably affects blood lipids and factor VII coagulant activity in young men, compared with fats high in saturated fatty acids with 12-16 carbons.

  5. Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pathogenicity.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J

    2016-01-01

    Recently, medium-chain triglycerides (MCTs) containing a large fraction of lauric acid (LA) (C12)-about 30%-have been introduced commercially for use in salad oils and in cooking applications. As compared to the long-chain fatty acids found in other cooking oils, the medium-chain fats in MCTs are far less likely to be stored in adipose tissue, do not give rise to 'ectopic fat' metabolites that promote insulin resistance and inflammation, and may be less likely to activate macrophages. When ingested, medium-chain fatty acids are rapidly oxidised in hepatic mitochondria; the resulting glut of acetyl-coenzyme A drives ketone body production and also provokes a thermogenic response. Hence, studies in animals and humans indicate that MCT ingestion is less obesogenic than comparable intakes of longer chain oils. Although LA tends to raise serum cholesterol, it has a more substantial impact on high density lipoprotein (HDL) than low density lipoprotein (LDL) in this regard, such that the ratio of total cholesterol to HDL cholesterol decreases. LA constitutes about 50% of the fatty acid content of coconut oil; south Asian and Oceanic societies which use coconut oil as their primary source of dietary fat tend to be at low cardiovascular risk. Since ketone bodies can exert neuroprotective effects, the moderate ketosis induced by regular MCT ingestion may have neuroprotective potential. As compared to traditional MCTs featuring C6-C10, laurate-rich MCTs are more feasible for use in moderate-temperature frying and tend to produce a lower but more sustained pattern of blood ketone elevation owing to the more gradual hepatic oxidation of ingested laurate.

  6. Lauric acid-rich medium-chain triglycerides can substitute for other oils in cooking applications and may have limited pathogenicity

    PubMed Central

    McCarty, Mark F; DiNicolantonio, James J

    2016-01-01

    Recently, medium-chain triglycerides (MCTs) containing a large fraction of lauric acid (LA) (C12)—about 30%—have been introduced commercially for use in salad oils and in cooking applications. As compared to the long-chain fatty acids found in other cooking oils, the medium-chain fats in MCTs are far less likely to be stored in adipose tissue, do not give rise to ‘ectopic fat’ metabolites that promote insulin resistance and inflammation, and may be less likely to activate macrophages. When ingested, medium-chain fatty acids are rapidly oxidised in hepatic mitochondria; the resulting glut of acetyl-coenzyme A drives ketone body production and also provokes a thermogenic response. Hence, studies in animals and humans indicate that MCT ingestion is less obesogenic than comparable intakes of longer chain oils. Although LA tends to raise serum cholesterol, it has a more substantial impact on high density lipoprotein (HDL) than low density lipoprotein (LDL) in this regard, such that the ratio of total cholesterol to HDL cholesterol decreases. LA constitutes about 50% of the fatty acid content of coconut oil; south Asian and Oceanic societies which use coconut oil as their primary source of dietary fat tend to be at low cardiovascular risk. Since ketone bodies can exert neuroprotective effects, the moderate ketosis induced by regular MCT ingestion may have neuroprotective potential. As compared to traditional MCTs featuring C6–C10, laurate-rich MCTs are more feasible for use in moderate-temperature frying and tend to produce a lower but more sustained pattern of blood ketone elevation owing to the more gradual hepatic oxidation of ingested laurate. PMID:27547436

  7. Dietary Caprylic Acid (C8:0) Does Not Increase Plasma Acylated Ghrelin but Decreases Plasma Unacylated Ghrelin in the Rat

    PubMed Central

    Lemarié, Fanny; Beauchamp, Erwan; Dayot, Stéphanie; Duby, Cécile; Legrand, Philippe; Rioux, Vincent

    2015-01-01

    Focusing on the caprylic acid (C8:0), this study aimed at investigating the discrepancy between the formerly described beneficial effects of dietary medium chain fatty acids on body weight loss and the C8:0 newly reported effect on food intake via ghrelin octanoylation. During 6 weeks, Sprague-Dawley male rats were fed with three dietary C8:0 levels (0, 8 and 21% of fatty acids) in three experimental conditions (moderate fat, caloric restriction and high fat). A specific dose-response enrichment of the stomach tissue C8:0 was observed as a function of dietary C8:0, supporting the hypothesis of an early preduodenal hydrolysis of medium chain triglycerides and a direct absorption at the gastric level. However, the octanoylated ghrelin concentration in the plasma was unchanged in spite of the increased C8:0 availability. A reproducible decrease in the plasma concentration of unacylated ghrelin was observed, which was consistent with a decrease in the stomach preproghrelin mRNA and stomach ghrelin expression. The concomitant decrease of the plasma unacylated ghrelin and the stability of its acylated form resulted in a significant increase in the acylated/total ghrelin ratio which had no effect on body weight gain or total dietary consumption. This enhanced ratio measured in rats consuming C8:0 was however suspected to increase (i) growth hormone (GH) secretion as an increase in the GH-dependent mRNA expression of the insulin like growth Factor 1 (IGF-1) was measured (ii) adipocyte diameters in subcutaneous adipose tissue without an increase in the fat pad mass. Altogether, these results show that daily feeding with diets containing C8:0 increased the C8:0 level in the stomach more than all the other tissues, affecting the acylated/total ghrelin plasma ratio by decreasing the concentration of circulating unacylated ghrelin. However, these modifications were not associated with increased body weight or food consumption. PMID:26196391

  8. Stable Concentrated Emulsions of the 1-Monoglyceride of Capric Acid (Monocaprin) with Microbicidal Activities against the Food-Borne Bacteria Campylobacter jejuni, Salmonella spp., and Escherichia coli

    PubMed Central

    Thormar, Halldor; Hilmarsson, Hilmar; Bergsson, Gudmundur

    2006-01-01

    Of 11 fatty acids and monoglycerides tested against Campylobacter jejuni, the 1-monoglyceride of capric acid (monocaprin) was the most active in killing the bacterium. Various monocaprin-in-water emulsions were prepared which were stable after storage at room temperature for many months and which retained their microbicidal activity. A procedure was developed to manufacture up to 500 ml of 200 mM preconcentrated emulsions of monocaprin in tap water. The concentrates were clear and remained stable for at least 12 months. They were active against C. jejuni upon 160- to 200-fold dilution in tap water and caused a >6- to 7-log10 reduction in viable bacterial count in 1 min at room temperature. The addition of 0.8% Tween 40 to the concentrates as an emulsifying agent did not change the microbicidal activity. Emulsions of monocaprin killed a variety of Campylobacter isolates from humans and poultry and also killed strains of Campylobacter coli and Campylobacter lari, indicating a broad anticampylobacter activity. Emulsions of 1.25 mM monocaprin in citrate-lactate buffer at pH 4 to 5 caused a >6- to 7-log10 reduction in viable bacterial counts of Salmonella spp. and Escherichia coli in 10 min. C. jejuni was also more susceptible to monocaprin emulsions at low pH. The addition of 5 and 10 mM monocaprin emulsions to Campylobacter-spiked chicken feed significantly reduced the bacterial contamination. These results are discussed in view of the possible utilization of monocaprin emulsions in controlling the spread of food-borne bacteria from poultry to humans. PMID:16391087

  9. Antimicrobial activity of lauric arginate-coated polylactic acid films against Listeria monocytogenes and Salmonella typhimurium on cooked sliced ham.

    PubMed

    Theinsathid, Pornpun; Visessanguan, Wonnop; Kruenate, Jittiporn; Kingcha, Yutthana; Keeratipibul, Suwimon

    2012-02-01

    A novel type of environmentally friendly packaging with antibacterial activity was developed from lauric arginate (LAE)-coating of polylactic acid (PLA) films after surface activation using a corona discharge. Scanning electron microscopy (SEM)-based analysis of the LAE/PLA films confirmed the successful coating of LAE on the PLA surface. The mechanical properties of the LAE/PLA films with different levels of LAE-coating (0% to 2.6%[w/w]) were essentially the same as those of the neat PLA film. The antibacterial activity of the LAE/PLA films against Listeria monocytogenes and Salmonella enterica Serovar Typhimurium (S. Typhimurium) was confirmed by a qualitative modified agar diffusion assay and quantitative JIS Z 2801:2000 method. Using the LAE/PLA film as a food-contact antimicrobial packaging for cooked cured ham, as a model system, suggested a potential application to inhibit L. monocytogenes and S. Typhimurium on ham with a 0.07% (w/w) LAE coating on the PLA when high transparency is required, as evidenced from the 2 to 3 log CFU/tested film lower pathogen growth after 7 d storage but even greater antibacterial activity is obtained with a LAE coating level of 2.6% (w/w) but at the cost of a reduced transparency of the finished product. This article shows how we can simply develop functional green packaging of PLA for food with effective and efficient antimicrobial activity by use of LAE coating on the surface via corona discharge. The effectiveness of an innovative antimicrobial LAE-coated PLA film against foodborne pathogens was demonstrated. Importantly, the application of the LAE to form the LAE-coated PLA film can be customized within current film manufacturing lines. © 2012 Institute of Food Technologists®

  10. Vegetable Oil-Loaded Nanocapsules: Innovative Alternative for Incorporating Drugs for Parenteral Administration.

    PubMed

    Venturinil, C G; Bruinsmann, A; Oliveira, C P; Contri, R V; Pohlmann, A R; Guterres, S S

    2016-02-01

    An innovative nanocapsule formulation for parenteral administration using selected vegetable oils (mango, jojoba, pequi, oat, annatto, calendula, and chamomile) was developed that has the potential to encapsulate various drugs. The vegetable oil-loaded nanocapsules were prepared by interfacial deposition and compared with capric/caprylic triglyceride-loaded lipid core nanocapsules. The major objective was to investigate the effect of vegetable oils on particle size distribution and physical stability and to determine the hemolytic potential of the nanocapsules, considering their applicability for intravenous administration. Taking into account the importance of accurately determining particle size for the selected route of administration, different size characterization techniques were employed, such as Laser Diffraction, Dynamic Light Scattering, Multiple Light Scattering, Nanoparticle Tracking Analysis, and Transmission Electronic Microscopy. Laser diffraction studies indicated that the mean particle size of all nanocapsules was below 300 nm. For smaller particles, the laser diffraction and multiple light scattering data were in agreement (D[3,2]-130 nm). Dynamic light scattering and nanoparticle tracking analysis, two powerful techniques that complement each other, exhibited size values between 180 and 259 nm for all nanoparticles. Stability studies demonstrated a tendency of particle creaming for jojoba-nanocapsules and sedimentation for the other nanoparticles; however, no size variation occurred over 30 days. The hemolysis test proved the hemocompatibility of all nanosystems, irrespective of the type of oil. Although all developed nanocapsules presented the potential for parenteral administration, jojoba oil-loaded nanocapsules were selected as the most promising nanoformulation due to their low average size and high particle size homogeneity.

  11. Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment.

    PubMed

    Leite-Silva, V R; Sanchez, W Y; Studier, H; Liu, D C; Mohammed, Y H; Holmes, A M; Ryan, E M; Haridass, I N; Chandrasekaran, N C; Becker, W; Grice, J E; Benson, H A E; Roberts, M S

    2016-07-01

    Public health concerns continue to exist over the safety of zinc oxide nanoparticles that are commonly used in sunscreen formulations. In this work, we assessed the effects of two conditions which may be encountered in everyday sunscreen use, occlusion and a compromised skin barrier, on the penetration and local toxicity of two topically applied zinc oxide nanoparticle products. Caprylic/capric triglyceride (CCT) suspensions of commercially used zinc oxide nanoparticles, either uncoated or with a silane coating, were applied to intact and barrier impaired skin of volunteers, without and with occlusion for a period of six hours. The exposure time was chosen to simulate normal in-use conditions. Multiphoton tomography with fluorescence lifetime imaging was used to noninvasively assess zinc oxide penetration and cellular metabolic changes that could be indicative of toxicity. We found that zinc oxide nanoparticles did not penetrate into the viable epidermis of intact or barrier impaired skin of volunteers, without or with occlusion. We also observed no apparent toxicity in the viable epidermis below the application sites. These findings were validated by ex vivo human skin studies in which zinc penetration was assessed by multiphoton tomography with fluorescence lifetime imaging as well as Zinpyr-1 staining and toxicity was assessed by MTS assays in zinc oxide treated skin cryosections. In conclusion, applications of zinc oxide nanoparticles under occlusive in-use conditions to volunteers are not associated with any measurable zinc oxide penetration into, or local toxicity in the viable epidermis below the application site. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation.

    PubMed

    Kelkar, Mandar A; Gogate, Parag R; Pandit, Aniruddha B

    2008-03-01

    Cavitation results in conditions of turbulence and liquid circulation in the reactor which can aid in eliminating mass transfer resistances. The present work illustrates the use of cavitation for intensification of biodiesel synthesis (esterification) reaction, which is mass transfer limited reaction considering the immiscible nature of the reactants, i.e., fatty acids and alcohol. Esterification of fatty acid (FA) odour cut (C(8)-C(10)) with methanol in the presence of concentrated H(2)SO(4) as a catalyst has been studied in hydrodynamic cavitation reactor as well as in the sonochemical reactor. The different reaction operating parameters such as molar ratio of acid to alcohol, catalyst quantity have been optimized under acoustic as well as hydrodynamic cavitating conditions in addition to the optimization of the geometry of the orifice plate in the case of hydrodynamic cavitation reactors. Few experiments have also been carried out with other acid (lower and higher)/methanol combination viz. caprylic acid and capric acids with methanol with an aim of investigating the efficacy of cavitation for giving the desired yields and also to quantify the degree of process intensification that can be achieved using the same. It has been observed that ambient operating conditions of temperature and pressure and reaction times of <3h, for all the different combinations of acid (lower and higher)/methanol studied in the present work, was sufficient for giving >90% conversion (mol%). This clearly establishes the efficacy of cavitation as an excellent way to achieve process intensification of the biodiesel synthesis process.

  13. Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug.

    PubMed

    Djordjevic, Ljiljana; Primorac, Marija; Stupar, Mirjana; Krajisnik, Danina

    2004-03-01

    Microemulsion systems composed of water, isopropyl myristate, PEG-8 caprylic/capric glycerides (Labrasol), and polyglyceryl-6 dioleate (Plurol Oleique), were investigated as potential drug delivery vehicles for an amphiphilic model drug (diclofenac diethylamine). Pseudo-ternary phase diagram of the investigated system, at constant surfactant/cosurfactant mass ratio (Km 4:1) was constructed at room temperature by titration, and the oil-to-surfactant/cosurfactant mass ratios (O/SC) that exhibit the maximum in the solubilization of water were found. This allowed the investigation of the continuous structural inversion from water-in-oil to oil-in-water microemulsions on dilution with water phase. Furthermore, electrical conductivity (sigma) of the system at Km 1:4, and O/SC 0.250 was studied, and the percolation phenomenon was observed. Conductivity and apparent viscosity (eta') measurement results well described colloidal microstructure of the selected formulations, including gradual changes during their formation. Moreover, sigma, eta', and pH values of six selected microemulsion vehicles which differ in water phase volume fraction (phi(w)) at the selected Km and O/SC values, were measured. In order to investigate the influence of the amphiphilic drug on the vehicle microstructures, each system was formulated with 1.16% (w/w) diclofenac diethylamine. Electrical conductivity, and eta' of the investigated systems were strongly affected by drug incorporation. The obtained results suggest that diclofenac diethylamine interacts with the specific microstructure of the investigated vehicles, and that the different drug release kinetics from these microemulsions may be expected. The investigated microemulsions should be very interesting as new drug carrier systems for dermal application of diclofenac diethylamine.

  14. Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through beta-oxidation.

    PubMed

    Mittendorf, V; Bongcam, V; Allenbach, L; Coullerez, G; Martini, N; Poirier, Y

    1999-10-01

    Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.

  15. Estimate of serum immunoglobulin G concentration using refractometry with or without caprylic acid fractionation.

    PubMed

    Morrill, K M; Polo, J; Lago, A; Campbell, J; Quigley, J; Tyler, H

    2013-07-01

    Objectives of this study were to develop a rapid calf-side test to determine serum IgG concentrations using caprylic acid (CA) fractionation, followed by refractometry of the IgG-rich supernatant and compare the accuracy of this method with results obtained using refractometry using raw serum. Serum samples (n=200) were obtained from 1-d-old calves, frozen (-20°C), and shipped to the laboratory. Samples were allowed to thaw for 1h at room temperature. Fractionation with CA was conducted by adding 1mL of serum to a tube containing 45, 60, or 75µL of CA and 0.5, 1.0, or 1.5mL of 0.06 M acetic acid. The tube contents were mixed well, allowed to react for 1 min, and then centrifuged at 3,300 × g for 0, 10, or 20 min at 25°C. The %Brix and refractive index of the fractionated supernatant were determined using a digital refractometer. Nonfractionated serum was analyzed for %Brix (BRn), refractive index (nDn), and IgG concentration by radial immunodiffusion. The mean serum IgG concentration was 19.0 mg/mL [standard deviation (SD)=9.7], with a range of 3.5 to 47.0 mg/mL. The mean serum BRn was 8.6 (SD=0.91), with a range of 6.8 to 11.0. The mean serum nDn was 1.34566 (SD=0.00140), with a range of 1.34300 to 1.34930. Serum nDn was positively correlated with IgG concentration (correlation coefficient=0.86; n=185). Fractionated samples treated with 1mL 0.6 M acetic acid and 60µL of CA and not centrifuged before analysis resulted in a strong relationship between the refractive index of the fractionated supernatant and IgG (correlation coefficient=0.80; n=45). Regression was used to determine cut points indicative of 10, 12, and 14 mg of IgG/mL to determine the sensitivity and specificity of refractometry to identify failure of passive transfer (serum IgG <10 mg/mL at 24 h old). The nDn were 1.34414, 1.34448, and 1.34480 to predict 10, 12, and 14 mg of IgG/mL of serum, respectively. The BRn cut points were 7.6, 7.8, and 8.0, respectively. The nDn cut points of 1.34448 and

  16. Rheology-A pre-formulation tool for evaluating mechanical and thermal properties of transdermal formulations

    NASA Astrophysics Data System (ADS)

    Modi, Nisarg

    and lauric acid (C12) respectively. During different mixing speeds at initial time period (t=0), oleic acid showed lowest temperature loop area, which was not affected by storage period. Furthermore, by applying power law model to frequency sweep data, mechanical propereties of transdermal gels were evaluated. Transdermal gels are "physical gels" in nature which showed both frequency dependency and also had a cross-over point. Moreover, the value of n is less than 1. Time Temperature superposition principle can apply to the rheological data of Transdermal gels to obtain the thermal properties of formulations. Thermal properties of transdermal gels are very difficult to measure using traditional DSC equipment. By applying TTS principle, frequency sweep data were obtained between 5-50 °C and extrapolated to achieve the glass transition temperature, free volume and thermal expansion co-efficient of the formulations. Last but not least, In-vitro studies using human cadaver skin showed that Capric acid is the best permeability enhancing agent for escitalopram oxalate in current formulations. Furthermore, increase in carbon chain length of fatty acids decreased the permeability enhancing effect of Escitalopram Oxalate through human cadaver skin during In-vitro diffusion studies.

  17. Fatty acid composition of ewe milk as affected by solar radiation and high ambient temperature.

    PubMed

    Sevi, Agostino; Rotunno, Taddeo; Di Roberto, Caterina; Muscio, Antonio

    2002-05-01

    Forty lactating Comisana ewes were either exposed to or protected from solar radiation and fed either in the morning or afternoon during summer in a Mediterranean climate. Individual milk samples were taken on days 7, 21 and 42 of the study period to determine fatty acid composition by gas chromatography. Exposure to solar radiation resulted in higher proportions of short-chain and saturated fatty acids in milk, primarily because of increased contents of caproic, capric, lauric, myristic and stearic acids (by 3-18%), and decreased contents of oleic, linoleic and linolenic acids (by 2-9%). As a consequence, the long to short chain and the unsaturated to saturated fatty acid ratios were significantly higher by 4 and 13% respectively in the milk of the protected ewes compared with that of the exposed animals. Provision of shade also led to an increase in the 18:0+18:1 to 16:0 ratio, and to a decrease in the 12:0 + 14:0 + 16:0 fatty acid group, which are regarded as reliable indexes of the nutritional property of dietary fat in reducing cholesterol levels in human plasma. Feeding time had little impact on milk fat. Our findings suggest that high ambient temperature may markedly modify the lipid composition of ewe milk and that provision of shade, but not feeding management, can improve the milk fatty acid profile in dairy sheep raised in hot climates.

  18. Discovery and preclinical development of a novel prodrug conjugate of mesalamine with eicosapentaenoic acid and caprylic acid for the treatment of inflammatory bowel diseases.

    PubMed

    Kandula, Mahesh; Sunil Kumar, K B; Palanichamy, Sivanesan; Rampal, Ashok

    2016-11-01

    Mesalamine (5-ASA) is one of the drugs indicated as first line therapy in ulcerative colitis for induction and maintenance of remission. Sulfasalazine and formulations of 5-ASA (pH-dependent and controlled release formulations) were developed to minimize the systemic absorption and maximize the delivery of the mesalamine to colon. Although, its efficacy and safety is well documented there are approximately 30% nonresponders to 5-ASA therapy. This necessitates the need for novel therapeutic options to improve the efficacy and safety of the currently available 5-ASA therapy. CLX-103 is a novel, patented prodrug molecular conjugate of mesalamine, eicosapentaenoic acid and caprylic acid designed to offer incremental benefits over the currently approved 5-ASA formulations. Results of in vitro and in vivo studies showed that CLX-103, was stable in simulated gastric fluid, but undergoes enzymatic hydrolysis in the small/large intestines to release the active moiety. Our data also showed that the active moiety is retained in the targeted intestinal tissues (ileum and colon) over a longer period of time in relation to sulfasalazine. The in vitro data supports the observed in vivo plasma kinetics of 5-ASA characterized by longer T max , low C max after the oral administration of CLX-103. Efficacy study of CLX-103 in acute dextran sodium sulfate (DSS) mouse colitis model showed improved potency measured as Disease Activity Index (DAI) and histological scores in the colon as compared to sulfasalazine. These findings indicate that CLX-103 could offer a differentiated drug product which is more efficacious and safer than the currently approved 5-ASA formulations in the treatment of inflammatory bowel diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Structured triglycerides containing caprylic (8:0) and oleic (18:1) fatty acids reduce blood cholesterol concentrations and aortic cholesterol accumulation in hamsters.

    PubMed

    Wilson, Thomas A; Kritchevsky, David; Kotyla, Timothy; Nicolosi, Robert J

    2006-03-01

    The effects of structured triglycerides containing one long chain fatty acid (oleic acid, C18:1) and one short chain saturated fatty acid (caprylic acid, 8:0) on lipidemia, liver and aortic cholesterol, and fecal neutral sterol excretion were investigated in male Golden Syrian hamsters fed a hypercholesterolemic regimen consisting of 89.9% commercial ration to which was added 10% coconut oil and 0.1% cholesterol (w/w). After 2 weeks on the HCD diet, the hamsters were bled, following an overnight fast (16 h) and placed into one of three dietary treatments of eight animals each based on similar plasma cholesterol levels. The hamsters either continued on the HCD diet or were placed on diets in which the coconut oil was replaced by one of two structured triglycerides, namely, 1(3),2-dicaproyl-3(1)-oleoylglycerol (OCC) or 1,3-dicaproyl-2-oleoylglycerol (COC) at 10% by weight. Plasma total cholesterol (TC) in hamsters fed the OCC and COC compared to the HCD were reduced 40% and 49%, respectively (P<0.05). Similarly, hamsters fed the OCC and COC diets reduced their plasma nonHDL cholesterol levels by 47% and 57%, respectively (P<0.05), compared to hamsters fed the HCD after 2 weeks of dietary treatment. Although hamsters fed the OCC (-26%) and COC (-32%) had significantly lower plasma HDL levels compared to HCD, (P<0.05), the plasma nonHDL/HDL cholesterol ratio was significantly lower (P<0.05) compared to the HCD for the OCC-fed (-27%) and the COC-fed (-38%) hamsters, respectively. Compared to the HCD group, aortic esterified cholesterol was 20% and 53% lower for the OCC and COC groups, respectively, with the latter reaching statistical significance, P<0.05. In conclusion, the hamsters fed the structured triglyceride oils had lower blood cholesterol levels and lower aortic accumulation of cholesterol compared to the control fed hamsters.

  20. Synthesis of structured lipids by transesterification of trilinolein catalyzed by Lipozyme IM60.

    PubMed

    Sellappan, S; Akoh, C C

    2001-04-01

    Structured lipids (SL) containing caprylic, stearic, and linoleic acids were synthesized by enzymatic transesterification using Lipozyme IM60. Pure trilinolein and free fatty acids were used as substrates. Incorporation of stearic acid was higher than that of caprylic acid in all parameters. Highest incorporations of both acids were achieved at 32 h, mole ratio of 1:4:4 (trilinolein/caprylic/stearic acids), water content of 1% (wt %), temperature of 55 degrees C, and 10% (wt %) enzyme load. The maximal incorporations of caprylic and stearic acids were 23.73 and 62.46 mol %, respectively. Reaction time, water content, and enzyme load had major influences on the reaction, whereas substrate mole ratio and temperature showed less influence. Lipozyme showed good stability over six reuses. Differential scanning calorimetric analysis of SL gave a melting profile with a very low melting peak of 0-3.3 degrees C and a solid fat content of 25.21% at 0 degrees C. The melting profile and solid fat content of SL were compared with those of fats extracted from commercially available solid and liquid margarine products. The data suggest that enzymatically produced SL could be used in liquid margarine products.

  1. Stabilizing effect of cetostearyl alcohol and glyceryl monostearate as co-emulsifiers on hydrocarbon-free O/W glyceride creams.

    PubMed

    Ballmann, C; Mueller, B W

    2008-01-01

    The structure of a stable O/W cream is characterized by a more or less pronounced mixed crystal bilayer. The addition of co-emulsifiers in order to achieve a soft formulation often leads to a mixed crystal bilayer network of high viscosity and even phase separation. In order to ovoid this components of different chemical identities are used which often are not inert or harmless if they are absorbed. For this reason it seems to be interesting to use only components from one chemical family, e.g. to use only glycerides and their derivatives because in the case of absorption they are metabolized. The disadvantages of glyceride creams are, however, their low viscosity. The aim of this investigation was to find the optimum amount of co-emulsifier as consistency excipient for the basic formulation of an O/W glyceride cream. This was achieved by using differential scanning calorimetry; thermogravimetry, oscillation rheology and various stress tests. The amount of co-emulsifier used should not be too high, as it would crystallize increasingly during storage which gives the preparation an optical inhomogenity and a lack in softness which is needed for a suitable cosmetic acceptance. A slightly higher concentration than is necessary for the mixed emulsifier system can be advantageous, as the formation of a separate crystalline lipophilic network in the preparation increases its viscosity which will lead to a higher physico-chemical stability of the formulation. These results were obtained with the co-emulsifiers glyceryl monostearate (Imwitor 900), cetylstearyl alcohol (Lanette O), and PEG-20-glycerolstearate (Tagat S2) as O/W emulsifier. As oil phase a mixture of Miglyol 812 (caprylic/capric triglyceride) and Avocado oil was used.

  2. Influence of glucosamine on the bioactivity of insulin delivered subcutaneously and in an oral nanodelivery system

    PubMed Central

    Al-Kurdi, Zakieh I; Chowdhry, Babur Z; Leharne, Stephen A; Qinna, Nidal A; Al Omari, Mahmoud MH; Badwan, Adnan A

    2015-01-01

    The aim of the work reported herein was to study the effect of glucosamine HCl (GlcN·HCl) on the bioactivity (BA) of insulin, administered via subcutaneous (SC) and oral routes, in adult male Sprague Dawley rats. The oral insulin delivery system (insulin–chitosan reverse micelle [IC-RM]) was prepared by solubilizing insulin–chitosan (13 kDa) polyelectrolyte complex in a RM system consisting of oleic acid, PEG-8 caprylic/capric glycerides, and polyglycerol-6-dioleate. The BA of insulin in vivo was evaluated by measuring blood glucose level using a blood glucose meter; the results revealed that the extent of hypoglycemic activity of SC insulin was GlcN·HCl dose dependent when they were administered simultaneously. A significant reduction in blood glucose levels (P<0.05) was found for the insulin:GlcN·HCl at mass ratios of 1:10 and 1:20, whereas lower ratios (eg, 1:1 and 1:4) showed no significant reduction. Furthermore, enhancement of the action of SC insulin was achieved by oral administration of GlcN·HCl for 5 consecutive days prior to insulin injection (P<0.05). For oral insulin administration via the IC-RM system, the presence of GlcN·HCl increased the hypoglycemic activity of insulin (P<0.05). The relative BA were 6.7% and 5.4% in the presence and absence of GlcN·HCl (ie, the increase in the relative BA was approximately 23% due to incorporating GlcN·HCl in the IC-RM system), respectively. The aforementioned findings offer an opportunity to incorporate GlcN·HCl in oral insulin delivery systems in order to enhance a reduction in blood glucose levels. PMID:26640369

  3. Microbial Quality of and Biochemical Changes in Fresh Soft, Acid-Curd Xinotyri Cheese Made from Raw or Pasteurized Goat’s Milk

    PubMed Central

    Tasioula-Margari, Maria

    2017-01-01

    Summary The microbiological quality of and changes in the main physicochemical parameters, together with the evolution of proteolysis, lipolysis and volatile profiles of soft Xinotyri, a traditional Greek acid-curd cheese (pH≈4.4, moisture 65%, salt 1%) made from raw (RMC) or pasteurized (PMC) goat’s milk without starters, were evaluated during aerobic storage at 4 oC for 60 days. No statistically significant differences between the total nitrogen (TN) and nitrogen fraction (% of TN) contents, the degradation of intact αs- or β-caseins, total free amino acid (FAA) contents, and the ratio of hydrophilic and hydrophobic peptides in the water-soluble fraction of RMC and PMC were found. Threonine, alanine and lysine were the principal FAAs. Oleic, palmitic, capric and caprylic acids, and ethyl hexonate, ethyl octanoate, ethyl decanoate, ethanol, 3-methyl butanol, phenyl ethyl alcohol and acetone were the most abundant free fatty acids and volatile compounds, respectively. Cheese lipolysis evolved slowly at 4 oC, and milk pasteurization had no significant effect on it. Mesophilic lactic acid bacteria (LAB) were predominant in fresh cheese samples. PMC samples had significantly lower levels of enterococci and enterobacteria than RMC samples, while yeasts grew at similar levels during storage at 4 oC. All cheese samples (25 g) were free of Salmonella and Listeria monocytogenes. Coagulase-
-positive staphylococci exceeded the 5-log safety threshold in fresh RMC samples, whereas they were suppressed (<100 CFU/g) in all PMC samples. Consequently, pasteurization of raw goat milk’s and utilization of commercially defined or natural mesophilic LAB starters are recommended for standardizing the biochemical, microbial and safety qualities of fresh soft Xinotyri cheese. PMID:29540984

  4. Skin moisturization by hydrogenated polyisobutene--quantitative and visual evaluation.

    PubMed

    Dayan, Nava; Sivalenka, Rajarajeswari; Chase, John

    2009-01-01

    Hydrogenated polyisobutene (HP) is used in topically applied cosmetic/personal care formulations as an emollient that leaves a pleasing skin feel when applied, and rubbed in after application. This effect, although distinguishable to the user, is difficult to define and quantify. Recognizing that some of the physical properties of HP such as film formation and wear resistance may contribute, in certain mechanisms, to skin moisturization, we designed a short-term pilot study to follow changes in skin moisturization. HP's incorporation into an o/w emulsion at 8% yielded increased viscosity and reduced emulsion droplet size as compared to the emollient ester CCT (capric/caprylic triglyceride) or a control formulation. Quantitative data indicate that application of the o/w emulsion formulation containing either HP or CCT significantly elevated skin moisture content and thus reduced transepidermal water loss (TEWL) by a maximal approximately 33% against the control formulation within 3 h and maintained this up to 6 h. Visual observation of skin treated with the HP-containing formulation showed fine texture and clear contrast as compared to the control or the CCT formulation, confirming this effect. As a result of increased hydration, skin conductivity, as measured in terms of corneometer values, was also elevated significantly by about tenfold as early as 20 min after HP or CCT application and was maintained throughout the test period. Throughout the test period the HP formulation was 5-10% more effective than the CCT formulation both in reduction of TEWL as well as in increased skin conductivity. Thus, compared to the emollient ester (CCT), HP showed a unique capability for long-lasting effect in retaining moisture and improving skin texture.

  5. Intestinal permeability enhancement of levothyroxine sodium by straight chain fatty acids studied in MDCK epithelial cell line.

    PubMed

    Pabla, Dimple; Akhlaghi, Fatemeh; Zia, Hossein

    2010-08-11

    Levothyroxine sodium (T4), administered orally, is used for the treatment of hypothyroidism. T4 is a narrow therapeutic index drug with highly variable bioavailability (40-80%). The purpose of the present study was to increase the transepithelial transport of T4 using straight chain fatty acids across Madin-Darby Canine kidney (MDCK) cell line. Capric acid (C10), lauric acid (C12) and oleic acid (C18) were studied in molar ratios of 1:0.5, 1:1, 1:2 and 1:3 (T4:fatty acid). Transport of the hydrophilic marker, Lucifer yellow, was also studied. All three fatty acids proved to significantly increase T4 transport and the order of enhancement was to the effect of C12 approximately C18>C10. This Increase in transport was accompanied by reductions in transepithelial electrical resistance (TEER) values, which indicates an opening of tight junctions. Cytotoxic effects of the fatty acids were evaluated by TEER measurements, lactate dehydrogenase release, percent viability and propidium iodide staining of the cells. At the lower molar concentrations of 1:1, the fatty acids did not show any toxicity. However, C12 and C18 when added, to T4:fatty acid molar ratio of 1:2 and 1:3, respectively showed severe toxicity with irreversible damage to the cells. Hence, addition of fatty acids to T4 formulations at low concentrations can significantly improve intestinal permeability of T4 without any toxicity potentially leading to improved bioavailability. 2010 Elsevier B.V. All rights reserved.

  6. A Study on a Novel Phase Change Material Panel Based on Tetradecanol/Lauric Acid/Expanded Perlite/Aluminium Powder for Building Heat Storage

    PubMed Central

    Wang, Enyu; Kong, Xiangfei; Rong, Xian; Yao, Chengqiang; Yang, Hua; Qi, Chengying

    2016-01-01

    Phase change material (PCM) used in buildings can reduce the building energy consumption and indoor temperature fluctuation. A composite PCM has been fabricated by the binary eutectic mixture of tetradecanol (TD) and lauric acid (LA) absorbed into the expanded perlite (EP) using vacuum impregnation method, and its thermal conductivity was promoted by aluminium powder (AP) additive. Besides, the styrene-acrylic emulsion has been mixed with the composite PCM particles to form the protective film, so as to solve the problem of leakage. Thus, a novel PCM panel (PCMP) has been prepared using compression moulding forming method. The thermal property, microstructure characteristic, mechanical property, thermal conductivity, thermal reliability and leakage of the composite PCM have been investigated and analysed. Meanwhile, the thermal performance of the prepared PCMP was tested through PCMPs installed on the inside wall of a cell under outdoor climatic conditions. The composite PCM has a melting temperature of 24.9 °C, a freezing temperature of 25.2 °C, a melting latent heat of 78.2 J/g and a freezing latent heat of 81.3 J/g. The thermal conductivity test exposed that the thermal conductivity has been enhanced with the addition of AP and the latent heat has been decreased, but it still remains in a high level. The leakage test result has proven that liquid PCM leaking has been avoided by the surface film method. The thermal performance experiment has shown the significant function of PCMP about adjusting the indoor temperature and reducing the heats transferring between the wall inside and outside. In view of the thermal performance, mechanical property and thermal reliability results, it can be concluded that the prepared PCMP has a promising building application potential. PMID:28774020

  7. Effect of long-chain Fatty acids on the binding of triflupromazine to human serum albumin: a spectrophotometric study.

    PubMed

    Kitamura, Keisuke; Takegami, Shigehiko; Tanaka, Rumi; Omran, Ahmed Ahmed; Kitade, Tatsuya

    2014-01-01

    Human serum albumin (HSA) in the blood binds long-chain fatty acids (LCFAs), and the number of bound LCFAs varies from 1 to 7 depending on the physical condition of the body. In this study, the influence of LCFA-HSA binding on drug-HSA binding was studied using triflupromazine (TFZ), a psychotropic phenothiazine drug, in a buffer (0.1 M NaCl, pH 7.40, 37°C) by a second-derivative spectrophotometric method which can suppress the residual background signal effects of HSA observed in the absorption spectra. The examined LCFAs were caprylic acid (CPA), lauric acid (LRA), oleic acid (OLA), and linoleic acid (LNA), respectively. Using the derivative intensity change of TFZ induced by the addition of HSA containing LCFA, the binding mode of TFZ was predicted to be a partition-like nonspecific binding. The binding constant (K M(-1)) showed an increase according to the LCFA content in HSA for LRA, OLA, and LNA up to an LCFA/HSA molar ratio of 3-4. However, at higher ratios the K value decreased, i.e. for OLA and LNA, at an LCFA/HSA ratio of 6-7, the K value decreased to 40% of the value for HSA alone. In contrast, CPA, having the shortest chain length (8 carbons) among the studied LCFAs, induced a 20% decrease in the K value regardless of its content in HSA. Since the pharmacological activity of a drug is closely related to the unbound drug concentration in the blood, the results of the present study are pharmaco-kinetically, pharmacologically, and clinically very important.

  8. In vitro release of diclofenac diethylamine from caprylocaproyl macrogolglycerides based microemulsions.

    PubMed

    Djordjevic, Ljiljana; Primorac, Marija; Stupar, Mirjana

    2005-05-30

    The purpose of the present study was to determine the influence of both formulation parameters and vehicle structure on in vitro release rate of amphiphilic drug diclofenac diethylamine (DDA) from microemulsion vehicles containing PEG-8 caprylic/capric glycerides (surfactant), polyglyceryl-6 dioleate (cosurfactant), isopropyl myristate and water. From the constructed pseudo-ternary phase diagram at surfactant-cosurfactant mass ratio (K(m) 1:1), the optimum oil-to-surfactant-cosurfactant mass ratio values (O/SC 0.67-1.64) for formulation of microemulsions with similar concentrations of hydrophilic, lipophilic and amphiphilic phases (balanced microemulsions) were found. The results of characterization experiments indicated bicontinuous or nonspherical water-continuous internal structure of the selected microemulsion vehicles. Low water/isopropyl myristate apparent partition coefficient for DDA as well as elevated electrical conductivity and apparent viscosity values for the investigated microemulsion formulations containing 1.16% (w/w) of DDA, suggested that the drug molecules was predominantly partitioned in the water phase and most likely selfaggregate and interact with interfacial film. Release of DDA from the selected water-continuous (W/O), oil-continuous (O/W) and balanced microemulsions was investigated using rotating paddle dissolution apparatus modified by addition of enhancer cell. A linear diffusion of DDA through regenerated cellulose membrane was observed for the W/O and O/W formulations with the low content of dispersed phase. Non-linearity of the drug release profile in the case of bicontinuous formulations was related to the more complex distribution of DDA including interactions between the drug and vehicle. The membrane flux value increases from 25.02 microgcm(-2)h(-1) (W/O microemulsion) to 117.94 microgcm(-2)h(-1) (O/W microemulsion) as the water phase concentration increases. Moreover, the obtained flux values for balanced microemulsions (29

  9. Development of cyclosporine A microemulsion for parenteral delivery.

    PubMed

    Yuan, Yue; Che, Xin; Zhao, Mingyi; Wang, Yan; Liu, Yajun; Schwendeman, Anna; Li, Sanming

    2015-01-01

    The goal of this study was to develop a parenteral microemulsion formulation of cyclosporine A (CyA). The CyA solubility in caprylic capric triglyceride (GTCC), ethyl oleate and soybean oil were determined. The pseudo-ternary diagrams of oil (GTCC), surfactant (Solutol® HS-15), cosurfactants (ethanol/polyethylene glycol 400 [PEG 400] mixture) and water were constructed to identify boundaries for microemulsion existence. The CyA was added at 3, 6 and 9% w/w to the optimal microemulsion composition. Microemulsion particle size, solution viscosity and conductivity were examined. The microemulsion stability and haemolytic potential were examined after dilution in 5% dextrose solution for injection to 1 mg/mL CyA. Microemulsion stability was examined after a three-month storage at 4 and 25 °C. The GTCC was selected as an oil phase for CyA microemulsion based on solubility results. The optimum CyA microemulsion formulation consisted of 2.5% CyA, 9% GTCC, 24% Solutol® HS 15, 8% PEG 400, 4% ethanol and 52.5% water based on weight percent. The average particle sizes of the optimized blank and drug-loaded microemulsions were 68.7 nm and 71.6 nm, respectively and remained unchanged upon 25-fold dextrose dilution. The results of microemulsion physical and CyA chemical were confirmed by a three-month stability study at 4 and 25 °C. In vitro haemolysis studies indicated that CyA microemulsions were well tolerated by erythrocytes. The novel microemulsion formulation of CyA was developed that is suitable for parenteral administration. This new formulation could potentially have less vehicle-associated side effects that current commercial formulation of CyA based on Cremophor® EL and ethanol solution.

  10. A method for measuring low-weight carboxylic acids from biosolid compost.

    PubMed

    Himanen, Marina; Latva-Kala, Kyösti; Itävaara, Merja; Hänninen, Kari

    2006-01-01

    Concentration of low-weight carboxylic acids (LWCA) is one of the important parameters that should be taken into consideration when compost is applied as soil improver for plant cultivation, because high amounts of LWCA can be toxic to plants. The present work describes a method for analysis of LWCA in compost as a useful tool for monitoring compost quality and safety. The method was tested on compost samples of two different ages: 3 (immature) and 6 (mature) months old. Acids from compost samples were extracted at high pH, filtered, and freeze-dried. The dried sodium salts were derivatized with a sulfuric acid-methanol mixture and concentrations of 11 low-weight fatty acids (C1-C10) were analyzed using headspace gas chromatography. The material was analyzed with two analytical techniques: the external calibration method (tested on 11 LWCA) and the standard addition method (tested only on formic, acetic, propionic, butyric, and iso-butyric acids). The two techniques were compared for efficiency of acids quantification. The method allowed good separation and quantification of a wide range of individual acids with high sensitivity at low concentrations. Detection limit for propionic, butyric, caproic, caprylic, and capric acids was 1 mg kg(-1) compost; for formic, acetic, valeric, enanthoic and pelargonic acids it was 5 mg kg(-1) compost; and for iso-butyric acid it was 10 mg kg(-1) compost. Recovery rates of LWCA were higher in 3-mo-old compost (57-99%) than in 6-mo-old compost (29-45%). In comparison with the external calibration technique the standard addition technique proved to be three to four times more precise for older compost and two times for younger compost. Disadvantages of the standard addition technique are that it is more time demanding and laborious.

  11. An in vivo confocal Raman study of the delivery of trans retinol to the skin.

    PubMed

    Pudney, Paul D A; Mélot, Mickaël; Caspers, Peter J; Van Der Pol, Andre; Puppels, Gerwin J

    2007-08-01

    The purpose of this study is to monitor in vivo the delivery of trans-retinol into human skin. Delivery to real systems, such as skin, can be extremely difficult to execute and is problematic to confirm and measure. So far, methods for studying the delivery of compounds through the skin are mostly ex vivo and so inherently influence the skin and may not translate directly to the in vivo situation. Raman spectroscopy is uniquely placed to be able to measure biological processes in vivo, and this paper shows that the trans-retinol penetration into the skin can successfully be measured in vivo using this technique. This study measured the volar forearm of volunteers treated with 0.3% trans-retinol in propylene glycol (PG)/ethanol and 0.3% trans-retinol in caprylic/capric acid triglyceride (MYRITOL318), an oil found in skin creams. Solutions were applied and then confocal Raman depth profiles were obtained of the stratum corneum (SC) and into the viable epidermis (VE) up to 10 hours after treatment. Remarkable differences between a penetrating and a nonpenetrating solution can clearly be observed. Treating with trans-retinol in PG/ethanol results in trans-retinol penetrating through the SC and into the VE. Its penetration was also observed to be highly correlated with the depth of penetration of the PG, which is well known as an efficient penetration enhancer. In contrast, while treating with trans-retinol in MYRITOL318, trans-retinol hardly penetrates at all. For the first time, the penetration of trans-retinol has been monitored directly after application of solutions, in vivo without skin excision. Here, the effect of two different solutions on the delivery of trans-retinol into the skin was measured very effectively in vivo by Raman spectroscopy.

  12. Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy.

    PubMed

    Mélot, Mickaël; Pudney, Paul D A; Williamson, Ann-Marie; Caspers, Peter J; Van Der Pol, Andre; Puppels, Gerwin J

    2009-08-19

    The purpose of this study is to monitor in vivo the effect of chemical penetration enhancers on the delivery of trans-retinol into human skin. Chemical penetration enhancers reversibly alter barrier properties of the SC by disruption of the membrane structures or maximising drug solubility with the skin. So far, most of permeation or penetration experiments are performed in vitro. Raman spectroscopy is uniquely placed to be able to measure biological processes in vivo and this paper shows for the first time that the effect of penetration enhancer on the delivery of trans-retinol can successfully be measured in vivo using this technique. Here, the volar forearm of volunteers was treated with four formulations. One formulation is a highly effective model delivery system identified from ex vivo experiments: trans-retinol in Propylene Glycol (PG)/ethanol, with PG being a well-known and efficient penetration enhancer. The other three formulations are based on 0.3% trans-retinol in Caprylic/Capric Acid Triglyceride (MYRITOL 318), an oil commonly used in skin creams but in two of them a specific penetration enhancer is added. One contains a lipid extractor, Triton X 100, whereas another formulation contains a lipid fluidiser, Oleic Acid. Solutions were applied once and measurements were performed up to 6 h after treatment. Remarkable differences in the delivery of trans-retinol between formulation with or without penetration enhancer can clearly be seen. Moreover, the type of penetration enhancer is also shown to influence the delivery. While using the Oleic Acid, which is a lipid fluidiser, a better delivery of trans-retinol in the skin can be detected. For the first time, the effect of penetration enhancer on the delivery of trans-retinol has been monitored, non invasively in vivo, with time.

  13. Development of HIV-1 rectal-specific microbicides and colonic tissue evaluation.

    PubMed

    Dezzutti, Charlene S; Russo, Julie; Wang, Lin; Abebe, Kaleab Z; Li, Jie; Friend, David R; McGowan, Ian M; Rohan, Lisa C

    2014-01-01

    The gastrointestinal tract is structurally and functionally different from the vagina. Thus, the paradigm of topical microbicide development and evaluation has evolved to include rectal microbicides (RMs). Our interest was to create unique RM formulations to safely and effectively deliver antiretroviral drugs to mucosal tissue. RMs were designed to include those that spread and coat all surfaces of the rectum and distal colon rapidly (liquid) and those that create a deformable, erodible barrier and remain localized at the administration site (gel). Tenofovir (TFV) (1%) was formulated as an aqueous thermoreversible fluid and a carbopol-based aqueous hydrogel. Lipid-based liquid and gel formulations were prepared for UC781 (0.1%) using isopropyl myristate and GTCC (Caprylic/Capric Triglycerides), respectively. Formulations were characterized for pH, viscosity, osmolality, and drug content. Pre-clinical testing incorporated ex vivo colonic tissue obtained through surgical resections and flexible sigmoidoscopy (flex sig). As this was the first time using tissue from both sources side-by-side, the ability to replicate HIV-1 was compared. Efficacy of the RM formulations was tested by applying the products with HIV-1 directly to polarized colonic tissue and following viral replication. Safety of the formulations was determined by MTT assay and histology. All products had a neutral pH and were isoosmolar. While HIV-1BaL and HIV-1JR-CSF alone and in the presence of semen had similar replication trends between surgically resected and flex sig tissues, the magnitude of viral replication was significantly better in flex sig tissues. Both TFV and UC781 formulations protected the colonic tissue, regardless of tissue source, from HIV-1 and retained tissue viability and architecture. Our in vitro and ex vivo results show successful formulation of unique RMs. Moreover, the results of flex sig and surgically resected tissues were comparable suggesting the incorporation of both in

  14. Lauric acid and myristic acid from Allium sativum inhibit the growth of Mycobacterium tuberculosis H37Ra: in silico analysis reveals possible binding to protein kinase B.

    PubMed

    Muniyan, Rajiniraja; Gurunathan, Jayaraman

    2016-12-01

    The bulb of Allium sativum Linn (Alliaceae) has numerous medicinal values. Though the petroleum ether extract of the bulb has shown to exhibit antimycobacterial activity, the phytochemical(s) responsible for this inhibitory activity is not known. To characterize the bioactive compounds in the petroleum ether extract of Allium sativum (garlic) that inhibit the growth of Mycobacterium tuberculosis H37Ra. Bioactivity-guided fractionation was employed to isolate the bioactive compounds. Antimycobacterial activity was evaluated by well-diffusion method and microplate alamar blue assay (MABA). Infrared spectroscopy, mass spectrometry and nuclear magnetic resonance spectroscopy were used to characterize the bioactive compounds. Autodock was used to obtain information on molecular recognition, and molecular dynamics simulation was performed using GROMACS. The bioactive compounds that inhibited the growth of M. tuberculosis H37Ra were found to be lauric acid (LA) and myristic acid (MA). The minimal inhibitory concentration of LA and MA was found to be 22.2 and 66.7 μg/mL, respectively. In silico analysis revealed that these fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB). The inhibition activity was dependent on the alkyl chain length of the fatty acid, and the amino acid residues involved in binding to fatty acid was found to be conserved across the Pkn family of proteins. The study indicates the possibility of using fatty acid derivatives, involving Pkn family of proteins, to inhibit the signal transduction processes in M. tuberculosis.

  15. Molecular basis of P450 OleTJE: an investigation of substrate binding mechanism and major pathways

    NASA Astrophysics Data System (ADS)

    Du, Juan; Liu, Lin; Guo, Li Zhong; Yao, Xiao Jun; Yang, Jian Ming

    2017-05-01

    Cytochrome P450 OleTJE has attracted much attention for its ability to catalyze the decarboxylation of long chain fatty acids to generate alkenes, which are not only biofuel molecule, but also can be used broadly for making lubricants, polymers and detergents. In this study, the molecular basis of the binding mechanism of P450 OleTJE for arachidic acid, myristic acid, and caprylic acid was investigated by utilizing conventional molecular dynamics simulation and binding free energy calculations. Moreover, random acceleration molecular dynamics (RAMD) simulations were performed to uncover the most probable access/egress channels for different fatty acids. The predicted binding free energy shows an order of arachidic acid < myristic acid < caprylic acid. Key residues interacting with three substrates and residues specifically binding to one of them were identified. The RAMD results suggest the most likely channel for arachidic acid, myristic acid, and caprylic acid are 2e/2b, 2a and 2f/2a, respectively. It is suggested that the reaction is easier to carry out in myristic acid bound system than those in arachidic acid and caprylic acid bound system based on the distance of Hβ atom of substrate relative to P450 OleTJE Compound I states. This study provided novel insight to understand the substrate preference mechanism of P450 OleTJE and valuable information for rational enzyme design for short chain fatty acid decarboxylation.

  16. Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows.

    PubMed

    Hristov, A N; Vander Pol, M; Agle, M; Zaman, S; Schneider, C; Ndegwa, P; Vaddella, V K; Johnson, K; Shingfield, K J; Karnati, S K R

    2009-11-01

    This experiment (replicated 3 x 3 Latin square design) was conducted to investigate the effects of lauric acid (LA) or coconut oil (CO) on ruminal fermentation, nutrient digestibility, ammonia losses from manure, and milk fatty acid (FA) composition in lactating cows. Treatments consisted of intraruminal doses of 240 g of stearic acid/d (SA; control), 240 g of LA/d, or 530 g of CO/d administered once daily, before feeding. Between periods, cows were inoculated with ruminal contents from donor cows and allowed a 7-d recovery period. Treatment did not affect dry matter intake, milk yield, or milk composition. Ruminal pH was slightly increased by CO compared with the other treatments, whereas LA and CO decreased ruminal ammonia concentration compared with SA. Both LA and CO decreased protozoal counts by 80% or more compared with SA. Methane production rate in the rumen was reduced by CO compared with LA and SA, with no differences between LA and SA. Treatments had no effect on total tract apparent dry matter, organic matter, N, and neutral detergent fiber digestibility coefficients or on cumulative (15 d) in vitro ammonia losses from manure. Compared with SA, LA and CO increased milk fat 12:0, cis-9 12:1, and trans-9 12:1 content and decreased 6:0, 8:0, 10:0, cis-9 10:1, 16:0, 18:0, cis 18:1, total 18:2, 18:3 n-3 and total polyunsaturated FA concentrations. Administration of LA and 14:0 (as CO) in the rumen were apparently transferred into milk fat with a mean efficiency of 18 and 15%, respectively. In conclusion, current data confirmed that LA and CO exhibit strong antiprotozoal activity when dosed intraruminally, an effect that is accompanied by decreases in ammonia concentration and, for CO, lowered methane production. Administration of LA and CO in the rumen also altered milk FA composition.

  17. Use of caprylic acid to control pathogens (Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium) in apple juice at mild heat temperature.

    PubMed

    Kim, S A; Rhee, M S

    2015-11-01

    The aim of this study was to examine the effects of caprylic acid (CA) on pathogens in apple juice having intrinsic organic acids, and to determine any synergistic effects. Bactericidal effects of CA were examined against Escherichia coli O157:H7 and Salmonella Typhimurium present in apple juice at mild heating temperatures. Apple juice containing each of the pathogens was treated with CA (0·1, 0·2, 0·4, 0·6 or 0·8 mmol l(-1)) at 50 or 55°C. Treatment with 0·8 mmol l(-1) (0·013%) CA at 50°C for 5 min or with 0·6 mmol l(-1) (0·010%) CA at 55°C for 5 min resulted in the complete eradication of E. coli O157:H7 (initial population: 7·25-7·34 log CFU ml(-1)). Salmonella Typhimurium were more sensitive than E. coli O157:H7: all bacteria (7·81-7·55 log CFU ml(-1)) were eradicated by treatment with 0·2 mmol l(-1) (0·0032%) CA at 55°C for 5 min or with 0·6 mmol l(-1) CA at 50°C for 5 min. By contrast, when pH-adjusted apple juice (pH 7·0) was treated with 0·8 mmol l(-1) CA, there was no significant difference in bactericidal effects between CA-treated samples and controls (heat treatment alone or heat + 0·1% ethanol treatment). This result suggested that acidic pH in the apple juice boost the antibacterial effects of CA. CA treatment did not affect (P > 0·05) the pH, colour or °Brix of the apple juice. This study highlights the utility of CA as a natural antibacterial agent that can eliminate micro-organisms from apple juice at very low concentrations (≤0·013%) and temperatures (≤55°C) within a short time (≤10 min). The results of our study may contribute to the development of an efficient method for improving the microbiological safety of apple juice. © 2015 The Society for Applied Microbiology.

  18. Alkyl polyglucoside vs. ethoxylated surfactant-based microemulsions as vehicles for two poorly water-soluble drugs: physicochemical characterization and in vivo skin performance.

    PubMed

    Pajić, Nataša Z Bubić; Todosijević, Marija N; Vuleta, Gordana M; Cekić, Nebojša D; Dobričić, Vladimir D; Vučen, Sonja R; Čalija, Bojan R; Lukić, Milica Ž; Ilić, Tanja M; Savić, Snežana D

    2017-12-20

    Two types of biocompatible surfactants were evaluated for their capability to formulate skin-friendly/non-irritant microemulsions as vehicles for two poorly water-soluble model drugs differing in properties and concentrations: alkyl polyglucosides (decyl glucoside and caprylyl/capryl glucoside) and ethoxylated surfactants (glycereth-7-caprylate/ caprate and polysorbate 80). Phase behavior, structural inversion and microemulsion solubilization potential for sertaconazole nitrate and adapalene were found to be highly dependent on the surfactants structure and HLB value. Performed characterization (polarized light microscopy, pH, electrical conductivity, rheological, FTIR and DSC measurements) indicated a formulation containing glycereth- 7-caprylate/caprate as suitable for incorporation of both drugs, whereas alkyl polyglucoside-based systems did not exhibit satisfying solubilization capacity for sertaconazole nitrate. Further, monitored parameters were strongly affected by sertaconazole nitrate incorporation, while they remained almost unchanged in adapalene-loaded vehicles. In addition, results of the in vivo skin performance study supported acceptable tolerability for all investigated formulations, suggesting selected microemulsions as promising carriers worth exploring further for effective skin delivery of model drugs.

  19. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds

    PubMed Central

    Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B.

    2015-01-01

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids. PMID:25969557

  20. Susceptibility of Salmonella enterica Isolates from Tomato Farm Environments to Fatty Acids Naturally Found on Tomato Fruit.

    PubMed

    Dev Kumar, Govindaraj; Micallef, Shirley A

    2017-05-01

    Salmonella enterica subsp. enterica can colonize tomato fruit as it interacts with fruit surface compounds. The exometabolome of tomato fruit contains a mixture of compounds, including fatty acids, which could affect Salmonella fitness. Fatty acids detected in fruit exudates were investigated for Salmonella inhibition. Pelargonic, lauric, myristic, palmitic, margaric, stearic, and oleic acids were suspended in water dissolved in dimethyl sulfoxide (DMSO) or emulsified in water and quillaja saponin to assess how bioavailability impacted Salmonella growth. The minimum inhibitory concentrations of fatty acids were determined using a resazurin assay. Quillaja saponin emulsion and DMSO solution of pelargonic acid were inhibitory to Salmonella at 31.25 mM. Lauric and myristic acid emulsions inhibited growth at 1 M concentrations in quillaja emulsions and 62.5 mM in DMSO. Lauric and myristic acids significantly affected growth of Salmonella Newport, Javiana, and Typhimurium (p ≤ 0.05). Growth curve analysis using the Baranyi model revealed reduced maxima populations for all treatments (p ≤ 0.001) and shorter lag phase durations for Salmonella Newport with lauric acid (p < 0.01) and Salmonella Javiana with lauric (p < 0.001) and myristic (p < 0.001) acids. Salmonella Newport and Javiana exhibited an accelerated growth rate with lauric acid (p < 0.001) as a result of early stationary phase transition (shorter log phase). In myristic acid-amended media, Salmonella Javiana also displayed a faster growth rate (p < 0.001). Pelargonic acid (31.25 mM) treatment of Salmonella cells resulted in a drop in culturable cells to below detection in an hour. Microscopic analysis with Cyto-dye and propidium iodide of bacterial cells treated with pelargonic acid indicated a mixture of live and dead cells, with cell lysis of some cells. A subset of cells exhibited elongation-possibly indicating filament formation, a known antibiotic stress response

  1. Development of HIV-1 Rectal-Specific Microbicides and Colonic Tissue Evaluation

    PubMed Central

    Dezzutti, Charlene S.; Russo, Julie; Wang, Lin; Abebe, Kaleab Z.; Li, Jie; Friend, David R.; McGowan, Ian M.; Rohan, Lisa C.

    2014-01-01

    The gastrointestinal tract is structurally and functionally different from the vagina. Thus, the paradigm of topical microbicide development and evaluation has evolved to include rectal microbicides (RMs). Our interest was to create unique RM formulations to safely and effectively deliver antiretroviral drugs to mucosal tissue. RMs were designed to include those that spread and coat all surfaces of the rectum and distal colon rapidly (liquid) and those that create a deformable, erodible barrier and remain localized at the administration site (gel). Tenofovir (TFV) (1%) was formulated as an aqueous thermoreversible fluid and a carbopol-based aqueous hydrogel. Lipid-based liquid and gel formulations were prepared for UC781 (0.1%) using isopropyl myristate and GTCC (Caprylic/Capric Triglycerides), respectively. Formulations were characterized for pH, viscosity, osmolality, and drug content. Pre-clinical testing incorporated ex vivo colonic tissue obtained through surgical resections and flexible sigmoidoscopy (flex sig). As this was the first time using tissue from both sources side-by-side, the ability to replicate HIV-1 was compared. Efficacy of the RM formulations was tested by applying the products with HIV-1 directly to polarized colonic tissue and following viral replication. Safety of the formulations was determined by MTT assay and histology. All products had a neutral pH and were isoosmolar. While HIV-1BaL and HIV-1JR-CSF alone and in the presence of semen had similar replication trends between surgically resected and flex sig tissues, the magnitude of viral replication was significantly better in flex sig tissues. Both TFV and UC781 formulations protected the colonic tissue, regardless of tissue source, from HIV-1 and retained tissue viability and architecture. Our in vitro and ex vivo results show successful formulation of unique RMs. Moreover, the results of flex sig and surgically resected tissues were comparable suggesting the incorporation of both in

  2. The Effect of Gestational and Lactational Age on the Human Milk Metabolome

    PubMed Central

    Sundekilde, Ulrik K.; Downey, Eimear; O’Mahony, James A.; O’Shea, Carol-Anne; Ryan, C. Anthony; Kelly, Alan L.; Bertram, Hanne C.

    2016-01-01

    Human milk is the ideal nutrition source for healthy infants during the first six months of life and a detailed characterisation of the composition of milk from mothers that deliver prematurely (<37 weeks gestation), and of how human milk changes during lactation, would benefit our understanding of the nutritional requirements of premature infants. Individual milk samples from mothers delivering prematurely and at term were collected. The human milk metabolome, established by nuclear magnetic resonance (NMR) spectroscopy, was influenced by gestational and lactation age. Metabolite profiling identified that levels of valine, leucine, betaine, and creatinine were increased in colostrum from term mothers compared with mature milk, while those of glutamate, caprylate, and caprate were increased in mature term milk compared with colostrum. Levels of oligosaccharides, citrate, and creatinine were increased in pre-term colostrum, while those of caprylate, caprate, valine, leucine, glutamate, and pantothenate increased with time postpartum. There were differences between pre-term and full-term milk in the levels of carnitine, caprylate, caprate, pantothenate, urea, lactose, oligosaccharides, citrate, phosphocholine, choline, and formate. These findings suggest that the metabolome of pre-term milk changes within 5–7 weeks postpartum to resemble that of term milk, independent of time of gestation at pre-mature delivery. PMID:27213440

  3. The Effect of Gestational and Lactational Age on the Human Milk Metabolome.

    PubMed

    Sundekilde, Ulrik K; Downey, Eimear; O'Mahony, James A; O'Shea, Carol-Anne; Ryan, C Anthony; Kelly, Alan L; Bertram, Hanne C

    2016-05-19

    Human milk is the ideal nutrition source for healthy infants during the first six months of life and a detailed characterisation of the composition of milk from mothers that deliver prematurely (<37 weeks gestation), and of how human milk changes during lactation, would benefit our understanding of the nutritional requirements of premature infants. Individual milk samples from mothers delivering prematurely and at term were collected. The human milk metabolome, established by nuclear magnetic resonance (NMR) spectroscopy, was influenced by gestational and lactation age. Metabolite profiling identified that levels of valine, leucine, betaine, and creatinine were increased in colostrum from term mothers compared with mature milk, while those of glutamate, caprylate, and caprate were increased in mature term milk compared with colostrum. Levels of oligosaccharides, citrate, and creatinine were increased in pre-term colostrum, while those of caprylate, caprate, valine, leucine, glutamate, and pantothenate increased with time postpartum. There were differences between pre-term and full-term milk in the levels of carnitine, caprylate, caprate, pantothenate, urea, lactose, oligosaccharides, citrate, phosphocholine, choline, and formate. These findings suggest that the metabolome of pre-term milk changes within 5-7 weeks postpartum to resemble that of term milk, independent of time of gestation at pre-mature delivery.

  4. Non-Cell-Autonomous Regulation of Root Hair Patterning Genes by WRKY75 in Arabidopsis1[W

    PubMed Central

    Rishmawi, Louai; Pesch, Martina; Juengst, Christian; Schauss, Astrid C.; Schrader, Andrea; Hülskamp, Martin

    2014-01-01

    In Arabidopsis (Arabidopsis thaliana), root hairs are formed in cell files over the cleft of underlying cortex cells. This pattern is established by a well-known gene regulatory network of transcription factors. In this study, we show that WRKY75 suppresses root hair development in nonroot hair files and that it represses the expression of TRIPTYCHON and CAPRICE. The WRKY75 protein binds to the CAPRICE promoter in a yeast one-hybrid assay. Binding to the promoter fragment requires an intact WRKY protein-binding motif, the W box. A comparison of the spatial expression of WRKY75 and the localization of the WRKY75 protein revealed that WRKY75 is expressed in the pericycle and vascular tissue and that the WRKY75 RNA or protein moves into the epidermis. PMID:24676857

  5. 21 CFR 184.1025 - Caprylic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fermentation and fractional distillation of the volatile fatty acids present in coconut oil. (b) The ingredient....005 percent for fats and oils as defined in § 170.3(n)(12) of this chapter, for frozen dairy desserts...

  6. 21 CFR 184.1025 - Caprylic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... fermentation and fractional distillation of the volatile fatty acids present in coconut oil. (b) The ingredient....005 percent for fats and oils as defined in § 170.3(n)(12) of this chapter, for frozen dairy desserts...

  7. 21 CFR 184.1025 - Caprylic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... fermentation and fractional distillation of the volatile fatty acids present in coconut oil. (b) The ingredient....005 percent for fats and oils as defined in § 170.3(n)(12) of this chapter, for frozen dairy desserts...

  8. 21 CFR 184.1025 - Caprylic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... distillation of the volatile fatty acids present in coconut oil. (b) The ingredient meets the specifications of... fats and oils as defined in § 170.3(n)(12) of this chapter, for frozen dairy desserts as defined in...

  9. Toward production of jet fuel functionality in oilseeds: identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds.

    PubMed

    Kim, Hae Jin; Silva, Jillian E; Vu, Hieu Sy; Mockaitis, Keithanne; Nam, Jeong-Won; Cahoon, Edgar B

    2015-07-01

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0-14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8-C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Quantification of Triacylglycerol Molecular Species in Edible Fats and Oils by Gas Chromatography-Flame Ionization Detector Using Correction Factors.

    PubMed

    Yoshinaga, Kazuaki; Obi, Junji; Nagai, Toshiharu; Iioka, Hiroyuki; Yoshida, Akihiko; Beppu, Fumiaki; Gotoh, Naohiro

    2017-03-01

    In the present study, the resolution parameters and correction factors (CFs) of triacylglycerol (TAG) standards were estimated by gas chromatography-flame ionization detector (GC-FID) to achieve the precise quantification of the TAG composition in edible fats and oils. Forty seven TAG standards comprising capric acid, lauric acid, myristic acid, pentadecanoic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, and/or linolenic acid were analyzed, and the CFs of these TAGs were obtained against tripentadecanoyl glycerol as the internal standard. The capillary column was Ultra ALLOY + -65 (30 m × 0.25 mm i.d., 0.10 μm thickness) and the column temperature was programmed to rise from 250°C to 360°C at 4°C/min and then hold for 25 min. The limit of detection (LOD) and limit of quantification (LOQ) values of the TAG standards were > 0.10 mg and > 0.32 mg per 100 mg fat and oil, respectively, except for LnLnLn, and the LOD and LOQ values of LnLnLn were 0.55 mg and 1.84 mg per 100 mg fat and oil, respectively. The CFs of TAG standards decreased with increasing total acyl carbon number and degree of desaturation of TAG molecules. Also, there were no remarkable differences in the CFs between TAG positional isomers such as 1-palmitoyl-2-oleoyl-3-stearoyl-rac-glycerol, 1-stearoyl-2-palmitoyl-3-oleoyl-rac-glycerol, and 1-palmitoyl-2-stearoyl-3-oleoyl-rac-glycerol, which cannot be separated by GC-FID. Furthermore, this method was able to predict the CFs of heterogeneous (AAB- and ABC-type) TAGs from the CFs of homogenous (AAA-, BBB-, and CCC-type) TAGs. In addition, the TAG composition in cocoa butter, palm oil, and canola oil was determined using CFs, and the results were found to be in good agreement with those reported in the literature. Therefore, the GC-FID method using CFs can be successfully used for the quantification of TAG molecular species in natural fats and oils.

  11. Toward production of jet fuel functionality in oilseeds: Identification of FatB acyl-acyl carrier protein thioesterases and evaluation of combinatorial expression strategies in Camelina seeds

    DOE PAGES

    Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy; ...

    2015-05-11

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs ( CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seedsmore » and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Here, Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hae Jin; Silva, Jillian E.; Vu, Hieu Sy

    Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0–14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs ( CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seedsmore » and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8–C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina β-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Here, Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.« less

  13. Lauroyl-L-aspartate decreased food intake and body temperature in neonatal chicks.

    PubMed

    Erwan, E; Chowdhury, V S; Ito, K; Furuse, M

    2013-11-15

    We hypothesized that the effects of L- and D-amino acids might be influenced when conjugated with fatty acid. Thus, the effects of oral administration of lauroyl-L-aspartate (Lau-L-Asp) as well as lauroyl-D-aspartate (Lau-D-Asp) were examined. In Experiment 1, oral administration of both Lau-L-Asp and Lau-D-Asp decreased food intake while L- or D-Asp did not influence food intake. Interestingly, only Lau-L-Asp decreased body temperature. Experiment 2 was conducted to determine whether non-conjugated mixture of L-Asp plus lauric acid has same effects under ad libitum feeding conditions. Lau-L-Asp decreased food intake and body temperature, but L-Asp plus lauric acid did not show any effect studied. In Experiment 3, we found that Lau-L-Asp declined food intake as well as time-dependently suppressed the body temperature in fasted chicks. However, L-Asp plus lauric acid did not show any effect. These results suggest that Lau-L-Asp may exert anorexigenic and hypothermic actions in chicks. © 2013.

  14. Diets high in palmitic acid (16:0), lauric and myristic acids (12:0 + 14:0), or oleic acid (18:1) do not alter postprandial or fasting plasma homocysteine and inflammatory markers in healthy Malaysian adults.

    PubMed

    Voon, Phooi Tee; Ng, Tony Kock Wai; Lee, Verna Kar Mun; Nesaretnam, Kalanithi

    2011-12-01

    Dietary fat type is known to modulate the plasma lipid profile, but its effects on plasma homocysteine and inflammatory markers are unclear. We investigated the effects of high-protein Malaysian diets prepared with palm olein, coconut oil (CO), or virgin olive oil on plasma homocysteine and selected markers of inflammation and cardiovascular disease (CVD) in healthy adults. A randomized-crossover intervention with 3 dietary sequences of 5 wk each was conducted in 45 healthy subjects. The 3 test fats, namely palmitic acid (16:0)-rich palm olein (PO), lauric and myristic acid (12:0 + 14:0)-rich CO, and oleic acid (18:1)-rich virgin olive oil (OO), were incorporated at two-thirds of 30% fat calories into high-protein Malaysian diets. No significant differences were observed in the effects of the 3 diets on plasma total homocysteine (tHcy) and the inflammatory markers TNF-α, IL-1β, IL-6, and IL-8, high-sensitivity C-reactive protein, and interferon-γ. Diets prepared with PO and OO had comparable nonhypercholesterolemic effects; the postprandial total cholesterol for both diets and all fasting lipid indexes for the OO diet were significantly lower (P < 0.05) than for the CO diet. Unlike the PO and OO diets, the CO diet was shown to decrease postprandial lipoprotein(a). Diets that were rich in saturated fatty acids prepared with either PO or CO, and an OO diet that was high in oleic acid, did not alter postprandial or fasting plasma concentrations of tHcy and selected inflammatory markers. This trial was registered at clinicaltrials.gov as NCT00941837.

  15. A comparative evaluation of six principal IgY antibody extraction methods.

    PubMed

    Ren, Hao; Yang, Wenjing; Thirumalai, Diraviyam; Zhang, Xiaoying; Schade, Rüdiger

    2016-03-01

    Egg yolk has been considered a promising source of antibodies. Our study was designed to compare six principal IgY extraction methods (water dilution, polyethylene glycol [PEG] precipitation, caprylic acid extraction, chloroform extraction, phenol extraction, and carrageenan extraction), and to assess their relative extraction efficiencies and the purity of the resulting antibodies. The results showed that the organic solvents (chloroform or phenol) minimised the lipid ratio in the egg yolk. The water dilution, PEG precipitation and caprylic acid extraction methods resulted in high yields, and antibodies purified with PEG and carrageenan exhibited high purity. Our results indicate that phenol extraction would be more suitable for preparing high concentrations of IgY for non-therapeutic usage, while the water dilution and carrageenan extraction methods would be more appropriate for use in the preparation of IgY for oral administration. 2016 FRAME.

  16. 21 CFR 582.60 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (benzoic aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde). Citral (2,6-dimethyloctadien-2,6-al-8, geranial, neral). Decanal (N-decylaldhehyde, capraldehyde, capric aldehyde, caprinaldehyde, aldehyde C-10). Diacetyl (2,3-butandeione). Ethyl acetate. Ethyl...

  17. 21 CFR 582.60 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (benzoic aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde). Citral (2,6-dimethyloctadien-2,6-al-8, geranial, neral). Decanal (N-decylaldhehyde, capraldehyde, capric aldehyde, caprinaldehyde, aldehyde C-10). Diacetyl (2,3-butandeione). Ethyl acetate. Ethyl...

  18. 21 CFR 582.60 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (benzoic aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde). Citral (2,6-dimethyloctadien-2,6-al-8, geranial, neral). Decanal (N-decylaldhehyde, capraldehyde, capric aldehyde, caprinaldehyde, aldehyde C-10). Diacetyl (2,3-butandeione). Ethyl acetate. Ethyl...

  19. 21 CFR 582.60 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (benzoic aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde). Citral (2,6-dimethyloctadien-2,6-al-8, geranial, neral). Decanal (N-decylaldhehyde, capraldehyde, capric aldehyde, caprinaldehyde, aldehyde C-10). Diacetyl (2,3-butandeione). Ethyl acetate. Ethyl...

  20. 21 CFR 582.60 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (benzoic aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde). Citral (2,6-dimethyloctadien-2,6-al-8, geranial, neral). Decanal (N-decylaldhehyde, capraldehyde, capric aldehyde, caprinaldehyde, aldehyde C-10). Diacetyl (2,3-butandeione). Ethyl acetate. Ethyl...

  1. 5 Steps to Responsible E-Waste Management at Your School

    ERIC Educational Resources Information Center

    Lawless, Caprice

    2008-01-01

    Demand for environmentally responsible stewardship is increasing, and the education technology sector is responding. Former L&L Senior Editor Caprice Lawless offers an overview of local and national e-waste legislation and resources for related classroom projects. (Contains 3 resources and 13 online resources.)

  2. 21 CFR 182.60 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (parapropenyl anisole). Benzaldehyde (benzoic aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde). Citral (2,6-dimethyloctadien-2,6-al-8, gera-nial, neral). Decanal (N-decylaldehyde, capraldehyde, capric aldehyde, caprinaldehyde, aldehyde C-10). Ethyl acetate. Ethyl butyrate. 3...

  3. 21 CFR 182.60 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (parapropenyl anisole). Benzaldehyde (benzoic aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde). Citral (2,6-dimethyloctadien-2,6-al-8, gera-nial, neral). Decanal (N-decylaldehyde, capraldehyde, capric aldehyde, caprinaldehyde, aldehyde C-10). Ethyl acetate. Ethyl butyrate. 3...

  4. 21 CFR 182.60 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (parapropenyl anisole). Benzaldehyde (benzoic aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde). Citral (2,6-dimethyloctadien-2,6-al-8, gera-nial, neral). Decanal (N-decylaldehyde, capraldehyde, capric aldehyde, caprinaldehyde, aldehyde C-10). Ethyl acetate. Ethyl butyrate. 3...

  5. 21 CFR 182.60 - Synthetic flavoring substances and adjuvants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (parapropenyl anisole). Benzaldehyde (benzoic aldehyde). N-Butyric acid (butanoic acid). d- or l-Carvone (carvol). Cinnamaldehyde (cinnamic aldehyde). Citral (2,6-dimethyloctadien-2,6-al-8, gera-nial, neral). Decanal (N-decylaldehyde, capraldehyde, capric aldehyde, caprinaldehyde, aldehyde C-10). Ethyl acetate. Ethyl butyrate. 3...

  6. Pharmacologically relevant receptor binding characteristics and 5alpha-reductase inhibitory activity of free Fatty acids contained in saw palmetto extract.

    PubMed

    Abe, Masayuki; Ito, Yoshihiko; Oyunzul, Luvsandorj; Oki-Fujino, Tomomi; Yamada, Shizuo

    2009-04-01

    Saw palmetto extract (SPE), used widely for the treatment of benign prostatic hyperplasia (BPH) has been shown to bind alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine (1,4-DHP) calcium channel antagonist receptors. Major constituents of SPE are lauric acid, oleic acid, myristic acid, palmitic acid and linoleic acid. The aim of this study was to investigate binding affinities of these fatty acids for pharmacologically relevant (alpha(1)-adrenergic, muscarinic and 1,4-DHP) receptors. The fatty acids inhibited specific [(3)H]prazosin binding in rat brain in a concentration-dependent manner with IC(50) values of 23.8 to 136 microg/ml, and specific (+)-[(3)H]PN 200-110 binding with IC(50) values of 24.5 to 79.5 microg/ml. Also, lauric acid, oleic acid, myristic acid and linoleic acid inhibited specific [(3)H]N-methylscopolamine ([(3)H]NMS) binding in rat brain with IC(50) values of 56.4 to 169 microg/ml. Palmitic acid had no effect on specific [(3)H]NMS binding. The affinity of oleic acid, myristic acid and linoleic acid for each receptor was greater than the affinity of SPE. Scatchard analysis revealed that oleic acid and lauric acid caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]prazosin, [(3)H]NMS and (+)-[(3)H]PN 200-110. The results suggest that lauric acid and oleic acid bind noncompetitively to alpha(1)-adrenergic, muscarinic and 1,4-DHP calcium channel antagonist receptors. We developed a novel and convenient method of determining 5alpha-reductase activity using LC/MS. With this method, SPE was shown to inhibit 5alpha-reductase activity in rat liver with an IC(50) of 101 microg/ml. Similarly, all the fatty acids except palmitic acid inhibited 5alpha-reductase activity, with IC(50) values of 42.1 to 67.6 microg/ml. In conclusion, lauric acid, oleic acid, myristic acid, and linoleic acid, major constituents of SPE, exerted binding activities of alpha(1)-adrenergic, muscarinic and 1,4-DHP receptors and inhibited 5

  7. Enzymatic synthesis of farnesyl laurate in organic solvent: initial water activity, kinetics mechanism, optimization of continuous operation using packed bed reactor and mass transfer studies.

    PubMed

    Rahman, N K; Kamaruddin, A H; Uzir, M H

    2011-08-01

    The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V (max) = 5.80 mmol l(-1) min(-1) g enzyme(-1), K (m,A) = 0.70 mmol l(-1) g enzyme(-1), K (m,B) = 115.48 mmol l(-1) g enzyme(-1), K (i) = 11.25 mmol l(-1) g enzyme(-1). The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07 ± 0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited.

  8. Changes on expected taste perception of probiotic and conventional yogurts made from goat milk after rapidly repeated exposure.

    PubMed

    Costa, M P; Balthazar, C F; Franco, R M; Mársico, E T; Cruz, A G; Conte, C A

    2014-05-01

    Goat milk yogurt is an excellent source of fatty acids, protein, and minerals; however, it is not well accepted by many consumers, due to its typical flavor derived from caprylic, capric, and caproic acids present in this milk and dairy products. Recently, the repeated-exposure test has been used to increase the consumption of particular foods. This methodology has been used to increase children's willingness to eat food in some settings and has also been used to reduce sodium in soup. Based on these considerations, the aim of this study was to investigate whether repeated exposures may increase acceptance of both goat milk yogurt and probiotic goat milk yogurt. In a pre-exposure session, a total of 45 panelists (28 females and 17 males) from southeastern Brazil, who were not used to consuming dairy goat milk, evaluated the expected taste perception and the perceived liking after tasting 3 yogurt preparations. Then, consumers were randomly divided into 3 groups and participated in rapidly repeated exposure sessions performed within 6 d. Each panelist consumed only the yogurt that he or she would be exposed to. The day after the exposure sessions, all panelists returned to participate in the postexposure session and were asked to evaluate acceptance, familiarity, and the "goaty taste" characteristic of each yogurt. Regarding the expected liking before tasting, results showed higher expectations for cow milk yogurt compared with goat milk yogurt, which proved that consumers were not familiar with the goat milk yogurt. Likewise, only cow milk yogurt presented high acceptance and familiarity rates, confirming that these panelists were used to consuming cow milk products. With respect to the rapidly repeated exposure, 6 d were enough to significantly increase the consumers' familiarity with goat milk yogurt and probiotic goat milk yogurt. However, this method was not suitable to significantly increase the acceptance of such products. Nonetheless, a correlation existed

  9. A comparison of the metabolic fate of Fatty acids of different chain lengths in developing oilseeds.

    PubMed

    Battey, J F; Ohlrogge, J B

    1989-07-01

    To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates.

  10. A Comparison of the Metabolic Fate of Fatty Acids of Different Chain Lengths in Developing Oilseeds

    PubMed Central

    Battey, James F.; Ohlrogge, John B.

    1989-01-01

    To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates. PMID:16666885

  11. Isolation and pharmacological characterization of fatty acids from saw palmetto extract.

    PubMed

    Abe, Masayuki; Ito, Yoshihiko; Suzuki, Asahi; Onoue, Satomi; Noguchi, Hiroshi; Yamada, Shizuo

    2009-04-01

    Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary-tract symptoms secondary to benign prostatic hyperplasia. The mechanisms of pharmacological effects of SPE include the inhibition of 5alpha-reductase, anti-androgenic effects, anti-proliferative effects, and anti-inflammatory effects. Previously, we showed that SPE bound actively to alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine calcium channel (1,4-DHP) receptors in the prostate and bladder of rats, whereas its active constituents have not been fully clarified. The present investigation is aimed to identify the main active components contained in hexane and diethyl ether extracts of SPE with the use of column chromatography and preparative HPLC. Based on the binding activity with alpha(1)-adrenergic, muscarinic, and 1,4-DHP receptors, both isolated oleic and lauric acids were deduced to be active components. Authentic samples of oleic and lauric acids also exhibited similar binding activities to these receptors as the fatty acids isolated from SPE, consistent with our findings. In addition, oleic and lauric acids inhibited 5alpha-reductase, possibly leading to therapeutic effects against benign prostatic hyperplasia and related lower urinary-tract symptoms.

  12. Grades: Review of Academic Evaluations in Law Schools.

    ERIC Educational Resources Information Center

    Doniger, Thomas

    1980-01-01

    Lack of independent review process in professional schools and refusal of courts to review errors not resulting from arbitrariness, caprice, or bad faith leave student and societal interests in accurate grading inadequately protected. (Journal availability: University of the Pacific, 3201 Donner Way, Sacramento, CA 95817.) (MSE)

  13. 78 FR 68027 - Notification of Proposed Production Activity, Revlon Consumer Products Corporation, Subzone 93G...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ..., lauric acid, potassium sorbate, ethylene brassylate, copper gluconate, octinoxate, phenylenediamine..., cellulose, agarose, polymers, PVC, methyl methacrylate, and ethylene terapthalate (duty rate ranges from...

  14. Synthesis-Free Phase-Selective Gelator for Oil-Spill Remediation.

    PubMed

    Cui, Yaowen; Li, Mei-Chun; Wu, Qinglin; Pojman, John A; Kuroda, Daniel G

    2017-10-04

    A new deep eutectic solvent (DES) was developed as a phase-selective gelator for oil-spill remediation. The newly designed nonionic DES is based on a combination of an amide (N-methylacetamide) and a long chain carboxylic acid (lauric acid) and does not require any synthetic procedure besides mixing. Our studies show that the DES works as gelator by forming a gel between lauric acid and the hydrocarbon, whereas the amide serves to form the DES and dissolves in water during the gelation process. In addition, the DES material has gelation properties comparable to those considered as state-of-the-art. Overall, the newly developed material shows a promising future in oil recovery methodologies.

  15. Dehulling of Cuphea PSR23 Seeds to Reduce Color of the Extracted Oil

    USDA-ARS?s Scientific Manuscript database

    Oil extracted from the seeds Cuphea PSR23, a semi-domesticated, high-capric acid hybrid from C. viscosissima x C. lanceolata, by screw-pressing contained 200-360 ppm of chlorophyll. A high amount of bleaching clay was needed during refining to remove the chlorophyll in the oil. In this paper, dehu...

  16. 21 CFR 181.25 - Driers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... migrating from food-packaging material shall include: Cobalt caprylate. Cobalt linoleate. Cobalt naphthenate... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Driers. 181.25 Section 181.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) PRIOR-SANCTIONED FOOD...

  17. Enzymatic Synthesis of Structured Lipids using a Novel Cold-Active Lipase from Pichia lynferdii NRRL Y-7723

    USDA-ARS?s Scientific Manuscript database

    Structured lipids (SL) were synthesized by the acidolysis of borage oil with caprylic acid using lipases. Six commercial lipases from different sources and a novel lipase from Pichia lynferdii NRRL Y-7723 were screened for their acidolysis activities and Lipozyme RM IM and NRRL Y-7723 lipase were s...

  18. Pharmacokinetic characteristics of formulated alendronate transdermal delivery systems in rats and humans.

    PubMed

    Choi, Ahyoung; Gang, Hyesil; Whang, Jiae; Gwak, Hyesun

    2010-05-01

    The objective of this study was to examine the absorption of alendronate from formulated transdermal delivery systems in rats and humans. When alendronate was applied to rats by transdermal delivery systems (7.2 mg) and oral administration (30 mg/kg), a statistically significant difference was found in the amount remaining to be excreted at time t (Ae(t)) and the amount remaining to be excreted at time 0 (Ae(infinity)) (p < 0.01). The highest Ae(infinity) (1267.7+/-65.2 ng) was found in the formulation containing 6% caprylic acid in propylene glycol (PG), which was 5.4- and 2.0-times higher than the PG only formulation and oral administration, respectively. Compared to oral administration, significantly delayed half-life values were obtained from all the formulated transdermal delivery systems. There was a linear relationship (r(2) = 0.9854) between the drug loading dose and Ae(infinity). The Ae(infinity) values from the transdermal delivery system containing 6% caprylic acid (53.8 mg as alendronate) and an oral product (Fosamax), 70 mg as alendronate) in humans were 127.0 +/- 34.2 microg and 237.2 +/- 56.3 microg, respectively. The dose-adjusted relative Ae(infinity) ratio of the transdermal delivery system to oral product was calculated to be 69.7%. The long half-life of alendronate in the transdermal delivery system (50.6 +/- 6.4 h), compared to that of the oral product (3.5 +/- 1.1 h) could allow less-frequent dosing. In conclusion, this study showed that a transdermal delivery system containing 6% caprylic acid in PG could be a favorable alternative for alendronate administration.

  19. Determination of drug and fatty acid binding capacity to pluronic f127 in microemulsions.

    PubMed

    James-Smith, Monica A; Shekhawat, Dushyant; Moudgil, Brij M; Shah, Dinesh O

    2007-02-13

    We propose that one can deduce very insightful information regarding the drug and fatty acid binding capacity of microemulsions through simple turbidity experiments. Pluronic F127-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated amitriptyline, an antidepressant drug. We observed that, above certain Pluronic F127 concentrations, turbidity was never observed, irrespective of how much amitriptyline was added to the microemulsion. We also observed that whenever sodium caprylate fatty acid was not included in the microemulsion formulation, turbidity never occurred. On the basis of these findings, we were able to determine the point at which all sodium caprylate present in the microemulsion formulation was bound to the F127 in the microemulsion (i.e., no fatty acid was free in the bulk in monomer form). By the same logic we were also able to determine how much amitriptyline was binding to the microemulsions. We also measured the dynamic surface tension, foamability, and fabric wetting time of the microemulsion formulations to further prove the hypothesis that all fatty acid is bound to the F127 in the microemulsion above a critical Pluronic F127 concentration. On the basis of this research, we have concluded that there are approximately 11 molecules of sodium caprylate fatty acid bound per molecule of Pluronic F127 and approximately 12 molecules of amitriptyline bound per molecule of Pluronic F127 in the optimal microemulsion formulation. These findings give us valuable information about the charge density at the oil/water interface and about the mechanism of binding of the drug to the microemulsion.

  20. Influence of chain length and unsaturation on the effects of fatty acids on phosphoglyceride biosynthesis in isolated rat and pig hepatocytes.

    PubMed

    Akesson, B; Sundler, R; Nilsson, A

    1976-03-16

    Hepatocytes isolated from rat or pig by collagenase perfusion were incubated with [3H]glcyerol and different albumin-bount fatty acids. Among C22 fatty acids docosahexaenoic acid stimulated phosphatidylethanolamine synthesis in rat hepatocytes most effectively. Addition of docosahexaenoic acid plus either palmitic or stearic acid resulted almost in the same stimulation whereas combinations of this acid with lauric or myristic acid had no effect. Lauric acid and myristic acid alone inhibited phosphatidylethanolamine synthesis. The chain length specificity for monoenoic fatty acids was similar, the hexadecenoic and octadecenoic acids (both cis and trans) being most stimulatory. The addition of 0.2 mM ethanolamine markedly stimulated phosphatidylethanolamine synthesis, but most effects of fatty acids were similar in its presence or absence.

  1. The Cosmic-Ray Antiproton Flux between 3 and 49 GeV

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Bergström, D.; Carlson, P.; Francke, T.; Grinstein, S.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Stephens, S. A.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Vannuccini, E.; Bartalucci, S.; Ricci, M.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.

    2001-11-01

    We report on a new measurement of the cosmic ray antiproton spectrum. The data were collected by the balloon-borne experiment CAPRICE98, which was flown on 1998 May 28-29 from Fort Sumner, New Mexico. The experiment used the NMSU-WiZard/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov (RICH) detector, a time-of-flight system, a tracking device consisting of drift chambers and a superconducting magnet, and a silicon-tungsten calorimeter. The RICH detector was the first ever flown capable of mass-resolving charge-one particles at energies above 5 GeV. A total of 31 antiprotons with rigidities between 4 and 50 GV at the spectrometer were identified with small backgrounds from other particles. The absolute antiproton energy spectrum was determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV. We found that the observed antiproton spectrum and the antiproton-to-proton ratio are consistent with a pure secondary origin. However, a primary component may not be excluded.

  2. Effect of additives on isothermal crystallization kinetics and physical characteristics of coconut oil.

    PubMed

    Chaleepa, Kesarin; Szepes, Anikó; Ulrich, Joachim

    2010-05-01

    The effect of lauric acid and low-HLB sucrose esters (L-195, S170) on the isothermal crystallization of coconut oil was investigated by differential scanning calorimetry. The fundamental crystallization parameters, such as induction time of nucleation and crystallization rate, were obtained by using the Gompertz equation. The Gibb's free energy of nucleation was calculated via the Fisher-Turnbull equation based on the equilibrium melting temperature. All additives, investigated in this work, proved to have an inhibition effect on nucleation and crystallization kinetics of coconut oil. Our results revealed that the inhibition effect is related to the dissimilarity of the molecular characteristics between coconut oil and the additives. The equilibrium melting temperature (T(m) degrees ) of the coconut oil-additive mixtures estimated by the Hoffman-Weeks method was decreased with the addition of lauric acid and increased by using sucrose esters as additives. Micrographs showing simultaneous crystallization of coconut oil and lauric acid indicated that strong molecular interaction led to the increase in lamellar thickness resulting in the T(m) degrees depression of coconut oil. The addition of L-195 modified the crystal morphology of coconut oil into large, dense, non-porous crystals without altering the polymorphic occurrence of coconut oil. The enhancement in lamellar thickness and crystal perfection supported the T(m) degrees elevation of coconut oil. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil.

    PubMed

    Kumar, S Naresh

    2011-12-28

    Coconut oil, the main product of coconut fruit, is the richest source of glycerol and lauric acid and hence is called lauric oil. This paper reports the fatty acid profile of oil from 60 Talls, 14 Dwarfs, and 34 hybrids. These include collections from 13 countries covering a large coconut-growing area of the world, apart from the indigenous ones. Capillary gas chromatography analysis of oil indicated a wider variation for the fatty acid profile than earlier reported. Apart from this, for the first time other fatty acids such as behenic and lignoceric acids were detected. Oil from cultivars and hybrids of coconut has significantly differed, particularly for commercially important fatty acids such as lauric acid and unsaturated fatty acids. However, coconut oil seems to have a conserved fatty acid profile, mainly because of low unsaturated fatty acids, indicating the possibility of grouping cultivars on the basis of their fatty acid profiles. The cluster analysis based on fatty acid profile indicated grouping together of geographically and typically closely related cultivars. Cultivars with high concentrations of specific fatty acids can be of potential use for industrial exploitation, whereas those with high concentrations of short- and medium-chain fatty acids and unsaturated fatty acids are more suitable for human consumption. Cultivars and hybrids with high and low values for each of the fatty acids are also identified.

  4. Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination.

    PubMed

    Brandt, Alex L; Castillo, Alejandro; Harris, Kerri B; Keeton, Jimmy T; Hardin, Margaret D; Taylor, Thomas M

    2010-01-01

    Combining food antimicrobials can enhance inhibition of Listeria monocytogenes in ready-to-eat (RTE) meats. A broth dilution assay was used to compare the inhibition of L. monocytogenes resulting from exposure to nisin, acidic calcium sulfate, ε-poly-L-lysine, and lauric arginate ester applied singly and in combination. Minimum inhibitory concentrations (MICs) were the lowest concentrations of single antimicrobials producing inhibition following 24 h incubation at 35 °C. Minimum bactericidal concentrations (MBCs) were the lowest concentrations that decreased populations by ≥3.0 log(10) CFU/mL. Combinations of nisin with acidic calcium sulfate, nisin with lauric arginate ester, and ɛ-poly-L-lysine with acidic calcium sulfate were prepared using a checkerboard assay to determine optimal inhibitory combinations (OICs). Fractional inhibitory concentrations (FICs) were calculated from OICs and were used to create FIC indices (FIC(I)s) and isobolograms to classify combinations as synergistic (FIC(I) < 1.00), additive/indifferent (FIC(I)= 1.00), or antagonistic (FIC(I) > 1.00). MIC values for nisin ranged from 3.13 to 6.25 μg/g with MBC values at 6.25 μg/g for all strains except for Natl. Animal Disease Center (NADC) 2045. MIC values for ε-poly-L-lysine ranged from 6.25 to 12.50 μg/g with MBCs from 12.50 to 25.00 μg/g. Lauric arginate ester at 12.50 μg/g was the MIC and MBC for all strains; 12.50 mL/L was the MIC and MBC for acidic calcium sulfate. Combining nisin with acidic calcium sulfate synergistically inhibited L. monocytogenes; nisin with lauric arginate ester produced additive-type inhibition, while ε-poly-L-lysine with acidic calcium sulfate produced antagonistic-type inhibition. Applying nisin along with acidic calcium sulfate should be further investigated for efficacy on RTE meat surfaces. © 2010 Institute of Food Technologists®

  5. Safety evaluation of a medium- and long-chain triacylglycerol oil produced from medium-chain triacylglycerols and edible vegetable oil.

    PubMed

    Matulka, R A; Noguchi, O; Nosaka, N

    2006-09-01

    To reduce the incorporation of dietary lipids into adipose tissue, modified fats and oils have been developed, such as medium-chain triacylglycerols (MCT). Typical dietary lipids from vegetable oils, termed long-chain triacylglycerols (LCT), are degraded by salivary, intestinal and pancreatic lipases into two fatty acids and a monoacyl glycerol; whereas, MCT are degraded by the same enzymes into three fatty acids and the simple glycerol backbone. Medium-chain fatty acids (MCFA) are readily absorbed from the small intestine directly into the bloodstream and transported to the liver for hepatic metabolism, while long-chain fatty acids (LCFA) are incorporated into chylomicrons and enter the lymphatic system. MCFA are readily broken down to carbon dioxide and two-carbon fragments, while LCFA are re-esterified to triacylglycerols and either metabolized for energy or stored in adipose tissue. Therefore, consumption of MCT decreases the incorporation of fatty acids into adipose tissue. However, MCT have technological disadvantages precluding their use in many food applications. A possible resolution is the manufacture and use of a triacylglycerol containing both LCT and MCT, termed medium- and long-chain triacylglycerol (MLCT). This manuscript describes studies performed for the safety evaluation of a MLCT oil enzymatically produced from MCT and edible vegetable oil (containing LCT), by a transesterification process. The approximate fatty acid composition of this MLCT consists of caprylic acid (9.7%), capric acid (3.3%), palmitic acid (3.8%), stearic acid (1.7%), oleic acid (51.2%), linoleic acid (18.4%), linolenic acid (9.0%), and other fatty acids (2.9%). The approximate percentages of long (L) and medium (M) fatty acids in the triacylglyerols are as follows: L, L, L (55.1%), L, L, M (35.2%), L, M, M (9.1%), and M, M, M (0.6%). The studies included: (1) acute study in rats (LD50>5000 mg/kg); (2) 6 week repeat-dose safety study via dietary administration to rats (NOAEL

  6. Inactivation of Escherichia coli O157:H7, Salmonella typhimurium DT104, and Listeria monocytogenes on inoculated alfalfa seeds with a fatty acid-based sanitizer.

    PubMed

    Pierre, Pascale M; Ryser, Elliot T

    2006-03-01

    Alfalfa seeds were inoculated with a three-strain cocktail of Escherichia coli O157:H7, Salmonella enterica subsp. enterica serovar Typhimurium DT104, or Listeria monocytogenes by immersion to contain approximately 6 to 8 log CFU/g and then treated with a fatty acid-based sanitizer containing 250 ppm of peroxyacid, 1,000 ppm of caprylic and capric acids (Emery 658), 1,000 ppm of lactic acid, and 500 ppm of glycerol monolaurate at a reference concentration of 1X. Inoculated seeds were immersed at sanitizer concentrations of 5X, 10X, and 15X for 1, 3, 5, and 10 min and then assessed for pathogen survivors by direct plating. The lowest concentration that decreased all three pathogens by >5 log was 15. After a 3-min exposure to the 15X concentration, populations of E. coli O157:H7, Salmonella Typhimurium DT104, and L. monocytogenes decreased by >5.45, >5.62, and >6.92 log, respectively, with no sublethal injury and no significant loss in seed germination rate or final sprout yield. The components of this 15x concentration (treatment A) were assessed independently and in various combinations to optimize antimicrobial activity. With inoculated seeds, treatment C (15,000 ppm of Emery 658, 15,000 ppm of lactic acid, and 7,500 ppm of glycerol monolaurate) decreased Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes by 6.23 and 5.57 log, 4.77 and 6.29 log, and 3.86 and 4.21 log after 3 and 5 min of exposure, respectively. Treatment D (15,000 ppm of Emery 658 and 15,000 ppm of lactic acid) reduced Salmonella Typhimurium by >6.90 log regardless of exposure time and E. coli )157:H7 and L. monocytogenes by 4.60 and >5.18 log and 3.55 and 3.14 log after 3 and 5 min, respectively. No significant differences (P > 0.05) were found between treatments A, C, and D. Overall, treatment D, which contained Emery 658 and lactic acid as active ingredients, reduced E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes populations by 3.55 to >6.90 log and may provide a

  7. Association for Academic Surgery presidential address: sticky floors and glass ceilings.

    PubMed

    Greenberg, Caprice C

    2017-11-01

    This 2017 Presidential Address for the Association for Academic Surgery was delivered on February 8, 2017. It addresses the difficult topic of gender disparities in surgery. Mixing empirical data with personal anecdotes, Dr. Caprice Greenberg provides an insightful overview of this difficult challenge facing the surgical discipline and practical advice on how we can begin to address it. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Transesterification of plant oils using Staphylococcus haemolyticus L62 lipase displayed on Escherichia coli cell surface using the OmpA signal peptide and EstAβ8 anchoring motif.

    PubMed

    Jo, Jin Chul; Kim, Soon-Ja; Kim, Hyung Kwoun

    2014-12-01

    Staphylococcus haemolyticus L62 (SHL62) lipase was displayed on the outer membrane of Escherichia coli using the OmpA signal peptide and the autotransporter EstAβ8 protein. Localization of SHL62 lipase on the outer membrane of E. coli was confirmed using immunofluorescence microscopy and flow cytometry analysis. Lipase activity of the displayed SHL62 lipase was also measured using spectrophotometry and pH titration. SHL62 lipase activity of whole cells reached 2.0U/ml culture (OD600nm of 10) when it was measured by the p-nitrophenyl caprylate assay after being induced with 1mM IPTG for 24h. The optimum temperature and pH for the lipase was 45°C and 10, respectively. Furthermore, it maintained more than 90% of maximum lipase activity at up to 50°C and in a pH range of 5-9. The hydrolytic activity assay conduted with various substrates confirmed that p-nitrophenyl caprylate and corn oil were preferred substrates among various synthetic and natural substrates, respectively. The displayed SHL62 lipase produced fatty acid esters from various alcohols and plant oils through transesterification. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Safety concerns over the use of intestinal permeation enhancers: A mini-review.

    PubMed

    McCartney, Fiona; Gleeson, John P; Brayden, David J

    2016-01-01

    Intestinal permeation enhancers (PEs) are key components in ∼12 oral peptide formulations in clinical trials for a range of molecules, primarily insulin and glucagon-like-peptide 1 (GLP-1) analogs. The main PEs comprise medium chain fatty acid-based systems (sodium caprate, sodium caprylate, and N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC)), bile salts, acyl carnitines, and EDTA. Their mechanism of action is complex with subtle differences between the different molecules. With the exception of SNAC and EDTA, most PEs fluidize the plasma membrane causing plasma membrane perturbation, as well as enzymatic and intracellular mediator changes that lead to alteration of intestinal epithelial tight junction protein expression. The question arises as to whether PEs can cause irreversible epithelial damage and tight junction openings sufficient to permit co-absorption of payloads with bystander pathogens, lipopolysaccharides and its fragment, or exo- and endotoxins that may be associated with sepsis, inflammation and autoimmune conditions. Most PEs seem to cause membrane perturbation to varying extents that is rapidly reversible, and overall evidence of pathogen co-absorption is generally lacking. It is unknown however, whether the intestinal epithelial damage-repair cycle is sustained during repeat-dosing regimens for chronic therapy.

  10. Enzymatic Acylation of Anthocyanins Isolated from Alpine Bearberry ( Arctostaphylos alpina) and Lipophilic Properties, Thermostability, and Antioxidant Capacity of the Derivatives.

    PubMed

    Yang, Wei; Kortesniemi, Maaria; Yang, Baoru; Zheng, Jie

    2018-03-21

    Cyanidin-3- O-galactoside (cy-gal) isolated from alpine bearberry ( Arctostaphylos alpine L.) was enzymatically acylated with saturated fatty acids of different chain lengths with Candida antarctica lipase immobilized on acrylic resin (Novozyme 435). The acylation reaction was optimized by considering the reaction medium, acyl donor, substrate molar ratio, reaction temperature, and reaction time. The highest conversion yield of 73% was obtained by reacting cy-gal with lauric acid (molar ratio of 1:10) in tert-butanol at 60 °C for 72 h. A novel compound was synthesized, which was identified as cyanidin-3- O-(6″-dodecanoyl)galactoside by mass spectrometry and nuclear magnetic resonance. Introducing lauric acid into cy-gal significantly improved both the lipophilicity and thermostability and substantially preserved the ultraviolet-visible absorbance and antioxidant properties. The research provides important insight in expanding the application of natural anthocyanins in the cosmetic and food industries.

  11. USSR Report, Agriculture, No. 1375.

    DTIC Science & Technology

    1983-03-18

    The entire republic extended a helping hand to the Issy-Kul’ residents. Skiers established communications with shepherds who were cut off...sought in all areas of agricul- tural production. Each working day is marked by the mobilization of all forces, knowledge and experience for...amount of precipita- tion did not stop the grain growers. They counteracted the caprices of the weather with a profound knowledge of agrotechnology and

  12. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica.

    PubMed

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.

  13. Molecular Characterization of the Elaeis guineensis Medium-Chain Fatty Acid Diacylglycerol Acyltransferase DGAT1-1 by Heterologous Expression in Yarrowia lipolytica

    PubMed Central

    Aymé, Laure; Jolivet, Pascale; Nicaud, Jean-Marc; Chardot, Thierry

    2015-01-01

    Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics. PMID:26581109

  14. Antimicrobial edible coatings and films from micro-emulsions and their food applications

    USDA-ARS?s Scientific Manuscript database

    This study focused on the use of antimicrobial edible coatings and films from micro-emulsions to reduce populations of foodborne pathogens in foods. Corn-Bio-fiber gum (C-BFG) was used as an emulsifier with chitosan. Allyl isothiocyanate (AIT) and lauric arginate ester (LAE) served as antimicrobials...

  15. Films prepared from poly(vinyl alcohol) and amylose-fatty acid salt inclusion complexes with increased surface hydrophobicity and high elongation

    USDA-ARS?s Scientific Manuscript database

    In this study, water-soluble amylose-inclusion complexes were prepared from high amylose corn starch and sodium salts of lauric, palmitic, and stearic acid by steam jet cooking. Cast films were prepared by combining the amylose complexes with poly(vinyl alcohol)(PVOH) solution at ratios varying from...

  16. Surface activity of branched alkylamino-compounds and their influence on phase transfer behavior in water solutions of dyes

    NASA Astrophysics Data System (ADS)

    Li, Cuiqin; Guo, Suyue; Lin, Zhiyu; Wang, Jun; Ge, Tengjie

    2016-02-01

    Two branched alkylamino-compounds (AAC, R12-0.5G, and R12-1.0G), were synthesized from dodecylamine, methyl acrylate and ethylenediamine. The surface tension measurements on branched alkylamino- compounds demonstrated that surface activity of R12-1.0G is superior to that of R12-0.5G at 25°C. It has been found that the self-assembly of R12-1.0G and lauric acid formed by electrostatic interaction and the self-assembly of the molecule might transfer water-soluble dyes from water to toluene. These AAC might be applied for treating dyes in wastewater. The mass ratio of lauric to toluene, the concentration of R12-1.0G, and hydrophilic groups of dyes affected the transfer rate of the water-soluble dyes. The transfer rates of the watersoluble dyes by R12-1.0G were higher than that of 1.0G polyacrylamide-acrylamide.

  17. The WiZard Collaboration cosmic ray muon measurements in the atmosphere

    NASA Astrophysics Data System (ADS)

    Circella, M.; Ambriola, M. L.; Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bidoli, V.; Boezio, M.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; de Marzo, C. N.; de Pascale, M. P.; Finetti, N.; Francke, T.; Grinstein, S.; Hof, M.; Khalchukov, F.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Zampa, N.

    Balloon-borne experiments allow cosmic ray measurements to be performed over large ranges of atmospheric depths. The WiZard Collaboration is involved in a long-range investigation of the cosmic ray muon fluxes in the atmosphere. In this paper, we will discuss the relevance of such measurements to the atmospheric neutrino calculations and will review the results reported by the Collaboration, with particular emphasis on those coming from the latest flight CAPRICE98

  18. Fatty Acids Modulate Excitability in Guinea-Pig Hippocampal Slices

    DTIC Science & Technology

    1991-01-01

    141-147. 32. Taube J. S. and Schwartzkroin P . A . (1988) M .- hanisms of long-term potentiation: a current-source density analysis. J. Neurosci. 8, 1645...pyrami- given volley size to elicit a synaptic potential, while dale to record the resultant population postsynaptic poten- stearic acid (100 p M) and...population spike amplitude (0) and population PSP size ( A ) with exposure to 250 p M capric acid in a representative experiment. Synaptic potentials

  19. Application of a novel antimicrobial coating on roast beef for inactivation and inhibition of Listeria monocytogenes during storage

    USDA-ARS?s Scientific Manuscript database

    The antilisterial efficacy of novel coating solutions made with organic acids, lauric arginate ester, and chitosan was evaluated in a three-stage study on inoculated roast beef for the first time. Ready-to-eat roast beef was specially ordered from the manufacturer. The meat surface was inoculated wi...

  20. Antimicrobial polylactic acid packaging films against Listeria and Salmonella in culture medium and on ready-to-eat meat

    USDA-ARS?s Scientific Manuscript database

    The contamination of Listeria monocytogenes and Salmonella spp. in ready-to-eat (RTE) meat products has been a concern for the meat industry. In this study, edible chitosan-acid solutions incorporating lauric arginate ester (LAE), sodium lactate (NaL) and sorbic acid (SA) alone or in combinations we...

  1. 21 CFR 184.1505 - Mono- and diglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fatty acids include lauric, linoleic, myristic, oleic, palmitic, and stearic. Mono- and diglycerides are manufactured by the reaction of glycerin with fatty acids or the reaction of glycerin with triglycerides in the... fatty acids, and free glycerin that contains at least 90 percent-by-weight glycerides. (b) The...

  2. A Greener Approach for Measuring Colligative Properties

    ERIC Educational Resources Information Center

    McCarthy, Sean M.; Gordon-Wylie, Scott W.

    2005-01-01

    As a first step towards the greening of instructional laboratories, we present a new greener version of a laboratory procedure designed to measure colligative properties. The greener procedure substitutes the nontoxic, noncarcinogenic compounds stearic, myristic, lauric, and palmitic acids for the less benign aromatic compounds p-dichlorobenzene,…

  3. Solvent-free enzymatic synthesis of 1, 3-Diacylglycerols by direct esterification of glycerol with saturated fatty acids

    PubMed Central

    2013-01-01

    Background Pure 1, 3-diacylglycerols (1, 3-DAG) have been considered to be significant surfactants in food, cosmetics and pharmaceutical industries, as well as the effect on obesity prevention. Methods In this study, a vacuum-driven air bubbling operation mode was developed and evaluated for the enzymatic synthesis of 1, 3-DAG of saturated fatty acids, by direct esterification of glycerol with fatty acids in a solvent-free system. The employed vacuum-driven air bubbling operation mode was comparable to vacuum-driven N2 bubbling protocol, in terms of lauric acid conversion and 1, 3-dilaurin content. Results Some operation parameters were optimized, and 95.3% of lauric acid conversion and 80.3% of 1, 3-dilaurin content was obtained after 3-h reaction at 50°C, with 5 wt% of Lipozyme RM IM (based on reactants) amount. Of the lipases studied, both Lipozyme RM IM and Novozym 435 exhibited good performance in terms of lauric acid conversion. Lipozyme TL IM, however, showed low activity. Lipozyme RM IM showed good operational stability in this operation protocol, 80.2% of the original catalytic activity remained after 10 consecutive batch applications. Some other 1, 3-DAG were prepared and high content was obtained after purification: 98.5% for 1, 3-dicaprylin, 99.2% for 1, 3-dicaprin, 99.1% for 1, 3-dilaurin, 99.5 for 1, 3-dipalmitin and 99.4% for 1, 3-disterin. Conclusion The established vacuum-driven air bubbling operation protocol had been demonstrated to be a simple-operating, cost-effective, application practical and efficient methodology for 1, 3-DAG preparation. PMID:23656739

  4. Identification of light-independent inhibition of human immunodeficiency virus-1 infection through bioguided fractionation of Hypericum perforatum

    PubMed Central

    Maury, Wendy; Price, Jason P; Brindley, Melinda A; Oh, ChoonSeok; Neighbors, Jeffrey D; Wiemer, David F; Wills, Nickolas; Carpenter, Susan; Hauck, Cathy; Murphy, Patricia; Widrlechner, Mark P; Delate, Kathleen; Kumar, Ganesh; Kraus, George A; Rizshsky, Ludmila; Nikolau, Basil

    2009-01-01

    Background Light-dependent activities against enveloped viruses in St. John's Wort (Hypericum perforatum) extracts have been extensively studied. In contrast, light-independent antiviral activity from this species has not been investigated. Results Here, we identify the light-independent inhibition of human immunodeficiency virus-1 (HIV-1) by highly purified fractions of chloroform extracts of H. perforatum. Both cytotoxicity and antiviral activity were evident in initial chloroform extracts, but bioassay-guided fractionation produced fractions that inhibited HIV-1 with little to no cytotoxicity. Separation of these two biological activities has not been reported for constituents responsible for the light-dependent antiviral activities. Antiviral activity was associated with more polar subfractions. GC/MS analysis of the two most active subfractions identified 3-hydroxy lauric acid as predominant in one fraction and 3-hydroxy myristic acid as predominant in the other. Synthetic 3-hydroxy lauric acid inhibited HIV infectivity without cytotoxicity, suggesting that this modified fatty acid is likely responsible for observed antiviral activity present in that fraction. As production of 3-hydroxy fatty acids by plants remains controversial, H. perforatum seedlings were grown sterilely and evaluated for presence of 3-hydroxy fatty acids by GC/MS. Small quantities of some 3-hydroxy fatty acids were detected in sterile plants, whereas different 3-hydroxy fatty acids were detected in our chloroform extracts or field-grown material. Conclusion Through bioguided fractionation, we have identified that 3-hydroxy lauric acid found in field grown Hypericum perforatum has anti-HIV activity. This novel anti-HIV activity can be potentially developed into inexpensive therapies, expanding the current arsenal of anti-retroviral agents. PMID:19594941

  5. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis

    PubMed Central

    Sato, Mariana R; Oshiro Junior, João A; Machado, Rachel TA; de Souza, Paula C; Campos, Débora L; Pavan, Fernando R; da Silva, Patricia B; Chorilli, Marlus

    2017-01-01

    Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis. Cessation of treatment before the recommended conclusion may lead to the emergence of multidrug-resistant strains. The aim of this study was to develop nanostructured lipid carriers (NLCs) for use in the treatment of M. tuberculosis. The NLCs comprised the following lipid phase: 2.07% polyoxyethylene 40 stearate, 2.05% caprylic/capric triglyceride, and 0.88% polyoxyl 40 hydrogenated castor oil; the following aqueous phase: 3.50% poloxamer 407 (F1–F6), and 0.50% cetyltrimethylammonium bromide (F7–F12); and incorporated the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2), and [Cu(NCO)2(INH)2]·4H2O (3) to form compounds F11.1, F11.2, and F11.3, respectively. The mean diameter of F11, F11.1, F11.2, and F11.3 ranged from 111.27±21.86 to 134.25±22.72 nm, 90.27±12.97 to 116.46±9.17 nm, 112.4±10.22 to 149.3±15.82 nm, and 78.65±6.00 to 122.00±8.70 nm, respectively. The polydispersity index values for the NLCs ranged from 0.13±0.01 to 0.30±0.09. The NLCs showed significant changes in zeta potential, except for F11.2, with F11, F11.1, F11.2, and F11.3 ranging from 18.87±4.04 to 23.25±1.13 mV, 17.03±1.77 to 21.42±1.87 mV, 20.51±1.88 to 22.60±3.44 mV, and 17.80±1.96 to 25.25±7.78 mV, respectively. Atomic force microscopy confirmed the formation of nanoscale spherical particle dispersions by the NLCs. Differential scanning calorimetry determined the melting points of the constituents of the NLCs. The in vitro activity of copper(II) complex-loaded NLCs against M. tuberculosis H37Rv showed an improvement in the anti-TB activity of 55.4, 27.1, and 41.1 times the activity for complexes 1, 2, and 3, respectively. An in vivo acute toxicity study of complex-loaded NLCs demonstrated their reduced toxicity. The results suggest that NLCs may be a powerful tool to optimize the activity of copper(II) complexes against M. tuberculosis. PMID:28356717

  6. Evaluation of a novel antimicrobial solution and its potential for control E. coli O157:H7, non-O157:H7 shiga toxin-producing E. coli, Salmononella spp., and Listeria monocytogenes on beef

    USDA-ARS?s Scientific Manuscript database

    The goal of this study was to evaluate the efficacy of a novel antimicrobial solution made with chitosan, lauric arginate ester, and organic acids on Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and non-O157 shiga toxin-producing E. coli cocktails and to test its potential to b...

  7. Structural Characterization of Myotoxic Ecarpholin S From Echis carinatus Venom

    PubMed Central

    Zhou, Xingding; Tan, Tien-Chye; Valiyaveettil, S.; Go, Mei Lin; Kini, R. Manjunatha; Velazquez-Campoy, Adrian; Sivaraman, J.

    2008-01-01

    Phospholipase A2 (PLA2), a common toxic component of snake venom, has been implicated in various pharmacological effects. Ecarpholin S, isolated from the venom of the snake Echis carinatus sochureki, is a phospholipase A2 (PLA2) belonging to the Ser49-PLA2 subgroup. It has been characterized as having low enzymatic but potent myotoxic activities. The crystal structures of native ecarpholin S and its complexes with lauric acid, and its inhibitor suramin, were elucidated. This is the first report of the structure of a member of the Ser49-PLA2 subgroup. We also examined interactions of ecarpholin S with phosphatidylglycerol and lauric acid, using surface plasmon resonance, and of suramin with isothermal titration calorimetry. Most Ca2+-dependent PLA2 enzymes have Asp in position 49, which plays a crucial role in Ca2+ binding. The three-dimensional structure of ecarpholin S reveals a unique conformation of the Ca2+-binding loop that is not favorable for Ca2+ coordination. Furthermore, the endogenously bound fatty acid (lauric acid) in the hydrophobic channel may also interrupt the catalytic cycle. These two observations may account for the low enzymatic activity of ecarpholin S, despite full retention of the catalytic machinery. These observations may also be applicable to other non-Asp49-PLA2 enzymes. The interaction of suramin in its complex with ecarpholin S is quite different from that reported for the Lys49-PLA2/suramin complex, where the interfacial recognition face (i-face), C-terminal region, and N-terminal region of ecarpholin S play important roles. This study provides significant structural and functional insights into the myotoxic activity of ecarpholin S and, in general, of non-Asp49-PLA2 enzymes. PMID:18586854

  8. Structural Characterization of Myotoxic Ecarpholin S From Echis carinatus Venom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, X.; Tan, T; Valiyaveettil, S

    2008-01-01

    Phospholipase A2 (PLA2), a common toxic component of snake venom, has been implicated in various pharmacological effects. Ecarpholin S, isolated from the venom of the snake Echis carinatus sochureki, is a phospholipase A2 (PLA2) belonging to the Ser49-PLA2 subgroup. It has been characterized as having low enzymatic but potent myotoxic activities. The crystal structures of native ecarpholin S and its complexes with lauric acid, and its inhibitor suramin, were elucidated. This is the first report of the structure of a member of the Ser49-PLA2 subgroup. We also examined interactions of ecarpholin S with phosphatidylglycerol and lauric acid, using surface plasmonmore » resonance, and of suramin with isothermal titration calorimetry. Most Ca2+-dependent PLA2 enzymes have Asp in position 49, which plays a crucial role in Ca2+ binding. The three-dimensional structure of ecarpholin S reveals a unique conformation of the Ca2+-binding loop that is not favorable for Ca2+ coordination. Furthermore, the endogenously bound fatty acid (lauric acid) in the hydrophobic channel may also interrupt the catalytic cycle. These two observations may account for the low enzymatic activity of ecarpholin S, despite full retention of the catalytic machinery. These observations may also be applicable to other non-Asp49-PLA2 enzymes. The interaction of suramin in its complex with ecarpholin S is quite different from that reported for the Lys49-PLA2/suramin complex, where the interfacial recognition face (i-face), C-terminal region, and N-terminal region of ecarpholin S play important roles. This study provides significant structural and functional insights into the myotoxic activity of ecarpholin S and, in general, of non-Asp49-PLA2 enzymes.« less

  9. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    PubMed

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  10. Assessment of the impact of solvent/detergent treatment on the quality and potency of a whole IgG equine antivenom.

    PubMed

    Segura, Alvaro; León, Guillermo; Su, Chen-Yao; Gutiérrez, José-María; Burnouf, Thierry

    2009-10-01

    We have evaluated for the first time the impact of a solvent/detergent (S/D) treatment on the quality and in vivo neutralization potency of horse-derived whole IgG antivenom used in the treatment of viperid snake bite envenoming in Central America. The S/D treatment by 1% tri (n-butyl) phosphate (TnBP) - 1% Triton X-45 at 22-25 degrees C was applied either on starting plasma or on purified immunoglobulins. The S/D agents were removed from both fractions by extractions with oil. S/D-treated plasma was subjected to caprylic acid precipitation to purify the immunoglobulins. Products were formulated, sterile-filtered, and filled into 10-mL vials, stored at 5+/-3 degrees C, and subjected to routine quality controls, SDS-PAGE, determination of anti-Bothrops asper venom antibody titre by ELISA, in vivo B. asper venom-neutralization potency tests, and safety test, comparatively with an antivenom manufactured by caprylic acid fractionation without S/D treatment. Results indicate that these conditions of S/D treatment on purified immunoglobulin yielded an antivenom of high turbidity that induced weight loss in animals. In contrast, antivenom fractionated from the S/D-treated plasma had physico-chemical and biological characteristics indistinguishable from those of the non-S/D-treated antivenom. S/D treatment of horse plasma may be considered to increase the viral safety of antivenoms.

  11. The impact of vehicles on the mucoadhesive properties of orally administrated nanoparticles: a case study with chitosan-4-thiobutylamidine conjugate.

    PubMed

    Sakloetsakun, Duangkamon; Perera, Glen; Hombach, Juliane; Millotti, Gioconda; Bernkop-Schnürch, Andreas

    2010-09-01

    The aim of this study was to evaluate the impact of various vehicles on mucoadhesive properties of thiolated chitosan nanoparticles both in vitro and in vivo. Nanoparticles (NPs) were prepared by in situ gelation technique followed by labeling with fluorescein diacetate. Comparative studies on mucoadhesion were done with these thiolated chitosan NPs and unmodified chitosan NPs (control). The obtained nanoparticles displayed a mean diameter of 164.2 ± 6.9 nm and a zeta potential of 21.5 ± 5 mV. In an in vitro adhesion study, unhydrated thiolated NPs adhered strongly to freshly excised porcine small intestine, which was more than threefold increase compared to the control. In contrast, in the presence of various vehicles (PEG 300, miglyol 840, PEG 6000, cremophor EL, and caprylic triglyceride), the mucoadhesive properties of thiolated NPs were comparatively weak. Thiolated NPs suspended in caprylic triglyceride, for example, had a percent mucoadhesion of 22.50 ± 5.35% on the mucosa. Furthermore, results from in vivo mucoadhesion studies revealed that the dry form of nanoparticles exhibits the strongest mucoadhesion, followed by nanoparticles suspended in PEG 300, miglyol, and 100 mM phosphate buffer, in that order. Three hours after administration, the gastrointestinal residence time of the dry form of thiolated NPs was up to 3.6-fold prolonged. These findings should contribute to the design of highly effective oral mucoadhesive nanoparticulate drug delivery systems.

  12. Protective efficacy of immunoglobulins Y prepared against Cerastes cerastes snake venom in the Kingdom of Saudi Arabia.

    PubMed

    Moussa, Ihab M; Hessan, Ashgan M; Aleisa, Abdulaziz M; Al-Arfaj, Abdullah A; Salem-Bekhit, Mounier M; AlRejai, Salim A

    2012-08-01

    To prepare and evaluate the protective efficacy of immunoglobulin Y (IgY) prepared against local Saudi Cerastes cerastes snake venom. The study was conducted between October 2009 and October 2011 at the Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Kingdom of Saudi Arabia. The study designed as follow; 4 groups of 8 chickens were immunized intramuscularly with Cerastes cerastes snake venoms mixed with Freund's complete adjuvant. Three weeks later, the injections were repeated with the venoms with incomplete Freund's adjuvant. Three boosters were given with the venoms at 3 weeks intervals. The IgY was extracted by ammonium sulphate-caprylic acid method, the antibody titer were tested by enzyme linked immunosorbant assay, and the protective efficacies of the extracted immunoglobulins were performed. Immunoglobulin Y preparation extracted by ammonium sulphate-caprylic acid method showed lack of low molecular weight bands. The bands representing IgY-antibodies, which have molecular weights ranged from 180-200 KD, appeared sharp and clear. Furthermore, evaluation of the prepared protective value of IgY-antibodies revealed one ml of extracted IgY-antibodies containing 15 mg/ml anti Cerastes cerastes; specific IgY could produce 100% protection against 50 LD50. Laying hens could be used as an alternative source of polyclonal antibodies against Cerastes cerastes snake venoms due to several advantages as compared with mammals.

  13. FY08 Chemical Synthesis for the Self-Decontaminating Coatings Project

    DTIC Science & Technology

    2013-08-01

    These synthesized materials consist of Boltorn hyperbranched polymers that are functionalized with hydantoin, alkyl, and perfluorinated groups. 15...envisioned that completely prevents sorption of chemical agents, enables autonomous decontamination, reduces the volume of cleaning solution...modified with perfluorinated octanoic acid (PFOA), lauric acid, and a hydantoin moiety. HO OH CH3 HO O 3 Figure 2. Synthetic targets 1–3

  14. Formation of fatty acids in photochemical conversions of saturated hydrocarbons

    NASA Technical Reports Server (NTRS)

    Telegina, T. A.; Pavlovskaya, T. Y.; Ladyzhenskaya, A. I.

    1977-01-01

    Abiogenic synthesis of fatty acids was studied in photochemical conversions of saturated hydrocarbons. It was shown that, in a hydrocarbon water CaCO3 suspension, the action of 254 nm UV rays caused the formation of fatty acids with a maximum number of carbon atoms in the chain not exceeding that in the initial hydrocarbon. Synthesis of acetic, propionic, butyric, valeric, caproic, enanthic and caprylic (in the case of octane) acids occurs in heptane water CaCO3 and octane water CaCO3 systems.

  15. Water facts for Oklahoma

    USGS Publications Warehouse

    ,

    1945-01-01

    Water descends from the clouds, and forms rivers, lakes, and seas. It is delivered to the earth absolutely free, not in accordance with man-made specifications or orders but at the caprice of the elements. Hence man to realize fully the benefits of this incomparable and recurring resource must have full knowledge of its erratic occurrence before ways and means may be devised for putting water to beneficial use and for preventing it from doing harm. Water facts are essential for the effective and efficient utility of water.

  16. Employing metabolic engineered lipolytic microbial platform for 1-alkene one-step conversion.

    PubMed

    Wang, Juli; Yu, Haiying; Zhu, Kun

    2018-05-01

    1-Alkenes are traditionally used as basic chemicals with great importance. Biosynthetic 1-alkenes also have the potential to serve as biofuels. In this study, we engineered a Pseudomonas lipolytic microbial platform for 1-alkene production using hydrophobic substrate as sole carbon source. Fatty acid decarboxylase UndA and UndB were cloned and expressed, which successfully produced 1-alkenes. Optimal culturing temperature and the interruption of competitive pathway were proven to be beneficial to 1-alkene synthesis. Chromosomal integration of UndB conferred 177.8 mg/L 1-alkenes (mainly 1-undecene) in lauric acid medium and 128.9 mg/L 1-alkenes (mainly 1-pentadecene) in palm oil medium. Thioesterase expression, adjustments of fatty acid degradation pathway and a second copy of UndB improved 1-alkene titer to 1102.6 mg/L using lauric acid and 778.4 mg/L using palm oil. All in all, this study offers the first demonstration of lipolytic microbial 1-alkene producing platform with highest reported 1-alkene product titer up to date. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions.

    PubMed

    Djekic, Ljiljana; Primorac, Marija; Filipic, Slavica; Agbaba, Danica

    2012-08-20

    The current study investigates the performances of the multicomponent mixtures of nonionic surfactants regarding the microemulsion stabilisation, drug solubilization and in vitro drug release kinetic. The primary surfactant was PEG-8 caprylic/capric glycerides (Labrasol). The cosurfactants were commercially available mixtures of octoxynol-12 and polysorbate 20 without or with the addition of PEG-40 hydrogenated castor oil (Solubilisant gamma 2421 and Solubilisant gamma 2429, respectively). The oil phase of microemulsions was isopropyl myristate. Phase behaviour study of the pseudo-ternary systems Labrasol/cosurfactant/oil/water at surfactant-to-cosurfactant weight ratios (K(m)) 40:60, 50:50 and 60:40, revealed a strong synergism in the investigated tensides mixtures for stabilisation of microemulsions containing up to 80% (w/w) of water phase at surfactant +cosurfactant-to-oil weight ratio (SCoS/O) 90:10. Solubilization of a model drug ibuprofen in concentration common for topical application (5%, w/w) was achieved at the water contents below 50% (w/w). Drug free and ibuprofen-loaded microemulsions M1-M6, containing 45% (w/w) of water phase, were prepared and characterized by polarized light microscopy, conductivity, pH, rheological and droplet size measurements. In vitro ibuprofen release kinetics from the microemulsions was investigated using paddle-over-enhancer cell method and compared with the commercial 5% (w/w) ibuprofen hydrogel product (Deep Relief, Mentholatum Company Ltd., USA). The investigated microemulsions were isotropic, low viscous Bingham-type liquids with the pH value (4.70-6.61) suitable for topical application. The different efficiency of the tensides mixtures for microemulsion stabilisation was observed, depending on the cosurfactant type and K(m) value. Solubilisant gamma 2429 as well as higher K(m) (i.e., lower relative content of the cosurfactant) provided higher surfactant/cosurfactant synergism. The drug molecules were predominantly

  18. Agonists for G-protein-coupled receptor 84 (GPR84) alter cellular morphology and motility but do not induce pro-inflammatory responses in microglia.

    PubMed

    Wei, Li; Tokizane, Kyohei; Konishi, Hiroyuki; Yu, Hua-Rong; Kiyama, Hiroshi

    2017-10-03

    Several G-protein-coupled receptors (GPCRs) have been shown to be important signaling mediators between neurons and glia. In our previous screening for identification of nerve injury-associated GPCRs, G-protein-coupled receptor 84 (GPR84) mRNA showed the highest up-regulation by microglia after nerve injury. GPR84 is a pro-inflammatory receptor of macrophages in a neuropathic pain mouse model, yet its function in resident microglia in the central nervous system is poorly understood. We used endogenous, natural, and surrogate agonists for GPR84 (capric acid, embelin, and 6-OAU, respectively) and examined their effect on mouse primary cultured microglia in vitro. 6-n-Octylaminouracil (6-OAU), embelin, and capric acid rapidly induced membrane ruffling and motility in cultured microglia obtained from C57BL/6 mice, although these agonists failed to promote microglial pro-inflammatory cytokine expression. Concomitantly, 6-OAU suppressed forskolin-induced increase of cAMP in cultured microglia. Pertussis toxin, an inhibitor of Gi-coupled signaling, completely suppressed 6-OAU-induced microglial membrane ruffling and motility. In contrast, no 6-OAU-induced microglial membrane ruffling and motility was observed in microglia from DBA/2 mice, a mouse strain that does not express functional GPR84 protein due to endogenous nonsense mutation of the GPR84 gene. GPR84 mediated signaling causes microglial motility and membrane ruffling but does not promote pro-inflammatory responses. As GPR84 is a known receptor for medium-chain fatty acids, those released from damaged brain cells may be involved in the enhancement of microglial motility through GPR84 after neuronal injury.

  19. A New Measurement of the Cosmic-Ray Proton and Helium Spectra

    NASA Astrophysics Data System (ADS)

    Mocchiutti, E.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Boezio, M.; Bonicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Finetti, N.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Mocchiutti, E.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.; WIZARD/CAPRICE Collaboration

    2001-08-01

    A new measurement of the primary cosmic ray spectra was performed during the balloon-borne CAPRICE experiment in 1998. This apparatus consists of a magnet spectrometer, with a superconducting magnet and a driftchamber tracking device, a time of flight scintillator system, a silicon-tungsten imaging calorimeter and a gas ring imaging Cherenkov detector. This combination of state-of-the-art detectors provides excellent particle discrimination capabilities, such that detailed investigations of the antiproton, electron/positron, muon and primary components of cosmic rays have been performed. The analysis of the primary proton component is illustrated in this paper.

  20. Fatty acids and bioactive compounds of the pulps and kernels of Brazilian palm species, guariroba (Syagrus oleraces), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata).

    PubMed

    Coimbra, Michelle C; Jorge, Neuza

    2012-02-01

    Bioactive compounds are capable of providing health benefits, reducing disease incidence or favoring body functioning. There is a growing search for vegetable oils containing such compounds. This study aimed to characterize the pulp and kernel oils of the Brazilian palm species guariroba (Syagrus oleracea), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata), aiming at possible uses in several industries. Fatty acid composition, phenolic and carotenoid contents, tocopherol composition were evaluated. The majority of the fatty acids in pulps were oleic and linoleic; macaúba pulp contained 526 g kg⁻¹ of oleic acid. Lauric acid was detected in the kernels of all three species as the major saturated fatty acid, in amounts ranging from 325.8 to 424.3 g kg⁻¹. The jerivá pulp contained carotenoids and tocopherols on average of 1219 µg g⁻¹ and 323.50 mg kg⁻¹, respectively. The pulps contained more unsaturated fatty acids than the kernels, mainly oleic and linoleic. Moreover, the pulps showed higher carotenoid and tocopherol contents. The kernels showed a predominance of saturated fatty acids, especially lauric acid. The fatty acid profiles of the kernels suggest that these oils may be better suited for the cosmetic and pharmaceutical industries than for use in foods. Copyright © 2011 Society of Chemical Industry.

  1. A novel regulatory system in plants involving medium-chain fatty acids.

    PubMed

    Hunzicker, Gretel Mara

    2009-12-01

    Polyethylene glycol sorbitan monoacylates (Tween) are detergents of widespread use in plant sciences. However, little is known about the plant response to these compounds. Interestingly, the structure of Tweens' detergents (especially from Tween 20) resembles the lipid A structure from gram-negative bacteria polysaccharides (a backbone with short saturated fatty acids). Thus, different assays (microarray, GC-MS, RT-PCR, Northern blots, alkalinization and mutant analyses) were conducted in order to elucidate physiological changes in the plant response to Tween 20 detergent. Tween 20 causes a rapid and complex change in transcript abundance which bears all characteristics of a pathogenesis-associated molecular pattern (PAMP)/elicitor-induced defense response, and they do so at concentrations which cause no detectable deleterious effects on plant cellular integrity. In the present work, it is shown that the PAMP/elicitor-induced defense responses are caused by medium-chain fatty acids which are efficiently released from the Tween backbone by the plant, notably lauric acid (12:0) and methyl lauric acid. These compounds induce the production of ethylene, medium alkalinization and gene activation in a jasmonate-independent manner. Medium-chain fatty acids are thus novel elicitors/regulators of plant pathogen defense as they have being proved in animals.

  2. Relationship between Acute Phase Proteins and Serum Fatty Acid Composition in Morbidly Obese Patients

    PubMed Central

    Fernandes, Ricardo; Beserra, Bruna Teles Soares; Cunha, Raphael Salles Granato; Hillesheim, Elaine; Camargo, Carolina de Quadros; Pequito, Danielle Cristina Tonello; de Castro, Isabela Coelho; Fernandes, Luiz Cláudio; Nunes, Everson Araújo; Trindade, Erasmo Benício Santos de Moraes

    2013-01-01

    Background. Obesity is considered a low-grade inflammatory state and has been associated with increased acute phase proteins as well as changes in serum fatty acids. Few studies have assessed associations between acute phase proteins and serum fatty acids in morbidly obese patients. Objective. To investigate the relationship between acute phase proteins (C-Reactive Protein, Orosomucoid, and Albumin) and serum fatty acids in morbidly obese patients. Methods. Twenty-two morbidly obese patients were enrolled in this study. Biochemical and clinical data were obtained before bariatric surgery, and fatty acids measured in preoperative serum. Results. Orosomucoid was negatively correlated with lauric acid (P = 0.027) and eicosapentaenoic acid (EPA) (P = 0.037) and positively with arachidonic acid (AA) (P = 0.035), AA/EPA ratio (P = 0.005), and n-6/n-3 polyunsaturated fatty acids ratio (P = 0.035). C-Reactive Protein (CRP) was negatively correlated with lauric acid (P = 0.048), and both CRP and CRP/Albumin ratio were negatively correlated with margaric acid (P = 0.010, P = 0.008, resp.). Albumin was positively correlated with EPA (P = 0.027) and margaric acid (P = 0.008). Other correlations were not statistically significant. Conclusion. Our findings suggest that serum fatty acids are linked to acute phase proteins in morbidly obese patients. PMID:24167354

  3. Studies on mushroom flavours 2. Flavour compounds in coprinus comatus.

    PubMed

    Dijkstra, F Y; Wikén, T O

    1976-01-01

    In an aqueous extract of fruit bodies of Coprinus comatus 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, 2-methyl-2-penten-4-olide, 1-dodecanol and caprylic acid were identified conclusively and n-butyric and isobutyric acids preliminarily. Amino-acids, nucleotides and sugars were also determined. A mixture of 37 compounds found in the extract had a stronger flavour than the natural extract. 3-Octanol, 1-octen-3-ol, 1-octanol and 2-methyl-2-penten-4-olide were the volatiles with the strongest flavour. Mass and IR spectra of 2-methyl-2-penten-4-olide are presented.

  4. Phytochemical investigation of the seeds of Althea officinalis L.

    PubMed

    Rani, Sunita; Khan, Suroor A; Ali, M

    2010-09-01

    Phytochemical investigation of the seeds of Althea officinalis L. (Malvaceae) led to the isolation of three new phytoconstituents, identified as n-hexacos-2-enyl-1,5-olide (altheahexacosanyl lactone), 2beta-hydroxycalamene (altheacalamene) and 5,6-dihydroxycoumarin-5-dodecanoate-6beta-D-glucopyranoside (altheacoumarin glucoside), along with the known phytoconstituents lauric acid, beta-sitosterol and lanosterol. The structures of these compounds were established on the basis of spectral analysis and chemical reactions.

  5. The Cosmic-Ray Electron and Positron Spectra Measured at 1 AU during Solar Minimum Activity

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Carlson, P.; Francke, T.; Weber, N.; Suffert, M.; Hof, M.; Menn, W.; Simon, M.; Stephens, S. A.; Bellotti, R.; Cafagna, F.; Castellano, M.; Circella, M.; De Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Ricci, M.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Barbiellini, G.; Bravar, U.; Schiavon, P.; Vacchi, A.; Zampa, N.; Grimani, C.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Golden, R. L.; Stochaj, S. J.

    2000-03-01

    We report on a new measurement of the cosmic-ray electron and positron spectra. The data were collected by the balloon-borne experiment CAPRICE94, which was flown from Lynn Lake, Canada, on 1994 August 8-9 at an altitude corresponding to 3.9 g cm-2 of average residual atmosphere. The experiment used the NMSU-WIZARD/CAPRICE94 balloon-borne magnet spectrometer equipped with a solid radiator Ring Imaging Cerenkov (RICH) detector, a time-of-flight system, a tracking device consisting of drift chambers and multiwire proportional chambers, and a silicon-tungsten calorimeter. This was the first time a RICH detector was used together with an imaging calorimeter in a balloon-borne experiment. A total of 3211 electrons, with a rigidity at the spectrometer between 0.3 and 30 GV, and 734 positrons, between 0.3 and 10 GV, were identified with small backgrounds from other particles. The absolute energy spectra were determined in the energy region at the top of the atmosphere between 0.46 and 43.6 GeV for electrons and between 0.46 and 14.6 GeV for positrons. We found that the observed positron spectrum and the positron fraction are consistent with a pure secondary origin. A comparison of the theoretically predicted interstellar spectrum of electrons shows that the injection spectrum of primary electrons is steeper than that of the nucleonic components of cosmic rays. Furthermore, the observed electron and positron spectra can be reproduced from the interstellar spectra by a spherically symmetric model for solar modulation; hence, the modulation is independent of the sign of the particle charge.

  6. Effect of Surfactants on Mechanical, Thermal, and Photostability of a Monoclonal Antibody.

    PubMed

    Agarkhed, Meera; O'Dell, Courtney; Hsieh, Ming-Ching; Zhang, Jingming; Goldstein, Joel; Srivastava, Arvind

    2018-01-01

    The purpose of this work was to evaluate the effect of commonly used surfactants (at 0.01% w/v concentration) on mechanical, thermal, and photostability of a monoclonal antibody (MAb1) of IgG1 sub-class and to evaluate the minimum concentration of surfactant (Polysorbate 80) required in protecting MAb1 from mechanical stress. Surfactants evaluated were non-ionic surfactants, Polysorbate 80, Polysorbate 20, Pluronic F-68 (polyoxyethylene-polyoxypropylene block polymer), Brij 35 (polyoxyethylene lauryl ether), Triton X-100, and an anionic surfactant, Caprylic acid (1-Heptanecarboxylic acid). After evaluating effect of surfactants and determining stabilizing effect of Polysorbate 80 against mechanical stress without compromising thermal and photostability of MAb1, the minimum concentration of Polysorbate 80 required for mechanical stability was further examined. Polysorbate 80 concentration was varied from 0 to 0.02%. Mechanical stability was evaluated by agitation of MAb1 at 300 rotations per minute at room temperature for 72 h. Samples were analyzed for purity by SEC-HPLC, turbidity by absorbance at 350 nm, visible particles by visual inspection, and sub-visible particles by light obscuration technique on a particle analyzer. All non-ionic surfactants tested showed a similar effect in protecting against mechanical stress and did not exhibit any significant negative effect on thermal and photostability. However, Caprylic acid had a slightly negative effect on mechanical and photostability when compared to the non-ionic surfactants or sample without surfactant. This work demonstrated that polysorbate 80 is better than other surfactants tested and that a concentration of at least 0.005% (w/v) Polysorbate 80 is needed to protect MAb1 against mechanical stress.

  7. Effect of saturated fatty acid-rich dietary vegetable oils on lipid profile, antioxidant enzymes and glucose tolerance in diabetic rats

    PubMed Central

    Kochikuzhyil, Benson Mathai; Devi, Kshama; Fattepur, Santosh Raghunandan

    2010-01-01

    Objective: To study the effect of saturated fatty acid (SFA)-rich dietary vegetable oils on the lipid profile, endogenous antioxidant enzymes and glucose tolerance in type 2 diabetic rats. Materials and Methods: Type 2 diabetes was induced by administering streptozotocin (90 mg/kg, i.p.) in neonatal rats. Twenty-eight-day-old normal (N) and diabetic (D) male Wistar rats were fed for 45 days with a fat-enriched special diet (10%) prepared with coconut oil (CO) – lauric acid-rich SFA, palm oil (PO) – palmitic acid-rich SFA and groundnut oil (GNO) – control (N and D). Lipid profile, endogenous antioxidant enzymes and oral glucose tolerance tests were monitored. Results: D rats fed with CO (D + CO) exhibited a significant decrease in the total cholesterol and non-high-density lipoprotein cholesterol. Besides, they also showed a trend toward improving antioxidant enzymes and glucose tolerance as compared to the D + GNO group, whereas D + PO treatment aggravated the dyslipidemic condition while causing a significant decrease in the superoxide dismutase levels when compared to N rats fed with GNO (N + GNO). D + PO treatment also impaired the glucose tolerance when compared to N + GNO and D + GNO. Conclusion: The type of FA in the dietary oil determines its deleterious or beneficial effects. Lauric acid present in CO may protect against diabetes-induced dyslipidemia. PMID:20871763

  8. Antifungal Activity of Amphotericin B Conjugated to Nanosized Magnetite in the Treatment of Paracoccidioidomycosis

    PubMed Central

    Saldanha, Camila Arruda; Garcia, Mônica Pereira; Iocca, Diego Cesar; Rebelo, Luciana Guilherme; Souza, Ana Camila Oliveira; Bocca, Anamélia Lorenzetti; Almeida Santos, Maria de Fátima Menezes; Morais, Paulo Cesar; Azevedo, Ricardo Bentes

    2016-01-01

    This study reports on in vitro and in vivo tests that sought to assess the antifungal activity of a newly developed magnetic carrier system comprising amphotericin B loaded onto the surface of pre-coated (with a double-layer of lauric acid) magnetite nanoparticles. The in vitro tests compared two drugs; i.e., this newly developed form and free amphotericin B. We found that this nanocomplex exhibited antifungal activity without cytotoxicity to human urinary cells and with low cytotoxicity to peritoneal macrophages. We also evaluated the efficacy of the nanocomplex in experimental paracoccidioidomycosis. BALB/c mice were intratracheally infected with Paracoccidioides brasiliensis and treated with the compound for 30 or 60 days beginning the day after infection. The newly developed amphotericin B coupled with magnetic nanoparticles was effective against experimental paracoccidioidomycosis, and it did not induce clinical, biochemical or histopathological alterations. The nanocomplex also did not induce genotoxic effects in bone marrow cells. Therefore, it is reasonable to believe that amphotericin B coupled to magnetic nanoparticles and stabilized with bilayer lauric acid is a promising nanotool for the treatment of the experimental paracoccidioidomycosis because it exhibited antifungal activity that was similar to that of free amphotericin B, did not induce adverse effects in therapeutic doses and allowed for a reduction in the number of applications. PMID:27303789

  9. Effect of three edible oils on the intestinal absorption of caffeic acid: An in vivo and in vitro study

    PubMed Central

    Prasadani, W. Chaturi; Senanayake, Chaturi M.; Jayathilaka, Nimanthi; Ekanayake, Sagarika

    2017-01-01

    Polyphenolic antioxidants are mainly absorbed through passive paracellular permeation regulated by tight junctions. Some fatty acids are known to modulate tight junctions. Fatty acids resulting from the digestion of edible oils may improve the absorption of polyphenolic antioxidants. Therefore, we explored the effect of three edible oils on the intestinal absorption of caffeic acid. Rats were fed with soybean oil and caffeic acid dissolved in distilled water. Caffeic acid contents in the plasma collected up to 1 hr were quantified. The experiment was repeated with coconut oil and olive oil. Component fatty acids of the oils were individually tested in vitro for their effect on permeability of caffeic acid using Caco-2 cell monolayers. Highest absorption of caffeic acid was observed in animals fed with coconut oil. In vitro transport percentages of caffeic acid in 2.5 mmol/L solutions of fatty acids were 22.01±0.12 (lauric), 15.30 ± 0.25 (myristic acid), 13.59 ± 0.35 (linoleic acid), 3.70 ± 0.09 (oleic acid) and 0.10–2.0 (all other fatty acids). Lauric acid and myristic acid are the two major fatty acids present in coconut oil. Therefore, these fatty acids may contribute to the higher absorption of caffeic acid in the presence of coconut oil. PMID:28617858

  10. Improvement of Medium Chain Fatty Acid Content and Antimicrobial Activity of Coconut Oil via Solid-State Fermentation Using a Malaysian Geotrichum candidum

    PubMed Central

    Khoramnia, Anahita; Ebrahimpour, Afshin; Ghanbari, Raheleh; Ajdari, Zahra; Lai, Oi-Ming

    2013-01-01

    Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries. PMID:23971051

  11. Improvement of medium chain fatty acid content and antimicrobial activity of coconut oil via solid-state fermentation using a Malaysian Geotrichum candidum.

    PubMed

    Khoramnia, Anahita; Ebrahimpour, Afshin; Ghanbari, Raheleh; Ajdari, Zahra; Lai, Oi-Ming

    2013-01-01

    Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries.

  12. Thermophysical Parameters of Organic PCM Coconut Oil from T-History Method and Its Potential as Thermal Energy Storage in Indonesia

    NASA Astrophysics Data System (ADS)

    Silalahi, Alfriska O.; Sukmawati, Nissa; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2017-07-01

    The thermophysical parameters of organic phase change material (PCM) of coconut oil (co_oil) have been studied by analyzing the temperature vs time data during liquid-solid phase transition (solidification process) based on T-history method, adopting the original version and its modified form to extract the values of mean specific heats of the solid and liquid co_oil and the heat of fusion related to phase transition of co_oil. We found that the liquid-solid phase transition occurs rather gradually, which might be due to the fact that co_oil consists of many kinds of fatty acids with the largest amount of lauric acid (about 50%), with relatively small supercooling degree. For this reason, the end of phase transition region become smeared out, although the inflection point in the temperature derivative is clearly observed signifying the drastic temperature variation between the phase transition and solid phase periods. The data have led to the values of mean specific heat of the solid and liquid co_oil that are comparable to the pure lauric acid, while the value for heat of fusion is resemble to those of the DSC result, both from references data. The advantage of co_oil as the potential sensible and latent TES for room-temperature conditioning application in Indonesia is discussed in terms of its rather broad working temperature range due to its mixture composition characteristic.

  13. Proceedings of the 10th international workshop on ECR ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, F W; Kirkpatrick, M I

    This report contains papers on the following topics: Recent Developments and Future Projects on ECR Ion Sources; Operation of the New KVI ECR Ion Source at 10 GHz; Operational Experience and Status of the INS SF-ECR Ion Source; Results of the New ECR4'' 14.5 GHz ECRIS; Preliminary Performance of the AECR; Experimental Study of the Parallel and Perpendicular Particle Losses from an ECRIS Plasma; Plasma Instability in Electron Cyclotron Resonance Heated Ion Sources; The Hyperbolic Energy Analyzer; Status of ECR Source Development; The New 10 GHz CAPRICE Source; First Operation of the Texas A M ECR Ion Source; Recent Developmentsmore » of the RIKEN ECR Ion Sources; The 14 GHz CAPRICE Source; Characteristics and Potential Applications of an ORNL Microwave ECR Multicusp Plasma Ion Source; ECRIPAC: The Production and Acceleration of Multiply Charged Ions Using an ECR Plasma; ECR Source for the HHIRF Tandem Accelerator; Feasibility Studies for an ECR-Generated Plasma Stripper; Production of Ion Beams by using the ECR Plasmas Cathode; A Single Stage ECR Source for Efficient Production of Radioactive Ion Beams; The Single Staged ECR Source at the TRIUMF Isotope Separator TISOL; The Continuous Wave, Optically Pumped H{sup {minus}} Source; The H{sup +} ECR Source for the LAMPF Optically Pumped Polarized Ion Source; Present Status of the Warsaw CUSP ECR Ion Source; An ECR Source for Negative Ion Production; GYRAC-D: A Device for a 200 keV ECR Plasma Production and Accumulation; Status Report of the 14.4 GHZ ECR in Legnaro; Status of JYFL-ECRIS; Report on the Uppsala ECRIS Facility and Its Planned Use for Atomic Physics; A 10 GHz ECR Ion Source for Ion-Electron and Ion-Atom Collision Studies; and Status of the ORNL ECR Source Facility for Multicharged Ion Collision Research.« less

  14. Gas chromatographic/mass spectrometric analysis of the essential oil of Houttuynia cordata Thunb by using on-column methylation with tetramethylammonium acetate.

    PubMed

    Ch, Muhammad Ishtiaq; Wen, Yang F; Cheng, YiYu

    2007-01-01

    This paper describes a simple and novel on-column derivatization procedure used with gas chromatography/mass spectrometry (GC/MS) for the analysis of essential oil of Houttuynia cordata Thunb (HCT), a traditional Chinese medicine. In the procedure, the essential oil was obtained by hydrodistillation, and the fatty acid components were derivatized with tetramethylammonium acetate (TMAA) at 250 degrees C and identified by GC/MS. Methylation improved the determination of both the fatty acids and the other components in the essential oil of HCT. To obtain optimum methylation conditions, several important factors were investigated with pentadecane as the internal standard and a GC inlet temperature of 250 degres C. Tetramethylammonium hydroxide (TMAH) and TMAA were compared as the derivatization agent, and a 2:1 ratio of TMAA to capric acid was evaluated. Fatty acid methyl esters produced good chromatographic peak shapes and did not interfere with the determination of dodecanal and caryophyllene. TMAA is a neutral methylation reagent, and it yielded no side reactions during derivatization. It was found that the fatty acid content of the essential oil was about 81%; among the methylated fatty acids found were capric acid, methyl (43.66%), methyl laurate (16.15%), methyl hexadecanoate (9.27%), undecanoic acid, methyl (5.62%), methyl oleate (1.98%), and methyl linoleate (1.40%). Other major constituents were (-)-beta-pinene (1.02%), beta-myrcene (1.62%), 1-terpinen-4-ol (1.59%), decanal (1.49%), and 2-undecanone (1.47%). The results obtained demonstrated good efficiency for the procedure. Pure chromatograms allowed quantitation, which was obtained by total volume integration. The on-column derivatization procedure was simple to perform, and it improved the sensitivity, the peak resolution, and the selectivity of the GC/MS determination.

  15. Measurements of primary cosmic-ray hydrogen and helium by the WiZard collaboration

    NASA Astrophysics Data System (ADS)

    Circella, M.; Ambriola, M.; Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bidoli, V.; Boezio, M.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C.; De Pascale, M. P.; Finetti, N.; Francke, T.; Grimani, C.; Grinstein, S.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N.

    We present the measurements of primary protons and helium nuclei performed by the WiZard Collaboration in different balloon-borne campaigns. A superconducting magnet spectrometer was used in these experiments together with detectors for particle recognition. These combinations of detectors made it possible to perform accurate particle measurements over a large (up to 200 GV for protons) energy interval. We focus in particular on the results from the MASS91 and CAPRICE94 experiments: We find a very good agreement between these two sets of measurements, also in comparison to other recent results. All these results seem to suggest that the normalization of primary cosmic rays may be significantly lower than previously estimated.

  16. Positional signaling mediated by a receptor-like kinase in Arabidopsis.

    PubMed

    Kwak, Su-Hwan; Shen, Ronglai; Schiefelbein, John

    2005-02-18

    The position-dependent specification of root epidermal cells in Arabidopsis provides an elegant paradigm for cell patterning during development. Here, we describe a new gene, SCRAMBLED (SCM), required for cells to appropriately interpret their location within the developing root epidermis. SCM encodes a receptor-like kinase protein with a predicted extracellular domain of six leucine-rich repeats and an intracellular serine-threonine kinase domain. SCM regulates the expression of the GLABRA2, CAPRICE, WEREWOLF, and ENHANCER OF GLABRA3 transcription factor genes that define the cell fates. Further, the SCM gene is expressed throughout the developing root. Therefore, SCM likely enables developing epidermal cells to detect positional cues and establish an appropriate cell-type pattern.

  17. [Synthesis, characterization and fluorescent properties of copper phthalocyanine derivates substituted by aliphatic alcohol].

    PubMed

    Zhang, Liang; Xu, Qing-Feng; Lu, Jian-Mei; Yao, She-Chun

    2007-04-01

    A series of copper phthalocyanine derivatives substituted by aliphatic chain were obtained by the reaction of tetra-formyl chloride copper phthalocyanine and aliphatic alcohol such as n-butyl alcohol, n-amyl alcohol, n-hexyl alcohol, n-caprylic alcohol and lauryl alcohol. IR, UV-Vis, elemental analysis and 1H NMR verified the structures and substituting degree. The solubility and the relationship between fluorescence and concentration and substituting group were studied in organic solution. It was confirmed that the solubility in organic solution was improved greatly, the fluorescence did not change in linear according to the concentration and the fluorescence of copper phthalocyanine derivatives substituted by the long alkyl was stronger than that substituted by the relatively short alkyl.

  18. Identification of the mechanism that confers superhydrophobicity on 316L stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar, Ana M.; Llorca-Isern, Nuria; Rius-Ayra, Oriol

    This study develops a rapid method to confer superhydrophobicity on 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. The highest contact angle (approaching 173°) was obtained after forming hierarchical structures with a non-aqueous electrolyte by an electrolytic process. Our goal was to induce superhydrophobicity directly on 316L stainless steel substrates and to establish which molecules cause the effect. The superhydrophobic behaviour is analysed by contact angle measurements, scanning electron microscopy (SEM), IR spectroscopy and atomic force microscopy (AFM). The growth mechanism is analysed using FE-SEM, TOF-SIMS and XPS in order to determine the molecules involved inmore » the reaction and the growth. The TOF-SIMS analysis revealed that the Ni{sup 2+} ions react with lauric acid to create an ester on the stainless steel surface. - Highlights: • This study develops a rapid and facile approach to impart superhydrophobicity properties to 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. Surface character changes from superhydrophilicity to superhydrophobicity. • This process changes the surface character from superhydrophilicity to superhydrophobicity. • The process based on electrolysis of a nickel salt in lauric acid provides superhydrophobic behaviour in 316L stainless steel. • The growth mechanism is proposed as a mode island (Volmert- Weber mode). • TOF-SIMS and XPS provided the identification of the molecules involved in the surface modification reaction on AISI 316L inducing superhydrophobicity.« less

  19. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase*

    PubMed Central

    Yao, Jiangwei; Dodson, V. Joshua; Frank, Matthew W.; Rock, Charles O.

    2015-01-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  20. Aquivion Perfluorosulfonic Superacid as an Efficient Pickering Interfacial Catalyst for the Hydrolysis of Triglycerides.

    PubMed

    Shi, Hui; Fan, Zhaoyu; Hong, Bing; Pera-Titus, Marc

    2017-09-11

    Rational design of the surface properties of heterogeneous catalysts can boost the interfacial activity in biphasic reactions through the generation of Pickering emulsions. This concept, termed Pickering interfacial catalysis (PIC), has shown promising credentials in acid-catalyzed transesterification, ester hydrolysis, acetalization, etherification, and alkylation reactions. PIC has now been applied to the efficient, solvent-free hydrolysis of the triglyceride glyceryl trilaurate to lauric acid, catalyzed by Aquivion perfluorosulfonic superacid at mild conditions (100 °C and ambient pressure). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structure analysis of aqueous ferrofluids at interface with silicon: neutron reflectometry data

    NASA Astrophysics Data System (ADS)

    Gapon, I. V.; Petrenko, V. I.; Bulavin, L. A.; Balasoiu, M.; Kubovcikova, M.; Zavisova, V.; Koneracka, M.; Kopcansky, P.; Chiriac, H.; Avdeev, M. V.

    2017-05-01

    Adsorption of nanoparticles from aqueous ferrofluids (FFs) on solid surface (crystalline silicon) was studied by neutron reflectometry (NR). Two kinds of FFs were considered. First kind was heavy water-based ferrofluids with magnetite nanoparticles coated by double layer of sodium oleate. Second one FF was cobalt ferrite nanoparticles stabilized by lauric acid/sodium n-dodecylsulphate layer and dispersed in water. It was obtained only a single adsorption layer for two types of ferrofluids. The impact of the magnetic nanoparticles concentration and geometry was considered in frame of the adsorption characteristic of FFs.

  2. First Mass-resolved Measurement of High-Energy Cosmic-Ray Antiprotons

    NASA Astrophysics Data System (ADS)

    Bergström, D.; Boezio, M.; Carlson, P.; Francke, T.; Grinstein, S.; Khalchukov, F.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Stephens, S. A.; Ambriola, M. L.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Bartalucci, S.; Ricci, M.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.

    2000-05-01

    We report new results for the cosmic-ray antiproton-to-proton ratio from 3 to 50 GeV at the top of the atmosphere. These results represent the first measurements, on an event-by-event basis, of mass-resolved antiprotons above 18 GeV. The results were obtained with the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas-RICH (Ring-Imaging Cerenkov) counter and a silicon-tungsten imaging calorimeter. The RICH detector was the first ever flown that is capable of identifying charge-one particles at energies above 5 GeV. The spectrometer was flown on 1998 May 28-29 from Fort Sumner, New Mexico. The measured p/p ratio is in agreement with a pure secondary interstellar production.

  3. Cell Pattern in the Arabidopsis Root Epidermis Determined by Lateral Inhibition with Feedback

    PubMed Central

    Lee, Myeong Min; Schiefelbein, John

    2002-01-01

    In the root epidermis of Arabidopsis, hair and nonhair cell types are specified in a distinct position-dependent pattern. Here, we show that transcriptional feedback loops between the WEREWOLF (WER), CAPRICE (CPC), and GLABRA2 (GL2) genes help to establish this pattern. Positional cues bias the expression of the WER MYB gene, leading to the induction of CPC and GL2 in cells located in a particular position (N) and adoption of the nonhair fate. The truncated MYB encoded by CPC mediates a lateral inhibition mechanism to negatively regulate WER, GL2, and its own gene in the alternative position (H) to induce the hair fate. These results provide a molecular genetic framework for understanding the determination of a cell-type pattern in plants. PMID:11910008

  4. Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback.

    PubMed

    Lee, Myeong Min; Schiefelbein, John

    2002-03-01

    In the root epidermis of Arabidopsis, hair and nonhair cell types are specified in a distinct position-dependent pattern. Here, we show that transcriptional feedback loops between the WEREWOLF (WER), CAPRICE (CPC), and GLABRA2 (GL2) genes help to establish this pattern. Positional cues bias the expression of the WER MYB gene, leading to the induction of CPC and GL2 in cells located in a particular position (N) and adoption of the nonhair fate. The truncated MYB encoded by CPC mediates a lateral inhibition mechanism to negatively regulate WER, GL2, and its own gene in the alternative position (H) to induce the hair fate. These results provide a molecular genetic framework for understanding the determination of a cell-type pattern in plants.

  5. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning.

    PubMed

    Lee, M M; Schiefelbein, J

    1999-11-24

    The formation of the root epidermis of Arabidopsis provides a simple and elegant model for the analysis of cell patterning. A novel gene, WEREWOLF (WER), is described here that is required for position-dependent patterning of the epidermal cell types. The WER gene encodes a MYB-type protein and is preferentially expressed within cells destined to adopt the non-hair fate. Furthermore, WER is shown to regulate the position-dependent expression of the GLABRA2 homeobox gene, to interact with a bHLH protein, and to act in opposition to the CAPRICE MYB. These results suggest a simple model to explain the specification of the two root epidermal cell types, and they provide insight into the molecular mechanisms used to control cell patterning.

  6. Occurrence of free fatty acids in the phloem sap of different citrus varieties.

    PubMed

    Valim, Maria Filomena; Killiny, Nabil

    2017-06-03

    Candidatus Liberibacter asiaticus is a phloem restricted bacterium that causes citrus greening disease or huanglongbing (HLB), a major treat to commercial citrus production in Florida. It is transmitted by the Asian citrus psyllid, a phloem sap-feeding insect. Studies conducted on the composition of citrus phloem sap revealed the presence amino acids, organic acids and sugars and of low amounts of free fatty acids. In the present study, the phloem sap of 12 citrus varieties with different degrees of tolerance to HLB were extracted with ethyl acetate and analyzed by GC-MS after derivatization with boron trifluoride, a fatty acid-specific reagent. Nine free fatty acids were detected in all varieties. Of the 9 fatty acids detected, only capric acid was significantly different among varieties.

  7. Synthesis of medium-chain length capsinoids from coconut oil catalyzed by Candida rugosa lipases.

    PubMed

    Trbojević Ivić, Jovana; Milosavić, Nenad; Dimitrijević, Aleksandra; Gavrović Jankulović, Marija; Bezbradica, Dejan; Kolarski, Dušan; Veličković, Dušan

    2017-03-01

    A commercial preparation of Candida rugosa lipases (CRL) was tested for the production of capsinoids by esterification of vanillyl alcohol (VA) with free fatty acids (FA) and coconut oil (CO) as acyl donors. Screening of FA chain length indicated that C8-C12 FA (the most common FA found in CO triglycerides) are the best acyl-donors, yielding 80-85% of their specific capsinoids. Hence, when CO, which is rich in these FA, was used as the substrate, a mixture of capsinoids (vanillyl caprylate, vanillyl decanoate and vanillyl laurate) was obtained. The findings presented here suggest that our experimental method can be applied for the enrichment of CO with capsinoids, thus giving it additional health promoting properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Synthetic α-mangostin dilaurate strongly suppresses wide-spectrum organ metastasis in a mouse model of mammary cancer.

    PubMed

    Shibata, Masa-Aki; Hamaoka, Hitomi; Morimoto, Junji; Kanayama, Tadashi; Maemura, Kentaro; Ito, Yuko; Iinuma, Munekazu; Kondo, Yoichi

    2018-03-30

    We previously reported that, in a mouse model of mammary cancer, α-mangostin alone exhibits anti-metastatic properties. To enhance this anti-metastatic effect, we examined the efficacy of synthetic α-mangostin dilaurate (MGD), prepared by adding lauric acid to α-mangostin, in the same experimental system wherein mice bearing mammary tumors are exposed to dietary MGD at 0, 2000 and 4000 ppm. Lauric acid has a high propensity for lymphatic absorption, which is the most common pathway of initial dissemination of many solid malignancies. Both mammary tumor volumes and wide-spectrum organ metastasis were markedly reduced at 2000 and 4000 ppm: furthermore, survival in the 4000-ppm group was significantly greater than in control mice. Apoptosis in mammary carcinomas was also significantly increased in the 4000-ppm group, whereas blood microvessel density and lymphatic vessel invasion were markedly reduced. In real-time PCR analyses of tumor samples, increased p21 and decreased Pcna expression were observed with 4000 ppm but values were not statistically significant when compared to expression in control tumors. However, exposure to 4000 ppm significantly decreased expression of phospho-Akt (Ser473/Thr308) as compared to the control, indicating a role in the anti-tumorigenic effects of MGD. These findings suggest that MGD may be useful for adjuvant therapy and chemoprevention and that conjugated medium-chain fatty acids may enhance the efficacy of certain chemotherapeutic agents. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  9. Composition, Antifungal and Antiproliferative Activities of the Hydrodistilled Oils from Leaves and Flower Heads of Pterocephalus nestorianus Nábělek.

    PubMed

    Abdullah, Fuad O; Hussain, Faiq H S; Mannucci, Barbara; Lappano, Rosamaria; Tosi, Solveig; Maggiolini, Marcello; Vidari, Giovanni

    2017-07-01

    This article reports the first study of the chemical composition, and antifungal and antiproliferative properties of the volatile extracts obtained by hydrodistillation of the flower heads and leaves of the traditional Kurdish medicinal plant Pterocephalus nestorianus Nábělek, collected in the wild. A total of 55 constituents, 43 of the flower heads' oil (PFO) and 46 of the leaves' oil (PLO), respectively, were identified by GC/MS, constituting 99.68% and 99.04% of the two oils, respectively. The oils were obtained in 0.15% and 0.10% yields (w/w), respectively, on air-dried vegetable material. The prevalent constituents of the PFO were α-terpineol (2.41%), α-linalool (6.42%), 6,10,14-trimethylpentadecan-2-one (2.59%), myristic acid (24.65%), and lauric acid (50.44%), while the major components of PLO were (E)-hex-2-enal (2.26%), (E)-hex-2-en-1-ol (2.04), myristic acid (34.03%), and lauric acid (50.35%). The two oils showed significant inhibitory and fungicidal activities against the medically important fungi Candida albicans, Candida tropicalis, Microsporum canis, and Trichophyton mentagrophytes, with minimum inhibitory concentration ranging from 0.7 to 3.3 mg/ml and minimum fungicidal concentration varying from 1.4 to 6.6 mg/ml. The antiproliferative activity of the two oils was assayed against one normal and six human tumor cell lines. Both oils showed selective cytotoxic activity, with IC 50 values ranging from 1.4 to 3.3 μg/ml. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  10. Environmentally evaluated HPLC-ELSD method to monitor enzymatic synthesis of a non-ionic surfactant.

    PubMed

    Gaber, Yasser; Akerman, Cecilia Orellana; Hatti-Kaul, Rajni

    2014-01-01

    N-Lauroyl-N-methylglucamide is a biodegradable surfactant derived from renewable resources. In an earlier study, we presented an enzymatic solvent-free method for synthesis of this compound. In the present report, the HPLC method developed to follow the reaction between lauric acid/methyl laurate and N-methyl glucamine (MEG) and its environmental assessment are described. Use of ultraviolet (UV) absorption or refractive index (RI) detectors did not allow the detection of N-methyl glucamine (MEG). With Evaporative light scattering detector ELSD, it was possible to apply a gradient elution, and detect MEG with a limit of detection, LOD = 0.12 μg. A good separation of the peaks: MEG, lauric acid, product (amide) and by-product (amide-ester) was achieved with the gradient program with a run time of 40 min. The setting of ELSD detector was optimized using methyl laurate as the analyte. LC-MS/MS was used to confirm the amide and amide-ester peaks. We evaluated the greenness of the developed method using the freely available software HPLC-Environmental Assessment Tool (HPLC-EAT) and the method got a scoring of 73 HPLC-EAT units, implying that the analytical procedure was more environmentally benign compared to some other methods reported in literature whose HPLC-EAT values scored up to 182. Use of ELSD detector allowed the detection and quantification of the substrates and the reaction products of enzymatic synthesis of the surfactant, N-lauroyl-N-methylglucamide. The developed HPLC method has acceptable environmental profile based on HPLC-EAT evaluation.

  11. Effect of coconut oil in plaque related gingivitis - A preliminary report.

    PubMed

    Peedikayil, Faizal C; Sreenivasan, Prathima; Narayanan, Arun

    2015-01-01

    Oil pulling or oil swishing therapy is a traditional procedure in which the practitioners rinse or swish oil in their mouth. It is supposed to cure oral and systemic diseases but the evidence is minimal. Oil pulling with sesame oil and sunflower oil was found to reduce plaque related gingivitis. Coconut oil is an easily available edible oil. It is unique because it contains predominantly medium chain fatty acids of which 45-50 percent is lauric acid. Lauric acid has proven anti inflammatory and antimicrobial effects. No studies have been done on the benefits of oil pulling using coconut oil to date. So a pilot study was planned to assess the effect of coconut oil pulling on plaque induced gingivitis. The aim of the study was to evaluate the effect of coconut oil pulling/oil swishing on plaque formation and plaque induced gingivitis. A prospective interventional study was carried out. 60 age matched adolescent boys and girls in the age-group of 16-18 years with plaque induced gingivitis were included in the study and oil pulling was included in their oral hygiene routine. The study period was 30 days. Plaque and gingival indices of the subjects were assessed at baseline days 1,7,15 and 30. The data was analyzed using paired t test. A statistically significant decrease in the plaque and gingival indices was noticed from day 7 and the scores continued to decrease during the period of study. Oil pulling using coconut oil could be an effective adjuvant procedure in decreasing plaque formation and plaque induced gingivitis.

  12. Influence of stearic acid on hemostatic risk factors in humans.

    PubMed

    Tholstrup, Tine

    2005-12-01

    Stearic acid has been claimed to be prothrombotic. Elevated plasma factor VII coagulant activity (FVIIc) may raise the risk of coronary thrombosis in the event of plaque rupture. Fibrinogen, an acute-phase protein, is necessary for normal blood clotting; however, elevated levels of fibrinogen increase the risk of coronary heart disease (CHD). Here I report the results of three controlled, human dietary intervention studies, which used a randomized crossover design to investigate the hemostatic effects of stearic acid-rich test diets in healthy young men. A diet high in stearic acid (shea butter) resulted in a 13% lower fasting plasma FVIIc than a high palmitic acid diet, and was 18% lower than a diet high in myristic and lauric acids (P = 0.001) after 3 wk of intervention. The stearic acid-rich test fat increased plasma fibrinogen concentrations slightly compared with the myristic-lauric acid diet (P < 0.01). When investigating the acute effects of fatty meals, those high in stearic acid (synthesized test fat) resulted in a smaller postprandial increase in FVII than those high in trans and oleic FA, indicating a smaller increase in activated FVII after ingesting stearic acid compared with fats high in monounsaturated FA, probably caused by lower postprandial lipemia. Thus, the present investigations did not find dietary stearic acid to be more thrombogenic, in either fasting effects compared with other long-chain FA, or in acute effects compared with dietary unsaturated FA, including trans monounsaturated FA. The slightly increased effect on fasting plasma fibrinogen may be biologically insignificant, but it should be investigated further.

  13. Control of Clostridium perfringens-induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils.

    PubMed

    Timbermont, L; Lanckriet, A; Dewulf, J; Nollet, N; Schwarzer, K; Haesebrouck, F; Ducatelle, R; Van Immerseel, F

    2010-04-01

    The efficacy of target-released butyric acid, medium-chain fatty acids (C(6) to C(12) but mainly lauric acid) and essential oils (thymol, cinnamaldehyde, essential oil of eucalyptus) micro-encapsulated in a poly-sugar matrix to control necrotic enteritis was investigated. The minimal inhibitory concentrations of the different additives were determined in vitro, showing that lauric acid, thymol, and cinnamaldehyde are very effective in inhibiting the growth of Clostridium perfringens. The in vivo effects were studied in two trials in an experimental necrotic enteritis model in broiler chickens. In the first trial, four groups of chickens were fed a diet supplemented with butyric acid, with essential oils, with butyric acid in combination with medium-chain fatty acids, or with butyric acid in combination with medium-chain fatty acids and essential oils. In all groups except for the group receiving only butyric acid, a significant decrease in the number of birds with necrotic lesions was found compared with the infected, untreated control group. In the second trial the same products were tested but at a higher concentration. An additional group was fed a diet supplemented with only medium-chain fatty acids. In all groups except for that receiving butyric acid in combination with medium-chain fatty acids and essential oils, a significant decrease in the number of birds with necrotic lesions was found compared with the infected, untreated control group. These results suggest that butyric acid, medium-chain fatty acids and/or essential oils may contribute to the prevention of necrotic enteritis in broilers.

  14. Environmentally evaluated HPLC-ELSD method to monitor enzymatic synthesis of a non-ionic surfactant

    PubMed Central

    2014-01-01

    Background N-Lauroyl-N-methylglucamide is a biodegradable surfactant derived from renewable resources. In an earlier study, we presented an enzymatic solvent-free method for synthesis of this compound. In the present report, the HPLC method developed to follow the reaction between lauric acid/methyl laurate and N-methyl glucamine (MEG) and its environmental assessment are described. Results Use of ultraviolet (UV) absorption or refractive index (RI) detectors did not allow the detection of N-methyl glucamine (MEG). With Evaporative light scattering detector ELSD, it was possible to apply a gradient elution, and detect MEG with a limit of detection, LOD = 0.12 μg. A good separation of the peaks: MEG, lauric acid, product (amide) and by-product (amide-ester) was achieved with the gradient program with a run time of 40 min. The setting of ELSD detector was optimized using methyl laurate as the analyte. LC-MS/MS was used to confirm the amide and amide-ester peaks. We evaluated the greenness of the developed method using the freely available software HPLC-Environmental Assessment Tool (HPLC-EAT) and the method got a scoring of 73 HPLC-EAT units, implying that the analytical procedure was more environmentally benign compared to some other methods reported in literature whose HPLC-EAT values scored up to 182. Conclusion Use of ELSD detector allowed the detection and quantification of the substrates and the reaction products of enzymatic synthesis of the surfactant, N-lauroyl-N-methylglucamide. The developed HPLC method has acceptable environmental profile based on HPLC-EAT evaluation. PMID:24914404

  15. Enrichment, separation, and gas-chromatographic and mass-spectrometric analyses of fission products from irradiated or heated fats, oils, and test substances (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, B.

    1973-01-01

    From international colloquium: the identification of irradiated foodstuffs; Karlsrahe, Germany (24 Oct 1973). Tripalmitate, tristearate, trioleate, oleic acid methyl ester, linoleic acid methyl ester, lauric acid, lard, coconut butter, sunflower oil, and olive oil were irradiated at 0.5-6 Mrad,or heated up to 174 deg C for 24 hr. The fission products were fractionally distilled with silica gel according to polarity into elutropic series. Subsequent identification and quantitative determination were done by gas chromatography and mass spectrometry. Approximately 28 hydrocarbons and 24 oxygen compounds are dealt with, the typical substances being described individually as regards their identification and quantitative distribution. (GE)

  16. Influence of frequency tuning and double-frequency heating on ions extracted from an electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Maimone, F.; Celona, L.; Lang, R.; Mäder, J.; Roßbach, J.; Spädtke, P.; Tinschert, K.

    2011-12-01

    The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.

  17. Influence of frequency tuning and double-frequency heating on ions extracted from an electron cyclotron resonance ion source.

    PubMed

    Maimone, F; Celona, L; Lang, R; Mäder, J; Rossbach, J; Spädtke, P; Tinschert, K

    2011-12-01

    The electromagnetic field within the plasma chamber of an electron cyclotron resonance ion source (ECRIS) and the properties of the plasma waves affect the plasma properties and ion beam production. We have experimentally investigated the "frequency tuning effect" and "double frequency heating" on the CAPRICE ECRIS device. A traveling wave tube amplifier, two microwave sweep generators, and a dedicated experimental set-up were used to carry out experiments in the 12.5-16.5 GHz frequency range. During the frequency sweeps the evolution of the intensity and shape of the extracted argon beam were measured together with the microwave reflection coefficient. A range of different ion source parameter settings was used. Here we describe these experiments and the resultant improved understanding of these operational modes of the ECR ion source.

  18. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    PubMed

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Comparative Transcriptome Analysis of Three Oil Palm Fruit and Seed Tissues That Differ in Oil Content and Fatty Acid Composition1[C][W][OA

    PubMed Central

    Dussert, Stéphane; Guerin, Chloé; Andersson, Mariette; Joët, Thierry; Tranbarger, Timothy J.; Pizot, Maxime; Sarah, Gautier; Omore, Alphonse; Durand-Gasselin, Tristan; Morcillo, Fabienne

    2013-01-01

    Oil palm (Elaeis guineensis) produces two oils of major economic importance, commonly referred to as palm oil and palm kernel oil, extracted from the mesocarp and the endosperm, respectively. While lauric acid predominates in endosperm oil, the major fatty acids (FAs) of mesocarp oil are palmitic and oleic acids. The oil palm embryo also stores oil, which contains a significant proportion of linoleic acid. In addition, the three tissues display high variation for oil content at maturity. To gain insight into the mechanisms that govern such differences in oil content and FA composition, tissue transcriptome and lipid composition were compared during development. The contribution of the cytosolic and plastidial glycolytic routes differed markedly between the mesocarp and seed tissues, but transcriptional patterns of genes involved in the conversion of sucrose to pyruvate were not related to variations for oil content. Accumulation of lauric acid relied on the dramatic up-regulation of a specialized acyl-acyl carrier protein thioesterase paralog and the concerted recruitment of specific isoforms of triacylglycerol assembly enzymes. Three paralogs of the WRINKLED1 (WRI1) transcription factor were identified, of which EgWRI1-1 and EgWRI1-2 were massively transcribed during oil deposition in the mesocarp and the endosperm, respectively. None of the three WRI1 paralogs were detected in the embryo. The transcription level of FA synthesis genes correlated with the amount of WRI1 transcripts and oil content. Changes in triacylglycerol content and FA composition of Nicotiana benthamiana leaves infiltrated with various combinations of WRI1 and FatB paralogs from oil palm validated functions inferred from transcriptome analysis. PMID:23735505

  20. Effect of coconut oil in plaque related gingivitis — A preliminary report

    PubMed Central

    Peedikayil, Faizal C.; Sreenivasan, Prathima; Narayanan, Arun

    2015-01-01

    Background: Oil pulling or oil swishing therapy is a traditional procedure in which the practitioners rinse or swish oil in their mouth. It is supposed to cure oral and systemic diseases but the evidence is minimal. Oil pulling with sesame oil and sunflower oil was found to reduce plaque related gingivitis. Coconut oil is an easily available edible oil. It is unique because it contains predominantly medium chain fatty acids of which 45-50 percent is lauric acid. Lauric acid has proven anti inflammatory and antimicrobial effects. No studies have been done on the benefits of oil pulling using coconut oil to date. So a pilot study was planned to assess the effect of coconut oil pulling on plaque induced gingivitis. Materials and Methods: The aim of the study was to evaluate the effect of coconut oil pulling/oil swishing on plaque formation and plaque induced gingivitis. A prospective interventional study was carried out. 60 age matched adolescent boys and girls in the age-group of 16-18 years with plaque induced gingivitis were included in the study and oil pulling was included in their oral hygiene routine. The study period was 30 days. Plaque and gingival indices of the subjects were assessed at baseline days 1,7,15 and 30. The data was analyzed using paired t test. Results: A statistically significant decrease in the plaque and gingival indices was noticed from day 7 and the scores continued to decrease during the period of study. Conclusion: Oil pulling using coconut oil could be an effective adjuvant procedure in decreasing plaque formation and plaque induced gingivitis. PMID:25838632

  1. Effect of fatty acids on endothelium-dependent relaxation in the rabbit aorta.

    PubMed

    Edirisinghe, Indika; McCormick Hallam, Kellie; Kappagoda, C Tissa

    2006-08-01

    The metabolic syndrome, Type II (non-insulin-dependent) diabetes and obesity are associated with endothelial dysfunction and increased plasma concentrations of NEFAs (non-esterified fatty acids; free fatty acids). The present study was undertaken to define the inhibitory effects of saturated NEFAs on EDR (endothelium-dependent relaxation). Experiments were performed in rings of rabbit aorta to establish (i) dose-response relationships, (ii) the effect of chain length, (iii) the effect of the presence of double bonds, (iv) reversibility and time course of inhibition, and (v) the effect on nitric oxide production. Aortic rings were incubated (1 h) with NEFA-albumin complexes derived from lauric (C(12:0)), myristic (C(14:0)), palmitic (C(16:0)), stearic (C(18:0)) and linolenic (C(18:3)) acids. EDR induced by acetylcholine (0.1-10 mumol/l) was measured after pre-contraction with noradrenaline. Inhibition of EDR was dose-dependent (0.5-2 mmol/l NEFA), and the greatest inhibition (51%) was observed with stearic acid (2 mmol/l). Lauric acid had the smallest inhibitory effect. The inhibitory effects were always reversible and were evident after 15 min of incubation. Linolenic acid caused a significantly lower inhibition of EDR than stearic acid. SOD (superoxide dismutase) restored the inhibitory effect caused by NEFAs, suggesting the involvement of ROS (reactive oxygen species) in removing nitric oxide. The nitric oxide concentration measured after exposure of the rings to acetylcholine was lower after incubation with NEFAs than with Krebs buffer alone. This finding is consistent with removal of nitric oxide by ROS. This claim was supported by the demonstration of increased concentrations of nitrated tyrosine in the rings incubated with NEFAs.

  2. A combined microwave pretreatment/solvent extraction process for the production of oil from palm fruit: optimisation, oil quality and effect of prolonged exposure.

    PubMed

    Tan, Jason Cx; Chuah, Cheng-Hock; Cheng, Sit-Foon

    2017-04-01

    Conventional palm oil milling involves multiple stages after fruit collection; in particular, oil clarification introduces water into the pressed oil, which results in a large quantity of wastewater. A combined process of microwave pretreatment and solvent extraction to mill crude palm oil, without introducing water or steam, is described. An excellent yield (up to 30%) of oil was obtained with pretreatment in a 42 L, 1000 W and 2450 MHz microwave oven followed by hexane extraction. The optimum conditions (10 min microwave pretreatment and 12 h solvent extraction) yielded an oil with a low free fatty acid content (<1.0%) and an acceptable anisidine value (<3.0 meq kg -1 ). The oil had a fatty acid composition not resembling those of conventional crude palm oil and crude palm kernel oil. In the pretreatment, the leached oil had 6.3% lauric acid whereas the solvent extracted oil had only 1.5% lauric acid. Among the factors affecting the oil quality, microwave pretreatment affected the oil quality significantly; however, an optimised duration that would ensure high efficiency in solvent extraction also resulted in ruptured fruitlets, although not to the extent of causing excessive oxidation. In fact, microwave pretreatment should exceed 12 min; after only 15 min, the oil had 1-methylcyclopentanol (12.96%), 1-tetradecanol (9.44%), 1-nonadecene (7.22%), nonanal (7.13%) and 1-tridecene (5.09%), which probably arose from the degradation of fibres. Microwave pretreatment represents an alternative milling process for crude palm oil compared with conventional processes in the omission of wet treatment with steam. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. [Study on Chemical Constituents of Fermented Antrodia camphorata Powder].

    PubMed

    Zhang, Feng-su; Chen, Fei; Liu, Xun-hong; Yang, Nian-yun; Ma, Yang; Hou, Ya; Luo, Yi-yuan

    2015-02-01

    To study the chemical constituents of fermented Antrodia camphorata powder. 15 compounds were isolated from Antrodia camphorata by Silica gel column chromatography, ODS column chromatography, gel column chromatography, preparative liquid phase chromatography separation technique, as well as recrystallization. On the basis of their physical and chemical properties and spectral data,their structures were identified as Ferulic acid (1), Inositol (2), β-Sitosterol (3),Vanillin (4),Vanillic acid (5), Butyric acid (6), Daucosterol (7), p-Hydroxycinnamic acid (8), Lauric acid (9), Inosine (10), Uridine (11), Adenine (12), D(+)-Sucrose (13), Arachidic acid (14) and Guanosine (15). Compounds 1, 5, 6 and 8-15 are isolated from fermented powder for the first time.

  4. Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae.

    PubMed

    Chandrasekaran, Manivachagam; Kannathasan, Krishnan; Venkatesalu, Venugopalan

    2008-01-01

    Fatty acid methyl ester (FAME) extracts of four halophytic plants, viz. Arthrocnemum indicum, Salicornia brachiata, Suaeda maritima and Suaeda monoica belonging to the family Chenopodiaceae, were prepared and their composition was analyzed by GC-MS. The FAME extracts were also screened for antibacterial and antifungal activities. The GC-MS analysis revealed the presence of more saturated fatty acids than unsaturated fatty acids. Among the fatty acids analyzed, the relative percentage of lauric acid was high in S. brachiata (61.85%). The FAME extract of S. brachiata showed the highest antibacterial and antifungal activities among the extracts tested. The other three extracts showed potent antibacterial and moderate anticandidal activities.

  5. Characterization of an anti-tuberculosis resin glycoside from the prairie medicinal plant Ipomoea leptophylla.

    PubMed

    Barnes, Curtis C; Smalley, Mary K; Manfredi, Kirk P; Kindscher, Kelly; Loring, Hillary; Sheeley, Douglas M

    2003-11-01

    The organic soluble extract from the leaves of the native North American prairie plant Ipomoea leptophylla (big root morning glory) showed in vitro activity against M. tuberculosis. Bioassay-guided fractionation of this extract resulted in the identification of two new resin glycosides (6, 7). Base-catalyzed hydrolysis of these glycosides gave operculinic acid (1) as the glycosidic acid component as well as trans-cinnamic acid, propanoic acid, and lauric acid. The complete structure elucidation was accomplished through derivatization, 1D and 2D NMR spectroscopy (TOCSY, ROESY, HSQC, HMBC), and MS/MS experiments on 6 and 7 as well as the permethylated derivative 8.

  6. Design, synthesis and evaluation of a new Mn - Contrast agent for MR imaging of myocardium based on the DTPA-phenylpentadecanoic acid complex

    NASA Astrophysics Data System (ADS)

    Belyanin, Maxim L.; Stepanova, Elena V.; Valiev, Rashid R.; Filimonov, Victor D.; Usov, Vladimir Y.; Borodin, Oleg Y.; Ågren, Hans

    2016-11-01

    In the present paper we describe the first synthesis and evaluation of a novel Mn (II) complex (DTPA-PPDA Mn (II)) which contains a C-15 fatty acid moiety that has high affinity to the heart muscle. The complexation energy of DTPA-PPDA Mn (II) evaluated by quantum chemistry methodology indicates that it essentially exceeds the corresponding value for the known DTPA Mn (II) complex. Molecular docking revealed that the affinity of the designed complex to the heart-type transport protein H-FABP well exceeds that of lauric acid. Phantom experiments in low-field MRI the designed contrast agent provides MR imaging comparable to gadopentetic acid.

  7. Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot.

    PubMed

    Schiefelbein, John

    2003-02-01

    The specification of epidermal hairs in Arabidopsis provides a useful model for the study of pattern formation in plants. Although the distributions of hair cells in the root and shoot appear quite different, recent studies show that pattern formation in each relies on a common cassette of transcriptional regulators. During development in each organ, neighboring cells compete to express regulators that specify the primary cell fate (including WEREWOLF [WER]/GLABRA1 [GL1], GL3/bHLH, TRANSPARENT TESTA GLABRA [TTG], and GL2), as well as those that prevent their neighbors from adopting this fate (including CAPRICE [CPC] and TRIPTYCHON [TRY]). The basic mechanism of lateral inhibition with feedback that has been uncovered by recent studies provides a conceptual framework for understanding how patterns of cell fate in general may be specified during plant development.

  8. The fatty acid compositions of several plant seed oils belong to Leguminosae and Umbelliferae families.

    PubMed

    Öztürk, Meryem; Geçgel, Umit; Duran, Ahmet; Uslu, Nurhan; Özcan, Mehmet Musa

    2014-05-01

    In samples with 1,009, 7,723, 7,618, 7,618, 1,004 and 1,009 number, oleic acid were found as 62.0, 77.0, 74.84, 71.55, 54.52 and 62.30 %, respectively. In other samples, oleic acid content was determined between 17.43 % (1,589) and 34.86 % (1,298). Linoleic acid content of seed oils ranged from 6.52 % (7,727) to 57.29 % (1,501). In addition, linolenic acid content was found between 0.22 % (7,618) and 46.91 % (1,589). Palmitic acid content of samples changed between 2.03 % (7,727) and 19.81 % (1,298). Capric acid was found at high level in 1,009 (8.53 %), 7,727 (37.31 %) and 1,004 (8.28 %) samples. Caproic acid was found in only 7,727 (3.38 %).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjeewa, Hakmana; He Xiaochun; Cleven, Christopher

    The Muon charge ratio at the Earth's surface has been studied with a Geant4 based simulation for two different geomagnetic locations: Atlanta and Lynn Lake. The simulation results are shown in excellent agreement with the data from NMSU-WIZARD/CAPRICE and BESS experiments at Lynn Lake, At low momentum, ground level muon charge ratios show latitude dependent geomagnetic effects for both Atlanta and Lynn Lake from the simulation. The simulated charge ratio is 1.20 {+-} 0.05 (without geomagnetic field), 1.12 {+-} 0.05 (with geomagnetic field) for Atlanta and 1.22 {+-} 0.04 (with geomagnetic field) for Lynn Lake. These types of studies aremore » very important for analyzing secondary cosmic ray muon flux distribution at Earth's surface and can be used to evaluate the parameter of atmospheric neutrino oscillations.« less

  10. Rapid Determination of Surfactant Critical Micelle Concentrations Using Pressure-Driven Flow with Capillary Electrophoresis Instrumentation

    PubMed Central

    Stanley, F. E.; Warner, A. M.; Schneiderman, E.; Stalcup, A. M.

    2009-01-01

    This work demonstrates a novel, convenient utilization of capillary electrophoresis (CE) instrumentation for the determination of critical micelle concentrations (CMCs). Solution viscosity differences across a range of surfactant concentrations were monitored by hydrodynamically forcing an analyte towards the detector. Upon reaching the surfactant's CMC value, migration times were observed to change drastically. CMC values for four commonly employed anionic surfactants were determined - sodium dodecyl sulfate: 8.1 mM; sodium caprylate- 300 mM; sodium decanoate- 86 mM; sodium laurate- 30 mM; and found to be in excellent agreement with values previously reported in the literature. The technique was then applied to the less well-characterized nonionic surfactants poly(oxyethylene) 8 myristyl ether (CMC ~ 9 μM), poly(oxyethylene) 8 decyl ether (CMC ~ 0.95 mM) and poly(oxyethylene) 4 lauryl ether. PMID:19836753

  11. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    PubMed

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. D-sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.

  12. The Cosmic-Ray Proton and Helium Spectra between 0.4 and 200 GV

    NASA Astrophysics Data System (ADS)

    Boezio, M.; Carlson, P.; Francke, T.; Weber, N.; Suffert, M.; Hof, M.; Menn, W.; Simon, M.; Stephens, S. A.; Bellotti, R.; Cafagna, F.; Castellano, M.; Circella, M.; De Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Ricci, M.; Casolino, M.; De Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Barbiellini, G.; Bravar, U.; Schiavon, P.; Vacchi, A.; Zampa, N.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Golden, R. L.; Stochaj, S. J.

    1999-06-01

    We report on the hydrogen nuclei (protons and deuterons) spectrum from 0.15 to 200 GeV and on the helium nuclei spectrum over the energy range from 0.2 to 100 GeV nucleon-1 at the top of the atmosphere measured by the balloon-borne experiment Cosmic Antiparticle Ring-Imaging Cerenkov Experiment (CAPRICE), which was flown from Lynn Lake, Manitoba, Canada, on 1994 August 8-9. We also report on the proton spectrum over the energy range from 0.15 to 4.2 GeV. The experiment used the NMSU-WiZard/CAPRICE balloon-borne magnet spectrometer equipped with a solid radiator Ring-Imaging Cerenkov (RICH) detector and a silicon-tungsten calorimeter for particle identification. This was the first time a RICH was used together with an imaging calorimeter in a balloon-borne experiment. These detectors allowed for clear particle identification, as well as excellent control of the detector efficiencies. The data were collected during 18 hr at a residual mean atmospheric depth of 3.9 g cm-2. With this apparatus 516,463 hydrogen and 32,457 helium nuclei were identified in the rigidity range 0.4 to 200 GV and 1.2 to 200 GV, respectively. The observed energy spectrum at the top of the atmosphere can be represented by (1.1+/-0.1)×104 E-2.73+/-0.06 particles (m2 GeV sr s)-1 for hydrogen (E in GeV) between 20 and 200 GeV and (4.3+/-0.9)×102 E-2.65+/-0.07 particles (m2 GeV nucleon-1 sr s)-1 for helium nuclei (E in GeV nucleon-1) between 10 and 100 GeV nucleon-1. These spectra are in good agreement with other recent measurements above 10 GeV. The observed spectra flatten below 10 GeV due to solar modulation and are consistent with earlier measurements when solar modulation is taken into account. Between 5 and 200 GV the hydrogen to helium ratio as a function of rigidity was found to be approximately constant at 6.1+/-0.1.

  13. The association between dietary saturated fatty acids and ischemic heart disease depends on the type and source of fatty acid in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort.

    PubMed

    Praagman, Jaike; Beulens, Joline Wj; Alssema, Marjan; Zock, Peter L; Wanders, Anne J; Sluijs, Ivonne; van der Schouw, Yvonne T

    2016-02-01

    The association between saturated fatty acid (SFA) intake and ischemic heart disease (IHD) risk is debated. We sought to investigate whether dietary SFAs were associated with IHD risk and whether associations depended on 1) the substituting macronutrient, 2) the carbon chain length of SFAs, and 3) the SFA food source. Baseline (1993-1997) SFA intake was measured with a food-frequency questionnaire among 35,597 participants from the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort. IHD risks were estimated with multivariable Cox regression for the substitution of SFAs with other macronutrients and for higher intakes of total SFAs, individual SFAs, and SFAs from different food sources. During 12 y of follow-up, 1807 IHD events occurred. Total SFA intake was associated with a lower IHD risk (HR per 5% of energy: 0.83; 95% CI: 0.74, 0.93). Substituting SFAs with animal protein, cis monounsaturated fatty acids, polyunsaturated fatty acids (PUFAs), or carbohydrates was significantly associated with higher IHD risks (HR per 5% of energy: 1.27-1.37). Slightly lower IHD risks were observed for higher intakes of the sum of butyric (4:0) through capric (10:0) acid (HRSD: 0.93; 95% CI: 0.89, 0.99), myristic acid (14:0) (HRSD: 0.90; 95% CI: 0.83, 0.97), the sum of pentadecylic (15:0) and margaric (17:0) acid (HRSD: 0.91: 95% CI: 0.83, 0.99), and for SFAs from dairy sources, including butter (HRSD: 0.94; 95% CI: 0.90, 0.99), cheese (HRSD: 0.91; 95% CI: 0.86, 0.97), and milk and milk products (HRSD: 0.92; 95% CI: 0.86, 0.97). In this Dutch population, higher SFA intake was not associated with higher IHD risks. The lower IHD risk observed did not depend on the substituting macronutrient but appeared to be driven mainly by the sums of butyric through capric acid, the sum of pentadecylic and margaric acid, myristic acid, and SFAs from dairy sources. Residual confounding by cholesterol-lowering therapy and trans fat or limited variation in SFA and PUFA

  14. Oyster mushroom’s lipase enzyme entrapment on calcium alginate as biocatalyst in the synthesis of lauryl diethanolamide

    NASA Astrophysics Data System (ADS)

    Wijayati, N.; Masubah, K.; Supartono

    2017-02-01

    Lipase is an enzyme with large biotechnology applications, such as hydrolysis in the food industry, applications in chemical industry, synthesis of polymers and surfactants. Lipase was isolated from oyster mushroom with activity 0,93 U/mg and protein content 1,1234 mg/mL. Lipase was immobilized by entrapment method in a matrix of Ca-alginate. This report describes that we have developed for the synthesis of lauryl diethanolamide The result showed that the optimum condition of lipase immobilization was achieved on 3% Na-alginate solution with protein content 0,84 mg/mL and the activity 3,33 U/mg. An amide (22.911%) formed from the amidation of lauric acid and diethanolamine.

  15. [Anti-Candida activity of aroma candy and its protective activity against murine oral candidiasis].

    PubMed

    Hayama, Kazumi; Takahashi, Miki; Suzuki, Motofumi; Ezawa, Kunio; Yamazaki, Masatoshi; Matsukawa, Taiji; Kishi, Akinobu; Sato, Nobuya; Abe, Shigeru

    2015-01-01

    A daily eatable candy that has possible protective activity against oral candidiasis was experimentally produced. The candy was made from reduced-maltose as main constituent and from several natural products, such as oligonol (depolymerized polyphenols derived from lychee), cinnamon (cassia), citral, and capric acid, which are known to have anti-Candida activity in vitro and in vivo. The candy effectively inhibited the mycelial growth of C. albicans, even when it was diluted 1,000 times with culture media. We assessed the protective activity of the candy against murine candidiasis. When 50μl of candy dissolved and diluted 4 times with water was administered 3 times into the oral cavity of Candida infected mice, the score of lesions on the Candida-infected tongues improved on day 2. These findings suggest that this candy has potential as food that provides protective activity against oral candidiasis.

  16. The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis.

    PubMed

    Ryu, Kook Hui; Kang, Yeon Hee; Park, Young-hwan; Hwang, Ildoo; Schiefelbein, John; Lee, Myeong Min

    2005-11-01

    The Arabidopsis root epidermis is composed of two types of cells, hair cells and non-hair cells, and their fate is determined in a position-dependent manner. WEREWOLF (WER), a R2R3 MYB protein, has been shown genetically to function as a master regulator to control both of the epidermal cell fates. To directly test the proposed role of WER in this system, we examined its subcellular localization and defined its transcriptional activation properties. We show that a WER-GFP fusion protein is functional and accumulates in the nucleus of the N-position cells in the Arabidopsis root epidermis, as expected for a transcriptional regulator. We also find that a modified WER protein with a strong activation domain (WER-VP16) promotes the formation of both epidermal cell types, supporting the view that WER specifies both cell fates. In addition, we used the glucocorticoid receptor (GR) inducible system to show that CPC transcription is regulated directly by WER. Using EMSA, we found two WER-binding sites (WBSs; WBSI and WBSII) in the CPC promoter. WER-WBSI binding was confirmed in vivo using the yeast one-hybrid assay. Binding between the WER protein and both WBSs (WBSI and WBSII), and the importance of the two WBSs in CPC promoter activity were confirmed in Arabidopsis. These results provide experimental support for the proposed role of WER as an activator of gene transcription during the specification of both epidermal cell fates.

  17. Preparation of Copper (II) Containing Phosphomolybdic Acid Salt as Catalyst for the Synthesis of Biodiesel by Esterification.

    PubMed

    Cai, Jie; Zhang, Qiu-Yun; Wei, Fang-Fang; Huang, Jin-Shu; Feng, Yun-Mei; Ma, Hai-Tao; Zhang, Yutao-

    2018-04-01

    Copper (II) containing phosphomolybdic acid (PMA) catalysts were synthesized by ion exchange method and characterization using various physico-chemical techniques such as X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) and scanning electron microscopy (SEM). The characterization results showed that the Keggin ions were retained in the catalysts and possessed well thermal stability. The catalytic esterification of lauric acid with methanol could be easily achieved about 78.7% conversion under optimum condition, the catalyst also contributed to the stability of the catalyst in which it can be reused for a certain time. This study demonstrated an alternative approach to biodiesel production with high efficiency by Cu (II) ion exchanged phosphomolybdic acid catalyst in the esterification catalytic.

  18. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails.

    PubMed

    Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek

    2015-02-01

    Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity. Copyright © 2015. Published by Elsevier Ltd.

  19. Oilseed crop with promise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senft, D.

    1986-02-01

    Cuphea, a relatively unknown plant outside the scientific community, might someday provide valuable oils for manufacturing soaps, detergents, surfactants, and lubricants, and may have medical, nutritional and dietetic applications as well. Unique properties of oils found in its seed make cuphea a potentially valuable new crop for the USA. Its seeds contain large quantities of medium-chain fatty acids such as lauric acid, which is used in manufacturing soaps and detergents. Other medium-chain fatty acids in cuphea can be used for clinical treatment of rare human ailments associated with fat absorption. New uses for the fatty acids in the seed maymore » be developed and economic conditions may change, making the crop more or less valuable.« less

  20. Biodiesel production from municipal secondary sludge.

    PubMed

    Kumar, Manish; Ghosh, Pooja; Khosla, Khushboo; Thakur, Indu Shekhar

    2016-09-01

    In the present study, feasibility of biodiesel production from freeze dried sewage sludge was studied and its yield was enhanced by optimization of the in situ transesterification conditions (temperature, catalyst and concentration of sludge solids). Optimized conditions (45°C, 5% catalyst and 0.16g/mL sludge solids) resulted in a 20.76±0.04% biodiesel yield. The purity of biodiesel was ascertained by GC-MS, FT-IR and NMR ((1)H and (13)C) spectroscopy. The biodiesel profile obtained revealed the predominance of methyl esters of fatty acids such as oleic, palmitic, myristic, stearic, lauric, palmitoleic and linoleic acids indicating potential use of sludge as a biodiesel feedstock. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Functional reconstitution of Arabidopsis thaliana plant uncoupling mitochondrial protein (AtPUMP1) expressed in Escherichia coli.

    PubMed

    Borecký, J; Maia, I G; Costa, A D; Jezek, P; Chaimovich, H; de Andrade, P B; Vercesi, A E; Arruda, P

    2001-09-14

    The Arabidopsis thaliana uncoupling protein (UCP) gene was expressed in Escherichia coli and isolated protein reconstituted into liposomes. Linoleic acid-induced H+ fluxes were sensitive to purine nucleotide inhibition with an apparent K(i) (in mM) of 0.8 (GDP), 0.85 (ATP), 0.98 (GTP), and 1.41 (ADP); the inhibition was pH-dependent. Kinetics of AtPUMP1-mediated H+ fluxes were determined for lauric, myristic, palmitic, oleic, linoleic, and linolenic acids. Properties of recombinant AtPUMP1 indicate that it represents a plant counterpart of animal UCP2 or UCP3. This work brings the functional and genetic approaches together for the first time, providing strong support that AtPUMP1 is truly an UCP.

  2. The GLABRA2 homeodomain protein directly regulates CESA5 and XTH17 gene expression in Arabidopsis roots.

    PubMed

    Tominaga-Wada, Rumi; Iwata, Mineko; Sugiyama, Junji; Kotake, Toshihisa; Ishida, Tetsuya; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Okada, Kiyotaka; Wada, Takuji

    2009-11-01

    Arabidopsis root hair formation is determined by the patterning genes CAPRICE (CPC), GLABRA3 (GL3), WEREWOLF (WER) and GLABRA2 (GL2), but little is known about the later changes in cell wall material during root hair formation. A combined Fourier-transform infrared microspectroscopy-principal components analysis (FTIR-PCA) method was used to detect subtle differences in the cell wall material between wild-type and root hair mutants in Arabidopsis. Among several root hair mutants, only the gl2 mutation affected root cell wall polysaccharides. Five of the 10 genes encoding cellulose synthase (CESA1-10) and 4 of 33 xyloglucan endotransglucosylase (XTH1-33) genes in Arabidopsis are expressed in the root, but only CESA5 and XTH17 were affected by the gl2 mutation. The L1-box sequence located in the promoter region of these genes was recognized by the GL2 protein. These results indicate that GL2 directly regulates cell wall-related gene expression during root development.

  3. [The mechanism of root hair development and molecular regulation in plants].

    PubMed

    Wang, Yue-Ping; Li, Ying-Hui; Guan, Rong-Xia; Liu, Zhang-Xiong; Chen, Xiong-Ting; Chang, Ru-Zhen; Qiu, Li-Juan

    2007-04-01

    The formation of the root epidermis in Arabidopsis thaliana provides a simple model to study mechanisms underlying patterning in plants. Root hair increases the root surface area and effectively increases the root diameter, so root hair is thought to aid plants in nutrient uptake, anchorage and microbe interactions. The determination of root hair development has two types, lateral inhibition with feedback and position-dependent pattern of cell differentiation. The initiation and development of root hair in Arabidopsis provide a simple and efficacious model for the study of cell fate determination in plants. Molecular genetic studies identify a suite of putative transcription factors which regulate the epidermal cell pattern. The homeodomain protein GLABRA2 (GL2), R2R3 MYB-type transcription factor WEREWOLF (WER) and WD-repeat protein TRANSPARENTT TESTA GLABRA (TTG) are required for specification of non-hair cell type. The CAPRICE (CPC) and TRYPTICHON (TRY) are involved in specifying the hair cell fate.

  4. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    USDA-ARS?s Scientific Manuscript database

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  5. Development of an up-grading process to produce MLM structured lipids from sardine discards.

    PubMed

    Morales-Medina, R; Munio, M; Guadix, A; Guadix, E M

    2017-08-01

    The aim of the work was to produce MLM structured lipids with caprylic acid (M) as medium chain fatty acid located at the external bonds of the glycerol backbone and concentrated polyunsaturated fatty acids (L) from sardine discards (Sardine pilchardus) in the central bond of the glycerol. To that end, the following steps were conducted: (i) fish oil extraction, (ii) Omega-3 free fatty acids (FFA) concentration (low temperature winterization), (iii) two-steps enzymatic esterification and (iv) triacylglycerols (TAG) purification (liquid column chromatography). The resultant purified triacylglycerols accomplished with the oxidative state (peroxide and anisidine value, PV and AV) required for refined oils. As enzymatic treatment, Omega-3 concentrate FFA (Omega-3>600mg Omega-3 per g oil) were esterified with dicaprylic glycerol employing Novozyme 435. This process presented high regioselectivity, with ∼80mol% of concentrated fatty acids esterified at the sn-2 position. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Triterpene Esters and Biological Activities from Edible Fruits of Manilkara subsericea (Mart.) Dubard, Sapotaceae

    PubMed Central

    Fernandes, Caio P.; Corrêa, Arthur L.; Lobo, Jonathas F. R.; Caramel, Otávio P.; de Almeida, Fernanda B.; Castro, Elaine S.; Souza, Kauê F. C. S.; Burth, Patrícia; Amorim, Lidia M. F.; Santos, Marcelo G.; Ferreira, José Luiz P.; Falcão, Deborah Q.; Carvalho, José C. T.; Rocha, Leandro

    2013-01-01

    Manilkara subsericea (Mart.) Dubard (Sapotaceae) is popularly known in Brazil as “guracica.” Studies with Manilkara spp indicated the presence of triterpenes, saponins, and flavonoids. Several activities have been attributed to Manilkara spp such as antimicrobial, antiparasitic and antitumoral, which indicates the great biological potential of this genus. In all, 87.19% of the hexanic extract from fruits relative composition were evaluated, in which 72.81% were beta- and alpha-amyrin esters, suggesting that they may be chemical markers for M. subsericea. Hexadecanoic acid, hexadecanoic acid ethyl ester, (E)-9-octadecenoic acid ethyl ester, and octadecanoic acid ethyl ester were also identified. Ethanolic crude extracts from leaves, stems, and hexanic extract from fruits exhibited antimicrobial activity against Staphylococcus aureus ATCC25923. These extracts had high IC50 values against Vero cells, demonstrating weak cytotoxicity. This is the first time, to our knowledge, that beta- and alpha-amyrin caproates and caprylates are described for Manilkara subsericea. PMID:23509702

  7. Controlling Blown Pack Spoilage Using Anti-Microbial Packaging

    PubMed Central

    Reid, Rachael; Tyuftin, Andrey A.; Kerry, Joe P.; Whyte, Paul; Bolton, Declan

    2017-01-01

    Active (anti-microbial) packaging was prepared using three different formulations; Auranta FV; Inbac-MDA and sodium octanoate at two concentrations (2.5 and 3.5 times their minimum inhibitory concentration (MIC, the lowest concentration that will inhibit the visible growth of the organisms) against Clostridium estertheticum, DSMZ 8809). Inoculated beef samples were packaged using the active packaging and monitored for 100 days storage at 2 °C for blown pack spoilage. The time to the onset of blown pack spoilage was significantly (p < 0.01) increased using Auranta FV and sodium octanoate (caprylic acid sodium salt) at both concentrations. Moreover, sodium octanoate packs had significantly (p < 0.01) delayed blown pack spoilage as compared to Auranta FV. It was therefore concluded that Auranta FV or sodium octanoate, incorporated into the packaging materials used for vacuum packaged beef, would inhibit blown pack spoilage and in the case of the latter, well beyond the 42 days storage period currently required for beef primals. PMID:28805679

  8. Controlling Blown Pack Spoilage Using Anti-Microbial Packaging.

    PubMed

    Reid, Rachael; Bolton, Declan; Tiuftin, Andrey A; Kerry, Joe P; Fanning, Séamus; Whyte, Paul

    2017-08-12

    Active (anti-microbial) packaging was prepared using three different formulations; Auranta FV; Inbac-MDA and sodium octanoate at two concentrations (2.5 and 3.5 times their minimum inhibitory concentration (MIC, the lowest concentration that will inhibit the visible growth of the organisms) against Clostridium estertheticum , DSMZ 8809). Inoculated beef samples were packaged using the active packaging and monitored for 100 days storage at 2 °C for blown pack spoilage. The time to the onset of blown pack spoilage was significantly ( p < 0.01) increased using Auranta FV and sodium octanoate (caprylic acid sodium salt) at both concentrations. Moreover, sodium octanoate packs had significantly ( p < 0.01) delayed blown pack spoilage as compared to Auranta FV. It was therefore concluded that Auranta FV or sodium octanoate, incorporated into the packaging materials used for vacuum packaged beef, would inhibit blown pack spoilage and in the case of the latter, well beyond the 42 days storage period currently required for beef primals.

  9. [Profile-effect on quality control of Houttuynia cordata injection].

    PubMed

    Lu, Hong-mei; Liang, Yi-zeng; Qian, Pin

    2005-12-01

    To find corresponding relationship between the fingerprint of Houttuynia cordata injections from different factories and their effects. Houttuynia cordata injections from six different factories were determined by gas chromatography (GC) and gas chromatography-mass spectra (GC-MS), and GC fingerprints were classified by hierarchical clustering. The anti-inflammatory activity of Houttuynia cordata injections was characterized through the rat pleurisy model induced by carrageenin and the mice ear edema model by dimethylbenzene. The anti-inflammatory effect of the injections from the first class factories on the two model was significant, while those from the second class not. GC-MS analysis result indicated that main effect compounds in Houttuynia cordata injections are methyl n-nonyl ketone, decanoylacetaldehyde, lauryl aldehyde, capryl aldehyde, beta-pinene, beta-linalool, 1-nonanol, 4-terpineol, alpha-terpineol, bornyl acetate, n-decanoic acid and acetic acid, geraniol ester etc. There is corresponding relationship between the fingerprint of Houttuynia cordata injections and effect to a certain extent.

  10. Structural insights into enzymatic degradation of oxidized polyvinyl alcohol.

    PubMed

    Yang, Yu; Ko, Tzu-Ping; Liu, Long; Li, Jianghua; Huang, Chun-Hsiang; Chan, Hsiu-Chien; Ren, Feifei; Jia, Dongxu; Wang, Andrew H-J; Guo, Rey-Ting; Chen, Jian; Du, Guocheng

    2014-09-05

    The ever-increasing production and use of polyvinyl alcohol (PVA) threaten our environment. Yet PVA can be assimilated by microbes in two steps: oxidation and cleavage. Here we report novel α/β-hydrolase structures of oxidized PVA hydrolase (OPH) from two known PVA-degrading organisms, Sphingopyxis sp. 113P3 and Pseudomonas sp. VM15C, including complexes with substrate analogues, acetylacetone and caprylate. The active site is covered by a lid-like β-ribbon. Unlike other esterase and amidase, OPH is unique in cleaving the CC bond of β-diketone, although it has a catalytic triad similar to that of most α/β-hydrolases. Analysis of the crystal structures suggests a double-oxyanion-hole mechanism, previously only found in thiolase cleaving β-ketoacyl-CoA. Three mutations in the lid region showed enhanced activity, with potential in industrial applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fatty acids derived from a food frequency questionnaire and measured in the erythrocyte membrane in relation to adiponectin and leptin concentrations.

    PubMed

    Santos, S; Oliveira, A; Pinho, C; Casal, S; Lopes, C

    2014-05-01

    Evidence on the association between fatty acids and adiponectin and leptin concentrations is scarce and inconsistent, which may in part be due to limitations of dietary reporting methods. We aimed to estimate the association of fatty acids, derived from a food frequency questionnaire (FFQ) and measured in the erythrocyte membrane, with adiponectin and leptin concentrations. We studied 330 non-institutionalized inhabitants of Porto (52.4% women; age range: 26-64 years) evaluated in 2010-2011, as part of the EPIPorto cohort study. Fatty acids were derived from a validated semiquantitative FFQ and measured in the erythrocyte membrane by gas chromatography. Serum concentrations of adiponectin and leptin were determined through radioimmunoassay. Regression coefficients (β) and 95% confidence intervals (95% CI) were obtained from linear regression models, after controlling for gender, age, education, leisure time physical activity and total body fat percentage (obtained from dual energy X-ray absorptiometry). Fatty acids measured by FFQ showed no significant associations with both adipokines. Lauric and linoleic acids, measured in the erythrocyte membrane, were significantly and positively associated with adiponectin (β=0.292, 95% CI: 0.168-0.416; β=0.150, 95% CI: 0.020-0.280) and leptin (β=0.071, 95% CI: 0.003-0.138; β=0.071, 95% CI: 0.002-0.140), whereas total n-3, eicosapentaenoic and docosahexaenoic acids were significantly but negatively associated with adiponectin (β=-0.289, 95% CI: -0.420 to -0.159; β=-0.174, 95% CI -0.307 to -0.040; β=-0.253, 95% CI -0.383 to -0.124) and leptin (β=-0.151, 95% CI: -0.220 to -0.083; β=-0.080, 95% CI: -0.151 to -0.009; β=-0.146, 95% CI: -0.214 to -0.078). Positive significant associations of palmitic and trans-fatty acids with adiponectin were also observed. A positive association of lauric and linoleic acids and a negative association of total n-3 fatty acids with both adipokines were observed only with fatty acids

  12. Coconut oil protects cortical neurons from amyloid beta toxicity by enhancing signaling of cell survival pathways.

    PubMed

    Nafar, F; Clarke, J P; Mearow, K M

    2017-05-01

    Alzheimer's disease is a progressive neurodegenerative disease that has links with other conditions that can often be modified by dietary and life-style interventions. In particular, coconut oil has received attention as having potentially having benefits in lessening the cognitive deficits associated with Alzheimer's disease. In a recent report, we showed that neuron survival in cultures co-treated with coconut oil and Aβ was rescued compared to cultures exposed only to Aβ. Here we investigated treatment with Aβ for 1, 6 or 24 h followed by addition of coconut oil for a further 24 h, or treatment with coconut oil for 24 h followed by Aβ exposure for various periods. Neuronal survival and several cellular parameters (cleaved caspase 3, synaptophysin labeling and ROS) were assessed. In addition, the influence of these treatments on relevant signaling pathways was investigated with Western blotting. In terms of the treatment timing, our data indicated that coconut oil rescues cells pre-exposed to Aβ for 1 or 6 h, but is less effective when the pre-exposure has been 24 h. However, pretreatment with coconut oil prior to Aβ exposure showed the best outcomes. Treatment with octanoic or lauric acid also provided protection against Aβ, but was not as effective as the complete oil. The coconut oil treatment reduced the number of cells with cleaved caspase and ROS labeling, as well as rescuing the loss of synaptophysin labeling observed with Aβ treatment. Treatment with coconut oil, as well as octanoic, decanoic and lauric acids, resulted in a modest increase in ketone bodies compared to controls. The biochemical data suggest that Akt and ERK activation may contribute to the survival promoting influence of coconut oil. This was supported by observations that a PI3-Kinase inhibitor blocked the rescue effect of CoOil on Aβ amyloid toxicity. Further studies into the mechanisms of action of coconut oil and its constituent medium chain fatty acids are warranted

  13. Characterization of two acyl-acyl carrier protein thioesterases from developing Cuphea seeds specific for medium-chain- and oleoyl-acyl carrier protein.

    PubMed

    Dörmann, P; Spener, F; Ohlrogge, J B

    1993-03-01

    Two acyl-acyl carrier protein (ACP) thioesterases were partially purified from developing seeds of Cuphea lanceolata Ait., a plant with decanoic acid-rich triacylglycerols. The two enzymes differ markedly in their substrate specificity. One is specific for medium-chain acyl-ACPs, the other one for oleoyl-ACP. In addition, these enzymes are distinct with regard to molecular weight, pH optimum and sensitivity to salt. The thioesterases could be separated by Mono Q chromatography or gel filtration. The medium-chain acyl-ACP thioesterase and oleoyl-ACP thioesterase were purified from a crude extract 29- and 180-fold, respectively. In Cuphea wrightii A. Gray, which predominantly contains decanoic a nd lauric acid in the seeds, two different thioesterases were also found with a similar substrate specificity as in Cuphea lanceolata.

  14. Chemical composition of volatiles from Opuntia littoralis, Opuntia ficus-indica, and Opuntia prolifera growing on Catalina Island, California.

    PubMed

    Wright, Cynthia R; Setzer, William N

    2014-01-01

    The essential oils from the cladodes of Opuntia littoralis, Opuntia ficus-indica and Opuntia prolifera growing wild on Santa Catalina Island, California, were obtained by hydrodistillation and analysed by gas chromatography-mass spectrometry (GC-MS). Terpenoids were the dominant class of volatiles in O. littoralis, with the two main components being the furanoid forms of cis-linalool oxide (10.8%) and trans-linalool oxide (8.8%). Fatty acid-derived compounds dominated the essential oil of O. ficus-indica with linoleic acid (22.3%), palmitic acid (12.7%), lauric acid (10.5%) and myristic acid (4.2%) as major fatty acids. O. prolifera oil was composed of 46.6% alkanes and the primary hydrocarbon component was heptadecane (19.2%). Sixteen compounds were common to all the three Opuntia species.

  15. Evolution and genetics of root hair stripes in the root epidermis.

    PubMed

    Dolan, L; Costa, S

    2001-03-01

    Root hair pattern develops in a number of different ways in angiosperm. Cells in the epidermis of some species undergo asymmetric cell divisions to form a smaller daughter cell from which a hair grows, and a larger cell that forms a non-hair epidermal cell. In other species any cell in the epidermis can form a root hair. Hair cells are arranged in files along the Arabidopsis root, located in the gaps between underlying cortical cell files. Epidermal cells overlying a single cortical cell file develop as non-hair epidermal cells. Genetic analysis has identified a transcription factor cascade required for the formation of this pattern. WEREWOLF (WER) and GLABRA2 (GL2) are required for the formation of non-hair epidermal cells while CAPRICE (CPC) is required for hair cell development. Recent analyses of the pattern of epidermal cells among the angiosperms indicate that this striped pattern of cell organization evolved from non-striped ancestors independently in a number of diverse evolutionary lineages. The genetic basis for the evolution of epidermal pattern in angiosperms may now be examined.

  16. Steroids are required for epidermal cell fate establishment in Arabidopsis roots.

    PubMed

    Kuppusamy, Kavitha T; Chen, Andrew Y; Nemhauser, Jennifer L

    2009-05-12

    The simple structure of Arabidopsis roots provides an excellent model system to study epidermal cell fate specification. Epidermal cells in contact with 2 underlying cortical cells differentiate into hair cells (H cells; trichoblasts), whereas cells that contact only a single cortical cell differentiate into mature hairless cells (N cells; atrichoblasts). This position-dependent patterning, in combination with the constrained orientation of cell divisions, results in hair and nonhair cell files running longitudinally along the root epidermis. Here, we present strong evidence that steroid hormones called brassinosteroids (BRs) are required to maintain position-dependent fate specification in roots. We show that BRs are required for normal expression levels and patterns of WEREWOLF (WER) and GLABRA2 (GL2), master regulators of epidermal patterning. Loss of BR signaling results in loss of hair cells in H positions, likely as a consequence of reduced expression of CAPRICE (CPC), a direct downstream target of WER. Our observations demonstrate that in addition to their well-known role in cell expansion, BRs play an essential role in directing cell fate.

  17. Steroids are required for epidermal cell fate establishment in Arabidopsis roots

    PubMed Central

    Kuppusamy, Kavitha T.; Chen, Andrew Y.; Nemhauser, Jennifer L.

    2009-01-01

    The simple structure of Arabidopsis roots provides an excellent model system to study epidermal cell fate specification. Epidermal cells in contact with 2 underlying cortical cells differentiate into hair cells (H cells; trichoblasts), whereas cells that contact only a single cortical cell differentiate into mature hairless cells (N cells; atrichoblasts). This position-dependent patterning, in combination with the constrained orientation of cell divisions, results in hair and nonhair cell files running longitudinally along the root epidermis. Here, we present strong evidence that steroid hormones called brassinosteroids (BRs) are required to maintain position-dependent fate specification in roots. We show that BRs are required for normal expression levels and patterns of WEREWOLF (WER) and GLABRA2 (GL2), master regulators of epidermal patterning. Loss of BR signaling results in loss of hair cells in H positions, likely as a consequence of reduced expression of CAPRICE (CPC), a direct downstream target of WER. Our observations demonstrate that in addition to their well-known role in cell expansion, BRs play an essential role in directing cell fate. PMID:19416891

  18. A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves

    PubMed Central

    Digiuni, Simona; Schellmann, Swen; Geier, Florian; Greese, Bettina; Pesch, Martina; Wester, Katja; Dartan, Burcu; Mach, Valerie; Srinivas, Bhylahalli Purushottam; Timmer, Jens; Fleck, Christian; Hulskamp, Martin

    2008-01-01

    Trichome patterning in Arabidopsis serves as a model system for de novo pattern formation in plants. It is thought to typify the theoretical activator–inhibitor mechanism, although this hypothesis has never been challenged by a combined experimental and theoretical approach. By integrating the key genetic and molecular data of the trichome patterning system, we developed a new theoretical model that allows the direct testing of the effect of experimental interventions and in the prediction of patterning phenotypes. We show experimentally that the trichome inhibitor TRIPTYCHON is transcriptionally activated by the known positive regulators GLABRA1 and GLABRA3. Further, we demonstrate by particle bombardment of protein fusions with GFP that TRIPTYCHON and CAPRICE but not GLABRA1 and GLABRA3 can move between cells. Finally, theoretical considerations suggest promoter swapping and basal overexpression experiments by means of which we are able to discriminate three biologically meaningful variants of the trichome patterning model. Our study demonstrates that the mutual interplay between theory and experiment can reveal a new level of understanding of how biochemical mechanisms can drive biological patterning processes. PMID:18766177

  19. Antibacterial chitosan/silk sericin 3D porous scaffolds as a wound dressing material.

    PubMed

    Karahaliloglu, Zeynep; Kilicay, Ebru; Denkbas, Emir Baki

    2017-09-01

    Antimicrobial mixed dressings have traditionally been used to minimize bacterial infection of burns and other wounds. This study presents the advancement of biocompatible chitosan/silk sericin (CHT/SS) scaffolds combined with lauric acid (LA) and zinc oxide nanoparticles (nZnO) for the successful wound dressing applications. Antibacterial assay results showed that the diameters of the inhibition zone increased from 2 ± 0.4 to 7 ± 0.1 mm for Escherichia coli, as well as from 2.5 ± 0.2 to 6 ± 0.4 mm for Staphylococcus aureus while CHTS/SS/100nZnO compared to CHT/SS/0.01LA. The results not only showed excellent inhibition against Gram-positive and Gram-negative bacterial growth but also revealed improved proliferation and extended viability for HaCaT cells.

  20. Simple and sensitive analysis of long-chain free fatty acids in milk by fluorogenic derivatization and high-performance liquid chromatography.

    PubMed

    Lu, Chi-Yu; Wu, Hsin-Lung; Chen, Su-Hwei; Kou, Hwang-Shang; Wu, Shou-Mei

    2002-01-02

    A highly sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of some important saturated and unsaturated fatty acids in milk, including lauric (dodecanoic), myristic (tetradecanoic), palmitic (hexadecanoic), stearic (octadecanoic), palmitoleic (hexadecenoic), oleic (octadecenoic), and linoleic acids (octadecadienoic acids). The fatty acids were fluorogenically derivatized with 2-(2-naphthoxy)ethyl 2-(piperidino)ethanesulfonate (NOEPES) as their naphthoxyethyl derivatives. The resulting derivatives were separated by isocratic HPLC and monitored with a fluorometric detector (lambdaex = 235 nm, lambdaem = 350 nm). The fatty acids in milk were extracted with toluene, and the extract with the fatty acids was directly derivatized with NOEPES without solvent replacement. Determination of long-chain free fatty acids in milk is feasible by a standard addition method. A small amount of milk product, 10 microL, is sufficient for the analysis.

  1. Production of aviation fuel via catalytic hydrothermal decarboxylation of fatty acids in microalgae oil.

    PubMed

    Yang, Cuiyue; Nie, Renfeng; Fu, Jie; Hou, Zhaoyin; Lu, Xiuyang

    2013-10-01

    A series of fatty acids in microalgae oil, such as stearic acid, palmitic acid, lauric acid, myristic acid, arachidic acid and behenic acid, were selected as the raw materials to produce aviation fuel via hydrothermal decarboxylation over a multi-wall carbon nanotube supported Pt catalyst (Pt/MWCNTs). It was found that Pt/MWCNTs catalysts exhibited higher activity for the hydrothermal decarboxylation of stearic acid with a 97% selectivity toward heptadecane compared to Pt/C and Ru/C under the same conditions. And Pt/MWCNTs is also capable for the decarboxylation of different fatty acids in microalgae oil. The reaction conditions, such as Pt/MWCNTs loading amount, reaction temperature and time were optimized. The activation energy of stearic acid decarboxylation over Pt/MWCNTs was calculated (114 kJ/mol). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Significant enhancement by biochar of caproate production via chain elongation.

    PubMed

    Liu, Yuhao; He, Pinjing; Shao, Liming; Zhang, Hua; Lü, Fan

    2017-08-01

    In this study, biochar was introduced into a chain elongation system to enhance the bioproduction of caproate and caprylate. The concentration of caproate increased to 21.1 g/L upon the addition of biochar, which is the highest level of caproate reported for such a system to date when ethanol was used as electron donor. The addition of biochar created a tougher system with more stable microorganism community structure for chain elongation, in which no obvious inhibition by products or substrates was observed, moreover, the lag phase was reduced 2.3-fold compared to the system without biochar. These reinforcement effect of biochar are attributed to the enhanced conductivity due to the significant enrichment of functional microorganisms via the microbial network surrounding smaller biochar particles, and via the adsorption on the rough surfaces or pores of larger particles, which facilitated electron transfer. Higher amounts of extracellular polymer substances and higher conductivity induced by biochar could contribute to the reinforcement effect in chain elongation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: A new support for biodiesel synthesis.

    PubMed

    Jiang, Wei; Wang, Xinghuo; Yang, Jiebing; Han, Haobo; Li, Quanshun; Tang, Jun

    2018-03-15

    We reported a facile, economic and green method based on biomimetic mineralization to acquire lipase-inorganic hybrid nanoflower, which was then employed as a biocatalyst for biodiesel production. In the hybrid nanoflower, enzyme molecules and Cu 2+ ions were utilized as the organic and inorganic components, respectively. The morphology of nanoflower and the distribution and loading of proteins were systematically characterized by scanning electron microscopy, confocal laser scanning microscopy and ultraviolet-visible spectroscopy, which indicated the successful encapsulation of lipase in the hybrid nanoflower. Using the hydrolysis of p-nitrophenyl caprylate as a model, lipase-inorganic hybrid nanoflower was observed to possess favorable catalytic activity and stability in the ester hydrolysis. Further, the hybrid nanoflower was used as a catalyst for biodiesel production, in which it could convert sunflower oil to biodiesel with 96.5% conversion and remain 72.5% conversion after being used for 5 cycles. Thus, the lipase-inorganic hybrid nanoflower is potential to be used as an economically viable biocatalyst for the production of biofuel as the future petrol-fuel replacement. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Micellar Surfactant Association in the Presence of a Glucoside-based Amphiphile Detected via High-Throughput Small Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanic, Vesna; Broadbent, Charlotte; DiMasi, Elaine

    2016-11-14

    The interactions of mixtures of anionic and amphoteric surfactants with sugar amphiphiles were studied via high throughput small angle x-ray scattering (SAXS). The sugar amphiphile was composed of Caprate, Caprylate, and Oleate mixed ester of methyl glucoside, MeGCCO. Optimal surfactant interactions are sought which have desirable physical properties, which must be identified in a cost effective manner that can access the large phase space of possible molecular combinations. X-ray scattering patterns obtained via high throughput SAXS can probe a combinatorial sample space and reveal the incorporation of MeGCCO into the micelles and the molecular associations between surfactant molecules. Such datamore » make it possible to efficiently assess the effects of the new amphiphiles in the formulation. A specific finding of this study is that formulations containing comparatively monodisperse and homogeneous surfactant mixtures can be reliably tuned by addition of NaCl, which swells the surfactant micelles with a monotonic dependence on salt concentration. In contrast, the presence of multiple different surfactants destroys clear correlations with NaCl concentration, even in otherwise similar series of formulations.« less

  5. Construction of an Immobilized Thermophilic Esterase on Epoxy Support for Poly(ε-caprolactone) Synthesis.

    PubMed

    Ren, Hui; Xing, Zhen; Yang, Jiebing; Jiang, Wei; Zhang, Gang; Tang, Jun; Li, Quanshun

    2016-06-18

    Developing an efficient immobilized enzyme is of great significance for improving the operational stability of enzymes in poly(ε-caprolactone) synthesis. In this paper, a thermophilic esterase AFEST from the archaeon Archaeoglobus fulgidus was successfully immobilized on the epoxy support Sepabeads EC-EP via covalent attachment, and the immobilized enzyme was then employed as a biocatalyst for poly(ε-caprolactone) synthesis. The enzyme loading and recovered activity of immobilized enzyme was measured to be 72 mg/g and 10.4 U/mg using p-nitrophenyl caprylate as the substrate at 80 °C, respectively. Through the optimization of reaction conditions (enzyme concentration, temperature, reaction time and medium), poly(ε-caprolactone) was obtained with 100% monomer conversion and low number-average molecular weight (Mn < 1300 g/mol). Further, the immobilized enzyme exhibited excellent reusability, with monomer conversion values exceeding 75% during 15 batch reactions. Finally, poly(ε-caprolactone) was enzymatically synthesized with an isolated yield of 75% and Mn value of 3005 g/mol in a gram-scale reaction.

  6. Surface attachment of active antimicrobial coatings onto conventional plastic-based laminates and performance assessment of these materials on the storage life of vacuum packaged beef sub-primals.

    PubMed

    Clarke, David; Tyuftin, Andrey A; Cruz-Romero, Malco C; Bolton, Declan; Fanning, Seamus; Pankaj, Shashi K; Bueno-Ferrer, Carmen; Cullen, Patrick J; Kerry, Joe P

    2017-04-01

    Two antimicrobial coatings, namely Sodium octanoate and Auranta FV (a commercial antimicrobial composed of bioflavonoids, citric, malic, lactic, and caprylic acids) were used. These two antimicrobials were surface coated onto the inner polyethylene layer of cold plasma treated polyamide films using beef gelatin as a carrier and coating polymer. This packaging material was then used to vacuum pack beef sub-primal cuts and stored at 4 °C. A control was prepared using the non-coated commercial laminate and the same vacuum packaged sub-primal beef cuts. During storage, microbial and quality assessments were carried out. Sodium octanoate treated packages significantly (p < 0.05) reduced microbial counts for all bacteria tested with an increase of 7 and 14 days, respectively compared to control samples. No significant effect on pH was observed with any treatment. The results suggested that these food grade antimicrobials have the potential to be used in antimicrobial active packaging applications for beef products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Strategies to optimize the biocompatibility of iron oxide nanoparticles - ;SPIONs safe by design;

    NASA Astrophysics Data System (ADS)

    Janko, Christina; Zaloga, Jan; Pöttler, Marina; Dürr, Stephan; Eberbeck, Dietmar; Tietze, Rainer; Lyer, Stefan; Alexiou, Christoph

    2017-06-01

    Various nanoparticle systems have been developed for medical applications in recent years. For constant improvement of efficacy and safety of nanoparticles, a close interdisciplinary interplay between synthesis, physicochemical characterizations and toxicological investigations is urgently needed. Based on combined toxicological data, we follow a ;safe-by design; strategy for our superparamagnetic iron oxide nanoparticles (SPION). Using complementary interference-free toxicological assay systems, we initially identified agglomeration tendencies in physiological fluids, strong uptake by cells and improvable biocompatibility of lauric acid (LA)-coated SPIONs (SPIONLA). Thus, we decided to further stabilize those particles by an artificial protein corona consisting of serum albumin. This approach finally lead to increased colloidal stability, augmented drug loading capacity and improved biocompatibility in previous in vitro assays. Here, we show in whole blood ex vivo and on isolated red blood cells (RBC) that a protein corona protects RBCs from hemolysis by SPIONs.

  8. Crosslinked self-assemblies of lipoid acid-substituted low molecular weight (1800 Da) polyethylenimine as reductive-sensitive non-viral gene vectors

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojiao; Yuan, Zhefan; Yi, Xiaoqing; Zhuo, Renxi; Li, Feng

    2012-10-01

    In this study, amphiphilic polyethylenimine-graft-thioctic acid (PEI-TA) and polyethylenimine-graft-lauric acid (PEI-LA) were synthesized. Both PEI-TA and PEI-LA could self-assemble into micelles. Due to the existence of disulfide-linked rings at the end of hydrophobic moieties, PEI-TA could form stable micelles with disulfide crosslinked cores (PEI-TA-SS). In comparison with the PEI-LA micelle, PEI-TA-SS possessed higher DNA binding ability according to the gel retardation assay and heparin replacement assay. In vitro transfection experiments indicated that PEI-TA-SS showed comparably high transfection efficiency as compared to 25 kDa PEI. More interestingly, the luciferase expression of PEI-TA-SS was superior to that of PEI-LA at low N/P ratio, which might be ascribed to the stronger binding capacity of PEI-TA-SS facilitating the entering of PEI-TA-SS/pDNA complexes into cells.

  9. Chamaerops humilis L. var. argentea André date palm seed oil: a potential dietetic plant product.

    PubMed

    Nehdi, Imededdine Arbi; Mokbli, Sadok; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2014-04-01

    Chamaerops humilis L. var. argentea André (C. humilis) date palm seeds are an underutilized source of vegetable oil, and no studies describing their physicochemical characteristics to indicate the potential uses of this seed or seed oil have been reported. The oil content of the seeds is about 10%, mainly composed of oleic acid (38.71%), lauric acid (21.27%), linoleic acid (15.15%), palmitic acid (9.96%), and stearic acid (7.17%). The tocol (tocopherols and tocotrienols) content is 74 mg/100 g, with δ-tocotrienol as the major contributor (31.91%), followed by α-tocotrienol (29.37%), γ-tocopherol (20.16%), and γ-tocotrienol (11.86%). Furthermore, this oil shows high thermal stability. The differential scanning calorimetery curves revealed that the melting and crystallization points are 9.33 °C and -15.23 °C, respectively. © 2014 Institute of Food Technologists®

  10. Effect of Increased Yeast Alcohol Acetyltransferase Activity on Flavor Profiles of Wine and Distillates

    PubMed Central

    Lilly, M.; Lambrechts, M. G.; Pretorius, I. S.

    2000-01-01

    The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid

  11. Inactivation of enterohemorrhagic Escherichia coli in rumen content- or feces-contaminated drinking water for cattle.

    PubMed

    Zhao, Tong; Zhao, Ping; West, Joe W; Bernard, John K; Cross, Heath G; Doyle, Michael P

    2006-05-01

    Cattle drinking water is a source of on-farm Escherichia coli O157:H7 transmission. The antimicrobial activities of disinfectants to control E. coli O157:H7 in on-farm drinking water are frequently neutralized by the presence of rumen content and manure that generally contaminate the drinking water. Different chemical treatments, including lactic acid, acidic calcium sulfate, chlorine, chlorine dioxide, hydrogen peroxide, caprylic acid, ozone, butyric acid, sodium benzoate, and competing E. coli, were tested individually or in combination for inactivation of E. coli O157:H7 in the presence of rumen content. Chlorine (5 ppm), ozone (22 to 24 ppm at 5 degrees C), and competing E. coli treatment of water had minimal effects (<1 log CFU/ml reduction) on killing E. coli O157:H7 in the presence of rumen content at water-to-rumen content ratios of 50:1 (vol/wt) and lower. Four chemical-treatment combinations, including (i) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.05% caprylic acid (treatment A); (ii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.1% sodium benzoate (treatment B); (iii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.5% butyric acid (treatment C); and (iv) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 100 ppm chlorine dioxide (treatment D); were highly effective (>3 log CFU/ml reduction) at 21 degrees C in killing E. coli O157:H7, O26:H11, and O111:NM in water heavily contaminated with rumen content (10:1 water/rumen content ratio [vol/wt]) or feces (20:1 water/feces ratio [vol/wt]). Among them, treatments A, B, and C killed >5 log CFU E. coli O157:H7, O26:H11, and O111:NM/ml within 30 min in water containing rumen content or feces, whereas treatment D inactivated approximately 3 to 4 log CFU/ml under the same conditions. Cattle given water containing treatment A or C or untreated water (control) ad libitum for two 7-day periods drank 15.2, 13.8, and 30.3 liters/day, respectively, and cattle given water containing 0.1% lactic

  12. Increased Flow of Fatty Acids toward β-Oxidation in Developing Seeds of Arabidopsis Deficient in Diacylglycerol Acyltransferase Activity or Synthesizing Medium-Chain-Length Fatty Acids1

    PubMed Central

    Poirier, Yves; Ventre, Giovanni; Caldelari, Daniela

    1999-01-01

    Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid β-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0.06 mg g−1 dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward β-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via β-oxidation and that a considerable flow toward β-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids. PMID:10594123

  13. Increased flow of fatty acids toward beta-oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids.

    PubMed

    Poirier, Y; Ventre, G; Caldelari, D

    1999-12-01

    Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid beta-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0. 06 mg g(-1) dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward beta-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via beta-oxidation and that a considerable flow toward beta-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids.

  14. Effects of tracheal occlusion with retinoic acid administration on normal lung development.

    PubMed

    Delabaere, Amélie; Marceau, Geoffroy; Coste, Karen; Blanchon, Loïc; Déchelotte, Pierre-Jean; Blanc, Pierre; Sapin, Vincent; Gallot, Denis

    2017-05-01

    Tracheal occlusion (TO) is an investigational therapy for severe congenital diaphragmatic hernia that decreases pulmonary hypoplasia, but sustained TO also induces deficient surfactant synthesis. Intramuscular maternal administration of retinoic acid (RA) in a surgical rabbit model of congenital diaphragmatic hernia showed a beneficial effect on lung maturation. We evaluated the potential of RA delivery into the trachea and studied the combined effects of TO and RA on normal lung development. Experiments were performed on normal rabbit fetuses. Liposomes and capric triglyceride (Miglyol ® ), alone and with RA, were administered in the trachea just before TO (d26). Lung morphology and surfactant production were studied at term (d30). Tracheal occlusion increased lung weight and enhanced alveolar development but increased apoptotic activity and decreased surfactant expression. Tracheal injection of RA improved surfactant production to levels of normal controls. We established the potential of liposome and Miglyol as RA vehicle for delivering this bioactive molecule in the fetal airways. Tracheal RA injection seems to oppose the effects of TO in fetuses with normal lungs. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  15. Characterization of five typical agave plants used to produce mezcal through their simple lipid composition analysis by gas chromatography.

    PubMed

    Martínez-Aguilar, Juan Fco; Peña-Alvarez, Araceli

    2009-03-11

    Five agave plants typically used in Mexico for making mezcal in places included in the Denomination of Origin (Mexican federal law that establishes the territory within which mezcal can be produced) of this spirit were analyzed: Agave salmiana ssp. crassispina, A. salmiana var. salmiana, Agave angustifolia, Agave cupreata, and Agave karwinskii. Fatty acid and total simple lipid profiles of the mature heads of each plant were determined by means of a modified Bligh-Dyer extraction and gas chromatography. Sixteen fatty acids were identified, from capric to lignoceric, ranging from 0.40 to 459 microg/g of agave. Identified lipids include free fatty acids, beta-sitosterol, and groups of mono-, di-, and triacylglycerols, their total concentration ranging from 459 to 992 microg/g of agave. Multivariate analyses performed on the fatty acid profiles showed a close similarity between A. cupreata and A. angustifolia. This fact can be ascribed to the taxa themselves or differences in growing conditions, an issue that is still to be explored. These results help to characterize the agaves chemically and can serve to relate the composition of mezcals from various states of Mexico with the corresponding raw material.

  16. Evolution of neuroarchitecture, multi-level analyses and calibrative reductionism

    PubMed Central

    Berntson, Gary G.; Norman, Greg J.; Hawkley, Louise C.; Cacioppo, John T.

    2012-01-01

    Evolution has sculpted the incredibly complex human nervous system, among the most complex functions of which extend beyond the individual to an intricate social structure. Although these functions are deterministic, those determinants are legion, heavily interacting and dependent on a specific evolutionary trajectory. That trajectory was directed by the adaptive significance of quasi-random genetic variations, but was also influenced by chance and caprice. With a different evolutionary pathway, the same neural elements could subserve functions distinctly different from what they do in extant human brains. Consequently, the properties of higher level neural networks cannot be derived readily from the properties of the lower level constituent elements, without studying these elements in the aggregate. Thus, a multi-level approach to integrative neuroscience may offer an optimal strategy. Moreover, the process of calibrative reductionism, by which concepts and understandings from one level of organization or analysis can mutually inform and ‘calibrate’ those from other levels (both higher and lower), may represent a viable approach to the application of reductionism in science. This is especially relevant in social neuroscience, where the basic subject matter of interest is defined by interacting organisms across diverse environments. PMID:23386961

  17. Synthesis and emulsifying properties of carbohydrate fatty acid esters produced from Agave tequilana fructans by enzymatic acylation.

    PubMed

    Casas-Godoy, Leticia; Arrizon, Javier; Arrieta-Baez, Daniel; Plou, Francisco J; Sandoval, Georgina

    2016-08-01

    Carbohydrate fatty acid esters are non-ionic surfactants with a broad spectrum of applications. These molecules are generally synthesized using short carbohydrates or linear fructans; however in this research carbohydrate fatty acid esters were produced for the first time with branched fructans from Agave tequilana. Using immobilized lipases we successfully acylated A. tequilana fructans with vinyl laurate, obtaining products with different degrees of polymerization (DP). Lipozyme 435 was the most efficient lipase to catalyze the transesterification reaction. HPLC and ESI-MS analysis proved the presence of a mixture of acylated products as a result of the chemical complexity of fructans in the A. tequilana. The ESI-MS spectra showed a molecular mass shift between 183 and 366g/mol for fructooligosaccharides with a DP lower than 6, which indicated the presence of Agave fructans that had been mono- and diacylated with lauric acid. The carbohydrate fatty acid esters (CFAE) obtained showed good emulsifying properties in W/O emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Synthesis of palm oil fatty acid as foaming agent for firefighting application

    NASA Astrophysics Data System (ADS)

    Rivai, M.; Hambali, E.; Suryani, A.; Fitria, R.; Firmansyah, S.; Pradesi, J.

    2017-05-01

    Many factors including natural factor, human carelessness, new land clearance or agricultural burning/act of vandalism and ground fire are suspected as the causes of forest fire. Foam, which cools the fire down, covers the burning material/fuel, and avoids contact between burning materials with oxygen, is an effective material used to fight large-scale fires. For this purpose, surfactant which can facilitate foam formation and inhibit the spread of smoke is required. This study was aimed at producing prototype product of foaming agent from palm oil and its formulation as a fire fighting material. Before the formulation stage, the foaming agent was resulted from saponification process of oleic, lauric, and palmitic acids by using NaOH and KOH alkaline. Foam stability was used as the main indicator of foaming agent. Results showed that potassium palmitate had the highest foam stability of 82% until the 3rd day. The best potassium palmitate concentration was 7%.

  19. [The fatty acid composition of large pumpkin seed oil (Curucbitae maxima Dich) cultivated in Georgia].

    PubMed

    2014-09-01

    The aim of the study was to identify qualitatively and quantitatively fatty acid composition of large pumpkin seed oil cultivated in Georgia (Cucurbitae maxima Duch) and evaluate its biological activities. Evaluation was conducted using high-performance liquid chromatography method. Fatty acids ranging from C12:0 to C22:0 were identified in the probe. The oil contained 0,2В±0,01mg% lauric, 0,3В±0,01 mg% miristic, 9,0В±0,7mg% palmitic, 5,5В±0,4 mg% stearic, 28,1В±1,0 mg% oleic, 40,2В±1,9 mg% linolic, 12,1В±1,0 mg% linolenic, 2,0В±0,2mg% arachinic and 1,2В±0,1 mg% begenic acids. The investigation showed that large pumpkin seed oil contains a range of biologically significant fatty acids, unique proportion of which attaches great value to the vegetative material.

  20. Characterization of carotenoids and carotenoid esters in red pepper pods (Capsicum annuum L.) by high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Schweiggert, Ute; Kammerer, Dietmar R; Carle, Reinhold; Schieber, Andreas

    2005-01-01

    Carotenoids and carotenoid esters were extracted from red pepper pods (Capsicum annuum L.) without saponification. Among the 42 compounds detected, 4 non-esterified, 11 mono- and 17 diesters were characterized based on their retention times, UV/Vis spectra and their fragmentation patterns in collision-induced dissociation experiments in atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Positive and negative ion mode measurements were used for the characterization of major and minor carotenoids and their esters. Capsanthin esterified with lauric, palmitic and myristic acids represented the predominant compounds in the red pepper extracts. Additionally, three beta-cryptoxanthin and one zeaxanthin monoester were tentatively identified in red pepper pods for the first time. Furthermore, the specific fragmentation patterns of capsanthin-laurate-myristate and capsanthin-myristate-palmitate were used for the distinction of both regioisomers. The results obtained from LC-DAD-APCI-MSn experiments demonstrated that the carotenoid profile of red pepper pods is considerably more complex than considered hitherto. Copyright (c) 2005 John Wiley & Sons, Ltd.

  1. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experiments were performed to investigate feasibility of using organic materials as a PCM for a latent heat storage unit of a natural circulation cooling/latent heat storage system. This system was designed to cool a shelter accommodating telecommunication equipment located in subtropical deserts or similar regions without using a power source. Taking into account practical considerations and the results of various experiments regarding the thermodynamic properties, thermal degradation, and corrosiveness to metals, lauric acid and iron was selected for the PCM and the latent heat storage unit material, respectively. Cyclic heating and cooling of the latent heat storage unit undergoing solid-liquid phase change was repeated for more than 430 days. The results showed that the heating-cooling curve was almost unchanged between the early stage and the 1,870th cycle. It was concluded that the latent heat storage unit could be used safely for more than ten years as a component of the cooling system.

  2. Evaluation of a bio-based hydrophobic cellulose laurate film as biomaterial--study on biodegradation and cytocompatibility.

    PubMed

    Crépy, Lucie; Monchau, Francine; Chai, Feng; Raoul, Gwénaël; Hivart, Philippe; Hildebrand, Hartmut F; Martin, Patrick; Joly, Nicolas

    2012-05-01

    The study aims to validate an original bio-based material, obtained by grafting fatty chains, and more especially lauric chains (C12) onto cellulose, for medical applications. The mechanical properties of the synthesized cellulose laurate (C12) are close to those of petrochemical ones such as low density polyethylene. This cellulose-based polymer is transparent, flexible, and hydrophobic. To evaluate the stability of the cellulosic films in biological fluids the samples are soaked in simulated body fluid or blood plasma for a few hours to 6 months, and then submitted to mechanical and chemical analyses. The simultaneously performed cytocompatibility tests were the colony-forming viability, the vitality and cell proliferation tests using NIH 3T3 fibroblasts and MC 3T3 osteoblast-like cells. The results show the stability, the biocompatibility, and the noncytotoxicity of the synthesized cellulose laurate films. This biomaterial may so be considered for surgical applications. Copyright © 2012 Wiley Periodicals, Inc.

  3. [Rate of interaction of ferricytochrome c with negatively charged liposomes from natural lecithin: effect of the physicochemical state of the membrane hydrophobic layer].

    PubMed

    Obraztsov, V V; Selishcheva, A A; Danilov, V S

    1975-01-01

    The absorption velocity of ferricytochrome c on the surface of liposomes from egg lecithin containing 10% of lauric acid was studied. Liposomes were prepared from lecithin of three fractions which differed by the composition of fatty acids, unsaturation and the lipid interaction decreased at the temperature below T phi pi for lecithin fractions containing larger quantity of saturated fatty acids. An opposite tendency was observed for the temperature above T phi pi. In the phase transition region of lecithin of refractory fraction the local maximum of protein-lipid interaction was observed. Judging by the character of the changes of the values of energy activation, small additions of cholesterol in the membrane loosen the bilayer at the temperature below T phi pi and condense it at above T phi pi. The data obtained are discussed in terms of the effect of the state of molecule hydrophobic part on the velocity of protein-lipid interaction.

  4. Analysis of processing contaminants in edible oils. Part 2. Liquid chromatography-tandem mass spectrometry method for the direct detection of 3-monochloropropanediol and 2-monochloropropanediol diesters.

    PubMed

    MacMahon, Shaun; Begley, Timothy H; Diachenko, Gregory W

    2013-05-22

    A method was developed and validated for the detection of fatty acid diesters of 2-monochloropropanediol (2-MCPD) and 3-monochloropropanediol (3-MCPD) in edible oils. These analytes are potentially carcinogenic chemical contaminants formed during edible oil processing. After separation from oil matrices using a two-step solid-phase extraction (SPE) procedure, the target compounds are quantitated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI). The first chromatographic conditions have been developed that separate intact diesters of 2-MCPD and 3-MCPD, allowing for their individual quantitation. The method has been validated for 28 3-MCPD diesters of lauric, myristic, palmitic, linolenic, linoleic, oleic, and stearic acids in coconut, olive, and palm oils, as well as 3 2-MCPD diesters, using an external calibration curve. The range of average recoveries and relative standard deviations (RSDs) across the three oil matrices at three spiking concentrations are 88-118% (2-16% RSD) with maximum limits of quantitation of 30 ng/g (ppb).

  5. Erythorbyl laurate as a potential food additive with multi-functionalities: Interfacial characteristics and antioxidant activity.

    PubMed

    Park, Kyung-Min; Lee, Min Joo; Jo, Su-Kyung; Choi, Seung Jun; Lee, JaeHwan; Chang, Pahn-Shick

    2017-01-15

    The interfacial characteristics and antioxidant activities of erythorbyl laurate were investigated to provide information on practical applications as a multi-functional food additive. The critical micelle concentration (CMC) of erythorbyl laurate was 0.101mM and its foam stability was three times (half-life 24.33±0.94h) higher than that of Tween 20 (8.00±1.63h). In free radical scavenging assay, the negligible decrease in EC50 of erythorbyl laurate compared to erythorbic acid manifested that C-5 selective esterification of erythorbic acid with an acyl group (lauric acid) did not reduce the inherent antioxidant activity of the donor (erythorbic acid). Erythorbyl laurate formed lipid peroxides slower (i.e. retarded oxidation) in an emulsion system than did erythorbic acid. The localization of erythorbyl laurate as an emulsifier allowed the antioxidant molecules to be concentrated at the oil-water interface where oxidation is prevalent, which led to more effective retardation of lipid oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Action of fatty acids on the exocrine pancreatic secretion of the conscious rat: further evidence for a protein pancreatic inhibitory factor.

    PubMed

    Demol, P; Sarles, H

    1978-02-01

    The existence of a delayed inhibition of the secretion of protein by the rat pancreas after intraduodenal injection of oleic acid has been confirmed. 1. This phenomenon is not dependent on the presence or absence of bile or pancreatic juice in the intestine. 2. The action of oleic acid is not a pathological phenomenon due to lesions of the gut mucosa because isotonic solutions of Na oleate dispersed into polysorbate 80 or olive oil (rich in oleic acid) plus pancreatic juice have the same effect. 3. Fatty acids must be free or saponified but not esterified in the form of triglycerides. Triglycerides are only effective if pancreatic juice is simultaneously reintroduced into the duodenum. 4. Oleic acid (C18 monoéne) is more efficient than caprylic acid (C8) and butyric acid (C4) is ineffective. The effect of chain length in releasing the inhibitory factor is therefore approximately the same as in CCK-PZ release. 5. Intraduodenal infusion of hypertonic glucose solution does not inhibit pancreatic protein secretion indicating that release of enteroglucagon is probably not responsible for the inhibition. The inhibitory action of hypertonic NaCl solution is not explained.

  7. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil: in vitro evaluation of drug permeation by infrared spectroscopy.

    PubMed

    Mura, Simona; Manconi, Maria; Fadda, Anna Maria; Sala, Maria Chiara; Perricci, Jacopo; Pini, Elena; Sinico, Chiara

    2013-01-01

    Recently, we carried out a research on new liposomal systems prepared by using in their composition a few penetration enhancers which differ for chemical structure and physicochemical properties. The penetration enhancer-containing vesicles (PEVs) were prepared by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy) ethanol (Transcutol(®)), capryl-caproyl macrogol 8-glyceride (Labrasol(®)), and cineole.To study the influence of the PEVs on (trans)dermal delivery of minoxidil, in vitro diffusion experiments were performed through new born pig skin and the results were compared with that obtained applying the vesicular system without enhancer (control) after pretreatment of the skin with the various enhancers. In this study, Fourier transform infrared spectroscopy (FTIR), attenuated total reflectance FTIR (ATR-FTIR) and FTIR imaging were used to evaluate the effective penetration of minoxidil in the skin layers and to discover the influence of the enhancer on the drug topical delivery. These analytical studies allowed us to characterize the drug formulations and to evaluate the vesicle distribution into the skin. Recorded spectra confirmed that the vesicle formulations with penetration enhancers promoted drug deposition into the skin.

  8. A Sensory 3D Map of the Odor Description Space Derived from a Comparison of Numeric Odor Profile Databases.

    PubMed

    Zarzo, Manuel

    2015-06-01

    Many authors have proposed different schemes of odor classification, which are useful to aid the complex task of describing smells. However, reaching a consensus on a particular classification seems difficult because our psychophysical space of odor description is a continuum and is not clustered into well-defined categories. An alternative approach is to describe the perceptual space of odors as a low-dimensional coordinate system. This idea was first proposed by Crocker and Henderson in 1927, who suggested using numeric profiles based on 4 dimensions: "fragrant," "acid," "burnt," and "caprylic." In the present work, the odor profiles of 144 aroma chemicals were compared by means of statistical regression with comparable numeric odor profiles obtained from 2 databases, enabling a plausible interpretation of the 4 dimensions. Based on the results and taking into account comparable 2D sensory maps of odor descriptors from the literature, a 3D sensory map (odor cube) has been drawn up to improve understanding of the similarities and dissimilarities of the odor descriptors most frequently used in fragrance chemistry. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. A novel 3D Ag(I)-MOF: Surfactant-directed syntheses and catalytic degradation of o/m/p-Nitrophenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xue-Qian; Wen, Guo-Xuan; Wu, Ya-Pan

    2016-10-15

    For the first time, sodium caprylate has been investigated to direct the crystal growth of 3D Ag-MOF, [Ag{sub 2}(ddcba)(4,4′-bipy){sub 2}] (1), constructing from 3,5-(di(2′,5′-dicarboxylphenyl)benozoic acid and 4,4′-bipy. The single crystal diffraction analyses shows that complex 1 possess 3D neutral framework with a three-connected ThSi{sub 2} (10{sup 3}-b) topology. Compound 1 exhibits predominant catalytic activity towards the degradation of o-Nitrophenol (ONP), m-Nitrophenol (MNP) and p-Nitrophenol (PNP) in aqueous solution. The kinetics of such catalytic degradation reactions was also studied. - Graphical abstract: A novel 3D Ag(I)-MOF with ThSi{sub 2} (10{sup 3}-b) topology exhibits predominant catalytic activity towards the degradation of o-Nitrophenolmore » (ONP), m-Nitrophenol (MNP) and p-Nitrophenol (PNP) in aqueous solution. - Highlights: • A novel 3D Ag(I)-MOF with ThSi{sub 2} (10{sup 3}-b) topology. • Surfactant as additive for directing the crystal growth. • Predominant catalytic activities for the degradation of o/m/p-nitrophenol.« less

  10. Effect of in-feed supplementation of trans-cinnamaldehyde and caprylic acid on chicken cecal microbiome in response to Salmonella Enteritidis

    USDA-ARS?s Scientific Manuscript database

    Salmonella Enteritidis (SE) is a major foodborne pathogen causing enteric illnesses in humans, with undercooked eggs and poultry meat as the primary sources of infection. Our previous research revealed that in-feed supplementation of two GRAS (generally recognized as safe)-status, natural compounds,...

  11. Monitoring of compositional changes during berry ripening in grape seed extracts of cv. Sangiovese (Vitis vinifera L.).

    PubMed

    Bombai, Giuseppe; Pasini, Federica; Verardo, Vito; Sevindik, Onur; Di Foggia, Michele; Tessarin, Paola; Bregoli, Anna Maria; Caboni, Maria F; Rombolà, Adamo D

    2017-07-01

    Seed oil and flours have been attracting the interest of researchers and industry, since they contain various bioactive components. We monitored the effects of ripening on lipids, monomeric flavan-3-ols, proanthocyanidins and tocols concentration in seed extracts from organically cultivated cv. Sangiovese vines. Linoleic acid was the most abundant fatty acid, followed by oleic, palmitic and stearic acids. The tocols detected were α-tocopherol, α-tocotrienol and γ-tocotrienol. The proanthocyanidins degree of polymerisation ranged from dimers to dodecamers; moreover, monomeric flavan-3-ols and polymeric proanthocyanidins were detected. Total flavan-3-ols (monomers, oligomers and polymers) concentration in grape seeds decreased during ripening. Fatty acids reached the highest level in post-veraison. The concentration of these compounds varied considerably during ripening. Capric acid has been found for the first time in grape seeds. α-Tocopherol and γ-tocotrienol decreased during ripening, while α-tocotrienol increased. The HPLC analysis with fluorimetric detection, conducted for the first time on cv. Sangiovese, revealed that the concentration of flavan-3-ols monomers, oligomeric proanthocyanidins and polymers greatly changed during ripening. These results suggest that the timing of bunch harvest plays a crucial role in the valorisation of grape seed flour. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maimone, F., E-mail: f.maimone@gsi.de; Tinschert, K.; Endermann, M.

    In order to increase the intensity of the highly charged ions produced by the Electron Cyclotron Resonance Ion Sources (ECRISs), techniques like the frequency tuning and the afterglow mode have been developed and in this paper the effect on the ion production is shown for the first time when combining both techniques. Recent experimental results proved that the tuning of the operating frequency of the ECRIS is a promising technique to achieve higher ion currents of higher charge states. On the other hand, it is well known that the afterglow mode of the ECRIS operation can provide more intense pulsedmore » ion beams in comparison with the continuous wave (cw) operation. These two techniques can be combined by pulsing the variable frequency signal driving the traveling wave tube amplifier which provides the high microwave power to the ECRIS. In order to analyze the effect of these two combined techniques on the ion source performance, several experiments were carried out on the pulsed frequency tuned CAPRICE (Compacte source A Plusiers Résonances Ionisantes Cyclotron Electroniques)-type ECRIS. Different waveforms and pulse lengths have been investigated under different settings of the ion source. The results of the pulsed mode have been compared with those of cw operation.« less

  13. Expression Analysis of an R3-Type MYB Transcription Factor CPC-LIKE MYB4 (TRICHOMELESS2) and CPL4-Related Transcripts in Arabidopsis

    PubMed Central

    Tominaga-Wada, Rumi; Nukumizu, Yuka

    2012-01-01

    The CAPRICE (CPC)-like MYB gene family encodes R3-type MYB transcription factors in Arabidopsis. There are six additional CPC-like MYB sequences in the Arabidopsis genome, including TRYPTICHON (TRY), ENHANCER OF TRY AND CPC1 and 2 (ETC1 and ETC2), ENHANCER OF TRY AND CPC3/CPC-LIKE MYB3 (ETC3/CPL3), and TRICHOMELESS1 and 2 (TCL1 and TCL2). We independently identified CPC-LIKE MYB4 (CPL4), which was found to be identical to TCL2. RT-PCR analysis showed that CPL4 is strongly expressed in shoots, including true leaves, but not in roots. Promoter-GUS analyses indicated that CPL4 is specifically expressed in leaf blades. Although CPC expression was repressed in 35S::ETC1, 35S::ETC2 and 35S::CPL3 backgrounds, CPL4 expression was not affected by ETC1, ETC2 or CPL3 over-expression. Notably, several chimeric transcripts may result from inter-genic alternative splicing of CPL4 and ETC2, two tandemly repeated genes on chromosome II. At least two chimeric transcripts named CPL4-α and CPL4-β are expected to encode complete CPC-like MYB proteins. PMID:22489163

  14. TRANSPARENT TESTA GLABRA1 and GLABRA1 Compete for Binding to GLABRA3 in Arabidopsis

    PubMed Central

    Pesch, Martina; Schultheiß, Ilka; Klopffleisch, Karsten; Clemen, Christoph S.; Hülskamp, Martin

    2015-01-01

    The MBW (for R2R3MYB, basic helix-loop-helix [bHLH], and WD40) genes comprise an evolutionarily conserved gene cassette that regulates several traits such as (pro)anthocyanin and anthocyanin biosynthesis and epidermal cell differentiation in plants. Trichome differentiation in Arabidopsis (Arabidopsis thaliana) is governed by GLABRA1 (GL1; R2R3MYB), GL3 (bHLH), and TRANSPARENT TESTA GLABRA1 (TTG1; WD40). They are thought to form a trimeric complex that acts as a transcriptional activation complex. We provide evidence that these three MBW proteins form either GL1 GL3 or GL3 TTG1 dimers. The formation of each dimer is counteracted by the respective third protein in yeast three-hybrid assays, pulldown experiments (luminescence-based mammalian interactome), and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer studies. We further show that two target promoters, TRIPTYCHON (TRY) and CAPRICE (CPC), are differentially regulated: GL1 represses the activation of the TRY promoter by GL3 and TTG1, and TTG1 suppresses the activation of the CPC promoter by GL1 and GL3. Our data suggest that the transcriptional activation by the MBW complex involves alternative complex formation and that the two dimers can differentially regulate downstream genes. PMID:25926482

  15. Control of Plant Trichome and Root-Hair Development by a Tomato (Solanum lycopersicum) R3 MYB Transcription Factor

    PubMed Central

    Tominaga-Wada, Rumi; Nukumizu, Yuka; Sato, Shusei; Wada, Takuji

    2013-01-01

    In Arabidopsis thaliana the CPC-like MYB transcription factors [CAPRICE (CPC), TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC 1, 2, 3/CPC-LIKE MYB 3 (ETC1, ETC2, ETC3/CPL3), TRICHOMELESS 1, 2/CPC-LIKE MYB 4 (TCL1, TCL2/CPL4)] and the bHLH transcription factors [GLABRA3 (GL3) and ENHANCER OF GLABRA 3 (EGL3)] are central regulators of trichome and root-hair development. We identified TRY and GL3 homologous genes from the tomato genome and named them SlTRY and SlGL3, respectively. Phylogenic analyses revealed a close relationship between the tomato and Arabidopsis genes. Real-time reverse transcription PCR analyses showed that SlTRY and SlGL3 were predominantly expressed in aerial parts of developing tomato. After transformation into Arabidopsis, CPC::SlTRY inhibited trichome formation and enhanced root-hair differentiation by strongly repressing GL2 expression. On the other hand, GL3::SlGL3 transformation did not show any obvious effect on trichome or non-hair cell differentiation. These results suggest that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation, and that a CPC-like R3 MYB may be a key common regulator of plant trichome and root-hair development. PMID:23326563

  16. JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism.

    PubMed

    Hassan, Hala; Scheres, Ben; Blilou, Ikram

    2010-05-01

    In Arabidopsis, specification of the hair and non-hair epidermal cell types is position dependent, in that hair cells arise over clefts in the underlying cortical cell layer. Epidermal patterning is determined by a network of transcriptional regulators that respond to an as yet unknown cue from underlying tissues. Previously, we showed that JACKDAW (JKD), a zinc finger protein, localizes in the quiescent centre and the ground tissue, and regulates tissue boundaries and asymmetric cell division by delimiting SHORT-ROOT movement. Here, we provide evidence that JKD controls position-dependent signals that regulate epidermal-cell-type patterning. JKD is required for appropriately patterned expression of the epidermal cell fate regulators GLABRA2, CAPRICE and WEREWOLF. Genetic interaction studies indicate that JKD operates upstream of the epidermal patterning network in a SCRAMBLED (SCM)-dependent fashion after embryogenesis, but acts independent of SCM in embryogenesis. Tissue-specific induction experiments indicate non-cell-autonomous action of JKD from the underlying cortex cell layer to specify epidermal cell fate. Our findings are consistent with a model where JKD induces a signal in every cortex cell that is more abundant in the hair cell position owing to the larger surface contact of cells located over a cleft.

  17. Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form

    PubMed Central

    Palacios, Anabel; De Gracia, Alvaro

    2018-01-01

    The implementation of organic phase change materials (PCMs) in several applications such as heating and cooling or building comfort is an important target in thermal energy storage (TES). However, one of the major drawbacks of organic PCMs implementation is flammability. The addition of flame retardants to PCMs or shape-stabilized PCMs is one of the approaches to address this problem and improve their final deployment in the building material sector. In this study, the most common organic PCM, Paraffin RT-21, and fatty acids mixtures of capric acid (CA), myristic acid (MA), and palmitic acid (PA) in bulk, were tested to improve their fire reaction. Several flame retardants, such as ammonium phosphate, melamine phosphate, hydromagnesite, magnesium hydroxide, and aluminum hydroxide, were tested. The properties of the improved PCM with flame retardants were characterized by thermogravimetric analyses (TGA), the dripping test, and differential scanning calorimetry (DSC). The results for the dripping test show that fire retardancy was considerably enhanced by the addition of hydromagnesite (50 wt %) and magnesium hydroxide (50 wt %) in fatty acids mixtures. This will help the final implementation of these enhanced PCMs in building sector. The influence of the addition of flame retardants on the melting enthalpy and temperatures of PCMs has been evaluated. PMID:29329212

  18. Quantification of Triacylglycerol Positional Isomers in Rat Milk.

    PubMed

    Watanabe, Natsuko; Nagai, Toshiharu; Mizobe, Hoyo; Yoshinaga, Kazuaki; Yoshida, Akihiko; Kitamura, Yohei; Shimizu, Takashi; Beppu, Fumiaki; Gotoh, Naohiro

    2016-12-01

    The absolute amount of triacylglycerol (TAG) positional isomers was analyzed in rat milk fat, a representative of non-ruminant milk fat, using a HPLC-UV-atmospheric pressure chemical ionization-MS/MS system equipped with an octacosyl silylation column or polymeric ODS column. TAGs consisting of two oleic acids (O) and one palmitic acid (P) were the most abundant. In particular, β-OPO, a TAG binding P at the β-position (sn-2) and two Os at the α-positions (sn-1/3), was prominent. The β-OPO content decreased over time, while a TAG consisting of two Ps and one capric acid, a medium-chain fatty acid, increased. TAGs consisting of two Ps and one docosahexaenoic acid were present in small amounts and decreased with time. These results indicated that the recombination of fatty acids in TAGs in milk fat occurs in the mother, and is thought to depend on the infant's stage of growth, in response to their nutritional needs. It was also demonstrated that medium-chain fatty acids were mainly located at the α-position (sn-3), while Ps were mainly located at the β-position (sn-2). Therefore, the combination and binding positions of fatty acids of TAG are considered very important in infant nutrition.

  19. Biosynthesis of medium chain length alkanes for bio-aviation fuel by metabolic engineered Escherichia coli.

    PubMed

    Wang, Meng; Nie, Kaili; Cao, Hao; Xu, Haijun; Fang, Yunming; Tan, Tianwei; Baeyens, Jan; Liu, Luo

    2017-09-01

    The aim of this work was to study the synthesis of medium-chain length alkanes (MCLA), as bio-aviation product. To control the chain length of alkanes and increase the production of MCLA, Escherichia coli cells were engineered by incorporating (i) a chain length specific thioesterase from Umbellularia californica (UC), (ii) a plant origin acyl carrier protein (ACP) gene and (iii) the whole fatty acid synthesis system (FASs) from Jatropha curcas (JC). The genetic combination was designed to control the product spectrum towards optimum MCLA. Decanoic, lauric and myristic acid were produced at concentrations of 0.011, 0.093 and 1.657mg/g, respectively. The concentration of final products nonane, undecane and tridecane were 0.00062mg/g, 0.0052mg/g, and 0.249mg/g respectively. Thioesterase from UC controlled the fatty acid chain length in a range of 10-14 carbons and the ACP gene with whole FASs from JC significantly increased the production of MCLA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Physical, chemical and sensory properties of brownies substituted with sweet potato flour (Ipomoea batatas L.) with addition of black cumin oil (Nigella sativa L.)

    NASA Astrophysics Data System (ADS)

    Ligarnasari, I. P.; Anam, C.; Sanjaya, A. P.

    2018-01-01

    Effect of addition black cumin oil on the physical (hardness) characteristics, chemical (water, ash, fat, protein, carbohydrate, antioxidant IC50, total phenol and active component) characteristics and sensory (flavor, taste, texture, overall) characteristics of brownies substituted sweet potato flour were investigated. Substituted brownies was added with 0.05%, 0.10%, 0.15%, 0.20% and 0.25% of nigella sativa oil. The result showed that water content, ash, protein, fat, total phenol were increased and carbohydrate, antioxidant IC50 was decreased by the addition of nigella sativa oil. Due to the sensory characteristics, panelist gave the high score for substituted brownies which was added 0.05% nigella sativa oil. The result showed that the best formula of substituted brownies which was added 0.05% of nigella sativa oil had 24.89% water content, 1.19% ash content, 7.54% protein content, 37.79% fat content, 53.06% carbohydrate contain, 1043.6 ppm IC50 antioxidant and 0.22% total phenol. The active component on the brownies using GCMS identification were palmitic acid, oleic acid, lauric acid, theobromine and vitamin E.

  1. Antimicrobial agents from Licaria puchuri-major and their synergistic effect with polygodial.

    PubMed

    Himejima, M; Kubo, I

    1992-05-01

    The resistance of the seeds of Licaria puchuri-major (Lauraceae) to decomposition in nature seems to be due largely to chemical defense, since its n-hexane extract contains antimicrobial principles in quantity, with a broad antimicrobial spectrum. In order to identify the active principles, the n-hexane extract was steam-distilled to yield a distillate and a residue. Subsequent bioassay indicated that the distillate retained the original broad antimicrobial activity, while the residue exhibited almost no activity. Gc-ms analysis showed that the distillate contained four phenolic compounds, seven monoterpenes, and one sesquiterpene. In contrast, the residue contained, almost exclusively, lauric acid. In the detailed antimicrobial assay with the pure compounds identified, most of them showed broad, but moderate, antimicrobial activity. Some of the components identified in the distillate were combined with polygodial [1] in order to enhance their antifungal activity. Unexpectedly, while polygodial did not synergize the antifungal activity of any of the compounds tested, the antifungal activity of polygodial was significantly increased when combined with aromatic substances such as anethole, safrole, or methyleugenol.

  2. N-Lauroylation during the Expression of Recombinant N-Myristoylated Proteins: Implications and Solutions.

    PubMed

    Flamm, Andrea Gabriele; Le Roux, Anabel-Lise; Mateos, Borja; Díaz-Lobo, Mireia; Storch, Barbara; Breuker, Kathrin; Konrat, Robert; Pons, Miquel; Coudevylle, Nicolas

    2016-01-01

    Incorporation of myristic acid onto the N terminus of a protein is a crucial modification that promotes membrane binding and correct localization of important components of signaling pathways. Recombinant expression of N-myristoylated proteins in Escherichia coli can be achieved by co-expressing yeast N-myristoyltransferase and supplementing the growth medium with myristic acid. However, undesired incorporation of the 12-carbon fatty acid lauric acid can also occur (leading to heterogeneous samples), especially when the available carbon sources are scarce, as it is the case in minimal medium for the expression of isotopically enriched samples. By applying this method to the brain acid soluble protein 1 and the 1-185 N-terminal region of c-Src, we show the significant, and protein-specific, differences in the membrane binding properties of lauroylated and myristoylated forms. We also present a robust strategy for obtaining lauryl-free samples of myristoylated proteins in both rich and minimal media. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Particulate organic acids in the atmosphere of Italian cities: Are they environmentally relevant?

    NASA Astrophysics Data System (ADS)

    Balducci, Catia; Cecinato, Angelo

    2010-02-01

    Mono- and dicarboxylic n-alkyl acids were extensively investigated in downtown Rome, Italy, and in Montelibretti, ˜30 km NE of the city, during 2005-2007. Congeners ranging from lauric to mellisic, and from succinic to α,ω-docosanedioic acids were evaluated as well as phthalic, palmitoleic and oleic acids, by solvent extraction of airborne particulates followed by derivatization with propanol in the presence of boron trifluoride, and gas chromatographic-mass spectrometric analysis. Shorter measurements were made in Milan, in Taranto, at suburban and rural sites of Italy, and in the polar regions, from 1996 to 2005. The predominance of palmitic and stearic acids observed elsewhere was confirmed, and the behaviour of azelaic and phthalic acids resulted strongly dependent upon the year season. In the urban sites, among the long-chain compounds, the lignoceric acid was usually the most abundant, while the cerotic, montanic and mellisic homologues cumulatively never exceeded 8% of the total. Unlike other contaminants, the concentrations of organic acids remained fairly invariant over the last decade, suggesting that more attention must be paid to them in the future.

  4. High color rendering index WLED based on YAG:Ce phosphor and CdS/ZnS core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Li, Ke

    2009-08-01

    White LED combining of blue chip and YAG:Ce phosphor suffers from a red spectral deficiency, resulting in a relatively low value of color rendering index (CRI). In our study, for an effort to improve color rendering properties of YAG:Ce phosphor-based white LEDs, highly luminescent red-orange emitting CdS/ZnS QDs were blended with YAG:Ce phosphors. Core/shell CdS/ZnS quantum dots with the emission wavelength of 618nm, was synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. YAG:Ce phosphor was synthesized by high-temperature solid state reaction at 900-1200°C in a slightly reducing atmosphere for 4 hours. Blends of phosphors and QDs exhibited the prominent spectral evolution with an increasing content of QDs. A hybrid white LED, which combines a blue LED with the blend of YAG phosphor and QDs with a weight ratio of 1.5:1,was demonstrated with an improved CRI value of 86.

  5. The Production of Biodiesel and Bio-kerosene from Coconut Oil Using Microwave Assisted Reaction

    NASA Astrophysics Data System (ADS)

    SAIFUDDIN, N.; SITI FAZLILI, A.; KUMARAN, P.; PEI-JUA, N.; PRIATHASHINI, P.

    2016-03-01

    Biofuels including biodiesel, an alternative fuel, is renewable, environmentally friendly, non-toxic and low emissions. The raw material used in this work was coconut oil, which contained saturated fatty acids about 90% with high percentage of medium chain (C8-C12), especially lauric acid and myristic acid. The purpose of this research was to study the effect of power and NaOH catalyst in transesterification assisted by microwave for production of biofuels (biodiesel and bio-kerosene) derived from coconut oil. The reaction was performed with oil and methanol using mole ratio of 1:6, catalyst concentration of 0.6% with microwave power at 100W, 180W, 300W, 450W, 600W, and 850W. The reaction time was set at of 3, 5, 7, 10 and 15 min. The results showed that microwave could accelerate the transesterification process to produce biodiesel and bio-kerosene using NaOH catalyst. The highest yield of biodiesel was 97.17 %, or 99.05 % conversion at 5 min and 100W microwave power. Meanwhile, the bio-kerosene obtained was 65% after distillation.

  6. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.

    PubMed

    Leighton, F; Bergseth, S; Rørtveit, T; Christiansen, E N; Bremer, J

    1989-06-25

    The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.

  7. Peroxisome proliferation due to di(2-ethylhexyl) phthalate (DEHP): species differences and possible mechanisms.

    PubMed Central

    Elcombe, C R; Mitchell, A M

    1986-01-01

    The exposure of cultured rat hepatocytes to mono(2-ethylhexyl)phthalate (MEHP) for 72 hr resulted in marked induction of peroxisomal enzyme activity (beta-oxidation; cyanide-insensitive palmitoyl CoA oxidase) and concomitant increases in the number of peroxisomes. Similar treatment of cultured guinea pig, marmoset, or human hepatocytes revealed little or no effect of MEHP. In order to eliminate possible confounding influences of biotransformation, the proximate peroxisome proliferator(s) derived from MEHP have been identified. Using cultured hepatocytes these agents were found to be metabolite VI [mono(2-ethyl-5-oxohexyl) phthalate] and metabolite IX [mono(2-ethyl-5-hydroxyhexyl) phthalate]. The addition of these "active" metabolites to cultured guinea pig, marmoset, or human hepatocytes again revealed little effect upon peroxisomes or related enzyme activities (peroxisomal beta-oxidation or microsomal lauric acid hydroxylation). These studies demonstrate a marked species difference in the response of hepatocytes to MEHP-elicited peroxisome proliferation. Preliminary studies have also suggested that peroxisome proliferation due to MEHP may be due to an initial biochemical lesion of fatty acid metabolism. Images FIGURE 4. a FIGURE 4. b PMID:3104023

  8. Chemical synthesis and NMR characterization of structured polyunsaturated triacylglycerols.

    PubMed

    Fauconnot, Laëtitia; Robert, Fabien; Villard, Renaud; Dionisi, Fabiola

    2006-02-01

    The chemical synthesis of pure triacylglycerol (TAG) regioisomers, that contain long chain polyunsaturated fatty acids, such as arachidonic acid (AA) or docosahexaenoic acid (DHA), and saturated fatty acids, such as lauric acid (La) or palmitic acid (P), at defined positions, is described. A single step methodology using (benzotriazol-1-yloxy)-tripyrrolidinophosphonium hexafluorophosphate (PyBOP), an activator of carboxyl group commonly used in peptide synthesis and occasionally used in carboxylic acid esterification, has been developed for structured TAG synthesis. Identification of the fatty acyl chains for each TAG species was confirmed by atmospheric pressure chemical ionisation mass spectrometry (APCI-MS) and fatty acid positional distribution was determined by (1)H and (13)C NMR spectra. The generic described procedures can be applied to a large variety of substrates and was used for the production of specific triacylglycerols of defined molecular structures, with high regioisomeric purity. Combination of MS and NMR was shown to be an efficient tool for structural analysis of TAG. In particular, some NMR signals were demonstrated to be regioisomer specific, allowing rapid positional analysis of LC-PUFA containing TAG.

  9. Physical and chemical properties, antioxidant activity, total phenol and mineral profile of seeds of seven different date fruit (Phoenix dactylifera L.) varieties.

    PubMed

    Juhaimi, Fahad Al; Ghafoor, Kashif; Özcan, Mehmet Musa

    2012-02-01

    The physical and chemical properties of the date (Phoenix dactylifera L.) fruit seeds from seven date samples (Soukari, Soulag, Barhi, Khulas, Rozaiz, Soughi and Monaif) were evaluated. Energy values of dried and ground seeds were found between 4340 kcal/kg (Barhi cv) and 4795 kcal/kg (Rozaiz cv). Also, while crude oil content of seeds were established between 4.68% (Khulas cv) and 7.96% (Monaif cv), crude protein contents were found at the levels between 3.71% (Soulag cv) and 5.47% (Barhi cv). The antioxidant activity of seeds obtained from different date fruits changed between 78.03 (mg/ml) (Monaif cv) and 79.94 (mg/ml) (Barhi cv). In addition, the total phenol contents of seeds were found between 1.98 mg gallic acid equivalents (GAE)/100 g (Barhi cv) and 4.65 mg GAE/100 g (Soughi cv). The most abundant fatty acids of the date seed oils were oleic, lauric, myristic, palmitic and stearic acids. Ca, Mg, K and P contents of date seeds were found at the high concentrations.

  10. Effective Removal of Tetracycline from Aqueous Solution by Organic Acid-Coated Magnetic Nanoparticles.

    PubMed

    Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua

    2016-03-01

    Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline.

  11. Cloning and biochemical characterization of a novel lipolytic gene from activated sludge metagenome, and its gene product

    PubMed Central

    2010-01-01

    In this study, a putative esterase, designated EstMY, was isolated from an activated sludge metagenomic library. The lipolytic gene was subcloned and expressed in Escherichia coli BL21 using the pET expression system. The gene estMY contained a 1,083 bp open reading frame (ORF) encoding a polypeptide of 360 amino acids with a molecular mass of 38 kDa. Sequence analysis indicated that it showed 71% and 52% amino acid identity to esterase/lipase from marine metagenome (ACL67845) and Burkholderia ubonensis Bu (ZP_02382719), respectively; and several conserved regions were identified, including the putative active site, GDSAG, a catalytic triad (Ser203, Asp301, and His327) and a HGGG conserved motif (starting from His133). The EstMY was determined to hydrolyse p-nitrophenyl (NP) esters of fatty acids with short chain lengths (≤C8). This EstMY exhibited the highest activity at 35°C and pH 8.5 respectively, by hydrolysis of p-NP caprylate. It also exhibited the same level of activity over wide temperature and pH spectra and in the presence of metal ions or detergents. The high level of stability of esterase EstMY with unique substrate specificities makes it highly valuable for downstream biotechnological applications. PMID:21054894

  12. Site-directed mutagenesis studies of the aromatic residues at the active site of a lipase from Malassezia globosa.

    PubMed

    Gao, Chongliang; Lan, Dongming; Liu, Lu; Zhang, Houjin; Yang, Bo; Wang, Yonghua

    2014-07-01

    The lipase from Malassezia globosa (SMG1) has specific activity on mono- and diacylglycerol but not on triacylglycerol. The structural analysis of SMG1 structure shows that two bulky aromatic residues, W116 and W229, lie at the entrance of the active site. To study the functions of these two residues in the substrate recognition and the catalytic reaction, they were mutated to a series of amino acids. Subsequently, biochemical properties of these mutants were investigated. Although the activities decrease, W229L and W116A show a significant shift in substrate preference. W229L has an increased preference for short-chain substrates whereas W116A has preference for long-chain substrates. Besides, the half-lives of W116A and W116H at 45 °C are 346.6 min and 115.5 min respectively, which improve significantly compared to that of native enzyme. Moreover, the optimum substrate of W116A, W116F and W229F mutants shifted from p-nitrophenyl caprylate to p-nitrophenyl myristate. These findings not only shed light onto the lipase structure/function relationship but also lay the framework for the potential industrial applications. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast.

    PubMed

    Ferdouse, Jannatul; Yamamoto, Yuki; Taguchi, Seiga; Yoshizaki, Yumiko; Takamine, Kazunori; Kitagaki, Hiroshi

    2018-01-01

    In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae . During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae , and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA) cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast.

  14. Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana.

    PubMed

    Dehesh, K; Jones, A; Knutzon, D S; Voelker, T A

    1996-02-01

    The Mexican shrub Cuphea hookeriana accumulates up to 75% caprylate (8:0) and caprate (10:0) in its seed oil. An acyl-ACP thioesterase cDNA from C. hookeriana, designated Ch FatB2, has been identified, which, when expressed in Escherichia coli, provides thioesterase activity specific for 8:0- and 10:0-ACP substrates. Expression of this clone in seeds of transgenic canola, an oilseed crop that normally does not accumulate any 8:0 and 10:0, resulted in a dramatic increase in the levels of these two fatty acids accompanied by a preferential decrease in the levels of linoleate (18:2) and linolenate (18:3). The Ch FatB2 differs from Ch FatB1, another Cuphea hookeriana thioesterase reported recently, in both substrate specificity and expression pattern. The Ch FatB1 has a broad substrate specificity with strong preference for 16:0-ACP and is expressed throughout the plant; whereas Ch FatB2 is specific for 8:0/10:0-ACP and its expression is confined to the seed. It is proposed that the amplified expression of Ch FatB2 in the embryo provides the hydrolytic enzyme specificity determining the fatty acyl composition of Cuphea hookeriana seed oil.

  15. Microemulsions containing lecithin and sugar-based surfactants: nanoparticle templates for delivery of proteins and peptides.

    PubMed

    Graf, Anja; Ablinger, Elisabeth; Peters, Silvia; Zimmer, Andreas; Hook, Sarah; Rades, Thomas

    2008-02-28

    Two pseudo-ternary systems comprising isopropyl myristate, soybean lecithin, water, ethanol and either decyl glucoside (DG) or capryl-caprylyl glucoside (CCG) as surfactant were investigated for their potential to form microemulsion templates to produce nanoparticles as drug delivery vehicles for proteins and peptides. All microemulsion and nanoparticle compounds used were pharmaceutically acceptable and biocompatible. Phase diagrams were established and characterized using polarizing light microscopy, viscosity, conductivity, electron microscopy, differential scanning calorimetry and self-diffusion NMR. An area in the phase diagrams containing optically isotropic, monophasic systems was designated as the microemulsion region and systems therein identified as solution-type microemulsions. Poly(alkylcyanoacrylate) nanoparticles prepared by interfacial polymerisation from selected microemulsions ranged from 145 to 660nm in size with a unimodal size distribution depending on the type of monomer (ethyl (2) or butyl (2) cyanoacrylate) and microemulsion template. Generally larger nanoparticles were formed by butyl (2) cyanoacrylate. Insulin was added as a model protein and did not alter the physicochemical behaviour of the microemulsions or the morphology of the nanoparticles. However, insulin-loaded nanoparticles in the CCG containing system decreased in size when using butyl (2) cyanoacrylate. This study shows that microemulsions containing sugar-based surfactants are suitable formulation templates for the formation of nanoparticles to deliver peptides.

  16. Glycosylceramide modifies the flavor and metabolic characteristics of sake yeast

    PubMed Central

    Taguchi, Seiga; Yoshizaki, Yumiko; Takamine, Kazunori

    2018-01-01

    In the manufacture of sake, Japanese traditional rice wine, sake yeast is fermented with koji, which is steamed rice fermented with the non-pathogenic fungus Aspergillus oryzae. During fermentation, sake yeast requires lipids, such as unsaturated fatty acids and sterols, in addition to substances provided by koji enzymes for fermentation. However, the role of sphingolipids on the brewing characteristics of sake yeast has not been studied. In this study, we revealed that glycosylceramide, one of the sphingolipids abundant in koji, affects yeast fermentation. The addition of soy, A. oryzae, and Grifola frondosa glycosylceramide conferred a similar effect on the flavor profiles of sake yeast. In particular, the addition of A. oryzae and G. frondosa glycosylceramide were very similar in terms of the decreases in ethyl caprylate and ethyl 9-decenoate. The addition of soy glycosylceramide induced metabolic changes to sake yeast such as a decrease in glucose, increases in ethanol and glycerol and changes in several amino acids and organic acids concentrations. Tricarboxylic acid (TCA) cycle, pyruvate metabolism, starch and sucrose metabolism, and glycerolipid metabolism were overrepresented in the cultures incubated with sake yeast and soy glycosylceramide. This is the first study of the effect of glycosylceramide on the flavor and metabolic profile of sake yeast. PMID:29761062

  17. Effects of Fermentation Temperature on Key Aroma Compounds and Sensory Properties of Apple Wine.

    PubMed

    Peng, Bangzhu; Li, Fuling; Cui, Lu; Guo, Yaodong

    2015-12-01

    Fermentation temperature strongly affects yeast metabolism during apple wine making and thus aromatic and quality profiles. In this study, the temperature effect during apple wine making on both the key aroma compounds and sensory properties of apple wine were investigated. The concentration of nine key aroma compounds (ethyl acetate, isobutyl acetate, isopentylacetate, ethyl caprylate, ethyl 4-hydroxybutanoate, isobutylalcohol, isopentylalcohol, 3-methylthio-1-propanol, and benzeneethanol) in apple wine significantly increased with the increase of fermentation temperature from 17 to 20 °C, and then eight out of the nine key aroma compounds with an exception of ethyl 4-hydroxybutanoate, decreased when the temperature goes up 20 to 26 °C. Sensory analysis showed that the apple wine fermented at 20 °C had the highest acceptance for consumers. Fermentation at the temperature of 20 °C was therefore considered to be the most suitable condition using the selected yeast strain (Saccharomyces cerevisiae AP05) for apple wine making. Changes in the fermentation temperature can considerably affect the production of key aroma compounds and sensory profiles of apple wine. These results could help apple wine producers make better quality production for consumers at the optimal fermentation temperature. © 2015 Institute of Food Technologists®

  18. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wei; Chai, Hongyan; Li, Ying

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressingmore » cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP

  19. Association of polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) and fatty acid-binding protein-3 and fatty acid-binding protein-4 (FABP3 and FABP4) with fatty acid composition of bovine milk.

    PubMed

    Nafikov, R A; Schoonmaker, J P; Korn, K T; Noack, K; Garrick, D J; Koehler, K J; Minick-Bormann, J; Reecy, J M; Spurlock, D E; Beitz, D C

    2013-09-01

    The main goal of this study was to develop tools for genetic selection of animals producing milk with a lower concentration of saturated fatty acids (SFA) and a higher concentration of unsaturated fatty acids (UFA). The reasons for changing milk fatty acid (FA) composition were to improve milk technological properties, such as for production of more spreadable butter, and milk nutritional value with respect to the potentially adverse effects of SFA on human health. We hypothesized that genetic polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) fatty acid transport protein gene and fatty acid binding protein (FABP)-3 and FABP-4 (FABP3 and FABP4) would affect the selectivity of FA uptake into, and FA redistribution inside, mammary epithelial cells, resulting in altered FA composition of bovine milk. The objectives of our study were to discover genetic polymorphisms in SLC27A6, FABP3, and FABP4, and to test those polymorphisms for associations with milk FA composition. The results showed that after pairwise comparisons between SLC27A6 haplotypes for significantly associated traits, haplotype H3 was significantly associated with 1.37 weight percentage (wt%) lower SFA concentration, 0.091 lower SFA:UFA ratio, and 0.17 wt% lower lauric acid (12:0) concentration, but 1.37 wt% higher UFA and 1.24 wt% higher monounsaturated fatty acid (MUFA) concentrations compared with haplotype H1 during the first 3 mo of lactation. Pairwise comparisons between FABP4 haplotypes for significantly associated traits showed that haplotype H3 was significantly associated with 1.04 wt% lower SFA concentration, 0.079 lower SFA:UFA ratio, 0.15 wt% lower lauric acid (12:0), and 0.27 wt% lower myristic acid (14:0) concentrations, but 1.04 wt% higher UFA and 0.91 wt% higher MUFA concentrations compared with haplotype H1 during the first 3 mo of lactation. Percentages of genetic variance explained by H3 versus H1 haplotype substitutions for SLC27A6 and FABP4 ranged from 2.50 to 4.86% and

  20. Dietary Supplementation with Medium-Chain Triglycerides Reduces Candida Gastrointestinal Colonization in Preterm Infants.

    PubMed

    Arsenault, Amanda B; Gunsalus, Kearney T W; Laforce-Nesbitt, Sonia S; Przystac, Lynn; DeAngelis, Erik J; Hurley, Michaela E; Vorel, Ethan S; Tucker, Richard; Matthan, Nirupa R; Lichtenstein, Alice H; Kumamoto, Carol A; Bliss, Joseph M

    2018-03-24

    Candida is an important cause of infections in premature infants. Gastrointestinal colonization with Candida is a common site of entry for disseminated disease. The objective of this study was to determine whether a dietary supplement of medium-chain triglycerides (MCTs) reduces Candida colonization in preterm infants. Preterm infants with Candida colonization (n=12) receiving enteral feedings of either infant formula (n=5) or breastmilk (n=7) were randomized to MCT supplementation (n=8) or no supplementation (n=4). Daily stool samples were collected to determine fungal burden during a 3 week study period. Infants in the MCT group received supplementation during 1 week of the study period. The primary outcome was fungal burden during the supplementation period as compared to the periods before and after supplementation. Supplementation of MCT led to a marked increase in MCT intake relative to unsupplemented breast milk or formula as measured by capric acid content. In the treatment group, there was a significant reduction in fungal burden during the supplementation period as compared to the period before supplementation (RR = 0.15, p = 0.02), with a significant increase after supplementation was stopped (RR = 61, p < 0.001). Fungal burden in the control group did not show similar changes. Dietary supplementation with MCT may be an effective method to reduce Candida colonization in preterm infants.

  1. Effect of mass concentration of composite phase change material CA-DE on HCFC-141b hydrate induction time and system stability

    NASA Astrophysics Data System (ADS)

    Li, Juan; Sun, Zhigao; Liu, Chenggang; Zhu, Minggui

    2018-03-01

    HCFC-141b hydrate is a new type of environment-friendly cold storage medium which may be adopted to balance energy supply and demand, achieve peak load shifting and energy saving, wherein the hydrate induction time and system stability are key factors to promote and realize its application in industrial practice. Based on step cooling curve measurement, two kinds of aliphatic hydrocarbon organics, n-capric acid (CA) and lauryl alcohol (DE), were selected to form composite phase change material and to promote the generation of HCFC-141b hydrate. Five kinds of CA-DE mass concentration were chosen to compare the induction time and hydration system stability. In order to accelerate temperature reduction rate, the metal Cu with high heat conductivity performance was adopted to conduct out the heat generated during phase change. Instability index was introduced to appraise system stability. Experimental results show that phase change temperature and sub-cooling degree of CA-DE is 11.1°C and 3.0°C respectively, which means it is a preferable medium for HCFC-141b hydrate formation. For the experimental hydration systems, segmented emulsification is achieved by special titration manner to avoid rapid layering under static condition. Induction time can achieve up to 23.3min with the densest HCFC-141b hydrate and the lowest instability index, wherein CA-DE mass concentration is 3%.

  2. Embryonic control of epidermal cell patterning in the root and hypocotyl of Arabidopsis.

    PubMed

    Lin, Y; Schiefelbein, J

    2001-10-01

    A position-dependent pattern of epidermal cell types is produced during the development of the Arabidopsis seedling root and hypocotyl. To understand the origin and regulation of this patterning mechanism, we have examined the embryonic expression of the GLABRA2 (GL2) gene, which encodes a cell-type-specific transcription factor. Using in situ RNA hybridization and a sensitive GL2::GFP reporter, we discovered that a position-dependent pattern of GL2 expression is established within protodermal cells at the heart stage and is maintained throughout the remainder of embryogenesis. In addition, we show that an exceptional GL2 expression character and epidermal cell pattern arises during development of the root-hypocotyl junction, which represents an anatomical transition zone. Furthermore, we find that two of the genes regulating seedling epidermal patterning, TRANSPARENT TESTA GLABRA (TTG) and WEREWOLF (WER), also control the embryonic GL2 pattern, whereas the CAPRICE (CPC) and GL2 genes are not required to establish this pattern. These results indicate that position-dependent patterning of epidermal cell types begins at an early stage of embryogenesis, before formation of the apical meristems and shortly after the cellular anatomy of the protoderm and outer ground tissue layer is established. Thus, epidermal cell specification in the Arabidopsis seedling relies on the embryonic establishment of a patterning mechanism that is perpetuated postembryonically.

  3. Positional signaling and expression of ENHANCER OF TRY AND CPC1 are tuned to increase root hair density in response to phosphate deficiency in Arabidopsis thaliana.

    PubMed

    Savage, Natasha; Yang, Thomas J W; Chen, Chung Ying; Lin, Kai-Lan; Monk, Nicholas A M; Schmidt, Wolfgang

    2013-01-01

    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal ('cortical bias') in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.

  4. Parameters for Novel Production of Fruity Floral Fragrance Ester (Geranyl Butyrate) by Locally Isolated Lipase Geobacillus thermodenitrificans nr68 (LGT)

    NASA Astrophysics Data System (ADS)

    Nik Raikhan, N. H.

    2018-05-01

    Geranyl butyrate has been synthesized successfully using our locally isolated lipase Geobacillus thermodenitrificans nr68 (LGT) as the fragrance ester with aim to be used in a nanotechnology fragrance application. We have used and modified few parameters from the previous research and then, continued with optimization of the synthesis by looking into degree of esterification and water content in the system. Butyric acid (C4), stearic acid (C18: 0), caprylic acid (C8), linolenic acid (C18: 3), myristic acid (C14), linoleic acid (C18: 2) and oleic acid (C18: 1) were used in the substrate selection. The yield of geranyl butyrate before the optimization was 31.68±0.01%. The optimum parameters for the synthesis of geranyl butyrate were recorded as temperature of 65°C, shaking rate at 200 rpm, 5.0 ml of geraniol and 0.40 ml of butyric acid and 4.0 ml of n-butanol and 0.40 ml of oleic acid. After the optimization, geranyl butyrate synthesis was increased by 297% as to compare with the value before the parameters were optimized. We also have significantly reduced water content as a byproduct of the esterification and managed to run the system a success. The ability thermotolerant lipase from Geobacillus thermodenitrificans (LGT) in this synthesis is novel to Malaysian fragrance industry.

  5. Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil.

    PubMed

    Dehesh, K; Edwards, P; Hayes, T; Cranmer, A M; Fillatti, J

    1996-01-01

    The seed oil of Cuphea palustris has an unusual fatty-acyl composition, whereby the principal fatty-acyl groups, myristate (64%) and caprylate (20%), differ by more than two methylenes. We have isolated two thioesterase (TE) cDNAs from C. palustris, encoding proteins designated Cp FatB1 and Cp FatB2, which, when expressed in Escherichia coli, have TE activities specific for 8:0/10:0- and 14:0/16:0-acyl carrier protein substrates, respectively. The specific activities of the recombinant affinity-purified enzymes indicate that Cp FatB2 is kinetically superior to Cp FatB1. This result is consistent with the predominance of 14:0 in the seed oil, despite apparently equal mRNA abundance of the two transcripts in the seed. In C. palustris the expression of both sequences is confined to the seed tissues. Based on these findings we propose that these two enzymes are major factors determining the bimodal chain-length composition of C. palustris oil. Analysis of the immature and mature seed oil by reverse-phase high-performance liquid chromatography confirmed that the principal triglycerides contain both 8:0 and 14:0. This result indicates that both fatty acids are synthesized at the same time and in the same cells at all developmental stages during oil deposition, suggesting that the two TEs act together in the same fatty acid synthesis system.

  6. Effect of Convection on Formation of Adsorbed Surfactant Film under Dynamic Change of Solution Surface Area

    NASA Astrophysics Data System (ADS)

    Mizev, A. I.; Bratsun, D. A.; Shmyrova, A. I.

    2017-12-01

    The dynamics of the formation of a surface phase in aqueous solutions of surfactants in a tray with the Langmuir barrier system during one compression-expansion cycle of the interface boundary is investigated both experimentally and theoretically. Organic salts of fatty acids such as potassium laurate, caprylate, and acetate, which are members of the same homologous series, were used as surfactants. It is experimentally determined that the dependence of the surface pressure increment measured under the maximum compression of the surface on the volume concentration has a maximum, the position of which is different for all the studied surfactant solutions. It is shown that the position of the maximum corresponds to the concentration value at which a saturated monolayer of surfactant molecules is formed at the interface boundary. A theoretical model that considers the effect of the forced convection arisen in the bulk of the solution upon changing the surface area is proposed for the interpretation of the experimental results. The model allows one to render the main kinetic characteristics of the adsorption/desorption processes involving the compounds under study. A good agreement between the theoretical and experimental results is observed, but there is a discrepancy between them when diffusion is considered to be the only way surfactant molecules are transferred into the bulk phase. Based on the data, a new method for determination of the Langmuir-Shishkovsky constant is proposed.

  7. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel.

    PubMed

    Diaz De Rienzo, M A; Stevenson, P S; Marchant, R; Banat, I M

    2016-07-01

    Recent studies have indicated that biosurfactants play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. A combination of caprylic acid (0.01 % v/v) together with rhamnolipids (0.04 % v/v) was applied to biofilms of Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 9144 and a mixed culture under BioFlux flowthrough conditions and caused disruption of the biofilms. The biofilms were also treated with a combination of rhamnolipids (0.04 % v/v) and sophorolipids (0.01 %). Control treatments with PBS 1× had no apparent effect on biofilm disruption. The Gram-positive bacterium (S. aureus ATCC 9144) was more sensitive than P. aeruginosa ATCC 15442 in terms of disruption and viability as shown by Live/Dead staining. Disruption of biofilms of P. aeruginosa ATCC 15442 was minimal. Oxygen consumption by biofilms, after different treatments with biosurfactants, confirms that sophorolipid on its own is unable to kill/inhibit cells of P. aeruginosa ATCC 15442, and even when used in combination with rhamnolipids, under static conditions, no decrease in the cell viability was observed. Cells in biofilms exposed to mono-rhamnolipids (0.04 % v/v) showed behaviour typical of exposure to bacteriostatic compounds, but when exposed to di-rhamnolipids (0.04 % v/v), they displayed a pattern characteristic of bactericidal compounds.

  8. Hollow Fiber Supported Ionic Liquids Liquid-Phase Micro-extraction Followed by High-Performance Liquid Chromatography for the Determination of Polycyclic Aromatic Hydrocarbons in Milk Samples.

    PubMed

    Wang, Meng; Cheng, Chunsheng; Liu, Chunbo; Yang, Yaling

    2018-01-01

    A rapid, simple, reliable and efficient hollow fiber supported ionic liquids liquid-phase micro-extraction method (IL-HF-LPME) followed by high-performance liquid chromatography was successfully applied to the determination of four kinds of polycyclic aromatic hydrocarbons (PAHs) in milk samples. In the IL-HF-LPME method, a mixture of [OMIM]PF6 and lauric acid, in a ratio of 3:1, was immobilized in the pores of a polypropylene hollow fiber used as extraction solvent. A series of essential parameters influencing the extraction efficiency were investigated and optimized. Under the optimal conditions, the extraction equilibrium is achieved within 3 min, the good linearity was >0.9990, the limits of detection varied from 0.14 to 0.71 ng/mL, the limit of quantification values were between 0.4 and 1.8 ng/mL, and the relative standard deviations were in the range of 1.24-3.27% (n = 5). The proposed method was applied to analyze four PAHs in milk samples and recoveries were between 93.6 and 102.8%. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Psyllium husk fibre supplementation to soybean and coconut oil diets of humans: effect on fat digestibility and faecal fatty acid excretion.

    PubMed

    Ganji, V; Kies, C V

    1994-08-01

    The effects of psyllium fibre supplementation to polyunsaturated fatty acid rich soybean oil and saturated fatty acid rich coconut oil diets on fat digestibility and faecal fatty acid excretion were investigated in healthy humans. The study consisted of four 7-day experimental periods. Participants consumed soybean oil (SO), soybean oil plus psyllium fibre (20 g/day) (SO+PF), coconut oil (CO) and coconut oil plus psyllium fibre (20 g/day) (CO+PF) diets. Laboratory diet provided 30% calories from fat (20% from test oils and 10% from basal diet), 15% calories from protein and 55% calories from carbohydrate. Fat digestibility was significantly lower and faecal fat excretion was significantly higher with SO+PF diet than SO diet and with CO+PF diet than CO diet. Faecal excretion of myristic and lauric acids was not affected by test diets. Percent faecal palmitic acid excretion was significantly higher during psyllium supplementation periods. Higher faecal linoleic acid excretion was observed with soybean oil diets compared with coconut oil diets. Increased faecal fat loss, decreased fat digestibility and increased faecal palmitic acid excretion with psyllium supplementation may partly explain the hypocholesterolaemic action of psyllium fibre.

  10. The influence of the emulsion composition on the wettability of the emulsion

    NASA Astrophysics Data System (ADS)

    Liu, Yan Jun; Shao, Jian Nan; Lei Liu, Peng

    2018-03-01

    In order to explore the influence of the emulsion composition on the wettability of the emulsion, using lauric acid polyoxyethylene esters (LAE) and polyethylene oleic acid diester (DQA) as the emulsifier and oleic acid ester (QA) as the smoothing agent, the spinning oil emulsion system with the content of smoothing agent above 30% was prepared. The results show that: with the increase of emulsion concentration, the surface tension of emulsion, the contact Angle of emulsion on the surface of the polypropylene fiber and the wetting time of canvas in emulsion all decreases. At the same time,the emulsion has critical micelle concentration, when the concentration is less than CMC, the surface tension of emulsion, the contact Angle of emulsion on the surface of the polypropylene fiber and the wetting time of canvas in the emulsion decreases rapidly with the increase of the emulsion concentration, while it’s more than this concentration, the influence of emulsion concentration on the three kinds of nature is smaller. Besides, the increase of the mass fraction of the smoothing agent and the increase of the compound emulsifier HLB will result in worse wettability.

  11. Manipulating interactions between functional colloidal particles and polyethylene surfaces using interfacial engineering.

    PubMed

    Ziani, Khalid; Barish, Jeffrey A; McClements, David Julian; Goddard, Julie M

    2011-08-01

    The purpose of this study was to examine the interaction between lipid droplets and polyethylene surfaces, representative of those commonly used in food packaging. Lipid droplets with various surface charges were prepared by homogenizing corn oil and water in the presence of surfactants with different electrical characteristics: non-ionic (Tween 80, T80), cationic (lauric arginate, LAE), and/or anionic (sodium dodecyl sulfate, SDS). The ionic properties of polyethylene surfaces were modified by UV-treatment. Stable emulsions containing small droplets (d<200 nm) with nearly neutral (T80), cationic (T80: LAE), and anionic (T80: SDS) charges were prepared by adding different levels of the ionic surfactants to Tween 80 stabilized emulsions. Scanning electronic microscopy (SEM), confocal fluorescence microscopy, and ATR-FTIR showed that the number of droplets attached to the polyethylene surfaces depended on the droplet charge and the polyethylene surface characteristics. The greatest degree of droplet adsorption was observed for the cationic droplets to the UV-ozone treated polyethylene surfaces, which was attributed to electrostatic attraction. These results are important for understanding the behavior of encapsulated lipophilic components in food containers. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Safety assessment of myristic acid as a food ingredient.

    PubMed

    Burdock, George A; Carabin, Ioana G

    2007-04-01

    Myristic acid is used in the food industry as a flavor ingredient. It is found widely distributed in fats throughout the plant and animal kingdom, including common human foodstuffs, such as nutmeg. Myristic acid (a 14-carbon, straight-chain saturated fatty acid) has been shown to have a low order of acute oral toxicity in rodents. It may be irritating in pure form to skin and eyes under exaggerated exposure conditions, but is not known or predicted to induce sensitization responses. Myristic acid did not induce a mutagenic response in either bacterial or mammalian systems in vitro. Relevant subchronic toxicity data are available on closely related fatty acid analogs. In particular, a NOEL of >6000mg/kg was reported for lauric acid (a 12-carbon, straight-chain saturated fatty acid) following dietary exposure to male rats for 18 weeks and a NOEL of >5000mg/kg was reported for palmitic acid (a 16-carbon, straight-chain saturated fatty acid) following dietary exposure to rats for 150 days. The data and information that are available indicate that at the current level of intake, food flavoring use of myristic acid does not pose a health risk to humans.

  13. Antibacterial Efficacy of Tender Coconut Water (Cocos nucifera L) on Streptococcus mutans: An In-Vitro Study

    PubMed Central

    Rukmini, J. N.; Manasa, Sunkari; Rohini, Chenna; Sireesha, Lavanya Putchla; Ritu, Sachan; Umashankar, G. K.

    2017-01-01

    Objective: The antibacterial property of coconut, the presence of lauric acid, and the ability to extract antimicrobial peptides Cn-AMP (1, 2, and 3) from tender coconut water has drawn attention on its effectiveness in normal consumption. An in-vitro experimental study was conducted to evaluate the antimicrobial efficacy of tender coconut water in its natural state on Streptococcus mutans. Materials and Methods: Fresh tender coconut water and pasteurized tender coconut water were taken as test samples, dimethyl formamide was used as the negative control, and 0.2% chlorhexidine was used as the positive control. Pure strain of S. mutans (MTCC 890) was used for determining the antibacterial effects. The test samples along with the controls were subjected to antimicrobial sensitivity test procedure and the zone of inhibition was examined. Kruskal–Wallis test was used to check for any significant differences in the antibacterial efficacy between the samples. Result: There was no zone of inhibition with the tender coconut water, fresh and pasteurised, and negative control (dimethyl formamide). Zone of inhibition was seen in positive control (0.2% Chlorhexidine). Conclusion: No antimicrobial activity was demonstrated with tender coconut water in its normal state (in vitro). PMID:28462183

  14. Biodiesel Derive Bio-oil of Hermetia illucens Pre-pupae Catalysed by Sulphonated Biochar

    NASA Astrophysics Data System (ADS)

    Yoong Leong, Siew; Chong, Soo Shin; Chin, Kah Seng

    2018-03-01

    This study investigates the development of biochar catalyst from bamboo applied for biodiesel synthesis. A non-conventional biodiesel feedstock was used in the in-situ transesterification reaction. This non-conventional feedstock is obtained from an insect's fly, the Hermetia illucens fly. Biochar derived from bamboo has been investigated as a promising catalyst for biodiesel synthesis. The biochar acid catalysts were prepared by sulphonation via impregnation with concentrated sulphuric acid. The prepared catalysts were investigated for their performance to catalyse in-situ transesterification via ultra-sonication of Hermetia illucens bio-oil. The effects of carbonisation time (1 hour and 2 hour) and temperature (400°C, 500°C and 600°C) as well as catalyst loading (5-20 wt% on oil basis) on the transesterification yield were studied. Result showed that the highest yield of FAME obtained was 95.6% with catalyst loading of 15 wt% carbonized at 500°C for 2 hours. Sharp band of methyl ester functional groups were observed in the FTIR spectra at 1735-1750cm-1. The composition of this methyl ester was further deduced using gas chromatography and the fatty acid was predominantly lauric acid.

  15. White light emitting diode based on InGaN chip with core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Hong, Yan; Ma, Jiandong; Ming, Jiangzhou

    2009-08-01

    Quantum dots have many applications in optoelectronic device such as LEDs for its many superior properties resulting from the three-dimensional confinement effect of its carrier. In this paper, single chip white light-emitting diodes (WLEDs) were fabricated by combining blue InGaN chip with luminescent colloidal quantum dots (QDs). Two kinds of QDs of core/shell CdSe /ZnS and core/shell/shell CdSe /ZnS /CdS nanocrystals were synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. This two kinds of QDs exhibited high photoluminescence efficiency with a quantum yield more than 41%, and size-tunable emission wavelengths from 500 to 620 nm. The QDs LED mainly consists of flip luminescent InGaN chip, glass ceramic protective coating, glisten cup, QDs using as the photoluminescence material, pyroceram, gold line, electric layer, dielectric layer, silicon gel and bottom layer for welding. The WLEDs had the CIE coordinates of (0.319, 0.32). The InGaN chip white-light-emitting diodes with quantum dots as the emitting layer are potentially useful in illumination and display applications.

  16. White LED based on CaAl2Si2O8:Eu2+ Mn2+ phosphor and CdS/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Zhong, Chuan; Hou, Qianglong; Li, Ke

    2011-02-01

    Core/shell CdS/ZnS quantum dots (QDs) with the emission wavelength of 610nm, was synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. CaAl2Si2O8:Eu2+ Mn2+ phosphor was synthesized by high-temperature solid state reaction at 1290 °C for 2 hours under the H2 reducing atmosphere, and X-ray powder diffraction analysis confirmed the formation of it. It has two emission bands peaking at 420 nm and 580nm originated from the transition 5d to 4f of Eu2+ and 4T1-6A1 of Mn2+, respectively. Blends of CaAl2Si2O8:Eu2+,Mn2+ phosphor and CdS/ZnS QDs exhibited the prominent spectral evolution with an increasing content of QDs. A hybrid white LED, which combines a blue LED with the blend of CaAl2Si2O8:Eu2+ Mn2+ phosphor and QDs with a weight ratio of 2:1, with the CIE coordinate of (0.3183, 0.3036) and CRI of 85 was obtained.

  17. Thermophilic molds: Biology and applications.

    PubMed

    Singh, Bijender; Poças-Fonseca, Marcio J; Johri, B N; Satyanarayana, Tulasi

    2016-11-01

    Thermophilic molds thrive in a variety of natural habitats including soils, composts, wood chip piles, nesting materials of birds and other animals, municipal refuse and others, and ubiquitous in their distribution. These molds grow in simple media containing carbon and nitrogen sources and mineral salts. Polyamines are synthesized in these molds and the composition of lipids varies considerably, predominantly containing palmitic, oleic and linoleic acids with low levels of lauric, palmiotoleic and stearic acids. Thermophilic molds are capable of efficiently degrading organic materials by secreting thermostable enzymes, which are useful in the bioremediation of industrial wastes and effluents that are rich in oil, heavy metals, anti-nutritional factors such as phytic acid and polysaccharides. Thermophilic molds synthesize several antimicrobial substances and biotechnologically useful miscellaneous enzymes. The analysis of genomes of thermophilic molds reveals high G:C contents, shorter introns and intergenic regions with lesser repetitive sequences, and further confirms their ability to degrade agro-residues efficiently. Genetic engineering has aided in ameliorating the characteristics of the enzymes of thermophilic molds. This review is aimed at focusing on the biology of thermophilic molds with emphasis on recent developments in the analysis of genomes, genetic engineering and potential applications.

  18. Control of triacylglycerol biosynthesis in plants. Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-31

    Seeds of most species of the Umbelliferae (Apiaciae), Araliaceae, and Garryaceae families are characterized by their high content of the unusual C{sub 18} monounsaturated fatty acid petroselinic acid (18:l{Delta}{sup 6cis}). Prior to a recent report of this lab, little was known of the biosynthetic origin of the cis{Delta}{sup 6} double bond of petroselinic acid. Such knowledge may be of both biochemical and biotechnological significance. Because petroselinic acid is potentially the product of a novel desaturase, information regarding its synthesis may contribute to an understanding of fatty acid desaturation mechanisms in plants. Through chemical cleavage at its double bond, petroselinic acidmore » can be used as a precursor of lauric acid (12:0), a component of detergents and surfactants, and adipic acid (6:0 dicarboxylic), the monomeric component of nylon 6,6. Therefore, the development of an agronomic source of an oil rich in petroselinic acid is of biotechnological interest. As such, studies of petroselinic acid biosynthesis may provide basic information required for any attempt to genetically engineer the production and accumulation of this fatty acid in an existing oilseed.« less

  19. Control of triacylglycerol biosynthesis in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-01-31

    Seeds of most species of the Umbelliferae (Apiaciae), Araliaceae, and Garryaceae families are characterized by their high content of the unusual C[sub 18] monounsaturated fatty acid petroselinic acid (18:l[Delta][sup 6cis]). Prior to a recent report of this lab, little was known of the biosynthetic origin of the cis[Delta][sup 6] double bond of petroselinic acid. Such knowledge may be of both biochemical and biotechnological significance. Because petroselinic acid is potentially the product of a novel desaturase, information regarding its synthesis may contribute to an understanding of fatty acid desaturation mechanisms in plants. Through chemical cleavage at its double bond, petroselinic acidmore » can be used as a precursor of lauric acid (12:0), a component of detergents and surfactants, and adipic acid (6:0 dicarboxylic), the monomeric component of nylon 6,6. Therefore, the development of an agronomic source of an oil rich in petroselinic acid is of biotechnological interest. As such, studies of petroselinic acid biosynthesis may provide basic information required for any attempt to genetically engineer the production and accumulation of this fatty acid in an existing oilseed.« less

  20. Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles.

    PubMed

    Zaloga, Jan; Janko, Christina; Agarwal, Rohit; Nowak, Johannes; Müller, Robert; Boccaccini, Aldo R; Lee, Geoffrey; Odenbach, Stefan; Lyer, Stefan; Alexiou, Christoph

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted increasing attention in many biomedical fields. In magnetic drug targeting SPIONs are injected into a tumour supplying artery and accumulated inside the tumour with a magnet. The effectiveness of this therapy is thus dependent on magnetic properties, stability and biocompatibility of the particles. A good knowledge of the effect of storage conditions on those parameters is of utmost importance for the translation of the therapy concept into the clinic and for reproducibility in preclinical studies. Here, core shell SPIONs with a hybrid coating consisting of lauric acid and albumin were stored at different temperatures from 4 to 45 °C over twelve weeks and periodically tested for their physicochemical properties over time. Surprisingly, even at the highest storage temperature we did not observe denaturation of the protein or colloidal instability. However, the saturation magnetisation decreased by maximally 28.8% with clear correlation to time and storage temperature. Furthermore, the biocompatibility was clearly affected, as cellular uptake of the SPIONs into human T-lymphoma cells was crucially dependent on the storage conditions. Taken together, the results show that the particle properties undergo significant changes over time depending on the way they are stored.

  1. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    PubMed

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.

  2. Antibacterial Efficacy of Tender Coconut Water (Cocos nucifera L) on Streptococcus mutans: An In-Vitro Study.

    PubMed

    Rukmini, J N; Manasa, Sunkari; Rohini, Chenna; Sireesha, Lavanya Putchla; Ritu, Sachan; Umashankar, G K

    2017-01-01

    The antibacterial property of coconut, the presence of lauric acid, and the ability to extract antimicrobial peptides Cn-AMP (1, 2, and 3) from tender coconut water has drawn attention on its effectiveness in normal consumption. An in-vitro experimental study was conducted to evaluate the antimicrobial efficacy of tender coconut water in its natural state on Streptococcus mutans . Fresh tender coconut water and pasteurized tender coconut water were taken as test samples, dimethyl formamide was used as the negative control, and 0.2% chlorhexidine was used as the positive control. Pure strain of S. mutans (MTCC 890) was used for determining the antibacterial effects. The test samples along with the controls were subjected to antimicrobial sensitivity test procedure and the zone of inhibition was examined. Kruskal-Wallis test was used to check for any significant differences in the antibacterial efficacy between the samples. There was no zone of inhibition with the tender coconut water, fresh and pasteurised, and negative control (dimethyl formamide). Zone of inhibition was seen in positive control (0.2% Chlorhexidine). No antimicrobial activity was demonstrated with tender coconut water in its normal state ( in vitro ).

  3. Synthesis, surface properties and antimicrobial activity of some germanium nonionic surfactants.

    PubMed

    Zaki, Mohamed F; Tawfik, Salah M

    2014-01-01

    Esterification reaction between different fatty acid namely; lauric, stearic, oleic and linoleic acids and polyethylene glycol-400 were performed. The produced polyethylene glycol ester were reacted with p-amine benzoic acid followed by condensation reaction with germanium dioxide in presence of sodium carbonate to form desired germinate surfactants. The chemical structures of the synthesized surfactants were determined using different spectra tools. The surface parameter including: the critical micelle concentration (CMC), effectiveness (π(cmc)), efficiency (Pc20), maximum surface excess (Γ(max)) and minimum surface area (A(min)), were calculated from the surface tension measurements. The synthesized surfactants showed higher surface activity. The thermodynamic parameters showed that adsorption and micellization processes are spontaneous. It is clear that the synthesized nonionic surfactants showed their tendency towards adsorption at the interfaces and also micellization in the bulk of their solutions. The synthesized surfactants were tested against different strain of bacteria using inhibition zone diameters. The synthesized surfactants showed good antimicrobial activities against the tested microorganisms including Gram positive, Gram negative as well as fungi. The promising inhibition efficiency of these compounds against the sulfate reducing bacteria facilitates them to be applicable as new categories of sulfate reducing bacteria biocides.

  4. Tocopherol content and Fatty Acid profile of different Iranian date seed oils.

    PubMed

    Biglar, Mahmood; Khanavi, Mahnaz; Hajimahmoodi, Mannan; Hassani, Shokufeh; Moghaddam, Ghazaleh; Sadeghi, Naficeh; Oveisi, Mohammad Reza

    2012-01-01

    Date is one of the world's oldest food-producing plants wich has always played an important role in the economy and social life. Various researchers examined chemical composition and nutritional values of edible parts of dates while limited information about chemical composition and nutritional quality of date seed is available. In this study, fatty acid composition and total tocopherol content of 14 Iranian date seed oils were studied. Statistical analysis was performed through SPSS computing package. According to the fatty acid profiles, seven fatty acids were found through nearly 50% oleic acid in seeds. Shekar cultivar by 51.40% had the maximum amount and Lasht cultivar by 33.38% had the minimum amount of oleic acid. Tocopherol content in the samples varied between 33.86 μg vit E/g oil for Shahabi2 to 10.09 μg vit E/g oil for Shekar. Tocopherol content was 1.88 and 0.61 μg respectively in one-gram seed of these two cultivars. Iranian date seed oils classified as oleic-lauric oil, had a high amount of oleic acid and could serve as a profitable source of valuable oils for industrial applications.

  5. [The isolation of organic compounds from hydrosulfuric mineral waters with the use of the extractive freezing-out technique with centrifugation].

    PubMed

    Bekhterev, V N; Kabina, E A

    The mineral waters, enriched with organic substances find extensive application in balneotherapy. The fast and efficient methods for the identification and quantitative measurement of organic compounds (in the first place, organic acids) in such waters need to be developed for the estimation of their quality and biological activity. The objective of the present study was to elaborate a gas chromatographic method for the determination of monobasic carbonic acids in sulfide-containing mineral waters by means of extractive freezing-out in combination with the application of the centrifugal forces for the elucidation of the metrological characteristics of the compounds of interest. The secondary objective was to estimate the prospects for the application of the method of interest for determining the dissolved organic compounds in mineral waters. The following carbonic acids were used for the purposes of the study: acetic acid (analytical grade), Russia; propionic grade (extra pure), Ferak, Germany; butyric acid (pure), Russia; valeric acid (pure), Russia; caproic acid (pure), Russia; oenanthic acid (pure), Russia; and caprylic acid (pure), Russia). Acetonitrile («O» grade), Russia, was used as the extracting agent. The LV-210 analytical balance (Russia) was used to prepare the model and standard solutions of the organic compounds and to determine their mass. The extracts and standard mixture were investigated by the gas chromatographic technique with the use of the Kristallyuks apparatus («Meta-Khrom», Russia) equipped with the flame ionization detector and the capillary column. Extractive freezing-out in the combination with centrifugation was performed with the laboratory installation for this purpose. Under the model conditions, a single extractive freezing-out procedure with the centrifugation of the sample made it possible to reach the 22-37-fold concentration of C2-C8 monobasic carbonic acids during their transfer from water into acetonitrile. The

  6. Goat milk free fatty acid characterization during conventional and ohmic heating pasteurization.

    PubMed

    Pereira, R N; Martins, R C; Vicente, A A

    2008-08-01

    The disruption of the milk fat globule membrane can lead to an excessive accumulation of free fatty acids in milk, which is frequently associated with the appearance of rancid flavors. Solid-phase microextraction and gas chromatography techniques have been shown to be useful tools in the quantification of individual free fatty acids in dairy products providing enough sensitivity to detect levels of rancidity in milk. Therefore, the aim of this study was to characterize the short-chain and medium-chain free fatty acid profile in i) raw untreated goat milk; ii) raw goat milk passing through pumps and heating units (plate-and-frame heat exchanger and ohmic heater); and iii) processed goat milk by conventional and ohmic pasteurization to determine the influence of each treatment in the final quality of the milk. Multivariate statistical analysis has shown that the treatments studied were not responsible for the variability found on free fatty acid contents. In particular, it was possible to conclude that ohmic pasteurization at 72 degrees C for 15 s did not promote an extended modification of free fatty acid contents in goat milk when compared with that of conventional pasteurization. Furthermore, principal component analysis showed that the capric acid can be used to discriminate goat's milk with different free fatty acid concentrations. Hierarchical cluster analysis showed evidence of the existence of correlations between contents of short and medium chain free fatty acids in goat milk.

  7. Positional Signaling and Expression of ENHANCER OF TRY AND CPC1 Are Tuned to Increase Root Hair Density in Response to Phosphate Deficiency in Arabidopsis thaliana

    PubMed Central

    Savage, Natasha; Yang, Thomas J. W.; Chen, Chung Ying; Lin, Kai-Lan; Monk, Nicholas A. M.; Schmidt, Wolfgang

    2013-01-01

    Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal (‘cortical bias’) in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1. PMID:24130712

  8. Nuclear ribosome biogenesis mediated by the DIM1A rRNA dimethylase is required for organized root growth and epidermal patterning in Arabidopsis.

    PubMed

    Wieckowski, Yana; Schiefelbein, John

    2012-07-01

    Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development.

  9. Amino acid substitution converts WEREWOLF function from an activator to a repressor of Arabidopsis non-hair cell development.

    PubMed

    Tominaga-Wada, Rumi; Nukumizu, Yuka; Wada, Takuji

    2012-02-01

    Root hair cell or non-hair cell fate determination in Arabidopsis thaliana root epidermis is model system for plant cell development. Two types of MYB transcription factors, the R2R3-type MYB, WEREWOLF (WER), and an R3-type MYB, CAPRICE (CPC), are involved in this cell fate determination process. To study the molecular basis of this process, we analyzed the functional relationship of WER and CPC. WER-CPC chimeric constructs were made from WER where all or parts of the MYB R3 region were replaced with the corresponding regions from CPC R3, and the constructs were introduced into the cpc-2 mutant. Although, the WER gene did not rescue the cpc-2 mutant 'small number of root hairs' phenotype, the WER-CPC chimera with two amino acids substitution (WC6) completely rescued the cpc-2 mutant phenotype. Furthermore, the WER-CPC chimera with 37 amino acids substitution (WC5) excessively rescued the cpc-2 mutant and induced 2.5 times more root hairs than wild-type. Consistent with this phenotype, GL2 gene expression was strongly reduced in WC5 in a cpc-2 background. Our results suggest that swapping at least two amino acids is sufficient to convert WER to CPC function. Therefore, these key residues may have strongly contributed to the selection of these important functions over evolution. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Nuclear Ribosome Biogenesis Mediated by the DIM1A rRNA Dimethylase Is Required for Organized Root Growth and Epidermal Patterning in Arabidopsis[C][W

    PubMed Central

    Wieckowski, Yana; Schiefelbein, John

    2012-01-01

    Position-dependent patterning of hair and non-hair cells in the Arabidopsis thaliana root epidermis is a powerful system to study the molecular basis of cell fate specification. Here, we report an epidermal patterning mutant affecting the ADENOSINE DIMETHYL TRANSFERASE 1A (DIM1A) rRNA dimethylase gene, predicted to participate in rRNA posttranscriptional processing and base modification. Consistent with a role in ribosome biogenesis, DIM1A is preferentially expressed in regions of rapid growth, and its product is nuclear localized with nucleolus enrichment. Furthermore, DIM1A preferentially accumulates in the developing hair cells, and the dim1A point mutant alters the cell-specific expression of the transcriptional regulators GLABRA2, CAPRICE, and WEREWOLF. Together, these findings suggest that establishment of cell-specific gene expression during root epidermis development is dependent upon proper ribosome biogenesis, possibly due to the sensitivity of the cell fate decision to relatively small differences in gene regulatory activities. Consistent with its effect on the predicted S-adenosyl-l-Met binding site, dim1A plants lack the two 18S rRNA base modifications but exhibit normal pre-rRNA processing. In addition to root epidermal defects, the dim1A mutant exhibits abnormal root meristem division, leaf development, and trichome branching. Together, these findings provide new insights into the importance of rRNA base modifications and translation regulation for plant growth and development. PMID:22829145

  11. SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.

    PubMed

    Pietra, Stefano; Lang, Patricia; Grebe, Markus

    2015-03-01

    Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non-hair cells and represents a model system for studying the control of cell-fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell-fate stabilization. Our work opens the door for future studies addressing SAB-dependent functions of the cytoskeleton during root epidermal patterning. © 2014 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

  12. Capillary electrophoresis with indirect UV detection for the determination of stabilizers and citrates present in human albumin solutions.

    PubMed

    Jaworska, Małgorzata; Cygan, Paulina; Wilk, Małgorzata; Anuszewska, Elzbieta

    2009-08-15

    Sodium caprylate and N-acetyltryptophan are the most frequently used stabilizers that protect the albumin from aggregation or heat induced denaturation. In turn citrates - excipients remaining after fractionation process - can be treated as by-product favoring leaching aluminum out of glass containers whilst albumin solution is stored. With ionic nature these substances have all the markings of a subject for capillary electrophoresis analysis. Thus CE methods were proposed as new approach for quality control of human albumin solution in terms of determination of stabilizers and citrates residue. Human albumin solutions both 5% and 20% from various manufacturers were tested. Indirect detection mode was set to provide sufficient detectability of analytes lacking of chromophores. As being anions analytes were separated with reversed electroosmotic flow. As a result of method optimization two background electrolytes based on p-hydroxybenzoic acid and 2,6-pyridinedicarboxylic acid were selected for stabilizers and citrates separation, respectively. The optimized methods were successfully validated. For citrates that require quantification below 100microM the method demonstrated the precision less than 4% and the limit of detection at 4microM. In order to check the new methods accuracy and applicability the samples were additionally tested with selected reference methods. The proposed methods allow reliable quantification of stabilizers and citrates in human albumin solution that was confirmed by method validation as well as result comparison with reference methods. The CE methods are considered to be suitable for quality control yet simplifying and reducing cost of analysis.

  13. Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil.

    PubMed Central

    Dehesh, K; Edwards, P; Hayes, T; Cranmer, A M; Fillatti, J

    1996-01-01

    The seed oil of Cuphea palustris has an unusual fatty-acyl composition, whereby the principal fatty-acyl groups, myristate (64%) and caprylate (20%), differ by more than two methylenes. We have isolated two thioesterase (TE) cDNAs from C. palustris, encoding proteins designated Cp FatB1 and Cp FatB2, which, when expressed in Escherichia coli, have TE activities specific for 8:0/10:0- and 14:0/16:0-acyl carrier protein substrates, respectively. The specific activities of the recombinant affinity-purified enzymes indicate that Cp FatB2 is kinetically superior to Cp FatB1. This result is consistent with the predominance of 14:0 in the seed oil, despite apparently equal mRNA abundance of the two transcripts in the seed. In C. palustris the expression of both sequences is confined to the seed tissues. Based on these findings we propose that these two enzymes are major factors determining the bimodal chain-length composition of C. palustris oil. Analysis of the immature and mature seed oil by reverse-phase high-performance liquid chromatography confirmed that the principal triglycerides contain both 8:0 and 14:0. This result indicates that both fatty acids are synthesized at the same time and in the same cells at all developmental stages during oil deposition, suggesting that the two TEs act together in the same fatty acid synthesis system. PMID:8587983

  14. Potential use of avocado oil on structured lipids MLM-type production catalysed by commercial immobilised lipases.

    PubMed

    Caballero, Eduardo; Soto, Carmen; Olivares, Araceli; Altamirano, Claudia

    2014-01-01

    Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG) containing medium-chain fatty acids (M) at positions sn-1,3 and long-chain fatty acids (L) at position sn-2. These MLM-type structured lipids (SL) were produced by interesterification of caprylic acid (CA) (C8:0) and avocado oil (content of C18:1). The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30-50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA) and 4-10% w/w enzyme content. The lowest incorporation of CA (1.1% mol) resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil.

  15. Potential Use of Avocado Oil on Structured Lipids MLM-Type Production Catalysed by Commercial Immobilised Lipases

    PubMed Central

    Caballero, Eduardo; Soto, Carmen; Olivares, Araceli; Altamirano, Claudia

    2014-01-01

    Structured Lipids are generally constituents of functional foods. Growing demands for SL are based on a fuller understanding of nutritional requirements, lipid metabolism, and improved methods to produce them. Specifically, this work was aimed to add value to avocado oil by producing dietary triacylglycerols (TAG) containing medium-chain fatty acids (M) at positions sn-1,3 and long-chain fatty acids (L) at position sn-2. These MLM-type structured lipids (SL) were produced by interesterification of caprylic acid (CA) (C8:0) and avocado oil (content of C18:1). The regiospecific sn-1,3 commercial lipases Lipozyme RM IM and TL IM were used as biocatalysts to probe the potential of avocado oil to produce SL. Reactions were performed at 30–50°C for 24 h in solvent-free media with a substrate molar ratio of 1∶2 (TAG:CA) and 4–10% w/w enzyme content. The lowest incorporation of CA (1.1% mol) resulted from Lipozyme RM IM that was incubated at 50°C. The maximum incorporation of CA into sn-1,3 positions of TAG was 29.2% mol. This result was obtained at 30°C with 10% w/w Lipozyme TL IM, which is the highest values obtained in solvent-free medium until now for structured lipids of low-calories. This strategy opens a new market to added value products based on avocado oil. PMID:25248107

  16. Changes in the Chemical Composition of Plum Distillate During Maturation with Oak Chips under Different Conditions

    PubMed Central

    2017-01-01

    Summary This study investigates the effect of ageing on the qualitative and quantitative composition of plum distillate in contact with oak wood chips. Maturation was performed with lightly toasted French oak (Quercus sessiflora and Quercus robur) chips or oak chips made from fragments of empty barrels that had been used for ageing cognac. The effects of oak chip dose, process temperature, ageing system (static or circulatory) and ultrasound treatment were assessed. Maturation of plum distillate samples with oak chips resulted in higher levels of extractable organics (including tannins) and colour changes, which were correlated with the type and dose of oak chips, and the conditions of maturation. The content of sugars such as glucose, xylose and arabinose also increased, depending on the conditions and type of oak chips. Degradation of lignin resulted in liberation of sinapaldehyde, syringaldehyde, coniferaldehyde and vanillin, with intensities depending on the applied parameters. In terms of volatiles, decreases in the concentration of higher alcohols and aliphatic aldehydes were observed in the majority of maturation experiments, while concentrations of furanic aldehydes increased depending on the type and dose of oak chips, as well as on the conditions of maturation. The quantities of esters such as ethyl acetate decreased in the majority of experimental variants, whereas concentrations of ethyl caproate, ethyl caprylate and ethyl caprate increased gradually. Some phenols and lactones were detected in all matured samples, with the lowest levels found in the samples aged with oak chips made from cognac barrels. PMID:29089848

  17. Changes in the Chemical Composition of Plum Distillate During Maturation with Oak Chips under Different Conditions.

    PubMed

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Strąk, Ewelina

    2017-09-01

    This study investigates the effect of ageing on the qualitative and quantitative composition of plum distillate in contact with oak wood chips. Maturation was performed with lightly toasted French oak ( Quercus sessiflora and Quercus robur ) chips or oak chips made from fragments of empty barrels that had been used for ageing cognac. The effects of oak chip dose, process temperature, ageing system (static or circulatory) and ultrasound treatment were assessed. Maturation of plum distillate samples with oak chips resulted in higher levels of extractable organics (including tannins) and colour changes, which were correlated with the type and dose of oak chips, and the conditions of maturation. The content of sugars such as glucose, xylose and arabinose also increased, depending on the conditions and type of oak chips. Degradation of lignin resulted in liberation of sinapaldehyde, syringaldehyde, coniferaldehyde and vanillin, with intensities depending on the applied parameters. In terms of volatiles, decreases in the concentration of higher alcohols and aliphatic aldehydes were observed in the majority of maturation experiments, while concentrations of furanic aldehydes increased depending on the type and dose of oak chips, as well as on the conditions of maturation. The quantities of esters such as ethyl acetate decreased in the majority of experimental variants, whereas concentrations of ethyl caproate, ethyl caprylate and ethyl caprate increased gradually. Some phenols and lactones were detected in all matured samples, with the lowest levels found in the samples aged with oak chips made from cognac barrels.

  18. The Purification and Characterization of Lipases from Lasiodiplodia theobromae, and Their Immobilization and Use for Biodiesel Production from Coconut Oil.

    PubMed

    Venkatesagowda, Balaji; Ponugupaty, Ebenezer; Barbosa-Dekker, Aneli M; Dekker, Robert F H

    2017-12-18

    The coconut kernel-associated fungus, Lasiodiplodia theobromae VBE1, was grown on coconut cake with added coconut oil as lipase inducer under solid-state fermentation conditions. The extracellular-produced lipases were purified and resulted in two enzymes: lipase A (68,000 Da)-purified 25.41-fold, recovery of 47.1%-and lipase B (32,000 Da)-purified 18.47-fold, recovery of 8.2%. Both lipases showed optimal activity at pH 8.0 and 35 °C, were activated by Ca 2+ , exhibited highest specificity towards coconut oil and p-nitrophenyl palmitate, and were stable in iso-octane and hexane. Ethanol supported higher lipase activity than methanol, and n-butanol inactivated both lipases. Crude lipase immobilized by entrapment within 4% (w/v) calcium alginate beads was more stable than the crude-free lipase preparation within the range pH 2.5-10.0 and 20-80 °C. The immobilized lipase preparation was used to catalyze the transesterification/methanolysis of coconut oil to biodiesel (fatty acyl methyl esters (FAMEs)) and was quantified by gas chromatography. The principal FAMEs were laurate (46.1%), myristate (22.3%), palmitate (9.9%), and oleate (7.2%), with minor amounts of caprylate, caprate, and stearate also present. The FAME profile was comparatively similar to NaOH-mediated transesterified biodiesel from coconut oil, but distinctly different to petroleum-derived diesel. This study concluded that Lasiodiplodia theobromae VBE1 lipases have potential for biodiesel production from coconut oil.

  19. IGIV: contents, properties, and methods of industrial production--evolving closer to a more physiologic product.

    PubMed

    Martin, Turf D

    2006-04-01

    Is the process the product? Immune globulin intravenous (IGIV) is not manufactured, but is purified (fractionated) from human plasma. Machines can only damage what Mother Nature makes; they cannot improve it. Therefore, fractionators of biologic molecules must strive to ensure what is taken from a human body is exactly the same when it is returned to the human body for optimal tolerability and safety. The processes of purification have the potential to adversely affect the product. Four primary purification processes exist for commercial IGIV. The Cohn-Oncley process is 1940s technology, which has been modified through the decades, but the basic process remains unchanged. The Kistler-Nitschmann process was developed in the 1950s by the Central Laboratory of the Swiss Red Cross (ZLB, today known as ZLB-Behring, a subsidiary of CSL Limited). Various attempts have been made to utilize chromatography as the sole separation technology without much success. Most recently, Bayer HealthCare (Talecris Biotherapeutics acquired the contributed assets of the worldwide plasma business of Bayer Biological Products and became operational April 1, 2005; all plasma-based products, including Gamunex, Prolastin, the hyperimmune line (Fraction II), Plasbumin (Bayer Albumin), Koate DVI, and Thrombate III were included) introduced a new product into the United States and Canada that utilizes caprylate and chromatography for high purity, better yields, and integration of safety and efficacy. This is the first new IGIV purification technology in over 20 years.

  20. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    PubMed Central

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach. PMID:26727881

  1. Effect of Micro- and Nanomagnetite on Printing Toner Properties

    PubMed Central

    Ataeefard, Maryam; Ghasemi, Ebrahim; Ebadi, Mona

    2014-01-01

    Toner is a main component of electrophotographic printing and copying processes. One of the most important ingredients of toner is magnetite (Fe3O4) which provides the tribocharging property for toner particles. In this study, nano- and microparticles of Fe3O4 were synthesized using the coprecipitation method and different amounts of lauric acid as a surfactant. The synthesized nano and micro Fe3O4 was then used as the charge control agent to produce toner by emulsion aggregation. The Fe3O4 and toner were characterized by X-ray powder diffraction (XRD), atomic gradient force magnetometry (AGFM), dynamic laser scattering (DLS), particle size analysis, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The results show that the optimum amount of surfactant not only reduced particle size but also reduced the magnetite properties of Fe3O4. It was found that the magnetite behavior of the toner is not similar to the Fe3O4 used to produce it. Although small-sized Fe3O4 created toner with a smaller size, toners made with micro Fe3O4 showed better magnetite properties than toner made with nano Fe3O4. PMID:24574911

  2. Influence of different surfactants on the physicochemical properties of elastic liposomes.

    PubMed

    Barbosa, R M; Severino, P; Preté, P S C; Santana, M H A

    2017-05-01

    Elastic liposomes are capable to improve drug transport through the skin by acting as penetration enhancers due to the high fluidity and elasticity of the liposome membranes. Therefore, elastic liposomes were prepared and characterized to facilitate the transdermal transport of bioactive molecules. Liposomes consisted of dimyristoylphosphatidylcholine (DMPC) as the structural component, with different surfactants derived from lauric acid as elastic components: C 12 E 5 (polyoxyethylene-5-lauryl ether), PEG4L (polyethyleneglycol-4-lauryl ester), PEG4DL (polyethylene glycol-4-dilauryl ester), PEG8L (polyethylene glycol-8-lauryl ester) and PEG8DL (polyethylene glycol-8-dilauryl ester). The elastic liposomes were characterized in terms of their phospholipid content, mean diameter, size distribution, elasticity and stability during storage, as well as their ability to incorporate surfactant and permeate through 50 nm pore size membranes. The results showed that the phospholipid phase transition temperature, the fluidity of the lipid bilayer resulting from incorporation of the surfactant and the preservation of particle integrity were factors determining the performance of the elastic liposomes in permeating through nanoporous membranes. The best results were obtained using DMPC combined with the surfactants PEG8L or PEG8DL. The findings demonstrate the potential of using elastic liposomes for transdermal administration of drugs.

  3. Molecular analysis of peroxisome proliferation in the hamster.

    PubMed

    Choudhury, Agharul I; Sims, Helen M; Horley, Neill J; Roberts, Ruth A; Tomlinson, Simon R; Salter, Andrew M; Bruce, Mary; Shaw, P Nicholas; Kendall, David; Barrett, David A; Bell, David R

    2004-05-15

    Three novel P450 members of the cytochrome P450 4A family were cloned as partial cDNAs from hamster liver, characterised as novel members of the CYP4A subfamily, and designated CYP4A17, 18, and 19. Hamsters were treated with the peroxisome proliferator-activated receptor alpha (PPARalpha) agonists, methylclofenapate (MCP) or Wy-14,643, and shown to develop hepatomegaly and induction of CYP4A17 RNA, and concomitant induction of lauric acid 12- hydroxylase. This treatment also resulted in hypolipidaemia, which was most pronounced in the VLDL fraction, with up to 50% reduction in VLDL-triglycerides; by contrast, blood cholesterol concentration was unaffected by this treatment. These data show that hamster is highly responsive to induction of CYP4A by peroxisome proliferators. To characterise the molecular basis of peroxisome proliferation, the hamster PPARalpha was cloned and shown to encode a 468-amino-acid protein, which is highly similar to rat and mouse PPARalpha proteins. The level of expression of hamster PPARalpha in liver is intermediate between mouse and guinea pig. These results fail to support the hypothesis that the level of PPARalpha in liver is directly responsible for species differences in peroxisome proliferation.

  4. Characterization of physicochemical and thermal properties and crystallization behavior of krabok (Irvingia Malayana ) and rambutan seed fats.

    PubMed

    Sonwai, Sopark; Ponprachanuvut, Punnee

    2012-01-01

    Fatty acid composition, physicochemical and thermal properties and crystallization behavior of fats extracted from the seeds of krabok (Irvingia Malayana) and rambutan (Nephelium lappaceum L.) trees grown in Thailand were studied and compared with cocoa butter (CB). The krabok seed fat, KSF, consisted of 46.9% lauric and 40.3% myristic acids. It exhibited the highest saponification value and slip melting point but the lowest iodine values. The three fats displayed different crystallization behavior at 25°C. KSF crystallized into a mixture of β' and pseudo-β' structures with a one-step crystallization curve and high solid fat content (SFC). The fat showed simple DSC crystallization and melting thermograms with one distinct peak. The rambutan seed fat, RSF, consisted of 42.5% arachidic and 33.1% oleic acids. Its crystallization behavior was more similar to CB than KSF, displaying a two-step crystallization curve with SFC lower than that of KSF. RSF solidified into a mixture of β' and pseudo-β' before transforming to β after 24 h. The large spherulitic microstructures were observed in both KSF and RSF. According to these results, the Thai KSF and RSF exhibited physicochemical, thermal characteristics and crystallization behavior that could be suitable for specific applications in several areas of the food, cosmetic and pharmaceutical industries.

  5. Determination of Ancylostoma caninum ova viability using metabolic profiling.

    PubMed

    Gyawali, P; Beale, D J; Ahmed, W; Karpe, A V; Magalhaes, R J Soares; Morrison, P D; Palombo, E A

    2016-09-01

    Differentiation between viable and non-viable hookworm ova in environmental samples is necessary in order to implement strategies to mitigate re-infections in endemic regions. In this study, an untargeted metabolic profiling method was developed that utilised gas chromatography-mass spectrometry (GC-MS) in order to investigate hookworm ova viability. Ancylostoma caninum was used to investigate the metabolites within viable and non-viable ova. Univariate and multivariate statistical analyses of the data resulted in the identification of 53 significant metabolites across all hookworm ova samples. The major compounds observed in viable and non-viable hookworm ova were tetradecanoic acid, commonly known as myristic acid [fold change (FC) = 0.4], and dodecanoic acid, commonly known as lauric acid (FC = 0.388). Additionally, the viable ova had self-protecting metabolites such as prostaglandins, a typical feature absent in non-viable ova. The results of this study demonstrate that metabolic profiling using GC-MS methods can be used to determine the viability of canine hookworm ova. Further studies are needed to assess the applicability of metabolic profiling using GC-MS to detect viable hookworm ova in the mixed (viable and non-viable) populations from environmental samples and identify the metabolites specific to human hookworm species.

  6. [STUDY OF LIPIDS SEED'S OIL OF VITEX AGNUS CASTUS GROWING IN GEORGIA].

    PubMed

    Kikalishvili, B; Zurabashvili, D; Sulakvelidze, Ts; Malania, M; Turabelidze, D

    2016-07-01

    There was established the lipid composition of the seeds of Vitex agnus castus L. by the qualitative and quantitative methods of analyses. There were received neutral lipids from the seeds by extraction with hexane in the yield 10%, counted on dry material. For the divide of neutral lipids there was used silica gel plates LS 5/40 in the systems of solvents: 1. petroleum ether-diethylether-acidum aceticum (85:14:1), 2. hexane-diethylether (1:1). After obtaining neutral lipids from the residual plant shrot pollar lipids was extracted with the mixture of chloroform-methanol (2:1) and was divided on silica gel plates LS 5/40, mobile phase: 1. chloroform-methanol-25% ammonium hydrate 2. chloroform-methanol icy acetic acid-water (170:25:25:6). In the sum of polar lipids qualitatively were established phospholipids: lisophosphatidylcholine, phosphatidylinosit, phospatidylethanolamine and N-acylphosphatidylethanolamine, in neutral lipids, hydrocarbons, triglycerids, free fatty acids and sterines. By the method of high performance liquid chromatography analyses there were identified following free fatty acids: lauric, myristic, palmitic, stearic, linolic, linolenic, arachidic and begenic, unsaturated oleic and polyunsaturated linolic and linolenic acids. obtained oil with unique composition from the seeds of Vitex agnus-castus indicates to its high biological activity and importance for usage in medicine.

  7. Molecular assembly, interfacial rheology and foaming properties of oligofructose fatty acid esters.

    PubMed

    van Kempen, Silvia E H J; Schols, Henk A; van der Linden, Erik; Sagis, Leonard M C

    2014-01-01

    Two major types of food-grade surfactants used to stabilize foams are proteins and low molecular weight (LMW) surfactants. Proteins lower the surface tension of interfaces and tend to unfold and stabilize the interface by the formation of a visco-elastic network, which leads to high surface moduli. In contrast, LMW surfactants lower the surface tension more than proteins, but do not form interfaces with a high modulus. Instead, they stabilize the interface through the Gibbs-Marangoni mechanism that relies on rapid diffusion of surfactants, when surface tension gradients develop as a result of deformations of the interface. A molecule than can lower the surface tension considerably, like a LMW surfactant, but also provide the interface with a high modulus, like a protein, would be an excellent foam stabilizer. In this article we will discuss molecules with those properties: oligofructose fatty acid esters, both in pure and mixed systems. First, we will address the synthesis and structural characterization of the esters. Next, we will address self-assembly and rheological properties of air/water interfaces stabilized by the esters. Subsequently, this paper will deal with mixed systems of mono-esters with either di-esters and lauric acid, or proteins. Then, the foaming functionality of the esters is discussed.

  8. Morphology design of porous coordination polymer crystals by coordination modulation.

    PubMed

    Umemura, Ayako; Diring, Stéphane; Furukawa, Shuhei; Uehara, Hiromitsu; Tsuruoka, Takaaki; Kitagawa, Susumu

    2011-10-05

    The design of crystal morphology, or exposed crystal facets, has enabled the development (e.g., catalytic activities, material attributes, and oriented film formation) of porous coordination polymers (PCPs) without changing material compositions. However, because crystal growth mechanisms are not fully understood, control of crystal morphology still remains challenging. Herein, we report the morphology design of [Cu(3)(btc)(2)](n) (btc = benzene-1,3,5-tricarboxylate) by the coordination modulation method (modulator = n-dodecanoic acid or lauric acid). A morphological transition (octahedron-cuboctahedron-cube) in the [Cu(3)(btc)(2)](n) crystal was observed with an increase in concentration of the modulator. By suitably defining a coarse-grained standard unit of [Cu(3)(btc)(2)](n) as its cuboctahedron main pore and determining its attachment energy on crystal surfaces, Monte Carlo coarse-grain modeling revealed the population and orientation of carboxylates and elucidated an important role of the modulator in determining the <100>- and <111>-growth throughout the crystal growth process. This comprehension, in fact, successfully led to designed crystal morphologies with oriented growth on bare substrates. Because selective crystal orientations on the bare substrates were governed by crystal morphology, this contribution also casts a new light on the unexplored issue of the significance of morphology design of PCPs.

  9. Effects of ultrasonic treatment on amylose-lipid complex formation and properties of sweet potato starch-based films.

    PubMed

    Liu, Pengfei; Wang, Rui; Kang, Xuemin; Cui, Bo; Yu, Bin

    2018-06-01

    To investigate the effect of ultrasonic treatment on the properties of sweet potato starch and sweet potato starch-based films, the complexing index, thermograms and diffractograms of the sweet potato starch-lauric acid composite were tested, and light transmission, microstructure, and mechanical and moisture barrier properties of the films were measured. The results indicated that the low power density ultrasound was beneficial to the formation of an inclusion complex. In thermograms, the gelatinization enthalpies of the ultrasonically treated starches were lower than those of the untreated sample. With the ultrasonic amplitude increased from 40% to 70%, the melting enthalpy (ΔH) of the inclusion complex gradually decreased. X-ray diffraction revealed that the diffraction intensity of the untreated samples was weaker than that of the ultrasonically treated samples. When the ultrasonic amplitude was above 40%, the diffraction intensity and relative crystallinity of inclusion complex gradually decreased. The scanning electronic microscope showed that the surface of the composite films became smooth after being treated by ultrasonication. Ultrasonication led to a reduction in film surface roughness under atomic force microscopy analysis. The films with ultrasonic treatment exhibited higher light transmission, lower elongation at break, higher tensile strength and better moisture barrier property than those without ultrasonic treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Permeation of sumatriptan succinate across human skin using multiple types of self-dissolving microneedle arrays fabricated from sodium hyaluronate.

    PubMed

    Wu, Dan; Katsumi, Hidemasa; Quan, Ying-Shu; Kamiyama, Fumio; Kusamori, Kosuke; Sakane, Toshiyasu; Yamamoto, Akira

    2016-09-01

    Available formulations of sumatriptan succinate (SS) have low bioavailability or are associated with site reactions. We developed various types of self-dissolving microneedle arrays (MNs) fabricated from sodium hyaluronate as a new delivery system for SS and evaluated their skin permeation and irritation in terms of clinical application. In vitro permeation studies with human skin, physicochemical properties (needle length, thickness and density), and penetration enhancers (glycerin, sodium dodecyl sulfate and lauric acid diethanolamide) were investigated. SS-loaded high-density MNs of 800 µm in length were the optimal formulation and met clinical therapeutic requirements. Penetration enhancers did not significantly affect permeation of SS from MNs. Optical coherence tomography images demonstrated that SS-loaded high-density MNs (800 µm) uniformly created drug permeation pathways for the delivery of SS into the skin. SS-loaded high-density MNs induced moderate primary skin irritations in rats, but the skin recovered within 72 h of removal of the MNs. These findings suggest that high-density MNs of 800 µm in length are an effective and promising formulation for transdermal delivery of SS. To our knowledge, this is the first report of SS permeation across human skin using self-dissolving MNs.

  11. Smart Polyacrylonitrile (PAN) Nanofibers with Thermal Energy Storage and Retrieval Functionality

    NASA Astrophysics Data System (ADS)

    Cherry, De'Andre James

    Phase change materials (PCMs) are generally substances with a high heat of fusion in the process of solid to liquid phase change. The nature of PCMs make them efficient materials to store and retrieve large amounts of thermal energy. Presently, high efficiency thermal energy storage/retrieval in applications where flexibility and space saving are required, such as smart textiles, still remains as a challenge. In this study, lauric acid (LA) and myristic acid (MA) were combined to prepare a specific binary fatty acid eutectic (LA-MA) with a melting point near the operating body temperature of a human being and then encapsulated in polyacrylonitrile (PAN) nanofibers through the electrospinning technique. Functionalized PCM-enhanced PAN nanofibers containing LA-MA at 30%, 50%, 70% and 100% of the weight of the PAN were successfully synthesized. The morphological structures and thermal energy storage capacity of the PCM-enhanced PAN nanofibers were characterized by electron microscopy (EM) and differential scanning calorimetry (DSC). The novel PCM-enhanced PAN nanofibers maintained their cylindrical fiber morphology after multiple heating-cooling cycles and retained their latent heat storage functionality. Thus, it is envisioned that the prepared PCM-enhanced PAN nanofibers will find use in applications such as smart textiles where temperature regulation functionality is required.

  12. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.

  13. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  14. Effect of feeding palm oil by-products based diets on muscle fatty acid composition in goats.

    PubMed

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2015-01-01

    The present study aims to evaluate the effects of feeding palm oil by-products based diets on different muscle fatty acid profiles in goats. Thirty-two Cacang × Boer goats were randomly assigned to four dietary treatments: (1) control diet (CD), (2) 80% decanter cake diet (DCD), (3) 80% palm kernel cake diet (PKCD) and (4) CD plus 5% palm oil (PO) supplemented diet (CPOD). After 100 days of feeding, four goats from each group were slaughtered and longissimus dorsi (LD), infraspinatus (IS) and biceps femoris (BF) were sampled for analysis of fatty acids. Goats fed the PKCD had higher (P<0.05) concentration of lauric acid (C12:0) than those fed the other diets in all the muscles tested. Compared to the other diets, the concentrations of palmitic acid (C16:0) and stearic acid (C18:0) were lower (P<0.05) and that of linoleic acid (C18:2 n-6) was higher (P<0.05) in the muscles from goats fed the CD. It was concluded that palm kernel cake and decanter cake can be included in the diet of goats up to 80% with more beneficial than detrimental effects on the fatty acid profile of their meat.

  15. Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy.

    PubMed

    She, Zuxin; Li, Qing; Wang, Zhongwei; Li, Longqin; Chen, Funan; Zhou, Juncen

    2012-08-01

    A novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy is reported in this paper. Hierarchical structure composed of micro/nano-featherlike CuO was obtained by electrodeposition of Cu-Zn alloy coating and subsequently an electrochemical anodic treatment in alkaline solution. After modification with lauric acid, the surface became hydrophobicity/superhydrophobicity. The formation of featherlike CuO structures was controllable by varying the coating composition. By applying SEM, ICP-AES, and water contact angle analysis, the effects of coating composition on the surface morphology and hydrophobicity of the as-prepared surfaces were detailedly studied. The results indicated that at the optimal condition, the surface showed a good superhydrophobicity with a water contact angle as high as 155.5 ± 1.3° and a sliding angle as low as about 3°. Possible growth mechanism of featherlike CuO hierarchical structure was discussed. Additionally, the anticorrosion effect of the superhydrophobic surface was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The interface model for anticorrosion mechanism of superhydrophobic surface in corrosive medium was proposed. Besides, the mechanical stability test indicated that the resulting superhydrophobic surfaces have good mechanical stability.

  16. Effects of antimicrobial coatings and cryogenic freezing on survival and growth of Listeria innocua on frozen ready-to-eat shrimp during thawing.

    PubMed

    Guo, Mingming; Jin, Tony Z; Scullen, O Joseph; Sommers, Christopher H

    2013-08-01

    Foodborne pathogens such as Listeria monocytogenes could pose a health risk on frozen ready-to-eat (RTE) shrimp as the pathogen could grow following thawing. In this study, antimicrobial-coating treatments alone, or in combination with cryogenic freezing, were evaluated for their ability to inhibit the growth of Listeria innocua, a surrogate for L. monocytogenes, on RTE shrimp. Cooked RTE shrimp were inoculated with L. innocua at 3 population levels and treated with coating solutions consisting of chitosan, allyl isothiocyanate (AIT), or lauric arginate ester (LAE). The treated shrimp were then stored at -18 °C for 6 d before being thawed at 4, 10, or 22 °C for either 24 or 48 h. Results revealed that antimicrobial coatings achieved approximately 5.5 to 1 log CFU/g reduction of L. innocua on RTE shrimp after the treatments, depending on the inoculated population levels. The coating-treated shrimp samples had significantly (P < 0.05) less L. innocua than controls at each thawing temperature and time. Cryogenic freezing in combination with coating treatments did not achieve synergistic effects against L. innocua. Antimicrobial coatings can help to improve product safety by reducing Listeria on RTE shrimp. Journal of Food Science © 2013 Institute of Food Technologists® No claim to original US government works.

  17. Inhibition of Nod2 Signaling and Target Gene Expression by Curcumin

    PubMed Central

    Huang, Shurong; Zhao, Ling; Kim, Kihoon; Lee, Dong Seok; Hwang, Daniel H.

    2008-01-01

    Nod2 is an intracellular pattern recognition receptor that detects a conserved moiety of bacterial peptidoglycan and subsequently activates proinflammatory signaling pathways. Mutations in Nod2 have been implicated to be linked to inflammatory granulomatous disorders, such as Crohn's disease and Blau syndrome. Many phytochemicals possess anti-inflammatory properties. However, it is not known whether any of these phytochemicals might modulate Nod2-mediated immune responses and thus might be of therapeutic value for the intervention of these inflammatory diseases. In this report, we demonstrate that curcumin, a polyphenol found in the plant Curcuma longa, and parthenolide, a sesquiterpene lactone, suppress both ligand-induced and lauric acid-induced Nod2 signaling, leading to the suppression of nuclear factor-κB activation and target gene interleukin-8 expression. We provide molecular and biochemical evidence that the suppression is mediated through the inhibition of Nod2 oligomerization and subsequent inhibition of downstream signaling. These results demonstrate for the first time that curcumin and parthenolide can directly inhibit Nod2-mediated signaling pathways at the receptor level and suggest that Nod2-mediated inflammatory responses can be modulated by these phytochemicals. It remains to be determined whether these phytochemicals possess protective or therapeutic efficacy against Nod2-mediated inflammatory disorders. PMID:18413660

  18. Chemical composition and antioxidant activity of seed oil of two Algerian date palm cultivars (Phoenix dactylifera).

    PubMed

    Boukouada, Mustapha; Ghiaba, Zineb; Gourine, Nadhir; Bombarda, Isabelle; Saidi, Mokhtar; Yousfi, Mohamed

    2014-12-01

    The fatty acid composition of date seed oil from two different date palm (Phoenix dactylifera L.) cultivars, locally known as Degla-Baïdha and Tafezouine, were investigated. GC analysis revealed the presence of five dominant fatty acids: oleic C18:1 (46.51; 39.15%), lauric C12:0 (22.1; 28.5%), myristic C14:0 (10.7; 11.4%), palmitic C16:0 (9.6; 8.7%) and linoleic C18:2 (6.9; 6.1%). The oils was characterised by a low content of tocopherols (0.53; 1.41 μg/g). The antioxidant activity of the oils was investigated using the DPPH*(1,1-di-phenyl-2-picryl-hydrazyl) scavenging assay. The oils had a weak bleaching effect on DPPH* free radicals. This study showed that the qualities of the tested oils are highly comparable with those of some commercial seed oils of other plants. Furthermore, a statistical analysis using the hierarchy ascendant classification method was conducted in order to highlight the similarities and/or the differences regarding the contents of the main fatty acids found in some common plants and in the five most famous cultivars of Phoenix dactylifera of south eastern Algeria (Tafezouine, Degla-Baïdha, Deglet-Nour, Ghars, Tamdjouhert).

  19. Increased cytokine production by monocytes from human subjects who consumed grape powder was not mediated by differences in dietary intake patterns.

    PubMed

    Zunino, Susan J; Keim, Nancy L; Kelley, Darshan S; Bonnel, Ellen L; Souza, Elaine C; Peerson, Janet M

    2017-04-01

    Recently, in a randomized, double-blind crossover study, we reported that consumption of grape powder by obese human subjects increased the production of the proinflammatory cytokines interleukin (IL)-1β and IL-6 by peripheral blood monocytes after ex vivo stimulation with bacterial lipopolysaccharide compared with the placebo treatment. We hypothesized that dietary grape powder increased the production of these cytokines by stimulated monocytes. To test this hypothesis, we used 24-hour dietary recall data to determine if differences in dietary patterns played a role in increased cytokine production. No differences in total energy, protein, carbohydrates, or fat intake in the diets were observed between the grape powder and placebo intervention periods. There were no differences observed in consumption of meats and poultry, eggs, fish, vegetables, grains, total dairy, or nuts and seeds by the participants between the 2 intervention periods. When participants received the grape powder, the recall data showed decreased intakes of butyric and capric acids (P<.05), and a possible trend toward decreased intake of cheese and total fruit (P<.1). Positive associations between the intakes of margaric acid, butter, total dairy, or whole grain and IL-6 production were observed (P<.05). However, path analysis showed that total energy, protein, carbohydrates, and fats, and individual fatty acids did not influence the production of cytokines by monocytes. The path analysis indicated that the increased cytokine production by lipopolysaccharide-stimulated monocytes from obese human subjects was caused by the grape powder and not mediated by differences in dietary intake. Published by Elsevier Inc.

  20. Mechanisms of inhibition by fluoride of urease activities of cell suspensions and biofilms of Staphylococcus epidermidis, Streptococcus salivarius, Actinomyces naeslundii and of dental plaque.

    PubMed

    Barboza-Silva, E; Castro, A C D; Marquis, R E

    2005-12-01

    Fluoride is known to be a potent inhibitor of bacterial ureases and can also act in the form of hydrofluoric acid as a transmembrane proton conductor to acidify the cytoplasm of intact cells with possible indirect, acid inhibition of urease. Our research objectives were to assess the inhibitory potencies of fluoride for three urease-positive bacteria commonly found in the mouth and to determine the relative importance of direct and indirect inhibition of ureases for overall inhibition of intact cells or biofilms. The experimental design involved intact bacteria in suspensions, mono-organism biofilms, cell extracts, and dental plaque. Standard enzymatic assays for ammonia production from urea were used. We found that ureolysis by cells in suspensions or mono-organism biofilms of Staphylococcus epidermidis, Streptococcus salivarius or Actinomyces naeslundii was inhibited by fluoride at plaque levels of 0.1-0.5 mm in a pH-dependent manner. The results of experiments with the organic weak acids indomethacin and capric acid, which do not directly inhibit urease enzyme, indicated that weak-acid effects leading to cytoplasmic acidification are also involved in fluoride inhibition. However, direct fluoride inhibition of urease appeared to be the major mechanism for reduction in ureolytic activity in acid environments. Results of experiments with freshly harvested supragingival dental plaque indicated responses to fluoride similar to those of S. salivarius with pH-dependent fluoride inhibition and both direct and indirect inhibition of urease. Fluoride can act to diminish alkali production from urea by oral bacteria through direct and indirect mechanisms.

  1. Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2).

    PubMed

    Niu, Yaofang; Jin, Chongwei; Jin, Gulei; Zhou, Qingyan; Lin, Xianyong; Tang, Caixian; Zhang, Yongsong

    2011-08-01

    Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO(2) . This study investigated how elevated CO(2) enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO(2) (800 µL L(-1)) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO(2) (350 µL L(-1)). The elevated CO(2) increased auxin production in roots. Under elevated CO(2) , application of either 1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO(2) were treated with 1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO(2) did not enhance the development of root hairs in auxin-response mutants, axr1-3, and auxin-transporter mutants, axr4-1, aux1-7 and pin1-1. Both elevated CO(2) and NAA application increased expressions of caprice, triptychon and rho-related protein from plants 2, and decreased expressions of werewolf, GLABRA2, GLABRA3 and the transparent testa glabra 1, genes related to root-hair development, while 1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO(2) enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes. © 2011 Blackwell Publishing Ltd.

  2. Epidermal patterning genes are active during embryogenesis in Arabidopsis.

    PubMed

    Costa, Silvia; Dolan, Liam

    2003-07-01

    Epidermal cells in the root of Arabidopsis seedling differentiate either as hair or non-hair cells, while in the hypocotyl they become either stomatal or elongated cells. WEREWOLF (WER) and GLABRA2 (GL2) are positive regulators of non-hair and elongated cell development. CAPRICE (CPC) is a positive regulator of hair cell development in the root. We show that WER, GL2 and CPC are expressed and active during the stages of embryogenesis when the pattern of cells in the epidermis of the root-hypocotyl axis forms. GL2 is first expressed in the future epidermis in the heart stage embryo and its expression is progressively restricted to those cells that will acquire a non-hair identity in the transition between torpedo and mature stage. The expression of GL2 at the heart stage requires WER function. WER and CPC are transiently expressed throughout the root epidermal layer in the torpedo stage embryo when the cell-specific pattern of GL2 expression is being established in the epidermis. We also show that WER positively regulates CPC transcription and GL2 negatively regulates WER transcription in the mature embryo. We propose that the restriction of GL2 to the future non-hair cells in the root epidermis can be correlated with the activities of WER and CPC during torpedo stage. In the embryonic hypocotyl we show that WER controls GL2 expression. We also provide evidence indicating that CPC may also regulate GL2 expression in the hypocotyl.

  3. Virucidal activities of medium- and long-chain fatty alcohols and lipids against respiratory syncytial virus and parainfluenza virus type 2: comparison at different pH levels.

    PubMed

    Hilmarsson, H; Traustason, B S; Kristmundsdóttir, T; Thormar, H

    2007-01-01

    Recent studies have shown that some lipids and fatty alcohols have microbicidal activities against a broad variety of pathogens. In this study, virucidal activities of fatty acids, monoglycerides and fatty alcohols were tested against respiratory syncytial virus (RSV) and human parainfluenza virus type 2 (HPIV2) at different concentrations, times and pH levels. The most active compounds were mixed with milk products and fruit juices and the mixtures tested for virucidal effects. The aim was to determine which compounds are the most active against these respiratory viruses and could possibly be used in pharmaceutical formulations or as additives to milk products or juice. Several compounds caused a significant inactivation of virus, and there was generally a good agreement between the activities against RSV and parainfluenza virus. By changing the pH from 7 to 4.2, the virucidal activities of some of the compounds were greatly increased, i.e., they inactivated virus in a shorter time and at lower concentrations. The most active compound tested was 1-monoglyceride of capric acid, monocaprin, which also showed activity against influenza A virus and significant virucidal activities after addition to milk products and fruit juices, even at a concentration as low as 0.06-0.12%. The significant virucidal activities of fatty alcohols and lipids on RSV and parainfluenza virus demonstrated in this in vitro study raise the question of the feasibility of using such compounds as ingredients in pharmaceutical dosage forms against respiratory infections caused by these viruses, and possibly other paramyxo- and myxoviruses.

  4. Quantitative expression analysis of selected transcription factors in pavement, basal and trichome cells of mature leaves from Arabidopsis thaliana.

    PubMed

    Schliep, Martin; Ebert, Berit; Simon-Rosin, Ulrike; Zoeller, Daniela; Fisahn, Joachim

    2010-05-01

    Gene expression levels of several transcription factors from Arabidopsis thaliana that were described previously to be involved in leaf development and trichome formation were analysed in trichome, basal and pavement cells of mature leaves. Single cell samples of these three cells types were collected by glass micro-capillaries. Real-time reverse transcription (RT)-PCR was used to analyse expression patterns of the following transcription factors: MYB23, MYB55, AtHB1, FILAMENTOUS FLOWER (FIL)/YABBY1 (YAB1), TRIPTYCHON (TRY) and CAPRICE (CPC). A difference in the expression patterns of TRY and CPC was revealed. Contrary to the CPC expression pattern, no transcripts of TRY could be detected in pavement cells. FIL/YAB1 was exclusively expressed in trichome cells. AtHB1 was highly expressed throughout all three cell types. MYB55 was higher expressed in basal cells than in trichome and pavement cells. MYB23 showed a pattern of low expression in pavement cells, medium in basal cells and high expression in trichomes. Expression patterns obtained by single cell sampling and real-time RT-PCR were compared to promoter GUS fusions of the selected transcription factors. Therefore, we regenerated two transgenic Arabidopsis lines that expressed the GUS reporter gene under control of the promoters of MYB55 and YAB1. In conclusion, despite their function in leaf morphogenesis, all six transcription factors were detected in mature leaves. Furthermore, single cell sampling and promoter GUS staining patterns demonstrated the predominant presence of MYB55 in basal cells as compared to pavement cells and trichomes.

  5. Quantitative expression analysis of selected transcription factors in pavement, basal and trichome cells of mature leaves from Arabidopsis thaliana

    PubMed Central

    Schliep, Martin; Ebert, Berit; Simon-Rosin, Ulrike; Zoeller, Daniela

    2010-01-01

    Gene expression levels of several transcription factors from Arabidopsis thaliana that were described previously to be involved in leaf development and trichome formation were analysed in trichome, basal and pavement cells of mature leaves. Single cell samples of these three cells types were collected by glass micro-capillaries. Real-time reverse transcription (RT)-PCR was used to analyse expression patterns of the following transcription factors: MYB23, MYB55, AtHB1, FILAMENTOUS FLOWER (FIL)/YABBY1 (YAB1), TRIPTYCHON (TRY) and CAPRICE (CPC). A difference in the expression patterns of TRY and CPC was revealed. Contrary to the CPC expression pattern, no transcripts of TRY could be detected in pavement cells. FIL/YAB1 was exclusively expressed in trichome cells. AtHB1 was highly expressed throughout all three cell types. MYB55 was higher expressed in basal cells than in trichome and pavement cells. MYB23 showed a pattern of low expression in pavement cells, medium in basal cells and high expression in trichomes. Expression patterns obtained by single cell sampling and real-time RT-PCR were compared to promoter GUS fusions of the selected transcription factors. Therefore, we regenerated two transgenic Arabidopsis lines that expressed the GUS reporter gene under control of the promoters of MYB55 and YAB1. In conclusion, despite their function in leaf morphogenesis, all six transcription factors were detected in mature leaves. Furthermore, single cell sampling and promoter GUS staining patterns demonstrated the predominant presence of MYB55 in basal cells as compared to pavement cells and trichomes. PMID:20101514

  6. Benefits of use, and tolerance of, medium-chain triglyceride medical food in the management of Japanese patients with Alzheimer's disease: a prospective, open-label pilot study.

    PubMed

    Ohnuma, Tohru; Toda, Aiko; Kimoto, Ayako; Takebayashi, Yuto; Higashiyama, Ryoko; Tagata, Yuko; Ito, Masanobu; Ota, Tsuneyoshi; Shibata, Nobuto; Arai, Heii

    2016-01-01

    This is the first clinical trial of this type in Japan, designed to analyze two important aspects of Alzheimer's disease (AD) management using medium-chain triglycerides. Axona was administered for 3 months (40 g of powder containing 20 g of caprylic triglycerides). We used an indurating, four-step dose-titration method (from 10 to 40 g per day) for 7 days before the trial, and examined the tolerance and adverse effects of this intervention. We also investigated its effect on cognitive function in mild-to-moderate AD patients. This was a clinical intervention in 22 Japanese patients with sporadic AD at a mild-to-moderate stage (ten females, 12 males), mean age (± standard deviation) 63.9 (±8.5) years, Mini-Mental State Examination (MMSE) score, 10-25, seven patients were ApoE4-positive. During Axona administration, we examined changes in cognitive function by obtaining MMSE and AD assessment-scale scores. Intolerance and serum ketone concentrations were also examined. The tolerance of Axona was good, without severe gastrointestinal adverse effects. Axona did not improve cognitive function in our sample of AD patients, even in those patients without the ApoE4 allele. However, some ApoE4-negative patients with baseline MMSE score ≥14 showed improvement in their cognitive functions. The modified dose-titration method, starting with a low dose of Axona, decreased gastrointestinal adverse effects in Japanese patients. Axona might be effective for some relatively mildly affected patients with AD (with cognitive function MMSE score of ≥14 and lacking the ApoE4 allele).

  7. Characterization of Esterases Produced by a Ruminal Bacterium Identified as Butyrivibrio fibrisolvens1

    PubMed Central

    Lanz, Wayne W.; Williams, Phletus P.

    1973-01-01

    An obligately anaerobic ruminal bacterial isolate was selected from 18 tributyrin-degrading isolates and identified as Butyrivibrio fibrisolvens strain 53. The culture in late exponential phase contained enzymes which could be released by sonic disruption. These enzymes degraded substrates at a rate in the order 1-naphthyl acetate (NA) > 1-naphthyl butyrate > 1-naphthyl propionate but did not degrade 1-naphthyl palmitate or 1-naphthyl phosphate. The enzymes on NA were neither stimulated nor inhibited by CoCl2, MgCl2, and MnCl (each varied from 10−6 to 10−4 M). CaCl at 10−3 M stimulated esterase activity by 16%. Aliphatic substrates were hydrolyzed at a rate in the order triacetin > tributyrin > tripropionin, and ethyl acetate > ethyl formate. Similarly, aromatic fluorescein diesters were degraded at a rate in the order acetyl > propionyl > caproyl > butyryl > capryl > lauryl. Polyacrylamide gel electrophoretic zymograms indicated that the enzyme composite contained cathodally migrating bands. By column chromatography, these enzymes were separated into six NA-degrading fractions. Fraction V contained an esterase which had an optimal temperature of 39 C, a Km of 7.6 × 10−4 on NA, and a molecular weight of about 66,000. This enzyme was inhibited by paraoxon (41%, 10−4 M), eserine (17%, 10−2 M), NaF (17%, 10−2 M), and diisopropyl fluorophosphate (62%, 10−4 M) but not by 1-naphthyl N-methyl carbamate at 8.4 × 10−4 M. PMID:4734862

  8. Structured DAG oil ameliorates renal injury in streptozotocin-induced diabetic rats through inhibition of NF-κB and activation of Nrf2 pathway.

    PubMed

    Das, Kankana; Ghosh, Mahua

    2017-02-01

    Accumulating evidence suggested that inflammatory processes are involved in the development of diabetic nephropathy (DN). Here, we have tested the hypothesis that Caprylic Acid (Cy)-diacylglycerol (DAG) oil (Cy-DAG), a novel structurally formulated lipid with high nutritional value, ameliorated DN in streptozotocin (STZ)-induced diabetic rats through the anti-inflammatory mechanisms. Basic hematological, biochemical parameters, immunoblotting, immunofluorescence and flow cytometry analysis were performed to observe the anti-inflammatory potential of Cy-DAG oil. The data revealed that STZ significantly increased the renal oxidative stress markers and decreased the levels of renal enzymatic and non-enzymatic antioxidants. Moreover, renal nitric oxide (NO), tissue necrosis factor-α (TNF-α), interleukin-6 (IL-6) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were also increased in the renal tissue of STZ-treated rats. Further, DAG oil pretreatment produced a significant improvement in renal antioxidant status, reduced the lipid peroxidation and the levels of inflammatory markers in STZ-treated kidney. Similarly, results of protein expression showed that DAG oil pretreatment normalized the renal expression of Nrf2/Keap1 and its downstream regulatory proteins in STZ-treated condition. Immunohistochemical observations provided further evidence that DAG oil effectively protected the kidney from STZ-mediated oxidative damage. These results suggested that the DAG oil ameliorated STZ-induced oxidative renal injury by the activation of AKT/Nrf2/HO-1 pathway and the inhibition of ROS/MAPK/NF-κB pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Determination of Odor Release in Hydrocolloid Model Systems Containing Original or Carboxylated Cellulose at Different pH Values Using Static Headspace Gas Chromatographic (SHS-GC) Analysis

    PubMed Central

    Lee, Sang Mi; Shin, Gil-Ok; Park, Kyung Min; Chang, Pahn-Shick; Kim, Young-Suk

    2013-01-01

    Static headspace gas chromatographic (SHS-GC) analysis was performed to determine the release of 13 odorants in hydrocolloid model systems containing original or regio-selectively carboxylated cellulose at different pH values. The release of most odor compounds was decreased in the hydrocolloid solutions compared to control, with the amounts of 2-propanol, 3-methyl-1-butanol, and 2,3-butanedione released into the headspace being less than those of any other odor compound in the hydrocolloid model systems. However, there was no considerable difference between original cellulose-containing and carboxylated-cellulose containing systems in the release of most compounds, except for relatively long-chain esters such as ethyl caprylate and ethyl nonanoate. The release from the original and carboxylated cellulose solutions controlled to pH 10 was significantly higher than that from solutions adjusted to pH 4 and 7 in the case of some esters (ethyl acetate, methyl propionate, ethyl propionate, ethyl butyrate, butyl propionate, ethyl caproate) and alcohols (2-propanol, 3-methyl-1-butanol), in particular, ethyl butyrate and 3-methyl-1-butanol. In contrast, the release of 2,3-butanedione from both the original and carboxylated cellulose solutions was increased at pH 4 and 7 compared to that at pH 10 by about 70% and 130%, respectively. Our study demonstrated that the release of some odorants could be changed significantly by addition of both original and carboxylated cellulose in hydrocolloid model systems, but only minor effect was observed in pH of the solution. PMID:23447013

  10. Drug Solubility in Fatty Acids as a Formulation Design Approach for Lipid-Based Formulations: A Technical Note.

    PubMed

    Lee, Yung-Chi; Dalton, Chad; Regler, Brian; Harris, David

    2018-06-06

    Lipid-based drug delivery systems have been intensively investigated as a means of delivering poorly water-soluble drugs. Upon ingestion, the lipases in the gastrointestinal tract digest lipid ingredients, mainly triglycerides, within the formulation into monoglycerides and fatty acids. While numerous studies have addressed the solubility of drugs in triglycerides, comparatively few publications have addressed the solubility of drugs in fatty acids, which are the end product of digestion and responsible for the solubility of drug within mixed micelles. The objective of this investigation was to explore the solubility of a poorly water-soluble drug in fatty acids and raise the awareness of the importance of drug solubility in fatty acids. The model API (active pharmaceutical ingredient), a weak acid, is considered a BCS II compound with an aqueous solubility of 0.02 μg/mL and predicted partition coefficient >7. The solubility of API ranged from 120 mg/mL to over 1 g/mL in fatty acids with chain lengths across the range C18 to C6. Hydrogen bonding was found to be the main driver of the solubilization of API in fatty acids. The solubility of API was significantly reduced by water uptake in caprylic acid but not in oleic acid. This report demonstrates that solubility data generated in fatty acids can provide an indication of the solubility of the drug after lipid digestion. This report also highlights the importance of measuring the solubility of drugs in fatty acids in the course of lipid formulation development.

  11. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets.

    PubMed

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-09-01

    Specific structured triacylglycerols, MLM (M = medium-chain fatty acid, L = long-chain fatty acid), rapidly deliver energy and long-chain fatty acids to the body and are used for longer periods in human enteral feeding. In the present study rats were fed diets of 10 wt% MLM or LLL (L = oleic acid [18:1 n-9], M = caprylic acid [8:01) for 2 wk. Then lymph was collected 24 h following administration of a single bolus of 13C-labeled MLM or LLL. The total lymphatic recovery of exogenous 18:1 n-9 24 h after administration of a single bolus of MLM or LLL was similar in rats on the LLL diet (43% and 45%, respectively). However, the recovery of exogenous 18:1 n-9 was higher after a single bolus of MLM compared with a bolus of LLL in rats on the MLM diet (40% and 24%, respectively, P = 0.009). The recovery of lymphatic 18:1 n-9 of the LLL bolus tended to depend on the diet triacylglycerol structure and composition (P= 0.07). This study demonstrated that with a diet containing specific structured triacylglycerol, the lymphatic recovery of 18:1 n-9 after a single bolus of fat was dependent on the triacylglycerol structure of the bolus. This indicates that the lymphatic recovery of long-chain fatty acids from a single meal depends on the overall long-chain fatty acid composition of the habitual diet. This could have implications for enteral feeding for longer periods.

  12. Recoveries of rat lymph FA after administration of specific structured 13C-TAG.

    PubMed

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2003-09-01

    The potential of the specific structured TAG MLM [where M = caprylic acid (8:0) and L = linoleic acid (18:2n-6)] is the simultaneous delivery of energy and EFA. Compared with long-chain TAG (LLL), they may be more rapidly hydrolyzed and absorbed. This study examined the lymphatic recoveries of intragastrically administered L*L*L*, M*M*M*, ML*M, and ML*L* (where * = 13C-labeled FA) in rats. Lymph lipids were separated into lipid classes and analyzed by GC combustion isotope ratio MS. The recoveries of lymph TAG 18:2n-6 8 h after administration of L*L*L*, ML*M, and ML*L* were 38.6, 48.4, and 49.1%, respectively, whereas after 24 h the recoveries were approximately 50% in all experimental groups. The exogenous contribution to lymph TAG 18:2n-6 was approximately 80 and 60% at maximum absorption of the specific structured TAG and L*L*L*, respectively, 3-6 h after administration. The tendency toward more rapid recovery of exogenous long-chain FA following administration of specific structured TAG compared with long-chain TAG was probably due to fast hydrolysis. The lymphatic recovery of 8:0 was 2.2% 24 h after administration of M*M*M*. This minor lymphatic recovery of exogenous 8:0 was probably due to low stimulation of chylomicron formation. These results demonstrate tendencies toward faster lymphatic recovery of long-chain FA after administration of specific structured TAG compared with long-chain TAG.

  13. [The composition of nonesterified fatty acids in patients with metabolic syndrome].

    PubMed

    Novgorodtseva, T P; Ivanov, E M; Antoniuk, M V; Karaman, Iu K; Zhukova, N V; Iurenko, A V

    2008-10-01

    The blood composition of non-etherized fatty acids (NEFA) was studied in 22 patients with metabolic syndrome (MS) and 11 healthy individuals. The qualitative NEFA composition presented by 31 components of individual fatty acids was analyzed, by taking into account of glucose-insulin homeostatic changes in MS patients: those without insulin resistance (IR) (Group 1) and those with diagnosed IR (Group 2). MS patients with normal insulinemia were ascertained to have lower levels of lauric, myristic, palmitic, C24:0, C16:0i acids. With a decrease in the relative quantity of saturated NEFA, the levels of polyunsaturated fatty acids (FA) increased. The proportions of linoleic (C18:2 omega 6) and linolenic (C18:3 omega 3) acids doubled (p < 0.01), arachidonic acid (C20:4 omega 6) was observed to tend to rise. The cumulative FA index sigma omega 6 increased twofold. In Group 1, the integrated index of changes in the FA series (unsaturation index) was 41% higher than that in the control group (p < 0.05). In Group 2, the vector of changes in the relative quantity of NEFA was similar, but impairments were less marked than that in Group 1. The findings suggest that the development of insulin resistance is preceded by impaired blood cell transfer and absorption of NEFA.

  14. Formulation and Stabilization of Concentrated Edible Oil-in-Water Emulsions Based on Electrostatic Complexes of a Food-Grade Cationic Surfactant (Ethyl Lauroyl Arginate) and Cellulose Nanocrystals.

    PubMed

    Bai, Long; Xiang, Wenchao; Huan, Siqi; Rojas, Orlando J

    2018-05-14

    We report on high-internal-phase, oil-in-water Pickering emulsions that are stable against coalescence during storage. Viscous, edible oil (sunflower) was emulsified by combining naturally derived cellulose nanocrystals (CNCs) and a food-grade, biobased cationic surfactant obtained from lauric acid and L-arginine (ethyl lauroyl arginate, LAE). The interactions between CNC and LAE were elucidated by isothermal titration calorimetry (ITC) and supplementary techniques. LAE adsorption on CNC surfaces and its effect on nanoparticle electrostatic stabilization, aggregation state, and emulsifying ability was studied and related to the properties of resultant oil-in-water emulsions. Pickering systems with tunable droplet diameter and stability against oil coalescence during long-term storage were controllably achieved depending on LAE loading. The underlying stabilization mechanism was found to depend on the type of complex formed, the LAE structures adsorbed on the cellulose nanoparticles (as unimer or as adsorbed admicelles), the presence of free LAE in the aqueous phase, and the equivalent alkane number of the oil phase (sunflower and dodecane oils were compared). The results extend the potential of CNC in the formulation of high-quality and edible Pickering emulsions. The functional properties imparted by LAE, a highly effective molecule against food pathogens and spoilage organisms, open new opportunities in food, cosmetics, and pharmaceutical applications, where the presence of CNC plays a critical role in achieving synergistic effects with LAE.

  15. Analysis of processing contaminants in edible oils. Part 1. Liquid chromatography-tandem mass spectrometry method for the direct detection of 3-monochloropropanediol monoesters and glycidyl esters.

    PubMed

    MacMahon, Shaun; Mazzola, Eugene; Begley, Timothy H; Diachenko, Gregory W

    2013-05-22

    A new analytical method has been developed and validated for the detection of glycidyl esters (GEs) and 3-monochloropropanediol (3-MCPD) monoesters in edible oils. The target compounds represent two classes of potentially carcinogenic chemical contaminants formed during the processing of edible oils. Target analytes are separated from edible oil matrices using a two-step solid-phase extraction (SPE) procedure. The extracts are then analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI). Chromatographic conditions that separate sn-1 and sn-2 monoesters of 3-MCPD have been developed for the first time. The method has been validated for GEs, sn-1 3-MCPD monoesters of lauric, myristic, linolenic, linoleic, oleic, and stearic acids, and sn-2 3-MCPD monoesters of oleic and palmitic acids in coconut, olive, and palm oils using an external calibration curve. The range of average recoveries and relative standard deviations (RSDs) across the three oil matrices at three spiking concentrations are 84-115% (3-16% RSD) for the GEs, 95-113% (1-10% RSD) for the sn-1 3-MCPD monoesters, and 76.8-103% (5.1-11.2% RSD) for the sn-2 3-MCPD monoesters, with limits of quantitation at or below 30 ng/g for the GEs, 60 ng/g for sn-1 3-MCPD monoesters, and 180 ng/g for sn-2 3-MCPD monoesters.

  16. MgO NPs synthesis, capping and enhanced free radical effect on the bacteria and its cell morphology

    NASA Astrophysics Data System (ADS)

    Kushwaha, Amisha; Bagchi, T.

    2018-05-01

    Magnesium Oxide Nanoparticles (MgO NPs) commonly known as Magnesia is a white powder, hygroscopic material. MgO NPs were synthesized through four methods Co-precipitation method (Co-PM), Solution combustion (S-CoM) and Sol-gel method with starch (So-GSM) and CTAB (So-GCM), classified as template dependent and template independent method using magnesium nitrate hexahydrate (Mg(NO3).6H2O) as the precursor and comparative analysis was done through DLS. The order of hydrodynamic diameters of four different synthesis method of MgO NPs is Co-PMLauric acid (LA). Further, antibacterial assay of MgO NPs, LA capped MgO NPs (LA-MgO) and LA studied against bacteria through Minimum Inhibitory Concentration (MIC). In the antibacterial test the Ascending order for bactericidal activity responding against Bacillus pumilus was resultant as LA> LA-MgO NPs> MgO NPs responding.

  17. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE PAGES

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; ...

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  18. Transdermal delivery of alprazolam from a monolithic patch: formulation based on in vitro characterization.

    PubMed

    Soler, L I; Boix, A; Lauroba, J; Colom, H; Domenech, J

    2012-10-01

    Alprazolam, a benzodiazepine widely used for the treatment of psychiatric disorders, has been aimed to be formulated in a transdermal delivery system (TDS) prototype. A series of TDS prototypes dosed in all cases at 0.35 mg·cm(-2) of alprazolam were prepared as a monolithic drug in adhesive matrix using acrylic pressure-sensitive adhesives (PSA) of acrylate vinyl acetate (Duro-tack(®)). The effects of several permeation enhancers as azone, transcutol, propylene glycol, dodecyl alcohol, decyl alcohol, diethanolamine, N-methyl pyrrolidone and lauric acid were studied. Prototypes have been characterized based on adhesion parameters (peel adhesion and shear adhesion), in vitro human skin permeation and in vitro drug release according to European Pharmacopoeia for the selected prototype. Best results show that a combination of permeation enhancers from different chemical groups is able to provide almost a 33 fold increase in the transdermal alprazolam flux of an aqueous saturated dispersion (from 0.054 ± 0.019 to 1.76 ± 0.21 μg h.cm(-2)). Based on these in vitro flux data, a predictive simulation of the achievable plasmatic levels was performed assuming a constant systemic infusion of drug. In summary, it is possible to obtain a prototype of a TDS of alprazolam with adequate adhesive properties (peel adhesion and shear adhesion) and able to predict sustained therapeutic plasmatic levels.

  19. In vitro and in vivo effects of two coconut oils in comparison to monolaurin on Staphylococcus aureus: rodent studies.

    PubMed

    Manohar, Vijaya; Echard, Bobby; Perricone, Nicholas; Ingram, Cass; Enig, Mary; Bagchi, Debasis; Preuss, Harry G

    2013-06-01

    Since monolaurin, a monoglyceride formed in the human body in small quantities, has proven effective both in vitro and in vivo against certain strains of Staphylococcus aureus, an important question arises whether consuming a substance high in lauric acid content, such as coconut oil could increase intrinsic monolaurin production to levels that would be successful in overcoming staphylococcal and other microbial invaders. Both a cup plate method and a microdilution broth culture system were employed to test bacteriostatic and bactericidal effects of the test agents in vitro. To test effectiveness in vivo, female C3H/he mice (10-12 per group) were orally administered sterile saline (regular control), vancomycin (positive control), aqueous monolaurin, or two varieties of coconut oil (refined, bleached, deodorized coconut oil and virgin coconut oil) for 1 week before bacterial challenge and 30 days after. A final group received both monolaurin and vancomycin. In contrast to monolaurin, the coconut oils did not show bactericidal activity in vitro. In vivo, the groups receiving vancomycin, monolaurin, or the combination showed some protection--50-70% survival, whereas the protection from the coconut oils were virtually the same as control--0-16% survival. Although we did not find that the two coconut oils are helpful to overcome S. aureus infections, we corroborated earlier studies showing the ability of monolaurin to do such.

  20. Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources.

    PubMed

    Nguyen, T A V; Le, Truong D; Phan, Hoa N; Tran, Lam B

    2018-01-01

    Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL).

  1. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.

    PubMed

    Banno, Taisuke; Kuroha, Rie; Toyota, Taro

    2012-01-17

    Self-propelled oil droplets in a nonequilibrium system have drawn much attention as both a primitive type of inanimate chemical machinery and a dynamic model of the origin of life. Here, to create the pH-sensitive self-propelled motion of oil droplets, we synthesized cationic surfactants containing hydrolyzable ester linkages. We found that n-heptyloxybenzaldehyde oil droplets were self-propelled in the presence of ester-containing cationic surfactant. In basic solution prepared with sodium hydroxide, oil droplets moved as molecular aggregates formed on their surface. Moreover, the self-propelled motion in the presence of the hydrolyzable cationic surfactant lasted longer than that in the presence of nonhydrolyzable cationic surfactant. This is probably due to the production of a fatty acid by the hydrolysis of the ester-containing cationic surfactant and the subsequent neutralization of the fatty acid with sodium hydroxide. A complex surfactant was formed in the aqueous solution because of the cation and anion combination. Because such complex formation can induce both a decrease in the interfacial tension of the oil droplet and self-assembly with n-heptyloxybenzaldehyde and lauric acid in the aqueous dispersion, the prolonged movement of the oil droplet may be explained by the increase in heterogeneity of the interfacial tension of the oil droplet triggered by the hydrolysis of the ester-containing surfactant. © 2011 American Chemical Society

  2. Self-assembly and bilayer-micelle transition of fatty acids studied by replica-exchange constant pH molecular dynamics

    PubMed Central

    Morrow, Brian H.; Koenig, Peter H.; Shen, Jana K.

    2014-01-01

    Recent interest in the development of surfactant-based nano delivery systems targeting tumor sites has sparked our curiosity to understand the detailed mechanism of the self-assembly and phase transitions of pH-sensitive surfactants. Towards this goal we applied a state-of-the-art simulation technique, continuous constant pH molecular dynamics (CpHMD) with the hybrid-solvent scheme and pH-based replica-exchange protocol, to study de novo self-assembly of 30 and 40 lauric acids, a simple model titratable surfactant. We observed the formation of a gel-state bilayer at low and intermediate pH and a spherical micelle at high pH, with the phase transition starting at 20–30% ionization and completing at 50%. The degree of cooperativity for the transition increases from the 30-mer to the 40-mer. The calculated apparent or bulk pKa value is 7.0 for the 30-mer and 7.5 for the 40-mer. Congruent with experiment, these data demonstrate that CpHMD is capable of accurately modeling large conformational transitions of surfactant systems while allowing simultaneous proton titration of constituent molecules. We suggest that CpHMD simulations may become a useful tool to aid in the design and development of pH-sensitive nanocarriers for a variety of biomedical and technological applications. PMID:24215478

  3. Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources

    PubMed Central

    Phan, Hoa N.; Tran, Lam B.

    2018-01-01

    Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL). PMID:29623233

  4. Engineering acyl carrier protein to enhance production of shortened fatty acids.

    PubMed

    Liu, Xueliang; Hicks, Wade M; Silver, Pamela A; Way, Jeffrey C

    2016-01-01

    The acyl carrier protein (ACP) is an essential and ubiquitous component of microbial synthesis of fatty acids, the natural precursor to biofuels. Natural fatty acids usually contain long chains of 16 or more carbon atoms. Shorter carbon chains, with increased fuel volatility, are desired for internal combustion engines. Engineering the length specificity of key proteins in fatty acid metabolism, such as ACP, may enable microbial synthesis of these shorter chain fatty acids. We constructed a homology model of the Synechococcus elongatus ACP, showing a hydrophobic pocket harboring the growing acyl chain. Amino acids within the pocket were mutated to increase steric hindrance to the acyl chain. Certain mutant ACPs, when over-expressed in Escherichia coli, increased the proportion of shorter chain lipids; I75 W and I75Y showed the strongest effects. Expression of I75 W and I75Y mutant ACPs also increased production of lauric acid in E. coli that expressed the C12-specific acyl-ACP thioesterase from Cuphea palustris. We engineered the specificity of the ACP, an essential protein of fatty acid metabolism, to alter the E. coli lipid pool and enhance production of medium-chain fatty acids as biofuel precursors. These results indicate that modification of ACP itself could be combined with enzymes affecting length specificity in fatty acid synthesis to enhance production of commodity chemicals based on fatty acids.

  5. Nutritional and technological characteristics of olive (Olea europea L.) fruit and oil: two varieties growing in two different locations of Turkey.

    PubMed

    Aydin, Cevat; Ozcan, Mehmet Musa; Gümüş, Tuncay

    2009-08-01

    Olea europea L. fruits were evaluated for weight, moisture, ash, crude protein, crude oil, energy, crude fibre, roundness, resistance against extra force and product density. The relative density, refractive index, free fatty acids, peroxide value, iodine value and unsaponifiables were determined in the olive oils. The main fatty acids identified by gas chromatography were palmitic acid (16:0), palmitoleic acid (16:1), stearic acid (18:0), oleic acid (18:1) and linoleic acid (18:2). Of the identified fatty acids, lauric acid (12:0), linolenic acid (18:3), arachidic acid (20:0), eicosenoic acid (20:1), behenic acid (22:0) and lignoseric acid (24:0) were found in trace amounts. As expected, the oleic acid content was the major fatty acid of olive oil. Oleic acid was represented in much higher concentrations than the other acids. The product roundness, resistance against extra force, product density and weight of 100 fruit were established as technological characteristics in olive fruit. The damage energy and the unit of volume deformation energy of the Memecik and Tavşanyüreği varieties were 1.36×10(-3) J and 3.59×10(-4) J/mm(3) and 1.89×10(-3) J and 5.10×10(-4) J/mm(3), respectively. The fruits showed a similar composition, and both fruit and oil contained unsaturated fatty acids.

  6. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43.

    PubMed

    Kumar, Davender; Parshad, Rajinder; Gupta, Vijay Kumar

    2014-05-01

    This paper presents the molecular identification of a newly isolated bacterial strain producing a novel and organic solvent stable lipase, statistical optimization of fermentation medium, and its application in the synthesis of ethyl laurate. On the basis of nucleotide homology and phylogenetic analysis of 16S rDNA sequence, the strain was identified as Bacillus safensis DVL-43 (Gen-bank accession number KC156603). Optimization of fermentation medium using Plackett-Burman design and response surface methodology led to 11.4-fold increase in lipase production. The lipase from B. safensis DVL-43 exhibited excellent stability in various organic solvents. The enzyme retained 100% activity after 24h incubation in xylene, DMSO and toluene, each solvent being used at a concentration of 25% (v/v). The use of partially purified DVL-43 lipase as catalyst in the synthesis of ethyl laurate, an esterification product of lauric acid and ethanol, resulted in 80% esterification in 12h under optimized conditions. The formation of ethyl laurate was confirmed using TLC and (1)H NMR. Organic solvent stable lipases exhibiting potential application in enzymatic esterification are in great demand in flavor, fine chemicals and pharma industries. We could not find any report on lipase production from B. safensis strain and its application in esterification. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Physico-chemical characteristics of oil produced from seeds of some date palm cultivars (Phoenix dactylifera L.) .

    PubMed

    Soliman, S S; Al-Obeed, R S; Ahmed, T A

    2015-03-01

    The oil content of saturated and unsaturated fatty acids with some physico-chemical properties and nutrients were investigated in oil produced from seeds of six important date palm cultivars and one seed strain present in Saudi Arabia. The results indicated that the oil extracted from six seed cultivars of date palm ranged from 6.73-10.89% w/w oil. The refractive index of date seeds oil was found to be between 1.4574 to 1.4615. The iodine values, acid values and saponification values were in the range of 74.2-86.6 g iodine 100 g(-1); 2.50-2.58 mg KOH g(-1) and 0.206-0.217 mg KOH g(-1), respectively. Lauric acid, Myristic acid, Palmitic acid C15, Palmitic acid C16 Stearic acid, Arachidic acid and Behenic acid of date seeds oil contents were found between 8.67-49.27; 7.01-15.43; 0-0.57; 4.82-18.09; 1.02-7.86; 0-0.08; and 0-0.15% w/w, in that order. Omega-6 and Omega-9 of date seeds oil were found between 7.31-17.87 and 52.12-58.78%, respectively. Khalas, Barhy cvs. and seed strain gave highest K and Ca, Na and Fe, Mg as compared with other studied cultivars.

  8. Interaction of Temperature and Photoperiod Increases Growth and Oil Content in the Marine Microalgae Dunaliella viridis

    PubMed Central

    Howard, Brian; Dvora, Mia; Dums, Jacob; Backman, Patrick; Sederoff, Heike

    2015-01-01

    Eukaryotic marine microalgae like Dunaliella spp. have great potential as a feedstock for liquid transportation fuels because they grow fast and can accumulate high levels of triacylgycerides with little need for fresh water or land. Their growth rates vary between species and are dependent on environmental conditions. The cell cycle, starch and triacylglycerol accumulation are controlled by the diurnal light:dark cycle. Storage compounds like starch and triacylglycerol accumulate in the light when CO2 fixation rates exceed the need of assimilated carbon and energy for cell maintenance and division during the dark phase. To delineate environmental effects, we analyzed cell division rates, metabolism and transcriptional regulation in Dunaliella viridis in response to changes in light duration and growth temperatures. Its rate of cell division was increased under continuous light conditions, while a shift in temperature from 25°C to 35°C did not significantly affect the cell division rate, but increased the triacylglycerol content per cell several-fold under continuous light. The amount of saturated fatty acids in triacylglycerol fraction was more responsive to an increase in temperature than to a change in the light regime. Detailed fatty acid profiles showed that Dunaliella viridis incorporated lauric acid (C12:0) into triacylglycerol after 24 hours under continuous light. Transcriptome analysis identified potential regulators involved in the light and temperature-induced lipid accumulation in Dunaliella viridis. PMID:25992838

  9. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  10. Antimicrobial edible coatings and films from micro-emulsions and their food applications.

    PubMed

    Guo, Mingming; Yadav, Madhav P; Jin, Tony Z

    2017-12-18

    This study focused on the use of antimicrobial edible coatings and films from micro-emulsions to reduce populations of foodborne pathogens in foods. Corn-Bio-fiber gum (C-BFG) was used as an emulsifier with chitosan. Allyl isothiocyanate (AIT) and lauric arginate ester (LAE) served as antimicrobials. Micro-emulsions were obtained from a solution consisting of 1% chitosan, 0.5% C-BFG, and 1-4% AIT or LAE which was subject to high pressure homogenization (HPH) processing at 138MPa for 3cycles. Coatings and films produced from the micro-emulsions had micro-pores with sizes ranging from 100 to 300nm and micro-channels that hold antimicrobials effectively and facilitate the release of antimicrobials from the center to the surface of the films or coatings, thus enhancing their antimicrobial efficacy. The coatings and films with 1% AIT reduced populations of Listeria innocua by over 5, 2, and 3 log CFU in culture medium (Tryptic soy broth, TSB), ready-to-eat meat, and strawberries, respectively. The coatings and films with 1% LAE reduced populations of Escherichia coli O157:H7 and Salmonella spp. by over 5 and 2 log CFU in TSB and strawberries, respectively. This study provides an innovative approach for the development of effective antimicrobial materials to reduce food borne pathogenic contaminants on ready-to-eat meat, strawberries, or other food. Published by Elsevier B.V.

  11. The Primary Active Components, Antioxidant Properties, and Differential Metabolite Profiles of Radish Sprouts (Raphanus sativus L.) upon Domestic Storage: Analysis of Nutritional Quality.

    PubMed

    Li, Ru; Zhu, Yi

    2018-05-21

    This study aimed to analyze the nutritional quality of radish sprouts (Raphanus sativus L.) upon domestic short-term storage. We stored fresh radish sprouts at 25±1°C and at 4±1°C for 12 h, detected phenolic substances, glucosinolates, isothiocyanates, vitamin C, and various antioxidant and abiotic stress-related factors. We investigated nutrient-related metabolic differences and associated pathways and postharvest treatment effects on nutritional quality via metabolomics analysis. Most active substances and antioxidant properties, not phenolic acids and vitamin C, decreased significantly (p<0.05) upon domestic storage; this reduction was decelerated at low temperatures. Short-term storage disrupted redox balance; low temperature enhanced stress resistance. Differences were observed in amino acid and vitamin derivatives, phospholipid accumulation, and organic acids. Short-term storage at ambient temperature promoted lysine, threonine, cysteine, vitamin H, phospholipid, and lauric (dodecanoic) acid accumulation, inhibiting proline, phosphatidic acid (PA) (14:1(9Z)/12:0), and phosphatidylcholine (PC) (O-18:0/O-18:0) accumulation; low-temperature short-term storage promoted myristic acid and phospholipid accumulation and reduced methionine synthesis and vitamin H and K accumulation. Overall, the nutritional quality of radish sprout decreased upon short-term storage, with differences in certain active substances. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Anti-Inflammatory Activity of Babassu Oil and Development of a Microemulsion System for Topical Delivery

    PubMed Central

    Reis, Mysrayn Y. F. A.; dos Santos, Simone M.; Silva, Danielle R.; Navarro, Daniela M. A. Ferraz; Santos, Geanne K. N.; Hallwass, Fernando; Bianchi, Otávio; Silva, Alexandre G.; Melo, Janaína V.; Machado, Giovanna; Saraiva, Karina L. A.

    2017-01-01

    Babassu oil extraction is the main income source in nut breakers communities in northeast of Brazil. Among these communities, babassu oil is used for cooking but also medically to treat skin wounds and inflammation, and vulvovaginitis. This study aimed to evaluate the anti-inflammatory activity of babassu oil and develop a microemulsion system with babassu oil for topical delivery. Topical anti-inflammatory activity was evaluated in mice ear edema using PMA, arachidonic acid, ethyl phenylpropiolate, phenol, and capsaicin as phlogistic agents. A microemulsion system was successfully developed using a Span® 80/Kolliphor® EL ratio of 6 : 4 as the surfactant system (S), propylene glycol and water (3 : 1) as the aqueous phase (A), and babassu oil as the oil phase (O), and analyzed through conductivity, SAXS, DSC, TEM, and rheological assays. Babassu oil and lauric acid showed anti-inflammatory activity in mice ear edema, through inhibition of eicosanoid pathway and bioactive amines. The developed formulation (39% A, 12.2% O, and 48.8% S) was classified as a bicontinuous to o/w transition microemulsion that showed a Newtonian profile. The topical anti-inflammatory activity of microemulsified babassu oil was markedly increased. A new delivery system of babassu microemulsion droplet clusters was designed to enhance the therapeutic efficacy of vegetable oil. PMID:29430254

  13. Engineered silica nanoparticles as additives in lubricant oils

    PubMed Central

    López, Teresa Díaz-Faes; González, Alfonso Fernández; Del Reguero, Ángel; Matos, María; Díaz-García, Marta E; Badía-Laíño, Rosana

    2015-01-01

    Silica nanoparticles (SiO2 NPs) synthesized by the sol–gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO2 NP surface. The hybrid SiO2 NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.01% w/v) and high (0.50%w/v) concentrations. The nature of the functional layer and the functionalization degree seemed to be directly involved in the stability of the suspensions. The potential use of the functional SiO2 NPs as lubricant additives in base oils, specially designed for being used in hydraulic circuits, has been outlined by analyzing the tribological properties of the dispersions. The dendritic structure of the external layer played a key role in the tribological characteristics of the material by reducing the friction coefficient and wear. These nanoparticles reduce drastically the waste of energy in friction processes and are more environmentally friendly than other additives. PMID:27877840

  14. In vitro comparison of nitroethane, 2-nitro-1-propanol, lauric acid, Lauricidin(R), and the Hawaiian marine algae, Chaetoceros, activity against anaerobically grown Staphylococcus aureus

    USDA-ARS?s Scientific Manuscript database

    The gastrointestinal tract of bovines often contains bacteria that contribute to disorders of the rumen and may also contain foodborne or opportunistic human pathogens as well as causative agents of mastitis in cows. Thus, there is a need to develop broad-spectrum therapies that are effective while...

  15. In vitro comparison of nitroethane, 2-nitro-1-propanol, lauric acid, Lauricidin(R), and the Hawaiian marine algae, Chaetoceros, activity against anaerobically grown Staphylococcus aureus

    USDA-ARS?s Scientific Manuscript database

    Mastitis is a common illness of dairy cattle and is very costly, economically, to the dairy farmer. Thus, there is a need to develop broad-spectrum therapies that are effective while not leading to unacceptably long antibiotic withdrawal times. The effects of the CH4-inhibitors nitroethane (2 mg/m...

  16. Behavior of Listeria monocytogenes on frankfurters surface treated with lauric arginate and/or a liquid smoke extract delivered using the Sprayed Lethality in Container (SLIC®) technology

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine the viability of Listeria monocytogenes (LM) on commercially-produced frankfurters prepared without lactates that were surface treated with 0 or 4 mL of a blend of LAE (CytoGuard; 1.0% LAE final concentration) diluted in a concentrated liquid smoke extrac...

  17. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions.

    PubMed

    Nouraei, Mehdi; Acosta, Edgar J

    2017-06-01

    Fully dilutable microemulsions (μEs), used to design self-microemulsifying delivery system (SMEDS), are formulated as concentrate solutions containing oil and surfactants, without water. As water is added to dilute these systems, various μEs are produced (water-swollen reverse micelles, bicontinuous systems, and oil-swollen micelles), without the onset of phase separation. Currently, the formulation dilutable μEs follows a trial and error approach that has had a limited success. The objective of this work is to introduce the use of the hydrophilic-lipophilic-difference (HLD) and net-average-curvature (NAC) frameworks to predict the solubilisation features of ternary phase diagrams of lecithin-linker μEs and the use of these predictions to guide the formulation of dilutable μEs. To this end, the characteristic curvatures (Cc) of soybean lecithin (surfactant), glycerol monooleate (lipophilic linker) and polyglycerol caprylate (hydrophilic linker) and the equivalent alkane carbon number (EACN) of ethyl caprate (oil) were obtained via phase scans with reference surfactant-oil systems. These parameters were then used to calculate the HLD of lecithin-linkers-ethyl caprate microemulsions. The calculated HLDs were able to predict the phase transitions observed in the phase scans. The NAC was then used to fit and predict phase volumes obtained from salinity phase scans, and to predict the solubilisation features of ternary phase diagrams of the lecithin-linker formulations. The HLD-NAC predictions were reasonably accurate, and indicated that the largest region for dilutable μEs was obtained with slightly negative HLD values. The NAC framework also predicted, and explained, the changes in microemulsion properties along dilution lines. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil.

    PubMed

    Mura, Simona; Manconi, Maria; Sinico, Chiara; Valenti, Donatella; Fadda, Anna Maria

    2009-10-01

    The aim of this work was to evaluate the ability of a few different penetration enhancers to produce elastic vesicles with soy lecithin and the influence of the obtained vesicles on in vitro (trans)dermal delivery of minoxidil. To this purpose, so-called Penetration Enhancer-containing Vesicles (PEVs) were prepared as dehydrated-rehydrated vesicles by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy)ethanol (Transcutol), capryl-caproyl macrogol 8-glyceride (Labrasol), and cineole. Soy lecithin liposomes, without penetration enhancers, were used as control. Prepared formulations were characterized in terms of size distribution, morphology, zeta potential, and vesicle deformability. The influence of PEVs on (trans)dermal delivery of minoxidil was studied by in vitro diffusion experiments through newborn pig skin in comparison with traditional liposomes and ethanolic solutions of the drug also containing each penetration enhancer. A skin pre-treatment study using empty PEVs and conventional liposomes was also carried out. Results showed that all the used penetration enhancers were able to give more deformable vesicles than conventional liposomes with a good drug entrapment efficiency and stability. In vitro skin penetration data showed that PEVs were able to give a statistically significant improvement of minoxidil deposition in the skin in comparison with classic liposomes and penetration enhancer-containing drug ethanolic solutions without any transdermal delivery. Moreover, the most deformable PEVs, prepared with Labrasol and cineole, were also able to deliver to the skin a higher total amount of minoxidil than the PE alcoholic solutions thus suggesting that minoxidil delivery to the skin was strictly correlated to vesicle deformability, and therefore to vesicle composition.

  19. Visual detection technique for efficient screening and isolation of Salmonella based on a novel enrichment assay using chromatography membrane.

    PubMed

    Tang, F; Xiong, Y; Zhang, H; Wu, K; Xiang, Y; Shao, J-B; Ai, H-W; Xiang, Y-P; Zheng, X-L; Lv, J-R; Sun, H; Bao, L-S; Zhang, Z; Hu, H-B; Zhang, J-Y; Chen, L; Lu, J; Liu, W-Y; Mei, H; Ma, Y; Xu, C-F; Fang, A-Y; Gu, M; Xu, C-Y; Chen, Y; Chen, Z; Sun, Z-Y

    2016-03-01

    To detect Salmonella more efficiently and isolate strains more easily, a novel and simple detection method that uses an enrichment assay and two chromogenic reactions on a chromatography membrane was developed. Grade 3 chromatography paper is used as functionalized solid phase support (SPS), which contains specially optimized medium. One reaction for screening is based on the sulfate-reducing capacity of Salmonella. Hydrogen sulfide (H2S) generated by Salmonella reacts with ammonium ferric citrate to produce black colored ferrous sulfide. Another reaction is based on Salmonella C8 esterase that is unique for Enterobacteriaceae except Serratia and interacts with 4-methylumbelliferyl caprylate (MUCAP) to produce fluorescent umbelliferone, which is visible under ultraviolet light. A very low detection limit (10(1) CFU ml(-1)) for Salmonella was achieved on the background of 10(5) CFU ml(-1) Escherichia coli. More importantly, testing with more than 1,000 anal samples indicated that our method has a high positive detection rate and is relatively low cost, compared with the traditional culture-based method. It took only 1 day for the preliminary screening and 2 days to efficiently isolate the Salmonella cells, indicating that the new assay is specific, rapid, and simple for Salmonella detection. In contrast to the traditional culture-based method, this method can be easily used to screen and isolate targeted strains with the naked eye. The results of quantitative and comparative experiments showed that the visual detection technique is an efficient alternative method for the screening of Salmonella spp. in many applications of large-sized samples related to public health surveillance.

  20. Mercaptoacetate and fatty acids exert direct and antagonistic effects on nodose neurons via GPR40 fatty acid receptors.

    PubMed

    Darling, Rebecca A; Zhao, Huan; Kinch, Dallas; Li, Ai-Jun; Simasko, Steven M; Ritter, Sue

    2014-07-01

    β-mercaptoacetate (MA) is a drug known to block mitochondrial oxidation of medium- and long-chain fatty acids (FAs) and to stimulate feeding. Because MA-induced feeding is vagally dependent, it has been assumed that the feeding response is mediated by MA's antimetabolic action at a peripheral, vagally innervated site. However, MA's site of action has not yet been identified. Therefore, we used fluorescent calcium measurements in isolated neurons from rat nodose ganglia to determine whether MA has direct effects on vagal sensory neurons. We found that MA alone did not alter cytosolic calcium concentrations in nodose neurons. However, MA (60 μM to 6 mM) significantly decreased calcium responses to both linoleic acid (LA; 10 μM) and caprylic acid (C8; 10 μM) in all neurons responsive to LA and C8. GW9508 (40 μM), an agonist of the FA receptor, G protein-coupled receptor 40 (GPR40), also increased calcium levels almost exclusively in FA-responsive neurons. MA significantly inhibited this response to GW9508. MA did not inhibit calcium responses to serotonin, high K(+), or capsaicin, which do not utilize GPRs, or to CCK, which acts on a different GPR. GPR40 was detected in nodose ganglia by RT-PCR. Results suggest that FAs directly activate vagal sensory neurons via GPR40 and that MA antagonizes this effect. Thus, we propose that MA's nonmetabolic actions on GPR40 membrane receptors, expressed by multiple peripheral tissues in addition to the vagus nerve, may contribute to or mediate MA-induced stimulation of feeding. Copyright © 2014 the American Physiological Society.